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ABSTRACT 19 

The microorganisms responsible for degrading phenanthrene (PHE) in polycyclic aromatic 20 

hydrocarbon (PAH)-contaminated sewage water were identified by DNA-based stable isotope 21 

probing (DNA-SIP). In addition to the well-known PHE degraders Acinetobacter and 22 

Sphingobium, Kouleothrix, Sandaracinobacter and Kouleothrixaceae were found, for the first 23 

time, to be directly responsible for in situ PHE biodegradation. Additionally, a novel PHE 24 

degrader, Acinetobacter tandoii sp. LJ-5, was identified by DNA-SIP and direct cultivation. This 25 

is the first report and reference to A. tandoii involved in the bioremediation of 26 

PAH-contaminated water. A PAH-RHDɑ gene involved in PHE metabolism was detected in the 27 

DNA-SIP 
13

C heavy fraction, but the amplification failed in A. tandoii LJ-5. Instead, the strain 28 

contained catechol 1,2-dioxygenase and the alpha and beta subunits of protocatechuate 29 

3,4-dioxygenase, indicating use of the β-ketoadipate pathway to degrade PHE and related 30 

aromatic compounds. These findings add to our current knowledge on microorganisms that 31 

degrade PHE by combining cultivation-dependent and cultivation-independent approaches and 32 

provide deeper insight into the diversity of PHE-degrading communities in situ.33 
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1. INTRODUCTION  34 

Polycyclic aromatic hydrocarbons (PAHs) are a group of hydrophobic organic compounds with 35 

fused aromatic rings that are generated from natural and anthropogenic processes and pose a 36 

serious threat to the health of all organisms.
1,2

 Because of their high toxicity, mutagenicity and 37 

carcinogenicity, the United States Environmental Protection Agency has classified PAHs as 38 

priority pollutants since the 1970s.
3
 Bioremediation has proven to be a cost-effective and 39 

environmentally friendly alternative to removing PAHs from contaminated sites.
4,5

  40 

Considerable effort based on traditional cultivation-dependent approaches has focused on 41 

isolating and identifying cultivable PAH degraders to explore the fate of PAHs. Hitherto, many 42 

microorganisms capable of degrading PAHs have been isolated and evaluated, most of which 43 

belong to the genera Agmenellum, Aeromonas, Alcaligenes, Acinetobacter, Arthrobacter, Bacillus, 44 

Berjerinckia, Burkholderia, Comamonas, Corynebacterium, Cyclotrophicus, Flavobacterium, 45 

Moraxella, Micrococcus, Mycobacterium, Marinobacter, Nocardioides, Pasteurella, 46 

Pseudomonas, Lutibacterium, Rhodococcus, Streptomyces, Stenotrophomonas, Sphingomonas, 47 

Vibrio and Paenibacillus.
6-17

 Cultivation-based approaches provide clues about PAH degraders 48 

and PAH degradation pathways. Furthermore, functional genes associated with PAH degradation, 49 

such as PAH-ring hydroxylating dioxygenases (PAH-RHDs)
18,19

 and PAH-ring cleaving 50 

dioxygenases (PAH-RCDs), including catechol dioxygenase [CAT]
20,21

 and protocatechuate 51 

dioxygenase [PACH])
22-24

, have been identified. However, it is difficult to obtain all 52 

PAH-degrading isolates in nature, as the majority of microbes are uncultivable,
25

 and 53 

cultivation-based methods greatly underestimate prokaryotic diversity.
26

 In addition, 54 

cultivation-based method fails to explain the complex interactions among individuals within 55 
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microbial communities in their native environment.
27

  56 

Cultivation-independent methods, which can be used to effectively evaluate the prokaryotic 57 

diversity of complex systems,
28,29

 have been used to evaluate microbial degradation of PAHs.
30-33

 58 

High-throughput methods have revolutionised the ability to investigate deeper into the microbial 59 

communities contained in environmental samples by providing higher resolution of microbial taxa 60 

compared with that of conventional cloning techniques.
34

 However, these methods fail to 61 

accurately identify the metabolic or functional features of the targeted microorganisms.
34

