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Abstract

This thesis consists of three essays on inferring information from option contracts and

other financial derivatives in the U.S. market as well as in the international markets.

The first essay examines corporate bankruptcy probabilities inferred from option prices

and credit default swaps (CDS) spreads around the 2008 financial crisis in the U.S. market.

Option pricing framework is used where the risk-neutral density of the underlying asset is

assumed to be a mixture of two lognormals augmented with a probability of default, to cal-

ibrate to the market option prices. The CDS model assumes a constant default probability

which is solved from the non-linear equation that equates the present value of expected pre-

mium payments with the present value of expected payoffs. The essay documents that both

sources provide ex-ante bankruptcy probabilities, but there is no significant evidence sug-

gesting one predicts the other.

The second essay constructs volatility indices for 15 markets around the world and ex-

amines implied volatility spillover between these markets. Volatility indices are constructed

using option prices based on the new VIX methodology with modification to address its lim-

itations. Spillover effects are then examined using vector autoregressive analysis, impulse

response functions and forecast error variance decomposition. Empirical results show that

the U.S. is unambiguously the dominant source of uncertainty in the world. Correlation

between markets largely depends on geographical proximity. The findings support the no-

tion of informationally efficient international stock markets, in that information transmitted
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from one market to another is processed within one or two days.

The third essay further investigates spillover effects in variance risk premiums, which has

been interpreted as the difference between the realised variance under the physical measure

and the risk-neutral measure. Realized variance under the physical measure is constructed

for each market using the HAR-RV model, which is able to capture long-memory character-

istic of volatility. Risk-neutral expectation of future variance is approximated by a portfolio

of option contracts, as calculated in the second essay. Steps are taken to address serial cor-

relation and dependence, and variance risk premium spillovers are examined using vector

autoregressive analysis, impulse response functions, and Granger Causality tests. The find-

ings are consistent with those found in implied volatility spillovers. The U.S. market is the

distributor of uncertainty in the global market. Information transmitted from one market to

another is quickly digested, but it may take longer in crisis period due to greater uncertainty.
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Chapter 1

Introduction

1.1 Derivatives

A derivative can be defined as a financial contract whose value is derived from an under-

lying asset. Over the past 40 years, derivatives have experienced explosive growth and have

become increasingly important in Finance. Many different types of derivative contracts have

been developed and used by financial institutions, fund managers, and corporate treasurers.

Derivatives can be used for hedging, speculation or arbitrage, and they play a key role in risk

measurement and risk transfer. Prices of these derivatives contain information beyond that

conveyed by the basic underlying asset. Extracting information from these derivatives may

provide useful views on risk management and asset allocation.

Options are one of the most popular derivatives traded in both exchanges and over-the-

counter markets. Option prices are contingent upon all possible future payoffs, hence they

contain a rich source of information about the underlying asset’s distribution at option ma-

turity. The risk-neutral distribution identified in the option pricing framework provides an

appealing way to extract forward looking information.

Credit default swaps (CDS) are the most popular and liquidly traded credit derivatives. A
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CDS contract provides insurance against the risk of default by a particular company, known

as the reference entity. During the 2007 subprime mortgage crisis and the subsequent 2008

financial crisis, CDS contracts continued to trade actively, though with dramatically increased

protection cost, while many other credit derivatives, such as securitized assets, ceased to

trade due to lack of transparency. The nature of a CDS contract and its popularity and liq-

uidity in trading provide a natural channel in extracting the reference entity’s default risk

over the life of the CDS contract.

In this thesis, I extract information from option prices and CDS spreads to examine bankruptcy

probabilities estimated for a number of financial companies during the 2008 financial crisis.

In contrast with early empirical studies on bankruptcy predictions which use accounting-

and equity market-based information, derivatives markets provide extra useful information

ex-ante.

Volatility plays a key role in asset pricing and risk management. Implied volatility is em-

bedded in option prices and can be obtained by equating the market price of an option with

the price indicated by an option pricing model. Option-implied volatilities reveal impor-

tant information on the dynamics of volatility evolution, and they are used to monitor the

market’s opinion on the volatility of a particular asset.

A Volatility index is an index of implied volatilities over a specific horizon calculated from

a basket of call and put options on a representative equity index. The Chicago Board Op-

tions Exchange (CBOE) was the first to introduce a volatility index, called the VIX, designed

to measure the market’s expectation of 30-day volatility of the S&P 500 index, which then

quickly became the benchmark risk measure of the U.S. equity market. Many exchanges

across the world have developed their own respective volatility index following the steps of

the CBOE. Volatility indices have become core instruments for risk management and they

underly a number of volatility derivatives such as VIX futures, options and variance swaps

2



following their introduction.

A variance swap is an over-the-counter derivative contract that allows one to speculate

or hedge the movement of the volatility of an underlying asset. It is an agreement to ex-

change the realised variance between times t and T for a prespecified fixed variance. The

variance risk premium is quantified as the difference between the realised variance and the

risk-neutral expectation of future variance. The fixed variance can be synthesized using a

portfolio of call and put options, which approximates the risk-neutral expected variance.

The introduction of volatility indices has made quantifying the variance risk premium read-

ily convenient.

In this thesis, I construct volatility indices for 15 markets around the world. Following

the notion of a variance swap, I construct the variance risk premium using the square of the

volatility index as the proxy for the risk-neutral expected variance. I then investigate implied

volatility and variance risk premium spillover effects across the world’s equity markets.

This thesis aims to provide information inferred from the derivatives markets from differ-

ent perspectives. The main contributions include: first, estimating ex-ante bankruptcy prob-

abilities from derivative instruments and providing a direct comparison between option-

implied probabilities and CDS-implied probabilities; second, constructing volatility indices

for a wider range of markets using a revised methodology, which addresses issues associated

with the CBOE methodology; third, providing empirical spillover analysis of variance risk

premiums across the world.

1.2 Structure of the thesis

The thesis is organised as follows. Chapters 2 to 4 are three individual essays with respec-

tive literature reviews contained within each chapter.

Chapter 2 examines bankruptcy probabilities inferred from option prices and CDS spreads

3



for 12 U.S. financial institutions around the 2008 financial crisis period. This chapter be-

gins with a literature review on empirical bankruptcy prediction studies, as well as literature

on estimating risk-neutral densities from option prices. I specify a mixture of two lognor-

mal densities augmented with a probability of bankruptcy, and calibrate this density to op-

tion prices to infer the bankruptcy probability parameter. CDS bankruptcy probabilities are

solved from a non-linear equation that equates the present value of the expected premium

payments with the present value the expected payoff. Bankruptcy probabilities inferred from

the two sources are then compared for each of the firms and groups of firms.

Chapter 3, "Model free expectation of implied volatility and spillover effects", first con-

structs volatility indices for 15 equity markets around the world. The methodology to con-

struct the volatility index is based on the CBOE procedure in constructing the VIX, but with

modified smoothing steps to address the shortcomings of the CBOE procedure. Volatility in-

dices are then grouped based on geographical location to study the spillover effects. Vector

autoregressive methodology is employed for spillover analysis.

Chapter 4, "Variance risk premiums and international spillover effects", quantifies vari-

ance risk premium building upon some of the results presented in chapter 3. The risk-

neutral expected future variance is taken as the square of the implied volatility calculated in

chapter 3. The realised variance under the physical measure is constructed using the HAR-

RV model. The dynamics of variance risk premiums for the sample examined are presented,

and spillover effects for subsamples are investigated. Some issues concerning heterogeneity

and autocorrelation in variance risk premiums are addressed in employing vector autore-

gressive analysis.

Chapter 5 summarizes and concludes the thesis, and points out directions for future re-

search.
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Chapter 2

Bankruptcy Probabilities Inferred from
Option Prices and CDS Spreads

2.1 Introduction

In the field of default probabilities and bankruptcy estimation, various kinds of historical

data and estimation models have been considered. Mainstream examples are accounting

based models and market based models. An accounting based model, as its name suggests,

predicts bankruptcy based on accounting information – a set of accounting ratios as pre-

dictor variables. The model evolves from early stage linear discriminant analysis (Altman

(1968) and related literature in section 2.2.2) to the later advanced parametric (Shumway

(2001)) and non-parametric models (Peat (2008)) in the aim to overcome the limiting statis-

tical assumptions of multivariate discriminant analysis. The main conclusion of this body of

research is that financial ratios provide a significant indication of the likelihood of financial

distress.

Market based models, in particular, the Merton type structural model, are another type

of default prediction model. As opposed to accounting based models, market models make

use of market information, such as equity price, which reflects all information contained in
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accounting data and expectations about the firm’s future performance. It relates the credit

quality of a firm to the firm’s economic and financial conditions. It is thus more appropriate

to use market information in a default prediction setting. Examples are Black and Scholes

(1973), Merton (1974), and related literature in section 2.2.3. Market models have devel-

oped as a competing rival of accounting based models. A number of studies have exam-

ined empirically the relevance of accounting variables versus market variables in explaining

bankruptcy, but conclusions are difficult to draw whether one is superior to the other. While

some studies find Merton type structural models outperform accounting based models, oth-

ers find that structural models have little forecasting power.

This raises the intriguing question as to whether information about bankruptcy can be

inferred from the derivative markets. It was not until recently that econometric models

emerged which make use of derivative market instruments, i.e. options and credit default

swaps. Option prices are considered forward-looking; they reflect the aggregate market ex-

pectation about the underlying asset price until the expiration of the option contract. Option

data contain high information efficiency. Empirical studies have found that option-implied

volatilities and densities have strong forecasting ability, especially when forecast horizon is

one month or three months (Liu et al. (2007), Shackleton et al. (2010)). Various papers which

studied index options have found evidence that option prices contain incremental informa-

tion on volatility forecasting (Blair et al. (2001), Poon and Granger (2003), Jiang and Tian

(2005), Liu et al. (2007) and Taylor (2011)). Chen and Fong (2012) finds supporting evidence

that risk-neutral densities are useful forecasting tool in extreme market conditions.

However, the use of option prices to infer bankruptcy probabilities has been limited. One

example is Câmara et al. (2012) who assume a single lognormal density augmented with a

probability of bankruptcy for the underlying asset. Taylor et al. (2014) generalise the density

to be a mixture of two lognormals augmented with a probability of bankruptcy to avoid the
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rigid shape of the lognormal density, and they find the density reproduces options prices

better than the single lognormal density. The double lognormal density does not necessarily

avoid the rigid shape of each lognormal component, but it produces a kurtosis higher than

that of the single lognormal density that creates fatter tails. Information contained in option

prices can be extracted if the appropriate risk-neutral density for the underlying asset can be

identified. There is a huge literature on estimating risk-neutral densities including paramet-

ric fitting, non-parametric method, extensions of price dynamics, volatility smile, etc., and

the choice depends on researchers’ purposes and preferences. In this study, I follow Taylor

et al. (2014) who assume a mixture of two lognormal densities.

An alternative source of information which provides forward looking measure of bankruptcy

probabilities is CDS spreads. CDS contracts, which protect against default of a reference en-

tity, play a crucial role in risk management by providing a measure of probability of default.

Bharath and Shumway (2008) construct a model using CDS information to directly extract a

measure of default probabilities. In this study, I follow the general idea of their method with

revision on certain parameter inputs.

This study examines empirically bankruptcy probabilities inferred from option prices

and CDS spreads, and compares the information conveyed in both markets. To the best of

my knowledge, this is the first study that makes a direct comparison of the bankruptcy prob-

abilities between the option market and the CDS market. In this study, I include 12 American

financial institutions to investigate bankruptcy risk around the 2008 global financial crisis,

as this crisis period is a natural setting to test the models. I find that option prices and CDS

spreads provide risk-neutral bankruptcy probabilities ex-ante. Consistent with the results

found in Taylor et al. (2014), distressed firms have higher chances of bankruptcy than rela-

tive healthy firms. Option market and CDS market provide complementary information in

assessing bankruptcy risk, but one does not lead the other. I emphasize that all probabilities
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obtained from option prices and CDS spreads are risk-neutral. Real-world probabilities em-

bed investors’ risk preferences. In theory, any change in the market’s risk tolerance should

be sufficient to explain a risk-neutral change.

The context of bankruptcy is worth a clarification in order to understand what the prob-

abilities inferred from option prices or CDS spreads actually measure. In the option pricing

model, bankruptcy is assumed to be a particular state in the risk-neutral density for the fu-

ture underlying stock price when the future stock price goes to zero. The theoretical value

zero assigned to bankruptcy is an extreme way to fatten the left tail of the risk-neutral den-

sity, but it does not necessarily mean that the bankruptcy can only happen when the stock

price is exactly zero. In fact, Lehman Brothers and Washington Mutual share prices were still

worth a few dollars ($3.65 and $1.69) one day prior to their filings of bankruptcy.

The probability of default in the CDS pricing model measures the probability of a credit

event that triggers the settlement of the CDS contract. The credit event, defined in the

ISDA Agreement, refers to either of the following: 1) bankruptcy (the reference entity has

filed for relief under bankruptcy law); 2) failure to pay (the reference entity fails to make

interest or principal payments when due; 3) debt restructuring (the configuration of the

debt obligations is changed); and 4) obligation default, obligation acceleration, and repudi-

ation/moratorium (these are very rare)1. Mergers and acquisitions, however, are not defined

as credit events that will trigger CDS payout.

Clearly, the probability of default defined in the two pricing models are not exactly mea-

suring the same underlying, except for the case when companies file for bankruptcy that

the two measures are loosely equivalent. However, the emphasis about the default proba-

bility in this study is on the overall state of distress of each firm, which may lead to filing for

bankruptcy, or triggering a credit event, or maybe nothing at all if firms manage to get out

of distress. In this sense, option-implied probabilities and CDS implied-probabilities both

1See Markit Credit Indices Primer.
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provide information on to what extent the company is in financial distress. Qualifying any

of the following criteria can be thought of a signal for financial distress: 1. The firm has gone

bankrupt or acquired by other firms during the crisis. 2. The share price fell below $5 from a

previous high level and remained low for a long period of time.

The study proceeds as follows. The next section provides a comprehensive literature re-

view on bankruptcy estimation models and econometric methods associated with density

estimation. Section 2.3 details models used to extract bankruptcy probabilities using option

prices and CDS spreads. Data is discussed in section 2.4 and section 2.5 describes empirical

results. Section 2.6 concludes. A list of Figures and Tables are in Appendix in section 2.7.

2.2 Literature review

2.2.1 Introduction

The literature on bankruptcy prediction dates back to the 1930s when initial studies be-

gan to concern the use of ratio analysis to predict future bankruptcy. These studies focused

on individual ratios and compared those of financially distressed firms to those of successful

firms. In 1935, the Bureau of Business Research at University of Illinois (Smith and Winakor

(1935)) published some results of a ratio study of failing industrial firms. The study analysed

24 ratios to determine common characteristics of failing firms and compared them with the

average ratio across 29 failing firms. A number of ratios were identified as good indicators of

distress of a firm. These are accounting ratios typically measuring profitability, liquidity, and

solvency.

Research up to mid-1960s focused on univariate analysis; the most widely recognized is

that of Beaver (1966). The univariate studies laid the groundwork for multivariate bankruptcy

prediction models using discriminant analysis led by Altman (1968). Multivariate discrim-
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inant analysis is a statistical technique which considers a number of accounting ratios at

the same time to determine the most significant ones, and then classifies an observation

into a qualitative group, in this case bankruptcy or non-bankruptcy, depending on the ob-

servation’s individual score calculated from those ratios. Discriminant analysis was a very

popular method at the early stage of bankruptcy prediction models, but advancements in

knowledge have made other methods available, including probit and logit analysis, and sur-

vival/duration analysis later in the 1980’s to late 1990’s.

Despite its simple structure and easy application, discriminant analysis lacks a theoret-

ical background in determining bankruptcy risk. The Merton-type contingent claims valu-

ation approach is a more appealing alternative. The model is based on Black and Scholes

(1973) and Merton (1974) option pricing framework, where equity can be viewed as a Eu-

ropean call option on the value of the firm’s assets, with exercise price being the face value

of the debt. When the option expires, shareholders either exercise the option and pay off

debtholders if the option expires in-the-money, or do nothing – in this case, the firm goes

bankrupt. The probability of the outcome happening either way is embedded in the Black-

Scholes option pricing formula. This kind of model is referred to as Merton-type structural

model or market-based model in that the observed variables are market measures.

It was not until very recently that the econometric technique emerged in the literature to

infer bankruptcy probabilities from option prices. This is a significant move beyond accounting-

based models and market-based models because, first, the econometric methods are more

advanced method than prior statistical procedures and avoid strong assumptions of struc-

tural models; and second, option prices are forward-looking which contain rich information

about the future and carry higher information efficiency than accounting numbers or equity

market data. Prominent example is that of Taylor et al. (2014) which develops a parametric

risk-neutral density model with a probability of default, and calibrate the model to market
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option prices. Option implied densities have strong forecasting abilities (Liu et al. (2007),

Shackleton et al. (2010)). The model is useful in providing an ex-ante measure of probability

risk which can be applied to other risk management. The literature in this strand is relatively

small, which opens up opportunities for researchers to further investigate derivatives.

The rest of this section details related literature covering four areas aforementioned –

accounting-based models, market-based models, econometric models, and methods asso-

ciated with estimating risk-neutral densities from option prices. The volume of existing liter-

ature is huge and it is very difficult to cover it all. As a result, this review tends to be selective.

2.2.2 Accounting-based models

Beaver (1966) pioneered the study of bankruptcy prediction models using univariate anal-

ysis. Following many earlier accounting ratio studies, Beaver compared mean values of 30

ratios of 79 matched pairs of failed and non-failed publicly owned corporations in 38 indus-

tries, but unlike most studies, Beaver took a step further to test individual ratio’s predictive

ability in classifying bankrupt and non-bankrupt firms. Six ratios were chosen on the basis

of the lowest percentage error when comparing the dichotomous outcome as bankrupt or

non-bankrupt from an optimal cut-off point to the actual failure status. He finds that cash

flow to total debt has the strongest predictive ability, followed by net income to total assets

and total debt to total assets, with three liquid-asset ratios, namely working capital to total

assets, current ratio, and no-credit interval, performing least well. In his suggestions for fu-

ture research, Beaver indicated that a multi-ratio model may predict better than single ratios,

and so began the evolution of bankruptcy prediction models.

Altman (1968) was the first study to employ multivariate discriminant analysis (MDA). He

developed a five-factor (out of 22) model to classify a firm as bankrupt or non-bankrupt by

referring to a Z-score which falls below or above a certain range. Model predictability is mea-
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sured by the percentage of firms correctly classified. Altman finds that the model has a high

predictive ability at 95% accuracy for the initial sample one year before failure and 83% ac-

curacy for two years before failure. However, the model performs considerably poorer when

predicting bankruptcy up to three, four, and five years prior to failure, where the predictive

accuracy drops below 50%. The model reliability is tested using a hold-out sample where

the test results are impressive. Altman concluded that bankruptcy can be accurately pre-

dicted up to two years prior to the failure, and called for future research on smaller-sized and

unincorporated entities where business failure is more likely to occur. Altman et al. (1977)

subsequently updated the original Z-score model to a ZETA-analysis adjusting for changes

in reporting standards since 1960s. They find that the ZETA discriminant model is extremely

accurate for up to five years before failure.

Ever since Altman’s study, numerous papers applying, improving and extending discrim-

inant analysis to predict bankruptcy have appeared in the literature. These studies include

models for medium and large manufacturing firms, among others, by Deakin (1972), Blum

(1974), and Moyer (1977); small business by Edmister (1972); and models for specific indus-

tries such as Sinkey (1975), Santomero and Vinso (1977), and Martin (1977) on commercial

banks; Altman (1973) on railroads; Altman and Loris (1976) on broker/dealers, and Altman

(1977) on savings and loan associations. At the same time, considerable efforts have been

made to replicate and extend these models on an international level. Altman (1984) pro-

vides an extensive survey on the works by both academics and practitioners in ten countries:

Japan, Germany, Switzerland, Australia, United Kingdom, Ireland, Canada, The Netherlands,

Brazil and France.

The multivariate discriminant analysis has been the primary method used for bankruptcy

prediction models for the decade between late 1960s and 1970s, however, the conclusion are

difficult to assess because the models play loose with certain statistical assumptions. Dis-
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criminant analysis requires equal variance-covariance matrices of predictors for both failed

and non-failed groups, and that the predictors are normally distributed. Violation of these

conditions renders the conclusion unreliable. Ohlson (1980) developed a conditional logit

model to avoid problems with respect to MDA. The analysis uses maximum likelihood to es-

timate parameters of some probability function, which are then used to compute the prob-

ability a firm fails, which is referred to as O-Score. The fundamental estimation problem

becomes: given that a firm belongs to some pre-specified population, what is the probabil-

ity that the firm goes bankrupt within a pre-specified time period. This way, no assumptions

have to be made about the distribution of predictors. Ohlson also pointed out an issue with

data collection that realistic evaluation of the model requires that the predictors are avail-

able prior to the event of bankrupt, however, previous studies have not explicitly mentioned

this point since most of them have used Moody’s Manual2 to derive financial ratios, and the

Manual does not indicate at which point in time the data was made available. Implicitly

presuming a report is available at the fiscal year-end date may be inadequate for a pure fore-

casting purpose as it may lead to ‘back-casting’ if a firm files for bankruptcy after a fiscal year

but prior to the release of financial statements. The findings of the study are that it is possi-

ble to identify four statistically significant predictors in assessing probability of failure, but

the error-rate of the sample is larger than other studies, even after accounting for the data

timing factor.

Zavgren (1985) argues that the dichotomous partition resulting from discriminant anal-

ysis is much less useful for an investor than a cardinal evaluation of financial risk, and the

logit model provides significantly better probability estimates than discriminant analysis of

the same data. He criticizes Ohlson’s choice of independent variables lack of theoretical de-

termination; instead, he employs a factor analysis to determine the attribute vector so that

2Moody’s Manuals are a series of annual manuals published by the Moody’s Coporation containing brief
reports on companies. Volumes in each year are divided into manuals named for the types of the companies
they contain, e.g. Industrial, Bank & Finance, International, etc..

13



no significant attributes should be omitted. Zavgren also traced the significance of the co-

efficients for each of the variable for five years and found the pattern is congruent with a

priori expectation. He concluded that the model proved highly significant in detecting up to

five years prior to the failure. Lau (1987) further extended dichotomous classification into a

five financial state model and estimated the probability that a firm enters each of the states,

which provides a measure of the firm’s financial position on a continuous scale.

Zmijewski (1984) pointed out that researchers typically estimate bankruptcy prediction

models on non-random samples which result in two estimation biases: choice-based sample

bias and sample selection bias. The choice-based sample bias results when the sample is

selected based on knowledge of some variables, so the probability of a firm entering the

sample depends on the variable’s attributes. Sample selection bias results when only firms

with complete data are used to estimate the model and incomplete data observations occur

non-randomly. Zmijewski used a weighted exogenous sample maximum likelihood probit

model and a bivariate probit model respectively to assess the two biases and found clear

evidence of their existence. However, he claims that the biases, in general, do not affect

statistical inferences or overall classification rates.

Greene (2008) points out that the differences between MDA models and standard form

logit and probit models are not as significant as once believed, because, MDA model can be

constructed as nothing more than a linear probability model. Thus the difference between

MDA and logit, probit model should not be that great. Two major problems arising from

these standard or ‘simple’ models are: one, restrictive IID assumptions; two, inability to cap-

ture firm-specific heterogeneity in model estimation. There have been a number of attempts

to overcome these limiting statistical assumptions, either by selecting a parametric method

with fewer distributional assumptions, or by moving to a non-parametric approach.

The mixed logit model is an example of an advanced form logit model (parametric model)
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that can accommodate firm-specific heterogeneity across firms. The essence of the method

is to decompose the stochastic error component into two parts: one is IID that does not

depend on underlying parameters, and the other is heteroskedastic representing the unob-

served heterogeneity across firms, whose distribution depends on underlying parameters

and observed data. The major advantage of the mixed logit model is that it allows for com-

plete relaxation of the IID assumption by allowing all unobserved variances and covariances

to be different up to identification, making the model highly flexible. However, a relative

weakness of the mixed logit model is the complexity of estimation as well as the lack of a

single globally efficient set of parameter estimates.

Another class of parametric model is survival or duration models which have become

increasingly popular in financial distress research. Survival models are concerned with ex-

amining the length of time interval between transition dates where the transition is marked

by the occurrence of an event, such as corporate failure. The duration can be modelled by a

non-negative random variable T until transition occurs; or can be modelled under different

probability distributions, such as, a cumulative distribution, a survivor function, a proba-

bility density function, or a hazard function. The primary benefits of survival analysis are

in the area of censoring and time-varying covariates. Shumway (2001) argues that models

like traditional MDA and standard logit are static models which are inappropriate for the

use of bankruptcy prediction because of the nature of bankruptcy data. He pointed out that

static models fail to account for each firm’s period at risk because the model only uses one

set of explanatory variables of which observations are usually made one period before fail-

ure, but firms’ characteristics may change from year to year, and thus introduce selection

bias. Shumway develops a discrete-time hazard model, which can be thought of as a binary

logit model, to explicitly control for time and incorporate time-varying covariates. This way,

many more observations are utilized and the model produces more efficient out-of-sample
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forecasts. Shumway found that half of the accounting ratios used in previous studies are not

statistically significant bankruptcy predictors, and the model which produces best out-of-

sample forecast uses a combination of accounting ratios and market-driven variables.

Two main types of non-parametric approach that have been used in the literature are

neural networks and recursive partitioning. The distinguishing feature of non-parametric

methods is that there is no a priori knowledge about the form of the function which is be-

ing estimated. Peat (2008) presented these two models for credit risk analysis, each with a

numerical example. He showed that the empirical application of both models has demon-

strated their potential in the credit risk analysis context, with the best model outperforming

a standard MDA model.

Despite the frequent use and improvement of accounting ratio based models, there are

reasons to question the effectiveness of probability measures that are based on accounting

data. The most important concern about accounting data is that financial statements are

designed to reflect firms’ past performance and may not be informative about future status,

while measure of bankruptcy probability is in nature about the likelihood of future events.

In addition, as discussed in Hillegeist et al. (2004), the conservatism principle required in

accounting reporting systems causes asset values to be understated, of which the biased

asset valuation will limit the performance of any accounting-based probability measure.

2.2.3 Market-based models

As early as the study of Beaver (1968), the stock market has been recognized as a poten-

tial alternative to provide a superior source of information regarding bankruptcy probabil-

ity prediction. Shumway (2001) includes three market-driven variables: market size, past

stock returns, and idiosyncratic standard deviation of stock returns in his estimation model

and finds that the inclusion of market information provides the best out-of-sample forecast.
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Option-pricing models based on Black and Scholes (1973) and Merton (1974) (BSM) pro-

vide a natural starting point in extracting bankruptcy probability related information from

market prices. Equity can be viewed as a call option on the value of the firm’s future assets.

Equity holders are residual claimants of firm’s assets and determine when the firm declares

bankrupt. Under BSM framework, the strike price of the call option is equal to the face value

of the firm’s debt and option expires when debt matures. At maturity time, equity holders

will exercise the call option and pay off the debt holders if the firm’s assets value is greater

than the face value of debt, or let the option expire and declare bankruptcy if the value of the

firm’s assets is below the face value of debt. If the firm files for bankruptcy, the ownership is

transferred costlessly to debt holders. The payoff for equity holders is either the difference

between the value of firm’s assets and the face value of firm’s debt or zero otherwise. The

probability of each outcome is embedded in the BSM model. Denote VE is the value of eq-

uity, VA is the value of firm’s assets, X is the face value of firm’s debt maturing in t periods, r is

the continuously compounded risk-free discount rate. Then the BSM European call option

formula, stated in terms of equity on a firm’s assets is

VE =VA N (d1)−X e−r t N (d2), (2.1)

where

d1 =
ln VA

X + (r +0.5σ2
A)t

σA
p

t
, (2.2)

and

d2 =
ln VA

X + (r −0.5σ2
A)t

σA
p

t
= d1 −σA

p
t , (2.3)

N (d1) and N (d2) are standard cumulative normal probabilities of d1 and d2, and σA is the

volatility of the value of assets. The probability that the option expires in-the-money at matu-

rity is represented by N (d2), and 1−N (d2) = N (−d2) is the probability that the option expires
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out-of-the-money, that is, the firm goes bankrupt. Equation (2.3) shows that the risk-neutral

probability of bankruptcy is a function of the distance between firm’s assets VA and the face

value of the debt X , relative to the volatility of firm’s assets σA, which is referred to as the

distance-to-default.

Merton’s model is considered the first structural model3 in assessing credit risk. Several

commercial vendors provide default probabilities based on option pricing models, KMV4

being the most famous. While the basic approach is similar to standard BSM model, the

implementation differs in several ways. KMV implemented a model developed by Vasicek-

Kealhofer (see Kealhofer (2003)) known as KV model. The model is a generalisation of BSM

framework and allows for various classes and maturities of debt. It assumes that the firm’s

equity is a perpetual option with the default point acting as the absorbing barrier for the

firm’s assets value. Bankruptcy occurs when the value of assets hits the default point. In-

stead of using the cumulative normal distribution to convert distance-to-default into default

probabilities, KMV uses an empirical distribution of actual defaults based on its large, pro-

prietary database. KMV also make proprietary adjustments to accounting information that

they use to calculate the value of debt. Other option-related studies include Cheung (1991),

Kealhofer et al. (1998), and Core and Schrand (1999).

The Merton model, however, is fairly parsimonious due to its rather restrictive assump-

tions, one being that default can only occur at the maturity of the zero-coupon bond. Subse-

quent studies have explored more appropriate default boundaries within structural frame-

work. Black and Cox (1976) introduced another approach that takes into account early de-

3In credit risk literature there are two main types of models that describe default processes: structural mod-
els and reduced-form models. Structural models use the evolution of firm’s structural variables to determine
time of default which is endogenously generated within the model; whereas in reduced-form models, default
is exogenously determined. Reduced-form models do not consider the relation between default and firm’s eco-
nomic and financial conditions. For the relevance of the purpose of this study, structural models are described
in detail; for a review of reduced form models, see Elizalde (2006).

4KMV was acquired by Moody’s in April 2002. Before the merger, Moody’s model to assess default proba-
bility is a hybrid one that combines BSM structural model and a statistical model determined on the basis of
historical data. Details of the model can be found in Sobehart and Stein (2000).
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fault possibilities. In their model, they assume an exogenously determined threshold level of

asset value, below which default occurs. In contrast to the Merton model, default can occur

at any time. The same idea was employed by Longstaff and Schwartz (1995). Alternatively,

default thresholds can be determined endogenously, which allows the stockholders to de-

cide when to default so that they maximize firm’s value. Examples are Leland (1994), Leland

and Toft (1996), and Anderson et al. (1996). The difference between exogenous and endoge-

nous default barrier models are in the assumption underlying the default decision. While

these studies focus on addressing early default issues, other studies try to relax one of the

Merton model assumptions by considering stochastic interest rates. Examples are Kim et al.

(1993), Nielsen et al. (1993), and Longstaff and Schwartz (1995).

Such market-based structural models provide an appealing alternative because it coun-

ters most of the criticisms about accounting ratio based models. It provides guidance about

theoretical determinants of bankruptcy risk and structure to extract information from mar-

ket prices. Market data should reflect all information contained in accounting data and

also contain information not in accounting statements, and it reflects investors’ expecta-

tions about a firm’s future performance and hence should be more appropriate in prediction

context. Market prices are less influenced by management than are accounting statements.

Over the past decade, both practitioners and researchers have examined the contribution

of the Merton model. The very first authors are practitioners employed by either KMV or

Moody’s before they merged. Falkenstein and Boral (2001) find that the Merton model is a

powerful measure of default risk, and Kealhofer and Kurbat (2002) show that the model out-

performs alternatives and it captures all information contained in accounting and agency

ratings. Other papers, including Sobehart and Keenan (1999), Stein (2000), Sobehart and

Stein (2000) argue that Merton-type models are not sufficient to predict bankruptcy proba-

bility and calls for the need for a hybrid model which combines equity market information
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with accounting ratios and agency ratings, an example is Moody’s hybrid model in Sobehart

and Stein (2000).

A number of studies have addressed empirically the relevance of accounting-based mod-

els and market-based models in explaining bankruptcy. Shumway (2001) develops a sim-

ple hazard model using three market-driven variables to determine firm’s bankruptcy risk,

and finds adding market variables on top of previously identified accounting variables helps

improve forecasting accuracy. Hillegeist et al. (2004) extend Shumway’s method by using

Merton’s option model in a discrete hazard framework to examine the predictive ability of

accounting-based variables. They take into account dividend rate and replace the continu-

ous compounded risk free rate by continuous compounded expected return on assets, µ, to

adjust for actual risk. In order to estimate BSM bankruptcy probability, VA, σA,and µ must

be estimated since these values are not directly observable. Hillegeist et al. (2004) estimate

VA and σA by simultaneously solving equation (2.1) and the optimal hedge equation, and

the estimates of VA are then used to estimate µ. They find that traditional accounting-based

variables do not add incremental information beyond standard option variables. Another

study by Vassalou and Xing (2004) uses a similar approach that adopts an iterative proce-

dure to estimate VA and σA. However Vassalou and Xing (2004) do not adjust for dividends,

and as pointed out by Hillegeist et al. (2004), their method for calculating µ often results in

negative numbers which is inconsistent with asset pricing theory. Studies by Du and Suo

(2007) and Bharath and Shumway (2008) examine the model’s predictive power in a similar

way. While Hillegeist et al. (2004) find BSM model provides significantly more information

than Altman’s Z-Score and Ohlson’s O-Score, Du and Suo (2007) and Bharath and Shumway

(2008) have negative conclusions about the accuracy of the model forecast. Campbell et al.

(2008) estimate hazard models incorporating the BSM bankruptcy probability measure but

find it adds little forecasting power after conditioning on other variables.

20



Though appealing as the structural model is over accounting-based models, it suffers

from a number of strict assumptions which are not true in reality. For example, it assumes

normality of stock returns, does not distinguish between types of debt, and assumes that

the firm only has a zero coupon debt and the default happens only at maturity. It is not

surprising that the empirical evidence on the performance of market-based models is mixed.

2.2.4 Econometric models using option prices

Options market provides a rich source of information as option prices are considered

forward-looking. Option prices reflect aggregate risk-neutral market expectations about the

underlying stock price until the maturity of the option contract. These data contain high

information efficiency. Particularly during crisis periods, traditional bankruptcy prediction

models fail to provide reasonable signals in advance of the crisis, while option data provides

an appealing way to extract information due to its forward-looking nature.

