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Insight, innovation, integration 

 

The introduction of biospectroscopic screening allows rapid in-situ diagnosis of 

antibiotic resistance in microbiomes as well as real-time detection of population 

dynamics and determination of genotype flexibility (e.g., HGT process and microbial 

response to antibiotic pressure) via monitoring phenotype differentiation, which can 

significantly improve the understanding of antibiotic resistance in the clinical and 

physical environment. 
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made revisions in line with the Reviewer’s comments – these are highlighted in the manuscript. Our 

responses are below. 

Referee: 1 

Comments to the Author This manuscript provides a well-written, very interesting perspective article 

on a potentially important technological approach to analyzing effects of antibiotics on microbial 

systems.  The notion of considering antibiotic effects on complex microbial populations rather than 

simply on individual species is intriguing and appealing, and quite timely.  I believe that the article 

should be of significant value to biologists and bioengineers cutting across multiple fields. 

1.  The legends for Figures 1, 2, and 4 are too brief and superficial.  They should be extended in order to 

provide concise explanations of the illustrations separate from the more detailed text elaborations. 

Thanks for the comments and more details are added in the caption of each figure for better explaining 

the illustrations. See Figures 1, 2, and 4. 

2.  The constraints on sample preparation are not discussed adequately.  On page 8 it is stated that 

"minimal sample amount and preparation" is necessary but this is insufficient information for 

comprehending what applications might be feasible or not. Thanks for the comments and the authors 

have added detailed discussion addressing the advantages of spectral practices, such as sample 

preparation, label-free and non-destructive features. Please see the revised manuscript. 

3.  One issue not clear from the presentation is whether the effects of drugs on the microbes themselves 

versus on their matrix environment can be deconvoluted.  If the samples can include mammalian 

epithelial tissue, for example, the drugs may well modulate production of mucus and other components. 

Thanks for the comments, and it is really a good question to consider the interference from matrix 

environment, particularly in case of interaction between bacteria and mammalian cells. However, we 

could not find any published literature to prove its feasibility, but some relevant work suggests that cell 

sorting can help in separating targeting cells from matrix environment to enhance biospectral signal and 

resolution. We therefore added some more discussion on this part. 

4.  Although mentioned in passing in the final section, the idea of connecting spectroscopic 

measurements with 'omic data (whether genome or transcriptome sequencing, for instance) could be 

especially powerful, so may be worth longer comment on what could be done. There are very limited 

literature have combined biospectroscopy and omics, and as best as we know, there are only cases 

mentioning this part and addressing environmental and mammalian microbiome, respectively. We have 

added some proper discussion on these cases and think they provide some useful support to our idea to 

some extent. Please see the revised manuscript. 
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  Frank Martin 
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Abstract 

 

There is an increasing need to investigate microbiomes in their entirety in a variety of 

contexts ranging from environmental to human health scenarios. This requirement is 

becoming increasingly important with emergence of antibiotic resistance. In general, more 

conventional approaches are too expensive and/or time-consuming and often predicated on 

prior knowledge of the microorganisms one wishes to study. Herein, we propose the use of 

biospectroscopy tools as relatively high-throughput, non-destructive approaches to profile 

microbiomes under study. Fourier-transform infrared (FTIR) or Raman spectroscopy both 

generate fingerprint spectra of biological material and such spectra can readily be 

subsequently classed according to biochemical changes in the microbiota, such as emergence 

of antibiotic resistance. FTIR spectroscopy techniques generally can only be applied to 

desiccated material whereas Raman approaches can be applied to more hydrated samples. 

The ability to readily fingerprint microbiomes could lend itself to new approaches in 

determining microbial behaviours and emergence of antibiotic resistance. 
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1. Microbiomes and their response to the natural environment 

Microbial communities, including bacteria, archaea, viruses, protists or fungi, play a vital role 

in many ecosystems. Global carbon cycles in the ocean, for instance, at least 50% of carbon 

dioxide is fixed through photosynthesis providing the energy for microbial respiration and 

reproduction
1, 2

. Human health is also highly dependent on microbes since a very abundant 

mix of bacterial species symbiotically survives within humans and many principal organs are 

their habitats. The skin surface is the largest habitat with multiple regional variations in 

cellular architecture and environmental exposures for microbes, where the density of bacteria 

can reach 10
7
 cells per square centimetre

3
. However, bacteria colonizing on external surfaces 

only count for some 10% (i.e., 10
14

 bacterial cells to 10
13

 human cells) while the rest 90% 

comprise the commensal microbiome living in the body
4-9

. A majority of these microbial cells 

exist in the gastrointestinal tract (GIT) and constitute the human intestinal microbiota, which 

has a concentration of 10
12

 CFU/g and probably represents one of the densest, most 

biodiverse and rapidly evolving bacterial ecosystems on earth
4-9

. Another representative 

example is the microbial flora in the oral cavity as the entrance of the digestive tract; over 

500 microorganism species have been identified and can attach to oral surfaces and colonize 

to form a microbial matrix, e.g., dental plaque or oral biofilm
10

. The dynamics of human host 

microbial communities account for many diverse phenomena associated with public health 

issues, e.g., changes in the gut microbial community may be linked to metabolic disorders, 

obesity and Crohn’s disease
11

. 

Antibiotics are widely used to treat microbe-induced diseases and are also applied at 

sub-therapeutic levels via animal feed to maintain meat quality and quantity. Since Sir 

Alexander Fleming identified penicillin in 1928, the environment has become the primary 

receiver for most applied antibiotics and their residues via excretion of human and animals
12-

18
. Currently, antibiotics are ranked as the third most commonly prescribed class of agents, 

and frequently used in human medicine, agriculture, aquaculture and the agri-food industry, 

resulting in an enormous amounts of antimicrobial usage
19

. Accordingly, antibiotic misuse 

may result in a seriously antibiotic-abundant circumstance for microbes as well as humans. 

Consequently, in response to such environmental stimuli, bacteria acquire the capability of 

antibiotic resistance, and ultimately superbugs may emerge
20

. It is worth highlighting that 

microbiota from humans and natural environments are not separated but connected via 

various routes of exposure. For example, horizontal gene transfer (HGT) allows rapid 

development of genetic divergence and therefore leads to virulence, antibiotic resistance, and 

xenobiotic metabolism, spreading through microbe populations inhabiting in human bodies 

and natural environments
21

. HGT accelerates the spread of antibiotic resistance genes (ARGs) 

and emergence of superbugs, which is a lethal threat to humans and therefore a major focus 

of scientific interest
22, 23

. 

With such growing concerns, ARGs and their relevant mechanisms have been identified 

in clinical and environmental contexts
12-18, 24-27

. Many approaches have been applied to 

investigate their existence and spread as well as their dynamics within natural microbiota. 

Herein, we briefly discuss the conventional methods used to determine antibiotic resistance 
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and ARGs within the microbial community, both phenotypically and genetically, as well as 

how biospectroscopy can be applied to fingerprint microbiomes and microbial antibiotic 

resistance. 

 

2. Conventional biological approaches to determine microbial antibiotic resistance 

Research into microbial antibiotic resistance primarily uses different techniques and 

methodologies, generally categorized as function- and molecular-based methods according to 

focus, i.e., function-based approaches aim at particular behaviour or mechanisms of 

individual microbes based on their roles or characteristics, while molecular-based approaches 

target in high-throughput fashion the molecular components within the complex microbiotas. 

2.1 Function-based approaches 

Culturing is the most applied function-based approach to determine microbial response to 

antibiotics
2, 28, 29

 due to its inherent merit which is a focus on individual strains, instead of the 

interrogated complexity and diversity of the whole microbiota
30, 31

. Most known antibiotic-

resistant microbes and genes are identified by direct culturing, isolate purification, and further 

investigation into their resistance profiles
25,32, 33

. For example, colonies grown with 

antibiotics are screened for the presence of antibiotic biomarkers, located on either plasmids 

or chromosomes
33

. However, >90% bacteria are currently unculturable but functional in-

situ
34-36

. Culture-dependent methods are always questioned for their ability to represent the 

real scenario and for an underestimation of ARG abundance
31

. Some improved techniques, 

such as stable isotope probing (SIP) and magnetic nanoparticle-mediated isolation, further 

enumerate the functional fractions, not individual, from the total microbiota
37, 38

. 

2.2 Molecular-based approaches 

Instead of targeting microbes with specific functions, molecular-based approaches deal with 

microbiota as an integrated system by directly extracting biological components. With the 

rapid development of molecular tools, molecular-based approaches have evolved from 

polymerase chain reaction (PCR) and denaturing gradient gel electrophoresis (DGGE) to 

high-throughput sequencing and Omics
31, 39, 40

, uncovering ARGs from all the 

microorganisms within a microbiota, including those uncultured
39, 41-43

. Notably, the recent 

development of Omics, from genomics to proteomics, allows generation of large-scale 

datasets for cellular components (DNA, RNA, and proteins) compositions, interactions and 

profiles, yielding a comprehensive database of genetic functions of ARGs
40

, e.g., isolating 

novel ARGs from microbial communities of human oral and soil
39, 44

. However, molecular-

based approaches have an inherent insufficiency in confirming behavioural functions and 

linking those functions to identities of antibiotic-resistant strains. Meanwhile, as destructive 

methods of collecting cellular components, molecular-based approaches may not meet the 

need for in-situ diagnosis of antibiotic resistance in real-time. 

