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Abstract—The capacity performance of ICIC has been exten-
sively studied in coordinated multi-point transmissions (CoMP).
In practice however, due to limited feedback, the acquired
channel direction information (CDI), which is crucial for ICIC,
is often partially available. Hence one may question whether the
ICIC is able to meet the Quality-of-Service (QoS) requirements.
This paper considers the optimal partitioning of the feedback
bits in CoMP while accounting for the inter-cell interference
cancellation (ICIC). In this paper, we adopt a statistical model
of QoS in CoMP by using the notion of effective capacity
(EC). Utilizing EC we then formulate the system function as an
optimization problem with the objective of maximizing the total
EC subject to the limited feedback available to the cluster of base
stations (BSs). Analytical bounds are then obtained on the EC
performance which are then utilized as the base for algorithms
that assign feedback bits among the user equipments (UEs)
and BSs. Using simulations we then investigate the accuracy of
the obtained bounds and highlight practical system designs for
dealing with stringent delay requirements. Of crucial practical
importance, the findings of this paper also indicates that in CoMP
there is an optimal cluster size for a given feedback capacity that
maximizes the corresponding EC.

I. I NTRODUCTION

Multi-antenna (MIMO) technology can increase the ca-
pacity of uplink/downlink communications in proportion to
the number of antennas in the BSs. The capacity increase
however is limited due to the inter-cell interference (ICI). An
effective way to tackle the negative impact of the ICI is coor-
dination/cooperation among adjacent BSs. In the coordinated
multi-point (CoMP) systems, a number of BSs connected to
each other/central processor (CP) through a high-speed, low-
latency backhaul to facilitate clustered communications. Such
a deployment is the building block of recently proposed cloud
radio access networks (C-RANs) [1, 2].

Various technical aspects of CoMP have been investigated in
the literature, see, e.g, [6–8]. Beamforming designs subject to
the signal-to-interference plus noise (SINR) constraints at the
user equipments (UEs) are explored in [6]. Clustering in CoMP
is investigated in [7] where a novel dynamic clustering and
interference coordinator system is proposed and prototyped
based on distributed CSMA/CA protocol. Further [8] deals
with multi-cell scheduling in CoMP systems. Energy-driven
resource allocation (RA) and beamforming design for CoMP
systems are also inspected in [9–11]. The energy efficient
RA problem in [9, 11], is transformed into a subtractive form

which is analytically tractable and results in reasonable com-
putational complexity. It is further shown in [9] that an energy
efficient in CoMP results in an spectrum-efficient solution.

In practice however, the performance of CoMP systems
is much smaller than that of suggested by the analysis. For
instance, a large cluster size is required to achieve a high
capacity growth by increasing transmission power. Neverthe-
less, the cluster-size is limited due to the excessive resources
required for acquiring accurate channel direction information
(CDI) [3]. This particularly happens in frequency division
duplexing (FDD) systems, where BSs require the quantized
UEs’ CDI for beamforming design. It is further shown in [15]
that limited feedback reduces network’s degrees-of-freedom,
where capacity is used as the main performance metric.

Negative effects of limited feedback and quantization in-
accuracies on the capacity is further investigated in [12],
where it is shown that careful feedback bit partitioning (FBP)
significantly improves capacity. FBP obtained through a brute-
force search is proposed in [14] to develop adaptive inter-
cell interference cancellation (ICIC) techniques, while clusters
with only three BSs are considered. Part of the issue causing
small capacity performance is due to the fixed feedback
capacity per cell as it is shown in [13]. An alternative approach
is to optimally distribute the cluster’s total assigned feedback
resources amongst the cells/BSs to maximize the spectral
efficiency and/or energy efficiency.

In addition to the spectral and energy efficiency, delay is
equivalently important in many application scenarios such as
those with very limited latency requirements envisaged in
the 5G systems, see, e.g., [2]. To address this issue here we
investigate the delay performance of the clustered structures
with the ICIC beamforming. Here we focus on the statistical
delay and formulate the system performance through the
effective capacity(EC) concept. EC conceptualize the capacity
in a system with delay constraints, see, e.g., [17, 18]. The EC
concept is utilized to analyze the BS selection in the networked
MIMO systems [16] however, the perfect CDI is considered
ignoring the impact of limited feedback capacity.

