
Improving Modularity of Reflective Middleware with
Aspect-Oriented Programming

Nelio Cacho1 Thais Batista3 Alessandro Garcia1
Claudio Sant’Anna2 Gordon Blair1

1Computing Department, Lancaster University, United Kingdom

2Computer Science Department, Pontifical Catholic University of Rio de Janeiro – PUC-Rio, Brazil
3Computer Science Department, Federal University of Rio Grande do Norte – UFRN, Brazil

{n.cacho, garciaa, gordon}@comp.lancs.ac.uk,
claudios@inf.puc-rio.br, thais@ufrnet.br

ABSTRACT
Reflective middleware has been proposed as an effective way to
enhance adaptability of component-oriented middleware
architectures. To be effectively adaptable, the implementation of
reflective middleware needs to be modular. However, some
recently emerged applications such as mobile, pervasive, and
embedded applications have imposed more stringent modularity
requirements to the middleware design. They require support for
the conception of a minimal middleware while promoting fine-
grained modularity of reflective middleware features. The key
problem is that fundamental mechanisms for decomposing
reflective middleware implementations, such as object-oriented
ones, suffer from not providing the proper means to achieve the
required level of localizing reflection-specific concerns. This
paper presents a systematic investigation on how aspect-oriented
programming scales up to improve modularity of typical
reflection-specific crosscutting concerns. We have quantitatively
compared Java and AspectJ implementations of an OpenORB-
compliant reflective middleware using separation of concerns
metrics.

Categories and Subject Descriptors
D.2.2 [Software Engineering]: Design Tools and Techniques -
Object-oriented design methods; D.2.8 [Software Engineering]:
Metrics-Product metrics; D.3.3 [Programming languages]:
Language Constructs and Features

Keywords

Reflective middleware, computational reflection, aspect-oriented
programming, modularity, design patterns, metrics.
1. INTRODUCTION
Middleware platforms [12] provide high-level abstraction to make
it easier the development of distributed component-based
applications. Traditional middleware architecture includes a
variety of features to satisfy distinct application domains. This
broad range of features has increased the popularity of such
platforms but, on the other hand, it has increased the size and
complexity of middleware systems. In addition, the black-box
nature of conventional middleware makes it difficult to adapt it

for a specific purpose. The idea of reflective middleware [15,17]
has been recognized as a promising way to overcome these
problems. It relies on computational reflection [23] to support
configurability and adaptability of the platform. However,
reflective architectures are not enough to broadly satisfy
requirements imposed by some recently emerged applications
such as mobile, pervasive, and embedded applications. Embedded
applications, for instance, are resource constrained and demand a
minimal middleware [9, 27].
In fact, several researchers [15-18,34] have tried hard to push
reflective middleware systems a step further by allowing the
definition of customized instances of the platform with small
resource footprints. It has been observed that the practical
effectiveness of such middleware adaptability is directly
dependent on the implementation model because it specifies the
modular structure of the middleware internal elements [9, 27]. A
proper modular implementation is also essential to the definition
of a minimal middleware core that satisfies the memory and
resource requirements of nowadays applications. However,
highly-adaptable implementations of such systems have been
often shown as a challenge because many of the core reflective
features typically crosscut the modular object-oriented
decomposition of the middleware architecture. Some examples
are the mechanisms dedicated to support causal connection, state
recovery of objects and meta-objects, and introspection about the
binding process. These features have a broadly-scoped effect over
the target component model, thereby both liming the conception
of a minimal middleware and reducing its modularity and
adaptability.
In this context, it is important to systematically verify the
suitability of Aspect-Oriented Programming (AOP) [4] to improve
the modularity of reflective middleware systems. In this direction,
there are some efforts [5,19-21,25] that use AOP to improve
general middleware modularity. However, the authors commonly
“aspectize” a certain category of crosscutting concerns, such as
logging, monitoring, and statistics, which are not part of the core
reflection model. Even works that explicitly deal with middleware
architecture [20, 21] they do not address reflective middleware.
Hence, there is no systematic study that investigates the impact of
AOP on the modularity and configurability of elementary
crosscutting concerns in reflective middleware design. In fact,

