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Dear editor,
Simultaneous wireless information and power
transfer (SWIPT) technique has attracted the at-
tention of the research community, since it enables
the wireless nodes to continually acquire energy
from external sources in energy-limited environ-
ments [1–3]. In [4], the SWIPT was utilized in
a cognitive two-way relaying network as an effi-
cient means to improve energy and spectral ef-
ficiency. Assuming Rayleigh fading, the authors
in [4] investigated the outage probability (OP)
performance. It is well known that Nakagami-m
fading can well characterize the wireless propaga-
tion channel in many practical cases and span a
wide range of fading scenarios via the m parame-
ter, including the one-sided Gaussian distribution
(m = 0.5) and Rayleigh fading (m = 1) as spe-
cial cases. In our contribution, we generalize the
analysis of [4] to the more general Nakagami-m
channel model. Specifically, we derive the exact
expressions on OP for the two primary users and
a tight upper bound on OP for the secondary us-
er. It is shown that for the special case of m = 1,
i.e., when the Nakagami-m distribution becomes
Rayleigh, our derived analytical expressions sim-

plify to the previously known expressions in [4].
Simulations are also performed to verify the cor-
rectness of our theoretical analysis.
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Figure 1 System model.

System Model. As illustrated in Figure 1, we
consider a two-way cognitive amplify-and-forward
(AF) relaying network, with two primary users, S
and D, and two secondary users, R and C. Node
R has its own information to broadcast to C and
also acts as a relay to assist primary transmission.
Assume that the two primary users S and D have
fixed power supply, PS , but no energy is provided
to relay R. The whole communication takes place
in two phases. In the first phase, S and D trans-
mit their information to R simultaneously. In the
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second phase, R harvests energy from the part of
its received signal from S and D, and employs the
harvested energy to deliver the resulting informa-
tion with a power gain, along with the message
intended for C. It is also assumed that S and D
can successfully decode the interference from sec-
ondary transmission.

Let g1, g2 and g3 represent the channel coeffi-
cients in S ↔ R, R ↔ D and R ↔ C links, respec-
tively. Since all channels undergo Nakagami-m
fading, |gj |2 follows the Gamma distribution with
fading parameter mj , and mean power Ωj . As-
suming the integer values of mj , the probability
density function (PDF) and cumulative distribu-
tion function (CDF) of |gj |2 are given as [5]

f|gj |2 (x)=
m

mj
j

Ω
mj
j (mj−1)!

xmj−1 exp
(
−mj

Ωj
x
)
, (1)

and

F|gj |2(x)=1−exp(−mjx/Ωj)

mj−1∑
k=0

(mjx/Ωj)
k

k!
,(2)

respectively, where j = 1, 2, 3.
The instantaneous signal-to-noise ratios (SNRs)

at S, D, and C can be expressed as [4]

γS =
αηλ (1− λ)PS |g2|2 |g1|2

αηλ |g1|2 σ2
0 +(1− λ)σ

2
0

, (3)

γD =
αηλ (1− λ)PS |g2|2 |g1|2

αηλ |g2|2 σ2
0 +(1− λ)σ2

0

, (4)

and

γC = min {γS,C , γD,C , γC,C} , (5)

respectively, where σ2
0 represents the additive noise

power at all users, λ∈ (0, 1) denotes the portion of
information split for energy harvesting, η ∈ [0, 1]
represents the energy conversion efficiency, and α
∈ [0, 1] indicates the fraction of the harvested pow-
er to broadcast the remaining information. Be-
sides, γG,C , G ∈ {S,D,C}, denotes the instanta-
neous signal to interference plus noise ratio (SINR)
at node G to decode secondary information intend-
ed for C. We have the following approximations,
which are very accurate at high SNRs,

γS,C ≈ ηλPS |g1|2(1−α)(|g1|2 + |g2|2)
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, (6)
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, (7)

and

γC,C ≈ (1−α)ηλPS |g3|2(|g1|2 + |g2|2)
αηλ |g3|2(PS |g1|2 +PS |g2|2)+σ2

0

. (8)

Outage Probability Analysis. The OP is the
probability that the instantaneous SNR γG at us-
er G falls below a predefined threshold tG, i.e.,
PG
out = Pr (γG < tG), G ∈ {S,D,C}.

Theorem 1. The OP at S and D are given in
closed-form as
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and
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respectively, where a = αηλ, b = (1− α) ηλ,
e = αηλ/(1 − λ), γ = PS/σ

2
0 , n = k − p + 1 and

Kn (·) is the modified Bessel function of the second
kind and order n [6, Eq. (8.407)].

Proof. Define X = |g1|2, Y = |g2|2. We have

FγS
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)
fX(x)dx. (11)

Substituting (1) and (2) into (11), and employ-
ing [6, Eq.(3.471.9)], (9) is obtained. Similarly,
(10) can be obtained.

Theorem 2. The OP at C, PC
out = 1, if τC ,

1/tC 6 a/b. Otherwise, PC
out can be upper bound-

ed as
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×S2 (12)

where
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Wf,h(z) denoting the Whittaker function [6, Eq.
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Proof. Refer to Appendix A.

Note that for the case of Rayleigh fading, i.e.,
m1 = m2 = m3 = 1, Eqs. (9), (10) and (12) re-
duce to [4, Eq. (23)], [4, Eq. (24)] and [4, Eq.
(27)], respectively.
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Figure 2 OP against the γ, when Ω1 = Ω2 = Ω3 = 8 dB,
η = 1, λ = 0.25, α = 0.24, and tS = tD = tC = 3.

Performance evaluation results. Figure 2 shows
the OP at S, D and C against γ when fading pa-
rameter m1 = m3 = 1,m2 = 3 and m1 = m3 =
2,m2 = 3. From it, we observe that the numerical
results obtained from (9) and (10) perfectly match
well with simulations. Besides, the analysis result-
s of (12) we obtained are very close to the simu-
lation results. Figure 3 depicts the OP against
power split coefficient α when fading parameter
m1 = m3 = 1,m2 = 3 and m1 = m3 = 2,m2 = 3.
It can also be found that our analysis results of (9),
(10) and (12) show a good agreement with their
corresponding simulated ones. Besides, it can be
seen that with the increase of α, the OP of prima-
ry users become smaller while the OP of secondary
user increases, which is consistent with the defini-
tion of α. In addition, Figures 2 and 3 demonstrate
under the SWIPT protocol, although there is no

extra power provided for node R, the system can
also acquire a reasonable OP performance.

Conclusion. Exact expressions for the OP of
primary users and a tight upper bound on the
OP of secondary user for a two-way cognitive AF
relaying system operating over Nakagami-m fad-
ing channels and employing SWIPT have been de-
rived. Numerical results accompanied with mont-
carlo simulations have verified the accuracy of the
proposed mathematical analysis.
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Figure 3 OP against α, when Ω1 = Ω2 = Ω3 = 4 dB,
γ = 20 dB, η = 1, λ = 0.65, tS = tD = 3, and tC = 1.

Supporting information Appendix A. The
supporting information is available online at info.
scichina.com and link.springer.com. The support-
ing materials are published as submitted, without
typesetting or editing. The responsibility for sci-
entific accuracy and content remains entirely with
the authors.
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