Using option prices to directly extract bankruptcy probabilities is relatively new in the

literature. Capuano (2008) developed a framework by applying the minimum cross-entropy

method to infer bankruptcy probabilities from an entire set of option prices. The framework

is based upon the Merton model where the default probability is defined as the probability

when the underlying assets value fall below a threshold, and is expressed as the cumulative

distribution function of the value of the assets up to the default barrier. In order to calcu-

late this quantity, option prices are used and the minimum cross-entropy method is used for

the optimising problem. The cross-entropy approach can be interpreted as a measure of the

discrepancy between a prior probability density function reflecting prior knowledge and a

posterior density. The Lagrangian multiplier is formed incorporating several moment con-

straints given by the theory of risk-neutral pricing to minimise the discrepancy. Capuano

(2008) applied the framework to ten largest U.S. banking groups namely Bank of America,
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Citigroup, J.P. Morgan, Wachovia, Wells Fargo, Bear Stearns, Goldman Sachs, Lehman Broth-

ers, Merrill Lynch, and Morgan Stanley, around the 2008 financial crisis to see if the model is

able to capture market sentiments. The term structure of probabilities of default reported in

the author’s Appendix 1 suggests a less than 1% default probability of all financial institutions

examined when the financial crisis broke out in September 2008.

Vilsmeier (2011) argues that despite offering an appealing tool to extract bankruptcy in-

formation, the framework of Capuano (2008) suffers serious problems regarding its numer-

ical stability and also the accuracy of the estimates. He suggests some technical modifica-

tions to the approach and hence considerably improves the general application of the ap-

proach. The first modification concerns the estimation procedure for the minimum cross-

entropy. The Lagrange multipliers are solved numerically via Newton-Raphson algorithm in

Capuano (2008), however, Vilsmeier (2011) argues that the search for the roots of the sys-

tem is infeasible in many applications and converges only for a small number of constraints

when the initial guess of multipliers are near the final solution. The modification is done

by defining a lower bound on the value of the cross-entropy function. The second modi-

fication concerns the determination of the optimal probability of default. Vilsmeier (2011)

suggests an ad hoc procedure which is based on the evolution of the Lagrange multipliers

when estimating for different default barriers, and the numerical evaluation show clearly its

accuracy. He reported a default probability range between 0.0078% and 20% when applied

to a set of user-specified data. He also uses option data to test and find convincing results

that the framework is able to anticipate elevated risk of Bank of America relative to J.P. Mor-

gan months before its downgrade by Moody’s. Zer (2014) also employs the methodology to

estimate default probabilities but his paper is focused on the relationship between firms’

disclosure decisions and the market expected value of default probabilities.

A paper by Câmara et al. (2012) also examines the default rates for financial companies
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for a period of time including the subprime mortgage crisis using options data. They assume

that the stock price follows a delta-geomeric random walk, for which in each period the stock

price can go to zero with a certain probability δ or it follows a geometric random walk with

probability 1 − δ. Then the probability density function of the stock price is effectively a

delta-lognormal distribution with a probability of default. Given Black-Scholes option pric-

ing framework, closed-form solutions can be derived for this model. The probability of de-

fault is obtained by minimising the sum of squared errors between observed option prices

and prices calculated from the model. Câmara et al. (2012) investigates a sample of 144 fi-

nancial firms with traded options in the U.S. for which the data is available through Option

Metrics. The sample period span from December 1996 to October 2008. They found that the

default probabilities for global financial service firms increase steadily during the subprime

crisis period. They also compare the model performance versus Moody’s KMV model and

credit ratings, and found the model surpassed credit ratings and matched or exceeded KMV

in anticipating the magnitude of the crisis.

Taylor et al. (2014) consider a similar approach but adopts a mixture of two lognormal

densities augmented with a positive probability of bankruptcy. They argue that a mixture

of lognormal densities characterize market information better than a single lognormal dis-

tribution. They calibrate the model to daily stock and option prices of six financial insti-

tutions (J.P. Morgan, Bank of America, Bear Stearns, Merrill Lynch, Lehman Brothers, and

AIG) during 2008 and 2009 on major events. American option contracts with one month

and three months maturity are used. Their results show that the acquiring institutions e.g.

J.P. Morgan and Bank of America have lower average probability of bankruptcy of 0.7% and

0.9%, whereas those of the acquired institutions e.g. Bear Stearns and Merrill Lynch are high

at 3.1% and 2.3%, respectively. Lehman Brothers has the highest bankruptcy probability

which shot up to 54% on September 15, 2008 when it declared bankruptcy. The probabil-
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ity of bankruptcy of Bear Stearns was 27% when J.P. Morgan offered to acquire at a low price.

The results are generally consistent with other studies that bankruptcy probabilities increase

during crisis period and that financially distressed institutions have higher probability of

bankruptcy.

2.2.5 Methods to estimate risk-neutral densities from option prices

Option prices provide a rich source of information for estimating asset price distribu-

tions when options expire. This is because option prices are contingent upon all possible

future payoffs and hence the distribution at maturity captured under risk-neutral measure.

Following Breeden and Litzenberger (1978), it is well known that the underlying risk-neutral

distributions extracted from option prices can be estimated from the second derivative of

the European option prices with respect to the corresponding exercise prices. As a result,

there exists a direct link between European option pricing formulae and associated func-

tional forms of risk-neutral distributions.

The literature on extracting option implied risk-neutral densities is huge and still grow-

ing. Methods to estimate risk-neutral densities from option prices are generally grouped

into four categories, (1) methods associated with extensions in price dynamics; (2) para-

metric density function fitting methods; (3) nonparametric methods; and (4) volatility smile

approaches.

Hull and White (1987), Johnson and Shanno (1987), Scott (1987), Wiggins (1987), and

Stein and Stein (1991) are among the first in the first category to address inadequate price

dynamics assumptions of Black-Scholes option pricing formula by incorporating stochastic

volatility. Volatility is assumed to follow a stochastic process of its own and uncorrelated with

changes in the underlying prices. Numerical methods are used to derive solutions to Euro-

pean call option prices, however, in most cases these are not closed-form. Heston (1993)
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allows volatility to follow a mean-reverting square-root diffusion process, and allows arbi-

trary correlation between volatility and spot returns to explain return skewness and term

structure effects. Based on characteristic functions techniques, a closed-form solution for a

European call option price can be derived.

Bates (1991) investigates whether there were negative expectations prior to the financial

market crash in October, 1987. He assumes a jump-diffusion process for the underlying asset

price and fits the model to S&P 100 index option prices. He finds that the model characterises

the stylized facts better than the Black-Scholes formula, which is based on the assumption

that the asset price follows a geometric Brownian motion. Risk-neutral distributions asso-

ciated with these pricing models can be numerically obtained by twice differentiating the

European option prices with respect to exercise prices.

Researchers have enriched the literature by considering individually or together with

other extensions stochastic interest rates, pure jump or jump diffusion models. Influential

examples are stochastic interest rate models of Merton (1974) and Amin and Jarrow (1992),

pure jump models of Madan and Chang (1996), binomial method of Rubinstein (1994) and

Jackwerth and Rubinstein (1996), stochastic volatility and jump models of Bates (1996) and

Scott (1997), Duffie et al. (2000), and stochastic volatility and stochastic interest rate models

of Bailey and Stulz (1989), Amin and Ng (1993), Bakshi and Chen (1997), and Scott (1997).

The literature in the second category assumes a functional form of the underlying price

distribution instead of the price dynamics. The method is flexible, general, and direct, allow-

ing for a variety of possible shapes of terminal distributions, and better able to capture the

characteristics of price distribution when options expire.

The simplest way to relax Black-Scholes assumptions is to assume a mixture of two log-

normal distributions instead of a single lognormal distribution, as in Ritchey (1990), Melick

and Thomas (1997), Bahra (1997), Söderlind and Svensson (1997), and Gemmill and Saflekos
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(2000). Melick and Thomas (1997) apply the mixture of three lognormal distributions to the

crude oil market during the Persian Gulf crisis. Three densities each represent a state driven

by conditions in the oil market, namely, a pre-crisis situation, a severe disruption to the oil

market, and a continuation of an unsettled situation in the Gulf region. The probability at-

tached to each density is the likelihood of such state happening. They apply the model to

American option prices and find the estimated distribution is significantly different from

that recovered using single lognormal technique. The mixture of lognormal distribution is

sensible when asset prices depend on one or two future states that can be learned before

options expire, but as Taylor (2011) pointed out, the technique can be used generally as risk-

neutral densities even when there is no obvious motivation for a set of future states. Liu et al.

(2007) is another example which applies a mixture of lognormal densities.

A second distribution, lognormal polynomial density function, developed by Madan and

Milne (1994) is an elegant theory of contingent claims valuation that assumes the density

of standardized returns is the standard normal density multiplied by a linear combination

of Hermite polynomials, which serve as an orthogonal basis. The method involves more

mathematics than others, and has strong theoretical foundations, but negative estimated

densities are sometimes inferred.

Similar but more complicated functions of lognormal and polynomial terms are given by

the Edgeworth expansion method. Jarrow and Rudd (1982) use the Edgeworth expansion to

adjust the Black-Scholes pricing formula. The true price distribution and the approximating

probability distribution are linked by the differences between the moments. In this way,

they derive a functional form of the true density by augmenting the lognormal density with

its four moments, which in fact is based on Black-Scholes formula with adjusted variance,

skewness, and kurtosis.

A more flexible distribution in the literature is the generalised beta distribution first ex-
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plored by Bookstaber and McDonald (1987). They propose and apply the generalised dis-

tribution of the second kind (GB2) with four parameters, which are required to obtain four

moments of future asset prices. The density is inherently flexible with many well-known dis-

tributions as limiting or special cases, such as lognormal distribution. Examples are Sherrick

et al. (1996), Aparicio and Hodges (1998), and Liu et al. (2007).

Like parametric methods, nonparametric methods are employed to extract risk-neutral

densities aiming at achieving flexibility from more general functions instead of assuming re-

stricted shapes of distributions. Aït-Sahalia and Lo (1998) use kernel regression to estimate

risk-neutral densities nonparametrically from option prices. They assume that the option

pricing formula is an arbitrary non-linear function of a vector of explanatory variables in-

cluding exercise price, forward price, time to maturity, interest rate, and dividend yield. By

regressing kernel estimators across these five dimensions, they construct an option pricing

formula, which is then twice differentiated with respect to exercise prices to obtain the risk-

neutral density. The method makes the assumptions that parameter values remain constant

over time, which does not always hold. In addition, the method also suffers from the inten-

sity of data needed. Aıt-Sahalia and Duarte (2003) describe an alternative nonparametric

method to enforce the constraint that the density is nonnegative. Fewer data are then re-

quired.

Bondarenko (2003) employs a convolution approach which has similarities with both

nonparametric smoothing methods and parametric mixture methods. It involves construct-

ing a set of admissible densities consisting of functions which can be represented as the

convolution of a fixed kernel and an arbitrary density function. The kernel determines the

smoothness of the densities. The optimal density is the one which provides the best fit to

option prices. The weights of the component normal densities are obtained by solving a

quadratic programming problem.
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Buchen and Kelly (1996) suggest estimating the risk-neutral density using a nonparamet-

ric maximum entropy method. They start with the maximum entropy distribution, one that

does not assume any prior form and will evolve only as information arrives. This is partic-

ularly suitable for the situation where only a limited number of options and strike prices

are available from the option market. In their study, information refers to strike prices and

the corresponding option prices. Because no interpolations or extrapolations are needed

for densities between strike prices and beyond available range of strike prices, the resulting

distribution is considered least committed to unknown information and hence least biased.

Another kind of method is a curve-fitting method, which extracts risk-neutral densities

from implied volatility functions. The strategy is to fit the volatility smile from observed

market option prices with a parametric function of volatility, such as quadratic, as in Shimko

(1993). The resulting approximated volatilities are translated back to Black-Scholes option

price formula to acquire risk-neutral densities. However, plausible volatility functions do not

guarantee nonnegative densities for all strike prices, especially in left tails. Malz (1997a,b)

develop a strategy to modify the method and guarantees the tails are well behaved. He fits

the implied volatility to the space defined by pairs of option deltas and implied volatilities

instead of options prices and strike prices. It is argued that smoothing can be done easily

in the option implied volatility and option delta space. Another strategy of this kind is to

use more parameters by fitting a cubic spline to the observed implieds, either as a function

of strike price (Campa et al. (1998) or as a function of delta (Bliss and Panigirtzoglou (2002,

2004)). The rationale is that the general cubics are constrained so that the functions and

their first two derivatives are continuous. But there is trade-off between a perfect fit and

smoothness of the fitted function.
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2.3 Methodology

2.3.1 Framework using option prices

Recall that the theoretical price of a European option can often be written as the dis-

counted expectation of final payoff. This is valid when an appropriate risk-neutral probabil-

ity distribution of the price of the underlying asset can be found. Then, for call options,

C (X ) = e−r T E [(ST −X )+] = e−r T
∫ ∞

X
(x −X )ψ(x)d x, (2.4)

with X the strike price, T the time until expiry and ψ(x) denoting the risk-neutral density

(RND).

In Black-Scholes framework, where the stock price follows a Geometric Brownian Mo-

tion, the probability distribution of the future stock price used to price a European option

is a lognormal risk-neutral density. Hence, assuming the asset pays dividends at a constant

rate q , the lognormal RND is

fQ (x|S,σ) = 1

xσ
p

2πT
exp

(
−0.5

[
lnx − (lnS + (r −q −0.5σ2)T )

σ
p

T

]2)
.

RNDs are defined for all x ≥ 0, ψ(x) ≥ 0 and
∫ ∞

0 ψ(x)d x = 1. The futures price of the underly-

ing asset excluding arbitrage opportunity is

F = Se(r−q)T .

For the futures price F ,
∫ ∞

0 xψ(x)d x = F .
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Substituting F into the lognormal RND gives,

fQ (x|F,σ) = 1

xσ
p

2πT
exp

(
−0.5

[
lnx − (lnF −0.5σ2T )

σ
p

T

]2)
.

The underlying asset now has futures price F , and inserting the density into equation

(2.4) leads to the Black-Scholes formula, which gives the price of a European option written

on futures:

CBS(X |S) =CBS(X |F ) = e−r t
∫ ∞

X
(x −X ) fQ (x|F,σ)d x.

Many types of density functions provide reasonable fits to observed option prices, so

there is plenty of scope for individual preferences. Taylor (2011) and Jackwerth (1999) have

given an extensive review on the methods and types of density specifications. The lognormal

density has only two parameters: F and σ. As the futures price F can be obtained for the

stock price, there is only one free parameter σ, which restrains the density’s flexibility to

explain observed option prices. Thus, it is reasonable to look for flexible densities with more

parameters.

One of the most popular parametric densities is a mixture of two lognormals (MLN), first

proposed by Ritchey (1990). The density is weighted combination of two lognormal densi-

ties, where the weight p is between zero and one,

fQmln(x) = p fQ (x|F1,σ1)+ (1−p) fQ (x|F2,σ2),

where F1,F2,σ1,σ2 > 0.

The risk-neutrality constraint is given by

F = pF1 + (1−p)F2.
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There are five parameters θ = F1,F2,σ1,σ2, p. The risk-neutrality constraint reduces the

number of free parameters to four, which is sufficient to obtain flexible shapes. The option

price given by a mixture of lognormal densities is then,

CBS(X |θ) = e−r t
∫ ∞

X
(x −X ) fQmln(x|θ)d x

= e−r T
∫ ∞

X
(x −X )

[
p fQ (x|F1,σ1)+ (1−p) fQ (x|F2,σ2)

]
d x

= pCBS(X |F1,σ1)+ (1−p)CBS(X |F2,σ2).

The mixture lognormal method guarantees a nonnegative estimated density, and it offers

a possible interpretation that the density has two future states with p associated with the

probability of a relevant future event. Since the mixture of lognormal density assumes the

underlying asset price will always be positive, it is reasonable to go from this stage, to assume

a value of zero for the underlying asset price to allow for a possible state of bankruptcy.

Following Taylor et al. (2014), I generalize the mixture of two lognormal densities to in-

corporate one more state in the event of a bankruptcy, where the underlying asset price is

equal to zero. Weights p1 and p2 are allocated to two lognormal distributions and the re-

maining weight 1−p1 −p2 to the probability of bankruptcy. The probability density of the

underlying asset is then,

fQl nB (x|θ) = p1 fQ (x|F1,σ1)+p2 fQ (x|F2,σ2), x > 0,

with

fQ (x|Fi ,σi ) = 1

xσi
p

2πT
exp

(
−0.5

[
lnx − (lnFi −0.5σ2

i T )

σi
p

T

]2)
.
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The risk-neutrality constraint is given by

F = p1F1 +p2F2.

Additional constraints are F1,F2,σ1,σ2 > 0, p1, p2 ≥ 0, and p1 +p2 ≤ 1.

I refer to this generalized distribution with a feature of bankruptcy as MLNbk. The MLNbk

distribution has five free parameters. It has one extra free parameter than the MLN distribu-

tion. Taylor et al. (2014) find that the MLNbk describes option prices better than lognormal

distribution with one parameter, lognormal distribution with bankruptcy feature with two

free parameters as in Câmara et al. (2012), and the MLN distribution with four free parame-

ters.

Inserting the MLNbk distribution into option pricing equation (2.4) gives the theoretical

call option price,

C (X |θ) = p1CBS(X |F1,σ1)+p2CBS(X |F2,σ2).

Call options are worthless if the firm goes bankrupt, but put options are worth X . So the

theoretical put option price given by the MLNbk distribution is,

P (X |θ) = p1PBS(X |F1,σ1)+p2PBS(X |F2,σ2)+ (1−p1 −p2)e−r T X .

The parameter vector θ = {F1,F2,σ1,σ2, p1, p2} is estimated by minimizing the sum of the

squared differences between the theoretical price and the observed market price denoted
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CM and PM
5.

G(θ) =
N∑

i=1

[
(C (Xi |θ)−CM (Xi |θ))2 + (P (Xi |θ)−PM (Xi |θ))2] (2.5)

2.3.2 Framework using CDS spreads

Credit default swaps are one example of credit derivatives, and credit derivative markets

have experienced explosive growth in recent years, which have attracted attentions of deal-

ers, investors, regulators, and lately, the general public. According to the International Swaps

and Derivatives Association (ISDA), on a gross notional outstanding basis, the market has

roughly doubled in size every year from 0.6 trillion dollars in 2001 to 62.2 trillion dollars in

20076. After the breakout of the financial crisis in 2008, the level of CDS notional outstand-

ing has been decreasing in every subsequent year since then, however, this decrease is at-

tributable to portfolio compression, which is a process designed to terminate existing trades

and replace them with a smaller number of trades with substantially smaller notionals that

carry the same risk profile as the initial portfolio. In doing so, portfolio compression reduces

the overall notional size and number of outstanding CDS contracts, and thereby improving

derivatives risk management. ISDA reported 25.1 trillion dollars notional at year end 2012.

Though notionals outstanding is declining, market risk transaction activity which measures

trading volume during a period of time is thought to be a better way to look at the relative dy-

namics of the CDS market. A review of such activity shows that CDS transaction volumes as

5An alternative error minimisation function is, mi n
Nc∑
i=1

wi (C (Xi |θ) − CM (Xi |θ))2 +
Nc+Np∑
i=Nc+1

wi (P (Xi |θ) −

PM (Xi |θ))2, the weighted squared error loss function introduced by Bliss and Panigirtzoglou (2002). This loss
function is claimed particularly appropriate when the source of option price measurement error predomi-
nantly reflects the discreteness of option prices. Bliss and Panigirtzoglou (2002), Liu et al. (2007), and Taylor
et al. (2014) applied equal weighting of squared errors to obtain parameters estimates for the mixture of log-
normal risk-neutral density. This loss function may provide smaller G values and quicker convergence. The
convergence of optimisation routine using equation 2.5 performs reasonably well in most estimates through-
out our sample. Testing the robustness of the loss function is beyond the scope of this study, thus minimising
the sum of the squared errors is retained in this study.

6See Markit report, The CDS Big Bang: Understanding the Changes to the Global CDS Contract and North
American Conventions.
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measured by notionals increased through 2011 to 2013, and the number of trades executed

increase in 2013 after a slightly fall in 2012. Given the nature of a credit default swap, which

is a contract bought by the protection buyer that protects against default of a certain refer-

ence entity, and the expanding size and engagement activity in the market, it is reasonable

to assume that we can derive a measure of probability of default for a particular reference

entity from CDS market data, and compare it with the estimate obtained from option data.

In a credit default swap, the protection buyer pays a series of periodic fixed payments

known as premium to the protection seller to protect against default of a reference entity.

In return, the protection seller does nothing unless the reference entity gets into financial

difficulty. In that case, the protection seller will be obliged to buy back from the protection

seller the defaulted bond at its face value. In a cash settlement case, the protection seller

will pay the difference between the face value of the defaulted bond and the current value

determined by an auction, to the protection buyer. The percentage of the value of the bond

after default to its face value is known as the recovery rate.

Following the methodology adopted by Bharath and Shumway (2008), let S be the CDS

spread, which is the amount paid per year as a percentage of the notional principal. Notional

amount is assumed 1 dollar. Let T determine the life of the CDS contract. CDS contracts

have maturities range from 6 month, 1,2,3...10 years, up to 20, 30 years. 5 year contract is

the most liquid one, and I also examine 1 year contract in this study. Assume the premium

payments are made once every three months, e.g. March, June, September, and December.

Assume the probability of a reference entity defaulting between two consecutive payment

days conditional on no prior default is p, and for simplicity, I assume the default only hap-

pens halfway through the three months. In the event of default, a final accrual payment is

required by the protection buyer, which is equal to 0.5∗ 0.25S. The risk-free rate is r and

recovery rate is δ.
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The present value of the expected premium payments made by the protection buyer is

then,
T∑

t=0.25

[
p(1−p)4t−1e−r (t− 1

8 )0.5∗0.25S + (1−p)4t e−r t 0.25S
]

,

where t = 0.25,0.5,0.75,1 for 1 year contract, and t = 0.25,0.5,0.75,1, ...,5 for 5 year contract.

The first term represents the present value of the expected accrual payments in the event

of a default assuming it happens midway between two consecutive premium payments. The

second term represents the present value of the expected periodic premium payments made

at the end of each period provided that the reference entity survives until t .

Similarly, the present value of the expected payoff is given by

T∑
t=0.25

p(1−p)4t−1(1−δ)e−r (t− 1
8 ).

An estimate of the recovery rate δ is needed in order to value the payoff. As of The CDS

Big Bang in 2009, the new CDS contract has been standardized in a number of ways. The CDS

contracts are grouped based on geological regions, such as North America, Europe, Asia, etc.,

and classed into different types, such as standard corporate, index, sovereign, etc. Different

classes of contracts have different estimates of recovery rates as input into models to price

CDS spreads. As of my sample Standard North American Corporate Senior, I use the market

consensus estimate 40% as recovery rate in the study.

Setting the present value of the expected premium payments equal to the present value

of the expected payoff, so that the value of the contract is zero when both parties enter the

contract, we can solve for the probability of default p from the resulting non-linear equa-

tion. Since the calculations assume no risk-premium associated with default, the resulting

implied probability should be considered a risk-neutral measure. Note that p is assumed

constant over the life of the CDS contract as a result of the modelling assumption. Of course
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in reality the instantaneous jump to default rate may change at different point in time based

on changes in the firm’s fundamentals and market conditions. The default probability in this

model represents the average default rate aggregated over the life of the CDS contract.

2.4 Data

The sample includes 12 American corporations in the financial industry7 – Lehman Broth-

ers (LB), Washington Mutual (WM), Bear Stearns (BS), American International Group (AIG),

Wachovia, Merrill Lynch (ML), Bank of America (BoA), Citigroup (Citi), Morgan Stanley (MS),

Goldman Sachs (GS), J.P. Morgan Chase (JPM), and Wells Fargo (WF). The firms are selected

based on data availability.

All of the firms in the sample experience financial distress to some extent throughout the

crisis period. LB and WM filed for bankruptcy; BS, ML, and Wachovia were saved through ac-

quisition by JPM, BoA, and WF, respectively. AIG was solely on the sell side of CDS contracts

and almost drained its assets paying out CDS claims. It would not have survived without the

government’s four-time bailout. BoA was relatively safe in 2008 but ran into trouble in early

January 2009 revealed by massive losses from the forced merger with ML. The government

infused money to BoA as part of the agreement for BoA to acquire ML. Citi was showing less

strains prior to September 2008, but the meltdown came in the week of November 17. Citi

lost 60% of its market value that week and the government stepped in to rescue Citi in an

effort to contain the financial crisis. GS, MS, JPM, and WF were relatively stable and secure

compared to the rest the of sample.

Given the crisis period setting and ex-post knowledge of the survivorship of each firm,

7The original intention was to investigate a cross sectional investigation of corporate bankruptcy probabil-
ities in all industries. However, CDS for the financial sector tend to be more actively traded than other sectors.
This is reflected by larger net notional CDS positions for firms that provide credit guarantees and therefore
represent counterparty risk to other market participants (Oehmke and Zawadowski (2017)). This is particu-
larly manifest in financial services companies with exposure to the subprime mortgage market, and later in
the global financial crisis period. Due to limited CDS trading activity in non-financial industries, the resulting
sample includes firms with both CDS data and option data only in the financial industry.
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one would naturally split the sample into two categories for comparison. However, one

would be more interested in how things evolve over time, and in particular, how information

contained in option prices and CDS spreads help to raise the flag when firms enter financial

distress. Default probabilities inferred from option prices and CDS spreads, together with

the risk-neutral densities derived from option prices provide ex-ante information in assess-

ing the state of distress for each firm. Multimodal RNDs suggest investors have divergent

views, and the emergence of bimodality in the RND, or parallel shift of RNDs can be inter-

preted as signals of potential crash in the stock price. I discuss such information for each of

the firms in section 2.5.

Option data and CDS data are collected for each firm. Option data is obtained from

OptionMetrics, which provides historical prices of options based on closing quotes at the

Chicago Board of Options Exchange. Data sample starts in January 2007 and ends in Octo-

ber 2010 for healthy firms, and for dead firms option data ends when firms went bankrupt.

All options traded on each of the firms are American. In order to avoid complexity of the

early-exercise premium of American options, only out-of-the-money (OTM) calls and puts

are used. Since the dividend yield is close to zero during crisis period, investors have lit-

tle incentive to exercise OTM options before expiration, and thus it is reasonable to assume

that a European option pricing model provides a good approximation to American option

prices. To simplify equations and calculations, options are assumed to be written on futures

contracts, with futures and options contracts having matching expiration time.

F = er T (S −pv(Di v)).

For a strike price X , calls are defined to be OTM if X > F , and puts are OTM if X < F .

The risk-free rate r corresponds to the zero-coupon rate that has the same maturity as the

option’s expiration, and is calculated by linear interpolation between the two closest zero-
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coupon rates on the zero curve.

Dividend information is obtained from the dividend distribution history in OptionMetrics.

The distribution pattern for all firms is very regular — quarterly8, so it is highly predictable.

Thus it can be assumed that the information about dividend information is made available

to the public when futures contracts are priced. Since the amount of dividend distributed

during the crisis period is very small, I neglect dividends in the calculations as it does not

have a significant impact on the results9.

Option data for each firm is obtained once a month from 2007 to 2010. Option prices are

then filtered. I restrict valid options to options with bid prices strictly positive, and exclude

all options with bid price greater than ask price. The representative day on which the MLNbk

density is sought is chosen to be the first trading day available for the month with the number

of valid options greater than 510, in other words, a minimum of 6 options including both calls

and puts are required for model estimation. Options mature in, on average, one and a half

months. When there are less than 6 available valid options during the first 10 days of the

month, I drop the observation of this month. There are a small number of cases where I

have dropped the monthly observation, either due to less than 6 available valid options or

because the spot price is too low that the parameter estimates cannot be obtained. 8 out of

38 have been discarded for AIG due to extremely low spot price; 2 out of 30 for Citi, and 1

out of 44 for MS. The rest of the sample firms have satisfactory monthly observations. Only

options with standard settlement are considered11.

8All firms distribute dividends, and payments are made quarterly, e.g. January, April, July, and October as of
Goldman Sachs, Morgan Stanley, J.P. Morgan Chase and Washington Mutual; or February, May, August, Novem-
ber as of Wachovia, Wells Fargo, Citigroup, Merrill Lynch, and Lehman Brothers; or March, June, September,
December as of AIG and Bank of America.

9The amount of dividend payment per period ranges from $0.1 to $0.64 across firms pre-crisis, however it
dropped significantly after the breakout of the financial crisis, especially for distressed firms, it is practically
zero.

10I try not to choose the representative day with the most number of valid options trading, though liquidity
may reflect better pricing on options. The idea is to maintain as consistent as possible the option life across the
sample period.

11Standard settlement specifies that 100 shares of underlying security are to be delivered at exercise; the strike
price and premium multipliers are $100 per tick. Non-standard settlement may deviate from the standard
settlement specification. I restrict to options with standard settlement to avoid noise in estimation.
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CDS data is provided by Credit Market Analytics (hereafter CMA) and is obtained through

Datastream12. CDS data is obtained from January 2007 to October 201013. Daily CDS spreads

are obtained for both the 1 year contract and the 5 year contract for each firm. The 5 year

CDS contract is the most liquid contract in the market, and 1 year contract is also examined

as I am more interested in default probabilities over a shorter period. Only CDS contracts on

senior debt are selected, and the contracts are traded in US dollars.

1 year CDS prices provide expected bankruptcy probabilities over a one-year horizon,

assuming default occurs between quarterly premium payment days conditional on no prior

default; while option prices provide probabilities over on average 34 days, which is a rela-

tively shorter time horizon. CDS probabilities are then scaled using the following equation

to be comparable with option probabilities. The scaled probability is given by default within

34 days. Scaling is also done for 5 year CDS probabilities.

1−PC DS34d = (1−PC DS3m )
34
66 ,

with 66 trading days matching 3 month calendar days.

Table 2.1 gives a characteristic summary of firms in the sample and firm status, and time

span for both option and CDS data for each of the firms. Columns 6-7 present option- and

1y CDS-implied (scaled) bankruptcy probabilities estimated on September 4, 2007, which is

the earliest common start point for estimation across all firms. It can be seen at this point

in time bankruptcy probabilities are less than 1% for all firms. It suggests that all firms are

relatively secure and there is no concern that any firm is having financial difficulty, in other

12Both CMA data and Thomson Reuters data are available from Datastream, however, Thomson Reuters data
is not available for some of the firms in the sample, and for those firms where data is available, the earliest
history of data starts only from December 2007. CMA data is investigated in this study. CMA collects CDS data
from around 40 members from the buy-side community, including investment banks, hedge funds, and asset
managers who are active participants in the CDS market. Data represents aggregated average from all quoting
parties on the same reference entity. CDS data for Lehman Brothers is obtained from Bloomberg.

13The reason that the data ends at October 2010 is because starting October 1 2010, clients are required to
have a CMA license to access the data, but unfortunately the license is not available to us. In addition, I believe
that the time span is sufficient for the purpose of contrast between pre and post crisis.
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words, there appears to be no meaningful split between groups for which one are relative

healthy and the other distressed. Thus, I put each firm on a continuum and discuss them in-

dividually in section 2.5. Table 2.2 provides descriptive statistics for option information used

for parameter estimation and summary statistics for G values defined by equation (2.5). As

can been seen from the quartile results in Panel B, the distributions of G-values are positively

skewed.

2.5 Empirical results

This section first summarises estimated bankruptcy probabilities for each of the firms

along with a closer look at certain stressful events. Then bankruptcy probabilities across

firms are compared in section 2.5.1, and a comparison between probabilities inferred from

option prices and CDS prices is described in section 2.5.2.

Bear Stearns (BS)

Bear Stearns was a New York based global investment bank and securities trading and

brokerage firm that failed in March 2008, and was subsequently sold to J.P. Morgan Chase.

Figure 2.1 shows that prior to August 2007, BS had a bankruptcy probability below 0.45% for

option implied probabilities, and CDS probabilities were practically zero14. During the week

of July 16, 2007, Bear Stearns disclosed that its two subprime hedge funds had lost nearly

all of their value amid a rapid decline in the market for subprime mortgages. On August 1,

2007, investors in the two funds took action against Bear Stearns and its top board and risk

management managers. This was the first legal action made against Bear Stearns. The Co-

14Figures 2.1 to 2.12 display bankruptcy probabilities estimated from option prices and CDS spreads (1 year
and 5 year). Panel (a) display time series of estimated bankruptcy probabilities along with stock prices. Vertical
axis on the left-hand-side (right-hand-side) corresponds to bankruptcy probabilities (stock prices). Panel (b)
display scatter plots of option-implied probabilities against scaled 1y CDS-implied probabilities. Panel (c) show
risk-neutral densities on certain event days.
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President was then asked to resign as a result of the collapse of the two hedge funds. Option

implied bankruptcy went up to 2.18% on August 1, and CDS probabilities went up as well.

On March 11, 2008, The Federal Reserve Board announced the creation of the Term Secu-

rities Lending Facility (TSLF), which will lend up to $200 billion of Treasury securities for 28-

day terms against certain type of securities including federal agency residential mortgage-

backed securities. Investors interpret this announcement as a sign of difficulty for BS. Option

implied probability rose up to 2.94% reflecting increased risk of bankruptcy. Liquidity dried

up dramatically the next couple of days, the probability of bankruptcy was 3.6% on March

12 and 5.44% on March 13.

On March 14, The Federal Reserve Board approved the financing arrangement announced

by J.P. Morgan Chase to provide Bear Stearns the liquidity for up to 28 days that the mar-

ket refused to provide. The bankruptcy chance went up to 13.7% reflecting serious liquid-

ity problem at BS. The RND shows obvious bimodality with the means of the two lognorml

component being $16 and $42. The distinct bimodality of the RND reflects that investors

hold different views on Bear Stearns’ future stock price and that the price may fall sharply.

On March 17, J.P. Morgan offered to acquire BS at $2 per share. This sale price repre-

sented a staggering loss as its stock had traded at $93 a share as late as February 2008. The

RND shows progressively spiked peak around $5, revealing market consensus view that Bear

Stearns is going to collapse. Option implied bankruptcy probability was 9.34%. A week later,

the revised deal was struck that BS would be acquired by JPM at $10 per share to quiet upset

investors. After the acquisition was agreed, bankruptcy probabilities decreased to 0.72% and

0.42% in April and May.

It can be seen that the bankruptcy probabilities given by CDS spreads went up when BS

gradually went into trouble, and was high at BS’s crisis period, and settled down after the

agreement of acquisition was made. We observe that the two sources of bankruptcy proba-
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bilities agree with each other except that the magnitude of option implied probabilities are

higher than those from CDS spreads during the crisis period. Both probabilities exhibit in-

verse relationship with the stock prices, in particular when stock price plummets, the two

sources of bankruptcy probabilities shoot up in consensus.

Lehman Brothers (LB)

Figure 2.2 shows that LB’s option implied probability was below 0.5% prior to mid-March

2008, and went up starting with the Bear Stearns crisis until it went bankrupt in September

2008. The RND on September 4, 2007 is well-behaved in that it is negatively skewed and does

not have sharp spikes. At this point Lehman Brothers did not have known liquidity issues and

therefore do not reveal any market concerns.