31

little attention has been given to analyze to what extent the
aspectization of typical implementation models of reflective
middleware architectures can address limitations of other
decomposition paradigms such as object-orientation. Also there is
no investigation that quantifies the benefits and drawbacks
involving the interplay of reflective middleware and AOP.
This paper presents an in-depth case study in which we have
compared the modularity of object-oriented (OO) and aspect-
oriented (AO) implementations of a typical reflective middleware
system. The case study is structured according to the OpenORB
architecture [16], which is a precursor model of the reflective
middleware idea. We have implemented both Java and AspectJ
[29] versions of OpenORB. In order to produce a well
modularized system, in both implementations we have used
design patterns [1]. Our investigation complements the existing
empirical body of knowledge in the component-oriented
middleware arena, since our evaluation has quantified through a
metric suite the effects of aspectizing a reflective middleware on
primary modularity attributes, such as separation of concerns. Our
analysis encompassed a plethora of elementary middleware
features related to the underlying component model, the
communication infrastructure, the acceptance and connection
infrastructure, and reflection-specific concerns, such as causal
connection and introspection of the binding process.
 This paper is organized as follows. Section 2 presents the
relevant information related to the setting of our experimental
study. Section 3 discusses the OO design of the OpenORB
middleware and its modularity problems; it also discusses the
aspectization strategy for each of those problems. Section 4
presents the quantitative modularity evaluation of the Java and
AspectJ implementations. Section 5 discusses related work, while
Section 6 presents the concluding remarks.

2. STUDY SETTING
This section describes the configuration of our empirical study.
Our investigation is focused on assessing the positive and
negative influences of AOP on the modularity of an OpenORB-
compliant reflective middleware [15]. Section 2.1 introduces the
main concepts of reflective middleware, while Section 2.2
describes the OpenORB model. Section 2.3 introduces the main
comparison procedures and Section 2.4 describes our selected
metrics suite for evaluating different modularity facets. Finally,
Section 2.5 discusses our measurement procedures.

2.1 Reflective Middleware
Reflective middleware relies on computational reflection [23] to
define a causally connected self representation that supports
inspection and adaptation of its behavior. Computational
reflection is the ability of a system inspecting and manipulating
its internal implementation. This is achieved by a two-level
representation of the system: the base-level and the meta-level.
The base-level is composed of base-objects. The meta-level is
represented by meta-objects that monitor and influence the base-
level. The meta-level performs computation about the system
itself. In reflective middleware platforms, the middleware core is
represented by base-objects. Meta-objects are associated with
base-objects and a causal connection allows that changes in the
meta-level are reflected in the base-level and vice-versa.

2.2 OpenORB Architecture
OpenORB is a pioneer reflective middleware. Unlike the black-
box nature of traditional middleware, in the OpenORB component
model the middleware is organized as a set of components and
dynamic adaptation is supported by means of computational
reflection.
The main elements of OpenORB base-level are interfaces, local
bindings, components and capsule. A component is a unit of
independent deployment that provides and requires services via
interfaces. Interactions between components are specified via
interfaces. Interfaces represent the access point of a component,
the so-called ports. Each interface can export and import methods.
Exported methods are those provided by a component while
imported methods are those required by a component. Bindings
between interfaces are themselves components. There are two
types of bindings: local bindings and distributed bindings. A local
binding associates exported interfaces with imported interfaces.
They are used to bind interfaces that are in the same address space
(capsule). Distributed bindings are distributed components which
may span capsule and machine boundaries [18]. They are
composed of components bound by local bindings. A Capsule is a
logical container of components that provides an API for loading
and binding components. Connection between components of
different capsules is through implicit and explicit bindings [18].
An implicit binding is created between two remote interfaces with
no interference of a programmer. This binding is used when an
interface is imported. An explicit binding is created by a
programmer and can be of the following types: Operational,
Signal, Stream. An Operational binding is used to send method
invocations and, optionally, to receive the result. A Signal
binding supports a set of one-way signals. The Stream binding
is similar to the signal binding except that it supports the
transmission of continuous data such as audio and video.
The OpenORB meta-level defines the reflective mechanisms that
implements a causal connection with the base level. In order to
organize the meta-level, OpenORB proposes four meta-models
[15]: (1) Encapsulation: responsible for exposing the
encapsulation provided by objects. It allows the inspection,
modification and extension of the implementation of an object.
This meta-model can be used to monitor and to control the access
to an object, its attributes and methods; (2) Composition:
responsible for providing the bindings graph of a component.
Using this meta-model it is possible to insert, to remove and to
replace components; (3) Environment: responsible for exposing
the execution environment of each interface including method
invocations for servers and clients.; (4) Resource: responsible for
reifying and managing the resources used by each object.

2.3 Comparison Procedures
Our study has focused on the assessment of two versions of an
OpenORB-compliant middleware implementation: an object-
oriented (OO) and an aspect-oriented (AO) version. First, we have
used the Java programming language to develop the OO version.
We have used a number of design patterns [1] in order to produce
a well modularized design. The choice of the applied patterns was
driven by maximizing the separation of reflection-specific
concerns and other relevant middleware concerns in order to
make them adaptable spots in the middleware implementation.

