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Abstract

Sequential decision making problems require an agent to repeatedly choose be-

tween a series of actions. Common to such problems is the exploration-exploitation

trade-off, where an agent must choose between the action expected to yield the best

reward (exploitation) or trying an alternative action for potential future benefit (ex-

ploration). The main focus of this thesis is to understand in more detail the role this

trade-off plays in various important sequential decision making problems, in terms

of maximising finite-time reward.

The most common and best studied abstraction of the exploration-exploitation

trade-off is the classic multi-armed bandit problem. In this thesis we study several

important extensions that are more suitable than the classic problem to real-world

applications. These extensions include scenarios where the rewards for actions

change over time or the presence of other agents must be repeatedly considered. In

these contexts, the exploration-exploitation trade-off has a more complicated role

in terms of maximising finite-time performance. For example, the amount of ex-

ploration required will constantly change in a dynamic decision problem, in multi-

agent problems agents can explore by communication, and in repeated games, the

exploration-exploitation trade-off must be jointly considered with game theoretic

reasoning.

Existing techniques for balancing exploration-exploitation are focused on achiev-

ing desirable asymptotic behaviour and are in general only applicable to basic de-

cision problems. The most flexible state-of-the-art approaches,ε-greedy andε-first,

require exploration parameters to be seta priori, the optimal values of which are

highly dependent on the problem faced. To overcome this, we construct a novel al-
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gorithm,ε-ADAPT, which has no exploration parameters and can adapt exploration

on-line for a wide range of problems.ε-ADAPT is built on newly proven theoreti-

cal properties of theε-first policy and we demonstrate thatε-ADAPT can accurately

learn not onlyhow muchto explore, but alsowhenandwhich actionsto explore.
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Chapter 1

Introduction

In many real-world situations, decision makers are required to repeatedly choose ac-

tions from a set of available options. Important examples include allocating drugs

to patients in a clinical trial, choosing targets to track in a multi-target tracking

problem and providing product recommendations for users visiting an e-commerce

website. These are all examples of sequential decision making problems. In each

case, the decision maker (henceforth called an agent) will learn which action it

prefers based on past experiences and current circumstances. Agents accrue re-

wards from the actions they select, and seek to maximise the total reward gained

over a period of time. At each time-step, however, the agent is faced with a trade-

off between exploration and exploitation – where the agent must choose between

what it believes is the best action (exploitation) and trying alternative actions for

potential future benefit (exploration). For example, in a clinical trial, a patient can

be allocated the tried and tested drug which is expected to perform best, or a new

unknown drug which may perform better and subsequently benefit many patients –

but may alternatively cause the patient adverse undesirable symptoms.

The exploration-exploitation trade-off is in fact central to any sequential deci-

sion making problem (beyond the examples given above) where agents are uncer-

tain of future rewards and the rewards of unselected actions are not observed. Many

sequential decision making problems have these features. The purpose of this the-

sis is therefore to study this trade-off in many important and applicable sequential
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decision making frameworks, in terms of maximising the total reward gained in

finite-time problems.

The most common and best studied abstraction of the exploration-exploitation

trade-off in sequential decision making problems is the multi-armed bandit prob-

lem (Robbins, 1952), which we comprehensively introduce and review in Chapter

2. The objective of the bandit problem is to select the optimal action from a set

of available actions at each time-step, where the expected rewards for each action

are unknowna priori. Throughout this thesis, we study the bandit problem in de-

tail, to make new insights and develop new algorithms that maximise the reward

gained by an agent. We study several important extensions of the bandit problem,

however, that are more suitable to real-world applications than the classic bandit

problem. These include problems where additional side information is observed

that is relevant to the decision problem, which is then further extended to scenarios

with multiple interacting agents that can communicate this side information with

each other.

Most existing literature in the bandit problem has developed methods that max-

imise reward asymptotically (as discussed in Chapter 2), but in this thesis we are

motivated by maximising reward in finite-time problems, as this objective is more

useful in real-world problems. This is because real-world problems are always

likely to be finite in length or change over time, such that asymptotic convergence

is neither meaningful nor desirable.

1.1 Research Contributions

Throughout this thesis we consider two central themes that are fundamental to the

various sequential decision making problems considered. First is the role that the

exploration-exploitation trade-off plays and how it is fundamentally related to the

problem of maximising reward in finite-time problems. This concept is well under-

stood for simple single-agent sequential decision making problems (such as basic

bandit problems), but it is still poorly understood in many other important sequen-

tial decision making problems such as:
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• Bandit problems with side information, where additional relevant information

must be considered prior to each action.

• Dynamic bandit problems, where the expected reward for an action is chang-

ing over time.

• Multi-agent decision making problems, where the presence of other decision

makers must be considered.

These problems characterise several real-world decision making problems. Not

only is it unclearhow muchan agent should explore in these environments, but it is

also difficult to ascertainwhenthis exploration should occur,which actionsshould

be explored and – in the multi-agent case – in what way exploration should be de-

pendent on the presence of other agents. This first theme therefore serves to provide

a better understanding of the exploration-exploitation trade-off in sequential deci-

sion making problems. In particular, selecting the correct actions for exploration

(and at the right time) is crucial in terms of maximising reward in finite-time prob-

lems, as demonstrated throughout this thesis.

The second central theme, which builds on the findings of the first, is the con-

struction of practical and implementable algorithms for each type of sequential de-

cision making problem that we study. The exact solution to optimally balancing

the exploration-exploitation trade-off is almost always an intractable calculation

(Sutton and Barto, 1998). Gittins (1979) provides a more tractable, but still compu-

tationally intensive solution to basic bandit problems, which assumes certain fixed

reward distributions. Otherwise, in more complicated sequential decision making

problems, the current state-of-the-art is to apply off-line stochastic policies such as

ε-greedy orε-first, which are introduced in more detail (together with other core

policies and algorithms) in Chapter 2. These exploration policies can provide good

results in finite-time problems, as compared with other exploration policies or no

exploration at all, but their performance is inexorably linked with the setting of an

exploration parametera priori that governs the overall amount of exploration. The

optimal value of this parameter is likely to be unknown to an agenta priori in real-
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world applications, and moreover performance can degrade rapidly with a poorly

chosen parameter value (Sutton and Barto, 1998).

For these reasons, in this thesis we first attempt to find the optimal value of

the exploration parameter for the standardε-greedy andε-first policies, for a ba-

sic bandit problem. This analysis allows an agent to select optimal parameters if

the parameters of the problem are known beforehand, otherwise these can be learnt

on-line. For more enhanced and realistic bandit problems, however, where the theo-

retical calculation of optimal parameters becomes intractable, we build an algorithm

that can approximate the optimal exploration decision on-line, without the need for

a prefixed exploration parameter. This algorithm, which we callε-ADAPT, is much

more applicable to practical domains due to the absence of an exploration parame-

ter. In addition,ε-ADAPT can be extended to various multi-agent sequential deci-

sion making problems. The on-line approach ofε-ADAPT allows this algorithm to

perform comparably with optimally tuned off-line policies, asε-ADAPT can learn

the circumstances of the decision making problem as it plays, and adapt to events

such as the arrival of different side information, the dynamics in the environment

or changes to the behaviour of other agents in the system.ε-ADAPT can therefore

learnhow much, whenandwhich actionto explore and how best to explore in the

presence of other agents.

The main contributions of this thesis can hence be summarised as follows:

• Theoretical analysis and proofs of the behaviour ofε-first andε-greedy poli-

cies in bandit problems, including derivations and proofs of the optimal ex-

ploration rates for a basic bandit problem. These findings are fundamental to

the construction of theε-ADAPT algorithm.

• An autonomous on-line algorithm,ε-ADAPT, which is the first algorithm

that can adapt exploration on-line in sequential decision making problems,

without the need for ana priori fixed exploration parameter.

• Extensive simulation results showing the favourable performance ofε-ADAPT

for all decision making problems considered, as compared with optimally
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tuned off-line policies such asε-first andε-greedy.

• The construction and analysis of several off-line policies for multi-agent se-

quential decision making problems, specifically for the novel multi-agent

bandit with communication problem studied in Chapter 6 and the repeated

games with unknown rewards framework studied in Chapter 7.

1.2 Thesis Structure

This thesis is structured as follows:

Chapter 2 provides a background on the multi-armed bandit problem, which is cen-

tral to the study of the exploration-exploitation trade-off in this thesis. We provide

a review of well-studied frameworks and of existing policies and algorithms. We

also provide an extensive analysis of the various policies and algorithms in terms of

their flexibility and applicability to different problems. This motivates the need for

the research contributions that follow.

In Chapter 3 we theoretically examine a basic bandit with covariates problem.

Specifically, we derive and prove optimal exploration rates for theε-greedy andε-

first policies, which are frequently used and strong performing policies for bandit

problems in general. These findings are then used to construct a novel on-line algo-

rithm (free of exploration parameters) which is the building block of theε-ADAPT

algorithm.

Chapter 4 constructsε-ADAPT, our on-line algorithm for multi-armed bandit prob-

lems, for problems with and without side information. The algorithm is built using

newly derived theoretical properties of theε-first policy. Several key additional fea-

tures are introduced to the algorithm to improve finite-time performance, which we

demonstrate through a detailed empirical study. We note that some of the findings

in this chapter are also presented in Sykulski et al. (2010a).

In Chapter 5 we study dynamic bandit problems, where the expected rewards re-

ceived for actions change over time. This is an important and realistic extension

of bandit problems to real-world applications. We make several key changes to the
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ε-ADAPT algorithm of Chapter 4 and demonstrate the strong performance again

through an extensive empirical study of several different dynamic reward processes.

