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Abstract 

Recently, combination algorithms from machine learning classification have been extended to 

time series regression, most notably seven variants of the popular AdaBoost algorithm. Despite 

their theoretical promise their empirical accuracy in forecasting has not yet been assessed, either 

against each other or against any established approaches of forecast combination, model 

selection, or statistical benchmark algorithms. Also, none of the algorithms have been assessed 

on a representative set of empirical data, using only few synthetic time series. We remedy this 

omission by conducting a rigorous empirical evaluation using a representative set of 111 

industry time series and a valid and reliable experimental design. We develop a full-factorial 

design over derived Boosting meta-parameters, creating 42 novel Boosting variants, and create a 

further 47 novel Boosting variants using research insights from forecast combination. 

Experiments show that only few Boosting meta-parameters increase accuracy, while meta-

parameters derived from forecast combination research outperform others. 
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1. Introduction 

In the 45 years since the seminal work on combining forecasts (Bates and Granger 

1969), research on the combination of time series predictions has consistently been shown to 

improve accuracy over selecting a single ‘best’ forecast (Bunn 1988; Elliott, Granger, and 

Timmermann 2006). Extensive research has assessed how to best determine combination 

weights of multiple algorithms, e.g. applying forecast error variance minimization (Newbold 

and Granger 1974; Min and Zellner 1993), regression (Granger and Ramanathan 1984; 

Macdonald and Marsh 1994), or Bayesian probability theory (Bunn 1975; Bordley 1982; 

Diebold and Pauly 1990), with the simple arithmetic mean regularly proving a tough benchmark 

for more sophisticated schemes (Elliott, Granger, and Timmermann 2006). The empirical 

performance of forecast combination has been substantiated in various experiments (see e.g. 

Aksu and Gunter 1992; Gunter 1992; Stock and Watson 2004; Clements and Hendry 2007; Jose 

and Winkler 2008), in prominent empirical case studies in operational research (see e.g. Chan, 

Kingsman, and Wong 1999) and finance (Zhang 2007; Leung, Daouk, and Chen 2001), and in 

representative forecasting competitions such as the M3 (Makridakis and Hibon 2000) and NN3 

(Crone, Hibon and Nikolopoulos, 2011), providing guidelines on forecast combination based on 

empirical evidence (de Menezes, Bunn, and Taylor 2000; Riedel and Gabrys 2009).  

More recently, research on combining in machine learning has extended the popular 

classification algorithm AdaBoost by Freund and Schapire (1997) to regression on time series 

data, typically altering one or more of its components to create a set of seven distinct Boosting 

algorithms for forecasting (e.g., Shrestha and Solomatine 2006; Assaad, Bone, and Cardot 2008; 

de Souza et al. 2010) described in more detail in Section 3.8. Boosting algorithms adaptively 

perturb, reweight and resample training data to create diverse models of the same algorithm, 

iteratively focusing on harder to learn examples, thereby achieving diverse predictions which are 

combined in a dynamic and adaptive manner (Freund, Schapire, and Abe 1999). As Boosting 

combinations differ substantially from traditional forecast combination approaches, which 
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combine predictions from different algorithms all estimated on the same data, they promise a 

novel approach to improve accuracy from forecast combinations. However, while Boosting is 

widely accepted as a benchmark in cross-sectional predictive classification based on its 

preeminent performance in a number of empirical evaluations (Breiman 1998; Rokach 2009), 

the empirical accuracy of its variants in time series regression has not been systematically 

assessed. Although each of the seven Boosting variants by different authors proposes a different 

alteration of the original AdaBoost algorithm for Regression, their relative accuracy has not 

been compared against each other. Furthermore, none of the Boosting variants have been 

compared to the established approaches of conventional forecast combination, individual model 

selection, or aggregate selection of employing a simple statistical benchmarks such as the Naïve, 

Exponential Smoothing or ARIMA, making an assessment of their relative merit impossible. 

Furthermore, none of the algorithms have been assessed on a representative dataset of empirical 

data, typically evaluating only 1-3 synthetic time series which do not allow a generalisation of 

their reliability on empirical industry data. In the absence of an objective assessment of their 

empirical accuracy, the efficacy of this novel approach to forecast combination for applications 

in Operational Research remains unclear.  

This paper seeks to remedy this omission by providing a rigorous empirical evaluation 

on empirical industry data, providing a three-fold contribution: (I) We provide the first empirical 

assessment of the seven existing AdaBoost variants, using a representative set of 111 empirical 

time series from the benchmark dataset of the NN3 competition, and a valid and reliable 

experimental design assessing multiple-step ahead forecasts across multiple rolling origins. (II) 

In order to identify the relative merit of each of the seven algorithms’ innovations we 

decompose Boosting into six archetypical meta-parameters that determine the behaviour of all 

AdaBoost variants (the loss function and type, the loss update method, the stopping criteria, the 

combination method and the base model) and develop a full factorial design of all meta-

parameter alterations, thereby creating 42 novel Boosting variants not previously considered, to 
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guide future choices and studies on meta-parameters. From the decomposition we note that all 

Boosting variants have ignored important insights from forecasting research, including the use 

of simple averages in combining predictions, avoiding higher-order loss functions, and the bias 

of MAPE based relative error estimation, which could potentially limit their adequacy and 

empirical performance. Consequently, (III) we create a further 47 novel Boosting variants with 

meta-parameters motivated from research in traditional forecast combination. In evaluating all 

against a set of representative benchmark algorithms, we identify a novel Best Combination 

(BC) boosting algorithm based on new meta-parameters which improves accuracy significantly. 

The remainder of the paper is organised as follows: we begin with a structured literature 

review on Boosting for forecast combination identifying the research gaps and further 

motivating this study. Next, in Section 3 we describe and decompose the AdaBoost algorithm 

into its archetypical meta-parameters in order to understand and evaluate the resulting Boosting 

variants, and to derive properties of a Best Combination Boosting approach. Section 4 describes 

the experimental design and implementation of the empirical evaluation, including benchmark 

methods and specification of base models. This is followed by results on statistical significance 

of all meta-parameter combinations in Section 5, the relative forecast accuracy in comparison to 

other contenders of the NN3 competition in Section 6, and conclusions in Section 7. 

2. A review of AdaBoost for forecast combination 

In this study we consider the AdaBoost algorithm, the most well-known and widely 

applied Boosting algorithm in research and practice (Schapire 2003)
2
. Despite offering a distinct 

approach to combining predictions, and the success of this approach in predictive classification, 

only few studies in machine learning have extended AdaBoost to regression on time series data, 

and with almost no resonance in forecasting and econometrics domains. The first application of 

                                                           
2
 It should be noted that other boosting approaches exist based on the work of Friedman et al. (2000) and Friedman 

(2001) who linked Boosting to functional gradient descent optimization and stagewise additive function 

approximation. These approaches have had some success in time series forecasting e.g. the gradient boosting 

approach of Taieb and Hyndman (2014) which ranked 5
th

 out of 105 participating teams in the Kaggle load 

forecasting competition. Other areas of application  include finance (Audrino 2006; Audrino and Bühlmann 2009), 

economics (Wohlrabe and Buchen 2014) and production (Robinzonov, Tutz, and Hothorn 2012). 
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Boosting for regression on time series data is credited to Avnimelech and Intrator (1999), who 

applied a modification of the original AdaBoost algorithm in forecasting the laser data from the 

Santa Fe time series competition (Weigend and Gershenfeld 1993). Shrestha and Solomatine 

(2006) later developed the AdaBoost.RT algorithm also used to predict the Santa Fe time series 

data. Since then the limited research to date has focussed on what can only be described as 

marginal extensions of AdaBoost, typically altering one or more of the algorithm’s components 

to create a set of Boosting variants for forecasting. These include a modification of AdaBoost by 

Goh, Lim, and Peh (2003) who predict drug dissolution profiles for developing drug dosage 

regimens, an application of Drucker’s AdaBoost.R2 algorithm by Canestrelli et al. (2007) 

forecasting tide levels, and an application of AdaBoost.R2 by Assaad, Bone, and Cardot (2008) 

inaccurately describing it as a new algorithm in applying a recurrent neural network learner.  

With all aforementioned research published in the machine learning literature, with a 

focus on neural network journals, many of these extensions have ignored important insight from 

forecasting research within the management sciences. For example, Adaboost.R2 (Drucker 

1997), Modified AdaBoost (Goh, Lim, and Peh 2003), AdaBoost.RT (Shrestha and Solomatine 

2006) and the Boosting algorithm of Assaad, Bone, and Cardot (2008), all developed 

exclusively for time series data, each apply a weighted median or mean to combine final 

predictions, although current research in forecasting concurs in the use of simple averages (see 

e.g. Winkler and Clemen 1992). Similarly, from early algorithms of Adaboost.R2 to more recent 

developments of Boosting (Shrestha and Solomatine 2006; Assaad, Bone, and Cardot 2008), 

many suggest the use of a squared or exponential loss function in guiding the Boosting 

algorithm on harder to learn examples, despite higher-order errors proven to bias results in 

forecasting research (see e.g. Tashman 2000). As a remedy Shrestha and Solomatine (2006) 

suggest AdaBoost.RT using a linear relative error similar in nature to Mean Absolute Percent 

Error (MAPE), despite MAPE’s documented biases in asymmetry and problems with zero 

observations, and on low values (Hyndman and Koehler 2006). Without interaction with the 