 62 

Stable-isotope probing (SIP) is a cultivation-independent technique that circumvents the 63 

requirement of distinguishing organisms to assess metabolic responses and links identity to 64 

function.
35

 It has been successfully used in environmental samples by feeding microbial 65 

communities stable isotope-labelled substrates (
13

C or 
15

N) to label the intracellular components 66 

(DNA, RNA, or proteins) and allowing the separation and characterisation of the targeted but 67 

hidden functional microorganisms according to buoyancy, particularly those not amenable to 68 

cultivation.
17

 To date, SIP has been used to identify a large number of PAH-degrading 69 

bacteria.
27,32,33,36

  70 

Phenanthrene (PHE) is a common PAH model compound used in biodegradation studies due 71 

to its ubiquity in nature and its fused-ring angular structure.
13,17

 A number of in situ PAH 72 

degraders have been identified in real-world habitats, such as soil or seawater, using the DNA-SIP 73 

method.
27,31,36-38

 However, only a few investigators have successfully isolated the microbes using 74 

traditional cultivation methods,
31

 which help determine their metabolic characteristics and explore 75 

the functional populations actually responsible for pollutant degradation in the field. In the present 76 

study, DNA-SIP was applied to sewage water samples to link the bacterial taxa with their PHE 77 
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biodegradation phenotypes in situ. In addition, cultivation-based and high-throughput techniques 78 

were used to achieve a more thorough understanding of the bacterial communities contributing to 79 

PHE degradation. Here, a representative active PHE degrader (Acinetobacter tandoii LJ-5) was 80 

successfully isolated from the microbial sewage community. We focused on the functional genes 81 

involved in PHE metabolism to explore the environmental significance of this strain. The 82 

functional genes encoding PAH-RHD and PAH-RCD (CAT and PACH) were investigated by 83 

analysing relevant sequences amplified from the 
13

C-DNA-enriched fraction and A. tandoii LJ-5 84 

DNA. In this study, the PHE-degrading bacteria in sewage water was successfully characterised 85 

using DNA-SIP and cultivation-based methods. We hope to provide novel information on the 86 

bioremediation of PAH-contaminated sites using a reliable theoretical basis.87 
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2. MATERIALS AND METHODS 88 

2.1. Sample collection. Water samples were collected from sewage at an oil refinery 89 

(37°49′N, 118°25′E; altitude, 37.49 m) located in Shandong Province, China. After transport to 90 

the laboratory, a portion of the samples was stored at −20°C for subsequent DNA extraction. 91 

The remaining samples were immediately stored at 4°C for PHE degradation and SIP 92 

experiments. The PAHs identified in the sewage water are listed in Table S1 (determined using 93 

gas chromatography-mass spectrometry as described below). 94 

2.2. SIP experiment 95 

2.2.1. SIP microcosms. A 50 mL water sample was placed in a 150 mL serum bottle. 96 

Unlabelled PHE (99%; Cambridge Isotope Laboratories, Inc., Tewksbury, MA, USA) or 97 

13
C-labeled PHE (

13
C6-PHE, 99%; Cambridge Isotope Laboratories, Inc.) at a final concentration 98 

of 10 mg/L was added to a bottle with a rubber stopper and an aluminium cap using a gas-tight 99 

syringe. Microcosms without PHE were used as the non-PHE control, and those with unlabelled 100 

PHE in filter-sterilised sewage water were used as the sterile control. Each treatment was 101 

conducted in triplicate. All microcosms were incubated in the dark with shaking at 120 rpm and 102 

room temperature (~25°C). The serum bottles were opened each day for approximately 1 h to 103 

maintain the ambient oxygen level. On day 3 of incubation, samples from each treatment were 104 

removed for PHE analysis and DNA extraction. 105 

2.2.2. Nucleic acid extraction and ultracentrifugation. After centrifuging 100 mL of each 106 

water sample from the 
12

C-PHE and 
13

C-PHE treatments, total nucleic acids were extracted from 107 

the resulting cell pellets using the PowerSoil DNA Isolation Kit (MO BIO, Carlsbad, CA, USA) 108 

according to the manufacturer’s instructions.
39

 DNA content was quantified using the ND-2,000 109 
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UV-Vis spectrophotometer (NanoDrop Technologies, Wilmington, DE, USA). 110 

Approximately 5 µg DNA were added to Quick-Seal polyallomer tubes (13 × 51 mm, 5.1 mL; 111 

Beckman Coulter, Pasadena, CA, USA) and mixed with Tris-EDTA (pH 8.0)-CsCl solution at a 112 

final buoyant density (BD) of ~1.77 g/mL. The BD was determined using a digital refractometer 113 

(model AR200; Leica Microsystems Inc., Buffalo Grove, IL, USA). After balancing and sealing, 114 

the tubes were transferred to an ultracentrifuge (Optima L-100XP, Beckman Coulter) at 45,000 g 115 

(20°C) for 48 h. Subsequently, DNA in the tube was fractioned (400 µL each) and collected using 116 

a fraction recovery system (Beckman Coulter). After the BD measurements, the DNA fractions 117 

were purified using the method described by Sun et al.
40

 The relationships between BD and the 118 

fraction number or DNA concentration are listed in Figure S1 and Figure S2, respectively. 119 