After Bear Stearns was taken over by JPM, market analysts suggest that LB would be the

next major investment bank to fall due to its heavy exposure to credit derivatives linked to

the sub-prime mortgages. During this time, LB relied on overnight Fed funding to survive

BS crisis period. The RND is bimodal where one mode is as low as $10 and the other above

$40, which evidenced market concern that Lehman Brothers may collapse. The bankruptcy

probability was 6.59% on March 17.

In June, Lehman Brothers announced $2.8 billion second-quarter loss as market volatility

rendered many of its hedges ineffective. On June 3, the bankruptcy probability was 5.28% as

analysts and investors anticipated the loss, reflecting deteriorated liquidity concern. During

August, LB closed up 5% of its shares and held secret talks with state-controlled Korea Devel-

opment Bank. As investors perceive that Korea Development bank was considering buying

LB, this was considered positive news, and bankruptcy probabilities decreased from 2.86%

in July to 2.34% in August.

However, gains quickly eroded as news came in that Korea Development Bank was strug-
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gling to please the regulators and finding partners for the deal. The bankruptcy probability

went up to 3.37% at the start of September, reflecting negative expectation about LB. LB’s

share priced plunged to $7.79 on September 9, after it was reported that the talks with Korea

Development bank was put on hold. The RND shows more probability at the lower mode

which indicates very low future price expectations. The bankruptcy probability went up to

17.56%. On September 12, the spike of the RND shows consensus view that Lehman Broth-

ers is going to collapse. The bankruptcy probability was 25.63%, and three days later, LB

declared bankruptcy on September 15.

CDS spreads for LB was obtained from Bloomberg, and gaps shown on CDS probabilities

are due to missing values of CDS spreads. CDS probabilities were low before BS crisis, below

1%; they gradually went up as LB’s situation deteriorates in July and August; and shoot up

to 2.43% on September 12 for the last available data point before bankruptcy. LB’s filing for

bankruptcy triggered the CDS payout to buyers who sought for LB’s credit default protec-

tion. The auction for LB’s debt occurred on October 10, and the resulting price of LB’s senior

debt was only 8.625 cents on the dollar, which means that the sellers of LB’s CDS contracts

were obliged to pay the insured counterparties 91.375% of the face value of LB’s senior debt.

The Depository Trust and Clearing Corporation (DTCC) announced about $5.2 billion in net

funds transfer from net sellers to net buyers as a result of LB’s CDS settlement.

Merrill Lynch (ML)

In November 2007, Merrill Lynch announced it would write-down $8.4 billion in losses

associated with the national housing crisis. As shown in Figure 2.3, option implied bankruptcy

probability went up to 0.62% from 0.17% a monthly earlier, and stayed around 0.5% for the

next couple of months prior to the BS crisis. On March 17, Merrill Lynch shows a similar per-

ception of option-implied bankruptcy risk about 6.5% to that of Lehman Brothers, but the
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RND does not reveal serious concern over future price drop.

In July 2008, ML announced $4.9 billion fourth quarter losses for the company from de-

faults and bad investments in the ongoing mortgage crisis. Two weeks later on July 28, the

company announced the sale of selected hedge funds and securities in an effort to reduce

their exposure to mortgage related investments. The company’s share price declined signif-

icantly. Bimodality emerges in the RND, and the bankruptcy probability was 2.35%.

On September 5, ML’s stock was downgraded to ‘conviction sell’ by Goldman Sachs and

warned of further losses. As Lehman Brothers came under severe liquidity issues, ML held

talks with Bank of America and finally made a sale to BoA on September 15. The lower mode

of the RND on September 15 became more peaked indicating investors’ increased worry that

ML is heading into trouble. The bankruptcy risk is 4.73%.

CDS probabilities are high at BS crisis and September 2008 when the break out of finan-

cial crisis occurred, with the latter higher than the former. But generally, bankruptcy prob-

abilities given by both option prices and CDS spreads for ML are smaller than those for LB,

reflecting the fact that ML was able to strike a deal with BoA whereas LB failed.

Washington Mutual (WM)

Washington Mutual Inc. was a savings bank holding company and the former owner

of Washington Mutual bank, which was United States’ largest savings and loan association

bank until its collapse. At the start of the common date on September 4, 2007, the stock price

is around $40, and the RND is well-behaved, almost symmetric but with a small chance of

future price falling below $30.

On March 17, the RND shifted to a low level with mean around $9. WM held a significant

exposure to credit derivatives, and the bankruptcy probability was high at 11%. WM had

sustained losses and difficulties as a result of the subprime mortgage crisis, and the situation
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deteriorated quickly since July.

When Lehman Brothers declared bankruptcy and Merrill Lynch sold to Bank of America,

the market hit a critical stage. The holding company of Washington Mutual bank received

a credit rating agency downgrade, and option implied bankruptcy probability was high at

25.49% as of September 12, see Figure 2.4. Starting September 15, WM’s customers started

heading for the exits. Over the next 10 days, WM experienced a bank run of in total $16.7 bil-

lion withdrawal in deposits, which eventually led to the seizure of the bank by Office of Thrift

Supervision (OTS) and was placed into receivership with the Federal Deposit Insurance Cor-

poration (FDIC). FDIC sold most of Washington Mutual bank’s assets to J.P. Morgan Chase

at a very low price, and WM filed for bankruptcy on September 26. The bankruptcy was

the second largest in the U.S. history, with the largest being Lehman Brothers.w Bankruptcy

probability on the day before was 57.41%. The RNDs on both September 12 and 25 show sig-

nificant spikes on the tail, indicating high volatility and panic over the survivorship of WM.

CDS probabilities were small and flat before July 2008, and gradually increased in July

and August. Starting early September, bankruptcy probabilities increased dramatically with

significant jumps. It was 6.65% on September 8, and within a few days’ time it went up to

21.2% on September 16, reflecting an accelerated expectation of default risk in the credit

market. The magnitude of CDS bankruptcy probabilities for WM is much higher than those

for BS, LB, and ML. The auction to determine the CDS settlement price was held on October

23, and the final result agreed by all parties was that the recovery rate on WM’s senior debt

was 57 cents on the dollar, and the sellers of CDS on WM would pay 43 cents on the dollar to

CDS purchasers.

Wachovia

Wachovia was a diversified financial services company and was the fourth largest bank
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holding company in the United States before Wells Fargo acquired it in 2008. On Septem-

ber 4, 2007, Wachovia’s stock price was $49. The RND appears almost unimodal, with the

means of two modes very close to the future stock price, and the volatilities for the two log-

normal component are small. Bankruptcy probability is less than 1%. On March 17, when

Bear Stearns almost collapsed, the RND became bimodal with increased volatility for both

lognormal components. The stock price fell to $25.6 and the bankruptcy probability went

up to 3.68%.

It can be seen in Figure 2.5 that prior to September 2008, Wachovia had bankruptcy

probabilities below one half of 5%, while on September 15 when Lehman Brothers declared

bankruptcy and Merrill Lynch sold to Bank of America, option implied bankruptcy proba-

bility went up to 14.2%. Due to the seizure of Washington Mutual by FDIC and the filing of

bankruptcy the previous day, on September 26, Wachovia experienced a similar bank run

of deposit withdrawals from businesses institutional investors, which amounts to 1% of the

bank’s total deposits. Its stock price plunged 27% and the option bankruptcy probability

went up to 39.98%. The large outflow of deposits attracted regulators’ concerns, and over

the weekend FDIC has been considering what actions needed to be taken on Wachovia. As

being deemed systematically important to the health of the economy, Wachovia was not al-

lowed to fail, as did Washington Mutual. On September 29, FDIC announced to auction off

Wachovia’s banking assets to Citigroup and since then Citigroup has become the main source

of liquidity provider to allow Wachovia to continue operating. The bankruptcy risk was high

at 32.73%. The RND became a sharp spike at $1.84 signalling the collapse of Wachovia.

On October 3, Wachovia and Wells Fargo announced a merger agreement of $15 billion

in stock. Wachovia preferred the deal with Wells Fargo despite Citigroup being its liquidity

provider, because it would keep their business intact and there was far less overlap between

the banks. Citigroup abandoned its attempt to purchase Wachovia’s banking assets after
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exploring its legal options against the discussion between Wachovia and Wells Fargo with no

success. The Federal Reserve unanimously approved the merger with Wells Fargo on October

12, and the option implied bankruptcy probability decreased to 4.2% on the 13th, reflecting

the market’s relieved anxiety about the complete failure of Wachovia.

Compared to option implied probabilities, CDS probabilities are rather mild. It shows

a slight increase during Bear Stearns crisis and early September turmoil. Though probabil-

ities sharply increased after the collapse of Lehman Brothers and Washington Mutual, the

highest bankruptcy probability was 3.96% on September 26. CDS probabilities show that the

chances of bankruptcy generally decreased after the merger agreement between Wachovia

and Wells Fargo was made; however, due to data limitation, I am unable to obtain option

implied probabilities for after the merger.

American International Group (AIG)

AIG is the much troubled financial institution in the sample that survived the financial

crisis through a series of government bailouts between September 2008 and March 2009.

AIG was active in the credit derivative business, including CDSs and CDOs, and was severely

affected by the liquidity dry-up during the financial crisis.

Figure 2.6 shows that prior to September 2008, the estimated chance of bankruptcy from

option prices was below 2%, and increased after July 2008. On September 12, S&P put AIG on

a negative credit watch, signalling a possible rate downgrade. The chance of bankruptcy was

13.89%. Monday September 15, AIG’s credit rating was downgraded, forcing it to post addi-

tional collateral. AIG’s financial crisis intensified and the chance of bankruptcy was 43.12%.

Its share price dropped 60% to $4.76 over the weekend. The fat tail of the RND reflects height-

ened fear about AIG’s future uncertainty.

Seeing Lehman Brothers collapse without rescuing, the U.S. government decided that
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AIG was too big to fail because an incredible amount of institutional investors – investment

banks, hedge funds, mutual funds, and pension funds – invested in and also were insured by

AIG. The Federal Reserve stepped in and announced an injection of $85 billion on September

16 to allow it to deliver additional collaterals to prevent it from collapsing, and the govern-

ment effectively seized control of AIG, making it the largest government bailout of a private

company in U.S. history. The estimated chance of bankruptcy was nearly 50%. AIG received

its second and third bailout from the government on Oct 8 and November 10, respectively,

and its share price has been at only a few dollars throughout the first half of 2009.

In early March 2009, AIG received the fourth bailout and the bailout which was restruc-

tured to give the Fed preferred interests in life insurers. By then AIG had received more than

$170 billion taxpayers’ money in bailouts, and two weeks after, AIG announced its plan to

pay out $165 million in executive bonuses. Word of bonuses stirred up outrage from the gov-

ernment as well as the general public. Under the pressure of the Treasury Secretary, the deal

was cut to $9.6 million going to the top 50 executives, as the firm was contractually obliged

to pay them. At this stage, it was not clear where AIG stood in the recovery from the financial

crisis.

CDS probabilities increased significantly to about 10% since the September 2008, and

remained high throughout the first half of 2009. However, the CDS probabilities are as low

as 2% from December 2008 to February 2009 when CDS spreads dropped significantly, pos-

sibly due to the intervention of the U.S. government in bailing out AIG, investors deem AIG

unlikely to collapse.

J.P. Morgan Chase (JPM)

J.P. Morgan Chase, relative to all other financial institutions, has the lowest bankruptcy

probabilities across the whole sample period. Option implied probabilities are below 2% and
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CDS probabilities are below 1%. It was strong enough to stay profitable during the financial

crisis and bail out two failing competitors, Bear Stearns and Washington Mutual.

Figure 2.7 shows that option implied bankruptcy probabilities were generally below 0.5%

prior to the Bear Stearns crisis. JPM stepped in as a rescuer after intense negotiation be-

tween the two parties and the federal government. On March 17, JPM announced its plan

to acquire BS in a stock swap valuing BS at $2 per share. The estimated bankruptcy risk in-

creased temporarily to 1.24%, and the RND has low probability of low future price. On March

24, JPM announced a revised deal at $10 per share to pacify BS’s angry shareholders, and the

merger was complete in June. The bankruptcy risk dropped to 0.41% after consent with the

new offer price. CDS probabilities show that the chances for bankruptcy increased during

the Bear Stearns crisis period, but decreased as soon as the acquisition deal was approved.

On September 15 when Lehman Brothers filed for bankruptcy, the estimated chance of

bankruptcy risk for JPM was just slightly above 1%. The relative stable RND reflects market

perception about JPM’s rather healthy financial conditions. On September 25, the Office

of Thrift Supervision (OTS) seized Washington Mutual bank and placed it into receivership

with the Federal Deposit Insurance Corporation (FDIC). JPM bought most of WM’s banking

operations from FDIC. The bankruptcy chance was 1.01% on September 26. The long left tail

of the RND shows investors’ sceptical concern about the benefit of the acquisition to JPM due

to the significant write-downs and losses from WM’s assets and debts. CDS probabilities give

the same trend of estimates of bankruptcy risk. Probabilities jumped when Lehman Brothers

collapsed, but were low prior to the critical day.

The Treasury Secretary Hank Paulson released a $700 billion proposal to purchase trou-

bled mortgage-related assets on September 20, called the Troubled Asset Relief Program

(TARP), in order to stabilize the crashing market. However, the proposal was initially rejected

by the House. Just a few days later, the Senate and the House passed the bill and the president
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signed the $700 billion Emergency Economic Stabilization Act into law. On October 14, The

Treasury Department announces that it will invest up to $250 billion in the nation’s banks via

the Capital Purchase Program (CPP), a subcomponent of the TARP. This allows the Treasury

to purchase illiquid, difficult-to-value assets from banks and other financial institutions to

improve the liquidity of these assets allowing participants to stabilize their balance sheets

and avoid further losses. Nine large financial organizations announced their intention to

subscribe to the facility through preferred stock investments in an aggregate amount of $125

billion. JPM was one of them and received $25 billion on October 28. The option implied

bankruptcy risk was 1.32% and 1.65% respectively on October 14 and 28, relatively higher

than pre-crisis period, reflecting market anxiety about collective collapse of major financial

institutions, but the RND on October 28 has lower probability of future lower price.

CDS probabilities are also the lowest for JPM throughout the sample period relative to

other companies. It fluctuates within 0.5% for most of the times with little volatility, with the

highest record goes slightly above 0.5% in March 2009.

Bank of America (BoA)

BoA was relatively safe throughout the crisis from March to September 2008, but condi-

tion deteriorates since the start of 2009. During the Bear Stearns crisis, the option implied

probability of bankruptcy for BoA, see Figure 2.8, was less than 1%, and on March 17 when

JPM offered to buy Bear Stearns at $2 per share, the estimated chance of bankruptcy for

BoA was 0.52%, showing how slightly BoA was affected by the event. In September, before

Lehman Brothers failed, BoA was the leading bidder to purchase Lehman Brothers. How-

ever, due to a lack of government backing for the takeover, BoA stopped bidding for Lehman

Brothers, who filed for bankruptcy the next day. The same day, Merrill Lynch entered into

agreement to be acquired by BoA. The bankruptcy probability for BoA on September 15
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went up to 3.14%, reflecting some systemic credit risk stemming from Lehman Brother’s

bankruptcy.

BoA was one of the nine institutions signed on for the CPP program on October 14, and

received $25 billion on October 28. The estimated bankruptcy chances were 1.39% and

3.02%. The RNDs shown in Figure 2.8 up to October 28 do not show expectations of very

low future price.

On January 16, 2009, in its earnings release, BoA revealed massive losses at Merrill Lynch

in the fourth quarter, which necessitated an infusion of money which was previously ne-

gotiated with the government as part of the government-persuaded deal to acquire Merrill

Lynch. The Treasury announced $20 billion investment in BoA. The bank’s stock price sank

to $7.18, the lowest in 17 years. The market capitalization of BoA was $45 billion, less than

what it offered to Merrill Lynch of $50 billion. The bankruptcy risk on January 16 1.45%. The

emergence of bimodality in the RND clearly shows concerns over BoA’s financial stability

which was not alleviated by the announcement of the government bailout.

CDS probabilities were a lot less volatile, with less than 0.5% for pre-crisis period and

went up to as high as 1.5% between March and May 2009. BoA would not have gone in such

difficulty had it not acquired Merrill Lynch through a forced deal by the U.S government.

Citigroup (Citi)

Citigroup was one of the largest bank holdings company in the U.S. as of 2008, but suf-

fered huge losses during the global financial crisis and eventually entered into a rescue plan

by the U.S. government. Prior to Bear Stearns running into trouble, bankruptcy risk for Cit-

igroup was below 0.5%, see Figure 2.9. However, the bankruptcy chance went up to 2.76%

on March 17 when JPM offered to buy Bear Stearns at $2 per share. Citigroup had heavy

exposure to troubled mortgages in the form of collateralized debt obligation (CDOs), com-
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pounded by poor risk management; high bankruptcy risk reflects a possibility of hosing

downturn at national level, however, Citigroup deemed it tiny and excluded them from their

risk analysis. The RND has roughly equal weights for the two lognormal component, but

with higher volatility for the lower mode.

On September 15, the estimated chance of bankruptcy was 4.35%, much higher than that

of JPM and BoA, showing worsened conditions for Citigroup stemming from the subprime

mortgage crisis. The RND does not show indication of serious deterioration of Citi’s finan-

cial condition. The CPP program was introduced by the Treasury as a plan to help ’healthy’

institutions to lend in tough market times rather than a bailout for the banks, but some par-

ticipants turned out to be not so healthy and only needed further injections later. Citigroup

was clearly one of them. Citigroup received their first injection of $25 billion on October 28

and the bankruptcy risk was 2.54%.

November 17, Citigroup announced plans for about 52,000 new job cuts, on top of 23,000

cuts already made during 2008, resulting from four quarters of consecutive losses and reports

that it was unlikely to be in profit again before 2010. By that time, Citigroup was insolvent de-

spite its receipt of $25 billion funds. The share price dropped and the chance of bankruptcy

went up to 5.12%. The RND shifted to a lower mean around $8, and became more peaked

with increased volatility.

On November 23, government and regulators stepped in and approved a plan to stabilize

the company and prevent it from failing. On the 24th, the government announced a massive

stimulus package of $20 billion of investment in Citigroup which gives the government a

major say on its operations. Citigroup issued preferred shares to the Treasury and FDIC in

exchange for protection against losses on a $306 billion pool of commercial and residential

securities held by it. The chance of bankruptcy was high at 6.36% on the 24th. The RND

warns of a possible further fall in the already low share price, which indicates that investors
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were not sure whether the government bailout would be sufficient in rescuing Citi.

The U.S. government was taking necessary actions to strengthen the financial system

and protect taxpayers and the economy. In February 2009, Citigroup announced that the

U.S. government would be taking 36% equity stake in the company by converting $25 billion

emergency aid into common shares. In June, it was announced that Citigroup was removed

from Dow Jones Industrial Average due to a significant government ownership. Citi’s share

price has been at a very low level throughout 2009.

CDS probabilities are relatively low below 1% prior to 2009. Bankruptcy probabilities

increased to about 2% throughout the first half of 2009 when Citigroup’s stock price plum-

meted during this period.

Goldman Sachs (GS) and Morgan Stanley (MS)

Goldman Sachs and Morgan Stanley were the last two major investment banks in the Wall

Street history who became traditional bank holding companies in September 2008. Figure

2.10 and Figure 2.11 show that the bankruptcy risk was below 1% for both companies prior

to the failure of Bear Stearns. However, on March 17, the chances for bankruptcy went up

to 2.24% for Goldman Sachs and 3.59% for Morgan Stanley. Similar to Citigroup, Goldman

Sachs and Morgan Stanley suffered from the systemic credit risk stemming from the Bear

Stearns crisis.

On September 15, bankruptcy chance for Goldman Sachs was 1.46% while 4.41% for Mor-

gan Stanley. A few days later on September 21, both firms confirmed they would become

traditional bank holding companies. In becoming holding companies, Goldman Sachs and

Morgan Stanley would get access to the Federal Reserve’s emergency lending facilities, and

it will allow them to better organize their assets and place them in better position for merg-

ers and acquisitions. The bankruptcy risk after the announcement was 1.84% and 6.86%
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for Goldman Sachs and Morgan Stanley respectively. Upon completion of converting, both

firms received $10 billion funds from the government through CPP program on October 28.

Bankruptcy risk was 4.76% and 9.36% for Goldman and Morgan. Clearly, the market was

not confident whether both former investment banks would avoid following the footsteps of

Lehman Brothers.

The RNDs of both companies display very similar characteristics. Prior to the BS crisis,

the RNDs appear almost identical with unimodal and fatter left tail. On both dates when

JPM offered to acquire BS and LB filed for bankruptcy, the RNDs show slightly concern over

future share price drop. On October 28 when both companies received government funding

through the CPP program, the RNDs has further increased mass in the lower mode of the

lognormal component, reflecting concern over the systemic risk in the financial markets.

However, there was no signal of serious deterioration of either firm’s financial stability even

during the most stressful market condition, reflecting two firms’ relative healthy condition

throughout the crisis period.

CDS bankruptcy probabilities for both firms exhibit similar trends, with low and less

volatile shape for pre- and post- financial crisis period, and sharp spike after the break out of

financial crisis in September 2008. The magnitude of bankruptcy risk is higher for Morgan

Stanley than for Goldman Sachs, especially during the crisis period, with the highest being

nearly 6% for Morgan and only 2% for Goldman.

Wells Fargo (WF)

Figure 2.12 shows that the bankruptcy probabilities for Wells Fargo are generally low

across the sample period. Wells Fargo was only slightly impacted by the Bear Stearns cri-

sis, with a bankruptcy risk of 0.88% on March 17 increased from 0.45% on March 3. It was

the only bank in the United States to be rated AAA by Standard & Poor’s in 2007 and became
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one of the big four banks of the United States, along with Bank of America, Citigroup, and J.P.

Morgan Chase, through acquisition of Wachovia.

Wells Fargo was less affected by the systemic credit risk after the collapse of Lehman

Brothers and sale of Merrill Lynch. The bankruptcy risk on September 15 was 1.86%. Despite

the low risk of bankruptcy, the RND warns a probable decrease in share price with higher

probability in the lower mode lognormal component.

On October 3, 2008, Wachovia agreed to be bought by Wells Fargo for about $14.8 billion

in an all-stock transaction. This news came four days after the Federal Deposit Insurance

Corporation (FDIC) made moves to have Citigroup buy Wachovia for $2.1 billion. Citigroup

protested Wachovia’s agreement to sell itself to Wells Fargo and threatened legal action over

the matter. However the deal with Wells Fargo overwhelmingly won shareholder approval

since it valued Wachovia at about 7 times what Citigroup offered. To further ensure share-

holders’ approval, Wachovia issued Wells Fargo with preferred stock holding 39.9% of the

voting power in the company. The bankruptcy risk for Wells Fargo on October 3 was 0.44%,

decreased from early September, reflecting shareholders optimism about the acquisition.

The shrinkage of the lower mode lognormal component suggests investors alleviated con-

cern over WF’s solvency stemming from the credit crunch.

October 14, the Treasury announced the CPP program and Wells Fargo signed on to par-

ticipate in the program and on October 28, Wells Fargo received $25 billion. The bankruptcy

risk increased to 1.19% and 1.21% respectively on the two dates, reflecting systemic credit

risk in the unstable financial system. The RND on October 14 shows concern about a small

chance of mild decrease in future share price.

CDS bankruptcy probabilities are generally low for Wells Fargo. Probabilities increased

slightly during the Bear Stearns crisis and the global financial crisis, with the highest being

less than 1%.
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2.5.1 Comparison of bankruptcy probabilities across firms

In this section, the sample is split into two groups for a comparison between estimated

bankruptcy probabilities. Using ex-post knowledge of the survivorship of each firm, firms are

grouped into relative healthy firms which survived the crisis – Bank of America, J.P. Morgan

Chase, Goldman Sachs, Morgan Stanley, and Wells Fargo, and distressed firms – Bear Stearns,

Lehman Brothers, Washington Mutual, Merrill Lynch, AIG, Wachovia, and Citigroup. The

identification for distress is based on the ex-post knowledge of a firm either went bankrupt

or acquired by other firms during the financial crisis, or the share price fell below $5 from a

previous high level and remained low for a long period of time.

Figures 2.13 shows option implied bankruptcy probabilities (including critical event days)

for both relatively healthy firms and distressed firms. Panel (b) shows estimated bankruptcy

probabilities for when data is available. After bankruptcy or acquisition the firm drops out

of the sample. As can be seen bankruptcy risks for both groups exhibit a consensus trend —

probabilities are low before March 2008 and after May 2009, and high during both the Bear

Stearns crisis and the global financial crisis, with the only difference in the magnitude, es-

pecially during the crisis period. The probabilities around Bear Stearns crisis are generally

smaller than the Lehman Brothers failure period starting September 2008.

Prior to Bear Stearns crisis in March 2008, the average probability was 0.20% and 0.31%

respectively across healthy firms and distressed firms. During the Bear Stearns crisis, healthy

firms were only slightly affected by the systemic risk while distressed firms started to reveal

problems. Bankruptcy risk for healthy firms were less than 4% whereas that for distressed

firms went above 5%, the highest being 20% for Bear Stearns just a couple of days before JPM

offered its first deal. The probabilities decreased for both groups after Bear Stearns crisis.

Starting September when Lehman Brothers collapsed until the first half of 2009, bankruptcy

probabilities increased significantly for both groups. Healthy firms’ bankruptcy probabilities
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scattered between 1% and 7%, with a few estimates above 8% to about 14%; bankruptcy

probabilities for distressed firms were dramatically higher which range from 4% to 50% on

certain event days. These estimates are consistent with the market perception that distressed

firms have higher chances of failure and are more fragile than healthy firms.

Figure 2.14 shows bankruptcy probabilities inferred from 1 year CDS spreads grouped

the same way into healthy firms and distressed firms. Panel (b) shows estimated bankruptcy

probabilities for when data is available. After bankruptcy or acquisition the firm drops out

of the sample. Daily CDS spreads provide daily estimates of bankruptcy probabilities, which

enable us to have a clearer view on how bankruptcy risks evolve on a daily basis. There is

clearly a consistent trend among the two groups across the sample period, complemented

with idiosyncratic variation with respect to individual firms. Bankruptcy chances increased

during Bear Stearns crisis and are much higher in September 2008. The probabilities were

less than 1% for healthy firms during Bear Stearns crisis, whereas probabilities for some dis-

tressed firms went over 2%.

In September, chances of bankruptcy jumped significantly for Washington Mutual and

AIG, showing a spike in Figure 2.14(b). It went as high as 22.61% and 13.16% respectively

on critical days. Washington Mutual filed for bankruptcy at the end of September and AIG

only survived upon receiving a series of government bailouts. Wachovia and Merrill Lynch

had a bankruptcy risk below 5% in September, reflecting the fact that both firms were able

to strike a deal with another party and eventually to be acquired. The chance of bankruptcy

for Lehman Brothers was only 2.24% on September 9, which was the last date data available.

The relative low bankruptcy probability just a few days prior to its collapse may suggest that

the market did not believe that Lehman would actually go bankrupt. On the other hand,

bankruptcy risk for healthy firms was generally below 2%, except for Morgan Stanley which

had a few probabilities between 2% and 6%.
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Figure 2.15 plots share prices of all sample from January 2007 to September 2010 for when

data is available. Observations disappear from the plots when firms went bankrupt or ac-

quired by other firms. It shows clearly that share prices for all surviving firms dropped sig-

nificantly since September 2008, and remained at a low level for several months before a slow

recovery. The plummet in share prices coincides with an increase in estimated bankruptcy

probability. The collective fall of share prices and increase of bankruptcy probabilities po-

tentially reflect a systemic risk factor influencing the market.

In the CDS model, 1 year CDS probabilities provide the expected chance of bankruptcy

in three months over a one year horizon while 5 year chances are over a 5 year horizon.

Figures 2.1 to 2.12 show that in most cases 5 year CDS bankruptcy probabilities are higher

than 1 year probabilities during calm periods whereas 1 year probabilities overtake 5 year

probabilities in critical market conditions. This is consistent with market expectations that

the 5 year CDS contract protects against longer horizon than the 1 year contract, in which

there is higher chance that bad things can happen, thus under normal market conditions 5

year CDS bankruptcy probabilities are higher than 1 year probabilities. However, when there

is systemic credit risk in the market and the financial system becomes unstable, the market

worries about sudden jump to default risk in the near future. The protection seller would

then increase CDS spreads, and thus render a heightened chance of bankruptcy embedded

in shorter horizon CDS contract. 1 year CDS contract provides a view about default risk over

a shorter horizon than does the 5 year contract, which is useful for analysts who want to

assess credit risk in the near future. But the 5 year CDS contract is the most liquid contract in

the market. It may contain more accurate pricing information than the 1 year CDS contract.
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2.5.2 Comparison between option implied bankruptcy probabilities and

CDS bankruptcy probabilities

Option implied bankruptcy probabilities are risk-neutral probabilities over the horizon

defined by the options’ time to maturity, in this case around 34 days. CDS bankruptcy prob-

abilities are also risk-neutral probabilities of default within three months over the life of the

CDS contract. CDS probabilities have been scaled to the same horizon as option implied

probabilities for better comparison. The scatter plots in Figures 2.1 to 2.12 panel (b) plot

option-implied probabilities agains the scaled 1 year CDS-implied probabilities for each

firm. The plots show that CDS-implied probabilities generally increase with option-implied

probabilities. Visual comparison through Figures 2.1 to 2.12 suggests that the two sources

agree about relative bankruptcy risk, but option prices give magnified estimates during crisis

periods than CDS estimates. Clearly the two markets provide complementary information

about default risk. The next logical question to ask is whether one market leads the other

in providing relevant information. I attempt to answer this question by examining Granger

Causality between the two sources.

Granger Causality test gives an idea of whether one time series is useful in forecasting the

other. Option implied bankruptcy probabilities are said to Granger Cause CDS bankruptcy

probabilities (O →C ) if CDS probabilities can be better predicted by histories of both option

implied probabilities and CDS probabilities, and vice versa (C → O). The null hypothesis is

that the coefficients of lagged option implied probabilities are zero, in other words, option

implied probabilities do not Granger Cause CDS probabilities, and vice versa. It is impor-

tant to note that the test depends crucially on the number of lagged terms introduced in the

model, which is usually chosen using an information criterion, such as the Akaike informa-

tion criterion or the Schwarz information criterion. However, since we have a relatively small

sample, it is very difficult to choose the optimal number of lags given the limited data history.
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I include 2 lags in the test as it is intuitive that the value at each period is mostly influenced

by its close previous values.

I perform a pairwise uni-direction Granger Causality test to see if information inferred

from both option prices and CDS spreads predicts better than information from only one

source. Tests are done between option implied bankruptcy probabilities and 1 year CDS

bankruptcy probabilities. Time series of bankruptcy probabilities are monthly from 2007 to

2010. The tests are done for firms which are relative healthy and survived the crisis. As sta-

tionary assumption is required to perform the test, we could reasonably assume that the time

series of probabilities are stationary as they keep at a low level when the market is peaceful,

went up during crisis period, and eventually come down at a low level if the firm survives

the crisis. I have done two sets of tests, one for the original time series that are at level, and

the other for time series of first difference which are more applicable if the data are non-

stationary.

Table 2.3 reports F statistics, p-values, and decisions for each uni-direction test. Results

are consistent between tests on levels and tests on first differences, except for Citigroup and

one direction for Wells Fargo. However, the causality conclusions are mixed. While results for

Bank of America and Wells Fargo indicate option implied probabilities Granger Cause CDS

probabilities for levels, those of Goldman Sachs indicate completely the opposite; results of

J.P. Morgan and Morgan Stanley do not show causality between the two measures and those

for Citigroup indicate both measures Granger Causes one another. Mixed conclusions can

be caused by a non-optimal number of lags used in the test and the small sample. Daily

time series of bankruptcy probabilities may provide better outcomes as daily measures may

contain richer information about dependence on previous values. I consider the evidence

about causal relations between the two series to be inconclusive.

60



2.6 Conclusions

This study makes use of option prices and CDS spreads to infer corporate bankruptcy

probabilities during the 2008 global financial crisis, and makes comparisons of the informa-

tion conveyed in both markets. An option pricing framework is used where the risk-neutral

density is assumed to be a mixture of two lognormals augmented with a probability of de-

fault, to calibrate to the observed market option prices. The bankruptcy probability is thus

obtained through least square estimation. The CDS model assumes a constant conditional

default probability and equates the present value of expected premium payments with the

present value of expected payoffs to solve for default probability. All probabilities inferred

from option prices and CDS spreads are risk-neutral.

The sample includes 12 American firms in the financial industry. Risk-neutral densities

extracted from option prices and the evolution of estimated bankruptcy probabilities are

used to provide ex-ante information to assess the degree of financial distress for each firm.

The emergence of bimodality in the risk-neutral densities can be interpreted as investors’

divergent views on the future value of stock price, which reflects the market’s concern of po-

tential price crash. This information and estimated bankruptcy probabilities can help regu-

lators and market participants monitor whether a firm is probably secure or default risky.

To avoid ex-post knowledge of splitting firms into healthy or distressed groups, firms are

put on a continuum from September 4, 2007 and examined individually. The results show

that the bankruptcy probabilities are low during calm market conditions and are high during

crisis period. Firms are then grouped into distressed firms and relative healthy firms using

ex-post knowledge of their survivorship, to compare the magnitude of estimated bankruptcy

probabilities between groups. Results show that distressed firms have higher chances of

bankruptcy than firms which are relatively healthy. Probabilities inferred from option prices

and CDS spreads are then compared using Granger Causality tests. The conclusion is that
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both markets provide complementary information, but it does not show significant evidence

suggesting one predicts the other for the data examined. It is worth noting that Granger

Causality tests depend heavily on the properties of the time series under investigation. Daily

pairwise bankruptcy probabilities may provide more meaningful results on the causal rela-

tionship than monthly observations.

One oberservation from the analysis is that option-implied bankruptcy probabilities are

higher than CDS-implied probabilities, especially on event days, the magnitude is a few mul-

tiples higher than CDS-implied probabilities. One possible explanation for the discrepancy

could be that the assumptions of p in the two pricing models are not defined for exactly the

same underlying. Option-implied p measures the probability of the stock price reaches zero,

whereas CDS-implied p measures the probability that a well-defined credit event is trig-

gered. Another explanation could come from the quoting of CDS spreads. The CDS spread

quoted by one particular counterparty on one reference entity reflects the joint default risk

for both firms. The spread cruicially depends on how much of this claim the buyer can ex-

pect to recover from the counterparty in case of a credit event. The quoting firm is likely to

lower the charge for credit proctetion if its own credit risk increases. Arora et al. (2012) finds

that counterparty risk is significantly priced in the CDS markets. This is particularly rele-

vant in the crisis setting when market participants in the financial sector are all affected by

the systemic risk. A lower price quoted by an counterparty with increased credit risk could

result in a downward bias in esitmated default probabilities. Giglio (2011) has shown that

ignoring counterparty risk biases the estimates of default probability extracted from CDS

spreads downwards.