Chapter 6 starts by providing a short background on relevant multi-agent sequen-

tial decision making problems. Motivated by this, we then study a multi-agent

bandit problem with communication, to show the importance of agentsexploring

their communication decisions. We construct a novel off-line policy, which is an

extension ofε-greedy and also extendε-ADAPT to this multi-agent framework.

In Chapter 7 we study repeated 2-agent, 2-action games (also known as 2×2

games) with unknown rewards, to study the impact of the exploration-exploitation

trade-off in relation to game theoretic reasoning. We study several fundamental

off-line policies before using these findings to extendε-ADAPT to this framework.

We show that optimal rates of exploration are dependent on the type of opponent,

as well as the reward structure of the game.

Finally, in Chapter 8 we conclude and present key directions for future work.
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Chapter 2

Sequential Decision Making and

Bandit Problems

This thesis first examines the exploration-exploitation trade-off in the single-agent

domain by studying the multi-armed bandit problem (Chapters 3, 4 and 5) and then

in the multi-agent domain by considering various extensions of the bandit prob-

lem (Chapters 6 and 7). Since the bandit problem is central, in this chapter we

provide a thorough overview of existing literature on the multi-armed bandit prob-

lem, including the various types of problem considered, which we refer to asbandit

frameworks, and the range of existing policies and algorithms that attempt to bal-

ance the exploration-exploitation trade-off. Finally, we evaluate the applicability of

existing policies and algorithms to the different bandit frameworks and perform a

critical analysis of their key advantages and disadvantages. This analysis identifies

several shortcomings in the current state-of-the-art which we try to address in the

proceeding chapters. Note that we review the relevant literature for multi-agent se-

quential decision making problems, which are (in general) not directly related to

the bandit problem, at the beginning of Chapters 6 and 7.

The multi-armed (ork-armed) bandit problem is the most basic and best studied

abstraction of the exploration-exploitation trade-off in sequential decision making

problems. Originally documented by Robbins (1952), the problem is based on the

analogy of a series of slot machines or one-armed bandits. A gambler selects one
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arm to pull at each time-step (armai at timet wherei ∈ {1, . . . , k}) and then re-

ceives a corresponding rewardri(t) (which can be negative). The objective of the

gambler is to maximise cumulative reward over a sequence of pulls. Note that we

henceforth refer to the gambler as an agent, and the arms as actions, to keep the ter-

minology consistent with the multi-agent system problems considered in Chapters

6 and 7.

The bandit problem has three key properties. First, the agent starts with little

or no prior knowledge of the expected rewards of each action. Secondly, the agent

has no knowledge of the rewards foregone from unselected actions – this makes the

problemopaque(as opposed totransparentwhere the agent observes the rewards

of all actions) and finally, the observed reward of a selected action is not always

the same (it is either noisily observed or changes over time). Taking these proper-

ties together, the agent must consider exploring all actions in an effective policy to

learnabout their potential future rewards. The agent therefore faces an exploration-

exploitation trade-off, where the agent must choose between selecting actions that

are expected to perform best (exploitation) and selecting alternative actions for po-

tential future benefit (exploration). The objective of the multi-armed bandit problem

is to design a policy that can use past actions and rewards to select the next action

whilst simultaneously balancing the exploration-exploitation trade-off.

The multi-armed bandit problem has been extensively studied in the fields of

statistics (Berry and Fristedt, 1985; Lai and Robbins, 1985), machine learning

(Sutton and Barto, 1998), economics (Rothschild, 1974) and multi-agent systems

(Carmel and Markovitch, 1999) and has applications in areas as diverse as on-line

auctions (Blum et al., 2003), clinical trials (Hardwick et al., 1998; Woodroofe,

1979), market pricing (Azoulay-Schwartz et al., 2004; Rothschild, 1974; Weitzman,

1979), organisational learning (March, 1991), web advertising (Kleinberg et al.,

2008; Pandey et al., 2007) and multi-target tracking (Hero et al., 2006; Krishna-

murthy and Evans, 2001). Notice that all of these applications match the key prop-

erties of the bandit problem mentioned above. In clinical trials, for example: there

will usually be little prior knowledge about the effectiveness of an untested drug, the

outcome of untried drugs on patients will be unknown, and the benefits/symptoms



Chapter 2. Sequential Decision Making and Bandit Problems 21

of tried drugs will vary from person to person and over time. In fact, several real-

world applications of sequential decision making problems are likely to have these

key properties and it is for these reasons that the multi-armed bandit problem has

attracted such wide attention in the past 40 years.

This chapter is structured as follows. In Section 2.1 we introduce the various

bandit frameworks that have been considered. Then, in Section 2.2, we summarise

all the different algorithms and policies that have been constructed for the bandit

problem. Then we evaluate the strengths and weaknesses of these algorithms and

policies in Section 2.3 and also discuss how well they generalise to the different

bandit frameworks. Summary remarks follow in Section 2.4.

2.1 Bandit Frameworks

All bandit frameworks considered in the literature have the three key properties

mentioned earlier: little or no prior knowledge of expected rewards, opaqueness,

and action rewards that are noisy or change over time. There are several variations

of this general principle, however, which are covered in this section. These vari-

ations include: the number of actions available (Section 2.1.1), the availability of

any side information (Section 2.1.2), the length of game (Section 2.1.3), the method

by which rewards are generated (Section 2.1.4) and dynamics driving the reward

process (Section 2.1.5). Finally, in Section 2.1.6 we introduce Markov Decision

Processes (MDPs) and discuss their relationship with bandit problems.

2.1.1 Number of Actions

The simplest version is the one-armed bandit problem, introduced in Chernoff

(1967). In this formulation, the agent must select between an unknown “risky”

action and a known “safe” action. The application considered in this paper is se-

quential clinical trials, where patients in a trial can be allocated the best known and

tested drug or a new untested drug (which is the subject of the trial). The objective

of the trial is not only to learn about the performance of the untested drug, but also



2.1 Bandit Frameworks 22

to maximise the benefits (or minimise the symptoms) to all the tested patients –

which creates the exploration-exploitation trade-off. The one-armed bandit prob-

lem has since been extensively studied in Kumar and Seidman (1981), Rosenberg

et al. (2007), Sarkar (1991) and Woodroofe (1979).

The reward structure of the alternative “known” action does not require any

learning, and hence the agent does not need to explore this action. Exploration

in the one-armed bandit problem therefore involves selecting the unknown action

when it is expected to perform worst given the knowledge the agent has. This is

why the problem is known as the one-armed bandit (as opposed to two-armed).

The two-armed bandit problem, where the reward structures of both actions are

unknowna priori, has been studied in Berry (1972), Li and Zhang (1992) and

Rothschild (1974) amongst others. The extension to multiple-arms where the agent

must select between a finite set of unknown actions is commonly referred to as the

multi-armed bandit problem ork-armed bandit problem (Sutton and Barto, 1998;

Vermorel and Mohri, 2005). This problem has also been extended in Whittle (1981)

to arm acquiring banditswhere new actions become available during the decision

making problem. Finally, the continuous bandit problem or the infinitely-armed

bandit problem studies scenarios where the agent must select from a continuous

variable or an infinite set of actions (Flaxman et al., 2005; Kleinberg, 2005). In this

thesis, we consider bandit problems for a set number of finite actions and continue

to make the distinction between one-armed and multi-armed problems. Arm ac-

quiring bandits and the infinite-action problem are both of interest and form part of

planned future work (see Chapter 8 for more details).

2.1.2 Side Information

In many real-world applications, agents are likely to have additional side informa-

tion that is received throughout a decision making process. This side information

can be interpreted as additional information (other than observed rewards) that is re-

lated to, but does not fully reveal, the expected rewards of future actions. This con-

cept was first introduced to bandit problems in Woodroofe (1979) for the one-armed
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bandit problem. This paper advanced the work in Chernoff (1967) for sequential

clinical trials, by arguing that available side information such as age, severity of

disease or general physical status, which is specific to the patient, should be incor-

porated into the decision making process. Woodroofe goes further to argue that side

information is likely to be present in all applications. As examples, weather con-

ditions, time of day and terrain topography can inform the agent in a multi-target

tracking problem or daily volume of transactions, exchange rates and the availabil-

ity of alternative products can assist a bidder in on-line auctions.

The agent observes the side information in the form of a covariate (also referred

to as a concomitant variable) prior to the decision made at timet. This covariate is

linked to the reward of both the known and unknown action. In Woodroofe (1979),

the covariate takes a scalar valuex(t) (from a known distributionX) and the reward

of the unknown actiona1 is simply:

r1(t) = x(t) + z(t), (2.1)

wherez(t) is drawn from a known distributionZ (independent ofX) with unknown

but fixed meanμ. In this instantiation of the problem, the agent must learn the

parameterμ to establish which action is expected to yield a larger reward given a

particular value ofx(t).

This problem has become known as thebandit with covariates problemand has

since been extensively studied in Clayton (1989), Pavlidis et al. (2008a), Pavlidis

et al. (2008b), Sarkar (1991), Woodroofe (1982) and Yang and Zhu (2002) for both

the one-armed and multi-armed cases. In other literature, the problem has been re-

ferred to as thecontextual bandit problem(Beygelzimer et al., 2011; Langford and

Zhang, 2007; Lu et al., 2010), or simply as thebandit problem with side observa-

tions (Pandey et al., 2007; Wang et al., 2005a,b). In each case the covariate and

reward structure has been enhanced from that seen in Woodroofe (1979), to include

high-dimensional covariates and complicated reward structures. This is covered in

more detail in Section 2.1.4 where we discuss the many different reward processes

that have been investigated.
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We consider the bandit with covariates problem to be important in the context

of sequential decision making problems as they characterise many real-world prob-

lems where agents face the exploration-exploitation trade-off. The framework can

also be viewed as a generalisation of the standard bandit problem with no covari-

ates (where the covariate can simply be set to be degenerate (Wang et al., 2005b)).