https://www.researchgate.net/publication/238836665_Sensitivity_of_Weights_in_Combining_Forecasts?el=1_x_8&enrichId=rgreq-715676d99ea26ccc870f4568cd80a3d9-XXX&enrichSource=Y292ZXJQYWdlOzMwMzczODkyOTtBUzozNjg1MDc1NzQzNDE2MzNAMTQ2NDg3MDQ2MDQxMA==
https://www.researchgate.net/publication/224663838_Results_of_the_time_series_prediction_competition_at_the_Santa_Fe_Institute?el=1_x_8&enrichId=rgreq-715676d99ea26ccc870f4568cd80a3d9-XXX&enrichSource=Y292ZXJQYWdlOzMwMzczODkyOTtBUzozNjg1MDc1NzQzNDE2MzNAMTQ2NDg3MDQ2MDQxMA==
https://www.researchgate.net/publication/224292706_Local_Learning_of_Tide_Level_Time_Series_using_a_Fuzzy_Approach?el=1_x_8&enrichId=rgreq-715676d99ea26ccc870f4568cd80a3d9-XXX&enrichSource=Y292ZXJQYWdlOzMwMzczODkyOTtBUzozNjg1MDc1NzQzNDE2MzNAMTQ2NDg3MDQ2MDQxMA==
https://www.researchgate.net/publication/222665190_Another_look_at_measures_of_forecast_accuracy?el=1_x_8&enrichId=rgreq-715676d99ea26ccc870f4568cd80a3d9-XXX&enrichSource=Y292ZXJQYWdlOzMwMzczODkyOTtBUzozNjg1MDc1NzQzNDE2MzNAMTQ2NDg3MDQ2MDQxMA==
https://www.researchgate.net/publication/222346533_A_New_Boosting_Algorithm_for_Improved_Time-Series_Forecasting_with_Recurrent_Neural_Networks?el=1_x_8&enrichId=rgreq-715676d99ea26ccc870f4568cd80a3d9-XXX&enrichSource=Y292ZXJQYWdlOzMwMzczODkyOTtBUzozNjg1MDc1NzQzNDE2MzNAMTQ2NDg3MDQ2MDQxMA==
https://www.researchgate.net/publication/222346533_A_New_Boosting_Algorithm_for_Improved_Time-Series_Forecasting_with_Recurrent_Neural_Networks?el=1_x_8&enrichId=rgreq-715676d99ea26ccc870f4568cd80a3d9-XXX&enrichSource=Y292ZXJQYWdlOzMwMzczODkyOTtBUzozNjg1MDc1NzQzNDE2MzNAMTQ2NDg3MDQ2MDQxMA==
https://www.researchgate.net/publication/222346533_A_New_Boosting_Algorithm_for_Improved_Time-Series_Forecasting_with_Recurrent_Neural_Networks?el=1_x_8&enrichId=rgreq-715676d99ea26ccc870f4568cd80a3d9-XXX&enrichSource=Y292ZXJQYWdlOzMwMzczODkyOTtBUzozNjg1MDc1NzQzNDE2MzNAMTQ2NDg3MDQ2MDQxMA==
https://www.researchgate.net/publication/220499818_Experiments_with_AdaBoostRT_an_Improved_Boosting_Scheme_for_Regression?el=1_x_8&enrichId=rgreq-715676d99ea26ccc870f4568cd80a3d9-XXX&enrichSource=Y292ZXJQYWdlOzMwMzczODkyOTtBUzozNjg1MDc1NzQzNDE2MzNAMTQ2NDg3MDQ2MDQxMA==
https://www.researchgate.net/publication/220499818_Experiments_with_AdaBoostRT_an_Improved_Boosting_Scheme_for_Regression?el=1_x_8&enrichId=rgreq-715676d99ea26ccc870f4568cd80a3d9-XXX&enrichSource=Y292ZXJQYWdlOzMwMzczODkyOTtBUzozNjg1MDc1NzQzNDE2MzNAMTQ2NDg3MDQ2MDQxMA==
https://www.researchgate.net/publication/220499818_Experiments_with_AdaBoostRT_an_Improved_Boosting_Scheme_for_Regression?el=1_x_8&enrichId=rgreq-715676d99ea26ccc870f4568cd80a3d9-XXX&enrichSource=Y292ZXJQYWdlOzMwMzczODkyOTtBUzozNjg1MDc1NzQzNDE2MzNAMTQ2NDg3MDQ2MDQxMA==
https://www.researchgate.net/publication/220499818_Experiments_with_AdaBoostRT_an_Improved_Boosting_Scheme_for_Regression?el=1_x_8&enrichId=rgreq-715676d99ea26ccc870f4568cd80a3d9-XXX&enrichSource=Y292ZXJQYWdlOzMwMzczODkyOTtBUzozNjg1MDc1NzQzNDE2MzNAMTQ2NDg3MDQ2MDQxMA==
https://www.researchgate.net/publication/5613994_Predicting_drug_dissolution_profiles_with_an_ensemble_of_boosted_neural_networks_A_time_series_approach?el=1_x_8&enrichId=rgreq-715676d99ea26ccc870f4568cd80a3d9-XXX&enrichSource=Y292ZXJQYWdlOzMwMzczODkyOTtBUzozNjg1MDc1NzQzNDE2MzNAMTQ2NDg3MDQ2MDQxMA==
https://www.researchgate.net/publication/2424244_Improving_Regressors_Using_Boosting_Techniques?el=1_x_8&enrichId=rgreq-715676d99ea26ccc870f4568cd80a3d9-XXX&enrichSource=Y292ZXJQYWdlOzMwMzczODkyOTtBUzozNjg1MDc1NzQzNDE2MzNAMTQ2NDg3MDQ2MDQxMA==
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forecasting literature, Boosting variants have ignored proven best practices from forecasting 

research, such as the simple mean for combination, an absolute error loss function and a 

corresponding mean absolute error (MAE). 

At the same time, the different Boosting variants have not been compared against each 

other, neither conceptually nor in an empirical evaluation of their predictive accuracy, which 

does not allow an assessment of their individual merits for different data conditions. For those 

few studies that attempt an empirical evaluation, the experimental designs are often found to be 

lacking in scientific rigor (see, e.g., the recommendations by Tashman, 2000): all studies 

forecast altogether less than five time series, assess accuracy only from a single time origin, use 

biased error metrics, and provide no assessment on the statistical significance of findings. More 

importantly, the performance of Boosting on time series is not compared to other competing 

algorithms. Only select studies compare to another machine learning approach (usually Bagging, 

i.e. the study by Avnimelech and Intrator (1999), Deng, Jin, and Zhong (2005) or Shrestha and 

Solomantine (2006)), but none compare the performance of Boosting to statistical benchmarks 

of forecasting combinations, simple model selection, or even basic statistical forecasting 

algorithms, which are those regularly employed in forecasting practice. Reflecting on the 

relevance of an empirical evaluation to a methods’s efficacy, this signifies a significant gap in 

research which our study seeks to remedy.  

To facilitate a comprehensive understanding of AdaBoost across disciplines, as well as 

allow a replication of the extensions and experiments, the algorithm is formally described in 

section 3, where it is decomposed into its archetypical components and meta-parameters. 

3. Meta-parameters for Boosting 

3.1 A generic AdaBoost algorithm 

The AdaBoost algorithm is described below in general, with a detailed discussion of each meta-

parameter choice in the following subsections.  

Initially, from a time series, a dataset 𝑆 = 〈(𝐱1, 𝑦1), … , (𝐱𝑁, 𝑦𝑁)〉 is created consisting of 

https://www.researchgate.net/publication/223319987_Out-of-sample_tests_of_forecasting_accuracy_An_analysis_and_review?el=1_x_8&enrichId=rgreq-715676d99ea26ccc870f4568cd80a3d9-XXX&enrichSource=Y292ZXJQYWdlOzMwMzczODkyOTtBUzozNjg1MDc1NzQzNDE2MzNAMTQ2NDg3MDQ2MDQxMA==
https://www.researchgate.net/publication/13338036_Boosting_regression_estimators?el=1_x_8&enrichId=rgreq-715676d99ea26ccc870f4568cd80a3d9-XXX&enrichSource=Y292ZXJQYWdlOzMwMzczODkyOTtBUzozNjg1MDc1NzQzNDE2MzNAMTQ2NDg3MDQ2MDQxMA==
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𝑁 pairs of observations (𝐱𝑖, 𝑦𝑖), for 𝑖 = 1, … , 𝑁, where 𝐱𝑖 is a vector comprised of lagged, 

autoregressive (AR) realisations 𝑥𝑡 , 𝑥𝑡−1, … , 𝑥𝑡−𝑝+1   up to a lag length 𝑝 to capture an AR(p)-

process, and 𝑦𝑖 is a future realisation of the same variable of interest,   𝑦𝑖 =  𝑥𝑡+1. In the first 

iteration 𝑘 =  1, each observation (𝐱𝑖, 𝑦𝑖) in 𝑆 is assigned weight 𝑤𝑖 = 1, for all  𝑖 = 1, … , 𝑁, 

creating a uniform distribution. Based on its weight, each observation i is assigned a 

probability  𝑝𝑖
𝑘 = 𝑤𝑖

𝑘 ∑ 𝑤𝑖
𝑘⁄  of being included in the training set on iteration  𝑘. Each iteration 𝑘 

of AdaBoost then constructs a forecast model 𝑓𝑘: 𝑋 → 𝑌 using a base-learner (i.e. a predictive 

algorithm, see Section 3.7) capable of learning such mapping, and calculates the loss suffered on 

predicting each observation 𝐿𝑖
𝑘, with 𝐿𝑖

𝑘 ∈ [0, 1], according to a choice of loss function (see 

Section 3.2) specifying the relative accuracy with which each observation i has been predicted. 

The average loss �̅�𝑘 for model 𝑘 over all observations i is then calculated as the 

weighted sum of the probabilities and their respective losses (see Section 3.1): 

 

�̅�𝑘 = ∑ 𝐿𝑖
𝑘𝑝𝑖

𝑘

𝑁

𝑖=1

 (1) 

Based on this average model loss, a measure of predictive accuracy 𝛽𝑘 of the resulting forecast 

model is calculated. How this is calculated differs across Boosting variants, and is related to the 

stopping criteria (see Section 3.3). Next, the weights of observation 𝑖 for the following iteration 

𝑘 + 1 are updated depending on its prior weight 𝑤𝑖
𝑘, its current observation loss 𝐿𝑖

𝑘, and the 

model loss 𝛽𝑘: 

 
𝑤𝑖

𝑘+1 = 𝑤𝑖
𝑘𝛽𝑘

(1−𝐿𝑖
𝑘)

 (2) 

A large 𝛽𝑘 gives more weight to poorly predicted observations, forcing the underlying learning 

algorithm to focus on poorly predicted observations. Finally, the predictions 𝑓𝑘(𝐱𝑖) of the k 

models are combined using weights based on 𝛽𝑘 (see Section 3.4).  

Consequently, we identify six meta-parameters that determine the behaviour of all 

Boosting variants (Rokach 2009; Bühlmann and Yu 2010): the loss function and type, the loss 
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update method, the stopping criteria, the combination method and the base model. We describe 

each meta-parameter in a unified notation, review existing literature to highlight the impact and 

interaction of these meta-parameters, and contrast their choices with research findings on best 

practice from the forecast combination literature to suggest improved meta-parameters 

3.2 Loss function 

The loss function controls the magnitude of the relative error attributed to a predicted 

observation, and thereby the weight update of that observation for the next iteration k+1. We 

first consider the threshold-based loss function of Shrestha and Solomatine (2006) based on the 

absolute relative error (ARE): 

 𝐴𝑅𝐸𝑖
𝑘 = |

𝑓𝑘(𝐱𝐢)−𝑦𝑖

𝑦𝑖
|. (3) 

If the relative error of an observation is above a preset error threshold  𝜙, the forecast is said to 

be poor; conversely, it is classed as a good forecast. The resulting loss 𝐿𝑖
𝑘 for observation 𝑖 is 

then given by the threshold function: 

 
𝐿𝑖

𝑘 = {
1, 𝐴𝑅𝐸𝑖

𝑘 > 𝜙
0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 (4) 

with two classes of errors for poor or good forecasts respectively. In contrast, the proposal of 

AdaBoost.R2 by Drucker (1997) utilises the absolute percentage error (APE) as follows: 

 
𝐴𝑃𝐸𝑖

𝑘 =
|𝑓𝑘(𝐱i) − 𝑦𝑖|

𝐷
 (5) 

where 𝐷𝑘 = 𝑠𝑢𝑝𝑖(|𝑓𝑘(𝐱i) − 𝑦𝑖|) is the maximal prediction error over all 𝑦𝑖 such that 𝐴𝑃𝐸𝑖
𝑘 ∈

[0, 1]. Based on APE the loss 𝐿𝑖
𝑘 for observation 𝑖 is given by the non-threshold function: 