Another observation is that the bankruptcy of Lehman Brothers triggered a domino ef-

fect in the banking system that the share price of firms in the sample plummeted and default

risk increased. The systemic risk that may trigger the failure of the full banking system has
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attracted full attention from the government and banking regulators. This study investigates

banks individually one at a time, and the probability of multiple defaults is not explicitly

modelled. A probability model that captures systemic default risk will provide a meaning

tool for market regulators. CDS price contains pairwise joint default risk for the reference

entity and the quoting counterparty, but it is not possible to distinguish between the risk

that comes from the reference entity and from the counterparty. However, bond prices is

not affected by counterparty risk and reflects only individual default probabilities. Utilis-

ing combined information in CDS spreads and bond prices could be potentially useful in

exploiting joint default probability for both firms, and ultimately joint default probabilities

for several firms. However, this may pose a challenge to data availability as it would require

counterparty-specific CDS quotes rather than the average of all dealers. Giglio (2011) at-

tempts to establish such a model and constructs bounds to characterise multiple default

risk for banks which captures the notion of systemic risk. Giglio (2011)’s results are derived

from several modelling assumptions and affected by limitations in the data, nevertheless, it

points out a meaningful direction for future research.
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Chapter 3

Model Free Expectation of Implied
Volatility and International Spillovers

3.1 Introduction

Over the past fifty years, financial markets throughout the world have become more open

to foreign investors, and national markets have become more closely connected. Academic

research on international market integration has come full circle. Early papers focus on port-

folio diversification where investors can benefit from less-than-perfect correlations among

returns on international investments. The surge in international portfolio investment activi-

ties spawned increasing linkages between national markets and intensified interdependency

between countries with more trades and investments. A potential by-product of this rapid

growth in capital flows is whether it has changed how global asset returns move together.

A series of studies started to investigate lead-lag relationships between international stock

markets. While some find strong contemporaneous relationships, others conclude no sig-

nificant interrelationship.

Research and public interest on this pursuit were heightened during stressful market

events, such as the International Crash of October 1987, the 1997 Asian financial crisis, and
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more recently the 2008 Global financial crisis. Stock markets around the world fell uniformly.

These events cast doubts on the very benefit of of international diversification as how could

world markets fall simultaneously when the underlying economies are fundamentally differ-

ent? This question has engendered an immense literature researching return and volatility

spillovers across markets. Some studies focus on measures of return and volatility spillover,

others try to link these spillovers to economic fundamentals, or theorize that they come from

market contagion. However, none of these efforts provided a definitive answer to the ques-

tions raised by the Crash of October 1987. One general conclusion from these papers is that

the capital flows that sought to exploit international diversification benefit have intensified

linkages across markets. These linkages in turn engender a systemic vulnerability to liquidity

gaps and market shocks whose impact was once contained within national boundaries.

Later in the early 2000s, researchers sought to revisit this topic by investigating spillovers

in terms of implied volatility. Implied volatility is directly extracted from an option price, and

is considered a forward looking measure as it reflects market expectation of future volatility

over the remaining life of an option. Empirical studies have documented its information

superiority over historical measures of volatility. It thus serves as a natural alternative to

further investigate this topic.

The development of volatility indices around the world paved the way for studies on im-

plied volatility spillover. A volatility index provides a consensus market measure of risk of

the underlying asset over a fixed period. The Chicago Board Option Exchange (CBOE) be-

came the first to introduce the volatility index VIX (now VXO), and many of the world’s other

exchanges have followed so. The methodologies in constructing volatility indices around

the world are in general a replication of that for the new VIX developed by the CBOE. How-

ever, as pointed out in Jiang and Tian (2007), the calculated volatility index using the CBOE

methodology contains substantial errors, and these errors translate to significant economic
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consequence if not accounted for.

This study first addresses the issues with the CBOE methodology, and provides an alter-

native in constructing a volatility index. I calculate volatility indices for 15 markets around

the world, and study implied volatility spillover between these markets. I employ vector

autoregressive analysis, impulse response functions and forecast error variance decompo-

sition to study the dynamic interdependence between these markets. The general conclu-

sion is consistent with those in ex-post measurement studies. I find that the U.S. market

is unambiguously the dominant source of uncertainty in the world. Correlation between

markets largely depends on geographical proximity. Developed markets have bigger impact

on developing markets. The findings support the notion of informationally efficient inter-

national stock markets, in that information transmitted from one market to another is pro-

cessed within a maximum of two days.

This study is organized as follows. Section 3.2 provides a comprehensive review on spillover

studies distinguishing between historical measure and the risk-neutral forward looking mea-

sure. Section 3.3 provides an overview of the CBOE methodology in constructing the new

VIX, and its associated issues. I then provide an alternative measure in constructing volatil-

ity index. Data is described in this section and an empirical analysis of calculated volatility

indices is given. Section 3.4 details empirical analysis of spillover effects and section 3.5 con-

cludes. A list of Figures and Tables are in Appendix in section 3.6.

3.2 Literature review

The studies of international market linkages took off from early papers documenting the

benefits of international portfolio diversification. Works of Grubel (1968), Levy and Sarnat

(1970), and Solnik (1974) contributed to the mean-variance portfolio investment strategy

by showing that further diversification benefits could be achieved by expanding a national
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portfolio to include stocks from other countries. The key insight delivered by these papers is

a shift in investment policy to countries with the lowest possible correlation with the home

country from countries with stronger economic ties with the home country.

The implications of international asset allocation strategy engendered a surge in inter-

national portfolio investments. As capital flows became freer across borders, the linkages

between markets grew stronger. Seemingly unrelated economies have grown increasingly

interdependent through foreign investments. Since Grubel’s work (1968), a series of stud-

ies analysed the lead-lag relationship between international stock markets. Examples are

Granger and Morgenstern (1970), Agmon (1972), and Hiliard (1979). These early empirical

results are mixed. While Agmon (1972) finds strong contemporaneous relationship between

the U.S. market and others, Granger and Morgenstern (1970) conclude that there is little

or no interrelationship between different stock markets. Hiliard (1979) uses daily data and

revealed close relationship among countries that are not apparent in Granger and Morgen-

stern (1970) who use weekly data, but finds that inter continental prices are unrelated. The

main concern of these studies on early data from the 1960s to early 1970s is to show that the

interdependency among markets is less pronounced across countries than within a country,

but little is revealed about the structure of interdependency between markets.

Eun and Shim (1989) rose to this occasion and hence initiated studies of international

equity market spillover. Early studies of stock market spillover literature employs regression

analysis to study return or price spillover effects. With the development of GARCH models

which intend to capture time varying volatilities, researchers started to investigate volatil-

ity spillovers across the world using a variety of GARCH specifications. These studies which

employ historical measures prevail for two decades since the 1990s. It was not until early in

the twenty first century that a forward looking measure emerged in the literature in studying

international spillover effects. Implied volatility, with widely documented superiority of in-
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formation content over ex-post measures of volatilities (see e.g. Blair et al. (2001)), became

a tool in providing new evidence on international market integration. The remainder of this

section first summarises related literature using ex-post measures, including return spillover

and volatility spillover, followed by a group of growing literature focused on forward looking

measure in studying international stock market linkages.

3.2.1 International stock market spillovers under the historical measure

3.2.1.1 Return spillover – regression framework

The findings in the studies of Grubel (1968), Granger and Morgenstern (1970), Agmon

(1972), and Hiliard (1979) etc. in the 1970s reveal evidence of comparable interdependence

of share price movements across and within countries. Eun and Shim (1989) then investi-

gated, upon the established evidence, the interdependence structure of international stock

markets. They employed a vector autoregressive (VAR) model on nine markets (including

Australia, Canada, France, Germany, Hong Kong, Japan, Switzerland, the United Kingdom,

and the United States) using daily returns of stock market indices from 1980 to 1985. Their

focus was on addressing issues (1) how much movements in one stock market could be ex-

plained by innovations in other markets; (2) how influential is the U.S. market on other mar-

kets; and (3) how rapidly price movements in one market transmitted to other markets. They

employ VAR system and its structural analysis – impulse response functions and forecast

error variance decomposition – to answer these questions. The findings are that the U.S.

market is by far the most influential market in the world; no single market’s innovations can

explain its own variance; impulse responses results indicate that all markets respond to U.S.

shocks, mostly strongly with a one-day lag, and tapers off thereafter. Eun and Shim (1989)

concluded that the evidence supports the notion of informationally efficient markets.
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Von Furstenberg and Jeon (1989) conducted a principal component analysis on the world’s

four largest equity markets – U.S., Germany, Great Britain, and Japan during 1986-1988, fo-

cusing particularly on the correlation of price movements of 1987 post-crash periods using

daily stock returns. They employ a VAR model and impulse response analysis and forecast

error variance decomposition to study the leadership of news transmission between these

markets. The ordering of the variables respects the time zone of each market. They also

advance each market to allow for a chance to appear at the top of the ordering. Impulse

response analysis revealed an increased but not sustained influence of Japan on other mar-

kets. It also revealed that innovations of the British market had a longer-lasting effect on

other markets after crash than before, but possibly due to the expansion of the London Mar-

ket during the year preceding the crash. The authors also attempted to link the increased

post-crash price co-movements to economic fundamentals, but the evidence is rather weak.

Koch and Koch (1991) model daily returns for an extended sample which includes eight

countries for the years 1972, 1980, and 1987. Their sample includes Japan, Australia, Hong

Kong, Singapore, Switzerland, West Germany, United Kingdom, and United States. They em-

ploy a block-recursive simultaneous equations model to study the contemporaneous and

lead-lag relationships between these markets. Their results conclude in general that in-

ternational markets have grown more interdependent, and the high degree of market effi-

ciency is revealed by rapid adjustment to news – most adjustments are completed within

24 hours. The results further show that the interdependence between markets is largely ob-

served within time-zone region where trading hours overlap. Japan has grown to have more

impact on other markets over time whereas U.S. market’s influence has waned and starts to

respond to other markets.

Malliaris and Urrutia (1992) investigated causal relationships between six equity market

indices by means of Granger Causality. Sample includes New York S&P 500, Tokyo Nikkei,
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London FT-30, Hong Kong Hang Seng, Singapore Straits Times, and Australia all Ordinaries.

Data was divided into before, during, and after the crash of October 1987, which starts May

1987 and ends March 1988. The empirical results show that practically no lead-lag relation-

ships were detected for before and after crash period, however, bidirectional and unidirec-

tional causality was observed during the month of the crash. The causal results indicate that

Tokyo played a passive role during the crash, whereas New York failed to confirm its alleged

leading role. Contemporaneous causality was also examined by including current values in

the right hand side of Granger Causality equations. Little contemporaneous causality was

observed for pre-crash period, but an increased causality was detected during and after the

month of the crash.

Studies of international stock market linkages have found conflicting evidence. Arshana-

palli and Doukas (1993) address methodological problems associated with the VAR model

that might explain the difference. Empirical studies in the 1980s have shown non-stationary

evidence of national stock indices. To make time series stationary, the common practice is to

take the first difference. The authors argue that taking first difference may filter out potential

important information about long-run trends among non-stationary stock indices. They use

theory of cointegration and error correction analysis to test linkages between Japan, France,

Germany, the U.K., and the U.S. for the period between 1980 and 1990. Their results re-

port strong linkages of France, Germany and U.K. with the U.S. for post-crash period, but

the same cannot be found for the pre-crash period. They also find no evidence of linkages

between Japan and the U.S., and the Japanese stock market is not related to the European

markets, which suggests that the Japanese market is not fully integrated with the world’s

other major stock markets.

Copeland and Copeland (1998) studied the lead-lag structure of daily returns of 29 coun-

tries in three regions (Americas, Europe, and Pacific) by industry groups between 1992 and
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1997. They conduct pairwise OLS regression with a null assumption that the U.S. as the

largest market in the world is the lead economy for most industries. The regressions are

done for regional, country, and industry groups. They found strong contemporaneous re-

lationships among regional markets operating at the same time. Americas lead Europe and

Pacific by one day and no significant lags beyond one day, suggesting that information ad-

justments are processed within one day. They also developed a simple trading strategy to

test whether economic gain is exploitable from statistically significant lead and lags, how-

ever, the results are at best attainable by trading houses but not by individuals.

Becker et al. (1990) examine intraday data of the S&P 500 index and the Nikkei 225 in-

dex between 1985 and 1988 to study the synchronization of price movements between the

world’s largest stock markets. The use of open-to-close, close-to-open returns marked a sig-

nificant departure from earlier studies that relied on close-to-close returns. They found high

correlation between the open to close returns of U.S. stocks in the previous trading day and

the Japanese market performance in the current period. The U.S. market explains about 7%-

25% of variation in the Japanese market open-to-close returns, and 11%-18% variation in

Japan’s overnight returns. In contrast, Japan has a small impact, about 1% on the U.S. market

performance. High correlation between markets’ open-to-close returns violates an efficient

market hypothesis. Simulated trading strategies were successful in predicting up and down

movements in Japan, but profits from these strategies were eliminated immediately when

transaction costs and taxes in Japan were taken into account.

3.2.1.2 Return and Volatility spillover – GARCH framework

The crash of October 1987 was a uniform fall of national stock markets around the world,

despite the differences in economic fundamentals, market structure, liquidity, etc. A Large

number of commentaries and reports generated by this event have not answered the ques-
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tion why markets fall in such uniformity. With the development of advanced computa-

tional technology, researchers explore more methodologically rigorous approaches to un-

cover both return and volatility spillover across national markets in an attempt to address

partly the unanswered question.

Hamao et al. (1991) was one of the first studies to employ a GARCH-in-mean framework

to study the transmission mechanism in conditional first and second moments. Their sam-

ple include index returns of FTSE 100, S&P 500, and Nikkei 225 during the period of 1985 to

1988. They separate open-to-close return and close-to-open return to isolate the spillover

effect. First, they study the spillover effect of open-to-close return for a given market. They

estimate a GARCH(1,1)-M model for all markets and take the squared residual of the condi-

tional mean equation, as volatility surprise, from the most recently open foreign market, and

append it to the conditional variance equation of the domestic market. In parallel, they also

estimate another model appending volatility surprise of both foreign markets to the domes-

tic market to examine separate volatility effects from both foreign markets. The models are

estimated for the full sample and pre-crash period from the start to September 30, 1987. The

results show statistically significant positive foreign volatility surprise for all three markets

for the full sample estimation, but significant volatility spillover for pre-crash period is only

found from U.S. to Japan. The inclusion of a second foreign volatility surprise does not seem

to diminish the effect of the first foreign market. The authors conclude that Japan is most

sensitive to volatility spillover effects from foreign markets, while U.S. and U.K. are moder-

ately, if at all, sensitive. The spillover asymmetry across national stock markets coincide with

evidence documented in Eun and Shim (1989) discussed earlier.

Hamao et al. (1991) also consider spillover effects in the conditional mean by includ-

ing the open-to-close return of the most recent traded foreign market, and preserving the

volatility surprise in the conditional variance equation. The models are estimated for the
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full sample, and pre-crash sample. Same asymmetry effect is observed for mean spillover,

while significant spillover effects are observed from U.S. to Japan, U.K. to U.S., none is ob-

served from Japan to U.K.. They also estimate a noon-to-close return model for the U.S.

market to explain the observed largest significant spillover effect from U.S. to U.K., possibly

due to one-hour overlapping of trading between the two markets. The effect is eliminated

in the conditional mean once overlapping is accounted for, but volatility spillover effects in

conditional variance are still manifest.

Theodossiou and Lee (1993) provide additional insight on international stock market in-

terdependency by extending the study of Hamao et al. (1991) in a number of ways. They

use weekly data, rather than intra-day data, and expand the sample to include Canada and

Germany for an extended period from 1980 to 1991. Unlike Hamao et al. (1991) estimat-

ing GARCH-M for each market separately, Theodossiou and Lee (1993) estimate the model

in a multivariate framework under the assumption of constant conditional correlation over

time. The results for mean spillover show statistically significant effects from U.S. to U.K.,

Canada, and Germany. Geographic proximity accounts for bigger impact of U.S. past return

on Canada than that of Germany and U.K.. Interestingly Japan has a negative spillover effect

on Germany. To the extent the significant spillover effects violate efficient market hypothe-

sis, effectively forecasting stock market returns cannot be achieved as the explanatory power

of the model is as low as 5%. The results for conditional variance equation show that past

values of conditional variance are highly significant for all markets, indicating volatility per-

sistence. Own-volatility spillover is found for U.S., Germany, and Japan, but not for Canada

and U.K., suggesting that the conditional volatility is imported from abroad for these two

markets. Significant cross-volatility spillover effects are found from the U.S. to all four mar-

kets, from Germany to Japan, and from U.K. to Canada. This is consistent with findings in

Eun and Shim (1989) that the U.S. is unambiguously the leading source of uncertainty.
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Bae and Karolyi (1994) assert that the true magnitude and persistence of spillover effects

across national markets can be significantly understated if the return and volatility generat-

ing processes are mis-specified. Specifically, the leverage effect which distinguishes asym-

metric effect of past bad news and good news plays an important role in capturing the true

dynamics of return and volatility. Bae and Karolyi (1994) extend the GARCH framework to

allow for asymmetric effect of negative and positive foreign market return shocks for volatil-

ity. They focus on the joint dynamics of open-to-close and close-to-open returns for S&P

500 and Nikkei 225 between 1988 and 1992. The authors use a two-stage estimation to study

the volatility spillover for a basic GARCH model, and two asymmetric GARCH specification –

GJR-GARCH developed by Glosten et al. (1993) and partially non-parametric GARCH (PNP-

GARCH) model introduced by Engle and Ng (1993). Their evidence shows that the asymmet-

ric parameter is statistically significant and its appearance strengthens volatility spillover

effect from one market to the other. In general bad news from both domestic and foreign

markets have a much larger effect on the subsequent return volatility than good news.

Koutmos and Booth (1995) further extend research of asymmetric effects on interna-

tional stock market linkages by employing a multivariate EGARCH model developed by Nel-

son (1991). Using open-to-close returns, they study the price and volatility transmission

mechanism between New York, London, and Tokyo from 1986 to 1993. Results show signifi-

cant return spillover from New York to Tokyo and from Tokyo to London and New York, but

not from London to New York, which is possibly due to the high correlation that is accounted

for by the 2 hour overlapping effect between London and New York. Volatility spillovers are

more extensive and reciprocal. They found significant volatility spillover from New York to

Tokyo and London, from London to New York and Tokyo, and from Tokyo to London and

New York. Consistent with evidence in Bae and Karolyi (1994), volatility transmission mech-

anism is asymmetric; in all instances adverse news have a far greater impact on the next mar-
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ket session than good news. Koutmos (1996) also employs the same multivariate EGARCH

framework to study the linkages between four major European markets – Germany, France,

U.K. and Italy. Similar evidence of multi-directional spillover effects are found in both re-

turn and volatility, as well as asymmetric effects. The author concludes that the European

markets are integrated in a sense that they respond to both domestic and foreign news.

While most studies focus on markets across the globe with no or few overlapping trading

hours, some studies look directly at markets with synchronous trading. Susmel and Engle

(1994) employ a univariate GARCH model with asymmetry feature to study news transmis-

sion between London and New York, two markets having 2 hour simultaneous trading. They

use high frequency hourly data so that they can examine return and volatility spillover at

specific hourly periods as well as the behaviour at the open of the New York market. Data

is from January 1987 to February 1989. The findings are as follows, (1) there is no return

spillover between the two markets in non-overlapping periods, with only two exceptions. (2)

There is no strong evidence of volatility spillover. The most significant volatility spillover oc-

curs at New York opening time, and lasts for only one to two hours. (3) The inclusion of the

crash period October 1987 does not seem to alter spillover effects between markets.

Karolyi (1995) uses a bivariate GARCH model and a VAR model to examine the short-run

dynamics of return and volatility between the U.S. and Canadian stock markets. These two

markets have perfect synchronous trading hours, which circumvents the problem of disen-

tangling the confounding effects of non-synchronous trading hours. Combining simulated

impulse response analysis of both models, the results show that return spillovers are sensi-

tive to the dynamics of conditional volatility. He found diminishing effect of return spillover

from U.S. to Canada in the latter part of 1980s. He also found that S&P 500 returns have a

larger impact on non-inter-listed TSE 30 stock returns than inter-listed returns, suggesting

that investment barriers might be an important factor to consider in studying international
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stock markets co-movement.

Early studies typically focused on the volatility spillovers among developed markets. The

interest in studying international stock markets linkages has gradually and naturally ex-

tended to regional and emerging markets as they become more important. To the degree

of integration of these markets with developed markets, implications can be drawn on port-

folio selection and asset allocation for investors. To name a few, studies examine linkages

between developed markets and Asian markets include Ng (2000), Worthington and Higgs

(2004), Chancharoenchai and Dibooglu (2006), Chuang et al. (2007), Beirne et al. (2010),

Wang and Wang (2010), Kang and Yoon (2011), and Li and Giles (2015). Bellotti and Willams

(2005) investigate volatility transmission between emerging markets, between Asia and Latin

America. Majdoub and Mansour (2014) study volatility spillover between the U.S. and five

Islamic equity markets. Other studies which focus on emerging European markets include

Tse et al. (2003) on the U.S. and Poland, Li and Majerowska (2008) on Poland and Hungary,

and Booth et al. (1997) on Scandinavian markets.

It is observed with regularity that stock markets behaviour displays notable similarities

during crisis periods, financial markets volatilities increase sharply and spill over across mar-

kets, despite that the underlying economies are fundamentally different. What are the de-

terminants of return and volatility spillover, or is spillover simply driven by irrational panics?

While this strand of literature is largely preoccupied with the measurement of international

spillovers, the next wave of studies seek to establish factors that drive spillovers.

One strand of literature attempts to link return and volatility spillover to fundamental

economic factors, such as interest rate, exchange rate, inflation etc. Macroeconomic news

was also addressed on the impact of covariance dynamics between markets. This linkage is

generally established by an equilibrium model of returns. The main conclusion from this

strand of literature drawn is that macroeconomic announcements do not seem to affect co-
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movements between stock markets in a meaningful way, and that economic variables ex-

plain only a small fraction of international market comovements.

The other strand of literature explores the idea of market contagion. Contagion, as de-

fined by Claessens et al. (2001), is the spread of market disturbances (mostly on the down-

side) from one market to the other, a process observed through comovements in exchange

rates, stock prices, sovereign spreads and capital flows. The source of contagion could come

from real and financial linkages between markets, as well as from pure irrational responses,

such as herd behaviour and loss of confidence etc. Gagnon and Karolyi (2006) provide an

excellent review on market contagion literature and spillover studies linked to economic

fundamentals. A detailed description of these papers are beyond the scope of this study,

therefore I will limit the quantity of references to the above mentioned.

3.2.2 International stock market spillovers under the forward looking mea-

sure

Early studies of international stock market integration have shown that stock markets

are highly integrated in terms of realised returns and realised variance. Relatively little is

documented in the literature about the notion of implied volatility spillover. The price of

an option contains information about the market’s consensus expectation of expected risk-

neutral volatility of the underlying asset over the life of the option. The superiority of the

information content of forward looking implied volatility over ex-post measures of volatility

has been widely documented (Fleming et al. (1995), Blair et al. (2001), etc.). Since volatility

plays a key role in derivative pricing and portfolio management, how markets are linked

with one another in terms of expectation of future volatility opens up an important area for

investigation.

The seminal work of Whaley (1993) formally established the field of constructing a volatil-
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ity index from a basket of option prices. Chicago Board Option Exchange (CBOE), became

the first exchange to introduce the volatility index VIX (now the VXO) in 1993, which quickly

became the benchmark risk measure of the U.S. equity market. Following the example of

CBOE, other exchanges in the world in succession developed their respective volatility in-

dices. The Deutsche Börse introduced VDAX in 1994, and French Marché des Options Né-

gociables de Paris (MONEP) introduce two volatility indices VX1 and VX6 in 1997. CBOE

revamped the VXO and launched the new VIX using a model free approach in 2003. NYSE

Euronext published VFTSE for FTSE 100 in 2008. Many more volatility indices were pub-

lished and further revised subsequently for the more developed markets. Siriopoulos and

Fassas (2009) provides an extensive review on the world volatility indices both publicly avail-

able and proposed by academic researchers.

Motivated by traditional stock market studies of integration, and the availability of newly

developed volatility indices, researchers shifted their attentions to the examination using

forward looking measure. Since the literature is relatively small, the references listed here-

after are in chronological order.

Gemmill and Kamiyama (2000) was one of the first papers that formally studies inter-

national implied volatility spillover. They calculate implied volatility index for Nikkei 225,

S&P 500, and FTSE 100 index options from 1985 to 1995. A correlation analysis show that

Nikkei implied volatility is less well-correlated with other markets, and Granger Causality

test further shows that Nikkei implied volatility does not influence any other markets, but

itself is influenced by the U.S.. The authors conclude that the results are generally consistent

with those found using ex-post measure literature – both show significant spillovers emanat-

ing predominantly from the U.S.. The paper also investigates spillovers in terms of implied

skewness, however they found no clear evidence of skewness spillover across markets, but

there is weak evidence of long-term U.S. impact on U.K. skewness.
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Aboura (2003) examines daily observations of volatility index of the CAC40, DAX30, and

S&P 100 from 1994 to 1999, namely the French VX1, German VDAX, and the VXO. They em-

ploy VAR framework and its structural analysis, i.e. impulse response function analysis,

forecast variance error decomposition, and Granger Causality tests to test implied volatil-

ity transmission. They found that the U.S. is clearly the most influential market as it explains

about 9% and 10% error variance of the French and German market, while the latter two can

only explain 1% of that of the U.S. market. French VX1 and German VDAX responds strongly

to the shock in the U.S. within the first two days and dies down thereafter.

Skiadopoulos (2004) constructed a volatility index GVIX of the Greek market using FTSE/ASE-

20 index options and futures, and studied the contemporaneous spillover effects with the

U.S. market volatility index VXO and VXN (volatility index on NASDAQ). Their data include

554 observations from October 10, 2000 to December 31, 2002. By examining the proper-

ties of GVIX and its relationship with the underlying stock market, the author found that the

stock market has predictive power of future movements of GVIX while the reverse is not true.

They performed unidirectional regressions to test for implied volatility spillovers from the

U.S. market to the emerging market. They found contemporaneous spillovers from the U.S.

market, but no lead-lag effect.

Wagner and Szimayer (2004) reason that since implied volatility as a risk measure not

only reflects ex-ante risk expectations but also has an immediate impact on traded option

prices, shocks in implied volatility are crucial in understanding the risk. They model shocks

as jumps in implied volatility, and proposed a mean reverting model that allows for Poisson

jumps in implied volatility to estimate jump risk and spillover jump events. They investigate

the dynamic behaviour of daily implied volatility of the U.S. and Germany as measured by

VIX and VDAX from the period 1992 to 2002. They find significant positive jumps occurring

for both markets, and the magnitude of jumps in VDAX is twice as big as those in VIX. Fur-
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thermore, they find most of these jumps are caused by country-specific events rather than by

global events. Only 4 spillover shocks are detected during the 11 years of the sample period.

Nikkinen and Sahlström (2004) analysed the implied volatility index of the U.S., U.K.,

Germany and Finland from 1996 to 2000. They use VAR analysis and Granger Causality test

to investigate transmission of uncertainty. They chose generalised impulse developed by

Pesaran and Shin (1998) in the impulse response analysis, as generalised impulse do not de-

pend on the ordering of the variables. The results show that the U.S. is the leading source of

uncertainty as changes in uncertainty in the U.S. market are transmitted to the other mar-

kets. Impulse responses suggest that U.S. leads other markets by one day and shocks orig-

inated in other markets are absorbed within one day. In the European market, Germany

appears to be the leading source of uncertainty, and the Finnish market, as a representative

of smaller markets, appears to be less integrated.

In a similar context, Nikkinen et al. (2006) study linkages of market expectation of future

volatilities derived from currency options. Their data include daily implied volatilities on

three major European currencies – GBP, EUR, and CHF, quoted against USD. The sample

period used is from January 2001 to September 2003. Vector autoregressive modelling is

applied to ascertain the causal dynamics between currency volatilities. The results show that

the market expectation of future exchange rate volatilities are highly linked among major

European currencies. In particular, the Euro appears to be the dominant currency as its

implied volatility has a major impact on other currency volatilities, and not vice versa.

Äijö (2008) extends the studies of stock market integration by looking at the term struc-

ture linkages of implied volatilities. Previous studies have found that term structure of im-

plied volatility provides useful information about expectation of future volatility over differ-

ent horizons. This study adds to the literature by investigating the term structure linkages of

three European markets volatility indices – VDAX, VSMI, and VSTOXX. The underlying stock
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indices are Germany Dax, Swiss SMI, and European blue chip Dow Jones EuroStoxx50. The

author employs vector autoregressive analysis and its structural analysis. Consistent with

findings in previous studies, the author finds that the implied volatility term structures are

highly correlated with each other in the European market. The term structure of each index

varies a lot over time, and VDAX seems to show a leading role in the European market.

The literature has shown, though limited in volume, that the vector autoregressive analy-

sis and its structural analysis is the widely adopted methodology in studying implied volatil-

ity spillover effects. More papers follow the same framework but using extended samples are

Badshah (2009) and Siriopoulos and Fassas (2009). By the same spirit, as in ex-post mea-

sure spillover studies, there are papers look into the linkages of implied volatility between

developed markets and emerging market (see Narwal et al. (2012)) for India and developed

countries. The general findings of this body of research is that world stock markets are highly

correlated with each other, with the correlation heightened with geometric proximity. The

developed markets seem to have larger impact on smaller markets, and U.S. appears to be

the dominant source of uncertainty.

3.3 Construction of model free implied volatility indices

In 1993, the Chicago Board Options Exchange (CBOE) introduced a stock market volatil-

ity index called the VIX (now VXO), also known as the "investor fear gauge". It was designed

to measure the market’s expectation of 30-day volatility and quickly became the benchmark

risk measure of the U.S. equity market. The original VIX was constructed based on the Black-

Scholes-Merton option pricing model (BSM hereafter) and is calculated using at-the-money

options on the S&P 100 index. Ten years later in 2003, the CBOE made several significant

changes to the original VIX and introduced a revamped VIX. The new VIX is based on the

S&P 500 index, which was a timely switch as the S&P 500 has becoming more important as
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the tracking index for the U.S. equity market. The construction of the new VIX no longer de-

pends on any pricing model, instead, it is based on the concept of fair value of future variance

developed by Demeterfi et al. (1999) and is calculated directly from market observables. The

new VIX is model free and reflects market expectation of volatility over the next 30 calendar

days.

The new VIX has become a core instrument for risk management since its transforma-

tion. It underlies a number of volatility derivatives such as VIX futures, options, and variance

swaps which followed its introduction. The market for volatility derivatives has since been

growing rapidly. Many exchanges across the world started to develop their own respective

volatility index following the steps of the CBOE. Early attempts similar to the construction

of the the old VIX are VDAX, and VX1 and VX6 calculated respectively by the Deutsche Börse

and the MONEP (Marché des Options Négociables de Paris). The method uses at-the-money

options and is model dependent. These volatility indices have then later been redesigned

following the update of the new VIX.

Up to date, the volatility indices for AEX and CAC40 are calculated and disseminated by

Euronext1. FTSE Group calculates and manages volatility indices for FTSE 100 and FTSE

MIB. Eurex, also created a family of volatility indices: VDAX-NEW2, VSMI, and VSTOXX3.

NIKKEI Inc. introduced its volatility index for NIKKEI 225 index in November 2010 and has

retroactively calculated the index on the end-of-day basis to June 1989. The Korea Exchange

has developed a volatility index that suits the Korean market situation and published it in

April 2009. Volatility index for Hang Seng equity index was launched by Hang Seng Indexes

Company Limited in February 2011 and backdated to January 2001. In 2002, the Montréal

Exchange introduced the Implied Volatility index (MVX) based on the old VIX methodology,

1Table 3.6 lists each volatility index with its respective underlying equity index and index constituents.
2The original VDAX is still calculated and disseminated. The discussion of volatility index on DAX through-

out this study refers to the new VDAX with Bloomberg ticker V1X.
3VSTOXX is the volatility index on DJ EURO STOXX 50, which consists of 50 largest sector leaders based on

market capitalization in the Eurozone.
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and only eight years later in October 2010 did they revise the method to reflect the con-

struction of the new VIX. The history of the new volatility index VIXC for the Canadian stock

market started in October 2010 and the original MVX stopped calculation and dissemination

thereafter4.

While the construction of the new VIX is more appealing than its predecessor, there are

flaws in the associated formula, as claimed by Jiang and Tian (2007). In their paper, they

demonstrate that the CBOE procedure in constructing implied volatility leads to biases in

the calculated values because the formula is not a perfect representation of the theoretical

fair value of future variance, which in turn results in approximation errors. Any bias against

the true model free implied volatility will render significant economical consequences. Since

the VIX methodology prevails across the world’s markets in creating volatility indices, it is

important to re-evaluate the method and address the problems accordingly.

In the next section I first give a detailed description of the CBOE methodology in con-

structing the new VIX and its associated problems pointed out by Jiang and Tian (2007).

I then provide a solution, proposed by Jiang and Tian (2007), with modification to fix the

problem. Section 3.3.4 describes data used in this study and is followed by some empirical

comparison with the CBOE procedure presented in section 3.3.5.

3.3.1 CBOE procedure for constructing VIX

Before I come to the description of VIX construction, the theoretical underpinning of the

new VIX within the broader context of model free implied volatility (MFIV) should be appre-

ciated. Breeden and Litzenberger (1978) have laid the pioneer foundation for subsequent

research on extracting risk-neutral densities and model free variance from option prices.

The concept of model free implied variance, which rose from the development of variance

4Volatility indices calculated and disseminated by organised exchanges or relevant parties revealed here may
not be exhaustive. The coverage is limited to the interest of data available.

113



swaps, appeared in as early as Neuberger (1994), which is further developed by Demeterfi

et al. (1999), Britten-Jones and Neuberger (2000), Bakshi et al. (2003), and Jiang and Tian

(2005). Specifically, the new VIX is based on the concept of fair value of future variance de-

veloped by Demeterfi et al. (1999) (DDKZ variance hereafter).

Vddkz =
2
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r T −
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K 2
dK

} (3.1)

where C (K ,T ) and P (K ,T ) are European call and put prices with strike price K and maturity

T , r is the risk-free rate, S0 is the current asset price, and S∗ is the reference asset price that

is close to the at-the-money forward price which often marks the boundary between liquid

and illiquid options. The future evolution of the underlying asset is assumed to follow a

diffusive process – this means no jumps are allowed. Assume the stock pays no dividends.

Special case when S∗ equals futures price F , S∗ = F = S0er T , the first term in equation (3.1)

is eliminated.