To the best of our knowledge the delay performance in lim-
ited feedback CoMP systems has not been investigated in the
related literature. In limited-feedback ICIC beamforming the
exact evaluation of the EC performance is rather challenging
mainly due to the residual intra-cluster interference caused by



the quantized CDIs. In our analysis, adopting techniques from
stochastic geometry, we obtain analytical bounds on the EC
performance. The accuracy of the bounds are then examined
through extensive simulations. Based on the achieved bounds
we then obtain sub-optimal feedback resource allocation that
maximizes the system EC performance with limited feedback
capacity in each cluster. The proposed technique is in fact a
FBP method which allocates the available feedback resources
amongst the cells and UEs.

Simulation results show that the proposed algorithm out-
performs other FBP algorithms in the literature. Finally, we
highlight the importance of dynamic clustering and power
control in conjunction with FBP for enhancing the total system
EC, especially in cases where the delay exponent is large.

II. SYSTEM MODEL

We consider downlink in a cluster consisting of|C| het-
erogenous base stations (BSs), indexed byc ∈ C and connected
to a central processor (CP). Let the cluster be a disk-shaped
with radius R meters. We assume that BSs are positioned
on a disk with radius0 < D ≤ R meters from the center
of the cluster (see Fig. 1-LHR for an example). BSs share
the same portion of the cluster coverage as the cell area.
Each BS is equipped withNt transmit antennas. In CoMP
Nt ≥ |C| [12, 14]. There is a single-antenna UEc associated
with each BSc. The path-loss attenuation between UEc
and BS c′ is ρcc′ = (1 + dcc′)−α, where dcc′ and α > 2
are distance and path-loss exponent. The transmitted signal
undergoes flat-fading,hcc′ ∈ CNt×1 , with the CDI (direction)
h̃cc′ = hcc′/‖hcc′‖. We assumehcc′ ∀c′ 6= c are independent,
and their elements are complex Gaussian random variables
with zero mean and unit variance, i.e., Rayleigh fading.

We focus on frequency division duplex (FDD) systems, such
as LTE-Advance. For such systems, the acquisition of channel
direction information (CDI) often requires a feedback channel
in the uplink. LetBtot be the total assigned feedback capacity
(in number of bits) to the cluster [13]. Random vector quanti-
zation (RVQ) [4, 5] is considered. Here we assume that perfect
CDI is available to the receivers. UEc separately quantizes
CDIs according to given constructed quantization code-books
for intended CDI,Wcc, and interfering CDIs,{Wcc′ , ∀c′ 6= c}
[12]. UEs then transmit the indices of the selected code-words
to the corresponding BSs via the designated feedback channel.
To do this, UEc requires

∑
c′∈C Bcc′ feedback bits to quantize

the CDIs. Let ĥcc′ = max
l=1,...,2

B
cc′ |h̃

†
cc′ [Wcc′ ](:,l)|2,where

[Wcc′ ](:,l) is the l-th column of code-bookWcc′ , i.e., thel-th
code-word, and superscript† indicates the transpose conjugate
as the quantized CDI of̃hcc′ . It then reports the indices
l∗cc′ = arg maxl |h̃†cc′ [Wcc′ ](:,l)|2 to the BS c which then de-
quantizesl∗cc′ to ĥcc′ and shares them with other BSs.

Other BSs also provide BSc with the interfering channel
directions between BSc and selected UEs in other cells,ĥc′c,n

∀c′ 6= c . Upon receiving required CDIs, BSc constructs matrix
Ĝc = [ĥc′c∀c′ 6= c] ∈ CNt×(|C|−1) and produces coordinated
beamforming vectorf̂ c ∈ CNt×1 as f̂ c = (I−P(Ĝc))ĥcc

‖(I−P(Ĝc))ĥcc‖

where P(Ĝc) = Ĝc(Ĝ
†
cĜc)

−1Ĝ
†
c is the projection operator.