 
𝐿𝑖

𝑘 = {
𝐴𝑃𝐸𝑖

𝑘 , 𝑓𝑘(𝐱i) ≠ 𝑦𝑖

0, 𝑓𝑘(𝐱i) = 𝑦𝑖

 (6) 

The impact of loss functions on time series forecast accuracy, and interactions with other 

meta-parameters has been largely ignored, with the only evaluation of the linear, squared and 
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exponential loss of AdaBoost.R2 on time series data by Assaad et al. (2008). Considering the 

loss function type, the threshold loss function in Eq. (4) was only evaluated against a non-

threshold loss function by Shrestha and Solomatine (2006), without further investigation in 

other studies. In this study we extend the functional form of the threshold and non-threshold loss 

functions in Eq. (4) and Eq. (6) to a number of possible loss functions based on Minkowski-r-

metrics for linear, squared and higher order exponential loss functions for APE (non-threshold) 

and ARE (threshold based). This facilitates the comparison of different loss functions, e.g. the 

squared APE loss used in Drucker (1997), 

 
𝐴𝑃𝐸𝑖

𝑘 =
|𝑓𝑘(𝐱i) − 𝑦𝑖|

2

𝐷2
 (7) 

to a threshold squared ARE loss function not previously assessed for its performance: 

 
𝐴𝑅𝐸𝑖

𝑘 =
(𝑓𝑘(𝐱𝐢) − 𝑦𝑖)

2

𝑦𝑖
2

. (8) 

From a forecasting perspective, the formulation and choice of loss functions seems to 

ignore established research findings in time series prediction. Relative errors as suggested in 

AdaBoost.RT are similar in nature to MAPE, despite its documented biases in asymmetry of 

over- versus underforecasting, and issues with zero values (see, e.g., the discussion ensuing the 

M3 competition, e.g., in Makridakis et al. 1993). The potential problems are notable with 

observations close to zero, where small absolute errors will lead to large yet irrelevant 

percentage errors, misguiding the attention of Boosting unto small valued observations. 

Similarly, the suggestion of a squared or even higher-order error loss ignores proven 

biases of such error metrics in forecasting research (see e.g., Tashman 2000), which would 

emphasise training on outliers with higher squared error contribution. The formulation of the 

non-threshold loss function might further induce problems for non-stationary time series, where 

errors from higher levels of the series are compared to those of lower levels. On the other hand, 

the benefit of downscaling metric errors to binary classification errors using a threshold based 

https://www.researchgate.net/publication/222322115_The_M2-competition_A_real-time_judgmentally_based_forecasting_study?el=1_x_8&enrichId=rgreq-715676d99ea26ccc870f4568cd80a3d9-XXX&enrichSource=Y292ZXJQYWdlOzMwMzczODkyOTtBUzozNjg1MDc1NzQzNDE2MzNAMTQ2NDg3MDQ2MDQxMA==
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logic loses a lot of information contained in the error distances of how far easy and hard to 

predict instances are separated. As a result of these questionable formulations, a systematic 

evaluation is missing to assess loss functions in Boosting, i.e. linear, squared and exponential, 

and the loss function type, threshold against non-threshold, on their relative merit in forecasting. 

3.3 Stopping Criteria 

The variable  𝛽𝑘 measures how confident we are in the predictions produced by model 𝑘 

and is given by (see, e.g., in AdaBoost.R2 by Drucker 1997): 

 
𝛽𝑘 = log

1 − �̅�𝑘

�̅�𝑘

 (9) 

which requires an average loss  �̅�𝑘 ≤ 0.5. For all  �̅�𝑘 > 0.5 the 𝛽𝑘 turns negative, the 

weights  𝑤𝑖
𝑘 turn negative (see Eq. (2)) and the algorithm stops. In this case we describe the 

meta-parameter as being bounded, as used by most Boosting variants, e.g. AdaBoost.R2 

(Drucker, 1997), Threshold-based Boosting (Avnimelech and Intrator, 1999), and Modified 

AdaBoost (Goh, Lim, and Peh 2003). 

In contrast, AdaBoost.RT does not inherently impose a classification based “natural” 

stopping rule (when �̅�𝑘 exceeds 0.5), with 𝛽𝑘 for model 𝑘 calculated as follows: 

 𝛽𝑘 = log
1

�̅�𝑘
𝑛    , (10) 

whereby 𝑛 is the power coefficient, and n = 1 (linear �̅�𝑘), n = 2 (squared �̅�𝑘
2
) or n = 3 

(cubic �̅�𝑘
3
). Based on this definition, it is possible to improve performance even further by 

creating a user-defined, theoretically infinite number of models, as was also shown by the BCC 

Algorithm (de Souza et al., 2006). We refer to this as an unbounded stopping criterion. Shrestha 

and Solomatine (2006) observed that even when including models having �̅� > 0.5, the 

combined prediction could still outperform the best individual prediction. Additionally, Quinlan 

(1996) showed empirically that in some cases, while it is possible to obtain better performance 

on training data with fewer Boosting iterations and  �̅�𝑘 ≤ 0.5, the generalisation performance of 

https://www.researchgate.net/publication/220499818_Experiments_with_AdaBoostRT_an_Improved_Boosting_Scheme_for_Regression?el=1_x_8&enrichId=rgreq-715676d99ea26ccc870f4568cd80a3d9-XXX&enrichSource=Y292ZXJQYWdlOzMwMzczODkyOTtBUzozNjg1MDc1NzQzNDE2MzNAMTQ2NDg3MDQ2MDQxMA==
https://www.researchgate.net/publication/220499818_Experiments_with_AdaBoostRT_an_Improved_Boosting_Scheme_for_Regression?el=1_x_8&enrichId=rgreq-715676d99ea26ccc870f4568cd80a3d9-XXX&enrichSource=Y292ZXJQYWdlOzMwMzczODkyOTtBUzozNjg1MDc1NzQzNDE2MzNAMTQ2NDg3MDQ2MDQxMA==
https://www.researchgate.net/publication/13338036_Boosting_regression_estimators?el=1_x_8&enrichId=rgreq-715676d99ea26ccc870f4568cd80a3d9-XXX&enrichSource=Y292ZXJQYWdlOzMwMzczODkyOTtBUzozNjg1MDc1NzQzNDE2MzNAMTQ2NDg3MDQ2MDQxMA==
https://www.researchgate.net/publication/2424244_Improving_Regressors_Using_Boosting_Techniques?el=1_x_8&enrichId=rgreq-715676d99ea26ccc870f4568cd80a3d9-XXX&enrichSource=Y292ZXJQYWdlOzMwMzczODkyOTtBUzozNjg1MDc1NzQzNDE2MzNAMTQ2NDg3MDQ2MDQxMA==


11 

 

AdaBoost was poorer than when more models were included.  

As before, interpreting the loss bound stopping criteria from a forecasting perspective, a 

minimum average loss seems nonsensical. Note that in time series forecasting no theoretical 

definition of a ‘weak’ learner exists (which achieves a binary classification accuracy marginally 

larger than 50% on a balanced dataset), yet still the performance requirement for base models in 

Boosting for Regression relates to a stopping criterion taken from classification. In forecasting 

however, for interval scaled observations a measure of performance does not have a natural 

upper bound, as the performance of the predictive algorithm will be bound by the signal-to-noise 

ratio inherent in the data. Consequently we assess the choice of bounding average loss as the 

stopping criteria meta-parameter and evaluate two stopping criteria; training stops when 

�̅�𝑘 ≤ 0.5 (bounded) or training continues beyond �̅�𝑘 > 0.5 but less than 1 (unbounded), as 

would be expected in a regression context. 

3.4 Combination Method 

The final model step combines the forecasts of the individual models using either a 

weighting method or a meta-combination method. The most widely used combination methods 

are the weighted median and the weighted average. AdaBoost.R2 and the Boosting algorithm of 

(Assaad, Bone, and Cardot 2008) combine the final forecast 𝑓𝑐 using a weighted median of all 

models’ predictions  𝑓𝑘: 

 

𝑓𝑐(𝐱) = 𝑖𝑛𝑓 {𝑦: ∑ 𝛽𝑘

𝑘:𝑓𝑘(𝐱)≤𝑦

≥
1

2
∑ 𝛽𝑘

𝑘

} (11) 

In contrast, the final model combination in AdaBoost.RT (Shrestha and Solomantine, 2006), 

BCC Algorithm (de Souza et al., 2006) and Modified Adaboost (Goh et al., 2003) is estimated 

using the weighted mean: 

 𝑓𝑐(𝐱) = ∑ 𝛽𝑘
𝑘

𝑓𝑘(𝐱)/ ∑ 𝛽𝑘
𝑘

 (12) 

Similar to forecasting research, substantial research in machine learning has been 

https://www.researchgate.net/publication/5613994_Predicting_drug_dissolution_profiles_with_an_ensemble_of_boosted_neural_networks_A_time_series_approach?el=1_x_8&enrichId=rgreq-715676d99ea26ccc870f4568cd80a3d9-XXX&enrichSource=Y292ZXJQYWdlOzMwMzczODkyOTtBUzozNjg1MDc1NzQzNDE2MzNAMTQ2NDg3MDQ2MDQxMA==
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invested to establish a combination method in Boosting, yet no consensus has been achieved. 

For example, Assaad et al. (2008) found that the weighted median combination gives better 

predictive performance than the weighted average. Bone et al. (2003) and Deng et al. (2005) 

both conclude that the weighted median is better than the weighted mean because it is less 

sensitive to outliers, while Avnimelech and Intrator (1999) find no statistically significant 

difference between the two. Surprisingly, Boosting research on time series has neglected simpler 

approaches of equally weighted combinations (Kourentzes et al. 2014), with only threshold-

based Boosting (Avnimelech and Intrator, 1999) using a simple median for combination. The 

omission is deemed of particular importance, as the simple arithmetic mean has proven to be the 

most widely applied method in Forecasting making it a sensible benchmark. We propose to 

assess both the weighted and equal-weighted mean and medians for combination, across all 

other meta-parameters. 

3.5 Loss calculation 

In Boosting, the termination of training depends on the performance of the current model 

𝑘 being constructed, and not on the performance of the combined predictions. It is however 

possible that the training error of the combined model drops to zero before other termination 

conditions are reached, or before the training error of any single model drops to zero. It would 

be reasonable to assume that further iterations in such situations will increase complexity, but 

not improve performance on the training set data. In such a situation it may be wise to terminate 

training, as we would already have the simplest and best in-sample combination of models. In 

this study, we propose a novel approach to calculate the loss at every iteration using the 

combined model output up to that iteration. We refer to this as the ensemble loss calculation, 

calculating the loss 𝐿𝑖
𝑘 of the combined model output at each iteration 𝑘, rather than the single 

model output created on that iteration (model loss calculation), and consider it as another meta-

parameter to be assessed across all others. 