2.2.3. High-throughput sequencing and computational analyses. Sequencing was 120 

conducted using an Illumina MiSeq sequencer with the standard pipeline. The V4 hypervariable 121 

region of bacterial 16S rRNA in fractions from samples derived from the 
12

C-PHE and 
13

C-PHE 122 

microcosms was amplified using the F515/R806 primer set (Table 1), with a sample-specific 123 

12-bp barcode added to the reverse primer as described by Liu et al.
41

 Reads were filtered if 124 

they contained primer mismatches, uncorrectable barcodes or ambiguous bases. Then, the 125 

qualified sequences were analysed using the MOTHUR software package.
42,43

 Sequences were 126 

assigned using an operational taxonomic unit (OTU)-based method to generate microbiome 127 

profiles.
44-46

  128 

The relative abundance of each OTU was determined as described previously.
40

 In total, 129 

4,186 OTUs were detected in all samples, and those with the top 100 relative abundances were 130 

selected for analysis. Bacteria represented by OTUs that were enriched in the heavy fractions 131 
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from 
13

C-PHE samples compared with 
12

C-PHE samples were identified as PHE degraders. 132 

Finally, five OTUs (OTU_4, OTU_50, OTU_57, OTU_73 and OTU_107) were selected and 133 

aligned to Acinetobacter spp., Sphingobium spp., Kouleothrix spp., Sandaracinobacter spp. and 134 

Kouleothrixaceae spp. (accession numbers: KX364043–KX364047), respectively, using the 135 

Greengenes database.
47,48

 The phylogenetic information from the sequences was analysed using 136 

the Basic Local Alignment Search Tool algorithm (National Center for Biotechnology 137 

Information, Bethesda, MD, USA) and MEGA ver. 4.0.
49

 138 

2.3. Isolation of PHE degraders by enrichment and cultivation. Raw sewage water (5 139 

mL) was added to 50 mL minimal medium (MM) (Table S3, pH = 7.0) with 1,000 mg/L PHE 140 

(MM-P) as the carbon source. After a 25°C incubation for 7 days, 5 mL of the culture medium 141 

were subcultured in 50 mL fresh MM-P medium and incubated under the same conditions for 142 

another 7 days. After three sequential rounds of enrichment, the enriched population was serially 143 

diluted and spread on MM-P agar. The plates were incubated at 25°C for 4 days. In total, 10 144 

colonies were isolated, purified and identified. The growth curve was calculated, and the PHE 145 

degradation efficiency of the isolated strain was evaluated in MM supplemented with different 146 

concentrations of PHE (100–1,000 mg/L) in the dark for 7 days on a 180 rpm shaking plate at 147 

30°C. PHE degradation was determined using the method described in Section 2.5. Genomic 148 

DNA was extracted, and the 16S rRNA gene sequence was amplified by polymerase chain 149 

reaction (PCR) using the 27f and 1492r bacterial universal primers (Table 1).
50

 In addition, the 150 

morphological and physiological characteristics, GC content and DNA-DNA hybridisation of 151 

the isolated strain were determined using previously described methods.
51

 Cell counts were 152 

adjusted to approximately 1 × 10
7
 colony forming units/mL at the beginning of the experiment 153 
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using the dilution plate counting method.
52

 Cell growth was evaluated by measuring the optical 154 

density of the culture at 600 nm. Controls without cells were also established. All tests were 155 

performed in triplicate, using the same standard and incubation conditions as those used for the 156 

microcosm experiment.  157 

2.4. Detection of PAH-RHD and PAH-RCD genes. The PAH-RHDα gene in the heavy 158 

DNA fraction was investigated in Gram positive and Gram negative (GN) degraders using two 159 

primer sets, 642f/933r
53

 and 610f/911r
53

, respectively (Table 1). Gradient PCR was performed at 160 

annealing temperatures of 52–62°C.
54

 However, only the PAH-RHDα GN primer set produced a 161 

specific amplicon and was selected for this study. The amplification reactions were conducted 162 

according to previous methods.
54

 The PAH-RCD genes (CAT and PACH) were amplified using 163 

the CAT1f/CAT1r, CAT2f/CAT2r, PACH1f/PACH1r and PACH2f/PACH2r primer pairs listed in 164 

Table 1. All specific primer sets were designed based on published sequences of A. tandoii DSM 165 