32

Afterwards, we have reengineered the existing Java
implementation with AspectJ in order to produce the AO version
of the middleware. We have tried to modularize the same
concerns as in the Java implementation. However, the AspectJ
version also relies on the use of aspects to modularize reflective
middleware concerns which exhibited crosscutting behavior, and
should not be modularly captured with the OO implementation.
Where it was possible, we used the AspectJ solutions proposed by
Hannemann and Kickzales [28] for implementing design patterns.
We have compared the modularity of the Java and AspectJ
implementations using the metrics suite described in the next
section. Section 4 presents the evaluation results.

2.4 The Modularity Metrics Suite
The quantitative assessment was based on the application of a
metrics suite [6] to the two versions of the middleware
implementation. These metrics are useful to capture important
modularity dimensions in the system design, namely separation of
concerns (SoC), coupling, cohesion, and size. Due to space
limitation, we are going to focus on discussing the SoC measures
because they have provided the most interesting results. All the
results for the coupling, cohesion and size measures can be found
at [35].
The SoC [6] metrics capture the degree to which a single concern
in the system maps to the design components (classes and
aspects), operations (methods and advice), and lines of code. The
used SoC metrics are briefly described in Table 1; an extensive
explanation and justification about their value to assess
modularity are out of the scope of this work and can be found at
[6]. Table 1 presents a brief definition of each metric and
associates them with the attributes measured by each one. These
metrics have already been extensively used in several studies [3,
5-7, 10], where they have been proved to be useful quality
indicators. We have applied the chosen metrics to both Java and
AspectJ versions.

2.5 The Measurement Process.
In the measurement process, the data collection of the SoC
metrics was preceded by the shadowing of every class, interface
and aspect in both implementations of the middleware. The
shadowing consists of annotating elements in the code (e.g.
attributes, operations, statements, and so on) that realize the
implementation of relevant concerns [6]. In this case study, both
AspectJ and Java implementations were shadowed according to
the reflective middleware features that should be modularized in
both solutions, and were the main subject of assessment in this
work.
In fact, we have treated both reflection-specific and other
fundamental features of the middleware design as concerns of
interest in order to investigate its crosscutting structure in both

Java and AspectJ implementations. After the shadowing, the data
of the SoC metrics (CDC, CDO, and CDLOC) was manually
collected at that time (even though we have nowadays a
measurement tool available for this purpose [30]). The other
measurements for size, coupling, and cohesion were based on the
use of our AJATO tool [30]. Since our selected metrics are
oriented to fine-grained units such as CDLOC, we had an
additional standardization task before collecting the data. This
task aimed at ensuring that the two developed middleware
versions implement the same functionalities. This activity also
removed problems related to different coding styles. Section 3
will describe some of the investigated solutions in both OO and
AO implementations, while Section 4 presents the description of
the measurement results and their analysis.

3. ASPECTIZING REFLECTIVE
MIDDLEWARE
This section describes different situations of crosscutting that
prevents proper modularity of the target reflective middleware
system and also a subset of aspect-oriented solutions we have
used to improve the modularization of such crosscutting
middleware features.
In this way, Figure 1 illustrates a slice of the OpenORB design,
including some basic classes and behaviors defined by the
reflective infrastructure to support adaptation, such as:
Component, Port and ConcreteBind. Each component has one or
more Ports which are implemented by Receptacles and Interfaces.
To deal with the interaction between component ports,
ConcreteBind is responsible for providing a mechanism to route
the invocations to the proper target object. It also defines a
binding state machine that allows redefining the binding flow
during its execution. The central part of the open binding design
is based on the Mediator pattern in order to route the invocations.
The ConcreteBind class is in charge of coordinating the
interaction among Ports. It also promotes loose coupling by
avoiding that ports refer each other explicitly. This facility allows
the designer to easily change the binding.
To support the client invocation, Receptacle has a reference to the
BindMediator, once this class operates on behalf of the client rule
to invoke the functionalities defined on Interfaces. In order to
provide the component functionalities, the Interface class has a
reference to the object that implements the required functionality.
Hence, Receptacle requires services and Interface provides
services.
In addition to the above description, it is possible to see that some
concerns, such as the binding state machine definition and
detection mechanism crosscut the design illustrated by Figure 1.
Due to the limited space, many others crosscutting concerns listed
in table 2 are not going to be described.

Table 1. Metrics for Separation of Concerns
Metrics Definitions

Concern Diffusion over Components (CDC) Counts the number of classes and aspects whose main purpose is the implementation of a concern and
the number of other classes and aspects that access them.

Concern Diffusion over Operations (CDO) Counts the number of methods and advices whose main purpose is the implementation of a concern
and the number of other methods and advices that access them.