2.3 Which is more important? 

Individual vs. microbiome. It is hard to answer which, single cells or the whole communities, 
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needs to be investigated to better understand antibiotic resistance in the microbiome. ARGs 

and antibiotic resistance mechanisms vary between individuals, implying insight into the 

single cell may provide more comprehensive information. On the other hand, although 

individual cells hold their respective ecological niche, they also contribute to the overall 

function of the microbiome as a whole. Since most microbes are somewhat dormant in the 

natural environment within developing communities such as mat, sludge or biofilm, it is 

worth paying more attention for clinical purposes to the response of the microbiome to 

antibiotics, rather than that of individual cells, i.e., typically, an unnecessary single-cell-level 

test is required for the diagnosis of diseases. Biofilm, for instance, consists 2% to 15% of 

microorganisms with the remainder being their self-produced matrix of extracellular 

polymeric substances (~90%) secreted by microbes making individual cells stick together and 

colonize on a surface; this overall community performs functional tasks similar to multi-

cellular organisms for adaptation to environmental changes
45-49

. Extracellular polymeric 

substances matrix facilitates communication between cells (e.g., such as quorum sensing), 

maintains biofilm hydration and protects microorganisms against environmental stresses. The 

chemical composition and structure of extracellular polymeric substances depend on cell 

species, metabolic activity, nutrient availability, biofilm maturity level and physicochemical 

conditions. Biofilm formation offers microbes an entirely different lifestyle weighing against 

the planktonic state providing protection from external exposures (e.g., antibiotics) for the 

community
45-49

. Recently, the field of single cell study has developed some breakthroughs 

allowing characterisation and interrogation of particular microbes at reasonable levels
50-60

. 

However, these remain insufficient to fulfil the need to study microbial interactions within the 

microbiome and their surrounding environment. Thus, further research into the functionality 

of the entire microbiome is needed. 

Phenotype vs. genotype. Stochasticity in gene expression may induce genetically-identical 

cells under the same environmental exposures to express significant variation in molecular 

content and discriminating differences in phenotypic characteristics; this implies cell 

functions may be altered by non-genetic regulation providing a mechanism for phenotypic 

and cell-type diversification regardless of genotype
61-63

. Such phenotypic heterogeneity helps 

microbes survive exposures to antibiotics owing to the fact that a small genetically-identical 

subset of persistent cells can survive an extended period and get over the exposure time
61

. 

This phenomenon may bring another challenge regarding in-situ diagnosis of antibiotic 

resistances of interrogated microbiomes since the phenotype of the microbiome may be 

unpredictable even under an acknowledged circumstance due to the influence of epigenetic 

factors
64, 65

. Therefore, finding a new approach that can quickly screen the phenotype of a 

microbiome to determine the in-situ bacterial antibiotic resistance in real-time is urgently 

required. 

3. A new dawn for biospectroscopy in microbiological research 

3.1 Principles of biospectroscopy 

Biospectroscopy encompasses a range of techniques that allow the spectroscopic examination 
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of biological samples. Such spectroscopic measurements are usually based on electronic 

transitions and vibrational changes of chemical bonds with spatial resolutions from the 

microscopic to the macroscopic. These both examine the morphological contrast in biological 

samples and uncovers elemental or molecular information via further determination
66

. 

Infrared (IR) or Raman spectroscopy are the two most applied biospectroscopy techniques 

since the 1960s
67, 68

. 

 

Figure 1. The principle of the biospectroscopic fingerprinting in identifying microbial 

species, examining food security and diagnosing pathogen-induced diseases. IR spectroscopy 

is capable of measuring the electric dipole state of chemical bonds in cellular molecules; 

Raman spectroscopy is a complementary tool exploiting the inelastic scattering of the 

targeted biological samples even under a hydrated environment. 
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When biomolecules contain chemical bonds with an electric dipole moment, these 

vibrations are detectable and measurable by IR spectroscopy
69

. Categorized according to 

wavelengths (i.e., near-IR, mid-IR or far-IR), mid-IR (MIR) spectroscopy (4000-400 cm
-1

 in 

wavenumbers) is the most applied in biospectroscopy because it not only includes overtones 

but also contains fundamental vibrational transitions, providing inherently stronger signal 

intensities in terms of the increased absorption cross-section
70

. In 1991, FTIR spectroscopy 

was innovatively introduced as a sensitive and rapid screening tool for characterization, 

classification and identification of microorganisms
71

. Since then, FTIR spectroscopy has been 

extensively used in microbial research
72-75

. Among FTIR spectroscopic techniques, the most 

frequently applied IR spectroscopic techniques are transmission, transflection or attenuated 

total reflection (ATR)
72

. ATR-FTIR spectroscopy (Figure 1), for instance, which employs an 

internal reflection element with a high refractive index (e.g., diamond, germanium or zinc 

selenide), directs the IR beam for the total internal reflection and produces an evanescent 

wave that penetrates beyond the element by 1 µm to 2 µm. It is used to interrogate biological 

samples allowing absorption of IR light and subsequently production of absorbance spectra
69, 

72
. This process can reveal biochemical information regarding cellular changes or alterations 

of samples. However, there is a significant limitation within FTIR in that water from 

instrumentation or samples may induce reduction of IR light transmission
69, 72

. Hence, it is 

crucial to purge the instrumentation with dry air or nitrogen, as well as desiccants to remove 

any water vapour before spectral acquisition
72

. FTIR is a valuable metabolic fingerprinting 

tool owing to its abilities to characterize cellular composition
72-78

. In the mid-IR 

spectroscopy, the biochemical fingerprint region is from 1800 - 900 cm
-1

, and representative 

peaks include: lipids (~1750 cm
-1

), Amide I (~1650 cm
-1

), Amide II (~1550 cm
-1

), Amide III 

(~1260 cm
-1

), carbohydrates (~1155 cm
-1

), asymmetric phosphate stretching vibrations (νas 

PO2
-
, ~1225 cm

-1
), symmetric phosphate stretching vibrations (νsPO2

-
, ~1080 cm

-1
), glycogen 

(~1030 cm
-1

), protein phosphorylation (~970 cm
-1

)
69, 72, 77, 79, 80

. These peaks can be derived as 

biomarkers for characterization of microbial cell types (even at subspecies level) and 

diagnosis of microbe-induced diseases
72-78

. Metabolomics is a critical field that 

biospectroscopy could complement in order to investigate microbial metabolism. 

Raman spectroscopy, a complementary biospectroscopic technique to FTIR, can generate 

information regarding chemical bonds even under a hydrated environment
81-85

. The 

monochromatic light in the near-IR, visible or UV range is used in Raman spectroscopy 

(Figure 1) to exploit the inelastic scattering or Raman effect. In this process, the excitation of 

photons to virtual energy states and the resultant loss (Stokes) or gain (anti-Stokes) of energy 

occurs because of the interaction of light with vibrational modes associated with chemical 

bonds within the sample
80, 86

. This shift in energy is indicative of discrete vibrational modes 

of polarizable molecules, and thus a qualitative measurement of the biochemical composition 

can be obtained
80, 86

. However, the inelastic scattering does not occur efficiently, the 

incidence is <1% of the total photons absorbed by the molecules. Thus, backward light is 

then applied filtering off other interference, but the Raman scattering can reach the detector. 

Typically, the informative region of wavenumbers for biological samples is located within 
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400-2000 cm
-1

 and 2700-3500 cm
-1

, including proteins (1500-1700 cm
-1

), carbohydrates 

(470-1200 cm
-1

), phosphate groups of DNA (980, 1080 and 1240 cm
-1

) and higher-frequency 

bond vibrations of CH, NH and OH stretching in lipids and proteins
80, 87

. Applications of 

Raman spectroscopy in microbiology include bacterial discrimination, isolation, and 

identification
88-90

. 

3.2 Applications of biospectroscopy in microbial research 

Compared to the conventional tools employed for identifying and characterizing the 

microbiome, biospectroscopy requires minimal sample amount and preparation, and is non-

destructive and relatively high throughput
69, 72, 80

. Specifically, the minimal sample volume 

for ATR-FTIR and Raman spectroscopy is 3 µL and 1 µL respectively, much lower than those 

required in PCR, high-throughput sequencing, and Omics which require high quality and 

amounts of DNA template extracted from several millilitres or grams of environmental 

samples. Additionally, biospectroscopy does not require extra labelling, primer design, and 

enzymatic reaction, significantly reducing the cost and time in diagnosing. More importantly, 

the non-destructive features of biospectroscopy allow its application in vivo and in situ. Some 

successful microbial applications of biospectroscopy (Figure 1) include characterization of 

hospital isolates and rapid quantitative detection of the microbial spoilage of food products
71, 

77, 79, 91, 92
. There is no doubt that biospectroscopy is a robust tool for distinguishing bacterial 

responses to environmental exposures due to its particular attributes of being non-destructive, 

non-intrusive, high throughput and label-free
69, 72

. When coupled with conventional 

microscopy, biospectroscopy can be used to reproduce cell architecture from both the visual 

and biochemical perspective by the passing of spectral data through a variety of 

computational algorithms and capture of pictures simultaneously
69, 72

. It allows visualized 

monitoring and spectral interrogation undertaken in-situ in real-time, which is very helpful 

towards understanding the actual interactions between microbes and physical environment
66, 