14970
T
 (GenBank assembly accession number: GCA_000400735.1) using Primer Premier 5.0 166 

software. The CAT1f/CAT1r and CAT2f/CAT2r primer pairs were used to target two different 167 

types of CATA. The PCR program for these two primer sets was as follows: 3 min at 95°C; 32 168 

cycles of 95°C for 30 s, 52°C for 30 s and 72°C for 55 s; final extension at 72°C for 5 min. The 169 

PACH1f/PACH1r and PACH2f/PACH2r primer pairs were used to target the alpha and beta 170 

subunits of PACH, respectively. The PCR program for PACH1f/PACH1r and PACH2f/PACH2r 171 

was as follows: 3 min at 95°C; 32 cycles of 95°C for 30 s, 52°C for 30 s and 72°C for 40 s; final 172 

extension at 72°C for 5 min. The PCR products were gel-purified using a gel extraction kit 173 

(D2500-01; Omega Bio-tek, Norcross, GA, USA), followed by cloning and sequencing as 174 

described by Song et al.
55

 The phylogenetic dendrograms were prepared using the method 175 
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described above. 176 

The partial PAH-RHD and PAH-RCD gene sequences obtained are available in GenBank 177 

under the following accession numbers: KX364042 for PAH-RHD, KX364048 and KX364049 178 

for CATA and KX364050 and KX364051 for PACH. The GenBank accession number for the 179 

16S rRNA gene obtained from isolated A. tandoii is KU168603. 180 

2.5. PHE analysis. The PHE concentrations in each microcosm treatment were analysed on 181 

days 0 and 3 as follows. The water sample was spiked with 1,000 ng deuterated PAHs as a 182 

surrogate standard and was extracted twice with dichloromethane (DCM). The extracted organic 183 

phase was concentrated to approximately 0.5 mL after solvent exchange with hexane and then 184 

purified using a silica gel/alumina column (8 mm i.d.) filled with anhydrous Na2SO4 (1 cm), 185 

neutral silica gel (3 cm, 3% deactivated) and neutral alumina (3 cm, 3% deactivated) from top to 186 

bottom, using 15 mL hexane/DCM (1:1, v/v) as the eluent. After concentrating the eluent to 187 

approximately 50 µL using a gentle stream of N2, 1,000 ng hexamethylbenzene were added as an 188 

internal standard to all samples before the instrumental analysis. 189 

PHE was analysed by gas chromatography (model 7890; Agilent Technologies, Santa Clara, 190 

CA, USA), using a capillary column (DB-5MS; 30 m × 0.25 mm, 0.25 µm) and a mass 191 

spectrometric detector (model 5975; Agilent) as described by Jiang et al.
17

192 
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3. RESULTS  193 

3.1 PHE biodegradation in sewage water. PHE biodegradation in the 
12

C-PHE and 194 

13
C-PHE microcosms is shown in Table S2. The PHE concentration in the sterile treatment 195 

exhibited fewer decreases than those in the biotic treatments. Residual PHE was 11–13% and 196 

12–13% in the 
12

C-PHE and 
13

C-PHE microcosms, respectively, suggesting that significant PHE 197 

biodegradation occurred in the biotic treatments. No difference (p > 0.05) was observed between 198 

the 
12

C-PHE and 
13

C-PHE treatments, consistent with our previous study.
55

 199 

3.2. Bacteria involved in PHE degradation as revealed by DNA-SIP. DNA extracted from 200 

the 
12

C-PHE and 
13

C-PHE microcosms was subjected to ultracentrifugation and fractionation, 201 

followed by high-throughput sequencing of each fraction. The relative abundance of 16S rRNA 202 

defined by the family taxon showed no difference in the microbial communities between the 203 

samples from the 
12

C-PHE and 
13

C-PHE treatments (Figure S3). 204 

The organisms responsible for 
13

C assimilation were detected during screening by comparing 205 

the relative abundances of specific OTUs between the 
12

C-PHE and 
13

C-PHE samples from each 206 

fraction. The results indicated that OTU_4 at a higher BD (>1.7209 g/mL) was enriched only in 207 

the 
13

C-PHE sample, but not in the 
12

C-PHE sample (Figure 1). Additionally, the relative 208 

abundances of OTU_50, OTU_73, OTU_57 and OTU_107 at higher BDs (>1.7209, >1.7296, 209 

1.7122–1.7481 and 1.7209–1.7481 g/mL, respectively) were also higher in the 
13

C-PHE samples 210 

than in the 
12

C-PHE samples. The higher abundance in the heavier fraction indicates that 211 

organisms represented by OTU_4, OTU_50, OTU_73, OTU_57 and OTU_107 play a primary 212 

role in PHE degradation. 213 

Figure 2 shows phylogenetic information for the PHE degraders represented by the above 214 
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OTUs. OTU_4 belonging to the genus Acinetobacter (phylum Proteobacteria, class 215 