3.6 Combination size 

https://www.researchgate.net/publication/259165043_Neural_Network_Ensemble_Operators_for_Time_Series_Forecasting?el=1_x_8&enrichId=rgreq-715676d99ea26ccc870f4568cd80a3d9-XXX&enrichSource=Y292ZXJQYWdlOzMwMzczODkyOTtBUzozNjg1MDc1NzQzNDE2MzNAMTQ2NDg3MDQ2MDQxMA==
https://www.researchgate.net/publication/228611742_Boosting_Recurrent_Neural_Networks_for_Time_Series_Prediction?el=1_x_8&enrichId=rgreq-715676d99ea26ccc870f4568cd80a3d9-XXX&enrichSource=Y292ZXJQYWdlOzMwMzczODkyOTtBUzozNjg1MDc1NzQzNDE2MzNAMTQ2NDg3MDQ2MDQxMA==
https://www.researchgate.net/publication/13338036_Boosting_regression_estimators?el=1_x_8&enrichId=rgreq-715676d99ea26ccc870f4568cd80a3d9-XXX&enrichSource=Y292ZXJQYWdlOzMwMzczODkyOTtBUzozNjg1MDc1NzQzNDE2MzNAMTQ2NDg3MDQ2MDQxMA==
https://www.researchgate.net/publication/4184602_Ensemble_SVR_for_prediction_of_time_series?el=1_x_8&enrichId=rgreq-715676d99ea26ccc870f4568cd80a3d9-XXX&enrichSource=Y292ZXJQYWdlOzMwMzczODkyOTtBUzozNjg1MDc1NzQzNDE2MzNAMTQ2NDg3MDQ2MDQxMA==
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While the ensemble size has not been explicitly considered in past Boosting studies, non-

threshold based estimation such as AdaBoost.R2 uses an unbounded stopping criterion, allowing 

the addition of many models for arbitrary ensemble sizes. As the size of an ensemble in 

forecasting as in machine learning is often considered to be of significance, we consider it 

another implicit meta-parameter and evaluate two competing methodologies for determining 

combination size.  

The first is cross validation early stopping. Under this scheme, each time series is split 

into three disjoint datasets, a training, validation and test set. If the addition of more models to 

the combination increases the MSE on the validation set training stops; this is a type of early 

stopping to prevent overfitting. The second scheme uses a pre-specified number of 50 models to 

be included in the final combination, without the use of a validation set. Assessing final 

accuracy on a fixed number of observations withheld for testing, the additional observations 

become available for training. This number of 50 models was selected based both on common 

practices in literature, and observing the convergence of the in-sample error training on 

preliminary simulation of each of the 111 time series. The trade-off between this approach and 

cross validation early stopping is that while there is no validation set to assist in preventing 

overfitting, it provides more data for training, possibly allowing better learning and convergence 

of the model to the underlying data generating process. 

3.7 Base model 

Although Boosting is a generic algorithm irrespective of the underlying base model 

used, which therefore does not constitute one of the archetypical meta-parameters, we briefly 

discuss it to consider it in our systematic empirical evaluation. The predictive algorithm 

underlying Boosting is traditionally required to be a weak learner (see also Section 3.3). Short of 

a formal performance criterion for a weak learner in forecasting, such as 𝐿𝑘 < 0.5 in 

classification, Bühlmann and Yu (2010) interpret a weak learner as a learning algorithm with 

few degrees of freedom. The few degrees of freedom allow it to adaptively build up the 
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complexity of the combined model, and also to remain sensitive to initial conditions creating 

diverse predictions from only small variations to the training data, e.g. a neural network or 

decision tree. If Boosting starts with a base model that is too strong, the training error can 

quickly rise even as early as the second iteration from overfitting, and the out-of-sample 

performance becomes very poor. Consequently, in classification, Decision Trees constitute the 

most widely boosted base models, e.g. in Drucker (1997) and Shresta and Solomatine (2006), 

often applying the popular classification and regression tree (CART) algorithm by Breiman 

(1984). Regression trees are powerful, effective and easily interpretable, and are able to 

automatically select relevant features. In forecasting however, CARTs have not been widely 

applied, and the studies on Boosting for time series regression have generally applied artificial 

neural networks. The popular Multilayer Perceptron (MLP), a class of universal approximators 

(Hornik 1991), can facilitate weak or strong learning through architectures of different 

complexity, setting the number of layers and hidden nodes accordingly. In the absence of an 

interpretation for what constitutes a weak or strong learner in time series prediction, studies 

might need to consider both CART and MLP as base models for their efficacy in Boosting. A 

description of the setup of both base learners and details on the parameterisation is given in 

Appendix A. 

3.8 Meta-parameter summary  

The set of archetypical meta-parameters we identified above, including the loss function 

and type, the loss update method, the stopping criteria, and the combination method are 

summarized in Table 1. For each of these, we consider previous realisations of meta-parameters 

from the seven Boosting variants, e.g. combination methods weighted mean and weighted 

median, and introduce novel meta-parameter realisations as motivated from forecasting 

research, e.g. equally weighted mean and median. Combining their respective realisations yields 

a framework of 96 possible combinations of meta-parameters for Boosting. Of the 96 possible 

algorithms, 42 novel Boosting variants come from combinations of existing meta-parameters of 

https://www.researchgate.net/publication/243763658_Hornik_K_Approximation_Capabilities_of_Multilayer_Feedforward_Network_Neural_Networks_251-257?el=1_x_8&enrichId=rgreq-715676d99ea26ccc870f4568cd80a3d9-XXX&enrichSource=Y292ZXJQYWdlOzMwMzczODkyOTtBUzozNjg1MDc1NzQzNDE2MzNAMTQ2NDg3MDQ2MDQxMA==
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loss function and type, stopping criteria and combination method and are highlighted in italics, 

and 47 novel Boosting variants underlined in Table 1 are motivated from forecasting research 

and distinguished by the use of the ensemble loss update method. 

Table 1: Framework of Boosting meta-parameters, specifying 96 different Boosting algorithms 

  Mean Weighted Mean Median Weighted Median 

  Bound Unbound Bound Unbound Bound Unbound Bound Unbound 

  Ens Mod Ens Mod Ens Mod Ens Mod Ens Mod Ens Mod Ens Mod Ens Mod 

Threshold Linear #1 #2 #3 #4 #5 #6 #7 #8 #49 #50 #51 #52 #53 #54 #55 #56 

 Square #9 #10 #11 #12 #13 #14 #15 #16 #57 #58 #59 #60 #61 #62 #63 #64 

 Expon. #17 #18 #19 #20 #21 #22 #23 #24 #65 #66 #67 #68 #69 #70 #71 #72 

Non- Linear #25 #26 #27 #28 #29 #30 #31 #32 #73 #74 #75 #76 #77 #78 #79 #80 

threshold Square #33 #34 #35 #36 #37 #38 #39 #40 #81 #82 #83 #84 #85 #86 #87 #88 

 Expon. #41 #42 #43 #44 #45 #46 #47 #48 #89 #90 #91 #92 #93 #94 #95 #96 

Notes: Numbers highlighted in boldface correspond to the seven existing boosting variants already introduced by 

prior research studies. Numbers in italics are the 42 novel Boosting variants derived from combinations of existing 

meta-parameters. Numbers underlined identify the 47 novel Boosting variants motivated from forecasting research.  

# = Algorithm Id; Mod = Model loss calculation; Ens = Ensemble loss calculation 

The remaining 7 correspond to the seven previously proposed algorithms and are 

highlighted in boldface. These are the AdaBoost.R2 by Drucker (1997) and its variants labelled 

algorithms #78, #86 and #94 (as does Boosting by Assaad et al., 2008) implementing linear, 

squared and exponential loss with a non-threshold based bounded loss function and a weighted 

median combination. AdaBoost.RT, proposed by Shrestha and Solomantine (2006) corresponds 

to algorithm # 8 using the weighted mean, an unbounded average loss and a linear threshold loss 

function. Similarly, #6 corresponds to Modified AdaBoost (Goh et al., 2003), #48 to the BCC 

Algorithm (de Souza et al., 2006), and #50 to the original Threshold-based Boosting 

Avnimelech and Intrator (1999), allocating all prior studies in Boosting within the framework.  

The additional benefits of the meta-parameter framework are three-fold. First, in addition 

to the seven existing AdaBoost variants, the combination of all meta-parameters proposed 

individually as innovations facilitates the creation of 89 novel Boosting algorithms which have 

not previously been considered in literature. Second, a complete enumeration of all 96 existing 

and potentially viable Boosting algorithms in a balanced design allows not only a systematic 

assessment of their relative accuracy, but also an evaluation of the marginal contribution and 

statistical significance of each meta-parameter choice using a multifactorial ANOVA across all 

https://www.researchgate.net/publication/13338036_Boosting_regression_estimators?el=1_x_8&enrichId=rgreq-715676d99ea26ccc870f4568cd80a3d9-XXX&enrichSource=Y292ZXJQYWdlOzMwMzczODkyOTtBUzozNjg1MDc1NzQzNDE2MzNAMTQ2NDg3MDQ2MDQxMA==
https://www.researchgate.net/publication/5613994_Predicting_drug_dissolution_profiles_with_an_ensemble_of_boosted_neural_networks_A_time_series_approach?el=1_x_8&enrichId=rgreq-715676d99ea26ccc870f4568cd80a3d9-XXX&enrichSource=Y292ZXJQYWdlOzMwMzczODkyOTtBUzozNjg1MDc1NzQzNDE2MzNAMTQ2NDg3MDQ2MDQxMA==
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existing Boosting variants, plus any potential interactions. And third, combining those meta-

parameter choices with the highest positive marginal contributions to predictive accuracy allows 

the proposal of a novel algorithm coined Best Combination Boosting (AdaBoost.BC, #28), 

which is determined from the results of the empirical evaluation experiment outlined below
3
. 

4. Empirical evaluation  

4.1 Dataset 

We assess all Boosting variants on the dataset of 111 empirical time series of industry 

sales from the NN3 forecasting competition (Crone, Hibon, and Nikolopoulos 2011). Created as 

a subset of renowned M3-competition, it has been established as a valid, reliable, and 

representative benchmark dataset for computational intelligence (CI) methods in multiple 

empirical studies. The dataset consists of a representative set of 50 long (L) and 50 short (S) 

monthly industry time series, with the shortest time series 68 months and the longest 144 

months long. Furthermore, the long and short series contain an equal balance of 50 seasonal (S) 

and 50 non-seasonal patterns (NS), plus 11 time series that exhibit particular complexities in 

their time series patterns. The balanced design of the data allows an analysis of the accuracy of 

the Boosting algorithms across typical industrial data conditions, testing their relative 

performance across long vs. short and seasonal vs. non-seasonal and complex data patterns. 

Examples of six time series are shown in Error! Reference source not found.. 

 

Figure 1 : Plot of 6 time series from the NN3 dataset. 