69, 72, 77, 80, 93, 94
. In the history of microbiological research, the microbiome is a particular 

hotspot in microbial ecology, challenging to all approaches to investigate it but bringing 

possibilities for biospectroscopy to be applied. As a very complicated bio-matrix, 

microbiomes contain various compositions contributing to the overall spectra, including 

extracellular polymeric substances (EPS), cell membrane, and the cytoplasm. The 

characteristic spectral peaks, e.g., biological macromolecules, may assess the existence and 

composition of biofilms by summarising the wavenumbers of detected peaks. Most EPS 

induced biomarkers, for instance, fall in the range of 1700 - 100 cm
-1

 in Raman 

spectroscopy
95

. Also, the comparison between the microbial biofilms and planktonic 

communities could reveal relevant biochemical information
96

. Specifically, Bosch et al. found 

FTIR spectra of biofilms demonstrated higher intensity in the absorption bands associated 

with polysaccharides (1200 - 900 cm
−1

 region) and vibrational modes of carboxylate groups 

(1627, 1405, and 1373 cm
−1

) than those of the planktonic
74

, showing evidence of dramatic 

difference of microbial living style within such communities. 
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4. Fingerprint microbiome via biospectroscopy 

4.1 State of art 

Owing to the non-destructive and high-throughput possibilities, biospectroscopy has many 

advantages in diagnosing antibiotic resistance within a microbiome over other approaches, 

either function- or molecular-based ones. It allows fast and low-cost screening for an 

enormous number of samples and also provides a chance for further analysis of relevant 

mechanisms. Additionally, biospectroscopy is capable of monitoring real-time population 

dynamics and subsequently providing information of genotypic changes. However, until now, 

few biospectroscopy-based studies have focused on microbial antibiotic resistance, and all of 

the published studies
97-99

 investigate pure cultures. Lack of insight into microbiome structures 

in situ highlights the urgent need for novel approaches. The primary challenges currently 

include the lack of a reliable database, routine protocols, and reproducible computational 

analysis, which determine the feasibility of biospectroscopy distinguishing biomarkers 

representing antibiotic resistance from the numerous fingerprints in environmental 

backgrounds. 

Herein, we propose a state-of-the-art biospectroscopic application in assessing 

microbial antibiotic resistance within a microbiome. Within a microbiota of interest, there is 

no doubt biospectroscopy has the ability to allow the quick identification of microbial species 

within a well-built dataset
97

. Furthermore, biospectroscopy can diagnose microbe-induced 

diseases in clinical settings contributing to the advantages of early detection and stratification 

of at-risk patients to initiate timely and appropriate treatment
100-103

. Raman spectroscopy has 

successfully identified sepsis in blood plasma from 70 patients with a satisfactory sensitivity 

of 1.0 and specificity of 0.82
101

. The feasibility of biospectroscopic investigation into 

microbial alterations induced by exposures has also been evaluated. Riding et al. applied IR 

spectroscopy to fingerprint microbes following exposure to carbon nanoparticles, and 

revealed concentration- and size-dependent changes in cellular components
104

. Another 

study
105

 confirmed the ability of IR spectroscopy to characterize changes induced by carbon 

nanoparticles via investigating their effects in both Gram positive and negative bacteria. 

Some discriminant biochemical markers, i.e., Amide II and carbohydrate, were picked out to 

verify the distinct alterations in bacteria with respective cell wall structures. These studies 

prove that biospectroscopy is not only able to distinguish microbial response to different 

kinds of exposures, but also specify variances resulting from bacterial structures, 

demonstrating its potential to diagnose antibiotic resistance with reliable biomarkers. 

To investigate in-situ the construction and composition of microbiota in real-time, a 

non-destructive and non-intrusive method is required to delineate differentiation. 

Biospectroscopy is such an optical sensor, an in-situ non-labelling complementary to other 

molecular-based techniques, by directly and remotely measuring molecular vibration spectra 

in living cells
106

 and biofilms
107

. Given this, we propose a new system for characterizing 

antibiotic resistance within whole microbiomes via a rapid and high-throughput manner 

(Figure 2). Firstly, by well-trained databases, the abundance of ARGs or microbes with 
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ARGs in microbiotas can be quantified by evaluating the alteration ratio of biomarkers from 

multivariate statistical analysis. Furthermore, the dynamics of ARGs in microbiotas might be 

assessed in real-time via the interrogation of changes in biomarker change. Achieved in-situ 

and real-time investigation of antibiotic resistance, the ultimate goal of this approach is to 

monitor and diagnose both the presence and change of ARGs in unknown environmental or 

human samples of interest, differentiating alterations of discriminating biomarkers in-situ and 

real-time without referencing trained datasets. 

 

Figure 2. Schematic diagram of biospectroscopy fingerprinting microbiome for antibiotic 

resistance. Portal bio-spectroscopic devices achieve in situ and real-time interrogation of 

spectra from the samples of interest, e.g., human microbiome and livestock farm microbiome. 

The fingerprints are further processed via computational analysis (pre-processing, feature 

extraction, classification, discrimination, and differentiation) to distinguish the spectral 

biomarkers of antibiotic resistance. Comparing to well-trained databases with both positive 

Human microbiota 

Computational Analysis 

Antibiotic resistance +/- of microbiome 

Fingerprinting Microbiomes    

Initial Interrogation via Bio-spectroscopy    

Pre-processing 

Feature extraction 

Classification 

Discriminating biomarkers 

Sample differentiation 

Portable bio-spectroscopic device Live stock farm 

900 1100 1300 1500 1700 

Microbiome fingerprints  

(IR)    

AR 

500 700 900 1100 1300 1500 1700 

Microbiome fingerprints 

(Raman)    

T
ra
in
ed
 d
a
ta
 set     

Wavenumber (cm-1) Wavenumber (cm-1) 

Wavenumber (cm-1) Wavenumber (cm-1) 

Page 13 of 50 Integrative Biology



11 

 

and negative controls, the biomarker alterations can examine the antibiotic resistance 

capability of the targeted microbiome or even quantify the abundance of antibiotic resistance 

genes. 

 

4.1 Proof of concept 

Our pre-validating results indicate biospectroscopy can determine the abundance of bacteria 

with ARG in microbiome (Figure 3A), despite disparate bacterial types and community 

composition (Gram-positive or Gram-negative; Figure 3B). From the well-trained dataset and 

discriminating biomarkers (Figure 3C), the fingerprints of unknown microbiomes are 

allocated and assigned with their ARGs abundance after encoding. Furthermore, both the 

static and dynamic microbial matrices can be quantified by biospectroscopy due to inherently 

non-destructive and non-intrusive attribute (Figure 3D). Here, biospectroscopy is validated as 

a high throughput screening method for characterization of microbial composition and ARGs 

abundance in complex matrices. 

 

Figure 3. Pre-validation proves the feasibility of interrogating the abundance of ARGs and 

ratio of Gram-positive to Gram-negative bacteria in microbiomes. ARGs identification in 

microbiome by biospectroscopic fingerprints via a Bruker TENSOR 27 FTIR spectrometer 

(Bruker Optics Ltd., UK) equipped with a Helios ATR attachment containing a diamond 

internal reflection element (IRE). Instrument parameters were set at 32 scans, 16 cm
-1
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resolution. A total of 30 spectra were acquired for each treatment (3 replicates) through the 

ATR magnification-limited viewfinder camera. (A) Prediction of ARGs abundance in 

artificial microbial communities containing different compositions of two Acinetobacter 

baylyi mutants, ADP_kan
-
 and ADP_kan

+
, which are genetically identical apart from the 

kanamycin resistance gene located on the chromosome of ADP_kan
+
. Under kanamycin 

antibiotic pressure, i.e., treated with final concentration of kanamycin, the discriminant 

biomarkers were (~980 cm
-1

), Oligosaccharide C-OH stretching band (~1138 cm
-1

), 

Deoxyribose (~1188 cm
-1

), Amide III (~1242 cm
-1

), In-plane CH bending vibration from the 

phenyl rings (~1500 cm
-1

), C=O stretching, lipids (~1740 cm
-1

). The LDA distance is 

positively correlated with the ratio of ADP_kan
-
/ADP_kan

+
 and the linear regression, 

therefore, can be used for ARG abundance calculation. (B) Prediction of microbial 

community composition artificial microbial communities containing Gram-positive 

(Mycobacterium vanbaalenii, Gram
+ve

) and Gram-negative (Acinetobacter baylyi ADP_kan
+
, 

Gram
-ve

) bacteria. The positive correlation between LDA distance and the ratio of Gram
+ve

/ 

Gram
-ve

 helps in determining the abundance of each strain. (C) Dataset from LDA 

differentiation of four reference bacterial strains (AGR
+
: bacteria I and bacteria II with ARG; 

AGR
-
:  bacteria III and bacteria IV with no ARG). The dataset is well trained for separating 

ARG
+
 and ARG

-
 bacteria. (D) LDA differentiation of unknown microbiome (U1, U2, and U3) 

compared to training dataset to determine the abundance of ARG. Based on the values 

generated from LDA analysis, their biochemical distances can be calculated. These results 

validate bio-spectroscopy is capable of characterizing and quantifying ARGs of microbes via 

their phenotypes in both genetically identical and differential microbial communities. Also, it 

can be used to determine antibiotic resistance of unknown samples by calculating their 

biochemical distances. 

 

5. Challenges and solutions 

5.1 Dataset 

As mentioned above, a well-trained dataset is the key for biospectroscopic fingerprinting 

microbiome and also the first fundamental problem challenge concerned which can eliminate 

confounding factors, i.e., criteria may contribute a disruption to the core purpose of the study. 