This beamforming technique is commonly referred to asinter-
cell interference cancellation(ICIC) [12, 14]. In this model,
SINR atc is

γcc =
ρcc

Pc

Nt
|h†ccf̂ c|2

σ2 +
∑

c′∈C−c

ρcc′
Pc′
Nt
|g†cc′ f̂ c′ |2

, (1)

wheref̂ c′ is the coordinated beamforming vector constructed
at BSc′ and is independent of̂f c, σ2 is AWGN and an inter-
cluster interference contribution, andPc is the transmission
power at BSc. Since BSs do not access the channel quality
information (CQI), the allocated power on each subcarrier
is simply divided by the number of antennas,Nt. Further-
more, due to the mismatch betweenĥcc′ and hcc′ , we have
|h†cc′ f̂ c′ |2 6= 0 while |ĥ†cc′ f̂ c′ |2 = 0. To model this mismatch
and incorporate its impact on the system design, we adopt
Quantization Cell Approximation (QCA) [12, 19]. In the rest

of this paper, we use the parameterδc′c′′ = 2−
B

c′c′′
Nt−1 .

III. PARTITIONING FEEDBACK CAPACITY FOR

OPTIMIZING EFFECTIVE CAPACITY

Spectral efficiency is usually considered in the design of
CoMP systems. However, it overlooks some prominent aspects
of the UE’s QoS requirements, such as delay. One way to
incorporate delay in the design of the RA problem is to use
the notion of statistical delayby EC [17]. Introducing the
delay exponentθc, which addresses the delay requirement of
UE c, the EC,eccc, is expressed aseccc = −1

θc
log(Ee−θcRcc)

whereRcc is the instantaneous transmission rate and is equal
to Rcc = log(1+γcc). EC is a flexible performance metric and
can cover diverse performance metrics pertinent to the wireless
communication systems including achievable capacity (θc →
0) and outage capacity (θc → ∞). Considering the limited
feedback capacity, we formulate the following optimization

max
B

∑

c∈C
eccc s.t.

∑

c∈C

(
Bcc +

∑

c′∈C−c

Bcc′

)
= Btot.(2)

We first start by deriving the EC of a given linkcc.

A. Evaluation of the Effective Capacity

Proposition 1: An approximate of UEc’s EC is

eccc ≈ −1
θc

log


 (−1)Nt−|C|

Γ(Nt − |C|)

∞∫

0

zNt−|C|−1

(1 + z)θc

∂Nt−|C|O(z)
∂zNt−|C| dz


 ,

whereO(z) is given in the Appendix.
Proof: See Appendix.
Obtainingeccc is highly computationally complex. We also

provide a more computationally efficient approximation. But,
before proceeding further, we need the following result on the
average data rate of a given link.
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Fig. 1. LHS: A schematic of the system. RHS: The EC of the link versus
θc for three BSs with equal transmission power,Nt = 5, andα = 4. The
allocated feedback bits areBcc = 8 (distance300m), Bcc′ = 6 (distance
400m), andBcc′′ = 5 (distance500m).

Proposition 2: The average data rate of linkcc is approx-
imated by

R̄cc ≈
∞∫

0

e−Ntwσ2

w

∏

c′∈C−c

1
1 + ρcc′Pc′δcc′w

×


1−

δcc∫

0

fsin2(θcc)(x)

1+wPcρccδcc

(1 + wPcρcc(1− x))Nt−|C| dx


 dw. (3)

wherefsin2(θcc)(x) is the mismatch’s pdf, assuming QCA [12,
19].

Proof: See Appendix.
Proposition 3: Another approximate of the EC is suggested

by eccc ≈ −1
θc

log(1− θcR̄cc + θ2
c

2 R̂cc), whereR̄cc is given in
Proposition 2 and̂Rcc is obtained by
∞∫

0

∞∫

0

e−σ2Nt(w1+w2)

w1w2

(1−K̂(w1,w2))

∏

c′∈C−c

1
1 + ρcc′Pc′δcc′(w1 + w2)

dw1dw2

where functionK̂(w1, w2) is given in Appendix.
Proof: See Appendix.
Note that the approximation in Proposition 3 is valid for

0 < 1 − θcR̄cc +
θ2

c
2

R̂cc,n ≤ 1 , which can be included as part
of the FBP constraint.