                                                           
3
 The choice of base learner is not a constituting meta-parameter of AdaBoost; in evaluating two base learners, our 

experiments will effectively assess 192 boosting variants empirically. 
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4.2 Forecast performance evaluation 

We assess the out-of-sample accuracy of all algorithms in withholding 18 observations for test 

data in line with the setup of the NN3 competition and to allow a point of comparison with 

competition results. For a fixed forecast horizon of 12-steps ahead, forecasts are computed from 

6 time origins. Overall, this yields a total of 666 multiple-step-ahead out of sample predictions 

across multiple time origins, 72 per time series, and a total of 7992 predicted data points, which 

is deemed sufficient to ensure valid and reliable results (of course, albeit only for the assessed 

dataset). We use the symmetric mean absolute percent error (SMAPE), a comparatively 

unbiased, scale independent error measure that allows comparing accuracy across multiple time 

series of different levels. Despite selected criticism of SMAPE, our motivation is to apply the 

same error measure utilised in the NN3 and M3 competition to facilitate external comparisons 

with prior findings. For a given time series, the SMAPE is calculated from actuals 𝑋𝑡 and 

forecasts 𝐹𝑡 for all 𝑛 observations indexed by 𝑡: 

 
𝑆𝑀𝐴𝑃𝐸 =

1

𝑛
∑ (

|𝑋𝑡 − 𝐹𝑡|

(|𝑋𝑡| + |𝐹𝑡|) 2⁄
) × 100

𝑛

𝑡=1

      . 
 

(13) 

For each method the SMAPE is calculated across all horizons from each forecasting origin t, 

averaged across the set of multiple origins per time series (see Tashman 2000), and ultimately 

averaged across all time series for the training, validation and test data subsets. We test for 

statistically significant differences in the performance ranking of competing methods’ forecast 

errors using the nonparametric Friedman test (Friedman 1937; Friedman 1940) and post-hoc 

Nemenyi test (Nemenyi 1962), providing further evidence on differences of meta-parameters 

and forecasting benchmarks methods. The tests impose no assumptions regarding the 

distributions of the errors, and are both based on the mean ranking of the forecast errors of each 

method over each forecast origin. The Friedman test outputs a p-value evaluating whether at 

least one of the methods is statistically different from the rest. The Nemenyi test outputs a 

critical distance based on the mean ranking of each method and which depends on the number of 

https://www.researchgate.net/publication/238355667_The_Use_of_Ranks_to_Avoid_the_Assumption_of_Normality_Implicit_in_the_Analysis_of_Variance?el=1_x_8&enrichId=rgreq-715676d99ea26ccc870f4568cd80a3d9-XXX&enrichSource=Y292ZXJQYWdlOzMwMzczODkyOTtBUzozNjg1MDc1NzQzNDE2MzNAMTQ2NDg3MDQ2MDQxMA==
https://www.researchgate.net/publication/38368280_A_Comparison_of_Alternative_Tests_of_Significance_for_the_Problem_of_m_Rankings?el=1_x_8&enrichId=rgreq-715676d99ea26ccc870f4568cd80a3d9-XXX&enrichSource=Y292ZXJQYWdlOzMwMzczODkyOTtBUzozNjg1MDc1NzQzNDE2MzNAMTQ2NDg3MDQ2MDQxMA==
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methods, sample size and significance level. This is used to assess whether the mean ranking of 

methods are significantly different, i.e. differ from each other by more than the critical distance. 

In addition to test errors, which assess a true ex ante out-of-sample accuracy of Boosting 

meta-parameters, we also assess in-sample accuracy on the training and validation sets to assess 

the ability to approximate and learn the underlying data generating process and to identify 

potential overfitting. When fixed size combinations are used, the training set is equal to the 

remaining observations after removing the test data. When the combination size is determined 

through cross validation, the 14 observations preceding the 18 observations of the test set are 

used for validation, leaving the remainder for training. However, for the purpose of evaluating 

and comparing performance evenly across different forecasting methods and combination 

approaches, we always report forecast error on the 18 holdout observations as test set error, the 

preceding 14 observations as validation set error, and the remainder as training error
4
. 

4.3 The multifactorial ANOVA analysis 

To quantify the impact and significance of each meta-parameter unto forecasting 

accuracy, we conduct a multifactorial analysis of variance (ANOVA) with extended multiple 

comparison tests of estimated marginal means on the out-of-sample forecast errors. The 

experimental setup follows a balanced factorial design, modelling each meta-parameter in Table 

1 as a different factor treatment of equal cell sizes. Loss function, loss function type, loss 

calculation method, combination method, stopping criteria, base model and combination size 

method are modelled as fixed main effects to test whether the factor levels show different linear 

effects on the forecast error on the test dataset. In addition to test error, we assess the impact on 

the dependent variables of training and validation errors to control for potential in-sample 

overfitting. A meta-parameter is considered to have a relevant impact on forecast performance if 

                                                           
4
 The validation set is 14 observations (=68-18-36) to allow a sufficient number of training observations, 36, for 

estimating seasonality in the shortest time series being 68 observations. 
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it is consistently significant at a 0.01 level using Pillai’s trace statistic
5
 as measured across all 

datasets. Additionally, a meta-parameter must prove significant for the individual test set in 

order for it to be considered as having an impact on out-of-sample performance irrespective of 

the in sample data. We disregard a significant Box’s test of equality of Covariance matrices and 

a significant Levene's test statistic for equality of error variances as we use a large dataset with 

equal cell sizes across all factor-level-combinations. In comparing the impact of different factor 

levels for each of the individual meta-parameter factors, we perform a set of post-hoc multi 

comparison tests using Tukey’s post-hoc test accounting for unequal variances in the factor 

cells
6
. The test allows us to evaluate for a given factor, the positive or negative impact for each 

factor level on forecast accuracy. We estimate marginal means across training, validation and 

test dataset, and use 𝑚𝑚𝑓𝑎𝑐𝑡𝑜𝑟𝑙𝑒𝑣𝑒𝑙 = {training; test} to represent the difference in the marginal 

mean forecast error between one factor level and another (ignoring validation errors). A positive 

value (impact) indicates a decrease in forecast error and vice versa. 

4.4 Ensemble Benchmark methods 

We assess the accuracy of boosting in relation to other ensemble benchmarks, and 

statistical forecasting methods. A popular predecessor to Boosting, Bagging (short for bootstrap 

and aggregating) is also based on the idea of forming multiple models estimated using different 

samples of the original training set, and then combining them (Breiman 1996). Recent studies 

have applied Bagging in a variety of forecasting applications with positive results (e.g., Watson 

2005; Lee and Yang 2006; Lin and Zhu 2007; Hillebrand and Medeiros 2010). In this study we 

apply Bagging to base learners of MLP and CART, using the moving block bootstrap (Kunsch 

1989) which samples the original time series while preserving the temporal covariance structure 

                                                           
5
 Pillai’s trace statistic is one of four multivariate (hypothesis) tests of the significance. These tests replace the usual 

F value as the indicator of significance in a MANOVA test. Further details on the test can be found in several 

advanced statistical texts such as the one by Foster et al. (2005). 
6 Tukey’s post-hoc test is used to assess more detailed interactions in the MANOVA. Smaller ANOVA models are 

built using meta-parameters found to significantly impact forecasting accuracy e.g. the loss function. The test 

compares all possible paired combinations of the factor levels e.g. linear and squared, squared and exponential, 

linear and exponential, and provides a mean difference between the performances of each factor level, providing a 

p-value to indicate whether the two differ significantly. 
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within each input vector. The number of bootstraps is set to 50, and each MLP is trained with 

early stopping (as described below). 

In addition, we implement ensembles of MLP averaging over predictions from multiple 

initialisations of the same neural network (Hansen and Salamon 1990). For this study, we utilise 

50 initialisations of the connecting weights of an identical MLP architecture, and average their 

50 predictions for the complete forecasting horizon from each time origin. For both MLP 

ensembles and Bagging the fixed size of 50 forecasts were found to give the adequate results for 

both MLP and CART benchmarks. In addition, we also evaluated Ensembles of MLP where the 

size of the ensemble is determined through cross validation, estimating error improvements 

while adding additional base model. Furthermore, we compare all methods to simple model 

selection, where the base-learner with the lowest validation error is selected as a forecast, 

constituting only a single ‘best’ model’s prediction. 

5. Empirical results on Meta-parameter Choice 

5.1 Significance of meta-parameter choice 

We analyse the results across 96 Boosting variants using multifactorial ANOVA: Error! 

Reference source not found. shows between-subject effects using Pillai’s trace for all data 

(training, validation and test subset combined) and for each subset separately, both across all 

base models and for MLP and CART separately across all data subsets.  

Table 2: Significance of meta-parameter main effects by dataset and base model using Pillai’s trace. 

Factors Significance by dataset 
 

Significance by method 

  All Train Valid Test   MLP CART 

Loss function 0.000** 0.033* 0.175 0.592 
 

0.000** 0.140 

Loss function type 0.000** 0.000** 0.000** 0.000** 
 

0.000** 0.000** 

Loss calculation 0.000** 0.000** 0.000** 0.000** 
 

0.000** 0.000** 

Stopping criteria 0.000** 0.000** 0.000** 0.000** 
 

0.000** 0.000** 

Combiner 0.000** 0.000** 0.000** 0.113 
 

0.000** 0.000** 

Base model 0.000** 0.000** 0.000** 0.000** 
 

– – 

Combination size 0.000** 0.000** 0.000** 0.000** 
 

0.000** 0.000** 
* = Significant at the 0.05 level (2-tailed); ** = Highly significant at the 0.01 level (2-tailed). 

Results confirm that the performance of Boosting methods is significantly dependent on 

the choice of all meta-parameters (at the 0.01 level) across all data (i.e. training, validation, and 

test combined) and most data subset individually: loss function type, loss calculation method, 
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stopping criteria, base model and combination size determination method are all highly 

significant at the 0.01 level for all data subsets. The choice of loss function shows no significant 

impact on validation or test dataset performance, and the choice of combination method has no 

significant impact on the test set error. Upon closer examination by algorithm, all factors remain 

significant for MLPs, but not for CART, where the loss function shows no significant impact on 

forecast accuracy. The significance of all effects on training data versus selected insignificant 

effects on validation and test data could indicate overfitting, and warrants further analysis.  

In addition to the results displayed in the table, all two-way interactions of the factors 

except those including {loss function} are significant at the 0.01 level across all data subsets, no 

three-way interactions with the exception of {loss function * loss function type * base model} 

have a significant impact on forecast accuracy, and only those four-way interactions involving 

{stopping criteria} prove significant with all other interactions insignificant. To account for the 

different data conditions, Error! Reference source not found. shows the significance of each factor 

based on between-subject effects for the test data analysed by time series type. 

Table 3: Significance of meta-parameter factor main effects by time series type for test dataset. 

Factors Significance by time series type 

  SS SNS LS LNS COMPLEX ALL 

Loss function 0.550 0.001 ** 0.752 0.997 0.030 * 0.592 

Loss function type 0.000 ** 0.000 ** 0.000 ** 0.000 ** 0.000 ** 0.000 ** 

Loss update 0.058 0.000 ** 0.000 ** 0.073 0.000 ** 0.000 ** 

Stopping criteria 0.000 ** 0.000 ** 0.000 ** 0.000 ** 0.000 ** 0.000 ** 

Combiner 0.168 0.000 ** 0.156 0.008 ** 0.000 ** 0.113 

Base model 0.738 0.000 ** 0.000 ** 0.000 ** 0.000 ** 0.000 ** 

Combination size 0.000 ** 0.000 ** 0.003 ** 0.000 ** 0.000 ** 0.000 ** 
* = Significant at the 0.05 level (2-tailed).; ** = Highly significant at the 0.01 level (2-tailed). 