Concern Diffusions over LOC (CDLOC) Counts the number of transition points for each concern through the lines of code. Transition points
are points in the code where there is a “concern switch”.

33

The binding state machine contains a number of state transitions
that are related to the status of the resources, closing binding and
aborting communication. Figure 1 depicts the design of the
binding state machine as a gray box which defines the states of
binding objects. The BindState interface provides a set of states
such as connected and running which change according to the
binding operation.

Figure 2: State transitions involving open binding

As illustrated in Figure 2, these state modifications crosscut all
minimal core to ensure the state machine integrity. In order to
define the current state, the attribute dbstate receives a predefined
state within the some methods, such as makeRequest. Based on
the defined state, a different set of operations are available or not
to be executed. For example, if the dbstate is defined as

connected, the application can perform more operations compared
to the situation where the state is running. In addition to the
different State behavior, each kind of binding has a different set
of states and transitions points. Thus, different transitions points
are scattered over the policies of signal, stream and operational
bindings.
In order to remove the scattered code produced by the state
definition, we use AspectJ to promote a different strategy to
manage the state transitions. Aspects are used to remove the state
transitions from implementation of the binding policies; pointcuts
and advice are respectively used to detect the transition points
(join points) and to define the transition itself. This approach
allows decoupling the states from each other and also facilitates
the maintenance of the state transition control once the state
transition code is located in an aspectual module. Thus, Figure 3
describes how to separate state transactions from the core
implementation. ChangeState defines pointcuts and advices to
intercept all state-changing invocations. For instance, after the
makeRequest execution, the result is used to define the new state
of the binding. As a consequence of this modularized approach, it
is straightforward to insert and change the state machine in order
to adapt to new operational situations. It also promotes safer
adaptation of the state machine, as the modular visibility of the
transitions points helps the prediction of harmful change effects
and the reliable insertion of new states.
In addition to the binding state machine, reflective middleware
allows to insert new functionalities in its internal implementation.
This is achieved by a two-level representation of the system: the
base-level and the meta-level. The base-level is composed of
base-objects. The meta-level is represented by meta-objects that

public Object makeRequest(String met,
Object[] args){

 . . .

 Class classes[] = null;

 dbstate = new BindRunning();

 Class oClass = getTargetReceptacle();

 Method metExe = getMethod(met, args,

 oClass);

 Object[] realargs = getArgs(met,args);

 //invoke target method

 . . .

 dbstate = new BindConnected();

}

Figure 1: Crosscutting Concerns in the OpenORB component infrastructure

34

monitor the base-level. The meta-level performs computation
about the system itself. In reflective middleware platforms, the
middleware core is represented by base-objects. Meta-objects are
associated with base-objects and a causal connection allows that
changes in the meta-level are reflected in the base-level and vice-
versa.
However, the OO implementation of the reflective model imposes
some restrictions to the ORB modularity, once the maintenance of
the causal connection requires the intrusive introduction of
reflection code across the component infrastructure. Reflection-
specific concerns are then superimposed to concerns specific to
the component model. It occurs mainly because the causal
connection needs to associate the base-objects with the meta-
objects and to guarantee that changes to the base-level are
reflected into the meta-level and vice-versa. This inter-level state
dependency between objects is critical for several reasons, such
as: (i) it defines a tightly connected object model, and (ii) as the
middleware system evolves, it tends to include more and more
complex relationship between meta and base objects.

Figure 3: Open binding state changing

One of the main parts of the causal connection implementation is
represented by the detection mechanism. This mechanism detects
changes in the base-object and informs these occurrences to the
appropriate meta-objects. Figure 1 illustrates the design of the
detection mechanism by dotted boxes which is centered on an
instance of the Observer pattern [1]. It defines an one-to-many
dependency involving a base-object and any number of meta-
objects so that, when the state of the base-object changes, all its
meta-objects are automatically notified and updated. The goal of
this OO decomposition is to support the reuse of base-objects
without reusing their meta-objects, and vice versa. In addition, we
can add a meta-object without modifying the base-object or other
meta-objects. These features are compatible with the intention of
causal connection. To maintain meta-objects in a consistent state,
base-objects (Port, Component and Binding strategies) update the
methods of its meta-objects whenever a change occurs that could
make its meta-object state inconsistent with its own. After being
informed of a change in the concrete base-object, a meta-object
may query the base-object for information.
Despite the methods that implement the causal connection are
defined in the BaseObject class, the invocation of the update
method is scattered within the code of many methods in the base-

objects hierarchy. The AO version of the OpenORB
implementation defines an aspect to modularize the scattered code
relative to the change detection mechanism. As a result, base-
level module implementations do not have to be aware of the
meta-level elements. Figure 4 illustrates a slice of the
DetectMechanism aspect which defines some pointcuts, one for
each method where the causal connection should be monitored.
For instance, subjectChange pointcut in Figure 4 monitors the
execution of the Component.setName through the advice
definition to update the meta-objects associated with it. Hence the
implementation of the AO approach was able to remove all the
dotted boxes that represent the change-detection crosscutting in
Figure 1.