Fig. 1-RHS illustrates the EC of a given link. As shown
in this case, Propositions 1 and 3 also provide reasonably
accurate approximations of the true EC, especially whenθc

is large enough. The accuracy of the derived approximations
is lower for smallerθc. However, since for sufficiently small
θc, the EC converges to the capacity, one may simply consider
Proposition 2 as an approximation of the EC.

B. A Greedy Algorithm for Feedback Bit Partitioning

Having the EC specified by Proposition 1 or 3, we now
aim at solving the optimization problem (2). However, due to
complexity of the derived approximations of EC, analytical
solution is challenging. Furthermore, exhaustive search is
computationally infeasible asBtot and/or|C| are usually very
large. Here, we develop a greedy solution.

Our approach is to divide the greedy search into two layers:
the first layer assigns bits to the cells by the developed

algorithm Cluster-level FBP (C-lFBP) in Alg. 1. The second
layer partitions the assigned feedback bits to each cell for
the quantization of|C| CDIs at each UE. This is done by
conducting UE-level FBP (U-lFBP) in Alg. 2. Note that U-
lFBP is previously considered in [20], where the objective
was to minimize capacity gap between quantized and accurate
scenarios. Furthermore, it is assumed there that per UE feed-
back capacity is given. Here we extend the algorithm for the
cases where feedback capacity per cluster is unspecified, and
we consider EC as the performance metric.

Algorithm 1 Cluster-level Feedback Bit Partitioning (C-lFBP)

1: Setb = [ḃc, ∀c] = 0|C|×1, B = 0|C|×|C|, ec(b) = 0|C|×1, and
B̌(b) = 0|C|×|C|

2: while B > 0 do
3: for c′ ∈ C do
4: Setb(c′) = {b1, b2, . . . , bc′ + 1, . . . , b|C|}
5: for ∀c ∈ C do
6: Execute U-lFBA for UEc for bc = [b(c′)]c and set

[ec(b(c′))]c and [B̌
(c′)

(b(c′))]c,: accordingly.
7: end for
8: end for

9: ċ = maxc′

(∑
c∈C

[ec(b(c′))]c −
∑
c∈C

[ec(b)]c

)

10: Updateec =
∑
c∈C

[ec(b(ċ))]c, B = B − 1, B = B̌
(ċ)

(b(ċ)),

andb = b(ċ)

11: end while

Algorithm 2 UE-level Feedback Bit Partitioning(U-lFBP)
1: SetBcc′ = 0,∀c′, bcc′ = {Bc1, . . . , Bc|C|}
2: while bc > 0 do
3: for c′ ∈ C do
4: Setb(c′) = {Bc1, . . . , Bcc′ + 1, . . . , Bc|C|}
5: Calculateeccc for b(c′) and update[eccc(b

(c′))]c′ = eccc

6: end for
7: Find ċ = maxc′

(
[eccc(b

(c′))]c′ − [eccc(b)]c′
)

8: Updateeccc = [eccc(b
(ċ))]ċ, bcc = b(ċ), bc = bc − 1

9: end while

To implement the proposed greedy algorithm, the CP merely
needs to know path-loss attenuations of each UE with respect
to all BSs in the cluster, which is practically feasible and
does not add much to the signaling overhead. After specifying
FBP, BSs will respectively inform the selected UEs with
available feedback resources for code-book constructions, and
consequently CDI quantization/feedback.

IV. SIMULATION RESULTS

The simulation setup is depicted in Fig. 1-LHS. The cluster
under consideration consists of|C| BSs. In each cluster, BSs
are located in a circle centered at the cluster-center, where
the PC is located, with radius0 ≤ D ≤ R whereR is the
cluster radius. We setR to 500m. The rest of the parameters
are Pc = 10W ∀c, σ2 = 10−14W, α = 3.76. In both cases,
UE c is randomly placed in the respective disk subject to the
sector that is covered by BSc. We apply the Monte Carlo
technique and average the performance over 10000 snapshots.



We compare our algorithm, referred to asSch. 1 , with
three other FBP approaches:Sch. 2that not only equally par-
titions Btot among the cells but also equally divides available
Btot/|C| to each UE among the interfering and attending BSs;
Sch. 3that solves the following optimization for FBP

Ξ(B∗
cc) = min

∑

c′∈C−c

ρcc′δcc′ s.t.
∑

c′∈C−c

Bcc′ = Bc −B∗
cc.