As explained in "The CBOE volatility index – VIX (2009)", the generalised formula used in

the VIX calculation from market prices is:

σ2
T = 2

T

i=U∑
i=L

4Ki

K 2
i

er T Q(Ki )− 1

T

[
F

K0
−1

]2

, (3.2)

where T is time to expiration (in years), F is forward index level, and r is risk-free rate. K0 is

the first strike below the forward index level F . Ki is the i th out-of-the-money option; a call if

Ki > K0 and a put if Ki < K0; both call and put if Ki = K0. Q(Ki ) is the midpoint of the bid-ask

spread for each option with strike price Ki . 4Ki is the increment in strike prices calculated

as:

4Ki = Ki+1 −Ki−1

2
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4Ki for the highest strike is simply the difference between the highest strike and the next

lower strike, and likewise for the lowest strike price, it is the difference between the lowest

strike and the next higher strike.

For each contract month, the forward level F is determined by identifying the strike price

at which the absolute difference between the call and put quotes are the smallest, and the

forward level is then implied by put-call parity

F = Str i ke Pr i ce +er T (C all pr i ce −Put Pr i ce)

Then K0 is identified as the first strike price immediately below F . Options with non-zero bid

quotes are selected in the order of strike price starting at K0. Out-of-the-money options are

selected by choosing call options with strike price greater than K0 and put options with strike

price smaller than K0. After encountering two consecutive strike prices with zero bid, the

selection process ends and no further options are included. Let KL and KU be the lowest and

highest strike price selected according to the selection rule. At strike price K0, the average of

the mid quote from the call and put option is used.

Equation (3.2) is intended to approximate equation (3.1) which is theoretically exact.

Equation (3.2) measures implied variance over horizon T , whereasσ2
V I X is intended to mea-

sure the risk-neutral expected variance over a constant 30-day horizon. Since there are gen-

erally no options which expire exactly in 30 calendar days, two option series that are closest

to 30-day expiry need to be considered. The near-term series must have at least one week

to expiry to mitigate concerns of liquidity and microstructure effects. When the near-term

options have less than a week to expiration, the VIX calculation rolls to the second and third

maturity contracts. The implied variance is calculated for both maturities, and the desired

VIX variance with the 30-day maturity is then linearly interpolated between the two available

maturities
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σ2
V I X = 365
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[
ωT1σ
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]
, (3.3)

where

ω= T2 −30/365

T2 −T1
.

VIX is expressed as σV I X ×100.

3.3.2 Problems associated with the CBOE procedure and solutions

It shows clearly from equation (3.1) that the model free implied variance is defined as

an integral of weighted option prices over an infinite range of strike prices, but the actual

construction procedure of the VIX used by the CBOE represents a discrete sum of weighted

option prices plus a correction term. The approximation of an integral by a discrete proxy

induces bias if care is not taken in minimizing implementation errors. As demonstrated by

Jiang and Tian (2007), there are mainly two sources of approximation errors in the CBOE

procedure which may bias the calculated implied volatilities5.

The first type of approximation errors is due to the limited availability of strike prices. If

options are available for all strike prices, then it is straightforward to calculate the integral

using numerical methods. But in reality, there is only a finite number of options actually

traded in the market. Let KU and KL be the highest and lowest strike prices available for a

given maturity, then truncation errors arise from the CBOE procedure as an infinite range of

strike prices is replaced by a finite range between KL and KU :

∫ K0

0

P (K ,T )

K 2
dK +

∫ ∞

K0

C (K ,T )

K 2
dK ≈

∫ K0

KL

P (K ,T )

K 2
dK +

∫ KU

K0

C (K ,T )

K 2
dK .

5Jiang and Tian (2007) report four types of approximation errors embedded in the CBOE procedure, some
of which are unlikely to be economically significant. For the relevance of this study and possible remedies
addressed to the problem, I mainly discuss two types of approximation errors.
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The size of the truncation error is

δtr unc =− 2

T
exp(r T )

[∫ KL

0

P (K ,T )

K 2
dK +

∫ ∞

KU

C (K ,T )

K 2
dK

]
.

The negative sign indicates a downward bias in the calculated variance.

As pointed out by Jiang and Tian (2007), truncation error may vary substantially over time

as the truncation interval [KL ,KU ] is not fixed for all maturities. The reason lies in the way the

CBOE filters out problematic options. Any option with a zero bid price is excluded from the

VIX calculation. Options outside two consecutive strike prices with zero bid quotes are also

excluded from the calculation. Since options with zero bid quotes are considered illiquid

and they tend to cluster at extreme strikes (far away from at-the-money strikes), exclusion of

options at such arbitrary boundaries would induce a significant reduction of the number of

options included in the calculation, which in turn leads to a downward bias of the calculated

value.

The second type of approximation errors is the discretization error due to CBOE’s rather

unusual numerical integration:

∫ K0

KL

P (K ,T )

K 2
dK +

∫ KU

K0

C (K ,T )

K 2
dK ≈

i=U∑
i=L

4Ki

Ki
2 Q(Ki ,T ).

Although numerical integration errors can be minimised by using sufficiently finely parti-

tioned strike prices, the actual partition used in the CBOE procedure is based on listed strike

prices which are typically quite coarse. The size of the discretization error is

δdi sc =
2

T
exp(r T )

{
i=U∑
i=L

4Ki

Ki
2 Q(Ki ,T )−

[∫ K0
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P (K ,T )
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K 2
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]}
.

The discretization error leads to an overestimation of the calculated variance. RHS of equa-
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tion (3.1) requires the computation of the following

∫ S∗

0

P (K ,T )

K 2
dK +

∫ ∞

S∗

C (K ,T )

K 2
dK .

The integrand function reaches a peak at K = S∗ and declines monotonically on both sides

as K goes away from S∗; it is discontinuous at K = S∗ whenever S∗ 6= F . While S∗ is an

arbitrary value close to the forward level which generally does not coincide with any listed

strike price, the option price at K = S∗ needs to be estimated. A relatively small error in the

estimated option value may lead to a sizeable approximation error in the calculated variance

since the integrand peaks sharply at S∗. Figure 3.10 illustrates BSM model simulated option

prices plot againt strike prices. Option price Q(Ki ) reaches a peak at K = S∗ (equal to 1 in

this example) and declines sharply on both sides as K goes away from S∗. The option price

Q̂(Ki ) at K0 in CBOE procedure is calculated as the average price of the call and put option

at strike price K0. Jiang and Tian (2007) have shown that Q̂(Ki ) tends to overestimate Q(Ki ).

The larger the gap between K0 and S∗, the bigger the overestimation.

Jiang and Tian (2007) performed Monte Carlo simulation to illustrate the magnitude of

the approximation errors in the CBOE procedure. They choose a base set of parameters

that are consistent with typical market conditions, and vary one parameter at a time while

keeping others constant to examine the size of each respective approximation error. They

show that the truncation error leads to an underestimation of the true volatility, and the

errors are likely to rise sharply when volatilities are high. The discretization error leads to

overestimation of the true volatility and declines as strike price increment increases. Both

approximation errors are negligible when the truncation interval is sufficiently large and the

differences between strike prices are sufficiently small.

They further analyse the approximation errors under a more realistic setting by using ac-

tual data on a given day. They show that total approximation error from the CBOE procedure
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ranges from -4.4% to 2.6% of the true volatility, or -197 to +25 index basis points. One index

basis point is worth $10 per VIX futures. These approximation errors translate into -$1970

to +$250 per futures contract which is clearly economically significant. Although negative

truncation errors tend to offset positive discretization errors when volatilities are low, nega-

tive errors tend to dominate the total error when the market experience a sharp increase in

volatility, leading to underestimation of the true volatility, precisely when a more accurate

measure of VIX is needed. Thus, a fix to the CBOE drawback is desired.

Jiang and Tian (2007) propose a simple smoothing method in constructing model free

implied variance to mitigate approximation errors in the CBOE procedure. The general

idea is to construct a smooth implied volatility function using an interpolation-extrapolation

scheme. Suppose N strike prices are listed for trading on a given day with maturity T . Let

CM (Ki ,T ) and PM (Ki ,T ) be market price of a call and a put option respectively with strike

price Ki . Let 0 < KL = K1 < K2 < ·· · < KN = KU < ∞. The implied volatilities σ(Ki ,T ) for

i = 1,2, . . . , N can be obtained from market option prices using the BSM model. Only out-of-

the-money options are used in constructing implied volatility functions.

The implied volatility functions are constructed for the listed available strike prices be-

tween KL and KU . To construct the implied volatility function over the entire range of strike

prices (0,+∞), N known implied volatilities must be used for interpolation and extrapola-

tion. A nonparametric approach is adopted by Jiang and Tian (2007) in fitting the known

implied volatilities exactly. Interpolation using cubic splines is first implemented between

listed strike prices to construct a smooth function of implied volatilities. Flat extrapolation

is then implemented outside the range of the lowest and highest strike price to construct an

extension of the implied volatility function on the tails. Once the implied volatility functions

are constructed for the entire range of the integral, option prices can be obtained using the

BSM model. The model free implied variance can be thus calculated accordingly. Imple-
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mentations of Jiang and Tian (2007) style interpolation methods are used in other papers,

e.g. Taylor et al. (2010).

3.3.3 Construct implied variance – the BKM methodology

Calculation of implied variance based on equation (3.1) requires the use of S∗, a selected

value, which in applications complicates calculation when dividends need to be taken into

account6. To simplify calculation I adopt the model free implied variance proposed by Bak-

shi et al. (2003) (BKM hereafter) which applies directly to the use of spot asset prices, and

also respects the continuum of options required for implied variance calculation. Let S0 be

the current asset price, and C (K ,T ) and P (K ,T ) be call and put option prices at strike price

K with maturity T . The implied variance is given by

VBK M = er T


∫ ∞

S0

2(1− ln K
S0

)

K 2
C (K ,T )dK +

∫ S0

0

2(1+ ln S0
K )

K 2
P (K ,T )dK

 . (3.4)

A continuum of options prices are needed to compute the integrals. I adopt Jiang and Tian

(2005)’s interpolation and extrapolation method with modifications in achieving this. For the

interpolation part, Jiang and Tian (2005) use cubic splines to fit the known implied volatili-

ties. The output of the cubic spline fitting is a smooth function with a first and second order

derivatives f ′(K ) and f ′′(K ) at every strike price in the interval. Smooth as its advantage,

spline method may overfit data and produces oscillations if the known implied volatilities

are not smooth. Instead, I employ the piecewise cubic Hermite interpolating polynomials 7

(pchip hereafter) to do the interpolation. Pchip constructs the interpolant almost the same

way as the splines, except that the slopes are different. Splines choose the slopes such that

6Equation (3.1) gives the correct expected variance when dividends are paid only when S∗ = F .
7Piecewise cubic Hermite interpolating polynomials and cubic splines are part of the computational rou-

tines for piecewise polynomial interpolation. See https://uk.mathworks.com/help/matlab/ref/pchip.
html?s_tid=gn_loc_drop for detailed description and comparison between them.
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the first and second order derivatives are all continuous, while it may not be the case for

pchip at the second order derivative. The slopes for pchip are chosen in a way that the func-

tion preserves the shape of the data and respects monotonicity. This means that on intervals

where data are monotonic, pchip provides no overfitting of data.

Following the implementation procedure of DeMiguel et al. (2009), I fit pchip with mon-

eyness (K /S) as an independent variable and implied volatility as a function value to ob-

tain interpolated implied volatilities within the known range of moneyness. I then extrapo-

late using the boundary strike prices to construct the tail distribution of implied volatilities.

Following Carr and Wu (2009) and Jiang and Tian (2005), I implement a flat extrapolation

scheme assuming that the implied volatility function is constant beyond the strike prices

at both ends. Once the implied volatility function is constructed, option prices at any re-

quired moneyness level can be translated from the corresponding implied volatility using

BSM model. Then the model free implied variance can be calculated following equation

(3.4) for each maturity contract, and then linearly interpolated for the 30-day expiry.

3.3.4 Data

Data used for this study is the Ivy DB Global Indices database from OptionMetrics. This

comprehensive database covers the world’s major equity indices and provides end-of-day

historical prices for index options and their associated underlying instruments. The database

includes data for 27 equity indices covering 17 countries and regions around the world. As

the interest of this study is to examine the dynamic relationship among world’s major mar-

kets, I intend to include as much coverage as possible. Initial screening of the database gives

17 indices covering non-repetitive countries and regions. A closer look into each index op-

tions finds that some data are problematic and thus excluded from the study8. Table 3.1

8Options for the Australian stock index S&P/ASX 200 show multiple prices of calls and puts with the same
strike price for year 2007 and 2009. I am not able to distinguish between these options as to which is correctly
priced for the information given. In addition, I find irrational prices sitting around for deep in- and out- of-
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shows 15 equity indices I include in this study and their respectively availability of option

data9.

To calculate model free implied variance given by equation (3.4), option data needs to be

filtered. For each index, I include options with strictly positive bid prices10, and discard op-

tions with missing implied volatilities or Black-Scholes (BS) delta, which occurs for options

with intrinsic value above mid price and when options have non-standard settlement. Op-

tion series with maturity shorter than 7 days and longer than 300 days are excluded to min-

imise pricing anomalies. Interest rates are zero coupon rates obtained from the zero_curve

file in the database, and they are linearly interpolated to match each option maturity.

I select out-of-the-money options, namely, calls with BS delta below 0.5 and puts with

delta above -0.5. I define moneyness by K /S, following Jiang and Tian (2005), options with

extreme moneyness beyond [0.7, 1.3] are excluded due to extremely high implied volatilities.

I fit pchip to known implied volatilities points within the interval to obtain the interpolated

implied volatility function and then extrapolate beyond the moneyness to obtain tail func-

tions. I fill a total of 1001 grid points in the moneyness range from 1/3 to 3 for the implied

volatility function. As suggested by Jiang and Tian (2005), truncation errors are virtually zero

when truncation points are beyond 3.5 standard deviations from K /S = 1. The discretization

increment is below 0.01, which is a sufficiently fine partition for the discretization error to be

negligible.

Once implied volatility function is obtained for the range of moneyness, option prices

for each moneyness (or strike price) can be translated from the BSM model through inter-

polated implied volatilities. Subsequently, the model free implied variance for each equity

the-money options throughout year 2013 and 2014, which I believed are either mis-priced or mis-reported by
the data provider. Thus, the Australian index is excluded from examination. The other index excluded is TAIEX
index of Taiwan, whose options history is only available until 2008.

9Note that the raw data is incomplete when provided by OptionMetrics where data for all indices for March,
April, and May are missing for years 2005, 2006, and 2007.

10Bid, ask price are defined as the best closing bid, ask price across all exchanges. Where bid ask prices are
not available for some of the indices options, last price, defined as the closing trade price or the settlement
price of the option, is used as a proxy for the bid price.
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index on each maturity can be calculated. The implied variance of 30-day horizon can be

obtained using two nearest maturities by linear interpolation, and implied volatility is taken

as the square root of the implied variance. The time series of constant 30-day expectation of

implied volatility is termed volatility index for each underlying equity index.

3.3.5 Empirical results

First I compare my calculation of implied volatilities with those calculated using the

CBOE procedure. Table 3.6 provides a brief overview of publicly available volatility indices

that are calculated and disseminated by organised exchanges or relevant party. As can be

seen that volatility indices are available for most of the equity indices under examination,

except for BEL 20,11 HELSINKI 25, and IBEX 35. The methodology to construct volatility in-

dex revealed by each respective calculation body is almost identical to the CBOE procedure

in constructing VIX. Trivial differences to accommodate the local market lie in the selection

of options where the choice of rolling convention or the correction term are not exact replica-

tion. A slight deviation from the CBOE procedure is the method used for Hang Seng volatility

index. The method replicates exactly the first term of equation (3.2) but leaves out the sec-

ond term, which was claimed to reflect its market trading characteristics. The outcome of

this choice would result in higher implied volatility than it otherwise would. FTSE calculates

volatility index for both FTSE 100 and FTSE MIB. Its methodology deviates from the CBOE

procedure in that they employ a slightly different numerical integration scheme. Options

are partitioned into three contiguous groups. Simpson’s rules with unequal-interval is used

to approximate the integral. The weights given to each option price is a weighted combina-

tion of the nearest three strikes as opposed to the simple difference between two adjacent

strike prices as in the CBOE procedure, but the method does not solve material problems

11The equity index BEL 20 is under management by Euronext Brussels. They do not seem to provide volatility
index for BEL 20 any more despite that there has been a record for doing so.
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with truncation interval and discritization issues.

Table 3.7 reports empirical results of implied volatility calculated using the BKM method

compared with those under CBOE procedure. The publicly available volatility indices are

obtained through Bloomberg. Implied volatility calculated using BKM method is denoted

bkm_ its respective equity index or IV_bkm for general referral. Bloomberg implied volatil-

ity is denoted IV_bb. Data length of each comparison is subject to data availability of both

the Bloomberg source and the calculated values. Comparisons are made for one to one

date matching between IV_bb and IV_bkm. Dates with missing values are excluded in both

sources. Numbers in the last four columns are in percentages.

Column 2 of Table 3.7 reports the number of total observations of each pair under com-

parison. Columns 4 and 5 report percentages of observations that the value of IV_bkm is

higher (lower) than IV_bb. It shows that 9 out of 12 implied volatility series calculated using

the BKM method produce more higher values than those under CBOE procedure, ranging

from 50.80% to 99.92%. Only three series produce less higher values, with the lowest being

25.44% for IV_Euro STOXX 50. It thus lends support to the claims of Jiang and Tian (2007)

that the CBOE procedure tends to underestimate the true volatility. Note that here I do not

disentangle between the truncation errors and discritization errors. The numbers are for the

total effect. It may well be the case that the two errors offset each other as their signs are

opposite. But in most cases values of Bloomberg sources are lower than those of my calcu-

lation, implying that truncation errors are more dominant leading to the underestimation of

the CBOE methodology.

Columns 6 and 7 report mean values for each comparison that IV_bkm exceeds (is below)

IV_bb12. It shows that the mean value that IV_bkm exceeds IV_bb ranges from +1.15% to

+4.81%, with the exception of +29.04% for IV_S&P/TSX 60. The mean value that IV_bkm is

below IV_bb ranges from -3.93% to -0.17%. It summarises the magnitude of approximation

12Values in column 6 and 7 are calculated as the average of IV _bkm−IV _bb
IV _bb .

124



errors produced by the CBOE procedure. It can be seen that the range of errors are rather

symmetric on both directions (except for one). My results are similar in magnitude to the

example illustrated by Jiang and Tian (2007) using one day of market data.

The empirical results are odd for IV_S&P/TSX 60. Results show that implied volatilities

calculated using my method are significantly higher than those provided by Bloomberg, see

Figure 3.2. Only one data point has a value smaller than that of IV_bb. The average magni-

tude of values exceeding IV_bb is +29.04%, much higher than that for the rest of the com-

parisons. The Montréal Exchange calculates VIXC exactly the same way as VIX with minor

changes in the rolling convention and calculation of risk free rate. Figure 3.2 shows that the

values are gently above IV_bb at the beginning of the series, but deviate significantly starting

July 2012. Obvious oscillation is shown for VIXC for the first half of 2014, where IV_S&P/TSX

60 shows similar pattern but with bigger magnitude. A few individual spikes are shown on

the latter part of the series. It is not clear why IV_S&P/TSX 60 deviates substantially from

IV_bb. Figure 3.3 shows one example of a ‘well behaved’ calculated volatility index which

is closely aligned to IV_bb, namely, IV_S&P 500. Table 3.8 presents summary statistics of

calculated implied volatility series together with those of Bloomberg source.

Table 3.9 provides information on near- and next-term maturity options used to calcu-

late IV_bkm. Columns (days) report average maturities in calendar days. Columns (nopt)

and (range(nopt)) report the average number, and the range, of options observed for pchip

linear interpolation. The average minimum and maximum moneyness over time for each

index is given in columns (min) and (max), followed by two columns of the range of the

minimum and maximum moneyness. The average minimum and maximum moneyness for

near-term (next-term) maturity options across sample range from 0.72 to 0.86 and 1.10 to

1.23 (0.73 to 0.86 and 1.10 to 1.25). The range of minimum and maximum moneyness given

by available strike prices after options are filtered illustrates possible truncation intervals
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used in the CBOE procedure. Options beyond the truncation interval are ignored, which

leads to truncations errors.

Volatility indices are designed to reflect the market’s expectation of future volatility over

30 days, and are closely followed by market participants. It is essential to the pricing of

volatility derivatives, such as future, options on volatility index, and variance swaps. It is also

important for estimating variance risk premium. A correctly constructed volatility index is

thus the key to ensure the accurate pricing of volatility derivatives. The CBOE procedure in

constructing VIX leads to substantial biases in the calculated values due to approximation

errors. Thus, a robust method providing a reliable volatility index is called for in building

investors confidence.

3.4 Implied volatility spillover effect

This part of the study discusses international market integration through implied volatil-

ity transmission. Early studies have shown that the stock market is highly integrated in terms

of realised returns and realised volatilities. Since volatility plays a key role in derivative pric-

ing and portfolio management, it is important to learn about whether its future expectation

across different markets are linked with each other. Volatility indices provide good tools as

they are designed for risk management purposes. Since they are directly extracted from op-

tion prices, they are forward looking and contain timely information regarding the future

development of the market. The linkage between markets provides market participants a

view ex-ante as opposed to ex-post using returns or realised variance. I will be able to see

whether market participants have different views towards future volatility development in

different markets. The interaction between markets may answer the question whether one

market drives another, which may have important implications on asset allocation and risk

management. It may also be useful for option traders and portfolio managers in implement-
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ing innovative trading strategies in the option market.

Implied volatilities used in this part of analysis are calculated from section 3.4. I employ

vector autoregressive models and its structural analysis, namely, impulse response functions

and forecast error variance decomposition to analyse the dynamic inter relationship be-

tween markets. Section 4.1 describes how data is structured. Section 4.2 gives a preliminary

glance at linkages between markets under contemporaneous correlation. Model specifica-

tion and empirical results follows.

3.4.1 Data

The analysis of transmission effects is done for different groups. Since data includes

countries covering three continents, and I am interested in the dynamic relationships of the

variables within a continent as well as across continents, I group implied volatilities into

Asia, European area, and North America according to their respective geographic locations,

and a cross-continent group, Global. The analysis within each group requires a common

time window for all variables subject to data availability of implied volatilities calculated in

section 3.4. Table 3.2 shows a description of the grouping of the variables and their time

window.

Groups Asia and North America are intuitively comprised of countries and regions in

their respective continent. European area is comprised of countries in continental Europe

as well as the U.K.. Eurozone (represented by the STOXX 50 index) is excluded from the anal-

ysis of European area, as it essentially represents a collection of companies of the eurozone,

which might induce spurious effects when examined together with its component countries.

For Global analysis I consider one country or region as a representative of each continent to

avoid calculation overload. Japan is chosen as the representative of Asia as it is one of the

most important markets in the world and has the highest market capitalization among the
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three countries in its group. Eurozone represents the continental European area13, and U.K.

is picked as it is one of the most influential markets in the world.

Time frame for each group depends on data availability. The longest shared period within

each group is chosen as its study period. Though calculated implied volatilities of European

countries generally have a longer history, there is a portion of data missing for some con-

secutive periods in 2008 for the Dutch market. Thus common period for the European area

is chosen to start in March 2009 where periods of very high volatilities due to the financial

crisis are excluded.

3.4.2 Preliminary discussion

Given that each market operates in different time zones, it is necessary to understand

the operating hours of one market relative to another on the same scale. Figure 3.1 shows

information of option market trading hours for each country in Tokyo time14, which is the

first market to open on a given day. The time zone of Tokyo is UTC + 9. As can be seen in the

figure the Asian markets are the first to open, then followed by the European markets and

lastly North American markets. Japanese market closes at 15:00 before any European market

opens, while the U.S. market opens at 23:30 with about 2 hours operating concurrently with

the European markets.

Table 3.10 shows contemporaneous correlations for the differenced implied volatility se-

ries15 among markets for each group. Group B shows that pairwise correlation among Eu-

ropean areas are much higher than those in Asia and North America. Correlations are more

than one half for most pairs in the European region except for those with Finland. Correla-

13Only Swiss market in the sample is not accounted for by Eurozone.
14Note that Japan does not use daylight saving time, whereas North American markets and the European

markets observe summer time. Relative trading hours discussed in this analysis is based on standard time
(winter time).

15Differenced implied volatility series are used for the following study of spillover analysis. Reasons for such
choice is detailed in the next section.
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tions between Finland and other European countries are between 0.31 and 0.45, suggesting

that the Finnish market might be less integrated in the European area. Second to Finland is

Italy which has relatively low correlations with other European countries. Correlation coef-

ficients are lowest at 0.31 with Finland and highest at only 0.56 with France, suggesting Italy

might have less influence on other countries in the region. The highest pairwise correlations

are among U.K., France, Germany, and Switzerland. These four markets are the largest mar-

kets in the European area in terms of their market capitalization. High correlations among

them may reflect fast information flow as larger markets tend to be more liquid.

Group A shows that the intra-regional pairwise correlations tend to be higher than inter-

regional correlations. The highest being 0.80 between U.K. and Eurozone; the lowest being

0.13 between Japan and U.S.. This pattern of contemporaneous correlations is consistent

with what I expect from the structure of time zone differences between markets. Geographi-

cally the closer the markets the higher the correlation, while the further apart between mar-

kets, the lower the correlation. This may also reflect the degree to which markets are inte-

grated. The more integrated two markets are, the more strongly one market movement may

be correlated with the other.

Developments in the Japanese market does not seem to influence much on the U.S. mar-

ket, while correlations between the U.S. market and two European markets are higher, which

may reflect the fact that the U.S. market and the European markets simultaneously operate

for about 2 hours before the latter close. The low correlation between the Japanese market

and the U.S. market seems to suggest that U.S. influences Japan. If U.S. were to be influenced

by Japan, then the U.S. market would have responded to the Japanese market, which closes

before U.S. market opens, on the same day. This in turn would result in a higher correlation

between the two markets. Contrary to results reported in Eun and Shim (1989) that the U.S.

and Canada exhibits the highest correlation for residual returns, my results show that the
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correlation of changes in implied volatility between these two markets are moderate.

3.4.3 VAR model specification

To analyse the transmission of implied volatility, vector autoregressive analysis (VAR) and

its structural analysis are employed. The VAR model, popularised by Sims (1980), treats all

variables as a priori endogenous, and describes the dynamic evolution of its component

variables from their common history. The general mathematical form of the VAR(p) model

is:

Yt = c+Π1Yt−1 +Π2Yt−2 +·· ·+Πp Yt−p +εt (3.5)

where Yt = (y1t , y2t , · · · , ykt )′ denotes a (k × 1) vector of times series variables of interest. c

is a k dimensional constant vector. Πi are (k × k) coefficient matrices, and εt is an (n × 1)

unobservable vector of random variables with zero mean and covariance matrix Σ. εt is seri-

ally uncorrelated but may be contemporaneously correlated. p is lag length. Applied to the

Global group variables, the VAR(p) system is16:

U S t = cU S +
p∑

i=1

A1i
U SU S t−p +

p∑
i=1

B1i
U K U K t−p +

p∑
i=1

C1i
Eur oEur ot−p +

p∑
i=1

D1i
JP JP t−p +εt

U S

U K t = cU K +
p∑

i=1

A2i
U SU S t−p +

p∑
i=1

B2i
U K U K t−p +

p∑
i=1

C2i
Eur oEur ot−p +

p∑
i=1

D2i
JP JP t−p +εt

U K

Eur ot = cEur o +
p∑

i=1

A3i
U SU S t−p +

p∑
i=1

B3i
U K U K t−p +

p∑
i=1

C3i
Eur oEur ot−p +

p∑
i=1

D3i
JP JP t−p +εt

Eur o

JP t = c JP +
p∑

i=1

A4i
U SU S t−p +

p∑
i=1

B4i
U K U K t−p +

p∑
i=1

C4i
Eur oEur ot−p +

p∑
i=1

D4i
JP JP t−p +εt

JP

Here U S t , U K t , Eur ot and JP t denote the implied volatility measures of U.S., U.K., Eu-

16All following illustrations of model specification are given for group Global, and the same methodology
applies to the rest of the groups where discussions of empirical results are in subsequent sections.
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rozone, and Japan, with

Π1 =



A11 B11 C11 D11

A21 B21 C21 D21

A31 B31 C31 D31

A41 B41 C41 D41


, ..., Πp =



A1p B1p C1p D1p

A2p B2p C2p D2p

A3p B3p C3p D3p

A4p B4p C4p D4p


.

The VAR model requires variables generated from a stationary process. The economet-

rics analysis can be done either in levels or in changes. However, the choice is not easy for

this particular data. The ADF unit root tests shown in Table 3.3 indicate that the time se-

ries of implied volatility levels for U.K., Eurozone, and Japan are stationary at the 1% level,

whereas U.S. level implied volatility is only stationary at 5% level. Time series of implied

volatility changes are stationary at all conventional levels for all countries. First order au-

tocorrelation in level volatilities are high, being 0.982,0.983,0.977 and 0.981 respectively for

the U.S., U.K., Eurozone and Japan. This is intuitive as volatilities are known to be persistent

and have a long memory feature. However, the high serial correlations would give a highly

autocorrelated error term, which may induce model mis-specification. The results suggest

that an analysis in differences may be necessary. Thus, I examine how a change in implied

volatility of one market at its close impacts another.

The VAR model is estimated with OLS. In order to estimate the model, the number of lags

p needs to be determined, however, it is never an empirically easy issue. Longer lag lengths

lessen the chance of mis-specification, but result in the loss of more degrees of freedom.

Akaike (AIC), Schwarz (SIC), and Hannan-Quinn (HQ) information criteria, final prediction

error (FPE), and modified LR test are used to select the lag order. As mentioned in Lütke-

pohl (2005), the lag order obtained with information criteria depends to some extent on the

choice of the initial guess. Choosing a small lag, an appropriate model may not be in the set
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of possibilities and choosing a large number may result in a large spurious value. Using a

moderate value seems to be a sensible strategy. The same as Äijö (2008), I choose p = 8 lags

to start with.

Table 3.4 shows the determination of lag order given by aforementioned information cri-

teria. While AIC, FPE, and modified LR test suggest lag length of 8 to be appropriate for the

VAR(p) model, SIC and HQ suggest optimal lag length 7. Model adequacy can be further

checked by some formal tests. If the number of lags is appropriate, there should be no au-

tocorrelation left in the residuals. Portmanteau and Breusch-Godfrey-LM tests are standard

tools for checking residual autocorrelation in VAR models. However, the multivariate port-

manteau test and LM test collectively reject the null hypothesis of no serial correlation up to

lag 12. The Q-stats are as big as a few multiples of its respective degrees of freedom. Higher

order of lags have been tried and the same rejection of no serial correlation results. This re-

sult indicates possible serious autocorrelation in the VAR system which would bias estimates

of coefficients and standard errors in the regression.

However, the cross correlograms in Figure 3.4 show that there is no obvious pattern in the

residuals up to lag 7, but some significant values at lag 10. While there is no theory suggesting

autocorrelation occurs in latter lags but not lower lags, it appears that for the underlying

data, the changes of implied volatility 10 days apart tend to coincidentally move in the same

direction. This leads us to believe that failing the test of no serial correlation may be due

to the heteroskedastic feature of the data rather than actual autocorrelation. AR roots table

shows that all inverse roots have modulus less than one and lie inside the unit circle, which

means the estimated VAR system is stable, and which further confirms that 7 lags is adequate

in capturing the system dynamics. I proceed on to structural analysis with the VAR(7) model.
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3.4.4 Impulse response analysis

3.4.4.1 Theory

The general VAR(p) model has many parameters, and it may be difficult to interpret coef-

ficients due to complex interactions and feedback effects between variables in the model. As

a result, the dynamic properties of a VAR system are often summarised through some struc-

tural analysis. Two main types of structural analysis are impulse response functions and

forecast error variance decompositions. I will employ both analyses to study the dynamics

in the VAR system.

Impulse response analysis traces the effects of a shock to one endogenous variable on

to the other variables in the VAR system. It moreover traces the speed and persistence of

the shocks, and therefore enables the examination of the time structure of the transmis-

sion. I consider in this study generalized impulse response functions17 as opposed to tradi-

tional impulse response in that the generalized responses do not require orthogonalization

of shocks and are invariant to the ordering of the variables in the VAR system. Since there

is no economic theory underpinning the causal relationship between country level implied

volatilities, it is reasonable to use generalised impulse response functions to study the inter-

relationship between them without any a priori assumption.

Under the assumption of covariance-stationarity, equation (3.5) can be rewritten as the

infinite moving average representation,

Yt =ω+
∞∑

i=0
Aiεt−i (3.6)

Where the k ×k coefficient matrices Ai can be obtained by recursive substitution,

Ai =Π1Ai−1 +Π2Ai−2 +·· ·+Πp Ai−p , i = 1,2, . . . ,
17See Pesaran and Shin (1998).
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with A0 = Ik and A j = 0 when j < 0.

An impulse response can be described as the effect of a hypothetical k×1 vector of shocks

of size δ= (δ1, . . . ,δk )′ hitting the system at time t compared with a base-line profile at time

t +n, given the system’s history. Denoting the known history of the system up to time t −1

by the information setΩt−1, the generalised impulse response function of Yt at horizon n, is

defined by

GIY (n,δ,Ωt−1) = E(Yt+n |εt = δ,Ωt−1)−E(Yt+n |Ωt−1)

The appropriate choice of hypothesized vector of shocks, δ, is central to the properties of the

impulse response function. The generalised impulse response function shocks one element

of εt , say the j th element, and integrates out the effects of other shocks using an assumed or

historically observed distribution of errors. Then we have

GIY (n,δ j ,Ωt−1) = E(Yt+n |ε j t = δ j ,Ωt−1)−E(Yt+n |Ωt−1). (3.7)

Assuming εt has a multivariate normal distribution with mean vector zero and covariance

matrix Σ= (σi j ), the conditional expectation is

E(εt |ε j t = δ j ) = (σ1 j ,σ2 j , · · · ,σk j )′σ j j
−1δ j =Σe jσ j j

−1δ j

where e j is an k×1 selection vector with unity at its j th element and zeros elsewhere. Hence,

the generalised impulse response of the effect of a shock in the j th equation on Yt+n at time

t is given by 
AnΣe j

p
σ j j




δ j

p
σ j j

 , n = 0,1,2, . . . .
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Setting δ j =p
σ j j , the scaled generalised impulse response function is the k ×1 vector:

ψ j (n) = 1p
σ j j

AnΣe j , n = 0,1,2, . . . . (3.8)

3.4.4.2 Results for the Global group

Figure 3.5 presents the results of impulse response analysis with 2 standard error bounds.

The results show that given a shock to any variable in the system, all other variables will

have a positive contemporaneous response to that shock, but the magnitude of responses

is different for each variable. A shock in the change of implied volatility in Japan only gives

rise to about a half unit response of change of implied volatility for U.S., U.K., and Eurozone,

while those responses are much stronger towards a shock in the U.S., U.K., or Eurozone. The

responses are more than 1 unit. Japan clearly has a lagged response to the Western markets.