For these reasons, we focus our research on the covariates setting in the following

chapters.

2.1.3 Length of Game

The objective of the agent in bandit problems is to maximise reward over a se-

quence of pulls, or to minimiseregret, where regret commonly refers to the differ-

ence between the reward of the action selected and the reward of the optimal action.

In most early studies of bandit problems (Berry and Fristedt, 1985), the objective

was to find a policy to maximise reward (or minimise regret) asymptotically, or

in an infinite-length game. Regret measures are preferred for asymptotics, as the

objective is to then design a zero-regret policy (whereas rewards will grow with-

out bound). More recent studies however (Auer et al., 2002; Vermorel and Mohri,

2005), have attempted to design policies that are optimal or approximately optimal

in finite-length games. The latter task is more difficult, as asymptotically optimal

policies can yield poor results in finite time (Vermorel and Mohri, 2005). This is

particularly relevant in real applications, where decision making problems are al-

ways likely to be finite in length. Furthermore, decision making environments will

usually evolve over time and the decision problem will constantly change – such

that asymptotic convergence is neither meaningful nor desirable. Given this, we

focus our attention on finite-time problems in this thesis.

2.1.4 Reward Process

In thek-armed problem, the agent receives a rewardri(t) from actionai at timet,

wherei ∈ {1, . . . , k}. The objective is to maximise the cumulative rewardR(T )

in a game of lengthT wheret ∈ {1, . . . , T}. Note thatt takes discrete values and
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decisions occur at regular intervals – this is not a restrictive assumption in static

bandit problems where reward processes do not change over time and the actual

time between each decision is not important. The value oft can therefore be simply

interpreted as the “iteration number”.

The cumulative reward is sometimes discounted over time such that:

R(T ) =
T∑

t=1

atri(t), (2.2)

where0 < a ≤ 1 is the discount factor (a = 1 corresponds to no discounting).

Some action selection policies (as detailed in Section 2.2) require the discount fac-

tor to be strictly less than 1 for the policy to work. This is somewhat restrictive as

several applications (such as clinical trials) consider undiscounted rewards (Berry

and Fristedt, 1985). For this reason we impose no such condition on the policies

and algorithms we build in this thesis and henceforth consider only undiscounted

cumulative rewards.

The individual rewards for each action,ri(t), have been generated in a number

of ways. In the simplest case rewards are generated using a Bernoulli distribution

(Berry and Fristedt, 1985) or a normal distribution (Vermorel and Mohri, 2005). In

these cases, the reward of each actionai is an i.i.d. sample from a Bernoulli distri-

bution with unknown success probabilityθi or a normal distribution with unknown

mean and varianceμi andσ2
i respectively. The agent has to learn these unknown

parameters to identify the actions that yield the highest rewards. In fact, any proba-

bility distribution could be used, but analysis of i.i.d. rewards is typically restricted

to Bernoulli and normal distributions (as these are commonplace in many applica-

tions and also easy to use in a Bayesian setting). This problem is typically referred

to as thestochasticbandit problem (Vermorel and Mohri, 2005) or in some liter-

ature as astopping problem(Woodroofe, 1979; Gittins, 1979), as the agent would

prefer to perform all exploration first and must learn when tostopexploring and

start exploiting.

An alternative mechanism for generating rewards is theadversarialor non-

stochasticbandit problem (Auer et al., 1995, 2003) where rewards are set by an ad-
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versarya priori and can take any possible sequence of values, which can be highly

unpredictable and constantly change the optimal action. Although this framework

appears more flexible, analysis has been restricted to rewards that are bounded in

the interval[0, 1], which is not always practical. Moreover, the best policies in this

framework attempt to maximisemaxi (
∑

t ri(t)) rather than
∑

t maxi (ri(t)). Or in

other words, the agent attempts to minimise regret against the action that performed

best overall on average (rather than the regret against the best action at each time

stept). In this work, we do not bound rewards and attempt to find the best action at

each iteration (rather than the best action on average), we therefore do not consider

the adversarial framework and generate our rewards stochastically.

Side information has also been incorporated into the reward process in a number

of ways. A popular framework models the reward of each action as a linear func-

tion of ap-dimensional covariatex(t) = (x1(t), . . . , xp(t)) with added observation

noise (Ginebra and Clayton, 1995; Pavlidis et al., 2008a,b; Yang and Zhu, 2002):

ri(t) =

p∑

j=1

αi,jxj(t) + ηi(t), ηi(t) ∼ N (0, σ2
i ), (2.3)

wherex1(t) = 1, such thatαi,1 becomes the intercept of the reward plane. Thep-

dimensional covariatex(t) is often assumed to be an i.i.d. draw from a multivariate

normal distribution with unknown mean and covariance matrix. The agent has to

learn thek × p matrix α to partition the covariate space between regions where

each action is optimal. For this reason, bandit problems with this characteristic are

sometimes referred to asallocation problems(Woodroofe, 1979).

Another method is to model the relationship between the covariate and the re-

wards for each action using a set of finite hypotheses (Langford and Zhang, 2007;

Wang et al., 2005b). In some cases, these hypotheses have been labelled as “ex-

perts” that provide advice on the best action (Auer et al., 2003; Beygelzimer et al.,

2011). This setting allows for a richer set of reward functions to be considered, but

restricts the agent to a finite set of parameter values. Moreover, existing analysis in

this framework has been restricted to a 1-dimensional covariate and in some cases,
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rewards that are bounded in the interval[0, 1] (Beygelzimer et al., 2011; Lang-

ford and Zhang, 2007). Variations of this setting include thepartial-label problem

(Kakade et al., 2008) and theassociative bandit problem(Strehl et al., 2006), where

the covariate can take high-dimensional values but the rewards for each action are

further restricted to either 0 or 1.

High-dimensional covariates and unbounded rewards are likely to exist in sev-

eral applications. For example in finance, side information (such as macro-economic

measurements) is widely available and rewards are difficult to bound, particularly

in times of economic instability. For these reasons, we use the linear reward and

multivariate normal covariate setting as the test-bed in this thesis. At first glance,

linear rewards and normal covariates may appear restrictive; however, non-linear

reward functions can often be accurately approximated by a linear function (using

an appropriate design of covariates) (Abe et al., 2003; Auer, 2003; Sutton and Barto,

1998) and multivariate normal distributions can accurately model several real-world

data sources (Cox and Small, 1978). Although our algorithms can in fact also be

applied to non-linear rewards and non-Gaussian covariates.

2.1.5 Dynamic Environments

In many real-world applications, the rewards received for an action will change over

time. In the simplest case, many slot machines in casinos will be pre-programmed

such that expected rewards incrementally grow as the agent plays (and loses) un-

til the agent does eventually win a large reward. After this, the expected reward

suddenly jumps down such that the agent is almost guaranteed to lose money if it

continues to play (BettingCorp.com, 2009). In this way, the casino can guarantee

a steady profit over long term play – in fact, this is where the “bandit” part of the

term “one-armed bandit” originated (777OnlineSlots, 2011).

A good policy for selecting actions should therefore be time dependent and

adapt to the type of dynamics observed. The optimal action may constantly change

over time, or in the presence of side information, the regions of the covariate space

for which each action is optimal will move or jump over time. The problem is
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no longer about convergence to an optimal action, but instead the agent needs to

continuously adapt and respond to changes in the reward structure.

This type of dynamic reward process, which incorporates both drifts and jumps,

has been implemented in the bandit with covariates framework by Pavlidis et al.

(2008a). In this formulation, the coefficients of the linear reward function in Equa-

tion (2.3) each follow an ESTAR (Exponential Smooth Transition Autoregressive)

process (Haggan and Ozaki, 1981):

αi,j(t) = αeq
i,j +

(
αi,j(t− 1)− αeq

i,j

)
exp

(
−γ(αi,j(t− 1)− αeq

i,j)
2
)

+ υ, (2.4)

whereαeq
i,j is the equilibrium value ofαi,j andυ is zero-mean normally-distributed

noise (with varianceσ2
υ). Coefficient values close to the equilibrium will change

like a random walk, but values far from the equilibrium will become mean revert-

ing and jump back to the equilibrium. The ESTAR model therefore allows for a

“continuum” of regimes (Van Dijk et al., 2002). The parameterγ ∈ (0,∞) is

a smoothness parameter which determines the balance between drift and mean-

reversion (high values ofγ allow no drift and asγ → ∞ the process effectively

becomes static).

This type of dynamics ensures that the decision making problem does not de-

generate such that one action becomes globally optimal (as may naturally happen in

a drifting system) but has the important effect of constantly changing the regions of

the covariate space where each action is optimal. An effective policy would there-

fore constantly adapt to the problem with continuous exploration of all actions –

rather than trying to converge to a specific partitioning of the covariate space. An

alternative framework for considering dynamic rewards is therestless banditprob-

lem (Whittle, 1988), where the state of all unselected actions change over time.

This formulation, however, does not include side information and can therefore be

seen as a degenerate version of the dynamic model in Pavlidis et al. (2008a).

We consider dynamic rewards to be an important generalisation of bandit prob-

lems, as they can capture many real world problems. For example, the price of

financial assets will drift and jump over time, in response to various micro and



Chapter 2. Sequential Decision Making and Bandit Problems 29

macro-economic effects or targets will continuously adapt their evasive movements

in a multi-target tracking problem. From henceforth, we refer to bandit problems

with dynamic reward structures asdynamic bandit problems(as opposed tostatic

bandit problems) and we study such problems in more detail in Chapter 5, where

we consider new types of dynamic reward processes, previously not considered in

a bandit setting.