Gammaproteobacteria, order Pseudomonadales, family Moraxellaceae) shared 100% similarity 216 

with strains A. tandoii DSM 14970
T
 (KE007359), Acinetobacter parvus DSM 16617

T
 217 

(AIEB01000124), Acinetobacter beijerinckii CIP 110307
T
 (APQL01000005), Acinetobacter 218 

tjernbergiae DSM 14971
T
 (ARFU01000016) and Acinetobacter haemolyticus CIP 64.3

T
 219 

(APQQ01000002) and formed a subclade with a high bootstrap value of 97. OTU_50 and 220 

OTU_73 were assigned to the genera Sphingobium and Sandaracinobacter within the same family 221 

Sphingomonadaceae (phylum Proteobacteria, class Alphaproteobacteria, order 222 

Sphingomonadales), and they shared 100% similarity with Sphingobium jiangsuense BA-3T 223 

(HM748834) and 99% similarity with Sandaracinobacter sibiricus RB16-17
T
 (Y10678), 224 

respectively. OTU_57 and OTU_107 were classified in the genus Kouleothrix (phylum 225 

Chloroflexi, class Chloroflexi, order Roseiflexales, family Kouleothrixaceae) and family 226 

Kouleothrixaceae (genus unclassified), respectively. OTU_57 shared 97% similarity with 227 

Kouleothrix aurantiaca SCM-E (AB079641.2) and formed a subclade with a high bootstrap value 228 

of 100. 229 

3.3. Presence of the PAH-RHDɑ genes in the SIP fractions. The PAH-RHDα genes from 230 

GN bacteria were analysed in the heavy fractions (
13

C-labeled DNA, marked with a star in Figure 231 

1). In the present study, only one PAH-RHDα GN gene was detected, affiliated with the 232 

PAH-RHDα (PhnAc) gene from Delftia acidovorans Eh2-1 clone 5 (AY367788.1) (Figure 3). 233 

3.4. Isolation and characterisation of PHE-degrading bacteria. We isolated PHE degraders 234 

from sewage water to characterise the bacteria corresponding to the five SIP-identified OTUs. Of 235 

all PHE-degrading isolates, only one bacterial strain, named A. tandoii LJ-5, was identified in 236 
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contaminated sewage water samples after PHE enrichment. This strain shared 100% similarity 237 

with the OTU_4 sequence and was therefore representative of the active PHE degraders linked to 238 

OTU_4. However, no strains belonging to the other four SIP-identified OTUs were successfully 239 

isolated from sewage water.  240 

A. tandoii LJ-5 is a GN, rod-shaped, obligate aerobe lacking flagella, with a size of (0.7–1.0) × 241 

(1.0–1.5) µm (Figure 4). The A. tandoii LJ-5 colonies were circular, smooth, convex and white 242 

pigmented with a colony diameter of 0.5–2.0 mm after growth on MM-P agar plates at 30°C for 243 

48 h. A. tandoii LJ-5 grew under different conditions, including 0–3% (w/v) salinity (optimum 244 

0%), pH 5.0–9.0 (optimum pH = 7.0) and temperatures of 25–40°C (optimum 30°C) (Figure S4). 245 

The metabolic characteristics of A. tandoii LJ-5 are listed in Table S4. A. tandoii LJ-5 had the 246 

highest 16S rRNA gene sequence similarity to that of A. tandoii DSM 14970
T
 (KE007359) 247 

(97.77%), whereas its similarity levels to other Acinetobacter strains were < 97.0%. A. tandoii 248 

LJ-5 belongs to the genus Acinetobacter according to the neighbour-joining (Figure S5) 249 

phylogenetic dendrograms based on 16S rRNA gene sequences, and it formed a subclade with A. 250 

tandoii DSM 14970
T
. The GC content of A. tandoii LJ-5 was 41.0 mol%, which was within the 251 

range of that of other Acinetobacter spp. (38.1–54.7 mol%). The DNA–DNA hybridisation value 252 

for A. tandoii LJ-5 with A. tandoii DSM 14970
T
 was 90.11 ± 0.8%, which was significantly above 253 

the threshold value of 70%.
56

 Taken together, these results indicate that A. tandoii LJ-5 belongs to 254 

the species A. tandoii. 255 

As shown in Figure S6, A. tandoii LJ-5 grew well in MM-P with PHE concentrations of 100–256 