Figure 4: Aspect to modularize change detections

4. QUANTITATIVE EVALUATION
This section describes the quantitative comparison of the Java and
AspectJ implementations for the OpenORB-compliant reflective
middleware, based on a suite of concern-oriented modularity
metrics. The idea is to assess to what extent the AO and OO
design elements (Section 3) and other ones defined in both
OpenORB implementations support the middleware modularity.
We present the results by means of tables that put side-by side the
values of the metrics for the OO and AO versions of each target
middleware system. We present the results of our analysis in
terms of modularity measures with respect to separation of the
reflective middleware concerns. Table 2 shows the obtained
results for the three separations of concerns (SoC) metrics.
The measures are presented according to elementary
features of the reflective middleware, namely the
underlying component model, the communication
infrastructure, and reflection-specific concerns, such as
causal connection and the meta-model. Table 2 also
indicates the main OO design pattern used to implement
each of the middleware elements. Due to space constraints,
we have concentrated on the most important features and
subfeatures of the reflective middleware. We have selected
those features in which their modularity, according to our
observation, has been suffered no impact (Section 4.1) and
positive influences (Section 4.2) on the application of
AOP.

public aspect DetectionMechanism {

protected pointcut subjectChange(Object obj):
 call(public void Component.setName(String))
 && target(obj);

. . .

after(Object obj): subjectChange(obj) {
 Object[] argss = thisJoinPoint.getArgs();
 Signature sig=(Signature)thisJoinPoint.
 getSignature();
 String operation = sig.getName();
 updateMetaObjects(obj, operation, argss);
 }
}

pointcut changeState(
 SignalBind bind) : execution(
 public Object SignalBind.makeRequest(..))
 && target(bind);
 before(SignalBind bind) :
 changeState(bind)
 { bind.bdstate =
 new BindRunning();
 }
 after(SignalBind bind) :
 changeState(bind)
 {
 bind.bdstate =
 new BindConnected();
 }
 . . .
}

35

4.1 No Effect of AOP
Table 2 omits the data relative to other elements in the component
model, such as (i) the structure responsible for storing the list of
components, interfaces and methods (implemented as Iterator
pattern [1]), (ii) the alternative behaviors for binding (Template
Method pattern), (iii) the unit representing the capsule (Singleton
pattern) that controls the components made available by the
OpenORB, and (iv) the main interface of OpenORB (Façade
pattern). These elements are example parts of the core behavior of
the OpenORB system that have been similarly implemented in
Java and AspectJ. Similarly, we have not included other elements,
such as the subfeatures of the acceptance/connection
infrastructure and complementary mechanisms in the
communication infrastructure.

4.2 Increased Separation with AOP
An analysis of Table 2 shows that the AO version of the
middleware system performed better than the OO version for
most the measures. In particular, the AspectJ version is superior
for all the crosscutting concerns discussed in Section 3, such as
the binding state, and the causal connection mechanisms. There
was only one exception relative to the implementation of the
message assembling mechanism, where it was clear that such a
middleware feature has already been nicely realized through the
OO implementation of the Builder pattern. There were some
isolate points were the AO solution achieved a slightly worse
result, namely: (i) the number of operations (CDO metric) to
implement the functionality responsible for recovery states of
objects and meta-objects, and (ii) the tally of modular units (CDC
metric) to implement the causal connection feature. However, the
other SoC metrics for the same features have compensated these
punctual breakdowns. For example, although there are more
operations dedicated to implement state recovery, they are
localized in fewer components and with reduced amount of
tangling or transition points (CDLOC metric).

The SoC metrics indicate significant modularity improvements in
a number of features and subfeatures of the aspectized reflective
middleware, including binding, binding state, management of
involved interfaces, remote invocation mechanism, and so forth.
More importantly, the separation of all the reflection subfeatures
relative to causal connection and metamodel has been clearly
enhanced by the aspect-oriented mechanisms. The AspectJ
superiority exceeds 50% in some cases, such as the level of
tangling (CDLOC) in the implementation of the composite
structure of components, causal connection, change notification of
meta-objects, and metamodel composite.