Loss function type, stopping criteria and combination size are highly significant across 

each of the five time series data conditions. However, all other factors appear insignificant on 

one or two data conditions. More factors prove insignificant for shorter (seasonal) time series 

than longer ones, which often prove particularly challenging to build models. However, all 

factors show a significant influence of test errors on short and non-seasonal time series (SNS, 

i.e. a simple pattern with only level, noise and autoregressive patterns), and complex time series 

(i.e. the most complicated patterns), allowing no inference between factors and the difficulty of 
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patterns. More generally, this signifies the interaction of meta-parameters with time series 

patterns, pointing to the importance of analysis across different data conditions. These results of 

statistical significance are of relevance, as they signify that all meta-parameters identified in this 

study have a significant impact on the forecast accuracy of Boosting, across data conditions and 

base learners, but this varies. Not only does this justify our research question and experimental 

design, but equally questions the validity of studies which arbitrarily combine meta-parameters 

of Boosting (or other) algorithms without a systematic evaluation of their partial contributions.  

Surprisingly, the insignificant effect of the Combiner and Loss function in Boosting on 

test error performance stands in contrast to the majority of forecast combination literature. A 

more detailed analysis of each factor treatment, i.e. the choice of Combiners including mean, 

median, weighted mean and weighted median, might reveal possible explanations of the lack of 

influences due to the similarity of selected approaches, which is conducted further below. 

5.2 Accuracy of meta-parameter choice 

Having identified the significance of the main effects, Table 4 summarises the SMAPE 

errors for all meta-parameters found significant averaged across all time series and data subsets. 

Table 4: Average SMAPE across all time series and across all significant main factor levels. 

Stopping Model Size 
Loss 

Update 

Training Validation Test 

Loss function type 

Non 

Threshold 

Thres 

-hold 

Non 

Threshold 

Thres 

-hold 

Non 

Threshold 

Thres 

-hold 

CART Bound Cross  

Valid 

Ens 9.00% 9.75% 16.78% 18.28% 18.95% 20.29% 

Mod 8.58% 9.40% 16.47% 18.02% 18.55% 20.05% 

Fixed Ens 8.92% 10.06% 15.48% 17.51% 17.47% 19.69% 

Mod 8.15% 9.56% 14.69% 17.25% 16.81% 19.06% 

 Unbound Cross  

Valid 

Ens 8.89% 9.12% 16.60% 17.04% 18.58% 18.90% 

Mod 8.56% 8.63% 16.42% 16.60% 18.29% 18.38% 

Fixed Ens 8.73% 9.02% 15.23% 16.33% 16.78% 17.49% 

Mod 8.03% 8.36% 15.20% 16.31% 16.69% 17.04% 

MLP Bound Cross  

Valid 

Ens 13.14% 13.20% 14.04% 14.33% 17.15% 17.56% 

Mod 12.84% 12.98% 13.84% 14.32% 16.98% 17.57% 

Fixed Ens 13.61% 14.17% 9.32% 9.53% 16.71% 17.64% 

Mod 13.01% 13.79% 9.44% 9.61% 16.39% 17.63% 

 Unbound Cross  

Valid 

Ens 13.76% 12.95% 14.79% 13.80% 17.69% 17.07% 

Mod 13.38% 12.73% 14.28% 13.72% 17.40% 17.03% 

Fixed Ens 15.16% 13.36% 11.33% 8.71% 17.84% 16.45% 

Mod 13.63% 12.91% 10.32% 8.84% 16.78% 16.36% 

Note: The method having the lowest forecast error in each of the training, validation and test datasets is highlighted 

in boldface. The method with the lowest forecast error in each dataset for each of MLP and CART are underlined.  

Ens = ensemble loss calculation, Mod= model loss calculation 

Cross Valid = Cross validation early stopping, Fixed = Fixed size model combination 
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Results show that the lowest overall test error is obtained using an unbound stopping criteria, 

with a fixed combination size and a model calculated loss using a threshold based loss function 

together with a MLP base model (SMAPE of 16.36%). The same meta-parameter combination, 

with the exception of using a non-threshold based loss function, is ranked second (with an 

SMAPE of 16.39%). Averaging errors across the main factors, it is apparent that the CART base 

model consistently achieve lower training errors than the MLPs (8.92% vs. 13.41%) regardless 

of the choice of other factors, but vice versa on validation (16.51% vs. 11.89%) and test set 

(18.31% vs. 17.14%). This indicates substantial in-sample overfitting by CART compared to 

MLPs, a novel insight for Boosting on time series data, which in contrast to results obtained in 

Bagging (Breiman 1996; Bauer and Kohavi 1999). In addition we noted that errors of CART are 

more sensitive to other meta-parameter choices in comparison to MLPs, however with only very 

small impacts from different factor treatments. As no interaction effects exist between the base 

model of CART or MLPs with other meta-parameters (see Figure 2Error! Reference source 

not found.), the results are consistent, clearly identifying CART as an inferior base model to 

MLPs for Boosting across all data conditions of the time series in this dataset. 

 

Figure 2: Estimated marginal means plot for test set SMAPE of base models across all time series. 

In comparison, other factors show less pronounced average deviations of forecast errors 

on the test data, such as bound vs. unbound (18.03% vs 17.42%) and threshold vs. non-threshold 

based loss estimation (18.01% vs. 17.44%), cross validation vs. fixed size of the ensemble 

(18.15% vs. 17.30%), and Ensemble vs. Model estimated stopping (17.89% vs. 17.56%). These 
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results are consistent across base models, although even less pronounced for MLPs than CART, 

and would indicate that these meta-parameter choices impact very little on empirical accuracy 

(irrespective of their statistical significance). However, the significant improvement of accuracy 

from using an unbound and non-threshold based loss calculation using a fixed ensemble size, 

together with the use of a MLP base learner, is noteworthy and novel. Given the performance of 

the MLP relative to the CART base learner and considering that the base learner is not normally 

considered a meta-parameter adding to the functioning of the Boosting algorithm, we do not 

proceed further with a detailed analysis of the base learner. All other meta-parameter are 

assessed in detail in the sections below in an attempt to facilitate a deeper understanding of the 

direction and magnitude of the main factors, and of potential interactions between them. 

5.3 Impact of stopping criteria on forecast performance 

To investigate the significance of stopping criteria and their interaction with other meta-

parameters, we analyse the estimated marginal means of the forecast error for bounded and 

unbounded stopping across factor levels for loss function type, loss function and combination 

size in Figure 3Error! Reference source not found.. (As results are consistent across data 

properties, these graphs are omitted.) 

   

Figure 3: Estimated marginal means plots of test set error across all time series for various factors. 

The analysis of marginal means shows that for bounded errors, a significant difference in 

mean forecast error exists between threshold and non-threshold based estimation, with non-
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threshold loss functions producing lower forecast errors, 𝑚𝑚𝑛𝑜𝑛−𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 = {0.007; 0.013}. In 

contrast, for unbounded errors the non-threshold loss functions show a negative impact of 

𝑚𝑚𝑛𝑜𝑛−𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 = {−0.004; −0.002}. Given a bounded stopping criteria, a squared loss 

function significantly outperforms both the linear and exponential loss functions, estimated at 

𝑚𝑚𝑠𝑞𝑢𝑎𝑟𝑒𝑑 = {−0.002; −0.004} and 𝑚𝑚𝑠𝑞𝑢𝑎𝑟𝑒𝑑 = {−0.001; −0.005} improvement over 

linear and exponential respectively. However, both the exponential and linear loss functions 

show significantly lower errors than the squared loss function under the unbounded and bounded 

average error criterion, rendering the previous interaction irrelevant. Given these interactions, 

the type and choice of loss function used significantly depends on the stopping criteria enforced. 

A non-threshold based, squared loss function is significantly better when average loss is 

bounded, yet a linear (or exponential) loss function is preferred when there is no bound on the 

average error, with both threshold and non-threshold based estimation providing similar low 

errors. This holds true across both MLP and CART base learners. Fixed size combinations are 

again better than combination size determined using cross-validation early stopping across both 

bounded and unbounded parameter values, showing no significant interaction effects. 

These findings are of interest, as they indicate that using bounded errors, following the 

implementation of bounded errors and weak learner in classification, yields no improvements 

for Boosting in time series regression. Similarly, using a linear loss function, which does not 

overemphasise extreme errors from outliers, combined with unbounded estimation outperforms 

all other loss functions and stopping criteria in time series Boosting. As such, best practices 

from time series prediction and forecast combination equally hold for Boosting on time series 

data, leading to the development of distinct and novel Boosting algorithm variants.  

5.4 Impact of combination and combination size on forecast performance 

We analyse the estimated marginal means for fixed and cross validation combination 

size factor levels against other main factors, see Figure 4Error! Reference source not found..  
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Figure 4: Estimated marginal means plots of test set error across all time series for various factors. 

Results indicate consistently lower errors from fixed size estimation across all other 

meta-parameters without any interaction effects. Additionally the performance of non-threshold 

versus threshold loss type is more pronounced for fixed size combination. Together with Error! 

Reference source not found., we observe that this is particularly true when stopping criteria is 

bounded, that is, when combination size tends to be smaller. In this case the effect of early 

stopping cross-validation is to make combinations even smaller through early stopping, 

suggesting that larger combinations are not only better, and but needed to see the full benefits of 

different loss function types. We also note that the weighted median and weighted mean, the 

combination operators of choice in Boosting for forecasting, do not significantly outperform the 

simple mean or simple median. This confirms the findings from forecasting research, where no 

significant improvements were found from applying more complex, weighted approaches to 

forecast combination. As such, it also questions the estimation of the 𝛽𝑘 parameter used for base 

model weighting, potentially allowing a much more substantial simplification of the Boosting 

algorithm paradigm for time series prediction.  

The results hold across data conditions of data subsets, as Table 6 indicates that a fixed 

size combination provides a lower mean SMAPE than cross validation early stopping across 

both long and short time series, seasonal and non-seasonal time series. This is supported by 

Skurichina, Kuncheva, and Duin (2002) who find that Boosting performs best for large training 

sample sizes. One explanation for the performance of cross validation could be that cross-

https://www.researchgate.net/publication/297290741_Bagging_and_boosting_for_the_nearest_mean_classifier_Effects_of_sample_size_on_diversity_and_accuracy?el=1_x_8&enrichId=rgreq-715676d99ea26ccc870f4568cd80a3d9-XXX&enrichSource=Y292ZXJQYWdlOzMwMzczODkyOTtBUzozNjg1MDc1NzQzNDE2MzNAMTQ2NDg3MDQ2MDQxMA==
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27 

 

validated prediction errors can incur large error variances, especially for small datasets, and can 

therefore become unreliable (Efron 1983). We conclude that different data conditions impact the 

meta-parameter choice, but since a fixed size combination is computationally less demanding 

than cross validation early stopping and not less accurate, this is considered sufficient.  

Table 5: Test set SMAPE based on combination size method across time series type. 