1,000 mg/L under optimal growing conditions (pH 7.0 and 30°C), suggesting strong tolerance of A. 257 

tandoii LJ-5 to high PHE concentrations. More than 60% of the PHE was biodegraded within 7 258 
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days at all PHE concentrations. Enrichment of Acinetobacter (OUT_4) was detected in the 259 

13
C-PHE treatment, indicating that A. tandoii LJ-5 is a major PHE degrader in situ. 260 

3.5. Presence of PHE metabolism-related genes in A. tandoii LJ-5. To further explore the 261 

environmental significance of A. tandoii LJ-5, we evaluated its functional genes involved in PHE 262 

metabolism. Although one PAH-RHDα GN gene was detected in the heavy fraction of the 263 

13
C-PHE sample, no PAH-RHDα gene was successfully amplified from A. tandoii LJ-5 using the 264 

same primer set. However, the genes encoding CATA-1 and CATA-2 and the alpha and beta 265 

subunits of PACH-1 and PACH-2 were identified in A. tandoii LJ-5 in this study.  266 

The CATA-1 (KX364048) and CATA-2 (KX364049) translated amino acid sequences showed 267 

high homology with that of CATA from Acinetobacter junii (WP_004961950.1, 92%) and 268 

Acinetobacter schindleri (WP 004809441.1. 93%), respectively, as illustrated in Figure 5a. Figure 269 

5b shows the high homologies of A. tandoii LJ-5 PACH-1 (KX364050) and PACH-2 (KX364051) 270 

at the amino acid level compared with the alpha subunit of PACH from Acinetobacter bouvetii 271 

DSM 14963 (WP_005011151.1, 99%) and the beta subunit of PACH from Acinetobacter 272 

johnsonii XBB1 (WP_058952216.1, 99%).273 
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4. DISCUSSION  274 

Some studies have successfully applied DNA-SIP in the detection of indigenous microorganisms 275 

involved in PHE biodegradation.
27,36-38

 Our study employed DNA-SIP and identified five OTUs 276 

directly responsible for in situ PHE biodegradation, such as the phylotypes affiliated with 277 

Acinetobacter, Sphingobium, Kouleothrix, Sandaracinobacter and Kouleothrixaceae (genus 278 

unclassified) from PAH-contaminated sewage water.  279 

The genus Sphingobium was first described by Takeuchi,
57

 and 41 species in this genus have 280 

been isolated and reported (http://www.bacterio.cict.fr/s/sphingobium.html). Sphingobium is a 281 

well-known PAH-degrading genus in the family Sphingomonadaceae.
57,58

 Some strains in this 282 

genus metabolise a wide range of PAHs, such as naphthalene, PHE, anthracene, fluoranthene, 283 

pyrene and benzo[a]pyrene.
59-63

 However, no study has used SIP to demonstrate the in situ 284 

PHE-degradation capacity of Sphingobium. The genus Sandaracinobacter also belongs to the 285 

family Sphingomonadaceae. Until now, only one species (Sandaracinobacter sibiricus) has been 286 

isolated and reported in this genus.
64

 The phylogenetic analysis of SIP-identified OTU_73 287 

suggests its close relationship to S. sibiricus RB16-17
T
 (Figure 2). S. sibiricus is an obligate 288 

aerobic phototrophic bacterium that contains bacteriochlorophyll a, which is light-harvesting 289 

complex II and the reaction centre.
64

 This bacterium tolerates and reduces high levels of tellurite.
64

 290 

However, this strain has not been linked previously to PHE degradation; thus, our present results 291 

provide strong evidence that some microbes in this genus are primarily responsible for in situ PHE 292 

degradation in sewage water. 293 

The phylogenetic analysis of the microorganisms represented by OTU_57 suggested their 294 

close relationship to Kouleothrix aurantiaca SCM-E (Figure 2). K. aurantiaca SCM-E was first 295 
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isolated by Kohno from activated industrial waste sludge.
65

 The genus Kouleothrix belongs to 296 

phylum Chloroflexi (family Kouleothrixaceae, class Chloroflexi), which is one of the earliest 297 

diverging lineages of bacteria and was first defined by Garrity and Holt in Bergey’s Manual of 298 

Systematic Bacteriology.
66

 Class Chloroflexi is one of at least five major Kouleothrix subgroups, 299 

and all known species in this class have a multicellular filamentous morphology.
67

 A number of 300 

studies have indicated that microorganisms in the phylum Chloroflexi are closely related to PAH 301 

degradation. Shahi et al. showed that γ-Proteobacteria, Chloroflexi, Firmicutes and 302 