4.3 Study Constraints
Our study focuses on the comparison of a single AO language -
namely AspectJ – and an OO language. Although many ideas
presented here also apply to other AO languages, some surely do
not. Arguably, the employed metrics suite does not cover all the
possible modularity dimensions. There are a number of other
existing metrics and other modularity dimensions that we could
be exploited in our study. We have decided to focus on the
metrics described in Section 2.4 because they have already been
proved to be effective quality indicators in several case studies
(e.g. [3, 5-7, 10]). In fact, despite the well-known limitations of
these metrics, they complement each other and are very useful
when analyzed together. In addition, there is no way in a single
study to explore all the possible measures. For every possible
metrics suite there will be some dimensions that will remain
uncovered. In addition, future case studies can use additional
metrics and assess the aspectization of reflection-specific features
using different modularity dimensions.

5. RELATED WORK
There are a number of works that address adaptability of
middleware platforms. The most representative work in this
context are reflection-based middleware platforms

Table 2. Quantifying Separation of Concerns

 CDC CDO CDLOC Superior
CONCERNS (Pattern) OO AO OO AO OO AO Solution

Component Model 10 4 18 17 30 2 AO+
. composite structure of components (Composite) 3 3 11 11 10 2 AO
. binding 42 30 109 93 22 4 AO+
 .. binding state (State) 4 4 12 12 14 2 AO
 .. managing required/provided interfaces (Mediator) 5 5 18 18 22 2 AO
 .. remote invocation mechanism (Proxy) 24 19 69 59 2 2 AO
 .. family of binding strategies (Strategy) 4 3 9 5 8 8 AO
Communication Infrastructure 21 20 77 75 20 18 AO
. message assembling (Builder) 8 8 28 28 10 10 =
. isolation of API details (Adapter) 5 5 25 24 2 2 AO
. efficient storage of connections (Flyweight) 11 10 29 27 20 18 AO
Reflection Infrastructure
. causal connection 9 11 21 19 38 18 AO
 .. detection mechanism (Observer) 8 8 14 7 28 12 AO
 .. capture mechanism (Memento) 4 2 8 12 12 8 AO
. metamodel 8 6 22 18 16 8 AO+
 .. metamodel composite (Composite/Visitor) 4 3 7 7 6 2 AO
 .. encapsulation (Decorator) 4 3 15 11 10 8 AO
Success Total 1 vs. 10 1 vs. 11 0 vs. 13 0 vs. 16

36

[13,15,16,17,24] that exploit the power of adaptability provided
by the reflective features. In this work we goes a step further by
using AOP to modularize the scattered code of the reflective
features and, as a consequence, to improve adaptability of
reflective-based middleware since the reflective code can be
removed and inserted according to the target application. This is
an important differentiator of our work comparing to other non-
AOP and AOP middleware implementations.
The idea of refactoring middleware implementation using AOP
has been explored by certain authors [19-22]. The principles of
Horizontal Decomposition (HD) were proposed in [20] in order to
address the so-called “feature convolution” problem – the lack of
modularity in the implementation of middleware features. This
work focuses on defining horizontal decomposition guidelines
and it applies the HD principles to implement ORBacus using
AspectJ. It defines the functionalities that compose the
middleware core and classifies them in three layers (IDL layer,
messaging layer that defines synchronous invocations, and
transport and protocol layer that implements IIOP) and the
functionalities that can be represented by aspects: oneway
invocation that supports asynchronous invocation, dynamic typing
that implements reflective composition of remote invocations, the
encoding conversion mechanism, and the local invocation
supports. In [5] the HD principles are also applied to the
Prevayler database system in order to validate the HD principles.
Our research differs from HD-specific studies in the sense our
main goal of our refactoring process is to improve middleware
modularity while the other work aims to address performance.
Second, we apply a number of modularity measures that evaluate
the impact of AOP on the isolation of reflective features by
comparing the AO and OO versions for the middleware system.
In [21] a set of software metrics are also applied to the
middleware implementation. However, reflective features are not
exploited in this experimentation. The third difference is that the
refactorization of the legacy middleware is incomplete. It does not
provide a complete AO middleware. Our Open-Orb compliant
implementation provides all the features of the reflective Open-
Orb model.
Hannemann and Kiczales (HK) [28] have undertaken a qualitative
study in which they have developed and compared Java and
AspectJ [29] implementations of the 23 GoF patterns [1]. The
basic idea was the identification of the common part of several
patterns and the isolation of their implementations in aspectual
modules. Nevertheless, for each of the 23 patterns they used a
very simple example that made use of the pattern. In our work, we
used design patterns in the Java and AspectJ versions of the
middleware in order to guarantee we have good designs in both
solutions. In the AspectJ version we used HK solutions for the
patterns. However, since we use them in a real system, we have to
make a number of changes in their solutions in order to use
patterns in composition with others [8]. Our work aims at
studying how these pattern implementations support the
improvement of adaptability in the context of reflective
middleware systems. In their study, HK undertook other types of
analysis.
Alice [26] exploits the container concept available in middleware
for component-based software development and proposes a
combination of a minimal container with AOP and Java 1.5
Annotations. It uses the annotation facility to provide meta-