  Cross Validation Fixed 

Long non-seasonal 18.93% 18.02% 

Long Seasonal 13.59% 13.38% 

Short non-seasonal 22.24% 21.75% 

Short Seasonal 17.88% 16.76% 

 

5.5 Implications of meta-parameter choice on forecast performance 

To summarise the analysis of meta-parameters for Boosting, MLP base models 

significantly outperform CART models (on this dataset). Fixed size forecast combinations 

significantly outperform cross validation early stopping, and including models with an average 

loss �̅� > 0.5 can improve the out-of-sample performance across all time series patterns, 

rendering the estimation of a loss bound unnecessary for Boosting on time series. This contrasts 

findings in classification where the standard Boosting practice of bounded average error is 

enforced and shown to be successful (Quinlan 1996; Avnimelech and Intrator 1999; Dietterich 

2000), indicating the uniqueness of time series regression and the potential to develop specific 

Boosting meta-parameters. Surprisingly the choice of loss function is not statistically significant 

although marginally more accurate (across all base models), yet using a linear loss function 

seems most plausible due to simplicity, robustness and parsimony. For combination, the widely 

used weighted median combination method is significantly inferior to all other combination 

methods on out-of-sample forecast accuracy; instead, the mean and the weighted mean give the 

smallest error, in concurrence with forecast combination research. Overall, the impact of most 

AdaBoost meta-parameters depends on the base model. Therefore, while statistically significant 

improvements in forecast accuracy can be obtained from the right choice of meta-parameters, 

the choice of MLP or CART base learner is one that must be considered first.  

https://www.researchgate.net/publication/13338036_Boosting_regression_estimators?el=1_x_8&enrichId=rgreq-715676d99ea26ccc870f4568cd80a3d9-XXX&enrichSource=Y292ZXJQYWdlOzMwMzczODkyOTtBUzozNjg1MDc1NzQzNDE2MzNAMTQ2NDg3MDQ2MDQxMA==
https://www.researchgate.net/publication/2454925_An_Experimental_Comparison_of_Three_Methods_for_Constructing_Ensembles_of_Decision_Trees_Bagging_Boosting_and_Randomization?el=1_x_8&enrichId=rgreq-715676d99ea26ccc870f4568cd80a3d9-XXX&enrichSource=Y292ZXJQYWdlOzMwMzczODkyOTtBUzozNjg1MDc1NzQzNDE2MzNAMTQ2NDg3MDQ2MDQxMA==
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As a further result of our balanced study of existing and novel meta-parameters, we 

identify those factor-realisations that most influence accuracy and derive a novel AdaBoost 

variant as a combination of these, also drawing on insights from forecast combination research. 

The novel Boosting algorithm consequently applies the simple, unweighted arithmetic mean for 

forecast combination, using an unbounded threshold based, model calculated linear loss with a 

fixed combination size of MLP base learners. As the novel AdaBoost variant combines the best 

meta-parameters of our study, we name it AdaBoost.BC (with BC for Best Combination). 

AdaBoost.BC promises to be a valid contender for Boosting on time series data given its unique 

combination of meta-parameters. However, its relative performance in comparison to other 

benchmark algorithms, such as Bagging, statistical forecast combination, or simple model 

selection also needs to be evaluated, which is documented in the next section.  

6. Empirical results on Forecast Accuracy  

6.1 Relative performance of forecast combination algorithms 

Following a systematic assessment of the impact of different meta-parameters, we assess 

the relative empirical accuracy of the most popular AdaBoost variants, AdaBoost.R2 and 

AdaBoost.RT of which both originally employed CART models, with the novel AdaBoost.BC 

algorithm using a MLP base model. To facilitate an assessment across base learners, both MLP 

and CART base models are applied across all AdaBoost variants. Their performance is 

compared against established forecast combination benchmarks, including Bagging of MLPs, 

Ensembles of MLPs (which average predictions over multiple initialisations of network 

weights) created using a fixed size (Ensemble Fixed) or cross validation early stopping (Ensemble 

Cross Valid) to determine the number of MLPs to be combined, and model selection from the same 

pool of MLPs. This experimental design facilitates a stepwise assessment of the benefits of 

forecast combination, random weighted data sampling (i.e. Bagging), and error weighted 

sampling (i.e. Boosting). Due to the nature of the algorithms, the experiments were replicated 10 

times to account for randomised starting weights of the MLPs and potentially different outcomes 
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in relative rankings, providing the average SMAPE over 10 replication runs across 111 industry 

time series, fixed 12-step-horizons and rolling origins on a holdout test set of 18 observations as 

in Section 4.2. 

Table 6 shows the forecasting performance using SMAPE, Mean Ranks on SMAPE, and 

Group Ranks of SMAPE based on statistical significant differences using the non‐parametric 

Friedman and Nemenyi tests, with results sorted by descending mean rank on test SMAPE.  

Table 6. Average SMAPE and nonparametric comparisons using ranks of SMAPE on training, validation and test 

set across all time series, averaged across 10 runs for all time series. 

 SMAPE Mean Rank on SMAPE Group Rank on SMAPE
1
 

Method Train Valid Test Train Valid Test Train Valid Test 

Ensemble Cross Valid 13.20% 8.48% 15.86% 83.91 40.40 47.39 8 2 1 

Ensemble Fixed 13.22% 8.41% 15.88% 85.23 40.10 47.81 8 2 1 
Bagging MLP  13.72% 8.74% 16.03% 96.27 44.70 51.21 10 3 2 

Bagging CART 9.98% 14.36% 16.02% 42.22 79.12 52.45 4 8 2 

AdaBoost.BC MLP 13.35% 8.70% 15.94% 90.21 48.33 54.35 9 4 3 

AdaBoost.R2 MLP 12.30% 8.52% 16.05% 62.10 37.86 55.69 6 1 3 

AdaBoost.RT CART 8.83% 16.10% 16.56% 65.29 62.09 58.90 7 6 4 

AdaBoost.BC CART 8.83% 14.46% 16.58% 22.86 77.77 60.06 2 7,8 4 

Adaboost.RT MLP  12.50% 10.64% 16.62% 26.34 84.01 61.23 3 9 4 

AdaBoost.R2 CART 7.18% 14.77% 16.66% 6.76 77.09 67.00 1 7 5 

Select MLP 14.84% 9.69% 18.47% 95.22 51.29 74.49 10 5 6 

Select CART 10.23% 17.77% 20.17% 49.59 83.23 95.41 5 9 7 

Note: Forecast errors in boldface highlight the best performing method in each dataset. 
1
Methods that are not significantly different (at α = 0.05) belong to the same ranked group. 

Results show that all approaches that combine predictions, including Ensembles, Bagging, and 

all Boosting variants, significantly outperform the selection of an individual, ‘single best’ base 

model. Model selection using MLP (Select MLP) and CART (Select CART) turn out to have the largest 

percentage errors of 18.47% and 20.17% respectively, and are ranked 6
th

 and 7
th

 respectively 

after all other methods. This is strong evidence that forecast combination outperforms selection, 

and is in line with previous findings on forecast combination both in the statistical and 

econometric literature, where combination is found to routinely outperform attempts to select a 

single best model.  

Second, the novel algorithm of AdaBoost.BC MLP proposed in this paper significantly 

outperforms all other existing Boosting variants (in addition to the 89 additional Boosting v 

developed in this paper but not assessed here due to their limited marginal benefit), including 

the popular algorithms of AdaBoost.R2 CART and AdaBoost.RT CART. Assessing both MLP and 
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CART base learners, our study suggest that implementing AdaBoost.R2 and AdaBoost.RT using 

MLPs would significantly increase accuracy of these established benchmark methods, but still 

underperform compared to AdaBoost.BC. As AdaBoost.BC outperforms AdaBoost.R2 and 

AdaBoost.RT across both base models, it provides evidence of the gains from our appropriate 

choice of meta-parameters, and at the same time the reliability of the findings from the 

multifactorial ANOVA. To indicate the generalizability of our meta-parameter study, 

AdaBoost.R2 with CART shows the lowest forecast error on the training set but a poor 

validation and test set error, confirming earlier findings on in-sample overfitting for decision 

trees. Similarly, overall, all forecast combination methods using a neural network MLP base 

learner perform significantly better than methods using CART, with the exception of 

Bagging CART which is ranked equal second out-of-sample along with Bagging MLP. 

However, despite AdaBoost.BC demonstrating the most accurate Boosting performance 

for time series prediction achieved to date, its performance – as that of all Boosting variants – 

falls short of the forecast accuracy of Bagging and the even simpler Ensemble methods. MLP 

Ensembles, both using fixed or cross validation size, show the lowest forecast error (15.86% and 

15.88% respectively) and rank equal 1
st
 in performance, followed by Bagging MLP and 

Bagging CART (with 16.03% and 16.02% test error) ranked equal 2
nd

 and only then followed by 

Boosting variants in three groups of accuracy, led by 3
rd

 ranked AdaBoost.BC. Reflecting on the 

relative complexity and approach of the combination algorithms, the simplest approaches of 

MLP Ensembles utilise all data, equally weighted, and draw only on the diversity inherent in the 

neural network initialisations to combine forecast of MLPs. They consistently outperform 

algorithms which randomly sample (i.e. weight) observations to create additional diversity, and 

both outperform algorithms which create even further diversity of the base models by directing 

weights unto hard to predict observations. It appears that additional diversity does not add to 

added accuracy, raising the issue of determining an adequate level of diversity for different 

dataset conditions. It should however be noted, that despite the rank-based evidence that 
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AdaBoost.BC (ranked 3
rd

) cannot routinely outperform Bagging with MLPs or CART (ranked 

equal 2
nd

), the average SMAPE over 10 runs of the AdaBoost.BC of 15.94% is indeed lower 

than that of Bagging (with 16.03% and 16.02% respectively) making it the 3
rd

 most accurate 

algorithm on SMAPE error. While this indicates somewhat skewed error distributions, and the 

adequacy of rank-based measures, it points to some promise that selected AdaBoost variants can 

indeed outperform alternative forecast combination approaches, given the dataset. 

Given the multifactorial evaluation in which we assess the seven existing and 89 novel 

Boosting candidates, it suggests that the properties of the Boosting algorithm per se might lead 

to inferior forecasting performance. Furthermore, both Bagging and Ensembles appear to rank 

high regardless of the choice of base model or Ensemble configuration, making them more 

robust in application. We must conclude that – given the meta-parameters currently in use, and 

for the (albeit considered representative) dataset assessed - none of the Boosting algorithms have 

the potential to outperform Bagging and Ensembles, both simpler approaches of less 

complexity, increased transparency and greater efficiency. In this way, the results confirm 

findings from other studies in forecasting, where more complex algorithms are not able to 

outperform simpler ones (Crone, Nikolopoulos and Hibon, 2011), providing some evidence of 

the external validity of our findings. Any additional findings, such as our ability to further 

enhance existing algorithms drawing from insights into the meta-parameter framework, e.g. 

extending AdaBoost.RT by using a non-threshold based loss estimation and MLPs, or 

AdaBoost.R2 by using an unbound stopping rule with MLP, appear of lesser importance. 