To achieve this goal, the database of relevant molecular fingerprint and their assignments 

(such as nucleic acids, proteins, polysaccharides, carbohydrate, and lipids) have to be well-

characterised since the bio-spectroscopic classifications are based on calculating alterations 

of interaction involved cellular compositions. This work may significantly improve bio-

spectroscopy from both quantity and quality criteria
108

. Detailed information of the most 

widely used peak frequencies and their assignments refers to the reviews of IR 

spectroscopy
108

, Raman spectroscopy
52, 87

, and ratios (X cm
-1

/Y cm
-1

)
109

. These peaks with 

remarkable alterations are determined as discriminating biomarkers for diagnosis of changes 

resulted by specific exposures in many studies
69, 87, 104, 105, 108, 110

. However, no 

biospectroscopy-relevant study has yet been found associated with biomarkers for antibiotic 
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resistance of microbiomes. 

5.2 Growth phase and environmental variants 

Another major concern for the overall study (i.e., confounding factors) is bacterial 

communities are incredibly complicated in terms of their composition, species, dynamics of 

population, growth phase and nutrient depletion impacts
111-114

. Growth phase effect for 

instance, which may result in remarkable discrepancies within cell growth circle regarding 

physical features and biochemical compositions. Ede et al.
115

 reported all the examined 

species showed significant spectral differences through their growth phases in a study of 

assessing cell population growth via ATR-FTIR spectroscopy. They found B. 

stearothermophilus had a major change associated with lipid content and reached peak 

position during the log phase; for the halophiles H. salinarium and H.morrhuae, the most 

significant alteration was the concentration of sulphate ion. Mainly, at the mid-log phase, A. 

aceti cells showed increasing polysaccharide content along with and also a maximum change 

of lipid content was noticed during the log phase. These growth phase induced changes may 

lead to distinct responses of microbes to exposures
115-118

. 

  

Figure 4. Pre-validation of solutions for proposed challenges of growth phase and nutrients. 

The well-trained dataset eliminating other environmental interference is built-up in several 

steps: 1) Reference dataset acquisition from individual single cell of different species 

representing their biospectral attributes; 2) Biospectra acquisition from the targeted 

microbiome; 3) Biospectra acquisition from the targeted microbiome postexposure to 
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antibiotics to recognize and separate the discriminating spectral alterations via multivariate 

analysis; and, 4) The identical and consistent spectral alterations representing antibiotic 

resistance markers are clustered for interrogating the targeted microbiome. 

 

A substantial alteration gradient of bio-spectra is noticed along with growth phase and 

nutrient conditions, respectively. However, discrimination of antibiotic resistance biomarkers 

is independent of growth phase and nutrient conditions (Figure 4). The biomarkers of 

antibiotic resistance, i.e., phenylalanine (protein assignment) (~1004 cm
-1

 and ~1376 cm
-1

), 

hydroxyapatite, carotenoid, cholesterol (~957 cm
-1

), uracil-based ring breathing mode (~780 

cm
-1

), carbohydrates (~1105 cm
-1

), phenylalanine, hydroxyproline (~1586 cm
-1

), are 

significantly discriminated from those of growth phases, phenylalanine or bound & free 

NADH (~1000 cm
-1

), phosphatidylinositol (~776 cm
-1

), C-C-N
+
 symmetric stretching (lipids) 

or C-O-C ring (carbohydrate) (~877 cm
-1

 and ~1495 cm
-1

), Amide I (~1634 cm
-1

 and ~1530 

cm
-1

); and nutrients, uracil-based ring breathing mode (~780 cm
-1

), C-C-N
+
 symmetric 

stretching (lipids) or C-O-C ring (carbohydrate) (~877 cm
-1

), phenylalanine or bound & free 

NADH (~1000 cm
-1

), proline, hydroxyproline or glycogen and lactic acid (~918 cm
-1

, ~1695 

cm
-1

 and ~1375 cm
-1

) implying biospectroscopic is able to identify antibiotic resistance 

within a microbiome regardless of impacts from growth phase and nutrient condition. 

Therefore, these discriminating biomarkers associated with antibiotic resistance reveal the 

potential feasibility for in-situ diagnosis of real samples despite environmental variants. It is 

worth mentioning that discrimination of antibiotic resistance biomarkers might be also 

affected by the complicated effects of antibiotics on both targeted microbiome and their 

matrix environment, particularly in case of interrogating biofilm on mammalian tissues. The 

production of tissue mucus and other components or the interference signals from 

mammalian tissues themselves can bring challenges in distinguishing the proper biospectral 

biomarkers. Although no previous report has answered this question yet, some potential 

solutions eliminating background noise include separating microbiome from via optical 

tweezers
119

 or flow cytometry 
120

. 

5.3 Computational analysis 

It needs to be highlighted the most vital component associated with biospectroscopic 

determination for antibiotic resistance of microbiome is to find discriminating biomarkers, 

i.e., the most absolute and representative peaks derived from acquired spectra, allowing 

subsequently high throughput screening for determination of antibiotic resistance. Although 

some alterations of biomarkers can be visualized by eyes, the questions always emerge 

regarding the existence of noticed difference and the reliability of subjective assessing by 

eye. Hence, computational analysis is applied to exam the data due to the acquired spectrums 

holding an enormous number of features. 

The pre-processing is the first step of computational analysis which aims to reduce 

effects resulted from spectral acquisition and subsequently enhance the robustness and 

accuracy as well as making all the raw data comparable
72

. Categories of pre-processing 
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include de-noising, spectral correction, normalization and combinations of these processes. 

For a raw dataset of Raman, a noise-reduction smoothing step is commonly applied to 

increase the SNR (signal-to-noise ratio) and highlight spectral features associated with 

biochemical information
69

. PCA is also used to achieve the purpose of de-nosing because the 

most valuable features of spectra can be represented by several significant PCs while the rest 

PCs containing a majority of noise can be ignored. Furthermore, there is a huge challenge in 

the procession of raw data, i.e., sloped or oscillatory baselines associated with resonant Mie 

scattering in IR spectroscopy or fluorescence in Raman spectroscopy
72

. To solve this issue, 

rubber band baseline correction is applied for IR which produced a convex polygonal line to 

correct the bottom edges of the spectra; and polynomial fit for Raman, which generates a 

polynomial baseline to adjust the spectral minima
121

. Also, the most vital part of pre-

processing is the normalization, which eliminates the confounding factors, thickness or 

concentration, for instance, making acquired spectra comparable within intra-class and inter-

class. For biological samples, Amide I (~1650 cm-1)/II (~1550 cm
-1

) is usually applied after 

baseline correction for IR data; and vector normalization (Euclidean or L2-norm) is used for 

Raman data
72, 121

. 

Moreover, the multivariate statistical analysis is an ideal tool for spectral analysis. In 

2010, Martin et al. proposed two objectives for spectral assessing biological materials using 

multivariate statistical analysis: (i) to determine similarities and differences between classes 

(categories within the dataset, e.g., cell types); and (ii) to identify the spectral bands that 

mostly relate to these similarities and differences. So as to meet the objectives, classification 

is introduced as one of the core components in multivariate analysis, which typically relies on 

clustering techniques, such as hierarchical cluster analysis, k-means clustering, fuzzy C-

means clustering and PCA. Furthermore, PCA-LDA is an ideal classification tool to 

investigate intra-class or interclass variation. As compared to PCA alone, the additional linear 

discriminant analysis derives vectors from the principal components (PCs) and minimizes the 

within-category differences (mostly be associated with typical heterogeneity in any biological 

sample) while maximizing between-category discriminating characteristics (i.e., those most 

likely to be induced by treatments or other exogenous contributions)
69, 72, 80

. 

6. Future prospects 

The introduction of biospectroscopic screening allows rapid in-situ diagnosis of antibiotic 

resistance in microbiomes as well as real-time detection of population dynamics and 

determination of genotype flexibility (e.g., HGT process and microbial response to antibiotic 

pressure) via monitoring phenotype differentiation, which can significantly improve the 

understanding of antibiotic resistance in the clinical and physical environment. Furthermore, 

a combination of cultivation-based approaches coupled with fast screening may solve the 

inherent limitation of cultivation that microbial functioning in natural environments is 

difficult to study by cultivation solely due to uncultivable microbes and their complicated 

community constructions
93, 122

. Also, with the non-destructive character of bio-spectroscopic 

fast screening reducing the amount of interrogating targets, many other techniques can be 

attached for further investigation, e.g., single cell sorting
54, 57

, -omics
40

, etc. One good 
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example can be found in Huang’s work describing novel marine strain identification via 

Raman spectroscopy coupled with single-cell genomics
123

. Raman spectra are also reported in 

morphology-specific genomic analysis of human tissues combined with microdissection 

sequencing
124

 or characterizing metabolic alterations in mouse liver coupled with 

metabolomics and transcriptomics
125

. These combinations may significantly enhance the 

study of the relevant mechanisms providing an opportunity for direct determination of 

precisely functional genes and proteins. Ultimately, genotype and phenotype can be linked 

together from the population, single cell, and molecular perspectives to determine the 

antibiotic resistance in the microbiota of interest and consequently help us better understand 

the actual interactions among humans, microbes, and the physical environment. 
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Abstract 

 

There is an increasing need to investigate microbiomes in their entirety in a variety of 

contexts ranging from environmental to human health scenarios. This requirement is 

becoming increasingly important with emergence of antibiotic resistance. In general, more 

conventional approaches are too expensive and/or time-consuming and often predicated on 

prior knowledge of the microorganisms one wishes to study. Herein, we propose the use of 

biospectroscopy tools as relatively high-throughput, non-destructive approaches to profile 

microbiomes under study. Fourier-transform infrared (FTIR) or Raman spectroscopy both 

generate fingerprint spectra of biological material and such spectra can readily be 

subsequently classed according to biochemical changes in the microbiota, such as emergence 

of antibiotic resistance. FTIR spectroscopy techniques generally can only be applied to 

desiccated material whereas Raman approaches can be applied to more hydrated samples. 