information about components and services. It focuses on the
improvement of container-based middleware, via AOP and
Annotations. Our research differs from this one by focusing on
the aspectization of reflective middleware. The evaluation of our
implementation by a suite of software metrics is also an important
difference from this work.
The paper [31] proposes a Modelware methodology that combines
the MDA (Model Driven Architecture) approach and AOP in
order to address middleware customization and improve
perfomance. However, this paper also does not assess the
interplay of AOP and reflective middleware modularization.
Finally, combining AOP and reflection is not a new idea.
However, most of the existing works in the literature applies
reflection to support AOP (e.g. [32]). In this work we apply AOP
to modularize reflective features of a middleware platform in
order to modularize them and to leverage the adaptability support
provided by reflective middleware.

5. FINAL REMARKS AND FUTURE
WORK
In this paper we have applied AOP to improve the modularity of
reflective middleware by aspectizing reflection-specific
crosscutting concerns. We have discussed how the reflective
middleware features of a middleware crosscut the middleware
architecture. We have quantitatively compared two OpenORB-
compliant reflective middleware implementations: an OO
implementation in Java and an AO in AspectJ. The quantitative
evaluation showed that the AO version of the middleware is
superior to the OO version in most of the crosscutting concerns.
The SoC metrics showed significant modularity improvements
mainly in the reflective features.
As future work, we are planning to investigate to that extent the
AO solution impacts positively and negatively on performance
issues. We have made some initial performance measurements
[35]. We have already found some preliminary limitations in the
AspectJ version, such as the need to implement the binding
manager as a singleton aspect [8], leading to serious performance
bottlenecks [35]. In addition, we plan to directly compare AO
solutions and reflective ones (e.g. [33]) for each of the
middleware concerns (such as the binding state) analyzed in this
first case study. Hence, we would be able to go a step forward on
our empirical understanding about the comparison of AOP with
other programming techniques (such as reflection) to implement
modular reflective middleware.

ACKNOWLEDGEMENTS. Nelio Cacho and Alessandro
Garcia are supported by European Commission as part of the
grant IST-2-004349: European Network of Excellence on Aspect-
Oriented Software Development (AOSD-Europe), 2004-2008.

REFERENCES
1. E. Gamma, R. Helm, R. Johnson, J. Vlissides (1995).

Design Patterns. Addison Wesley. ISBN 0.201-63361-2.
2. Metsker, S. J.: Design Patterns Java™ Workbook, Addison

Wesley, 2002.
3. Filho, F., Rubira, C., Garcia, A. A Quantitative Study on the

Aspectization of Exception Handling. Proc. ECOOP
Workshop on Exception Handling in OO Systems, Glasgow,
Scotland, July 2005.

37

4. Kiczales, G. et al. Aspect-Oriented Programming. Proc. of
ECOOP’97, LNCS 1241, Finland, June 1997, 220-242.

5. Godil, I., Jacobsen, H. Horizontal Decomposition of
Prevayler. In Proc. of CASCON 2005, Richmond Hill,
Canada, October 2005.

6. Garcia, A., Sant'Anna, C., Figueiredo, E., Kulesza, U.,
Lucena, C., Staa, A. Modularizing Design Patterns with
Aspects: A Quantitative Study. LNCS Transactions on
Aspect-Oriented Software Development, vol. 1, n. 1., LNCS
3880, Springer, 2006, pp. 36-74.

7. Garcia, A. et al. Separation of Concerns in Multi-Agent
Systems: An Empirical Study. In Software Engineering for
Multi-Agent Systems II, Springer, LNCS 2940, Jan 2004.

8. Cacho, N., Sant'Anna, C., Figueiredo, E., Garcia, A., Batista,
T., Lucena, C. Composing Design Patterns: A Scalability
Study of Aspect-Oriented Programming. 5th International
Conference on Aspect-Oriented Software Development
(AOSD'06),Bonn, Germany, 20-24 March 2006.

9. IONA Technology, Orbix/E. http://www.iona.com/
10. Soares, S. An Aspect-Oriented Implementation Method.

Doctoral Thesis, Federal Univ. of Pernambuco, Oct 2004.
11. Figueiredo, E. et al. Assessing Aspect-Oriented Artifacts:

Towards a Tool-Supported Quantitative Method. Proc. of the
9th ECOOP Workshop on Quantitative Approaches in OO
Soft. Engineering (QAOOSE.05), Glasgow, July 2005.