Here we assumeBtot is equally partitioned across cells.
Furthermore,B∗

cc = maxBcc∈{0,1,...,Bc} Ξ(Bcc). Sch.3 min-
imizes the residual interference due to interfering BSs at each
UE. Note that the above optimization can be solved via a
linear search onBcc and Lagrange method for obtainingBcc′

followed by simple rounding of the results, the details of
which are omitted due to the space limitation. Finally,Sch. 4
does FBP by solving the optimization problemmaxB

∑
c∈C

R̄cc

whereR̄cc is given by Proposition 2. The above optimization
problem is solved via the developed greedy algorithm simply
by replacing sum EC with sum average rate. For Sch. 2, Sch.
3, and Sch. 4, we obtain the corresponding FBPs and evaluate
the sum ECs.

Fig. 2 illustrates the comparison results for two cases of
Btot = 50 (left) and Btot = 100 (right). Sch. 1 is shown to
outperform the other schemes. For the case whenBtot is large,
there is a diminishing difference between Sch. 1 and Sch. 4.
Further, increasingBtot has a positive impact on increasing
sum EC. Note that Fig. 2 also shows that by increasingθ, the
EC is drastically decreased, indicating that in limited feedback
CoMP systems, the system’s outage capacity can be very low.
As it is seen FBP alone is not able to completely overcome
this phenomenon.
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Fig. 2. Sum ECvs. delay exponentθc = θ ∀c.

One may consider two options to address the issue of
low outage capacity, i.e., EC whenθ >> 0.1; (1) power
control in conjunction with FBP, (2) dynamic clustering in
conjunction with FBP, by properly switching off/on BSs, in
order to manage the excessive residual interference due to
the limited feedback. Thorough investigations of these options
are left as our future work, while reporting some preliminary
results in Fig. 3. As shown in the left panel of Fig. 3, increasing
transmission power can dramatically improve the sum EC.
However, very large transmission power is almost ineffective
for the EC. This is previously reported for the capacity in [3].
Note that Sch. 2 and 3 could not absorb the benefits of higher
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Fig. 3. Sum ECvs. transmission power.
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Fig. 4. Sch. 1’s sum EC performancevs. cluster-size|C|.

transmission power. Thus, it is important to join FBP with
power control for full exploitation of the power control.

On the other hand, Fig. 3-RHS depicts sum EC versus the
cluster size. It indicates that for givenBtot there is an optimal
cluster-size that yields the maximum sum EC. For the case of
Btot = 400, there is a huge difference between cluster size
of 4 and 7. This highlights the importance of clustering in
enhancing the network performance.

Finally, Figs. 5 and 6 show the impact of parameterD
(see Fig. 1-left) on sum EC, respectively, forNt = 8 and
Nt = 12. By increasingD, the sum EC steadily decreases.
Note that increasingD results in reducing the power of
signal and interference strengths, however, since the inter-cell
interference is canceled, albeit partially, the negative impact
of weak signal strength is superior. Comparing these figures,
we further confirm that increasingNt improves the sum EC.

V. CONCLUSIONS

In this paper we focused on developing a FBP algorithm
suitable for provisioning statistical QoS for limited-feedback
CoMP systems. We provided several analytical bounds on
the EC and examined their accuracy. Further, the efficiency
of our proposed greedy FBP algorithm against some existing
approaches was confirmed. The main takeaways of this paper
were that (i) it is very important to optimally divide the
feedback capacity across cells and UEs, (ii ) FBP is unable to
meet the required stringent delay requirements, and it should
be joined with other techniques such as power control and
dynamic clustering, (iii ) power control is highly effective in
conjunction with optimal FBP; otherwise the performance
boost is very limited, and (iv) for given feedback capacity
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Fig. 5. Sum ECvs. distanceD for Nt = 8.
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constraint per cluster, there is an optimal cluster size which
renders the maximum EC.