The ability to readily fingerprint microbiomes could lend itself to new approaches in 

determining microbial behaviours and emergence of antibiotic resistance. 
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1. Microbiomes and their response to the natural environment 

Microbial communities, including bacteria, archaea, viruses, protists or fungi, play a vital role 

in many ecosystems. Global carbon cycles in the ocean, for instance, at least 50% of carbon 

dioxide is fixed through photosynthesis providing the energy for microbial respiration and 

reproduction
1, 2

. Human health is also highly dependent on microbes since a very abundant 

mix of bacterial species symbiotically survives within humans and many principal organs are 

their habitats. The skin surface is the largest habitat with multiple regional variations in 

cellular architecture and environmental exposures for microbes, where the density of bacteria 

can reach 10
7
 cells per square centimetre

3
. However, bacteria colonizing on external surfaces 

only count for some 10% (i.e., 10
14

 bacterial cells to 10
13

 human cells) while the rest 90% 

comprise the commensal microbiome living in the body
4-9

. A majority of these microbial cells 

exist in the gastrointestinal tract (GIT) and constitute the human intestinal microbiota, which 

has a concentration of 10
12

 CFU/g and probably represents one of the densest, most 

biodiverse and rapidly evolving bacterial ecosystems on earth
4-9

. Another representative 

example is the microbial flora in the oral cavity as the entrance of the digestive tract; over 

500 microorganism species have been identified and can attach to oral surfaces and colonize 

to form a microbial matrix, e.g., dental plaque or oral biofilm
10

. The dynamics of human host 

microbial communities account for many diverse phenomena associated with public health 

issues, e.g., changes in the gut microbial community may be linked to metabolic disorders, 

obesity and Crohn’s disease
11

. 

Antibiotics are widely used to treat microbe-induced diseases and are also applied at 

sub-therapeutic levels via animal feed to maintain meat quality and quantity. Since Sir 

Alexander Fleming identified penicillin in 1928, the environment has become the primary 

receiver for most applied antibiotics and their residues via excretion of human and animals
12-

18
. Currently, antibiotics are ranked as the third most commonly prescribed class of agents, 

and frequently used in human medicine, agriculture, aquaculture and the agri-food industry, 

resulting in an enormous amounts of antimicrobial usage
19

. Accordingly, antibiotic misuse 

may result in a seriously antibiotic-abundant circumstance for microbes as well as humans. 

Consequently, in response to such environmental stimuli, bacteria acquire the capability of 

antibiotic resistance, and ultimately superbugs may emerge
20

. It is worth highlighting that 

microbiota from humans and natural environments are not separated but connected via 

various routes of exposure. For example, horizontal gene transfer (HGT) allows rapid 

development of genetic divergence and therefore leads to virulence, antibiotic resistance, and 

xenobiotic metabolism, spreading through microbe populations inhabiting in human bodies 

and natural environments
21

. HGT accelerates the spread of antibiotic resistance genes (ARGs) 

and emergence of superbugs, which is a lethal threat to humans and therefore a major focus 

of scientific interest
22, 23

. 

With such growing concerns, ARGs and their relevant mechanisms have been identified 

in clinical and environmental contexts
12-18, 24-27

. Many approaches have been applied to 

investigate their existence and spread as well as their dynamics within natural microbiota. 

Herein, we briefly discuss the conventional methods used to determine antibiotic resistance 
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and ARGs within the microbial community, both phenotypically and genetically, as well as 

how biospectroscopy can be applied to fingerprint microbiomes and microbial antibiotic 

resistance. 

 

2. Conventional biological approaches to determine microbial antibiotic resistance 

Research into microbial antibiotic resistance primarily uses different techniques and 

methodologies, generally categorized as function- and molecular-based methods according to 

focus, i.e., function-based approaches aim at particular behaviour or mechanisms of 

individual microbes based on their roles or characteristics, while molecular-based approaches 

target in high-throughput fashion the molecular components within the complex microbiotas. 

2.1 Function-based approaches 

Culturing is the most applied function-based approach to determine microbial response to 

antibiotics
2, 28, 29

 due to its inherent merit which is a focus on individual strains, instead of the 

interrogated complexity and diversity of the whole microbiota
30, 31

. Most known antibiotic-

resistant microbes and genes are identified by direct culturing, isolate purification, and further 

investigation into their resistance profiles
25,32, 33

. For example, colonies grown with 

antibiotics are screened for the presence of antibiotic biomarkers, located on either plasmids 

or chromosomes
33

. However, >90% bacteria are currently unculturable but functional in-

situ
34-36

. Culture-dependent methods are always questioned for their ability to represent the 

real scenario and for an underestimation of ARG abundance
31

. Some improved techniques, 

such as stable isotope probing (SIP) and magnetic nanoparticle-mediated isolation, further 

enumerate the functional fractions, not individual, from the total microbiota
37, 38

. 

2.2 Molecular-based approaches 

Instead of targeting microbes with specific functions, molecular-based approaches deal with 

microbiota as an integrated system by directly extracting biological components. With the 

rapid development of molecular tools, molecular-based approaches have evolved from 

polymerase chain reaction (PCR) and denaturing gradient gel electrophoresis (DGGE) to 

high-throughput sequencing and Omics
31, 39, 40

, uncovering ARGs from all the 

microorganisms within a microbiota, including those uncultured
39, 41-43

. Notably, the recent 

development of Omics, from genomics to proteomics, allows generation of large-scale 

datasets for cellular components (DNA, RNA, and proteins) compositions, interactions and 

profiles, yielding a comprehensive database of genetic functions of ARGs
40

, e.g., isolating 

novel ARGs from microbial communities of human oral and soil
39, 44

. However, molecular-

based approaches have an inherent insufficiency in confirming behavioural functions and 

linking those functions to identities of antibiotic-resistant strains. Meanwhile, as destructive 

methods of collecting cellular components, molecular-based approaches may not meet the 

need for in-situ diagnosis of antibiotic resistance in real-time. 

2.3 Which is more important? 

Individual vs. microbiome. It is hard to answer which, single cells or the whole communities, 
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needs to be investigated to better understand antibiotic resistance in the microbiome. ARGs 

and antibiotic resistance mechanisms vary between individuals, implying insight into the 

single cell may provide more comprehensive information. On the other hand, although 

individual cells hold their respective ecological niche, they also contribute to the overall 

function of the microbiome as a whole. Since most microbes are somewhat dormant in the 

natural environment within developing communities such as mat, sludge or biofilm, it is 

worth paying more attention for clinical purposes to the response of the microbiome to 

antibiotics, rather than that of individual cells, i.e., typically, an unnecessary single-cell-level 

test is required for the diagnosis of diseases. Biofilm, for instance, consists 2% to 15% of 

microorganisms with the remainder being their self-produced matrix of extracellular 

polymeric substances (~90%) secreted by microbes making individual cells stick together and 

colonize on a surface; this overall community performs functional tasks similar to multi-

cellular organisms for adaptation to environmental changes
45-49

. Extracellular polymeric 

substances matrix facilitates communication between cells (e.g., such as quorum sensing), 

maintains biofilm hydration and protects microorganisms against environmental stresses. The 

chemical composition and structure of extracellular polymeric substances depend on cell 

species, metabolic activity, nutrient availability, biofilm maturity level and physicochemical 

conditions. Biofilm formation offers microbes an entirely different lifestyle weighing against 

the planktonic state providing protection from external exposures (e.g., antibiotics) for the 

community
45-49

. Recently, the field of single cell study has developed some breakthroughs 

allowing characterisation and interrogation of particular microbes at reasonable levels
50-60

. 

However, these remain insufficient to fulfil the need to study microbial interactions within the 

microbiome and their surrounding environment. Thus, further research into the functionality 

of the entire microbiome is needed. 

Phenotype vs. genotype. Stochasticity in gene expression may induce genetically-identical 

cells under the same environmental exposures to express significant variation in molecular 

content and discriminating differences in phenotypic characteristics; this implies cell 

functions may be altered by non-genetic regulation providing a mechanism for phenotypic 

and cell-type diversification regardless of genotype
61-63

. Such phenotypic heterogeneity helps 

microbes survive exposures to antibiotics owing to the fact that a small genetically-identical 

subset of persistent cells can survive an extended period and get over the exposure time
61

. 

This phenomenon may bring another challenge regarding in-situ diagnosis of antibiotic 

resistances of interrogated microbiomes since the phenotype of the microbiome may be 

unpredictable even under an acknowledged circumstance due to the influence of epigenetic 

factors
64, 65

. Therefore, finding a new approach that can quickly screen the phenotype of a 

microbiome to determine the in-situ bacterial antibiotic resistance in real-time is urgently 

required. 

3. A new dawn for biospectroscopy in microbiological research 

3.1 Principles of biospectroscopy 

Biospectroscopy encompasses a range of techniques that allow the spectroscopic examination 
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of biological samples. Such spectroscopic measurements are usually based on electronic 

transitions and vibrational changes of chemical bonds with spatial resolutions from the 

microscopic to the macroscopic. These both examine the morphological contrast in biological 

samples and uncovers elemental or molecular information via further determination
66

. 