It has a very small response to the U.S. market on day 1 but has an increased response on day

2. This could be explained by the fact that Japan is on the far East of the globe, and there is

about 8.5 hours difference between the close of the Japanese market and the open of the U.S.

market. Any information not captured on day 1 is flowing into day 2 when Japanese markets

opens about 3 hours after the U.S. market closes, which gives Japan a stronger reaction on

day 2 than day 1.

Similarly Japan has a lagged response to the two European markets, but the responses

on day 2 are decreasing possibly because any news in these two markets has been commu-

nicated with the U.S. market during their 2 hours trading overlap, and is captured by the

responses to the U.S. market. While the impulse responses of Japan to the U.S., U.K., and

Eurozone are positive on the next day, those of U.S., U.K., and Eurozone are corrected on

day 2. This indicates that the responses of U.S., U.K., and Eurozone to the shocks of Japan

are incorporated within one day but Japan has a lagged response on the following day, which
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suggests that the U.S., U.K., and Eurozone markets lead the Japanese market by one day.

Analogously, the U.K. and Eurozone market have a lagged response to the U.S. market while

the U.S. markets responds to the two European markets only on day 1, which indicates that

the U.S. market leads the U.K. and Eurozone market by one day. The figure shows clearly

that the impact of the shocks are positive on day one or day two, and start to decay there-

after, which suggests that these markets are efficient in that international news are processed

within two days.

The time sequence of markets is not arbitrary. On a given date, Japan is at the top, Eu-

rozone and U.K. come in the middle, and U.S. at the bottom; simply because the Japanese

market is the first to open and U.S. is the last to close. But one can argue that which mar-

ket comes first depends on where one cuts into the chain, and we should expect to result

in the same transmission mechanism under different ordering. Hence, I advance U.S. and

European market each to the top of the chain by appropriately lagging the other variables.

Figure 3.6 shows the impulse responses when the change of implied volatilities are grouped

as U S t ,Eur ozone t+1,U K t+1 and JP t+1. It can be seen that U S t has a lagged response to

U K t+1 and Eur ozone t+1 with an increased next day response. This is because the two con-

tinental markets are grouped such that they are at the two far ends of the chain, that U K t+1

and Eur ozone t+1 have an immediate impact on U S t+1 but inevitably not much on U S t . The

pattern of the impulse responses of Japan to shocks in the U.K. and Eurozone is the same as

in the previous discussion meaning that the U.K. and Eurozone markets lead Japanese mar-

ket by one day. But JP t+1 does not have a lagged response to shocks in U S t as JP t+1 sits

immediately after U S t , of which information is processed contemporaneously. Likewise for

U.K. and Eurozone, the impact of shock to U.S. on day t is fully processed on day t +1, sug-

gesting that U.S. leads U.K. and Eurozone market by one day.

In Figure 3.7, the variables are arranged as Eur ozone t ,U K t ,U S t , and JP t+1. Results

136



show that JP t+1 has a stronger impact on Eur ozone t+1 and U K t+1 than on Eur ozone t and

U K t . Putting Japan on the bottom of the chain helps us to see that the shocks to U.S., U.K.,

and Eurozone on day t is fully incorporated by Japan on day t +1, which suggests that U.S.,

U.K., and Eurozone market leads Japanese market by one day. Similarly, Eur ozone t and

U K t have a lagged response to U S t , which suggests that the U.S. market leads U.K. and Eu-

rozone market by one day. In summary, all three sets of impulse responses tend to agree that

the Japanese market is a follower in this global setup while U.S. is the dominant leader in

implied volatility spillover. The European markets sit in the middle where it follows the U.S.

and leads Japan.

The aforementioned argument can be further supported by a closer look at the VAR re-

gressions. Table 3.5 shows the R2 of each component regression equation under a VAR(3)18

specification, as well as the breakdown of lags included in the estimation. The table reports

results of all three groups under different ordering of the variables. Group one shows that

when variables are grouped on the same timeline day t , lags up to 3 periods are included in

the estimation for each of the variable. The Japan equation has the highest R2 = 0.28 whereas

U.S. has the lowest at 0.06. When U.S. is advanced to the top of the timeline and JP, Euro-

zone, and U.K. are lagged one day in the second group, R2 changed significantly. The lags

included in the U.S. equation are t −1, t −2 and t −3 while those included in JP, Eurozone,

and the U.K. equation are t , t − 1 and t − 2. R2 increased substantially for the U.S. equa-

tion to 0.44 from previous 0.06 by including Eur ozone t ,U K t , and JP t in the estimation,

indicating that changes of implied volatility of Eur ozone t ,U K t , and JP t have a significant

impact on the changes of implied volatility of U.S. on day t . Omitting the lag of U S t in the

equation of Eur ozone t+1,U K t+1, and JP t+1 significantly reduced the explanatory power.

18Different ordering of the variables requires distinct VAR specification. The system is best described by
a VAR(7), VAR(3), and VAR(3) respectively for each group. But in order to disentangle the marginal effect of
inclusion(exclusion) of one specific lag in a particular equation, I employ a VAR(3) model for all groups for
consistent comparison.
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R2 decreased to 0.04, 0.04, and 0.14 respectively, indicating that U S t has a strong influence

on Eur ozone t+1,U K t+1, and JP t+1. In the third group when Japan is ordered the last of the

chain, results show that R2 of Japan equation reduced to 0.05 when Eur ozone t ,U K t , and

U S t are not included in the equation, indicating Eur ozone t ,U K t , and U S t have a signifi-

cant impact on JP t+1. The results show consistent evidence that the U.S. market impacts

other markets on the following day, and the two European markets impact Japanese market

on the following day.

3.4.5 Forecast error variance decomposition

While impulse response functions trace the effect of shocks from one endogenous vari-

able on other variables in system, variance decomposition ascertains the proportion of in-

novations in other variables in explaining forecast variances of one variable. It provides the

relative importance of each random innovation in affecting the variables in the VAR system.

Decomposing the error variance requires uncorrelatedness of the innovations in the VAR

system. Since εt can be contemporaneously correlated, it is desirable to orthogonalise the

shocks. The traditional approach uses Cholesky decomposition of Σ such that

PP′ =Σ,

where P is an k ×k lower triangular matrix. Then equation (3.6) can be rewritten as

Yt =ω+
∞∑

i=0
(Ai P)(P−1εt−i ) =ω+

∞∑
i=0

(Ai P)ξt−i
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Such that ξt = P−1εt are orthogonalised, and that E(ξξ′) = Ik . Then, the proportion of n-step

ahead forecast error variance of variable i which is accounted for by variable j is given by

θi j (n) =

n∑
l=0

(ei
′Al Pe j )2

n∑
l=0

(ei
′AlΣAl

′ei )

i , j = 1,2, . . . ,k.

Note that by the law of total variance
k∑

j=1
θi j (n) = 1.

Figure 3.8 reports the results of variance decomposition for the four markets19. Forecast

periods are for 1 to 10 days ahead. Each entry in column 3 to 6 denotes the percentage of

forecast error variance of the panel variable explained by column variables. It can be seen

that substantial amounts of interactions are shown across continents. The variance of one

market is accounted for by its own innovations as well as innovations in other markets. The

results indicate that U.S. market is the most influential one in the world. Its own innovations

accounts for about 98% of its own variance while the other three markets collectively account

for 2%. On the other hand, innovations in the U.S. market accounts for a significant portion

of variances in other markets, 38%, 32%, and 22% respectively for the U.K., Eurozone, and

Japanese market. The U.K. market turns out to be the second most influential market in that

it explains 31% of Eurozone market’s variance and 6% of Japanese market’s variance. The

Japanese market appears to be a follower in the international markets. Innovations in the

Japanese market explain only about 1% of the variances of the other three markets.

19Cholesky decomposition of Σ implies that the shock to the second variable does not affect the first variable
contemporaneously, but both shocks on the first and second variable can have a contemporaneous effect on
the second variable. Hence, variance decomposition could be sensitive to the ordering of the variables. The
order of the variable in this analysis is U.S., U.K., Eurozone, and Japan, which is determined by its relative
importance from impulse response analysis. However, when I change the order of the variables, the U.S. still
emerges as the most dominant market.
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3.4.6 Empirical results for groups European area, Asia, and North Amer-

ica

In this section I briefly discuss the findings of impulse response analysis for the Euro-

pean area, Asia and North America20. Figure 3.9 shows impulse responses for the European

area. Each individual graph shows combined impulse responses of one variable to shocks

to all other variables. The results reveal some patterns of regional effect. It can be seen that

all markets respond to a shock in another market in almost an identical fashion. They ac-

commodate the shocks in other markets within one day, which indicate that the European

markets have a high degree of integration and possible free flow of information. However,

there is one exception in this group, Italy. The graph shows that Italy has a rather sluggish

response to shocks in all other markets. It continues to react noticeably on the following

day, and the adjustment is completed in day 2. It suggests that Italy acts as a follower in the

European region.

Further examination reveals the interesting position of the Finnish market. The bottom

right corner graph shows that the responses of the Finnish market are collectively smaller

than any other market to exogenous innovations. The size of the responses is about 0.5.

The rest of the graphs show at the same time that responses of all other markets to shocks

to the Finnish market is likewise the smallest. The weak interaction with other European

markets suggests that the Finnish market is rather independent and less integrated in the

European region, which confirms its low correlation with other European markets. A similar

conclusion is drawn in Nikkinen and Sahlström (2004).

The results also show that, the U.K., German, French, and Swiss markets, being the bigger

markets in the European region, have a much stronger influence on the rest of the smaller

20I do not perform forecast error variance decomposition analysis for each regional market. Regional markets
are highly correlated with one another and exhibit feedback effects among each other. It is thus hard to identify
the sequence of information flow, which renders the ordering of variables difficult.
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markets, as smaller markets react strongly to bigger markets while not vice versa. It sug-

gests that any news emerges in the bigger markets will be quickly transmitted to the smaller

markets, while news in the smaller markets tend to be local which will not have a big im-

pact outside its own market. Clearly, bigger markets play a more dominant role in producing

information in the region.

Results of groups Asia and North America21 reveal the same regional pattern. All shocks

are absorbed within the same day, indicating that regional markets are highly integrated.

However, the U.S. market does not appear to be dominant over the Canadian market, as the

responses of the Canadian market to the U.S. market is of the same magnitude as those of

the U.S. market to the Canadian market.

3.5 Conclusions

This study adds to the literature of international stock market integration by investigat-

ing spillover effects across markets through implied volatility. Earlier studies have focused

on ex-post measures, such as realised returns and realised volatility in establishing linkages

between markets. Implied volatility, extracted directly from option prices, is considered as a

forward looking measure which contains a rich source of information about the risk of the

underlying asset until the expiration of the option contract. By nature implied volatilities

are more informative than realised volatilities, and provide an attractive alternative to study

linkages between markets.

The world’s volatility indices on national equity indexes are publicly calculated and dis-

seminated by organised exchanges. The method generally follows that of the CBOE in calcu-

lating the VIX, which is subject to estimation errors pointed out in Jiang and Tian (2007). This

study constructs volatility indices for 15 markets in the world. The method follows the BKM

21Figures for groups Asia and North America are not reported to preserve space.
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methodology in calculating model free implied variance implemented through a modified

curve-fitting method suggested by Jiang and Tian (2007). The proposed method addresses

the issue of the truncation error and the discretization error associated with the CBOE pro-

cedure. To the best of my knowledge, this is the first study that calculates model free implied

volatilities for a large sample of national equity markets, and makes a direct comparison with

the CBOE method. The results provide empirical evidence that the CBOE procedure induces

substantial estimation errors. The errors are dominated by the truncation error which leads

to underestimated implied volatilities.

Implied volatility spillover effects are examined through vector autoregressive analysis

and impulse response functions and forecast error variance decomposition. The results

show that the U.S. market is unambiguously the dominant source of uncertainty in the world.

It leads the rest of the markets in the world by one day. Japan has the least impact on the

western markets in the global group. Markets within geographical proximity show higher

correlations than with markets across continents. In general, the empirical results support

the notion of informationally efficient international stock markets, in that information trans-

mitted from one market to another is processed within one or two days, with information

flow within one continent processed contemporaneously with no lags. The potential pre-

dictability of the direction from movement of one market to the other may have important

implications for traders and asset managers. An increase in implied volatility in the U.S.

might have an impact on the potential movement of implied volatility in other markets, thus

signalling possible trades for a short window.

This study also opens up areas for further investigation in terms of revisiting the method-

ology of vector autoregressive analysis. As reported in section 4.3, the multivariate portman-

teau tests reject the null hypothesis of serial correlation, possibly due to heteroskedasticity

embedded in volatility series. Inference on models when residuals do not behave like white
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noise could potentially be misleading. A possible remedy to overcome this issue could be

applying univariate GARCH modelling to each individual volatility index to account for the

heteroskedasticity effect, and then extract the residuals of each series for the spillover inves-

tigation.
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3.6 Appendix

Table 3.1: Equity indices underlying option data

Equity Index Country/Region Option data history
S&P 500 U.S. Jan 2004 – Dec 2014
S&P/TSX 60 Canada Jul 2007 – Dec 2014
SMI Switzerland Jan 2004 – Dec 2014
FTSE 100 U.K. Jan 2004 – Dec 2014
NIKKEI 225 Japan May 2004 – Dec 2014
KOSPI 200 South Korea May 2004 – Dec 2014
HANG SENG Hong Kong Jan 2006 – Dec 2014
CAC 40 France Jan 2004 – Dec 2014
DAX Germany Jan 2004 – Dec 2014
AEX Netherlands Jan 2007 – Dec 2014
FTSE MIB Italy Jan 2007 – Dec 2014
BEL 20 Belgium Jan 2004 – Dec 2014
HELSINKI 25 Finland Jan 2004 – Dec 2014
IBEX 35 Spain Jan 2008 – Dec 2014
DJ EURO STOXX 50 Eurozone Jan 2004 – Dec 2014

Table 3.2: Group description

Group Countries Time window
Global U.S., U.K., Eurozone, Japan 06/08/2004 – 18/12/2014
Asia Japan, South Korea, Hong Kong 04/01/2006 – 18/12/2014
North America U.S., Canada 03/07/2007 – 18/12/2014
European area U.K., Germany, France, Netherlands 02/03/2009 – 18/12/2014

Belgium, Spain, Italy, Switzerland, Finland
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Table 3.3: ADF unit root tests

levels p-value Changes p-value
U.S. -3.24 0.018 -24.14 0.00
U.K. -3.57 0.006 -24.35 0.00
Eurozone -3.87 0.002 -25.59 0.00
Japan -3.61 0.006 -22.43 0.00

Table reports Augmented Dickey-Fuller unit root tests with five lags and without a time trend. The tests are
done for levels as well as changes in implied volatility.

Table 3.4: Lag order selection for VAR(p) model

Lag LogL LR FPE AIC SC HQ
0 -19755.71 NA 47.19 15.21 15.21 15.21
1 -19150.63 1207.82 29.99 14.75 14.80 14.77
2 -18999.14 301.94 27.02 14.65 14.73 14.68
3 -18894.81 207.61 25.24 14.58 14.70 14.62
4 -18839.82 109.25 24.50 14.55 14.70 14.61
5 -18802.30 74.44 24.10 14.53 14.72 14.60
6 -18717.30 168.37 22.85 14.48 14.71 14.56
7 -18642.57 147.79 21.84 14.44 14.70∗ 14.53∗

8 -18614.11 54.19∗ 21.63∗ 14.43∗ 14.72 14.53
Table reports lag order selection give by Akaike, Schwarz, and Hannan-Quinn information criteria, final prediction
error (FPE), and modified LR test. * indicates lag order selected by the criterion.

Table 3.5: R2 of VAR regressions

Timeline t t t t t t+1 t+1 t+1 t t t t+1

JP Eurozone U.K. U.S. U.S. JP Eurozone U.K. Eurozone U.K. U.S. JP
Lags t-1 t-1 t-1 t-1 t t t t

t-2 t-2 t-2 t-2 t-1 t-1 t-1 t-1 t-1 t-1 t-1 t-1
t-3 t-3 t-3 t-3 t-2 t-2 t-2 t-2 t-2 t-2 t-2 t-2

t-3 t-3 t-3 t-3

R2 0.28 0.13 0.16 0.06 0.44 0.14 0.04 0.04 0.21 0.26 0.11 0.05
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Table 3.10: Correlation coefficients for differenced implied volatility series

Group A
Global JP Eurozone U.K. U.S.
JP 1
Eurozone 0.38 1
U.K. 0.43 0.80 1
U.S. 0.13 0.51 0.55 1

Group B
European area Netherlands Belgium France Germany Finland Spain Italy Switzerland U.K.
Netherlands 1
Belgium 0.71 1
France 0.87 0.72 1
Germany 0.83 0.67 0.88 1
Finland 0.41 0.38 0.45 0.40 1
Spain 0.69 0.56 0.74 0.68 0.40 1
Italy 0.51 0.44 0.56 0.52 0.31 0.55 1
Switzerland 0.83 0.67 0.86 0.83 0.42 0.69 0.54 1
U.K. 0.84 0.69 0.86 0.81 0.40 0.67 0.50 0.82 1

Group C
Asia Japan South Korea Hong Kong
Japan 1
South Korea 0.56 1
Hong Kong 0.40 0.41 1

Group D
North America U.S. Canada
U.S. 1
Canada 0.47 1
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Figure 3.1: Option trading hours for foreign markets on the same calendar day (in Tokyo
time)
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Figure 3.8: Forecast error variance decomposition for the Global group
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Figure 3.10: Numerical intergration method used in the CBOE procedure

Figure illustrates option prices against strike prices simulated from the BSM model for a base set of parameters.
The asset price S is 1, The lowest and highest strike price KL and KU are 0.7 and 1.3. The increment between
strik prices is 0.01. Volatilityσ of the underlying asset is 0.2. Risk free rate and dividend yield are set to 0. Option
maturity T is 30 calendar days.
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Chapter 4

Variance Risk Premiums and International
Spillover Effects

4.1 Introduction

It has been well documented in the literature that return variance on financial assets is

stochastic. When investing in a security, investors face not only risk about the return as cap-

tured by return variance, but also uncertainty about return variance itself. An understand-

ing of how investors deal with uncertainty about return variance is imperative for derivative

pricing, risk management, and asset pricing in general.

In recent research, the difference between realised variance and risk-neutral expected

value of realised variance has been interpreted as a proxy for the variance risk premium. Re-

searchers have shown in theoretical work that the risk-neutral expectation of future variance

can be well approximated by a combination of options across strike prices with the same

maturity. In line with this theoretical development, the Chicago Board of Options Exchange

(CBOE) developed the new volatility index (the VIX) that approximates the 30-day implied

variance on the S&P 500 index, thus making the risk-neutral expected value of 30-day vari-

ance almost an observable quantity. On the other hand, theories on computing realised
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variance from historical returns at different frequency have long been established. Thus, cal-

culating the realised measure minus the risk-neutral measure makes variance risk premium

almost a directly observable quantity.

In this study, I study the variance risk premiums for the U.S., the U.K., the Eurozone, and

Japan for the period from 2004 to 2014. I construct the variance risk premium for each mar-

ket from their representative equity index – the S&P 500 index, the FTSE 100 index, the DJ

STOXX 50 index, and the NIKKEI 225 index. I find that variance risk premiums across mar-

kets are on average negative with negative skewness and large kurtosis. There is significant

variation in the time series and the magnitude of variance risk premium is high when mar-

kets experience disruptive events. Negative risk premiums suggest that investors view an

increase in return variance as unfavourable and are willing to accept negative returns on a

long position in a variance swap to hedge against the upward movement in return variance.

Since the variance risk premium represents some sort of aggregate market uncertainty, it

is important to understand whether and how this uncertainty from one country is transmit-

ted to another. The channel through which variance risk premimus manifest in the global

market may have important implications in asset allocation and risk management. There

are studies documenting variance risk premium’s return predictability on domestic and for-

eign stock markets (Bollerslev et al. (2014), Londono (2015)), but they do not provide a direct

linkage between variance risk premiums across markets. To the best of my knowledge, this

study is the first to investigate the dynamic relationships between variance risk premiums

across markets.

To investigate the transmission of variance risk premiums across boarders, I employ the

vector autoregressive model and its structural analysis. Analysis is done in subsamples for

before, around, and after the 2008 financial crisis. Empirical results show that the U.S. is

unambiguously the leading source of uncertainty in the global market, and no other country
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or a combination of countries have predictive power on the U.S.. The Japanese market seems

to be less integrated with the rest of the markets due to its low correlation as well as the role

as a follower. Information flow from one market to another is fully processed within two

days, but it may taker longer to be digested during the crisis period.

The remainder of the study is organised as follows. Section 4.2 provides a review on re-

lated studies on the variance risk premium1. Section 4.3 lays out the theoretical methodology

in constructing variance risk premium. Section 4.4 describes data used to compute realised

and risk-neutral variance. Section 4.5 provides empirical analysis on variance risk premium

dynamics and spillover effects. Section 4.6 concludes. A list of Figures and Tables are in

Appendix in section 4.7.

4.2 Literature review

Early studies focus on documenting the evidence that volatility risk is priced. This strand

of literature bases its methodology on option pricing theory by specifying appropriate return

and stochastic volatility dynamics and calibrate it to option data. The main purpose of these

papers is to parametrize the data generating process for stock returns and volatility to recon-

cile with the inconsistencies found empirically when relying on Black-Scholes assumptions,

and volatility risk premia implicitly modelled in the risk-neutral underlying dynamics is cap-

tured as a by-product from the estimation. These structural models are estimated with either

Bayesian methods or efficient methods of moments which require much computational ef-

fort. This strand of literature is extensive, and prominent examples are Guo (1998), Bates

(2000), Pan (2002), Benzoni (2002), Chernov and Ghysels (2000), Jones (2003), and Eraker

(2004), among others.

1A review on spillover analysis is covered in Chapter 3 section 3.2 literature review.
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Guo (1998) investigates empirically the risk-neutral variance process and the market price

of variance risk implied in foreign currency option market. He specified Heston (1993) stochas-

tic volatility model and calibrated it to dollar/mark option prices from 1987 to 1992. From

the estimated parameters in the risk-neutral variance process combined with sample vari-

ance, as proxy for physical long-run mean variance, an estimate of variance risk premium

can be obtained through appropriate transformation between the risk-neutral and physical

measure of variance process. The author finds that the variance risk premium is not zero

and time varying; estimates are negative from 1987 to 1990 and positive from 1991 to 1992

on a yearly basis. However, the estimates of variance risk premium are negative for 1991 and

1992 if longer period of sample variance is used. The magnitude of estimated variance risk

premiums imply that the compensation for variance risk is statistically significant as well as

economically important.

Much of the attention on estimating stochastic volatility models has been on the S&P

500 index and its options, and much of the model choice has been Heston (1993) stochastic

volatility model due to its analytical tractability and computational advantage of closed-form

solution in derivative pricing. Chernov and Ghysels (2000) propose a procedure that jointly

estimates the objective and risk-neutral measure of underlying dynamics using simultane-

ously the underlying asset price and a set of option information. The method involves first

fitting a semi-nonparametric density of the underlying asset returns using market data, and

then simulates asset and option prices and calibrates the option pricing model to fit the con-

ditional density of the market data dynamics. The same methodology was adopted by Jones

(2003) and Eraker (2004). Benzoni (2002) claims that simultaneously using both derivatives

and underlying data to estimate stochastic volatility models would limit the length of un-

derlying return sample due to limited trading of option contract. Instead he applies a two-

stage estimation procedure which allows him to combine a large sample of index returns
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and a small sample of option prices. In the first stage, historical daily index returns are used

through a simulated method of moments to estimated the parameters of the model, and in

the second stage a sample of option prices together with a simulation methodology is used

to estimate the risk adjustments. Bates (2000) and Pan (2002) extend afore-mentioned pure

diffusion settings by incorporating state-dependent price jumps to allow for an explicit un-

derstanding of the role played by volatility and jump risk premia. Most recently, Wu (2011)

uses tick data on S&P 500 index futures to construct several quadratic variation estimators

and combine variance swap rates inferred from options to study variance dynamics. In this

strand of literature, while some studies do not provide insight on the relative importance of

volatility risk premia, some find significant negative volatility risk premia that are economi-

cally important for option pricing.

Coval and Shumway (2001) examine the theoretical and empirical nature of option re-

turns in the context of the broader asset pricing theory. The Black-Scholes framework as-

sumes that any risk associated with the variance of the underlying asset returns is not priced

as the return volatility is constant. This implies that options are redundant assets and op-

tions positions that are delta neutral should earn on average the risk free rate. Coval and

Shumway (2001) construct a zero-beta straddle on the S&P 500 index from 1990 to 1995,

which includes a combination of long positions in calls and puts having offsetting variances

with the index. They derive an expression for the straddle return based on call option beta

and found that this market neutral straddles on the S&P 500 index receive on average -3%

returns per week. The results are robust to non-synchronous trading, measurement error

in option beta, and changes in sample period and frequency. The authors conclude that

systematic stochastic volatility may be priced in the returns of option index.

Bakshi and Kapadia (2003a) investigate whether the volatility risk premium is negative in

index option markets by examining profit and loss arising from a dynamically delta-hedged
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portfolio with a long call position hedged by a short position in the stock. The rationale

underlying the analysis is to infer whether volatility risk is priced by looking at whether the

delta-hedged gains are zero. If volatility risk is priced, then the sign and magnitude of port-

folio gains is determined by volatility risk premium. Data includes a sample of daily short

term call and put options on the S&P 500 index from 1988 to 1995. The authors perform

both cross-sectional (across strikes) and time series (at-the-money) tests on delta-hedged

portfolios and find negative volatility risk premiums in option prices. Further tests suggest

that although jump risk explains some portion of delta-hedged gains for short dated options,

the volatility risk premium is the predominant factor that justifies the losses incurred on the

delta-hedged portfolios. Bakshi and Kapadia (2003b) extend their research to study the im-

plications of market volatility risk premium on 25 individual equity options. They find that,

first, implied volatilities are larger than realised volatilities for individual equity options, but

the differences between the two measures are smaller for individual options than for index

options; second, delta-hedged gains for individual equity options are more negative than

positive, and smaller than those for index options. Their results suggest that the volatility

risk premium in individual equity options is negative and lower than that in index options.

Some authors construct a variance risk premium based on the notion of a variance swap,

which is an over-the-counter contract that pays the difference between the realised vari-

ance over a given period and the fixed variance swap rate. Since variance swaps cost zero to

enter, the variance swap rate represents the risk-neutral expected value of the realised vari-

ance. Works of Carr and Madan (1998), Demeterfi et al. (1999), Britten-Jones and Neuberger

(2000), and Jiang and Tian (2005) have shown theoretical advances in synthesizing variance

swap rates using European option contracts. The realised variance can be obtained rela-

tively easily using historical returns of the underlying asset. Thus variance risk premium can

be handily quantified through a model free approach.
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Bondarenko (2004) employs a model free approach to study variance risk premium and

links it to the performance of hedge funds. He uses daily options prices on the S&P 500

index futures for the period from 1988 to 2000 to infer the price of a variance contract. Re-

alised variance is calculated from the S&P 500 futures using a non-standard expression of

discretely-sampled variance such that it is able to accommodate a more general assump-

tion of the underlying asset process that may include jumps. He finds that variance risk is

priced, and its premium is negative and large in economic terms. Consistent with the pre-

vious literature, the author finds that the market variance is negatively correlated with the

market return, but the negative correlation only explains a portion of negative variance risk

premium. The remaining portion can be interpreted as the compensation for a pure vari-

ance risk. This paper further establishes a link between negative variance risk premium and

hedge fund performance. The results show that hedge fund returns are negatively correlated

with variance returns. Hedge funds profits from selling variance contracts and variance risk

account for a significant portion of hedge fund average returns.

Carr and Wu (2009) synthesize variance swap rates using a large options data set, and

investigates historical behaviour of variance risk premiums on five stock indexes and 35 in-

dividual stocks. Their sample includes European options on the S&P 500 index, the Dow

Jones Industrial Index, and the NASDAQ-100 Index, and American options on the S&P 100

index, the QQQ (NASDAQ-100 tracking stocks), and 35 individual stocks for the period from

1996 to 2003. They synthesize variance swap rate at a fixed 30-day horizon, and obtain corre-

sponding annualized 30-day realised variance using daily futures prices. Statistical analysis

shows that the sample averages of variance risk premium are negative for all indexes and

most of the individual stocks. If an investor is going long a variance swap contract on the

S&P 500 index and holds to maturity, the average return on a $100 investment is -$2.74. It

is clear that investor are willing to accept negative returns to go long on variance swap con-
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tracts on stock indexes to hedge away upward movement in index return variance. On the

other hand, variance risk premiums on individual stocks show large cross-sectional varia-

tions, which suggests that the market does not price variance risk in individual stocks, but

only prices a systematic variance risk in the market portfolio. The authors further perform

some tests to investigate whether a classic asset pricing model can explain negative vari-

ance premiums. They find that the well-documented negative correlation between index

returns and volatility only generates a small portion of the negative variance risk premium,

and Fama-French factors cannot account for strong negative variance risk premium either.

Todorov (2010) adopts a semi-parametric framework in modelling both stochastic volatil-

ity and jumps associated with variance risk, to learn about the dynamic dependencies in the

premium. The model assumes that the futures price of the S&P 500 index has three compo-

nents: a drift term, a continuous martingale, and a jump martingale, where the stochastic

variance that drives the time variation of the continuous martingale is modelled as a sum

of a continuous component and a jump component. The author left the drift term, as well

as parametric form for jumps in price and stochastic volatility, purposely unspecified due to

the lack of agreement on the parametric models of these variables in the literature. Realised

variance and realised jumps are constructed from 5-minutes high frequency returns on the

S&P 500 index from 1990 to 2002. Parameters of the stochastic volatility model are estimated

by matching moments implied by the model to those inferred from high-frequency returns.

Risk-neutral expectations of future variance are inferred from the synthesized variance swap

rate using a portfolio of out-of-the-money options on the S&P 500 index. The variance risk

premium is obtained by differencing realised with risk-neutral measures. The empirical ev-

idence suggests that the variance premium is not only big but also varies significantly over

time. The time variation of variance risk premium depends on both continuous component

of stochastic volatility and past price jumps. Further tests show that jumps play an important
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role in explaining variance risk premium. The estimated variance risk premium increases

with a big market jump and slowly reverts to its long-run mean thereafter.

Another strand of literature studies the notion of variance risk premium within a consumption-

based asset pricing framework2. The basic setup involves a standard endowment economy

with Epstein-Zin-Wein recursive preferences, and extends to incorporate stochastic volatil-

ity of consumption growth volatility. The variance risk premium, as a proxy for macroeco-

nomic uncertainty risk driven solely by the consumption uncertainty risk, is the difference

between the implied variance and the realised variance. Zhou (2009) describes that there

is a fundamental link between the option-implied volatility risk premium and the variance

risk premium in consumption-based asset pricing frameworks. For the former, stochastic

volatility can only be priced if its innovation is correlated with the underlying equity return

innovation. There is ample empirical evidence (i.e. papers mentioned earlier estimating

parametric stochastic volatility models) documenting negative correlations between equity

volatility and equity returns, such that the volatility risk premium is negative and serves as

a hedging tool for investors. In the consumption-based framework, however, there is no as-

sumption about statistical correlation between the volatility and consumption innovation.

The representative agent is endowed with a preference for earlier resolution of uncertainty,

and a stochastic volatility of volatility. Under such setup the variance risk premium embed-

ded in equity markets must be positive to compensate for bearing more risk. Zhou (2009)

claims that "the positive variance risk embedded in underlying asset is entirely consistent

with the negative volatility risk premium implied from option prices".

Bollerslev et al. (2009) (hereafter BTZ) is one of the founding papers in this strand of lit-

erature that, followed by many others, leads to a new branch of research on asset return pre-

2Variance risk premiums are conventionally defined as the difference between the realised variance under
the P measure and the Q measure, which are often negative. Nevertheless, there are papers study variance risk
premiums from a consumption-based asset pricing framework, where variance risk premiums are interpreted
as the difference between the Q measure and the P measure, which are often positive. Negative variance risk
premiums are consistent with positive variance risk premiums multiplied by a factor of −1. In this study, I focus
on the variance risk premium under the traditional interpretation.
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dictability linked to variance risk premium. In the model setup, the volatility of consumption

growth rate and the volatility of volatility are governed by square root type processes, through

which the time-varying volatility risk premium is generated. The asset return derived from

the equilibrium model solutions can be shown to increase with endowment volatility and

the volatility of volatility, reflecting the compensation for bearing volatility risk. The model-

implied equity premium is composed of two terms, the time-varying volatility of consump-

tion growth, and the stochastic volatility of volatility, of which the latter represents a funda-

mentally different source of risk that dominates the variation of the equity premium, which

in turn constitutes the true volatility risk premium. The difference between the risk-neutral

expected variance and the actual variance effectively isolates this factor and should serve as

an useful predictor for asset returns. Monthly data for the new VIX index is used for quan-

tifying risk-neutral variance. Realised variance are based on summation of 78 intraday five-

minute returns on the S&P 500 index. The sample period is from January 1990 to December

2007. Time series analysis shows that the variance risk premium is almost always positive,

with spikes occurring during 1997-2002 period. The variance risk premium is then used, in

addition to other tradition predictor variables such as P/E ratio, price-dividend ratio, default

spread, term spread, risk-free rate, and the consumption-wealth ratio (CAY), to forecast re-

turns over different horizons. The empirical results show that the variance risk premium is

able to predict returns on the S&P 500 index, and the highest predictability is at quarterly

horizon, where it dominates that afforded by other predictor variables.

Zhou (2009) extends the theoretical foundation and empirical findings of BTZ to exam-

ine return predictability of variance risk premium of the S&P 500 index on equity returns,

bond returns, and credit spreads for the period from 1990 to 2008. The additional predictor

variables for equity returns, bond returns, and credit spreads are P/E ratio, forward spread,

and short rates respectively. The regression results for different return horizons show that
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the variance risk premium has a significant forecast power alone, and in combination with

other predictor variables in explaining excess returns in all three markets, and the return

predictability peaks around one-to-four months, and declines thereafter. This suggests that

the risk premia across markets co-move in the short run, which may be driven by a common

risk factor proxied by the variance risk premium. The author provides theoretical and cali-

bration evidence based on the BTZ framework and found that the stylised model can provide

qualitative justification for equity and bond risk premia, but the parameter setting is not rich

enough to simultaneously explain credit spread puzzle.