2.1.6 Markov Decision Processes

Finally, we note that another well-studied class of sequential decision making prob-

lems areMarkov Decision Processes(MDPs) (Bellman, 1957). In MDPs, the de-

cision problem is in some state and transitions to new states are dependent on the

past action and current state only, also known as the Markov Property.Partially Ob-

servable Markov Decision Processes(POMDPs) (Monahan, 1982) are generalised

frameworks where the agent does not observe the current state, and instead has a

probability distribution over all states.

MDPs and POMDPs have also been extended to situations where rewards are

unknown, which then introduces the exploration-exploitation trade-off (Sutton and

Barto, 1998). In this case, the classic multi-armed bandit problem is equivalent

to a single-state MDP, whereas the inclusion of side-information can be viewed as

an infinite-state MDP, where actions do not affect subsequent realisations of states.

The dynamic bandit problem, however, can capture state transitions beyond those

permitted by the Markov property and the agent is further not assumed to know

these state transition probabilities, hence the MDP framework is not as general –

it is for this key reason that we focus on bandit problems and not MDPs in this

thesis. Nevertheless, we note that the policies and algorithms introduced in Section

2.2 for the bandit problem have also been widely applied to MDPs and POMDPs,

in particular Q-learning which is introduced in more detail in Section 2.2.6.



2.2 Policies and Algorithms 30

2.2 Policies and Algorithms

In this section we detail the various policies and algorithms that have been con-

structed for bandit problems, many of which have been broadly applied to other

sequential decision making and optimisation problems that require action explo-

ration. We make a distinction between algorithms and policies such that algorithms

are on-line methods for selecting actions, where an algorithm is executed at each

iteration, and policies are off-line decision rules with all exploration parameters set

in advance.

All policies and algorithms in the bandit problem require some form of initial-

isation. In most cases (Auer et al., 1995; Sutton and Barto, 1998) this requires

selecting each action once to gain an unbiased estimate of the expected rewards. In

other instances (Berry and Fristedt, 1985; Gittins, 1979) a Bayesian prior is attached

to the reward of each action – but unless there are some particularly informative pri-

ors, this almost inevitably also leads to the agent selecting each action once at the

beginning. The case of more actions than rounds was considered in Vermorel and

Mohri (2005), and in this case the policies and algorithms were initialised by se-

lecting two random actions and then estimating the reward of all other actions as

being the average of the two selected actions. We note that the case of more actions

than rounds (k > T ) is interesting, but we restrict our attention to more rounds than

actions (T > k) in this work – as this is more common in most bandit applications.

Finally, in the presence of side information, a longer initialisation period is required

to gain unbiased sample estimates. In the linear reward structure of Yang and Zhu

(2002), each action must be first selectedp + 1 times (wherep is the dimension

of the covariate), so that unbiased estimates of the reward coefficientsαi,j can be

computed before any action selection policies are executed.

In this section we review theε-greedy policy and its variants (Section 2.2.1),

the SoftMax policy and probability matching variants (Section 2.2.2), interval esti-

mation and UCB policies (Section 2.2.3), the Gittins Indices (Section 2.2.4), the

POKER algorithm (Section 2.2.5) and reinforcement learning methods (Section

2.2.6). We discuss the applicability of these approaches throughout, but then com-
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pare their strengths and weaknesses in more detail in Section 2.3.

2.2.1 ε-greedy and Variants

The simplest policy in any bandit setting is agreedypolicy (Sutton and Barto, 1998)

which selects the action that has yielded the highest reward thus far. This is a pure

exploitation policy – as exploration involves selecting an action that is not expected

to yield the highest instantaneous reward, but might improve cumulative reward in

the long-term. The lack of exploration and consideration of long-term rewards has

lead this policy to be referred to as amyopicpolicy in some literature (Woodroofe,

1979) and also aone-step look-aheadpolicy in others (Gittins, 1979).

This policy has in fact been shown to perform optimally (Macready and Wolpert,

1998; Woodroofe, 1979), or near-optimally (Pavlidis et al., 2008b) for certain bandit

frameworks. This can be attributed to a number of possible factors. First of all, the

initialisation period can perform sufficient exploration for the agent to immediately

learn the optimal action before the action selection policy is even implemented.

This was discovered, for example, in the linear bandit with covariates framework

in Pavlidis et al. (2008a), particularly for a high-dimensional covariate where the

initialisation period is long. Secondly, the observation noise may be sufficiently low

such that exploration is not required (Pavlidis et al., 2008b) and finally, the num-

ber of actions is small or reward structure is very simple (Macready and Wolpert,

1998; Woodroofe, 1979) and the problem is easy enough to learn from the rewards

received through pure exploitation. The greedy policy has also been found to be op-

timal for many other sequential decision making and optimisation problems (Lew,

2006).

In most bandit settings however, the greedy policy will perform far from opti-

mally as the agent is performing insufficient exploration and will often converge to

the repeated selection of a suboptimal action (Sutton and Barto, 1998). In fact, the

greedy policy is mainly used for its computational efficiency and simplicity (Lew,

2006). Unlike most other policies, it does not require any parameters to be seta

priori .
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Exploration can be incorporated into a policy in a number of ways. One of

the simplest methods is by using anε-greedypolicy (Watkins, 1989), which is a

straightforward extension of greedy selection. At each iteration, the agent adopts a

greedy policy with probability1 − ε (where0 ≤ ε ≤ 1) and selects a random ac-

tion with probabilityε. The value ofε is selecteda priori and can be interpreted as

an exploration parameter – higher values correspond to more exploration and vice-

versa. Note that the greedy policy is recovered by settingε = 0. The explorative

component is random and ensures every possible action is continuously explored

– such that convergence to a suboptimal action is not possible. In a static reward

setting this may seem undesirable as an agent should stop exploration once the op-

timal action has been learnt. Nevertheless, this policy has been found to perform

well in finite time, in a number of empirical studies (Sutton and Barto, 1998; Ver-

morel and Mohri, 2005). Furthermore, this policy is suitable for dynamic problems

where an agent should continuously explore to then adapt to any changes in the sys-

tem (Pavlidis et al., 2010). In fact,ε-greedy methods for exploration are commonly

used across many sequential decision making and optimisation problems (Neumann

et al., 2007; Shani et al., 2005; Sutton and Barto, 1998) and we study this policy in

more detail throughout this thesis.

A natural variant of theε-greedy policy is anε-first policy (Even-Dar et al.,

2002), which performs all exploration at the beginning of the problem. Specifically,

in a game of lengthT , the agent explores randomly for the firstεT iterations and

then selects greedily for the remaining(1− ε)T iterations. This policy ensures that

all exploration is performed at the beginning when the agent has the highest levels

of uncertainty regarding the expected rewards of each action (in a static problem).

In fact, for the same value ofε, anε-first policy will on average perform better than

anε-greedy policy in a static problem, as shown empirically in Vermorel and Mohri

(2005). This is because the benefits of exploration, through increased learning, are

experienced over more iterations (as the exploration is performed earlier) whilst

the short-term costs of exploration are the same in both cases. In other words, the

“greedy” part is performed better using anε-first policy, as the agent has a better

idea of which action is optimal. In fact, this policy was found to perform best in
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the empirical evaluation by Vermorel and Mohri (2005). Anε-first policy however,

requires knowledge of the game-lengthT (ε-greedy does not), which is not always

available in certain applications. Furthermore, this policy is not usually suitable in

a dynamic reward setting where exploration should not be performed all at once.

Another variant, which combines the above approaches, is anε-decreasingpol-

icy (Auer et al., 2002), where the agent explores with probabilitymin
(
1, ε0

t

)
at time

t (whereε0 ≥ 0) and otherwise selects greedily. Alternatively, in a variant called

GreedyMix(Cesa-Bianchi and Fischer, 1998), the exploration is performed with

probabilitymin
(
1, log(t)ε0

t

)
. In both these cases, the rate of exploration decreases

exponentially to zero, making these policies particularly suitable for problems that

are static and where the game-lengthT is unknown (such that anε-first policy is un-

suitable). Moreover, for certain classes of problems, these policies can be shown to

have optimal asymptotic properties and strong finite-time performance (Auer et al.,

2002).

The ε-greedy,ε-first andε-decreasing policies are sometimes collectively re-

ferred to asε-greedy policies (Sutton and Barto, 1998), but to avoid ambiguity, in

this thesis we refer to them separately with the above given names. In other lit-

erature, these policies are sometimes referred to assemi-uniformpolicies as the

agent forms a binary distinction between greedy exploitation and random (uniform)

exploration (Vermorel and Mohri, 2005). We consider these approaches to be the

simplest but most fundamental exploration policies in sequential decision making,

and pay particular attention to theε-greedy andε-first policies in this thesis, not

least because they have been found to perform consistently well across a range of

empirical studies (Auer et al., 2002; Pavlidis et al., 2008b,a; Sutton and Barto, 1998;

Vermorel and Mohri, 2005). Note thatε-first performs best in static problems, but

ε-greedy has particular application in a dynamic reward setting (see Chapter 5), or

in certain multi-agent settings (Chapter 7). The main weakness of these policies,

however, is that exploration is performed randomly which means that actions that

are known to be suboptimal will continue to be selected for exploration. We com-

pare and contrastε-greedy and its variants against other policies in more detail in

Section 2.3.
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2.2.2 SoftMax and Probability Matching Variants

An alternative approach to randomly exploring actions is to weight the probability

of selecting each action such that actions that are expected to perform better are

selected with higher probability. This concept was first introduced in Luce (1959),

where aSoftMaxpolicy was proposed. Each actionai is chosen with probability

pi = er̄i/τ/
∑k

j=1 er̄j/τ , wherer̄i is the mean reward of this action thus far. The pa-

rameterτ > 0 determines the degree of exploration performed where large values

correspond to more equal weighting between the actions and hence more explo-

ration. Conversely, asτ → 0 the policy approaches a greedy policy. For a suitable

value ofτ , this policy ensures that actions that are unlikely to be optimal are rarely

selected. The overall degree of exploration, however, does not change over time,

which yields poor asymptotic properties. For these reasons, the temperature pa-

rameter is sometimes decreased over time at rate1/t or log(t)/t (in a similar vein

to ε-decreasing) – the latter case sometimes being referred to as aSoftMixpolicy

(Cesa-Bianchi and Fischer, 1998), which was shown to be the theoretically appro-

priate choice for certain classes of problems in Singh et al. (2000). All of these

weighted probability exploration policies are sometimes collectively referred to as

probability matchingpolicies (Vermorel and Mohri, 2005).