12. Bernstein. P. Middleware. Communications of the ACM,
39(2), February 1996.

13. Agha, G. Adaptive Middleware. Communications of the
ACM, Vol. 45, No. 6, pp. 31-32, June 2002.

14. Tripathi, A. Challenges Designing Next-Generation
Middleware Systems. Communications of the ACM, Vol. 45,
No. 6, pp 39-42, June 2002.

15. Blair, G. S. et al. An Architecture for Next Generation
Middleware. In: Proceedings of the IFIP International
Conference on Distributed Systems Platforms and Open
Distributed Processing. Springer-Verlag, pp. 191-206, 1998.

16. Blair, G., Costa, F., Saikoski, K and Parlavantzas. The
design and implementation of Open ORB version 2. IEEE
Distributed Systems Online Journal, 2(6), 2001.

17. Kon, F. et al. The case for reflective middleware. Commun.
ACM, v. 45, n. 6, p. 33–38, 2002.

18. Fitzpatrick, T., Blair, G., Coulson,G. S., Davies, N. and
Robin,P. Supporting Adaptive Multimedia Applications
through Open Binding. In Proceedings of 4th International
Conference on Configurable Distributed Systems
(ICCDS'98), Annapolis, Maryland, US, May 1998.

19. Zhang, C. and Jacobsen, H. A. Quantifying aspects in
middleware platforms. In: Proceedings of the 2nd
international conference on Aspect-oriented software
development. [S.l.]: ACM Press, 2003. p. 130–139. ISBN 1-
58113-660-9.

20. Zhang, C.; Gao, D. and Jacobsen, H. A. Towards just-in-time
middleware architectures. In: Proceedings of the 4th
international conference on Aspect-oriented software
development. ACM Press, 2005. p. 63–74. ISBN 1-59593-
043-4.

21. Zhang, C. and Jacobsen, H. (2003) Re-factoring Middleware
with Aspects. IEEE Transactions on Parallel and Distributed
Systems, Vol. 14, pp. 1243-1262.

22. Hunleth, F., Cytron, R. abd Gill, C. Building Customizable
Middleware using Aspect Oriented Programming. In

OOPSLA 2001 Workshop on Advanced Separation of
Concerns in Object-Oriented Systems. 2001. Tampa, Florida.

23. Maes, P. Concepts and Experiments in Computational
Reflection. In Proceedings of OOPSLA’87, pages 147-155,
Orlando, Florida, 1987.

24. Kon, F. et al. Monitoring, Security, and Dynamic
Configuration with the DynamicTAO Reflective Orb. Proc.
IFIP/ACM Int’l Conf. Distributed Systems Platforms and
Open Distributed Processing, 2000.

25. Colyer, A. and Clement, A. Large-Scale AOSD for
middleware. In 3rd International Conference on Aspect-
oriented Software Development (AOSD’04), pp. 56-65,
Lancaster, UK, 2004.

26. Eichberg, M. and Mezini, M. Alice: Modularization of
Middleware using Aspect-Oriented Programming. Software
Engineering and Middleware (SEM), 2004

27. Sun Microsystems, PersonalJava Application Environment.
http://java.sun.com/product/Personaljava

28. Hannemann, J.; Kickzales, G. Design Pattern
Implementation in Java and AspectJ, Proc. 17th Conf. on
Object-Oriented Programming, Systems, Languages, and
Applications (OOPSLA’02). Seattle, USA, 2002, pp. 161-
173.

29. The AspectJ Team. The AspectJTM Programming Guide.
http:/www.eclipse.org/aspectj.

30. Figueiredo, E., Garcia, A, Lucena, C. AJATO: an AspectJ
Assessment Tool. Proc. of the ECOOP.06, Demo Session,
Nantes, France, July 2006. http://www.teccomm.les.inf.puc-
rio.br/emagno/

31. Zhang, C., Gao, D., Jacobsen, H.: Generic Middleware
Substrate Through Modelware. Middleware 2005: 314-333.

32. N.Cacho, T.Batista (2005) Using AOP to Customize a
Reflective Middleware. Int'l Symposium on Distributed
Objects and Applications - DOA, Agia Napa, Cyprus,
November 2005, LNCS, Volume 3761, Pages 1133 – 1150.

33. L. Ferreira, C. Rubira, "The Reflective State Pattern". Proc.
of the 5th Languages of Programs Conference (PLoP'98),
August 98, Monticello, EUA.

34. L. Capra, W. Emmerich and C. Mascolo. CARISMA: Context-
Aware Reflective Middleware System for Mobile
Applications. IEEE Transactions on Software Engineering
29(10): pp. 929--944, Oct 2003.

35. Reflective middleware with AOP.
http://www.consiste.dimap.ufrn.br/~cacho/openorbresults.ht
ml

38