δ-Proteobacteria were the most dominant bacterial phyla in petroleum-contaminated soil from a 303 

coastal site at an old petroleum sludge storage pit in Turkey.
68

 Bacterial species belonging to 304 

γ-Proteobacteria, δ-Proteobacteria and Chloroflexi change dramatically after treatment with 305 

PAHs, indicating that PAHs play key roles in bacterial community diversity.
69

 Muangchinda et al. 306 

reported that indigenous microbes from the phylum Chloroflexi degrade PAHs and provided 307 

bioremediation information for Antarctic soils and sediments,
70

 although PAH contaminants such 308 

as PHE and pyrene decrease the abundance of Chloroflexi during PAH remediation.
71,72

 However, 309 

Kouleothrix and Kouleothrixaceae have not been linked previously to PHE metabolism; thus, it is 310 

unclear whether these microbes are directly involved in PHE degradation. Our results provide 311 

unequivocal evidence that some microorganisms in these taxa are primarily responsible for in situ 312 

PHE degradation in the complex microbial community of PAH-contaminated sewage water. 313 

Acinetobacter, belonging to γ-Proteobacteria and to the order Pseudomonadales, is a GN, 314 

non-motile and strictly aerobic bacteria. These bacteria are widespread in natural environments, 315 

including hydrocarbon-contaminated sites.
73,74

 Members of Acinetobacter possess versatile 316 

metabolic capabilities, such as pathways for degrading aromatic and hydroxylated aromatic 317 
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compounds.
75

 Since the early days of taxonomic research, the ability to degrade aromatic 318 

compounds has been a common characteristic used to identify microbes in the genus 319 

Acinetobacter.
9,75,76

 Hereinto, some strains metabolise PAHs, such as POHE, acenaphthene and 320 

pyrene.
77-80

 Degradation of PHE by Acinetobacter has not been identified using DNA-SIP prior to 321 

this study. Our results demonstrate that A. tandoii LJ-5 metabolises PHE in situ. A. tandoii was 322 

first described by Emma et al. in 2003 but was not previously associated with PAH degradation.
81

 323 

Our results provide A. tandoii LJ-5 reference data for application to PAH-contaminated sewage 324 

water treatment. 325 

The presence of the distinctive PAH-RHDα GN gene in the heavy DNA fraction from the 326 

13
C-PHE microcosm suggests its functionality associated with PHE-degrading strains of 327 

Acinetobacter, Sphingobium, Kouleothrix, Sandaracinobacter and Kouleothrixaceae, as identified 328 

by DNA-SIP. Failure to amplify this PAH-RHDα gene from A. tandoii LJ-5 might be attributed to 329 

1) incompatibility of the primers used in this study with the functional genes present in this PHE 330 

degrader or 2) a different PHE degradation mechanism present in A. tandoii LJ-5. Acinetobacter 331 

genes that catabolise aromatic compounds are enriched in five genomic loci within 25% of the 332 

genome,
82

 whereas the metabolic genes of other aromatic compound degraders, such as microbes 333 

in the genus Sphingomonas or Pseudomonas, are scattered throughout their genome.
83,84

 The 334 

mechanism is unclear, but some preliminary evidence suggests that syntenic localisation of the 335 

genes associated with this metabolic pathway relieves the energy burden on the transcriptional and 336 

translational machinery.
85

 Metabolism of many aromatic compounds produces the intermediate 337 

metabolites catechol and protocatechuate via the β-ketoadipate pathway. In the present study, we 338 

found that A. tandoii LJ-5 expresses genes involved in two parallel branches of the β-ketoadipate 339 
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(ortho) pathway (CATA and PACH).
86

 The presence of PACH suggests that A. tandoii LJ-5 340 

degrades PAHs and related aromatic compounds via the ortho-cleavage pathway for compounds 341 

funnelled through protocatechuate (via PACH).
22

 Successful amplification of CATA also indicates 342 

that A. tandoii LJ-5 metabolises catechol through the catechol branch of the ortho-cleavage 343 

pathway.
87

 Previous studies have suggested that the CATA route is preferred under 344 

low-contamination conditions.
88,89

 The presence of ortho-cleavage for catechol probably helped A. 345 

tandoii LJ-5 adapt to the low levels of PAHs in the present PAH-contaminated sewage water.  346 

This is the first study to apply a culture-independent DNA-SIP technique to identify the 347 

bacterial taxa responsible for PHE degradation in PAH-contaminated sewage. The results provide 348 

unequivocal evidence that Acinetobacter, Sphingobium, Kouleothrix, Sandaracinobacter and 349 