Another popular method, particularly in the non-stochastic adversarial frame-

work, is theExp3 policy (Exponential weight algorithm for exploration and ex-

ploitation), designed in (Auer et al., 2003). In this instance, the probability of se-

lecting each action at timet is weighted by:

pi(t) = (1− γ)
wi(t)

∑k
j=1 wj(t)

+
γ

k
, (2.5)

wherewi(t + 1) = wi(t) exp
(
γ ri(t)

pi(t)k

)
(updated only if actionai is selected). The

parameterγ ∈ [0, 1] determines the degree of exploration, whereγ = 1 yields

pure random exploration. This policy ensures that actions with high rewards lead to

higher probability weightings – where the increase in weighting is largest if an ac-

tion with previously low probability weighting (and hence low prior rewards) then
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observes a high reward. Numerous variants are also proposed, including decreasing

γ over time to achieve asymptotic optimality – but these policies are beyond the

scope of this thesis, particularly as they are designed for the non-stochastic adver-

sarial framework.

In this thesis, we choose not to focus on SoftMax policies and their variants as

they do not perform well in finite time (Vermorel and Mohri, 2005), and are mainly

designed for their guaranteed asymptotic properties (in some specific problems).

For example, Exp3 policies are only asymptotically optimal for rewards bounded

in the interval[0, 1]. Moreover, such methods have not always been extended to

include side information or dynamics. This is discussed further in Section 2.3.

2.2.3 Interval Estimation and UCB

Another approach to exploration is to be “optimistic in the face of uncertainty”

(a term introduced in Kaelbling (1993)) and select actions using a combination

of expected reward values and the uncertainty of the reward estimates – such that

actions with high uncertainty are selected more often. This approach is sometimes

referred to as using “exploration bonuses” (Dearden, 2000; Meuleau and Bourgine,

1999). This idea was first introduced in Kaelbling (1993) where the upper bound

of the 100(1 − β)% confidence interval is calculated for the expected reward of

each action, and then the action with the highest value (sometimes referred to as an

“optimistic reward estimate”) is selected. This action selection policy subsequently

became known as aninterval estimationpolicy. Higherβ values correspond to

less exploration and asβ → 1, action selection approaches that of a greedy policy.

The rewards are typically assumed to follow a normal distribution such that the

confidence bounds can be easily estimated on-line (Sutton and Barto, 1998). This

policy has also been extended to the covariates setting in Pavlidis et al. (2008b) for

a multivariate normal covariate and to dynamic problems in Li et al. (2010) for a

web-advertising application (where user preferences change over time).

A further enhanced approach, which does not require distributional assump-

tions regarding the reward processes, was developed in Auer et al. (2002). Specif-
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ically, severalUCB (Upper Confidence Bound) policies were designed for rewards

bounded in the interval[0, 1] (and an additional policy for normally distributed re-

wards). These policies were designed to achieve bounded regret in finite time (as

well as having optimal asymptotic properties). In more detail, the first proposed

policy UCB1, selects the actionai that maximises:

r̄i +

√
2lnt

ni

, (2.6)

whereni is the number of times that actionai has been selected thus far. This

parameter free method has optimal asymptotic properties for rewards in the interval

[0, 1] but was found to perform poorly in finite-time problems. To improve on finite-

time performance however, Aueret al. modify this policy and instead select the

action that maximises:

r̄i +

√
lnt

ni

min

(
1

4
, Vi(ni)

)

, (2.7)

where,

Vi(ni) =

(
1

ni

ni∑

τ=1

r2
i (ti(τ))

)

− r̄2
i +

√
2lnt

ni

, (2.8)

whereti is the sequence of time-steps for which actionai has been selected. This

policy, referred to asUCB1-Tuned, performs well with rewards bounded in the

interval [0, 1], but the authors are not able to provide any finite time or asymptotic

performance bounds. Aueret al. then propose a policyUCB2 which performs

well in finite-time analysis and can be bounded. This policy chooses an action and

selects this for an “epoch” (an interval in time). The action selected is the one that

maximises:

r̄i +

√
(1 + κ)ln (et/d(1 + κ)eie)

2d(1 + κ)eie
, (2.9)

and is selected exactlyd(1 + κ)ei+1e+ d(1 + κ)eie times, whereei is the number of
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epochs selected with actioni thus far (ande is Euler’s number). We note that this

policy introduces a parameter0 < κ < 1, which must be seta priori and affects the

rate of exploration. Finally, Aueret al. construct a policy for normally distributed

rewards,UCB1-Normal, which selects the action that maximises:

r̄i +

√
16 (
∑ni

τ=1 r2
i (ti(τ))− nir̄2

i ) ln(t− 1)

ni(ni − 1)
. (2.10)

All of these policies were found to generally perform worse than a well-tuned

ε-decreasing policy in an empirical evaluation. Although, it is noted that the perfor-

mance ofε-decreasing degrades rapidly with a poorly tunedε – the performance of

UCB2 for example, is much less sensitive to theκ parameter. Nevertheless, all UCB

policies are designed to work with specific reward structures and cannot be easily

extended to include covariates or dynamics. We therefore do not use these policies

within our algorithms in this thesis but nevertheless refer to them frequently and

compare performance in relevant empirical studies in Chapter 4.

Finally, we note that the UCB approach of Auer et al. (2002) has also been

extended to other sequential decision making problems not considered in this thesis

such as Markov Decision Processes (MDPs) and game-tree searches (used to solve

games such as chess, Go and backgammon) in Kocsis and Szepesvári (2006) where

a UCT (Upper Confidence bounds for Trees) algorithm was constructed, based on

Monte Carlo planning.

2.2.4 Gittins Indices

An optimal policy has been found for a discounted stochastic bandit problem in

the classic paper by Gittins (1979). The framework assumes Bernoulli distributed

rewards for each actionai, with unknown success probabilityθi. At time t = 0,

the agent has a prior probability densityθi ∼ beta(αi(0), βi(0)). The posterior

distribution for θi at time t is therefore also a beta distribution with parameters

(αi(t), βi(t)) = (αi(0) + si, βi(0) + ni − si), wheresi is the number of successes

(rewards of 1) received from actionai up to timet. At each time-stept the agent
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calculates an index for each actionai which is given by:

νT (αi(t), βi(t), a) = sup
τ≤T

Rτ (αi(t), βi(t), a)
∑τ−1

t=0 at
, (2.11)

for a discount factor of0 < a < 1, where

Rτ (αi(t), βi(t), a) = E
τ−1∑

t=0

atri(t), (2.12)

is the expected total discounted reward fromτ trials on actionai, which can be cal-

culated iteratively forτ = 1, 2, . . . , by calculating conditional expectations of the

beta posterior distributions (see Gittins (1979) for the full algorithm). The optimal

value ofτ is referred to as the “optimal stopping time”.

The action with the highestνT (αi(t), βi(t), a) index value is selected at each

iteration. These indices were referred to asdynamic allocation indices(DAIs) in

Gittins’ papers but are now commonly known as theGittins indices. The expected

probability of success for each actionai at timet is the mean of the beta(αi(t), βi(t))

posterior distributions, namelyαi(t)/(αi(t) + βi(t)), which serve as minimum

bounds for the Gittins indices (as they are equal toνT=1(αi(t), βi(t), a)). For small

values ofa (i.e. a large discount factor), the Gittins indices will be close to these

values. They will however be considerably larger for high values ofa where the

optimal stopping time is large.

Computation of the Gittins indices is difficult, particularly as the optimal stop-

ping timeτ becomes large. For these reasons Gittins and Jones (1979) provides

pre-computed index values for a grid ofα andβ integer values ranging from 1 to

10 – this however is with a 0.75 discount factor, as higher discount values require

longer stopping times. In fact, asa→ 1 the indices all tend towards 1 and precisely

determining the optimal action can require extremely heavy computation. In addi-

tion, large values ofτ requireα andβ values far greater than 10. The use of a beta

prior for Bernoulli rewards is also significant, as this prior is conjugate and hence al-

lows an analytic representation of the posterior and avoids numerical approximation

techniques. The Gittins indices were also extended to normally distributed rewards
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with unknown meanμi but with known varianceσ2
i . The prior distribution forμi

is also normal and hence conjugate, but the indices are even more complicated to

calculate (see Section 9 in Gittins (1979) for more details).

The optimality of the Gittins indices for the discounted bandit problem has been

proved several times, see for example (Ishikida and Varaiya, 1994; Tsitsiklis, 1994;

Weber, 1992; Whittle, 1980). Gittins indices have also been shown to be optimal

for several variations of the multi-armed bandit problem, for example with arm ac-

quiring bandits (Whittle, 1981) and restless bandits (Whittle, 1988); but have also

been shown to not exist or be suboptimal for other variations, such as bandits with

switching costs (Banks and Sundaram, 1994; Van Oyen et al., 1992) and bandits

with multiple plays (Ishikida, 1992; Pandelis and Teneketzis, 1999). Analytical rep-

resentations of Gittins indices in bandit problems are typically unattainable, how-

ever such solutions were found in a continuous time bandit where rewards evolve

according to a Brownian motion (Karatzas, 1984), with unknown drift but known

volatility.