Infrared (IR) or Raman spectroscopy are the two most applied biospectroscopy techniques 

since the 1960s
67, 68

. 

 

Figure 1. The principle of the biospectroscopic fingerprinting in identifying microbial 

species, examining food security and diagnosing pathogen-induced diseases. IR spectroscopy 

is capable of measuring the electric dipole state of chemical bonds in cellular molecules; 

Raman spectroscopy is a complementary tool exploiting the inelastic scattering of the 

targeted biological samples even under a hydrated environment. 
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When biomolecules contain chemical bonds with an electric dipole moment, these 

vibrations are detectable and measurable by IR spectroscopy
69

. Categorized according to 

wavelengths (i.e., near-IR, mid-IR or far-IR), mid-IR (MIR) spectroscopy (4000-400 cm
-1

 in 

wavenumbers) is the most applied in biospectroscopy because it not only includes overtones 

but also contains fundamental vibrational transitions, providing inherently stronger signal 

intensities in terms of the increased absorption cross-section
70

. In 1991, FTIR spectroscopy 

was innovatively introduced as a sensitive and rapid screening tool for characterization, 

classification and identification of microorganisms
71

. Since then, FTIR spectroscopy has been 

extensively used in microbial research
72-75

. Among FTIR spectroscopic techniques, the most 

frequently applied IR spectroscopic techniques are transmission, transflection or attenuated 

total reflection (ATR)
72

. ATR-FTIR spectroscopy (Figure 1), for instance, which employs an 

internal reflection element with a high refractive index (e.g., diamond, germanium or zinc 

selenide), directs the IR beam for the total internal reflection and produces an evanescent 

wave that penetrates beyond the element by 1 µm to 2 µm. It is used to interrogate biological 

samples allowing absorption of IR light and subsequently production of absorbance spectra
69, 

72
. This process can reveal biochemical information regarding cellular changes or alterations 

of samples. However, there is a significant limitation within FTIR in that water from 

instrumentation or samples may induce reduction of IR light transmission
69, 72

. Hence, it is 

crucial to purge the instrumentation with dry air or nitrogen, as well as desiccants to remove 

any water vapour before spectral acquisition
72

. FTIR is a valuable metabolic fingerprinting 

tool owing to its abilities to characterize cellular composition
72-78

. In the mid-IR 

spectroscopy, the biochemical fingerprint region is from 1800 - 900 cm
-1

, and representative 

peaks include: lipids (~1750 cm
-1

), Amide I (~1650 cm
-1

), Amide II (~1550 cm
-1

), Amide III 

(~1260 cm
-1

), carbohydrates (~1155 cm
-1

), asymmetric phosphate stretching vibrations (νas 

PO2
-
, ~1225 cm

-1
), symmetric phosphate stretching vibrations (νsPO2

-
, ~1080 cm

-1
), glycogen 

(~1030 cm
-1

), protein phosphorylation (~970 cm
-1

)
69, 72, 77, 79, 80

. These peaks can be derived as 

biomarkers for characterization of microbial cell types (even at subspecies level) and 

diagnosis of microbe-induced diseases
72-78

. Metabolomics is a critical field that 

biospectroscopy could complement in order to investigate microbial metabolism. 

Raman spectroscopy, a complementary biospectroscopic technique to FTIR, can generate 

information regarding chemical bonds even under a hydrated environment
81-85

. The 

monochromatic light in the near-IR, visible or UV range is used in Raman spectroscopy 

(Figure 1) to exploit the inelastic scattering or Raman effect. In this process, the excitation of 

photons to virtual energy states and the resultant loss (Stokes) or gain (anti-Stokes) of energy 

occurs because of the interaction of light with vibrational modes associated with chemical 

bonds within the sample
80, 86

. This shift in energy is indicative of discrete vibrational modes 

of polarizable molecules, and thus a qualitative measurement of the biochemical composition 

can be obtained
80, 86

. However, the inelastic scattering does not occur efficiently, the 

incidence is <1% of the total photons absorbed by the molecules. Thus, backward light is 

then applied filtering off other interference, but the Raman scattering can reach the detector. 

Typically, the informative region of wavenumbers for biological samples is located within 

Page 31 of 50 Integrative Biology



8 

 

400-2000 cm
-1

 and 2700-3500 cm
-1

, including proteins (1500-1700 cm
-1

), carbohydrates 

(470-1200 cm
-1

), phosphate groups of DNA (980, 1080 and 1240 cm
-1

) and higher-frequency 

bond vibrations of CH, NH and OH stretching in lipids and proteins
80, 87

. Applications of 

Raman spectroscopy in microbiology include bacterial discrimination, isolation, and 

identification
88-90

. 

3.2 Applications of biospectroscopy in microbial research 

Compared to the conventional tools employed for identifying and characterizing the 

microbiome, biospectroscopy requires minimal sample amount and preparation, and is non-

destructive and relatively high throughput
69, 72, 80

. Specifically, the minimal sample volume 

for ATR-FTIR and Raman spectroscopy is 3 µL and 1 µL respectively, much lower than those 

required in PCR, high-throughput sequencing, and Omics which require high quality and 

amounts of DNA template extracted from several millilitres or grams of environmental 

samples. Additionally, biospectroscopy does not require extra labelling, primer design, and 

enzymatic reaction, significantly reducing the cost and time in diagnosing. More importantly, 

the non-destructive features of biospectroscopy allow its application in vivo and in situ. Some 

successful microbial applications of biospectroscopy (Figure 1) include characterization of 

hospital isolates and rapid quantitative detection of the microbial spoilage of food products
71, 

77, 79, 91, 92
. There is no doubt that biospectroscopy is a robust tool for distinguishing bacterial 

responses to environmental exposures due to its particular attributes of being non-destructive, 

non-intrusive, high throughput and label-free
69, 72

. When coupled with conventional 

microscopy, biospectroscopy can be used to reproduce cell architecture from both the visual 

and biochemical perspective by the passing of spectral data through a variety of 

computational algorithms and capture of pictures simultaneously
69, 72

. It allows visualized 

monitoring and spectral interrogation undertaken in-situ in real-time, which is very helpful 

towards understanding the actual interactions between microbes and physical environment
66, 

69, 72, 77, 80, 93, 94
. In the history of microbiological research, the microbiome is a particular 

hotspot in microbial ecology, challenging to all approaches to investigate it but bringing 

possibilities for biospectroscopy to be applied. As a very complicated bio-matrix, 

microbiomes contain various compositions contributing to the overall spectra, including 

extracellular polymeric substances (EPS), cell membrane, and the cytoplasm. The 

characteristic spectral peaks, e.g., biological macromolecules, may assess the existence and 

composition of biofilms by summarising the wavenumbers of detected peaks. Most EPS 

induced biomarkers, for instance, fall in the range of 1700 - 100 cm
-1

 in Raman 

spectroscopy
95

. Also, the comparison between the microbial biofilms and planktonic 

communities could reveal relevant biochemical information
96

. Specifically, Bosch et al. found 

FTIR spectra of biofilms demonstrated higher intensity in the absorption bands associated 

with polysaccharides (1200 - 900 cm
−1

 region) and vibrational modes of carboxylate groups 

(1627, 1405, and 1373 cm
−1

) than those of the planktonic
74

, showing evidence of dramatic 

difference of microbial living style within such communities. 
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4. Fingerprint microbiome via biospectroscopy 

4.1 State of art 

Owing to the non-destructive and high-throughput possibilities, biospectroscopy has many 

advantages in diagnosing antibiotic resistance within a microbiome over other approaches, 

either function- or molecular-based ones. It allows fast and low-cost screening for an 

enormous number of samples and also provides a chance for further analysis of relevant 

mechanisms. Additionally, biospectroscopy is capable of monitoring real-time population 

dynamics and subsequently providing information of genotypic changes. However, until now, 

few biospectroscopy-based studies have focused on microbial antibiotic resistance, and all of 

the published studies
97-99

 investigate pure cultures. Lack of insight into microbiome structures 

in situ highlights the urgent need for novel approaches. The primary challenges currently 

include the lack of a reliable database, routine protocols, and reproducible computational 

analysis, which determine the feasibility of biospectroscopy distinguishing biomarkers 

representing antibiotic resistance from the numerous fingerprints in environmental 

backgrounds. 

Herein, we propose a state-of-the-art biospectroscopic application in assessing 

microbial antibiotic resistance within a microbiome. Within a microbiota of interest, there is 

no doubt biospectroscopy has the ability to allow the quick identification of microbial species 

within a well-built dataset
97

. Furthermore, biospectroscopy can diagnose microbe-induced 

diseases in clinical settings contributing to the advantages of early detection and stratification 

of at-risk patients to initiate timely and appropriate treatment
100-103

. Raman spectroscopy has 

successfully identified sepsis in blood plasma from 70 patients with a satisfactory sensitivity 

of 1.0 and specificity of 0.82
101

. The feasibility of biospectroscopic investigation into 

microbial alterations induced by exposures has also been evaluated. Riding et al. applied IR 

spectroscopy to fingerprint microbes following exposure to carbon nanoparticles, and 

revealed concentration- and size-dependent changes in cellular components
104

. Another 

study
105

 confirmed the ability of IR spectroscopy to characterize changes induced by carbon 

nanoparticles via investigating their effects in both Gram positive and negative bacteria. 