Mueller et al. (2011) empirically examine the predictability of the market variance risk

premium on bond risk premia. Similar to previously mentioned studies, the risk-neutral

expected variance is measured by the new VIX index. The realised measure adopted in this

study uses a HAR-RV (Corsi (2009)) model augmented by lags of implied variance. Data for

regression analysis runs from 1990 to 2010 on a monthly frequency. The results show that

variance risk premium is statistically significant for short term T-bill excess returns from 2-

6 months with 1-5 months holding period, and the forecasting power is negligible for long

term treasury bonds at 2-5 years with a 1 year holding period. The short run predictability

is robust with the inclusion of other well-established bond risk premium predictors. The

authors propose a potential explanation for the short-run predictability by extending BTZ’s

economy with stochastic dynamics in the inflation process. The calibrated results show that

the inflation process alone, with or without stochastic volatility, is not able to reproduce the

size of bond risk premia, but combined with consumption growth uncertainty, leads to rich

bond risk premia.

Han and Zhou (2012) study the relationship between returns and variance risk premium

on 500 U.S. individual stocks from 1996 to 2009. The sample included is a subset sample of

stocks with traded options in CRSP database that have high market cap, high institutional
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ownership, high analyst coverage, and tilt more towards growth stocks. The authors find that

the monthly variance risk premium is significantly positive for two-thirds of the stocks, and

it exhibits substantial cross-sectional variation. The variance risk premiums are significantly

related to the sensitivity of stock returns to common risk factors, such as Fama-French fac-

tors and other proxies for systematic volatility factors. Stocks with higher risk exposure to

systematic market volatility tend to have lower returns, and on the other hand, low risk ex-

posure stocks serve as useful hedges for systematic volatility risk. Stocks with high variance

risk premium outperform those with low variance risk premium. A value-weighted portfolio

that is long the stocks ranked in the top quintile of variance risk premium and short those in

the bottom quintile has an average return of 1.84% per month.

Wang et al. (2013) study predictability of variance risk premium on CDS spreads. Their

sample include monthly observations of 382 U.S. entities that are not in the government,

financial, or utility sectors. Data runs from 2001 to 2011. Regression results show that the

variance risk premium displays a significant predictive power on firm-level CDS spreads in

the presence of other credit risk determinants as well as firm-specific variables, and such

predictability cannot be substituted by the latter. In addition, firm-level variance risk pre-

mium dominates market variance risk premium and implied variance in capturing macroe-

conomic uncertainty embedded in CDS spreads. The predictive power of variance risk pre-

mium on CDS spreads increases as firm’s credit quality deteriorates, and is unchanged before

and after the 2008 financial crisis.

Bollerslev et al. (2014) extend existing empirical evidence of return predictability based

on monthly U.S. data to an international setting. Markets include France, Germany, Japan,

Switzerland, the Netherlands, Belgium, the U.K., and the U.S.. Variance risk premiums are

calculated for each market on the respective market equity index for the period from 2000

to 2011. Statistical analysis shows that the variance risk premiums are almost all positive
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across markets, and display remarkable coherence in distributions. Regressing multi-period

returns on respective country variance risk premiums results in similar humped-shaped co-

efficient estimates across countries, however, the degree of predictability is not as strong as

that previously reported for the U.S. market. This suggests that there may be a worldwide

systematic common risk factor priced in the market as opposed to country-specific risk fac-

tor. The authors proceed to construct a global variance risk premium proxy, measured by

market-cap weighted-average of individual country variance risk premium. The regression

results show stronger findings for all countries with a peak of predictability around four-

month horizon.

Londono (2015) conducts similar analysis for an representative index for the Euro area,

as well as the U.S., the U.K., Japan, Germany, Switzerland, the Netherlands, and France for

the sample between 2000 and 2012. Consistent with the finding in Bollerslev et al. (2014), the

author finds that except the predictability found in the U.S. market, every other county’s vari-

ance risk premium is not a useful predictor for domestic stock returns. Further investigation

shows that the U.S. variance risk premium has predictive power for foreign market returns.

The predictability pattern is similar to that found for the U.S. market, which exhibits hump-

shaped pattern and is maximised around 3-6 months horizon. The predictability is robust to

several measures of variance risk premiums, and is also confirmed in an extended sample of

countries where it is not possible to calculate variance risk premium for the representative

stock index. To rationalise the predictive power of the U.S. variance risk premium on interna-

tional stock returns, the author proposes a two-country general equilibrium model based on

BTZ’s single-country setup. The additional feature in this two-country setup is that it allows

macroeconomic uncertainty to be transmitted across countries. The interaction between

the transmission of uncertainty shows that if consumption growth of one country is exposed

to macroeconomic uncertainty originated in a foreign country, then the uncertainty-driver
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country’s variance risk premium plays a significant role in explaining the time variation of

stock returns in both countries.

The literature on variance risk premium is ever evolving, and this review is by no means

exhaustive. Other related studies include Bollerslev et al. (2011) which exploits the linkages

between the objective and risk-neutral expectation of integrated volatility to construct a risk

aversion index and links it to a set of macro-finance state variables. Aït-Sahalia and Kim-

mel (2007) estimate a stochastic volatility model and volatility risk premium using maxi-

mum likelihood method based on closed-form approximations to the true likelihood func-

tion. Bollerslev and Todorov (2011) exploit the structure of jump tails and finds fears for

rare events account for a large fraction of variance risk premium. Trolle and Schwartz (2010)

investigate variance risk premium in crude oil and natural gas. In this study, I examine vari-

ance risk premiums for a set of countries under the conventional measure, as the difference

between the P measure and the Q measure.

4.3 Construction of Variance Risk Premiums

I construct variance risk premium following the arguement proposed in Carr and Wu

(2009) in the notion of a variance swap. The payoff of a variance swap is given by the dif-

ference between the realised variance over the life of the contract and a fixed variance swap

rate,

payo f f = [
RVt ,T −SWt ,T

]
L,

where RVt ,T denotes realised variance, SWt ,T is variance swap rate predetermined at time t ,

and L denotes notional value of the swap contract. No arbitrage requires that the variance
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swap rate SWt ,T equals the risk-neutral expected value of realised variance

SWt ,T = EQ [RVt ,T ].

Carr and Wu (2009) has shown that EQ [RVt ,T ] can be approximated by the continuum of

European out-of-the-money option prices with the same maturity date. Assuming an ap-

propriate pricing kernel and no arbitrage, the variance risk premium is quantified by

V RPt ,T ≡ RVt ,T −SWt ,T .

Following this idea, I approximate EQ [RVt ,T ] as the model free option-implied variance

IVt ,T for the representative equity index.

The methodology to calculate model free implied variance is described in Chapter 33.

Applied to Bakshi et al. (2003) method, the implied variance is given by

IVt ,T = EQ [RVt ,T ] = er T


∫ ∞

S0

2(1− ln K
S0

)

K 2
C (K ,T )dK +

∫ S0

0

2(1+ ln S0
K )

K 2
P (K ,T )dK

 , (4.1)

where S0 is the current asset price, and C (K ,T ) and P (K ,T ) are call and put option prices at

strike price K with maturity T . Using the appropriate option prices and calculation methods,

the annualised IV is obtained for each country with 30-day expiry.

Corresponding to each 30-day implied variance, the annualised 30-day realised variance

in Carr and Wu (2009) is calculated as:

RVt ,t+30 = 365

30

i=1∑
30

(
Ft+i ,t+30 −Ft+i−1,t+30

Ft+i−1,t+30

)2

,

3For details of the methodology in calculating the model free implied-variance see Chapter 3, section 3.3.
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where Ft ,T denotes the time t forward price with expiry date T . Realised variance, in high-

frequency econometrics, is a measure of the sum of finely-sampled squared returns over a

fixed time interval during the trading day. It is a consistent estimator of the corresponding

quadratic return variation when returns are sampled at increasingly higher frequency and

microstructure effects can be ignored. Empirical studies have demonstrated that this type of

measure produces more accurate ex-post measures of actual variance than measures based

on daily or coarser frequency data (Andersen et al. (2001) and Barndorff-Nielsen and Shep-

hard (2002a,b)). However, since the standard market practice to calculate the realised vari-

ance in a variance swap contract is using daily returns, I proceed with daily data to quantify

variance risk premium. The variance risk premium calculated by Carr and Wu (2009) rep-

resents an actual measure based on ex-post knowledge of the realised variance. I propose

a measure of realised variance based on conditional variance expectations that provides an

expected measure of the variance risk premium over T .

The conditional variance model is proposed by Corsi (2009), termed Heterogeneous, Au-

toregressive model of Realised Volatility (HAR-RV). Financial data show well-known stylised

facts such as strong persistent autocorrelations of squared and absolute returns that last for

long periods (long-memory 4), fat tails of return distribution, etc., which pose challenges to

standard econometric models. The HAR-RV model is an approximate long-memory condi-

tional volatility model which is able to reproduce these features that standard GARCH and

stochastic volatility models can not. Stemming from the idea of Heterogeneous Market Hy-

pothesis presented by Müller et al. (1993), which recognizes the presence of heterogeneity

across traders, Corsi (2009) concentrates on the heterogeneity that originates from the dif-

ference in the time horizons. Typically, the financial markets are composed of participants

with different trading frequencies: high frequency for market makers and speculators, and

relatively low frequency for institutional investors. The main idea is that market participants

4See Baillie (1996) for a review on long memory processes.
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with different time horizons perceive, react to, and cause different types of volatility com-

ponents, which is shown as volatility cascade generated by heterogeneous market structure.

Motived by this idea, Corsi (2009) developed an additive cascade model of different volatility

components each of which is generated by the actions of different types of market partici-

pants. This model incorporates a simple AR-structure in the realised volatility over different

horizons, and is able to reproduce the observed volatility persistence as well as other main

stylised facts of financial data.

Following the idea of Corsi (2009), the realised variance over a desired horizon h is given

by

RVt ,t+h = RVt+1 +RVt+2 +·· ·+RVt+h , h = 1,2,3 . . . .

By definition RVt+i−1,t+i ≡ RVt+i . Hence, a weekly realised variance at time t is given by

RVt ,t+5 = RVt+1 +RVt+2 +RVt+3 +RVt+4 +RVt+5,

and a monthly realised variance is

RVt ,t+22 = RVt+1 +RVt+2 + . . .+RVt+22,

where h = 5 and 22 counts trading days as a proxy for weekly and monthly horizons. The

proposed cascade HAR-RV model is represented by

RVt ,t+h =β0,h +βd ,hRVt−1,t +βw,hRVt−5,t +βm,hRVt−22,t +εt ,t+h . (4.2)

Equation (4.2) can be seen as a three-factor stochastic variance model, which predicts the

next h-period ahead value based on the past realised variance over daily, weekly, and monthly

horizons. Of course the realised variance over other horizons can be easily included in the

177



model as additional explanatory variables, but daily, weekly, and monthly measures afford a

natural economic interpretation.

Hence, the variance risk premium, in a simpler notation, is given by

V RPt ,T = E P [RVt ,t+h]− IVt ,T , (4.3)

with h (in trading days) matching T (defined in years). The difference measures the profit

and loss per dollar from a long variance swap contract and holding it to maturity. Dividing

both sides by IVt ,T captures the return from the investment,

RV RPt ,T = E P [RVt ,t+h]− IVt ,T

IVt ,T
. (4.4)

4.4 Data

For the empirical analysis of variance risk premium spillover effects, I consider variance

risk premiums of four major markets across the globe – The U.S., the U.K., the Eurozone, and

Japan. The representative equity index for each market is the S&P 500 index, FTSE 100 index,

DJ EURO STOXX 50 index, and NIKKEI 225 index. Data under examination spans from 2004

to 2014.

Option prices used to calculate IVt ,T are obtained from Ivy DB Global Indices database

from OptionMetrics, as described in section 3.3.4, Chapter 3. Option prices are filtered to

include options with strictly positive bid prices, or last prices (defined as the closing trade

price or the settlement price of the option) whenever bid prices are not available. Options

with missing implied volatilities or Black-Scholes delta are discarded. Option series with

maturities shorter than 7 days and longer than 300 days are excluded. Interest rates are zero

coupon rates obtained within the database and are linearly interpolated to match option
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maturities.

Calculation of equation (4.1) requires option prices for a continuum of strikes, but option

strikes traded in the market are limited. To minimise the estimation error in equation (4.1)

I select out-of-the-money options, whose implied volatilities are fitted and interpolated and

extrapolated to obtain a smooth implied volatility function. Option prices for a full range of

strikes are then translated from the Black-Scholes model through this implied volatility func-

tion. IVt ,T for a 30-day horizon are then linearly interpolated using two nearest maturities5.

Daily equity index prices are needed to calculate RVt ,T . Data is obtained from Datas-

tream. Denote by Pt the closing price of the index, daily realised variance is calculated from

squared returns:

RVt ,t+1 ≡ RVt+1 =
(

Pt+1 −Pt

Pt

)2

.

To match the 30-day horizon with IVt ,T , the HAR-RV model considered is

RVt ,t+22 =β0 +βd RVt−1,t +βw RVt−5,t +βmRVt−22,t +εt ,t+22, (4.5)

where 22 trading days approximates 30 calendar days, and

RVt−1,t ≡ RVt =
(

Pt −Pt−1

Pt−1

)2

,

RVt−5,t = RVt−4 +RVt−3 +RVt−2 +RVt−1 +RVt ,

RVt−22,t = RVt−21 +RVt−20 + . . .+RVt .

Table 4.1 reports OLS estimates of the HAR-RV regressions of equation (4.5) for each of

the markets. The standard errors reported in parentheses are based on a Newey-West correc-

tion allowing for serial correlation of up to an order of 44 days, as suggested in Andersen et al.

(2007). The estimates of coefficients show that most of the estimates are highly statistically

5For details of IVt ,T calculation see section 3.3, Chapter 3.
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significant, but with a rather weak significance for all daily coefficients. The estimates con-

firm highly persistent volatility dependence. The monthly variance component appears to

have a relatively bigger influence on the predictions than daily and weekly components for

all markets, except Japan. Interestingly, daily variance components seem to have a relatively

weak impact, and two of the coefficient estimates across sample are statistically insignificant

at the 10% level.

Corsi (2009) examined S&P 500 futures from 1990 to 2007 for realised volatility using the

HAR-RV model for one-day prediction. Realised volatilities aggregated over three different

horizons are all highly significant, and the importance of the market components decrease

with the horizon of the aggregation. The results show that daily volatility components appear

to have a stronger impact on the predictions than weekly and monthly components. Realised

variance in his paper is constructed by tick-by-tick spot logarithmic middle prices of bid and

ask quotes. Similar to Corsi (2009), Andersen et al. (2007) studied same data on realised

volatility but spans from 1986 to 1999 with tick-by-tick high-frequency data. They estimated

the HAR-RV model for h = 1,5, and 22 with an additional jump component in the regression.

They found that the relative importance of the daily volatility component decreases from the

daily to the weekly to the monthly regressions, whereas the monthly volatility component

tends to be relatively more important for the longer-run monthly regressions, which echoes

my findings.

The insignificant coefficient estimates may be due to the high level of noise contained

in daily close price which is used to construct realised variance, as opposed to intra-day

data. The noisier estimation of the daily realised variance induces weak significance of the

daily volatility component, while weekly and monthly realised variances, being averages over

longer periods, arguably contain less noise and more information on the volatility process

and, hence, receive higher weights from the model.
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Figure 4.1 shows time series of HAR-RV expectations of annualised realised variance for

each of the markets. Each of the series clearly exhibits a high degree of serial correlation. As

can be confirmed in the autocorrelation plots in Figure 4.2. High values of Q-stats of Ljung-

Box test rejects the null hypothesis of no autocorrelation. It shows that the HAR-RV model is

able to reproduce the persistence in empirical data. Table 4.2 provides descriptive statistics

for the four sets of expected realised variances. All exhibit patterns of low level of variance in

calm market conditions, and spikes during market turmoil, the most obvious being the 2008

financial crisis.

4.5 Empirical results

4.5.1 Variance risk premium dynamics

Table 4.2 presents descriptive statistics for each market for the realised variance and

volatility and implied variance and volatility respectively in Panel A and B. Panel C presents

summary statistics for annualised variance risk premiums and return variance risk premi-

ums given by equation (4.3) and (4.4). Data is from May 2004 to December 2014. The av-

erages of the variance risk premiums are negative for all countries, with similar magnitude.

Variance risk premiums show large kurtosis ranging from 30 for the U.S. to 75 for the Eu-

rozone, and sometimes large skewness. The distribution of return variance risk premiums

appear to be close to normal. Carr and Wu (2009) examined variance risk premiums for 5

stock indexes and 35 individual stocks. The mean, standard deviation, skewness, and kur-

tosis for variance risk premium on the S&P 500 index for a sample from January 1996 to

February 2003 are −0.0274, 0.0363, −1.44, and 17.86 respectively. Results of my sample share

similar magnitude with those reported in Carr and Wu (2009), but with higher kurtosis.

The mean estimate of variance risk premiums represents the average profit or loss for
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a variance swap contract. If an investor holds a long 30-day variance swap contract with a

notional of $1 on the S&P 500 index to maturity, the average payoff for the sample period is

$-0.0144. Similar losses result for the other three countries. On the other hand, the return

variance risk premium gives the return of going long a variance swap contract and hold it

to maturity. The average return for the U.S., U.K., Eurozone, and Japan are −19.4%, −14.7%,

−5.30%, and −1.80% respectively. Despite the different scaling, it is clear that investors are

willing to accept negative returns on the long swap contract, hence, shorting variance swap

contracts on these four markets will generate positive returns for this sample period.

Figure 4.3 plots time series of variance risk premiums and return variance risk premiums

for the four markets. The figure suggests that variance risk premiums (hereafter VRP) display

significant time variation. Volatility of the variance risk premium is smallest for the U.K. at

3.2% and biggest for Japan at 6.1%. The graphs show common periods of VRP spikes, the

most obvious being around the 2008 financial crisis, where not surprisingly, the minimum

and maximum values occurred during this period. VRPs are small with little variation prior to

2007 for all countries, and began to increase starting around the sub-prime mortgage crisis

in early 2007. The second episode of spikes, but with smaller magnitudes, occurred around

May 2010, known as the flash crash for the United States trillion dollar stock market crash,

and its influence quickly spread over to the other markets. The third common episode of

spikes occurred around August 2011 when stock prices drop sharply across the world. This

was due to the fears of contagion of the European sovereign debt crisis as well as the down-

grade of the credit rating of the United States.

Despite the similarities of the behaviour of variance risk premiums between the four

markets, there appears an unusual spike uniquely for Japan in March 2011. On Friday March

11, 2011, a 9.0 magnitude earthquake hit Japan and triggered powerful tsunami around the

area. Immediately after the earthquake, the tsunami disabled the power supply and cooling
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of three Fukushima Daiichi reactors, which lead to a nuclear meltdown in the following three

days. The Fukushima nuclear accident was the largest nuclear disaster since 1986 Chernobyl.

The variance risk premium was large and negative the following Monday, followed by con-

secutive large and positive variance risk premiums for the next 10 trading days. Stock market

fell after panic selling as fears of nuclear disasters intensified. Realised volatility shot up sig-

nificantly as the market became more disturbed. Another episode of large VRPs unique to

Japan occurred in May 2013, when NIKKEI 225 fell by 7%, its worst intra-day fall since the

2011 earthquake. This was attributed to the investors being rattled by weak economic data

from China and indications that the U.S. Federal Reserve may start reducing its bond-buying

program as early as June.

Table 4.3 shows that variance risk premiums are highly correlated across countries (num-

bers in parenthesis show return variance risk premium correlations between markets), all of

which are above 0.5. The highest correlation is between the U.K. and the Eurozone, being

0.85, and this is not surprising as these two markets are geographically the closest with no

non-overlapping trading hours. In contrast, Japan has a relatively weak correlation with the

U.S. (0.51) and the Eurozone (0.52).

4.5.2 Spillover analysis

To study the spillover effects of variance risk premiums between countries, vector au-

toregressive (VAR) models are employed. As described in Chapter 3 section 3.4.3, the VAR

model, popularised by Sims (1980), is used to capture linear interdependencies among mul-

tiple time series. A VAR(p) model takes the general form:

Yt = c+Π1Yt−1 +Π2Yt−2 +·· ·+Πp Yt−p +εt (4.6)

Where Yt = (y1t , y2t , · · · , ykt )′ denotes a (k×1) vector of times series variables of interests.
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c is a k dimensional vector. Πi are (k × k) coefficient matrices, and εt is an (k × 1) unob-

servable vector of random process with zero mean and covariance matrix Σ. εt is serially

uncorrelated but may be contemporaneously correlated. p is lag length. Applying to the

sample variables, the VAR(p) system is:

U S t = cU S +
p∑

i=1

A1i
U SU S t−p +

p∑
i=1

B1i
U K U K t−p +

p∑
i=1

C1i
Eur oEur ot−p +

p∑
i=1

D1i
JP JP t−p +εt

U S

U K t = cU K +
p∑

i=1

A2i
U SU S t−p +

p∑
i=1

B2i
U K U K t−p +

p∑
i=1

C2i
Eur oEur ot−p +

p∑
i=1

D2i
JP JP t−p +εt

U K

Eur ot = cEur o +
p∑

i=1

A3i
U SU S t−p +

p∑
i=1

B3i
U K U K t−p +

p∑
i=1

C3i
Eur oEur ot−p +

p∑
i=1

D3i
JP JP t−p +εt

Eur o

JP t = c JP +
p∑

i=1

A4i
U SU S t−p +

p∑
i=1

B4i
U K U K t−p +

p∑
i=1

C4i
Eur oEur ot−p +

p∑
i=1

D4i
JP JP t−p +εt

JP

Where U S t , U K t , Eur ot and JP t denotes measures of variance risk premiums of the U.S.,

the U.K., the Eurozone, and Japan.

The main assumptions of VAR models are that time series Yt are (weakly) stationary with

time invariant mean and covariance matrix, and that εt are serially uncorrelated innovation

processes that follow multivariate normal distributions. However, daily variance risk pre-

miums are a result of linear combination of daily IV s and RV s looking 30 calendar days

ahead in the future. By construction, therefore, any two observations within 22 trading days

apart will contain overlapping information, and thus induce serial correlation. This can be

confirmed by Ljung-Box test statistics reported in and plots of autocorrelation functions in

Figure 4.4.

Portmanteau test Q-statistic can be used to detect serial correlation on the level series

and serial dependence on the squared series. Ljung and Box (1978) Q–statistic is Q(m) =

T (T + 2)
∑m

l=1
(ρ̂l )2

T−l . Where ρ̂l is lag-l sample autocorrelation. The null hypothesis is H0 :
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ρ1 = . . . = ρm = 0 against alternative Ha : ρi 6= 0 for some i ∈ {1, . . . ,m}. Under appropriate

assumptions Q(m) is asymptotically chi-square distributed with m degrees of freedom.

Table 4.4 reports Ljung-Box tests for serial correlation on variance risk premiums and re-

turn variance risk premiums in squared brackets. Tests statistics are reported for 10, 15, and

20 degrees of freedom. As can be seen that variance risk premiums for all countries are se-

rially correlated with large Q-statistics. P-values of the test statistics shown in parenthesis

are essentially zero. The Q-statistics for return variance risk premiums are bigger than those

for dollar amount variance risk premiums, suggesting possible more severe serial correla-

tion in return variance risk premiums. Further evidence can be seen in the autocorrelation

function in Figure 4.4. It suggests that variance risk premiums for four countries are serially

correlated.

While a simple AR structure of each component variable in the VAR system may or may

not capture serial correlation, serial dependence of the time series will remain if not ac-

counted for, and its effect will feed into the residuals causing failure of model validity checks,

hence render inference on the VAR model invalid. In fact, full sample VRPs and subsamples

of VRPs have been fit using the VAR model. Both statistics of multivariate Portmanteau tests

and White heteroskedasticity tests are large and significant with p-values practically equal

to zero, suggesting that there is serious autocorrelation and heteroskedasticity in the residu-

als. The results are not made better by increasing the order of autoregressive terms. Hence it

suggests that the VAR model does not provide a good fit directly to variance risk premiums,

and steps must be taken to account for both effects.

ARCH models provide a natural remedy to capture such characteristics in the time se-

ries. ARCH stands for autoregressive conditional heteroskedasticity. Changes in the scale of

a variable give rise to heteroskedasticity. In the pioneering work of Engle (1982), a stochas-

tic process is defined whose variables have conditional mean zero and conditional variance
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given by a linear function of previous squared variables. The variable of interest is the re-

turn of an asset, and the variance of the return is conditional on the information in previous

returns. Subsequent research has provided many alternative functions to allow conditional

mean to vary through time, and to allow for more components in the conditional mean to

capture dynamics of different asset classes.

There is a multitude of ARCH specifications, and the best known being GARCH (gener-

alised ARCH) from Bollerslev (1986). Letter ‘G’ stands for generalised by including a lagged

variance term in the conditional variance equation. Let rt be the log return of an asset at

time t , with conditional mean µt and conditional variance ht conditional on information

set available until time t −1. Then the formal definition of GARCH(p, q) is given by

rt =µt +
√

htεt , (4.7)

ht =ω+
p∑

i=1
αi (rt−i −µi )2 +

q∑
j=1

β j ,ht− j (4.8)

where {εt } is a sequence of i.i.d. random variables with mean zero and variance 1. εt is often

assumed to follow a standard normal distribution. Other distributions such as standardized

student-t distribution and generalized error distribution are also popular candidates. Con-

straints are ω > 0, αi ≥ 0, βi ≥ 0. The unconditional variance E [ht ] = ω
1−α−β is finite if and

only if αi +βi < 1, assuming p = q = 1, whereas the conditional variance ht evolves over

time.

The GARCH(1,1) model with conditional normal distribution is the most popular ARCH

specification in empirical research, particularly in modelling daily returns in their ability to

capture stylized facts of daily returns. The estimation of parameters is easily obtained by

maximum likelihood methods. Considerable empirical investigations have been applied to

financial markets covering equities, foreign exchange, and interest rates. A review of theory

and empirical evidence up to the 1990s can be found in Bollerslev et al. (1992). In this study,
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I apply GARCH(1,1) models to variance risk premiums 6.

As can be seen from Figure 4.3, the 10 years time series of variance risk premiums exhibit

distinct patterns in different periods, with time varying volatility and high and low level of

volatility clustering, it is thus difficult to adequately capture the dynamics of the time series

with possible structural breaks using one GARCH equation7. In order to better describe the

characteristics of variance risk premiums, I divide the full sample into three subsamples to

investigate them individually.

The subsamples are pre-crisis May 2004 – April 2006, crisis September 2008 – March 2009,

and post-crisis January 2012 – November 2014. Subsamples are chosen such that there is no

obvious structural break during each period. The construction of realised variance incor-

porates overlapping information from its history, thus produces serial correlation up to 22

observations. This autocorrelation is naturally present in variance risk premiums and needs

to be accounted for. I introduce appropriate AR(m) structure into the mean equation to

capture this effect. Parameters of the mean equation and variance equation are obtained

simultaneously by maximum likelihood estimation.

Table 4.6 presents GARCH fitting of subsamples of variance risk premiums for each mar-

ket. The autoregressive terms in the mean equation are indicated as AR(), and the numbers

in the parenthesis indicate the location of the lags. All lags included are statistically signifi-

cant. Parameter estimates of α+β are very close to 1, suggesting that the volatilities of daily

variance risk premiums are highly persistent. Empirical estimates of the sum of α and β

sometimes exceed 1 if parameters are not constrained. There are three cases in the subsam-

ples return estimates of α+β> 1 without parameter constraints – the pre-crisis Japan, crisis

Eurozone, and post-crisis Japan subsample. One way to get around this problem is by es-

6The following analysis in GARCH modelling and spillover analysis is done for the dollar measure of variance
risk premiums, since the Ljung-Box Q-statistics are smaller than those for the return variance risk premiums.

7GARCH specification with various combination of p and q together with AR structure in the mean equation
have been explored to model the full sample variance risk premiums, however none is able to fully capture the
dynamics. The Ljung-Box test on standardized residuals for serial correlation is statistically significant.
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timating an integrated GARCH (IGARCH) model introduced by Engle and Bollerslev (1986),

which imposes a constraint that α+β = 1. But, under this specification, the unconditional

variance is infinite, which seems hard to justify for variance risk premium series.

An alternative approach to estimate parameters of GARCH(1,1) model is known as vari-

ance targeting, introduced by Engle and Mezirich (1996). This is an useful technique to re-

duce the dimension of optimisations in maximum likelihood estimation. It involves a two-

step estimation where, the first step sets the unconditional variance E [ht ] equal to the sam-

ple variance calculated from the data. ω is then parametrised by E [ht ](1−α−β). In the sec-

ond step, two parameters α and β can be estimated by maximum likelihood. This method

has been recommended in Christoffersen (2003) and Hull (2011). Shephard and Sheppard

(2010) also applied it to high-frequency based volatility models. I apply this method for the

three subsamples in estimating the parameters.

To check the validity of the GARCH model, the standardized residuals series are exam-

ined. Let at be the residuals of the mean equation, then at = rt −µt . Standardized residuals

are given by ãt = atp
ht

. The Ljung-Box Q-statistic of ãt can be used to check the adequacy

of the mean equation and that of ãt
2 for the volatility equation. Table 4.6 reports Ljung-Box

Q-statistics up to 20 lags adjusted for degrees of freedom with p-values reported in paren-

thesis. As can be seen, the Q-statistics for both ãt and ãt
2 are small and p-values are large

for most of the samples, indicating that there is no serial correlation or heteroskedasticity in

the residuals, hence the fitted GARCH models are adequate. Further evidence can be seen

from the plots of standardized residuals in Figure 4.5, which look like white noise processes.

However, subsample pre-crisis Japan rejects the null hypothesis of Ljung-Box test on ãt
2

at 10% level, suggesting there is remaining ARCH effect in the standardized residuals. But

note that the p-value of Q(19) is 0.77, suggesting there may be minor correlations at lag 20

for squared standardized residuals, but not up to 19 lags. The same is the case with post-
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crisis Eurozone, where Q(20) gives p-value 0.02 while 0.25 for Q(17). This could be driven by

occasional extreme values or level shifts of variance risk premiums in the respective periods.

To study the spillover effects of variance risk premiums using the VAR model without

compromising VAR assumptions, I feed standardized residuals of fitted GARCH model into

the VAR analysis. Since standardized residuals behave more or less like a white noise process,

I expect no or little significant self-explanatory lags for each market. Any significant other-

explanatory lags indicate explanatory power of one market to another, hence the spillover

effect. VAR models are fit for the three subsample periods to study the dynamics of differ-

ent periods. Empirical results are now reported separately for each subsample commencing

with the most recent subsample.

4.5.2.1 Post-crisis spillover

Table 4.7 reports estimates of the vector autoregression model for the post-crisis subsam-

ple. A VAR(2) is estimated according to Akaike (AIC), Schwarz (SIC), Hannan-Quinn (HQ),

and final prediction error (FPE) information criteria. The first column reports regression re-

sults of US on the lags of the US, UK, Eurozone, and Japan. The results show that none of

the coefficient estimates are statistically significant, indicating that no lags of other markets,

as well as own lags of US, have explanatory power on US. This is also confirmed by the very

low R2 of 0.015 and F -statistic equals 1.342. Likewise for Japan, there is no significant self-

explanatory lags, but a significant lag of US at lag 1. For UK and Eurozone however, there is

significant self-explanatory power at lag 1, at 5% and 1% level respectively, reflecting possi-

ble information not captured at lower lags in GARCH fitting. It is worth noting that lags of

US are highly significant in the regressions of UK, Eurozone, and Japan, indicating that the

history of US have significant explanatory power on other three markets, suggesting possible

lead-lag relationship.
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The dynamic properties of a VAR(p) model is often summarised through some structural

analysis. Impulse response analysis traces the effects of a shock to one endogenous variable

on the other variables in the VAR system. If there is a reaction of one variable to an impulse

in another variable, there may be causal effect from the latter to the former. It moreover

traces the speed and persistence of the shocks, and therefore enables the examination of the

time structure of the transmission. I consider in this study generalised impulse response

functions proposed by Pesaran and Shin (1998) as opposed to the orthogonalized impulse

response function in that the generalised impulses are invariant to the ordering of the vari-

ables. Since there is no economic theory underpinning the causal relationship between vari-

ance risk premiums, it is reasonable to use generalised impulse response functions to study

the inter-relationship between them without a priori assumptions.

Figure 4.6 shows impulse responses to one standard deviation innovations of four mar-

kets. Column one shows responses of US, UK, Eurozone, and Japan to one standard devia-

tion shock to the US. Similarly, columns two to four show responses of each country to one

shock to UK, Eurozone, and Japan respectively. The vertical axis shows the magnitude of

the responses, and the horizontal axis shows the time line of responses. It can be seen from

the figures in the first column that UK, Eurozone, and Japan all have lagged responses to a

shock to the US. They not only respond contemporaneously but also one day beyond. The

effect of a shock to US on UK and Eurozone decreases on the second day and tapers out

thereafter. The magnitude of the contemporaneous response is about one half. Japan on the

other hand, shows little contemporaneous response on day one, but an increased response

on the next day, and tapers out thereafter. This is possibly due to the time zone difference

between US and Japan, where there is about 8.5 hours difference between the close of the

Japanese market and the open of the US market8. On the same calendar day US should have

8For details of opening and closing time of these four markets see Chapter 3 Figure 3.1 and discussions
thereafter.
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no impact on Japan. But the Japanese market reopens about 3 hours after US market closes.

Any information not captured on day one along with new information is reflected immedi-

ately on day two, which shows a much stronger reaction than day one. There also seems to

be some residual response on day three. Information in figures in the first column suggests

that US leads UK and Eurozone by one day, and Japan by two days.

Figures in columns two and three show responses to a shock to UK and Eurozone respec-

tively. It is not surprising that UK and Eurozone respond to each other contemporaneously

as the two markets operate at almost the same time. Despite 6 hours difference between

the opening of US and European markets, US responds to UK and Eurozone with no lagged

effect. This is possibly due to two hours overlapping trading hours before the European mar-

kets close, and all information successfully communicated to the US market. However, Japan

reacts to both European markets very weakly, and with lagged effects up to three days. UK

and Eurozone lead Japan by two days. Column four shows responses of three western mar-

kets to a shock from Japan. It is clear that all responses are very small, if not none, indicating

that Japan does not have a big impact on western markets.

Besides impulse response analysis, the Granger Causality test is another popular struc-

tural analysis for VAR models. The Granger Causality, proposed in Granger (1969), refers to

a statistical concept whether one time series is useful in predicting another. If past values of

X contains information useful in predicting Y above and beyond past values of Y alone, then

time series X is said to Granger Cause time series Y.