The Gittins indices do not converge in the undiscounted setting and have only

been computed for certain reward distributions and parameter priors. Given this,

and the fact that no extensions to covariates or dynamic rewards exist, we do not

consider the Gittins indices in this thesis. Nevertheless, our novel algorithm for

the bandit problem has similarities with the Gittins approach, in that we attempt to

iteratively calculate the long-term value of selecting each action individually. We

discuss this analogy in more detail in Chapter 4.

In addition to Gittins indices, there are other Bayesian approaches which are

much less computationally demanding. Thompson sampling (Thompson, 1933)

samples a value from the posterior distribution for the expected reward of each

action and then selects the action with the highest sampled value. Although this

method was originally constructed for Bernoulli bandits, and is focused towards

achieving desirable asymptotic properties, Thompson sampling has been imple-

mented by Graepel et al. (2010) for web advertising with Microsoft’s Bing search

engine. Bayesian Reinforcement Learning (Strens, 2000) uses a similar approach

of estimating the posterior distribution of the unknown parameters, but then uses
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these distributions to sample a hypothesis of the decision problem faced. The op-

timal action can then be approximated by optimising over this hypothesis using

techniques such as Q-learning (see Section 2.2.6). These Bayesian sampling meth-

ods are useful but not considered further in this thesis as they are not designed for

the finite-time or dynamic problems that we consider in this thesis – but more for

guaranteeing convergence to the optimal action in an infinite-time static decision

making problem.

2.2.5 POKER

The “Price Of Knowledge and Estimated Reward” (POKER) algorithm (Vermorel

and Mohri, 2005) uses similar principles to interval estimation and UCB methods

in that optimistic estimates are given to under-explored actions. At each time-step

t, an indexpi is calculated for each action:

pi = r̄i + δμPr[μi ≥ r̄∗ + δμ](T − t), (2.13)

whereμi is the unknown true mean reward of actionai, r̄∗ is the highest observed

mean reward of all actions andδμ is the expected reward mean improvement. The

action with the highest index valuepi is selected.δμ is multiplied by the probability

of a reward improvement and the horizonT − t. This can be collectively interpreted

as an estimate of the “knowledge acquired” if actionai is selected.δμ is not known

to the agent and is estimated byδμ = (r̄i1− r̄i√q
)/
√

q, wherer̄i1 ≥ . . . ≥ r̄iq are the

ordered reward means of all theq actions selected thus far. Note thatq can be less

than the total number of actionsk as this paper studies scenarios whereT < k and

not every action is selected during initialisation (as discussed on page 30 earlier).

The probability of a reward improvementPr[μi ≥ r̄∗ + δμ] is also approximated

by:

Φr̄i,
σ̄i√
ni

(r̄i − r̄∗ − δμ) =

∫ ∞

r̄∗+δμ

N

(

x, r̄i,
σ̄i
√

ni

)

dx. (2.14)

This approximation assumes that the unknown parameterμi is normally distributed
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and centred around the mean estimater̄i with standard deviation proportional to

the inverse square root of the number of times actionai has been selected. This

approximation is exact if the rewards themselves follow a normal distribution and

otherwise converges to the true distribution (asni increases) under the central limit

theorem. There are no finite-time theoretical guarantees on the POKER algorithm

(in fact we show in Chapter 4 that the algorithm can also perform poorly in simu-

lation studies). The authors do however provide a proof showing that the algorithm

is zero-regret asymptotically, under certain assumptions regarding the reward gen-

erating mechanism.

The POKER algorithm is in fact intrinsically an on-line algorithm, with no fixed

exploration parameter, and is therefore an alternative approach to the work pre-

sented in Chapter 4, where we develop methods for controlling exploration on-line.

This algorithm, however, has no natural extension to incorporate side information

(or dynamics), and hence cannot be generalised to the bandit with covariates prob-

lem. Furthermore, the choice ofδμ is not a principled approach, and changing this

value will scale the amount of exploration performed accordingly (in the same way

thatβ controls the degree of optimism in the interval estimation policy). The choice

is motivated by the authors from the fact that it performs well empirically and is

suitable for problems with a large number of actions. Nevertheless, despite these

restrictions, we include the POKER algorithm in various simulations as a bench-

mark for our algorithms, in the standard bandit problem with no side information.

2.2.6 Reinforcement Learning

Several other policies and algorithms exist for balancing the exploration-exploitation

trade-off in sequential decision making and bandit problems. Many of these are

only for specially designed frameworks that are not relevant to this thesis, but some

are general enough to encompass a wide range of sequential decision making prob-

lems. In this section we give an overview of these policies/algorithms, which are

all reinforcement learning type approaches.

A popular reinforcement learning approach is to useQ-learning(Watkins, 1989)
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to learn the expected rewards from each action over time, such that:

Qi(t) = Qi(t− 1) + λ(ri(t)−Qi(t− 1)), (2.15)

whereQi(t) are referred to as theQ-valuesfor each action and0 < λ ≤ 1 is

the learning rate. Note that this is a simplified version of the full Q-learning algo-

rithm which can be used in settings with multiple states (such as those considered

in MDPs, see Section 2.1.6), but this extension is beyond the scope of this the-

sis. Returning to the single-state formulation given in Equation (2.15), if we set

λ = 1/(ni) then we recoverQi(t) = r̄i(t), which is the average reward from action

ai thus far. Settingλ to be a constant value allows the Q-values to be an adaptive

estimate of the mean reward of each action, which is useful for dynamic systems.

Selecting the action with the highest Q-value, however, can yield similar results to

that of a greedy policy, as there is no explicit action exploration. This is unless Q-

learning is combined with usingoptimistic initial values(Sutton and Barto, 1998),

i.e. setting high values forQi(0). This causes all actions to be explored at the be-

ginning until their Q-values converge to their true values – this will however only

encourage exploration at the beginning of a game and is therefore only suitable for

exploration in a static system. Furthermore, there are two obvious issues with set-

ting these optimistic initial values. First, the agent may not know what rewards to

expect and hence does not know what range of initial values are optimistic and sec-

ondly, even with this knowledge, the degree of optimism influences the total amount

of exploration performed before converging to a particular action. This algorithm

is consequently more useful for guaranteeing asymptotic convergence, rather than

maximising finite-time performance. We note that the multi-agent extension of this

algorithm, known as R-Max, was constructed in Brafman and Tennenholtz (2003).

Essentially, R-Max initialises optimistically by allocating each state and joint ac-

tion the maximum possible reward (which is assumed to be bounded and known).

This is covered in more detail in Section 6.2 where we provide a more detailed

background on multi-agent sequential decision making.

Alternative reinforcement learning approaches includereinforcement compar-
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ison methods (Sutton, 1984) andpursuit methods (Thathachar and Sastry, 1985).

The former adjusts the probability of selecting an action dependent on whether

an observed reward is less than or greater than somereference reward, such that

high rewards increase the probability (and vice-versa). A natural choice for the

reference reward is the mean from past observations (although optimistic Q-values

could also be used). As an example, the probabilitypi of selecting each action can

be determined using a SoftMax policypi(t) = eτi(t)/
∑k

j=1 eτj(t) whereτi(t + 1) =

τi(t) + β(ri(t) − Qi(t)). This algorithm was shown to work well in finite time

(Sutton and Barto, 1998) with optimistic Q-values for suitably tuned parameters.

Although we note that the inclusion of the step-size parameterβ (together with the

Q-learning step-sizeλ and setting the optimistic initial values) over-parameterises

the problem, and complicates the implementation of this algorithm in many practi-

cal domains.

Pursuit methods are similar, but rather than changing the probability of selecting

each action dependent on their relative performance, the algorithm actively “pur-

sues” the greedy action. Specifically, the probability of selecting the greedy action

pi∗(t) is adjusted bypi∗(t + 1) = pi∗(t) + β(1 − pi∗(t)) and all other actions are

adjusted bypi(t + 1) = pi(t)− βpi(t), which ensures the probabilities always sum

to 1. The initial probabilitiespi(0) are usually set to be1/k. This algorithm is more

suitable than reinforcement comparison for the problems encountered in this the-

sis, as there is only one parameter that controls exploration, but we do not consider

this algorithm any further as it does not extend to the more enhanced frameworks

considered in this thesis.
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2.3 Evaluation and Comparison

In Section 2.1 we outlined the key variations between the different bandit frame-

works studied in the existing literature and in Section 2.2 we highlighted the key

policies and algorithms constructed for these various frameworks. In this section

we bring this work together and analyse in detail the robustness and flexibility of

each policy and algorithm in the context of how well they generalise to different

types of bandit problems. To keep this evaluation succinct and easy to follow, we

detail this analysis in Table 2.1, where a grid of different policies/algorithms and

bandit frameworks are cross-compared. The table shows that theε-greedy policy1

is the most flexible: the policy is computationally efficient, can incorporate covari-

ates, does not require knowledge ofT , does not require bounded rewards or any

distributional assumptions, and can be applied to dynamic reward environments.

The other policies and algorithms have significant shortfalls – most cannot be

extended to dynamics and covariates and several require bounded rewards. Despite

these increased requirements, the simpler and more generalε-greedy approach (and

its variants) have been consistently found to perform best across a range of empiri-

cal studies (Auer et al., 2002; Pavlidis et al., 2008b,a; Vermorel and Mohri, 2005),

which is a significant finding that warrants further investigation. Furthermore, there

are two obvious shortfalls of theε-greedy policy: first, the requirement of an ex-

ploration parameter (in contrast to POKER and UCB1) and secondly, the fact that

actions that are sure to be suboptimal are repeatedly selected through random ex-

ploration. The first of these issues is particularly important. In many applications,

setting an exploration parameter optimallya priori is not feasible and, as noted in

Auer et al. (2002), performance can degrade rapidly with a poorly tunedε.