Some discriminant biochemical markers, i.e., Amide II and carbohydrate, were picked out to 

verify the distinct alterations in bacteria with respective cell wall structures. These studies 

prove that biospectroscopy is not only able to distinguish microbial response to different 

kinds of exposures, but also specify variances resulting from bacterial structures, 

demonstrating its potential to diagnose antibiotic resistance with reliable biomarkers. 

To investigate in-situ the construction and composition of microbiota in real-time, a 

non-destructive and non-intrusive method is required to delineate differentiation. 

Biospectroscopy is such an optical sensor, an in-situ non-labelling complementary to other 

molecular-based techniques, by directly and remotely measuring molecular vibration spectra 

in living cells
106

 and biofilms
107

. Given this, we propose a new system for characterizing 

antibiotic resistance within whole microbiomes via a rapid and high-throughput manner 

(Figure 2). Firstly, by well-trained databases, the abundance of ARGs or microbes with 
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ARGs in microbiotas can be quantified by evaluating the alteration ratio of biomarkers from 

multivariate statistical analysis. Furthermore, the dynamics of ARGs in microbiotas might be 

assessed in real-time via the interrogation of changes in biomarker change. Achieved in-situ 

and real-time investigation of antibiotic resistance, the ultimate goal of this approach is to 

monitor and diagnose both the presence and change of ARGs in unknown environmental or 

human samples of interest, differentiating alterations of discriminating biomarkers in-situ and 

real-time without referencing trained datasets. 

 

Figure 2. Schematic diagram of biospectroscopy fingerprinting microbiome for antibiotic 

resistance. Portal bio-spectroscopic devices achieve in situ and real-time interrogation of 

spectra from the samples of interest, e.g., human microbiome and livestock farm microbiome. 

The fingerprints are further processed via computational analysis (pre-processing, feature 

extraction, classification, discrimination, and differentiation) to distinguish the spectral 

biomarkers of antibiotic resistance. Comparing to well-trained databases with both positive 
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and negative controls, the biomarker alterations can examine the antibiotic resistance 

capability of the targeted microbiome or even quantify the abundance of antibiotic resistance 

genes. 

 

4.1 Proof of concept 

Our pre-validating results indicate biospectroscopy can determine the abundance of bacteria 

with ARG in microbiome (Figure 3A), despite disparate bacterial types and community 

composition (Gram-positive or Gram-negative; Figure 3B). From the well-trained dataset and 

discriminating biomarkers (Figure 3C), the fingerprints of unknown microbiomes are 

allocated and assigned with their ARGs abundance after encoding. Furthermore, both the 

static and dynamic microbial matrices can be quantified by biospectroscopy due to inherently 

non-destructive and non-intrusive attribute (Figure 3D). Here, biospectroscopy is validated as 

a high throughput screening method for characterization of microbial composition and ARGs 

abundance in complex matrices. 

 

Figure 3. Pre-validation proves the feasibility of interrogating the abundance of ARGs and 

ratio of Gram-positive to Gram-negative bacteria in microbiomes. ARGs identification in 

microbiome by biospectroscopic fingerprints via a Bruker TENSOR 27 FTIR spectrometer 

(Bruker Optics Ltd., UK) equipped with a Helios ATR attachment containing a diamond 

internal reflection element (IRE). Instrument parameters were set at 32 scans, 16 cm
-1
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resolution. A total of 30 spectra were acquired for each treatment (3 replicates) through the 

ATR magnification-limited viewfinder camera. (A) Prediction of ARGs abundance in 

artificial microbial communities containing different compositions of two Acinetobacter 

baylyi mutants, ADP_kan
-
 and ADP_kan

+
, which are genetically identical apart from the 

kanamycin resistance gene located on the chromosome of ADP_kan
+
. Under kanamycin 

antibiotic pressure, i.e., treated with final concentration of kanamycin, the discriminant 

biomarkers were (~980 cm
-1

), Oligosaccharide C-OH stretching band (~1138 cm
-1

), 

Deoxyribose (~1188 cm
-1

), Amide III (~1242 cm
-1

), In-plane CH bending vibration from the 

phenyl rings (~1500 cm
-1

), C=O stretching, lipids (~1740 cm
-1

). The LDA distance is 

positively correlated with the ratio of ADP_kan
-
/ADP_kan

+
 and the linear regression, 

therefore, can be used for ARG abundance calculation. (B) Prediction of microbial 

community composition artificial microbial communities containing Gram-positive 

(Mycobacterium vanbaalenii, Gram
+ve

) and Gram-negative (Acinetobacter baylyi ADP_kan
+
, 

Gram
-ve

) bacteria. The positive correlation between LDA distance and the ratio of Gram
+ve

/ 

Gram
-ve

 helps in determining the abundance of each strain. (C) Dataset from LDA 

differentiation of four reference bacterial strains (AGR
+
: bacteria I and bacteria II with ARG; 

AGR
-
:  bacteria III and bacteria IV with no ARG). The dataset is well trained for separating 

ARG
+
 and ARG

-
 bacteria. (D) LDA differentiation of unknown microbiome (U1, U2, and U3) 

compared to training dataset to determine the abundance of ARG. Based on the values 

generated from LDA analysis, their biochemical distances can be calculated. These results 

validate bio-spectroscopy is capable of characterizing and quantifying ARGs of microbes via 

their phenotypes in both genetically identical and differential microbial communities. Also, it 

can be used to determine antibiotic resistance of unknown samples by calculating their 

biochemical distances. 

 

5. Challenges and solutions 

5.1 Dataset 

As mentioned above, a well-trained dataset is the key for biospectroscopic fingerprinting 

microbiome and also the first fundamental problem challenge concerned which can eliminate 

confounding factors, i.e., criteria may contribute a disruption to the core purpose of the study. 

To achieve this goal, the database of relevant molecular fingerprint and their assignments 

(such as nucleic acids, proteins, polysaccharides, carbohydrate, and lipids) have to be well-

characterised since the bio-spectroscopic classifications are based on calculating alterations 

of interaction involved cellular compositions. This work may significantly improve bio-

spectroscopy from both quantity and quality criteria
108

. Detailed information of the most 

widely used peak frequencies and their assignments refers to the reviews of IR 

spectroscopy
108

, Raman spectroscopy
52, 87

, and ratios (X cm
-1

/Y cm
-1

)
109

. These peaks with 

remarkable alterations are determined as discriminating biomarkers for diagnosis of changes 

resulted by specific exposures in many studies
69, 87, 104, 105, 108, 110

. However, no 

biospectroscopy-relevant study has yet been found associated with biomarkers for antibiotic 
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resistance of microbiomes. 

5.2 Growth phase and environmental variants 

Another major concern for the overall study (i.e., confounding factors) is bacterial 

communities are incredibly complicated in terms of their composition, species, dynamics of 

population, growth phase and nutrient depletion impacts
111-114

. Growth phase effect for 

instance, which may result in remarkable discrepancies within cell growth circle regarding 

physical features and biochemical compositions. Ede et al.
115

 reported all the examined 

species showed significant spectral differences through their growth phases in a study of 

assessing cell population growth via ATR-FTIR spectroscopy. They found B. 

stearothermophilus had a major change associated with lipid content and reached peak 

position during the log phase; for the halophiles H. salinarium and H.morrhuae, the most 

significant alteration was the concentration of sulphate ion. Mainly, at the mid-log phase, A. 

aceti cells showed increasing polysaccharide content along with and also a maximum change 

of lipid content was noticed during the log phase. These growth phase induced changes may 

lead to distinct responses of microbes to exposures
115-118

. 

  

Figure 4. Pre-validation of solutions for proposed challenges of growth phase and nutrients. 

The well-trained dataset eliminating other environmental interference is built-up in several 

steps: 1) Reference dataset acquisition from individual single cell of different species 

representing their biospectral attributes; 2) Biospectra acquisition from the targeted 

microbiome; 3) Biospectra acquisition from the targeted microbiome postexposure to 
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antibiotics to recognize and separate the discriminating spectral alterations via multivariate 

analysis; and, 4) The identical and consistent spectral alterations representing antibiotic 

resistance markers are clustered for interrogating the targeted microbiome. 

 

A substantial alteration gradient of bio-spectra is noticed along with growth phase and 

nutrient conditions, respectively. However, discrimination of antibiotic resistance biomarkers 

is independent of growth phase and nutrient conditions (Figure 4). The biomarkers of 

antibiotic resistance, i.e., phenylalanine (protein assignment) (~1004 cm
-1

 and ~1376 cm
-1

), 

hydroxyapatite, carotenoid, cholesterol (~957 cm
-1

), uracil-based ring breathing mode (~780 

cm
-1

), carbohydrates (~1105 cm
-1

), phenylalanine, hydroxyproline (~1586 cm
-1

), are 

significantly discriminated from those of growth phases, phenylalanine or bound & free 

NADH (~1000 cm
-1

), phosphatidylinositol (~776 cm
-1

), C-C-N
+
 symmetric stretching (lipids) 

or C-O-C ring (carbohydrate) (~877 cm
-1

 and ~1495 cm
-1

), Amide I (~1634 cm
-1

 and ~1530 

cm
-1

); and nutrients, uracil-based ring breathing mode (~780 cm
-1

), C-C-N
+
 symmetric 

stretching (lipids) or C-O-C ring (carbohydrate) (~877 cm
-1

), phenylalanine or bound & free 

NADH (~1000 cm
-1

), proline, hydroxyproline or glycogen and lactic acid (~918 cm
-1

, ~1695 

cm
-1

 and ~1375 cm
-1

) implying biospectroscopic is able to identify antibiotic resistance 

within a microbiome regardless of impacts from growth phase and nutrient condition. 