Table 4.8 reports pairwise Granger Causality test and tests whether an endogenous vari-

able can be treated as exogenous. For each equation in the VAR, the output displays Wald

test statistics for the joint significance of each of the other lagged endogenous variables in

that equation. For example in the first VAR equation, test on Excluded(UK) tests for the joint

significance of UK lag 1 and lag 2. The null hypothesis is that the coefficient of UK lag 1
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equals that of UK lag 2 equals to zero. The χ2 statistic and p-value indicate that the null can-

not be rejected, suggesting that the history of UK up to 2 lags does not ‘Granger cause’ the

US. Similar conclusions can be drawn for the joint significance of Japan lagged values, where

test for Eurozone is marginally rejected at 10% significance level, but is not rejected at a 5%

level. The statistic in the last row (All) is the statistic for joint significance of all other lagged

endogenous variables in the equation. It can be seen that the test statistic is insignificant,

suggesting that the history of UK, Eurozone and Japan do not Granger Cause US. Likewise

for the VAR equation for UK, Eurozone and Japan, lags of US are statistically significant for

all three markets, implying uni-directional Granger Causal effect from the US market. But

none can be explained singly by any other market than the US.

It can be seen from both impulse response analysis and Granger Causality tests that for

the post-crisis subsample period, the US market is the dominant source of uncertainly in the

world where the European markets and the Japanese market are strongly impacted. As op-

posed to findings in the 1980s and 1990s studies in volatility spillovers, the Japanese market

is no longer the leader of information distribution, but rather a follower. The global markets

are highly integrated between the western countries as information is incorporated contem-

poraneously with a maximum one day of delay, whereas it takes up to three days for Japan to

fully digest it.

The validity of the estimated VAR model can be checked by the examinations of the resid-

uals of the system. Table 4.9 reports autocorrelation test and heteroskedasticity test. The top

panel shows Portmanteau tests for autocorrelation up to 12 lags. The null hypothesis is that

there is no residual autocorrelations up to h lags. Each column reports lags, Q-statistic, p-

value, and degrees of freedom respectively. It can be seen that the p-values are large for all

lags suggesting that the null hypothesis of no residual autocorrelations cannot be rejected.

The bottom panel reports White tests for residual heteroskedasticity. The test regression
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is run by regressing each cross product of the residuals on the levels and squares of the orig-

inal regressors and test the joint significance of the regression. The output shows both joint

test and each individual component. It shows clearly that the null hypothesis of no resid-

ual heteroskedasticity cannot be rejected. Since we cannot reject the null hypothesis of no

residual autocorrelation and heteroskedasticity, it can be concluded that the VAR model is

not mis-specified, and the inference on the structural analysis is valid.

4.5.2.2 Crisis spillover

The same as the post-crisis spillover analysis, I employ the same methodology analysing

the crisis period. The crisis period spans about six months from breakout of the 2008 global

financial crisis to the end of the first quarter in 2009, covering the most volatile periods since

the collapse of Lehman Brothers. Since it is the crash episode that market participants worry

about the most, and that world’s markets tend to be heavily impacted by one another, it is

important to understand the interrelations between these markets. Any lead-lag effect may

have important implications on asset allocation across markets.

Table 4.10 reports vector autoregression estimates for crisis period. A VAR(1) is fitted and

is considered adequate by residual checks in Table 4.12. The output shows that the lag of US

has significant explanatory power on all other markets, and no other lags is significant in the

VAR system, indicating that none of UK, Eurozone, and Japan’s one period history is able to

provide useful information in predicting any market.

Figure 4.7 shows impulse response functions for a crisis subsample. The impulse re-

sponses show very similar pattern to those of post-crisis period. UK, Eurozone, and Japan

have lagged response to a unit shock to the US, and the impact of the shock lasts two to three

days. The responses are positive on the first two days, with a minor negative correction on

day three. Responses of UK and Eurozone show a decreasing trend whereas Japan has the
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biggest response on day two due the time zone effect.

US responds little to Japan. UK and Eurozone have one day lagged response to Japan

with a significant negative response on the second day. It suggests that given one unit shock

in Japan, UK and Eurozone show about −0.1 response to that shock. On the other hand,

Japan shows a lagged response to shocks to UK and Eurozone. The bi-direction response

may suggest a feedback effect between Japan and European markets as they process new

information.

Compared to post-crisis results, responses in the crisis period take longer to die down.

Information between some of the markets is fully processed by up to three days, reflecting

the fact that there is explosive information flow and great uncertainty during market turmoil

periods. Traders take caution in executing orders when they are unclear about the market

direction and face mixed signals, which may result in a delayed reaction to a particular in-

formation. However, despite this, the US is unambiguously the leading source of uncertainty

during the crisis period.

This can be confirmed by the Granger Causality tests in Table 4.11. US has uni-directional

explanatory power on all other markets, but no market is able to predict US. However, past

history of all other markets has predictive ability in explaining UK, Eurozone, and Japan.

The p-values of exclusion test for All for UK, Eurozone, and Japan are 0.002, 0.003, and 0

respectively, suggesting that all other lagged variables are jointly significant in predicting

these markets.

4.5.2.3 Pre-crisis spillover

Lastly, I investigate spillover effects for pre-crisis subsample. Data ranges from May 2004

to April 2006, where markets are generally quiet with little volatility around the world. Vector

autoregressive estimates in Table 4.13 show that again US has predictive power on other
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markets, and not vice versa. Lagged value of UK seems to have significant explanatory power

on Japan.

The impulse responses analysis for pre-crisis subsample (see Figure 4.8) is almost identi-

cal to those of post-crisis subsample, and hence the interpretation. US leads UK, Eurozone,

and Japan by one day; responds weakly to UK and Eurozone; almost no response to Japan.

UK, and Eurozone lead Japan by one day, and respond very little to Japan. It is worth noting

that in this period Japan has a subtly increased response to UK on the second day. Granger

Causality test confirms that besides the uni-directional causality from US to other markets,

UK has significant predictive power on Japan. The model’s adequacy can be confirmed by

Table 4.15.

To summarise, the VAR model together with structural analysis, impulse response func-

tions and Granger Causality tests, on pre-crisis, crisis, and post-crisis subsamples of variance

risk premiums show that the US is unambiguously the leading source of uncertainty in the

global market, and no other single country or a combination of countries have predictive

power on the US. The western markets generally have a leading impact on Japanese market,

especially during low volatility periods, where western countries lead Japan by one day. How-

ever, during market turmoil periods, there appears to be complex feedback effect between

the European markets and the Japanese market, where no clear leadership can be identified

during this periods. The Japanese market does not have much impact on the western coun-

tries. The global markets are highly integrated in that information flow from one market to

another is fully processed within two days, but in crisis period it may take longer as greater

uncertainty exists in the market.
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4.6 Conclusions

In this study, I analysed variance risk premiums in the notion of a variance swap. The

variance swap rate represents the risk-neutral expectation of realised variance. The differ-

ence between the realised measure and risk-neutral measure quantifies the variance risk

premium. I calculate the risk-neutral expected variance using a set of option prices, and

construct realised variance using the HAR-RV model based on daily data. Variance risk pre-

miums are calculated for the U.S., the U.K., the Eurozone, and Japan for the period from 2004

to 2014. Variance risk premiums across markets are on average negative with negative skew-

ness and large kurtosis. Similar patterns are observed for all countries that the magnitude

of variance risk premiums are high when equity markets fall. It shows clear evidence that

investors are willing to accept negative returns to go long a variance swap to hedge away the

increase in return variance.

To analyse the spillover effects of variance risk premiums across markets, I employ a vec-

tor autoregressive methodology and its structural analysis. Since the time series of variance

risk premiums exhibit significant time variation, I divide the full sample into pre-crisis, crisis,

and post-crisis subsamples to accommodate statistical assumptions required by VAR anal-

ysis. Empirical spillover results show that the U.S. is unambiguously the distributor of un-

certainty in the global market, and no other country is able to predict the U.S.. Japan seems

to have little impact on western markets as indicated by low correlation and the role as a

follower. In general, the results show that these markets are highly integrated in that new

arrived information is fully processed within two days, but in crisis period it may take longer

due to greater uncertainty.

In this study I fit univariate GARCH models to each subsample/country and extract stan-

dardized residuals for each country as endogenous variables fed into the VAR model to ad-

dress autocorrelation and heteroskedasticity in VRP data. A potential alternative method to
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address concerns on overlapping returns could be to construct daily exposure to VRP, as dis-

cussed in Kozhan et al. (2013). This involves engaging in a variance swap and delta hedging

it. Instead of holding it to maturity, sell it the next day. This procedure can be repeated every

day, and ignoring transaction costs, it gives the daily exposure to variance risk premium.

Variance risk premiums have been well researched for the U.S. market, however, little

is documented in the international setting. A number of studies have observed that the

variance risk premium has predictability on the U.S. equity market returns. Bollerslev et al.

(2014) validated the return predictability pattern for the U.S. and extended the regressions

to seven other countries (including France, Germany, Japan, Switzerland, the Netherlands,

Belgium, and the United Kingdom). Their empirical results show that the return predictabil-

ity pattern observed for the U.S. market generally holds true for most of the other markets,

but the degree of predictability is attenuated. The interesting results prompt the authors

to investigate whether the variance risk is priced at a global level rather than a country-

specific level. They then construct a global variance risk premium proxy as a market cap-

italization weighted average of each individual country variance risk premium (the largest

weight around 60% is assigned to the U.S.), and regress each market’s returns on the global

variance risk premium. They find stronger predictability for all markets in the sample, and

the results are robust with alternative measures of variance risk premiums. In a similar spirit,

Londono (2015) finds that the U.S. variance risk premium has predicative power on interna-

tional stock returns while other markets’ own variance risk premiums do not for domestic

stock market returns. In his two-country setup in explaining U.S. return predictability on in-

ternational stock returns, he finds that the macroeconomic uncertainty is transmitted across

countries, and the uncertainty-originated country’s variance risk premium plays a key role

in explaining both countries’ stock returns.

The empirical results of the dynamic interaction between international variance risk pre-
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miums revealed in this study provide support to the economic interpretation shared by the

two studies (Bollerslev et al. (2014) and Londono (2015)). Variance risk premium can be in-

terpreted as a measure of aggregate risk aversion or aggregate economic uncertainty. The

lead-lag relationship between international variance risk premiums, given that the underly-

ing economies are fundamentally different, suggests that the country-level uncertainty may

be exposed to a global risk factor, potentially largely captured by the U.S. market risk. Simi-

lar interpretation is drawn in the foreign exchange market, as in Della Corte et al. (2016), the

currency variance risk premium contains a compensation for a local risk as well as a global

risk. An alternative interpretation may be explored from the contagion literature, where be-

havioural arguments are employed to explain excessive correlations between markets. All

of these different economic mechanisms likely play some role in generating dynamic rela-

tionships between international variance risk premiums. I will leave it for future research to

provide further empirical evidence.
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4.7 Appendix

Table 4.1: HAR-RV regressions

RVt ,t+22 =β0 +βd RVt−1,t +βw RVt−5,t +βmRVt−22,t +εt ,t+22

U.S. U.K. Eurozone Japan

β0 0.0107*** 0.0115*** 0.0180*** 0.0300***
(0.0032) (0.0025) (0.0036) (0.0057)

βd 0.0091 0.0184* 0.0157 0.0336**
(0.0143) (0.0105) (0.0109) (0.0152)

βw 0.3445** 0.2496** 0.1624** 0.3328***
(0.1401) (0.1199) (0.0679) (0.1054)

βm 0.3753*** 0.3970*** 0.4640*** 0.1191
(0.1342) (0.0648) (0.0583) (0.0765)

R2 0.5644 0.4710 0.4287 0.3063

Table reports OLS estimates of the HAR-RV regressions for 22 days ahead annualised realised variance
predictions for the U.S., the U.K., the Eurozone, and Japan. Daily realised variances are squared returns
of daily close prices spanning the period from January 2004 to December 2014. Standard errors reported
in parentheses are based on a Newey-West correction allowing for serial correlation of up to order 44.
R2 of regressions for each of the market is reported in the last row.
***,**,* denotes significance level at 1%, 5%, and 10% respectively.
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Table 4.2: Descriptive statistics of realised variance and volatility, implied variance and
volatility, and variance risk premium

Panel A

Realised variance Realised volatility
U.S. U.K. Eurozone Japan U.S. U.K. Eurozone Japan

Mean 0.040 0.035 0.051 0.059 0.179 0.173 0.213 0.233
Median 0.022 0.023 0.037 0.047 0.149 0.150 0.191 0.216
Maximum 0.736 0.534 0.522 0.932 0.858 0.731 0.723 0.965
Minimum 0.013 0.013 0.020 0.031 0.113 0.113 0.143 0.175
Std.Dev 0.063 0.043 0.048 0.058 0.090 0.071 0.074 0.069
Skewness 5.575 5.977 4.461 8.139 3.434 3.429 2.744 4.861
Kurtosis 40.567 48.200 29.238 87.546 17.642 19.068 12.759 36.127

Panel B

Implied variance Implied volatility
U.S. U.K. Eurozone Japan U.S. U.K. Eurozone Japan

Mean 0.055 0.049 0.063 0.077 0.209 0.199 0.231 0.255
Median 0.031 0.030 0.043 0.055 0.176 0.172 0.207 0.235
Maximum 0.728 0.870 1.201 0.967 0.853 0.933 1.096 0.983
Minimum 0.010 0.008 0.010 0.013 0.100 0.089 0.098 0.113
Std.Dev 0.074 0.062 0.070 0.094 0.106 0.095 0.097 0.110
Skewness 4.316 4.881 5.079 5.064 2.396 2.336 2.230 2.828
Kurtosis 23.861 37.833 48.452 34.612 10.331 11.002 10.846 14.247

Panel C

Variance risk premium Return variance risk premium
U.S. U.K. Eurozone Japan U.S. U.K. Eurozone Japan

Mean -0.014 -0.014 -0.012 -0.018 -0.194 -0.147 -0.053 -0.018
Median -0.007 -0.005 -0.003 -0.004 -0.217 -0.174 -0.086 -0.074
Maximum 0.328 0.157 0.207 0.448 1.374 1.539 1.560 2.044
Minimum -0.348 -0.396 -0.717 -0.628 -0.795 -0.838 -0.808 -0.827
Std.Dev 0.034 0.032 0.036 0.061 0.275 0.307 0.318 0.401
Skewness -1.888 -4.411 -5.406 -3.692 0.592 0.659 0.701 0.965
Kurtosis 30.409 40.495 75.771 29.645 3.458 3.531 4.040 4.688

Table provides descriptive statistics for realised variance, implied variance, variance risk premium, and return
variance risk premium defined by equation (4.5), (4.1), (4.3), and (4.4) respectively. Summary statistics are also
reported for realised volatility and implied volatility calculated as the square root of the realised variance and
implied variance. Results are reported for 2594 daily observations from 2004 to 2014.
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Table 4.3: Pairwise correlations of (return) variance risk premiums

Correlation U.S. U.K. Eurozone Japan

U.S. 1 (1)
U.K. 0.68 (0.63) 1 (1)

Eurozone 0.59 (0.65) 0.85 (0.81) 1 (1)
Japan 0.51 (0.39) 0.70 (0.56) 0.52 (0.52) 1 (1)

Table reports pairwise variance risk premium (return variance risk premium) correlations
for the period from May 2004 to December 2014.

Table 4.4: Ljung-Box test on [return] variance risk premiums

U.S. U.K. Eurozone Japan

Q(10) 4055 [8666] 8151 [11951] 5012 [10689] 12579 [14913]
(0) (0) (0) (0)

Q(15) 5676 [11113] 10135 [15614] 6585 [13865] 17826 [21008]
(0) (0) (0) (0)

Q(20) 7126 [13196] 12141 [18836] 7762 [16213] 22277 [26434]
(0) (0) (0) (0)

Table reports Ljung-Box test statistics on variance risk premiums [return variance risk premiums]
from May 2004 to December 2014 for serial correlation The Q(m)-statistics follow a chi-squared
distribution with m degrees of freedom. Test statistics reported are for degrees of freedom 10, 15,
and 20. Values in parenthesis are p-values of Q(m). All p-values are < 0.0001.
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Table 4.5: GARCH fitting for subsample variance risk premiums

US UK Eurozone Japan

Pre-crisis: May 11, 2004 – Apr 28, 2006, 451 observations

GARCH
specification

AR(1,2,5,6)+
GARCH(1,1)

AR(1,2)+
GARCH(1,1)

AR(1,2)+
GARCH(1,1)

AR(1,2,5,6,11)+
GARCH(1,1)

α+β 0.941 0.773 0.966 0.955

Qãt (20) 7.15 11.20 16.12 19.73
(0.97) (0.89) (0.58) (0.18)

Qãt
2 (20) 16.86 17.41 11.19 23.03

(0.40) (0.50) (0.89) (0.08)

Crisis: Sep 02, 2008 – Mar 31, 2009, 146 observations

GARCH
specification

AR(1)+
GARCH(1,1)

AR(1)+
GARCH(1,1)

AR(1)+
GARCH(1,1)

AR(1,2,5,6)+
GARCH(1,1)

α+β 0.990 0.966 0.950 0.944

Qãt (20) 16.94 21.50 14.00 13.99
(0.59) (0.31) (0.78) (0.60)

Qãt
2 (20) 10.49 14.62 17.38 4.45

(0.94) (0.75) (0.56) (0.99)

Post-crisis: Jan 03, 2012 – Nov 28, 2014, 732 observations

GARCH
specification

AR(1,5,6)+
GARCH(1,1)

AR(1,5,6)+
GARCH(1,1)

AR(1,5,6,13,14)+
GARCH(1,1)

AR(1,2,4,5,6)+
GARCH(1,1)

α+β 0.820 0.995 0.996 0.971

Qãt (20) 21.65 23.54 22.71 15.95
(0.20) (0.13) (0.09) (0.39)

Qãt
2 (20) 11.92 18.06 29.04 5.65

(0.81) (0.39) (0.02) (0.99)

Table presents GARCH fitting with AR structure in the mean equation to subsamples of variance risk premiums for
each market. Subsamples are selected for pre-crisis, crisis, and post-crisis period. Parameters of subsamples pre-crisis
Japan, crisis Eurozone, and post-crisis Japan are estimated using variance targeting technique to mitigate estimation
difficulty, as the sum of α and β exceeds one without constraints. Ljung-Box Q-statistics on standardized residuals
adjusted for degrees of freedom are reported for each subsample with p-value reported in the parenthesis.
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Table 4.6: Vector Autoregression Estimates for post-crisis subsample

US UK Eurozone Japan

US(-1) -0.043 0.260 0.253 0.256
(-0.989) (6.157)*** (6.012)*** (5.825)***

US(-2) -0.024 0.134 0.112 0.044
(-0.538) (3.042)*** (2.559)** (0.971)

UK(-1) 0.052 -0.140 0.035 -0.083
(0.910) (-2.499)** (0.628) (-1.420)

UK(-2) 0.060 -0.010 -0.067 0.015
(1.047) (-0.182) (-1.199) (0.256)

Eurozone(-1) -0.075 -0.081 -0.242 0.100
(-1.294) (-1.433) (-4.296)*** (1.701)

Eurozone(-2) -0.124 -0.094 -0.054 0.084
(-2.155) (-1.671) (-0.965) (1.437)

Japan(-1) 0.011 0.005 0.038 -0.068
(0.301) (0.148) (1.061) (-1.829)

Japan(-2) 0.040 -0.007 0.006 0.015
1.117 -0.198 0.170 0.413

C -0.002 -0.105 -0.098 -0.101
(-0.042) (-2.863)*** (-2.684)*** (-2.635)***

R2 1.5% 6.1% 6.6% 8.0%
F -statistic 1.342 5.813 6.396 7.829

Table reports Vector Autoregression estimates for post-crisis subsample. First column reports number of lags included
in the regression. Column two to five reports estimates of coefficients with t-statistic in the parenthesis. R2 and F -
statistic is shown at the bottom of the table. *** and ** indicate coefficient estimates are statistically significant at 1%
and 5% level.
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Table 4.7: VAR Granger Causality test for post-crisis subsample

Dependent variable: US
Excluded Chi-sq df Prob.

UK 1.644 2 0.440
Eurozone 5.447 2 0.066

Japan 1.309 2 0.520
All 6.770 6 0.343

Dependent variable: UK
Excluded Chi-sq df Prob.

US 42.088 2 0
Eurozone 4.075 2 0.130

Japan 0.064 2 0.969
All 43.833 6 0

Dependent variable: Eurozone
Excluded Chi-sq df Prob.

US 38.633 2 0
UK 2.155 2 0.340

Japan 1.141 2 0.565
All 45.975 6 0

Dependent variable: Japan
Excluded Chi-sq df Prob.

US 33.926 2 0
UK 2.275 2 0.321

Eurozone 4.175 2 0.124
All 60.799 6 0

Table reports Granger Causality tests for post-crisis subsample. Each equation tests for the joint
significance of excluded variables in explaining the dependent variable. A probability of zero
rejects the null that the coefficient estimates of the Excluded variable(s) equal to zero at all con-
ventional levels, suggesting that the Excluded variable(s) ‘Granger cause’ the dependent variable.
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Table 4.8: Validity check for post-crisis VAR estimation

VAR Residual Portmanteau Tests for Autocorrelations
Lags Q-statistic Probability df

1 0.096 NA* NA*
2 0.731 NA* NA*
3 9.841 0.875 16
4 28.882 0.625 32
5 48.314 0.460 48
6 58.128 0.683 64
7 73.332 0.688 80
8 101.326 0.335 96
9 117.064 0.353 112

10 131.489 0.398 128
11 142.607 0.517 144
12 153.440 0.631 160

VAR Residual Heteroskedasticity Tests
Joint test

Chi-sq df Probability
125.837 160 0.979

Individual components
Dependent Chi-sq Probability

res1*res1 19.745 0.232
res2*res2 16.198 0.439
res3*res3 17.963 0.326
res4*res4 7.768 0.956
res2*res1 17.427 0.359
res3*res1 14.461 0.564
res3*res2 13.205 0.658
res4*res1 12.408 0.715
res4*res2 4.956 0.996
res4*res3 5.939 0.989

Table reports validity tests for the estimated VAR model. Top panel reports Portmanteau tests for
residual serial correlation and bottom panel reports White tests for residual heteroskedasticity.

205



Table 4.9: Vector Autoregression Estimates for crisis subsample

US UK Eurozone Japan

US(-1) 0.041 0.318 0.303 0.552
(0.441) (3.555)*** (3.259)*** (6.843)***

UK(-1) -0.176 -0.172 -0.155 -0.118
(-1.252) (-1.276) (-1.102) (-0.970)

Eurozone(-1) 0.169 0.050 0.062 -0.018
(1.289) (0.395) (0.476) (-0.159)

Japan(-1) 0.050 -0.096 -0.130 -0.062
(0.566) (-1.123) (-1.466) (-0.800)

R2 0.015 0.094 0.088 0.252
F -statistic 0.732 4.852 4.516 15.856

Table reports Vector Autoregression estimates for crisis subsample. First column reports number of lags included
in the regression. Column two to five reports estimates of coefficients with t-statistic in the parenthesis. R2 and F -
statistic is shown at the bottom of the table. *** indicate coefficient estimates are statistically significant at 1% level.

Table 4.10: VAR Granger Causality test for crisis subsample

Dependent variable: US
Excluded Chi-sq df Prob.

UK 1.568 1 0.211
Eurozone 1.662 1 0.197

Japan 0.321 1 0.571
All 2.366 3 0.500

Dependent variable: UK
Excluded Chi-sq df Prob.

US 12.640 1 0.000
Eurozone 0.156 1 0.693

Japan 1.262 1 0.261
All 14.981 3 0.002

Dependent variable: Eurozone
Excluded Chi-sq df Prob.

US 10.619 1 0.001
UK 1.213 1 0.271

Japan 2.148 1 0.143
All 14.032 3 0.003

Dependent variable: Japan
Excluded Chi-sq df Prob.

US 46.830 1 0.000
UK 0.940 1 0.332

Eurozone 0.025 1 0.874
All 49.418 3 0.000

Table reports Granger Causality tests for crisis subsample. Each equation tests for the joint sig-
nificance of excluded variables in explaining the dependent variable. A probability of zero rejects
the null that the coefficient estimates of the Excluded variable(s) equal to zero at all conventional
levels, suggesting that the Excluded variable(s) ‘Granger cause’ the dependent variable.
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Table 4.11: Validity check for crisis VAR estimation

VAR Residual Portmanteau Tests for Autocorrelations
Lags Q-statistic Probability df

1 3.734 NA* NA*
2 29.629 0.020 16
3 35.994 0.287 32
4 51.882 0.325 48
5 67.279 0.366 64
6 103.235 0.041 80
7 113.976 0.102 96
8 128.032 0.143 112
9 140.308 0.216 128

10 154.313 0.263 144
11 162.064 0.440 160
12 192.980 0.181 176

VAR Residual Heteroskedasticity Tests
Joint test

Chi-sq df Probability
96.464 80 0.101

Individual components
Dependent Chi-sq Probability

res1*res1 3.632 0.889
res2*res2 1.874 0.985
res3*res3 7.006 0.536
res4*res4 8.981 0.344
res2*res1 4.030 0.854
res3*res1 4.556 0.804
res3*res2 4.124 0.846
res4*res1 12.408 0.134
res4*res2 14.336 0.073
res4*res3 18.484 0.018

Table reports validity tests for the estimated VAR model. Top panel reports Portmanteau tests for
residual serial correlation and bottom panel reports White tests for residual heteroskedasticity.
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Table 4.12: Vector Autoregression Estimates for pre-crisis subsample

US UK Eurozone Japan

US(-1) -0.006 0.268 0.231 0.150
(-0.116) (5.512)*** (5.108)*** (3.225)***

UK(-1) 0.075 -0.126 -0.021 0.184
(1.205) (-2.100)** (-0.383) (-3.187)***

Eurozone(-1) -0.097 0.043 -0.099 -0.053
(-1.417) (0.652) (-1.610) (-0.833)

Japan(-1) 0.010 -0.002 0.039 -0.011
(0.206) (-0.036) (0.853) (-0.234)

R2 0.001 0.068 0.058 0.057
F -statistic 0.117 10.692 8.930 8.818

Table reports Vector Autoregression estimates for pre-crisis subsample. First column reports number of lags included
in the regression. Column two to five reports estimates of coefficients with t-statistic in the parenthesis. R2 and F -
statistic is shown at the bottom of the table. *** and ** indicate coefficient estimates are statistically significant at 1%
and 5% level.

Table 4.13: VAR Granger Causality test for pre-crisis subsample

Dependent variable: US
Excluded Chi-sq df Prob.

UK 1.453 1 0.228
Eurozone 2.008 1 0.157

Japan 0.042 1 0.837
All 2.246 3 0.523

Dependent variable: UK
Excluded Chi-sq df Prob.

US 30.384 1 0.000
Eurozone 0.425 1 0.514

Japan 0.001 1 0.971
All 33.195 3 0.000

Dependent variable: Eurozone
Excluded Chi-sq df Prob.

US 26.096 1 0.000
UK 0.147 1 0.702

Japan 0.728 1 0.394
All 26.596 3 0.000

Dependent variable: Japan
Excluded Chi-sq df Prob.

US 10.400 1 0.001
UK 10.154 1 0.001

Eurozone 0.694 1 0.405
All 29.535 3 0.000

Table reports Granger Causality tests for pre-crisis subsample. Each equation tests for the joint
significance of excluded variables in explaining the dependent variable. A probability of zero
rejects the null that the coefficient estimates of the Excluded variable(s) equal to zero at all con-
ventional levels, suggesting that the Excluded variable(s) ‘Granger cause’ the dependent variable.
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Table 4.14: Validity check for pre-crisis VAR estimation

VAR Residual Portmanteau Tests for Autocorrelations
Lags Q-statistic Probability df

1 0.914 NA* NA*
2 9.394 0.896 16
3 23.293 0.869 32
4 38.717 0.828 48
5 54.572 0.794 64
6 67.115 0.848 80
7 83.448 0.816 96
8 98.055 0.823 112
9 107.577 0.892 128

10 129.748 0.797 144
11 141.006 0.858 160
12 159.454 0.809 176

VAR Residual Heteroskedasticity Tests
Joint test

Chi-sq df Probability
88.816 80 0.234

Individual components
Dependent Chi-sq Probability

res1*res1 3.605 0.891
res2*res2 6.223 0.622
res3*res3 7.287 0.506
res4*res4 19.489 0.013
res2*res1 2.769 0.948
res3*res1 6.682 0.571
res3*res2 7.070 0.529
res4*res1 7.181 0.517
res4*res2 12.543 0.129
res4*res3 14.374 0.073

Table reports validity tests for the estimated VAR model. Top panel reports Portmanteau tests for
residual serial correlation and bottom panel reports White tests for residual heteroskedasticity.
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(a) (b)

(c) (d)

Figure 4.1: Time series plots of HAR-RV annualised expected realised variance
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(a) U.S. (b) U.K.

(c) Eurozone (d) Japan

Figure 4.2: Autocorrelation plots of HAR-RV realised variance
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 4.3: Variance risk premiums

212



(a) US VRP (b) UK VRP

(c) Eurozone VRP (d) Japan VRP

(e) US RVRP (f) UK RVRP

(g) Eurozone RVRP (h) Japan RVRP

Figure 4.4: Autocorrelation plots of variance risk premiums
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(a) standardized residuals pre-crisis US (b) standardized residuals pre-crisis UK

(c) standardized residuals pre-crisis Eurozone (d) standardized residuals pre-crisis Japan

(e) standardized residuals crisis US (f) standardized residuals crisis UK

(g) standardized residuals crisis Eurozone (h) standardized residuals crisis Japan

Figure 4.5: Standardized residuals plots of subsamples
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(i) standardized residuals post-crisis US (j) standardized residuals post-crisis UK

(k) standardized residuals post-crisis Eurozone (l) standardized residuals post-crisis Japan

Figure 4.5: Continued standardized residuals plots of subsamples
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Chapter 5

Concluding remarks

This thesis contains three individual essays on inferring information from financial deriva-

tive instruments. The thesis begins with an introductory chapter, which outlines the main

ideas of each chapter as well as the structure of the thesis.

Chapter 2 presents empirical analysis on estimating bankruptcy probabilities from op-

tion prices and CDS spreads for 12 U.S. financial institutions. Assuming the risk-neutral

density for the underlying asset to be a mixture of two lognormals augmented with a prob-

ability of bankruptcy, option-implied bankruptcy probabilities are inferred from calibrating

the risk-neutral density to the observed option prices. CDS-implied bankruptcy probabili-

ties are inferred from a non-linear equation that is set based on the fair valuation of a CDS

contract. Comparisons between option-implied and CDS-implied bankruptcy probabilities

show that the two sources provide complementary information in assessing bankruptcy risk.

The derivative markets provide useful information ex-ante.

In the fixed income markets, modelling default probabilities embedded in bonds, CDS,

and other fixed income instruments has become standard routines in the real world practice,

whereas using option information to estimate default rates is not well established. Option-

implied information bears the advantage that it can be used to infer default rates for shorter
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horizons given flexible option maturities, while CDS and bonds can only provide a default

estimate for the next few months or up to one year. Certainly, option contracts would serve

as an appealing instrument for market practitioners to assess near-term default rate, and

the magnitude of default probabilities and risk-neutral densities discovered in this study will

help to provide reliable signals regarding a firm’s financial status, especially during turbulent

market conditions.

Motivated by the information superiority contained in option contracts, chapters 3 and

4 examine spillover effects in an international market integration setting based on option-

implied information. Chapter 3 focuses on implied volatility spillovers and chapter 4 con-

centrates on variance risk premium spillovers. The first part of chapter 3 details the construc-

tion of volatility indices for a sample of equity markets around the world. The method to con-

struct volatility indices follows the steps of the CBOE procedure, but modified to address the

estimation errors associated with the CBOE procedure. This is the first study that calculates

volatility indices for a large sample of national equity markets, and makes a comparison with

the CBOE method. The results provide empirical evidence that the CBOE method induces

estimation errors for all markets examined. In chaper 4, variance risk premiums are con-

structed by the difference between the risk-neutral expectation of realised variance, proxied

by the implied variance extracted from options, and realised variance under the physical

measure, calculated based on the HAR-RV model.

Spillover effects of implied volatility and variance risk premium are investigated using

vector autoregressive analysis. Issues of serial correlation and heterogeneity are addressed

and different steps are taken in each chapter to mitigate the impact of these issues. Em-

pirical results show remarkable consistency in international markets lead-lag relationship

between implied volatilities and variance risk premiums. The results support the notion of

informationally efficient international stock markets, in that information flow across bor-
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ders is quickly processed with little delay. The empirical findings are in general consistent

with those found in international finance literature which studies spillover effects based on

historical measures, e.g., return and volatility. Measures constructed from information ex-

tracted from option contracts serve as appealing alternatives as they provide forward looking

information.

Volatility spillovers have been studied extensively in the literature. Many have attributed

these spillovers to intensified international linkages across countries, or economic funda-

mentals; others have theorized they come from market contagion. However, there is little

documentation on variance risk premium spillovers. This is the first study to provide empir-

ical evidence on dynamic interactions between international variance risk premiums. The

limited studies on variance risk premia around the world have focused on the stock market

return predictability from the U.S. market variance risk premium. In this study, empirical

results have shown a leading role of the U.S. variance risk premium on other markets. This

provides supporting evidence to the findings in these studies. The economic interpretation

is that the country-level risk aversion or economic uncertainty, as proxied by the variance

risk premium, may be exposed to a global factor which potentially largely captured by the

U.S. market risk. While other explanations from behavioural arguments may be plausible in

generating dynamic interactions between international variance risk premiums, this is left

for corroboration in future research.

In summary, this thesis provides views on information inferred from the derivatives mar-

kets from different perspectives, and it shows that the financial derivative instruments con-

tain useful forward looking information. Stemming from the empirical evidence on equity

markets, future research could potentially focus on inferring information from derivatives

on other markets i.e., exchange rates, commodities etc., and investigate linkages across dif-

ferent asset classes.
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In this thesis, information from the derivatives markets has been extracted and analysed

predominantly on developed markets and western markets. This is primarily due to data

availability and subject to the development of each country’s derivatives markets. However,

one cannot talk about globalisation and correlations between international markets without

putting developing markets into perspective. For example, China, India, and Brazil, as the

most populous countries in the world, are growing very fast, and they will have a huge impact

on the development of the derivatives markets throughout the world in the years to come.

Take China as an example, it is the world’s second-largest economy, and it is growing

rapidly every year on average around 7%. According to the world investment report, China

has been one of the world’s largest foreign direct investment recipients for the past few years.

This can be attributed to the comparatively low labour costs as well as being the biggest in-

ternal market with 1.3 billion potential customers. No doubt there will be shift in investment

focus from the western countries to China as it becomes more important in the world econ-

omy. However, the derivatives markets in China are underdeveloped. China has consider-

able tradings in commodity derivatives and growing futures markets, but credit derivative

products and options are very limited. It lacks a well-established legal framework and is

complicated with weak supervision from different regulators. Since derivatives are impor-

tant tools for transferring risk from one entity to another, it is important for China to further

develop its derivatives markets not only to meet the demand of all kinds of investors but also

to be fully integrated in the international financial society. This argument goes with all devel-

oping economies which are playing more and more important roles in shaping the world’s

economy.
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