As mentioned earlier, theε-first policy will outperform anε-greedy policy in

static problems. Despite the requirement of knowing the length of the gameT ,

we also investigate this policy (together withε-greedy) in much more detail in the

chapters that follow. In addition, we include the POKER and UCB algorithms as

benchmarks for the bandit with no covariates problem.

1and of course the greedy policy, which is a special case ofε-greedy.
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2.4 Summary

In this chapter we have reviewed the multi-armed bandit problem and the various

policies and algorithms that have been constructed for balancing the exploration-

exploitation trade-off. These are the state-of-the-art methods and have been applied

to many sequential decision making problems outside of the bandit framework.

Nevertheless, this is the first comprehensive review that encompasses the full range

of bandit problem literature and the first attempt to analyse the applicability of

various policies and algorithms across the various types of bandit problems.

Our critical analysis has shown that theε-greedy andε-first policies are the

best-performing and most flexible approaches to exploration-exploitation, partic-

ularly for the important generalisations of the bandit framework that include side

information and dynamic rewards. These policies have significant shortfalls though,

such as the requirement for an exploration parameter that needs to be seta priori.

Given this, in this thesis we construct a novel on-line algorithm,ε-ADAPT, which

removes the need for an exploration parameter and learns which action to explore

over time – we extend this algorithm to both covariates (Chapter 4) and dynamics

(Chapter 5), such thatε-ADAPT is more generalisable than the UCB and POKER

algorithms. In addition, in the next chapter we conduct a theoretical analysis of

a basic one-armed problem to demonstrate how we can find the optimalε values

off-line for bothε-greedy andε-first.
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Chapter 3

Optimal Exploration Rates in Bandit

Problems

In the previous chapter we performed a critical analysis of the existing policies and

algorithms for various multi-armed bandit problems. We found that theε-greedy

policy is the simplest and most robust approach across the range of bandit frame-

works that have been considered. Furthermore, this policy (together withε-first)

has been found to perform best in a number of empirical studies, however this is

only for a well chosen value ofε. Indeed, performance can degrade rapidly if this

parameter is chosen incorrectly.

For these reasons, in this chapter we theoretically examine the performance of

the ε-greedy andε-first policies for a simple bandit framework, namely the one-

armed bandit with covariates problem (with a one-dimensional covariate). We

investigate this framework as it is the most basic formulation of the exploration-

exploitation trade-off, where there is only one action to explore and one covariate

value to consider. The contributions of this chapter therefore serve as an important

first step towards theoretically finding optimal parameters off-line and also under-

standing how exploration-exploitation needs to be balanced in finite-time problems.

Furthermore, we use these theoretical findings to construct algorithms for adapting

exploration on-line which removes the need for ana priori fixed exploration pa-

rameter.
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In more detail, we present a novel approach for reasoning about the expected

reward of action selection policies, by modelling the distribution of estimated pa-

rameters in the reward function. This helps us find theprobability of error; that is,

the probability that the agent selects the action with lower expected reward when

trying to select the best action, given a specific policy. This measure is important

because it helps us find the expected reward when the agent is selecting greedily be-

tween actions. The probability of error is therefore crucial to finding the expected

reward (in finite time) of any policy or algorithm that exploits the covariate values

to select between actions, in this case theε-greedy andε-first policies.

In a one-armed bandit problem, there is only one “unknown action”. Explo-

rative policies will select this action more often as this helps the agent to learn

about the expected rewards more quickly, thus reducing the probability of error –

this is thebenefit of exploration. Conversely, such policies have an attributedcost of

exploration, as the agent might be selecting the action with lower expected instan-

taneous reward. In the one-dimensional covariate setting considered in this chapter,

we can explicitly calculate this benefit and cost of exploration and hence capture

the exploration-exploitation trade-off in the same currency. We can then find the

expected cumulative reward ofε-greedy andε-first for finite-time problems, and

hence reason about their optimal tuning.

In this chapter we prove that in the one-dimensional setting, the expected reward

of the ε-greedy policy is maximised byε = 0 irrespective of the length of the

game (T ) and all other parameters. This means that, on average, a greedy policy

will outperform anyε-greedy policy in finite time. This result is in line with the

infinite-time statements proved in Woodroofe (1979) and Sarkar (1991), where it

was proved that the greedy policy is asymptotically optimal (for a one-dimensional

covariate using slightly more generalised reward functions). Moreover, contrary

to the findings of finite-time analyses of multi-armed bandits (Auer et al., 2002;

Vermorel and Mohri, 2005; Pavlidis et al., 2008b), we have proved the interesting

result that theε-greedy policy (withε > 0) is a suboptimal policy for the one-armed

bandit problem considered here. We discuss the implications of these findings more

throughout this thesis.
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For theε-first policy, however, we show that the optimal value ofε will be

non-zero for certain game-lengthsT . In particular, we find the optimal value ofε

numerically and present results to show its dependence onT . The significance of

this result, is that a well-tunedε-first policy will, on average, outperform the greedy

policy. This motivates the construction of an on-line algorithm that can learn the

optimal rate of exploration over time – we construct such an algorithm for the one-

armed problem considered here using the theoretical properties ofε-first. We then

use the ideas from this on-line approach to construct an algorithm for adapting

exploration on-line for more general multi-armed bandit problems which can be

used with high-dimensional covariates (Chapter 4) and also with dynamic rewards

(Chapter 5).

This chapter is structured as follows. In Section 3.1 we introduce the one-armed

bandit with covariates framework. In Section 3.2 we model the distribution of esti-

mated parameters in the reward function and use this to find the probability of error

over time. In Section 3.3 we derive the expected reward of theε-greedy policy and

prove that this is maximised withε = 0. In Section 3.4 we derive the expected

reward of theε-first policy and show numerically that non-zero values ofε can be

optimal. Finally, in Section 3.5, we use these theoretical findings to construct an

on-line algorithm that removes the need for ana priori fixed exploration parameter.

Summary remarks follow in Section 3.6.

3.1 The One-Armed Bandit with Covariates Framework

An agent is faced with a one-armed bandit problem and must choose at timet =

1, . . . , T between actiona1 with unknown expected reward and actiona2 with

known expected reward. The agent only receives a reward from the action that

is selected, which is a function of an observed covariate at timet denotedx(t).

We consider the linear reward structure used in Ginebra and Clayton (1995), Yang

and Zhu (2002) and Pavlidis et al. (2008a,b) (see Equation (2.3) in Section 2.1.4),
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simplified to a one-dimensional covariate, such that:

r1(t) = αx(t) + η(t),

r2(t) = βx(t) + ω(t), (3.1)

whereη(t) and ω(t) are i.i.d. noise terms drawn fromN (0, σ2
η) andN (0, σ2

ω),

respectively. The coefficientβ is known to the agenta priori, but α is unknown

and must be estimated from observations. The covariatex(t) is an i.i.d. draw

from N (0, σ2
x) and the agent must then either select actiona1 and receive reward

r(t) = r1(t) or select actiona2 and receive rewardr(t) = r2(t). The objective is

for the agent to maximise the cumulative rewardR(T ) =
∑T

t=1 r(t). The reward

generating mechanism is simple, using a normal covariate centred at zero, but al-

lows for a clear analysis of the exploration-exploitation trade-off – as exploration

is only needed for the agent to learn one parameter. We note that the initialisation

in this framework is for the agent to select the unknown actiona1 once, in order to

receive an estimate of its expected average reward.

3.2 The Probability of Error

The agent must learn the value ofα in Equation (3.1) over time. Suppose the agent

has selected actiona1 n times prior to timet (wheren ∈ {1, . . . , t − 1}) and these

selections occurred at time-stepst1, . . . , tn. α is estimated usinĝαn, the solution of

the linear least squares equation:

α̂n =

∑n
j=1 x(tj)r1(tj)
∑n

j=1 x(tj)2
. (3.2)

The parameter estimatêαn has a distribution that is centred atα and dependent on

the number of pullsn and the distribution ofx(t) andη(t). As η(t) is i.i.d. and
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normally distributed it follows that (see Daly et al. (1995, p.407)):

α̂n ∼ N

(

α,
σ2

η∑n
j=1 x(tj)2

)

⇒ (α̂n − α)

√
nσ2

x

σ2
η

∼
N (0, 1)

√
∑n

j=1

(
x(tj)2/

√
σ2

x

)
/n

.

If the agent uses anε-greedy orε-first policy, then the distribution of covariates

x(tj) used for estimatingα does not follow aN (0, σ2
x) distribution (unlessε = 1

and actiona1 is always selected) as the agent only selectsa1 for certain regions of

the covariate space. Nevertheless, actiona1 is selected based only on whetherx(t)

is positive or negative and hence the distribution ofx(tj)
2 is the same asx(t)2, i.e.:

∑n
j=1 x(tj)

2/
√

σ2
x ∼ χ2

n – a chi-square distribution withn degrees of freedom. In

addition, this chi-squared distribution is independent of the normal distribution in

the above equation, as the magnitude of the observed covariates and the observation

errors are independent of each other (which will not always be the case in other

settings). It then follows from the definition of thet-distribution that:

(α̂n − α)

√
nσ2

x

σ2
η

∼ tn, (3.3)

wheretn is thet-distribution withn degrees of freedom. From Equation (3.3) we

can find the probability of error aftern pulls, that is the probability that the agent

selects the wrong action when being greedy. Specifically this occurs ifα̂n > β

whenα < β and vice-versa. We therefore define this probability as:

F (n) =

{
Pr(α̂n < β) whenα > β;

Pr(α̂n > β) whenα < β
(3.4)
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First considerPr(α̂n < β) whenα > β. It follows from Equation (3.3) that:

Pr(α̂n < β) = Pr

(√
nσ2

x

σ2
η

(α̂n − α) <

√
nσ2

x

σ2
η

(β − α)

)

= T

(

(β − α)

√
nσ2

x

σ2
η

, n

)

, (3.5)

whereT (x, n) is thet-distribution cumulative density function at ordinatex, with

n degrees of freedom. By consideringPr(α̂n > β) whenα < β in the same way, it

follows from Equation (3.4) and Equation (3.5) that:

F (n) = T

(

−|α− β|

√
nσ2

x

σ2
η

, n

)

, (3.6)

for all values ofα andβ. The probability of error,F (n), has the following four

properties:

1. F (n) is (strictly) bounded above by 0.5.

2. F (n) decreases asn increases, as both the ordinate becomes more negative

and the degrees of freedom increase (reducing the weight in the tails).F (n)

is also a convex sequence inn (proved later).