Therefore, these discriminating biomarkers associated with antibiotic resistance reveal the 

potential feasibility for in-situ diagnosis of real samples despite environmental variants. It is 

worth mentioning that discrimination of antibiotic resistance biomarkers might be also 

affected by the complicated effects of antibiotics on both targeted microbiome and their 

matrix environment, particularly in case of interrogating biofilm on mammalian tissues. The 

production of tissue mucus and other components or the interference signals from 

mammalian tissues themselves can bring challenges in distinguishing the proper biospectral 

biomarkers. Although no previous report has answered this question yet, some potential 

solutions eliminating background noise include separating microbiome from via optical 

tweezers
119

 or flow cytometry 
120

. 

5.3 Computational analysis 

It needs to be highlighted the most vital component associated with biospectroscopic 

determination for antibiotic resistance of microbiome is to find discriminating biomarkers, 

i.e., the most absolute and representative peaks derived from acquired spectra, allowing 

subsequently high throughput screening for determination of antibiotic resistance. Although 

some alterations of biomarkers can be visualized by eyes, the questions always emerge 

regarding the existence of noticed difference and the reliability of subjective assessing by 

eye. Hence, computational analysis is applied to exam the data due to the acquired spectrums 

holding an enormous number of features. 

The pre-processing is the first step of computational analysis which aims to reduce 

effects resulted from spectral acquisition and subsequently enhance the robustness and 

accuracy as well as making all the raw data comparable
72

. Categories of pre-processing 
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include de-noising, spectral correction, normalization and combinations of these processes. 

For a raw dataset of Raman, a noise-reduction smoothing step is commonly applied to 

increase the SNR (signal-to-noise ratio) and highlight spectral features associated with 

biochemical information
69

. PCA is also used to achieve the purpose of de-nosing because the 

most valuable features of spectra can be represented by several significant PCs while the rest 

PCs containing a majority of noise can be ignored. Furthermore, there is a huge challenge in 

the procession of raw data, i.e., sloped or oscillatory baselines associated with resonant Mie 

scattering in IR spectroscopy or fluorescence in Raman spectroscopy
72

. To solve this issue, 

rubber band baseline correction is applied for IR which produced a convex polygonal line to 

correct the bottom edges of the spectra; and polynomial fit for Raman, which generates a 

polynomial baseline to adjust the spectral minima
121

. Also, the most vital part of pre-

processing is the normalization, which eliminates the confounding factors, thickness or 

concentration, for instance, making acquired spectra comparable within intra-class and inter-

class. For biological samples, Amide I (~1650 cm-1)/II (~1550 cm
-1

) is usually applied after 

baseline correction for IR data; and vector normalization (Euclidean or L2-norm) is used for 

Raman data
72, 121

. 

Moreover, the multivariate statistical analysis is an ideal tool for spectral analysis. In 

2010, Martin et al. proposed two objectives for spectral assessing biological materials using 

multivariate statistical analysis: (i) to determine similarities and differences between classes 

(categories within the dataset, e.g., cell types); and (ii) to identify the spectral bands that 

mostly relate to these similarities and differences. So as to meet the objectives, classification 

is introduced as one of the core components in multivariate analysis, which typically relies on 

clustering techniques, such as hierarchical cluster analysis, k-means clustering, fuzzy C-

means clustering and PCA. Furthermore, PCA-LDA is an ideal classification tool to 

investigate intra-class or interclass variation. As compared to PCA alone, the additional linear 

discriminant analysis derives vectors from the principal components (PCs) and minimizes the 

within-category differences (mostly be associated with typical heterogeneity in any biological 

sample) while maximizing between-category discriminating characteristics (i.e., those most 

likely to be induced by treatments or other exogenous contributions)
69, 72, 80

. 

6. Future prospects 

The introduction of biospectroscopic screening allows rapid in-situ diagnosis of antibiotic 

resistance in microbiomes as well as real-time detection of population dynamics and 

determination of genotype flexibility (e.g., HGT process and microbial response to antibiotic 

pressure) via monitoring phenotype differentiation, which can significantly improve the 

understanding of antibiotic resistance in the clinical and physical environment. Furthermore, 

a combination of cultivation-based approaches coupled with fast screening may solve the 

inherent limitation of cultivation that microbial functioning in natural environments is 

difficult to study by cultivation solely due to uncultivable microbes and their complicated 

community constructions
93, 122

. Also, with the non-destructive character of bio-spectroscopic 

fast screening reducing the amount of interrogating targets, many other techniques can be 

attached for further investigation, e.g., single cell sorting
54, 57

, -omics
40

, etc. One good 
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example can be found in Huang’s work describing novel marine strain identification via 

Raman spectroscopy coupled with single-cell genomics
123

. Raman spectra are also reported in 

morphology-specific genomic analysis of human tissues combined with microdissection 

sequencing
124

 or characterizing metabolic alterations in mouse liver coupled with 

metabolomics and transcriptomics
125

. These combinations may significantly enhance the 

study of the relevant mechanisms providing an opportunity for direct determination of 

precisely functional genes and proteins. Ultimately, genotype and phenotype can be linked 

together from the population, single cell, and molecular perspectives to determine the 

antibiotic resistance in the microbiota of interest and consequently help us better understand 

the actual interactions among humans, microbes, and the physical environment. 
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Figure 1. The principle of the biospectroscopic fingerprinting in identifying microbial species, examining food 
security and diagnosing pathogen-induced diseases. IR spectroscopy is capable of measuring the electric 

dipole state of chemical bonds in cellular molecules; Raman spectroscopy is a complementary tool exploiting 

the inelastic scattering of the targeted biological samples even under a hydrated environment.  
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Figure 2. Schematic diagram of biospectroscopy fingerprinting microbiome for antibiotic resistance. Portal 
bio-spectroscopic devices achieve in situ and real-time interrogation of spectra from the samples of interest, 

e.g., human microbiome and livestock farm microbiome. The fingerprints are further processed via 

computational analysis (pre-processing, feature extraction, classification, discrimination, and differentiation) 
to distinguish the spectral biomarkers of antibiotic resistance. Comparing to well-trained databases with 
both positive and negative controls, the biomarker alterations can examine the antibiotic resistance 
capability of the targeted microbiome or even quantify the abundance of antibiotic resistance genes.  
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Figure 3. Pre-validation proves the feasibility of interrogating the abundance of ARGs and ratio of Gram-
positive to Gram-negative bacteria in microbiomes. ARGs identification in microbiome by biospectroscopic 

fingerprints via a Bruker TENSOR 27 FTIR spectrometer (Bruker Optics Ltd., UK) equipped with a Helios ATR 

attachment containing a diamond internal reflection element (IRE). Instrument parameters were set at 32 
scans, 16 cm-1 resolution. A total of 30 spectra were acquired for each treatment (3 replicates) through the 

ATR magnification-limited viewfinder camera. (A) Prediction of ARGs abundance in artificial microbial 
communities containing different compositions of two Acinetobacter baylyi mutants, ADP_kan- and 
ADP_kan+, which are genetically identical apart from the kanamycin resistance gene located on the 

chromosome of ADP_kan+. Under kanamycin antibiotic pressure, i.e., treated with final concentration of 
kanamycin, the discriminant biomarkers were (~980 cm-1), Oligosaccharide C-OH stretching band (~1138 
cm-1), Deoxyribose (~1188 cm-1), Amide III (~1242 cm-1), In-plane CH bending vibration from the phenyl 
rings (~1500 cm-1), C=O stretching, lipids (~1740 cm-1). The LDA distance is positively correlated with the 

ratio of ADP_kan-/ADP_kan+ and the linear regression, therefore, can be used for ARG abundance 
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calculation. (B) Prediction of microbial community composition artificial microbial communities containing 
Gram-positive (Mycobacterium vanbaalenii, Gram+ve) and Gram-negative (Acinetobacter baylyi ADP_kan+, 
Gram-ve) bacteria. The positive correlation between LDA distance and the ratio of Gram+ve/ Gram-ve helps 
in determining the abundance of each strain. (C) Dataset from LDA differentiation of four reference bacterial 
strains (AGR+: bacteria I and bacteria II with ARG; AGR-:  bacteria III and bacteria IV with no ARG). The 

dataset is well trained for separating ARG+ and ARG- bacteria. (D) LDA differentiation of unknown 

microbiome (U1, U2, and U3) compared to training dataset to determine the abundance of ARG. Based on 
the values generated from LDA analysis, their biochemical distances can be calculated. These results 

validate bio-spectroscopy is capable of characterizing and quantifying ARGs of microbes via their phenotypes 
in both genetically identical and differential microbial communities. Also, it can be used to determine 

antibiotic resistance of unknown samples by calculating their biochemical distances.  
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Figure 4. Pre-validation of solutions for proposed challenges of growth phase and nutrients. The well-trained 
dataset eliminating other environmental interference is built-up in several steps: 1) Reference dataset 
acquisition from individual single cell of different species representing their biospectral attributes; 2) 

Biospectra acquisition from the targeted microbiome;  
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3) Biospectra acquisition from the targeted microbiome postexposure to antibiotics to recognize and 
separate the discriminating spectral alterations via multivariate analysis; and, 4) The identical and 

consistent spectral alterations representing antibiotic resistance markers are clustered for interrogating the 

targeted microbiome.  
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