However, our findings do contribute to future algorithm development in forecast combination in 

that they eliminate the need for many additional studies with (marginal, often arbitrary) 

enhancements of a Boosting algorithm leading to only irrelevant improvements in empirical 

accuracy.  

6.2 Relative performance to NN3 competition contenders 

In addition to more reliable average performance across 10 replications, we assess the 
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practical case in which one of the 10 contenders would have to be chosen for an actual empirical 

forecast. Therefore, we compare a single selected AdaBoost.BC contender, selected in-sample 

using the lowest validation error from the 10 runs, to all other algorithms submitted to the NN3 

competition (Crone, Nikolopoulos and Hibon, 2011). As NN3 competition guidelines require, 

we forecast 18 steps ahead from a fixed origin and a holdout test dataset of the last 18 

observations. The results by SMAPE and relative ranking are provided in Table 7 with the 

assessed Boosting algorithms highlighted in bold. 

Table 7. Average errors and ranks of errors across all time series of the NN3 competition. 

User 
Method or Contestant Name SMAPE 

Rank SMAPE Rank SMAPE 

ID# all methods only NN/CI 

B09 Wildi  14.84 1 −  

B07 Theta  14.89 2 −  

- Ensemble Fixed 15.07 3 1 

C27 Illies  15.18 4 2 

B03 ForecastPro  15.44 5 −  

- Bagging MLP  15.68 6 3 

- AdaBoost.BC MLP 15.76 7 4 

B16 DES  15.90 8 −  

B17 Comb S-H-D  15.93 9 − 

B05 Autobox  15.95 10 − 

- AdaBoost.R2 MLP 15.98 11 5 

- Ensemble Cross Validation 16.05 12 6 

C03 Flores  16.31 13 − 

B14 SES  16.42 14 − 

B15 HES  16.49 15 − 

C46 Chen  16.55 16 − 

C13 D'yakonov  16.57 17 − 

- AdaBoost.RT CART 16.77 18 7 

- Select MLP 16.80 19 8 

B00 AutomatANN  16.81 20 9 

- Bagging CART 17.10 21 10 

- Adaboost.RT MLP  17.58 22 11 

- AdaBoost.BC CART 17.94 23 12 

- AdaBoost.R2 CART  18.19 24 13 

Note: Forecast errors in boldface highlight the performance of methods evaluated in this study. 

Forecast errors in boldface and underlined highlight the best performing computational Intelligence method. 

The novel algorithm of AdaBoost.BC would rank 7
th

 overall across all methods (i.e. 

NN/CI and statistical algorithms), and 4
th

 on NN/CI algorithms, making it one of the best 

performing algorithms developed in machine learning for time series prediction. AdaBoost.BC 

is only marginally outperformed by Bagging with MLPs and is better than Comb S-H-D, a 

combination of Simple (SES), Holt (HES) and Damped (DES) (deseasonalised) Exponential 

Smoothing forecast. It also outperforms the individual statistical benchmarks of HES and SES. 

The simpler fixed size ensemble method of MLP model averaging ranks 1
st
 amongst all 
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computational intelligence algorithms, outperforming the Illies’ Ensembles of Echo State Neural 

Nets with pooled training, also a neural network ensemble technique applying equal weighting 

and training on all data. In comparison model averaging of MLPs with cross validation ranks 

12
th

 of all algorithms and 6
th

 amongst computational intelligence methods. In interpreting the 

relative accuracy, it should be noted that Table 7 shows only the top statistical contenders of the 

M3 competition (Makidakis and Hibon, 2000) and only the top computational intelligence (CI) 

contenders of the NN3. Were we to provide the complete list of all 48 algorithms from NN3 and 

all 24 methods from the M3 competition, all forecast combination approaches based on 

Boosting would rank in the top decile of empirical results. Overall, the findings again confirm 

the value of forecast combination for machine learning in comparison to established statistical 

forecasting methods, and even selected statistical benchmarks of forecast combination, which 

should help motivate future research in the area.  

7. Conclusions 

This paper systematically evaluates the empirical forecast performance of Boosting 

algorithms in forecasting real-world industry time series. The empirical evaluation is conducted 

using a valid and reliable experimental design using 111 time series of the NN3 competition, ex 

post evaluation across multiple rolling origins, and comparing the accuracy of all Boosting 

variants to established Benchmarks of Bagging, Ensemble Model Averaging, Model Selection 

and statistical forecasting methods. We provide empirical evidence that forecast combination 

outperforms the use of aggregate model selection regardless the choice of base model. Results of 

a multifactorial analysis of variance after decomposing Boosting into archetypical meta-

parameters indicate that the choice of loss function type, loss update, stopping criteria, base 

model and combination size all have a (statistically) significant impact on the forecast accuracy 

of Boosting algorithms. Among the most important of these meta-parameters are the choice of 

loss function, and the method of determining the number of models included in the forecast 

combination. As we would expect from forecasting research, many meta-parameters proposed in 
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this study outperform those from Boosting in Classification, including the use of a simple, 

equally weighted mean as combination method, an unbound loss estimation without the use of 

thresholds, and a linear loss function. The choice of the base model between MLP neural 

networks and CART decision trees also proves highly significant, and one of the most 

influencing determinants.  

The experimental results show that the appropriate selection of meta-parameters leads to 

improved forecast accuracy, and allows us to derive a best combination of meta-parameter 

choice Boosting variant coined AdaBoost.BC, which outperforms all other Boosting variants 

developed for time series prediction to date. Our findings also indicate that standard meta-

parameter choices may lead to suboptimal performance, so that existing algorithms of 

AdaBoost.RT and AdaBoost.R2 can be marginally improved by adjusting meta-parameters. 

However, these yield little impact, as despite the gains in accuracy achievable for Boosting from 

careful selection of meta-parameters, ex post model averaging using Ensembles of neural 

networks as well as Bagging outperform the best performing Boosting variants conflicting with 

previous findings (e.g., Avnimelech and Intrator 1999; Shrestha and Solomatine 2006). The 

findings therefore suggests the need to modify the reweighting and resampling schemes used in 

the Boosting algorithms if they are to prove successful in outperforming standard combination 

approaches. 

Our findings are limited in a number of ways, beyond that holding only for the dataset 

conditions we analysed. Although the dataset properties and the balanced design of the NN3 

dataset, including long and short, seasonal and non-seasonal time series of monthly 

observations, covers a large segment of dataset properties used in industry to date, they cannot 

be deemed representative e.g. for daily or intraday data. Here additional studies with rigorous 

empirical evaluations are needed. Also, our experiments do not cover variants of gradient based 

Boosting approaches, which fall outside the AdaBoost properties and do not lend themselves 

easily to an analysis in the structure of the meta-parameter framework developed here. However, 
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the study remains representative for the majority of Boosting algorithms used in forecasting, 

which are largely derived from AdaBoost. Finally, our experiment covers only meta-parameter 

features found in Boosting literature and those motivated from Forecasting research. 

Undoubtedly, many more could be considered to enhance research. 

Future work should consider various extensions of Boosting along the lines of enhanced 

meta-parameter options. A loss function based on SMAPE would allow a direct loss estimation 

in the naturally bound interval of [0, 2], with the highest SMAPE error never exceeding 200%. 

This would also establish some congruency between the objective function to develop the 

algorithm with the metric it is ultimately assessed on. More importantly, theoretical advances on 

estimating the necessary condition for a weak learner in Boosting for regression in general, and 

time series prediction in particular, could help guide what base models to combine, and how to 

specify them. A potential starting point for defining a base learner is that it has performance 

similar to that of the Naïve (random walk) method. This is akin to the Mean Absolute Scaled 

Error (MASE) performance measure of Hyndman and Koehler (2006) which is scaled to the 

Naïve as a measure of relative improvement. Overall, our study has shown the benefit of 

combining insights from forecasting research on combination with the development of machine 

learning algorithms, making this a promising approach to guide future research in forecast 

combination. 
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Appendix A. Base learner parameterisation 

Here we provide a description of the setup of both base learners and details on the 

parameterisation. To specify the MLP architecture, we construct a MLP with a single hidden 

layer with only two hidden nodes, using a hyperbolic tangent activation function and linear 

output function (Zhang, Patuwo, and Hu 1998). This limits the network architecture to very few 

degrees of freedom in accordance with the weak learner requirement of Boosting (Bühlmann 

and Yu 2010). For the input layer, we employ a MLP in a univariate setup, employing 

continuous autoregressive lags 𝑥𝑡 up to 𝑥𝑡−13. The input vector is sufficient to model monthly 

stochastic seasonality, and potentially stochastic trends, although the NN3 dataset does not 

contain time series with significant trends. A single output node with the identity activation 

function is used for all networks. Each MLP is trained directly on each time series, linearly 

scaled into the interval of [-0.5, 0.5] to facilitate training, but without prior differencing or data 

transformation, to estimate level, seasonality, and potential trend directly in the network weights 

and the bias terms. For parameterisation, data is presented to the MLP as an overlapping set of 

input vectors formed from a sliding window over the time series observations. The training 

algorithm used is the Levenberg-Marquardt algorithm (Hagan, Demuth, and Beale 1996), 

minimising the MSE up to a maximum of 1000 epochs. The algorithm requires setting a scalar 

𝜇𝐿𝑀 and its increase and decrease steps, using 𝜇𝐿𝑀 = 10−3, with an increase factor of 𝜇𝑖𝑛𝑐  =

 10 and a decrease factor of 𝜇𝑑𝑒𝑐  =  10−1. When a validation set is used, network training stops 

if error on the validation set increases or remains the same for more than 50 epochs. 

Additionally network training stops if 𝜇𝐿𝑀 exceeds 𝜇𝑚𝑎𝑥 = 1010. The network weights giving 

the lowest validation error during training are used in order to reduce overfitting to the training 

data. Each MLP is initialised multiple times with randomised starting weights to account for 

local minima in training. During training of the MLP for Boosting, the identical initial weights 

are used across all meta-parameter choice combinations to allow for any differences in 

performance to be attributed solely to the choice of meta-parameters, and not to different 
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starting weights. 

For decision trees, the popular algorithm of CART is being used. In contrast to 

traditional methods such as ordinary least squares (OLS) regression and discriminant analysis, 

CART does not depend on assumptions of normality and user-specified model statements. The 

resulting predictors are typically simple functions of the corresponding input variables and are 

often easy to use and to interpret. A detailed review of the effective use of regression trees in the 

context of Boosting is given in Schapire and Singer (1999). When the tree is constructed, the 

terminal node will have assigned to it the predicted value for input 𝐱𝒊, corresponding to the 

node. The tree is built such that at each stage, the split selected is the one leading to the greatest 

reduction in the sum of squared error between the actual values of the training set examples 

corresponding to a particular node, and their sample mean which is the predicted value. The 

tolerance on the sum of squared errors is set to 1e-6 such that splitting nodes stops when the 

error drops below this value. We consider the standard pruning procedure with reduced-error 

pruning implemented in the MATLAB statistics toolbox. For both base learners, we tune 

Boosting’s suboptimal threshold value 𝜙 for each time series on the validation set, estimated as 

the mean across multiple initialisations (see Eq. (4)) 
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