APPENDIX

1) Proof of Proposition 1:Let random variableJcc′ denote
Jcc′ = ‖hcc′‖2|h̃†cc′ f̂ c′ |2 and Kcc be Kcc = ‖hcc‖2|h̃†ccf̂ c|2.
Decomposing vector̃hcc′ ash̃cc′ = cos(θcc′)ĥcc′+sin(θcc′)vcc′ ,
where vcc′ is perpendicular tôhcc′ and θcc′ is the angle
betweenh̃cc′ and ĥcc′ , and adopting the developed theory
of QCA quantization from [4, 12],Jcc′ is distributed asJcc′ ∝
‖hcc′‖2 sin2(θcc′)B(1, Nt−2) in which B(1, Nt−2) indicates a
beta random variable with parameters1 andNt− 2. Utilizing
the results of [21, 22]Jcc′ is an exponentially distributed
random variable where parameterδcc′ . Note that random
variablesKcc andJcc′ ∀c′ 6= c are independent since the direct
and interfering channel vectors are independent as well as the
respective quantization code-books are constructed separately.
We expand̃hcc as h̃cc = cos(θcc)ĥcc + sin(θcc)scc, wherescc

is orthogonal tôhcc andθcc is the angle betweeñhcc andĥcc.
We then apply the following approximation:

Kcc ≈ cos2(θcc)‖hcc‖2|ĥ†ccf̂ c|2 + sin2(θcc)‖hcc‖2|s†ccf̂ c|2.
(4)

As it is shown in [14]‖hcc‖2|ĥ†ccf̂ c|2 ∼ χ2
2(Nt−|C|+1), which is

a Chi-squared random variable with2Nt − 2|C|+ 2 degree-of-
freedoms. Accordingly, we approximate the received signal
strength by ρccPc‖hcc‖2|h̃†ccf̂ c|2 ≈ ρ̃ccχ

2
2(Nt−|C|+1). where

ρ̃cc = ρccPc

(
1− Nt−1

Nt
δcc

)
. We define random variable

Y =
∑

c′ 6=c ρcc′Pc′Jcc′ , and introduce a new random variable
defined asZ = ρ̃ccχ

2
2(Nt−|C|+1)/(σ2Nt + Y ) . Let start by

deriving an expression for the pdf of random variableZ as

follows:

fZ(z) =
∂

∂z
P

{
χ2

2(Nt−|C|+1)

σ2Nt + Y
≤ z

ρ̃cc

}

= EY

[
σ2Nt + Y

ρ̃cc
fχ2

2(Nt−|C|+1)

(
z
σ2Nt + Y

ρ̃cc

)]

= EY




(
σ2Nt + Y

ρ̃cc

)Nt−|C|+1
zNt−|C|e−z

σ2Nt+Y
ρ̃cc

Γ(Nt − |C|+ 1)




=
zNt−|C|

Γ(Nt − |C|+ 1)
EY

[
(−1)Nt−|C|+1 ∂Nt−|C|+1

∂zNt−|C|+1
e
−z

σ2Nt+Y
ρ̃cc

]
,

where we substituted the pdf of random variableχ2
2(Nt−|C|+1)

and applied some straightforward manipulations. Conse-
quently,

fZ(z) =
(−1)Nt−|C|+1zNt−|C|+1

Γ(Nt − |C|+ 1)
∂Nt−|C|+1

∂zNt−|C|+1
EY

[
e−z

σ2Nt+Y
ρ̃cc

]
,

which, by recalling the definition of random variableY can
be written as

fZ(z) = (−1)Nt−|C|+1 zNt−|C|

Γ(Nt − |C|+ 1)
∂Nt−|C|+1O(z)

∂zNt−|C|+1
, (5)

whereO(z) is defined as

O(z) = e−z
σ2Nt
ρ̃cc

∏

c′∈C−c

1

1 + z ρcc′Pc′δcc′
ρ̃cc

. (6)

Utilizing pdf (5), we get the following expression:

Ee−θc log(1+Z) =
(−1)Nt−|C|+1

Γ(Nt − |C|+ 1)

∞∫

0

zNt−|C|+1

(1 + z)θc

∂Nt−|C|+1O(z)

∂zNt−|C|+1
dz.

Using this, we derive an approximate of the EC as suggested
in Proposition 1.

2) Proof of Proposition 2:Referring to the proof of Propo-
sition 1 we haveR̄cc = E log(1 + ρccPcKcc

σ2Nt+Y
). According to the

rate-splitting equality [23], it is observed that

R̄cc = E log
(

1 +
ρccPcKcc + Y

σ2Nt

)
− E log

(
1 +

Y

σ2Nt

)
.