Kouleothrixaceae are involved in in situ biodegradation of PHE in sewage, none of which has 350 

been previously reported as a PHE-degrading microorganism using SIP. Sandaracinobacter, 351 

Kouleothrix and Kouleothrixaceae have not been previously linked to PHE degradation. 352 

Moreover, given that few bacteria linked to in situ PHE metabolism have been isolated from 353 

real-world habitats,
31

 this study identified A. tandoii LJ-5 as a PHE degrader by DNA-SIP and 354 

identified its functions by characterising its functional PHE metabolic genes and pathways. This is 355 

the first report of a role for A. tandoii in bioremediation of PAH-contaminated water. These results 356 

expand our current knowledge on microorganisms that degrade PHE by combining both 357 

cultivation-dependent and cultivation-independent approaches.   358 
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Captions 626 

Figure 1 The shift tendency of OTU_4, OTU_50, OTU_73, OTU_57 and OTU_107 fragments. 627 

The relative abundance of the OTU_4, OTU_50, OTU_73, OTU_57 and OTU_107 fragments 628 

over a range of buoyant density (BD) from DNA extracted from the sewage water added with 629 

either 
12

C- or 
13

C-labeled PHE after 3 days of incubation. 630 

Figure 2 Phylogenetic tree of identified OTUs responsible for in situ PHE degradation. 631 

Neighbour-joining tree based on 16S rRNA gene sequences showing the phylogenetic position of 632 

the bacteria corresponding OTU_4, OTU_50, OTU_57, OTU_73, OTU_107 and their 633 

representatives of some other related taxa. Bootstrap values (expressed as percentages of 1200 634 

replications) >50% are shown at the branch points. Bar 0.02 substitutions per nucleotide position. 635 

Figure 3 Phylogenetic tree of amplified PAH-RHDα GN gene from heavy fraction in 
13

C-PHE 636 

microcosm. PAH-RHD gene showed 97% similarity with Delftia acidovorans Eh2-1 clone 5 637 

PhnAc gene. 638 

Figure 4 (a) Isolated A. tandoii LJ-5 colonies on MM-P agar plate; (b) Transmission electron 639 

micrograph of A. tandoii LJ-5 cells. Bar, 500 nm (left) and 1000 nm (right). 640 

Figure 5 Phylogenetic tree based of CATA and PACH sequences from strain LJ-5. (a) High 641 

homology at amino acid level (92% and 93%) was detected with catechol 1,2-dioxygenase of 642 

Acinetobacter junii (WP_004961950.1) and Acinetobacter schindleri (WP_004809441.1), 643 

respectively. (b) High homology at amino acid level (99% and 99%) was detected with subunit 644 

alpha of protocatechuate 3,4-dioxygenase of Acinetobacter bouvetii DSM 14963 645 

(WP_005011151.1), and subunit beta of protocatechuate 3,4-dioxygenase of Acinetobacter 646 

johnsonii XBB1 (WP_058952216.1), respectively.  647 
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Table 1 Primers used for the PCR of 16S rRNA, PAH-RHD and PAH-RCD gene. 648 

  649 

Targets Primer Sequence (5＇＇＇＇-3＇＇＇＇) 

16S rRNAs 

515f GTGCCAGCMGCCGCGGTAA 

806r AACGCACGCTAGCCGGACTACVSGGGTATCTAAT 

27f AGAGTTTGATCCTGGCTCAG 

1492r GGTTACCTTGTTACGACTT 

PAH-RHD 

610f GAGATGCATACCACGTKGGTTGGA 

911r AGCTGTTGTTCGGGAAGAYWGTGCMGTT 

641f CGGCGCCGACAAYTTYGTNGG 

933r GGGGAACACGGTGCCRTGDATRAA 

PAH-RCD 

CAT1f ATGTCGATACCGCACAAGGA 

CAT1r TGCACGACGACGATCAACT 

CAT2f CGCGACGACGATCTACTTCA 

CAT2r CTGCAACTGGTCCTGTCGAT 

PACH1f ACGCACAACGCAATACCGAT 

PACH1r ACGACCACGCAAAGTGATGT 

PACH2f TGAAACTCCATCTCAAACAGGTG 

PACH2r ACTGTTTCGTCTTCGCCTTGT 
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Figure 1 650 
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Figure 2 653 
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Figure 3 656 
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 Burkholderia sp. SOD-5b nahAc gene (AF448053.1) 

 Burkholderia sp. S1-17 nahAc gene (AF448048.1) 
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0.0

Page 37 of 40

ACS Paragon Plus Environment

Environmental Science & Technology



 38

Figure 4 659 
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Figure 5 667 
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