(7)

Substituting the following identitylog(1 + x) =
∞∫
0

e−w

w
(1 −

e−wx)dw [24], into (7), and then applying some manipulations,
we get

R̄cc =

∞∫

0

e−Ntwσ2

w
Ee−wY

(
1− Ee−wPcρccKcc

)
dw.

=

∞∫

0

e−Ntwσ2

w

∏

c′∈C−c

1

1 + ρcc′Pc′δcc′w

(
1− Ee−wPcρccKcc

)
dw.

(8)
where in the last step we used the fact thatJcc′ is an

exponential random variable with parameterδcc′ . Now, we
calculateEe−wPcρccKcc for fixed w. Random variable|s†ccf̂ c|2
is beta with parameters1 and Nt − 2 [4]. Besides, random



variable sin2(θcc)‖hcc‖2|s†ccf̂ c|2 is exponentially distributed
with parameterδcc. Thus,

Ee−wPcρccKcc ≈ Ee
−wPcρcc cos2(θcc)χ2

2(Nt−|C|+1)Ee−wPcρccδccχ2
2 ,
(9)

in which for mathematical tractability we have assumed that
random variablecos2(θcc)χ

2
2(Nt−|C|+1) and δccχ

2
2 are indepen-

dent, which clearly are not. Combining (9) and (8), the
following approximation on the achievable capacity can be
suggested

R̄cc ≈
∞∫

0

e−Ntwσ2

w

∏

c′∈C−c

1

1 + ρcc′Pc′δcc′w
×

(
1− Ee

−wPcρcc cos2(θcc)χ2
2(Nt−|C|+1)

1 + ρccPcδccw

)
dw. (10)

What remains is to substitute the pdf of QCA mismatch in
(10) that yields the desired result.

3) Proof of Proposition 3:It is straightforward to show that

Ee−θcRcc = 1−θcR̄cc +
∞∑

k=2

(−θc)k

k!
E (log(1 + γcc))

k
, (11)

whereR̄cc is already known from Proposition 2. Recalling the
definitions of the random variablesJcc andKcc from the first
part of the Appendix, we get

ERk
cc = E




∞∫

0

e−w

w
(1− e−wγcc)dw




k

= E
∞∫

0

. . .

∞∫

0

k∏
i=1

e−wi

wi
(1−e−wiγcc)dwi =

∞∫

0

. . .

∞∫

0

(
k∏

i=1

e−σ2Ntwi

wi

)

×Ee
−Y

k∑
i=1

wi

E
k∏

i=1

(
1− e−ρccPcKccwi

)
dw1 . . . dwk

=

∞∫

0

. . .

∞∫

0

e−σ2Nt
∑k

i=1 wi

∏k
i=1 wi

∏

c′∈C−c

1

1 + ρcc′Pc′δcc′
∑k

i=1 wi

×E
k∏

i=1

(
1− e−ρccPcKccwi

)
dw1 . . . dwk

For the general case, it is too complicated to derive a closed-
form expression for this integral. We therefore assumek =
2, and denoteR̂cc = E (log(1 + γcc,n))2. As a result,R̂cc is
obtained as
∞∫

0

∞∫

0

e−σ2Nt(w1+w2)

w1w2

(1−K̂(w1,w2))

∏

c′∈C−c

1
1 + ρ̃cc′Pc′δcc′(w1 + w2)

dw1dw2.

(12)
where, by following the lines presented in the proof of
Proposition 2, it is straightforward to confirm that̂K(w1, w2)
is obtained as

δcc∫

0

[
1

1+w1Pcρccδcc

(1 + w1Pcρcc

(1−x)−1 )Nt−|C|+1
+

1
1+w2Pcρccδcc

(1 + w2Pcρcc(1− x))Nt−|C|+1

−
1

1+(w1+w2)Pcρxcδcc

(1 + (w1 + w2)Pcρcc(1− x))Nt−|C|+1

]
fsin2(θcc)(x)dx.

Substituting (12) into (11), the proposed approximation in
Proposition 3 is finally obtained.
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