3. Increasing the difference betweenα andβ reduces the value ofF (n).

4. The ratioσ2
x/σ

2
η can be interpreted as a ‘signal to noise ratio’ – larger values

of this ratio reduceF (n).

Property 1 ensures that the agent can do no worse than guessing between the ac-

tions. Notice however, that asσ2
η → ∞, F (n) → 0.5. Figure 3.1 shows the

probability of error overn for several values ofσ2
x/σ

2
η where properties 1, 2 and 4

are demonstrated. Note that we use the reward coefficientsα = 0.5 andβ = 0.3

for all figures and simulations in this chapter and that in all figures the displayed

curves are not continuous and can only be identified at integer values ofn or t.



Chapter 3. Optimal Exploration Rates in Bandit Problems 53

0 5 10 15 20 25 30 35 40 45 50
0

0.1

0.2

0.3

0.4

0.5

 

 

n

F
(n

)

σ2
x
/σ2

η = 5

σ2
x
/σ2

η = 1

σ2
x
/σ2

η = 0.2

Figure 3.1: The sequenceF (n) from Equation (3.6) for various values ofσ2
x/σ

2
η.

3.3 Theε-greedy Policy

The ε-greedy policy dictates that the agent selects actiona1 with probability ε but

selects the action with highest expected reward with probability1− ε. In the previ-

ous section, we found the probability of error givenn pulls of actiona1 by time t.

In fact, we can find the distribution ofn givent by the symmetry of the problem, as

x(t) is centrally distributed and therefore actiona1 is pulled50% of the time when

the agent is greedy. One pull of actiona1 is guaranteed at timet = 1 (for initiali-

sation), so the probability of having pulled the actionn times by timet, B(n, t, ε),

follows a binomial distribution:

B(n, t, ε) =

(
t− 2

n− 1

)(
1

2
(1 + ε)

)n−1(
1

2
(1− ε)

)t−n−1

, (3.7)

wheret ≥ 2 andn ∈ {1, . . . , t − 1}. This probability is the probability that the

action is selectedn − 1 times from thet − 2 opportunities whilst usingε-greedy

(recall that initialisation occurs at the first time-step and the decision at timet has

not been made yet). The probability of selection at each round is(1 + ε)/2 as

1/2 of the pulls are guaranteed usingε-greedy and a furtherε/2 throughε-greedy

exploration.

The distribution of̂αn aftern pulls of actiona1 using theε-greedy policy is as



3.3 Theε-greedy Policy 54

given in Equation (3.3). The distribution ofn can then be used to find the probability

of error at timet of theε-greedy policy:

Fεg(t, ε) =
t−1∑

n=1

B(n, t, ε)F (n). (3.8)

As F (n) < 0.5 and
∑t−1

n=1 B(n, t, ε) = 1 it follows thatFεg(t, ε) < 0.5 (for t ≥ 2,

note thatFεg(1, ε) = 0.5∀ε). It then immediately follows that all other properties

of the probability of error mentioned in Section 3.2 still hold, andFεg(t, ε) has the

additional property that it decreases asε increases, for a fixedt. Figure 3.2 shows

the sequenceFεg(t, ε) for a selection ofε values fromt = 1, . . . , 50, where this

property is demonstrated.
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Figure 3.2: The sequenceFεg(t, ε) from Equation (3.8) for variousε (σ2
x/σ

2
η = 1).

The expected instantaneous reward of theε-greedy policy at timet, rεg(t, ε),

can now be found by considering the cases when the agent explores and exploits

separately:

rεg(t, ε) = εE(r1(t)) + (1− ε)rg(t, ε), (3.9)

whererg(t, ε) is the expected instantaneous reward when the agent is greedy. It

follows that asx(t) ∼ N (0, σ2
x):

E(r1(t)) =

∫ ∞

−∞
αx(t)

1
√

2πσ2
x

exp

(

−
x(t)2

2σ2
x

)

dx(t) = 0. (3.10)
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From the probability of errorFεg(t, ε) we can find the expected instantaneous

reward when the agent is greedy, by separately considering the expected instanta-

neous reward when the correct/incorrect action is selected, dependent on the prob-

ability of error (see Appendix A.1). It follows that:

rg(t, ε) = |α− β|

√
σ2

x

2π
(1− 2Fεg(t, ε)) , (3.11)

which yields the expected instantaneous reward of theε-greedy policy:

rεg(t, ε) = (1− ε) |α− β|

√
σ2

x

2π
(1− 2Fεg(t, ε)) . (3.12)

This expected reward is greater than zero (fort ≥ 2) asFεg(t, ε) < 0.5, so the

policy performs better than guessing between the actions for all values ofε (except

ε = 1). Larger values ofε reduce the probability of errorFεg(t, ε), which increases

the expected reward – this is thebenefit of exploration. Conversely, larger values of

ε reduce the(1− ε) term in the expected reward and this is thecost of exploration.

Despite this exploration-exploitation trade-off, the expected instantaneous reward

in Equation (3.12) is maximised byε = 0 for all values oft > 0, α, β andσ2
x/σ

2
η,

which we prove in Theorem 3.1 below.

Theorem 3.1 rεg(t, 0) > rεg(t, ε) for all 0 < ε ≤ 1 and for all t ∈ Z+\{1},

α, β ∈ R andσ2
x, σ

2
η ∈ R

+.

Proof We prove Theorem 3.1 by contradiction. First consider the caset ≥ 3.

Suppose there exists0 < ε ≤ 1 such that:

rεg(t, ε) ≥ rεg(t, 0) for some t ∈ Z+\{1}, α, β ∈ R, σ2
x, σ

2
η ∈ R

+. (3.13)

Substituting from Equation (3.12) and Equation (3.8), the inequality in Equation

(3.13) becomes:

t−1∑

n=1

F (n)G(n) ≥
ε

2
, (3.14)
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whereG(n) = B(n, t, 0)−(1−ε)B(n, t, ε). Notice thatF (n) < 1/2 and
∑t−1

n=1 G(n)

= ε, however it does not follow from this alone that
∑t−1

n=1 F (n)G(n) < ε/2 (by

Cauchy-Schwarz, for example), asG(n) can be negative for certain values ofn.

To proceed, the following three lemmas allow for a useful upper bound to be con-

structed on the left-hand side of Equation (3.14).

Lemma 3.1 F (n) is a convex sequence inn.

Proof From Equation (3.6) and Abramowitz and Stegun (1965),

F (n) = T
(
−c
√

n, n
)

=
1

2
Ix

(
n

2
,
1

2

)

, wherex =
n

n + (−c
√

n)2
=

1

1 + c2
,

x is a constant where0 < x < 1 asc ∈ R+. Ix(a, b) is the regularized incomplete

beta function (a, b > 0 and0 ≤ Ix ≤ 1) defined by:

Ix(a, b) =
Γ(a + b)

Γ(a)Γ(b)

∫ x

0

ta−1(1− t)b−1dt.

It therefore suffices to prove that for alla > 0,

Ix(a, 1/2) + Ix(a + 1, 1/2)

2
≥ Ix(a + 1/2, 1/2).

To prove this we use the following 4 relations found in (Abramowitz and Stegun,

1965):

Property1 Bx(a, b) =
1

a
xa

2F1(a, 1− b, a + 1; x)

Property2 2F1(a, b, c, x) =
Γ(c)

Γ(b)Γ(c− b)

∫ 1

0

tb−1(1− t)c−b−1(1− xt)−adt

Property3 2F1(a, b, c, x) =
1

(1− x)b 2F1(b, c− a, c,
x

x− 1
)

Property4 2F1(a, b, c, x) = 2F1(b, a, c, x)

where2F1(a, b, c, x) is the Gauss hypergeometric series andBx(a, b) is the non-
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regularized incomplete beta function where:

Ix(a, b) =
Bx(a, b)

B(a, b)
=

Γ(a + b)

Γ(a)Γ(b)
Bx(a, b), (3.15)

andB(a, b) is the beta function. From Properties 1 and 3:

Bx(a + 1/2, 1/2) =
xa+1/2

a + 1/2
2F1(a + 1/2, 1/2, a + 3/2; x)

=
xa+1/2

(a + 1/2)
√

1− x
2F1

(

1/2, 1, a + 3/2;
x

x− 1

)

,

similarly,

Bx(a, 1/2) =
xa

a
√

1− x
2F1

(

1/2, 1, a + 1;
x

x− 1

)

, (3.16)

Bx(a + 1, 1/2) =
xa+1

(a + 1)
√

1− x
2F1

(

1/2, 1, a + 2;
x

x− 1

)

.

Therefore from Equation (3.15), Equation (3.16) and Properties 2 and 4:

Ix(a, 1/2) =
Γ(a + 1/2)

Γ(a)Γ(1/2)
Bx(a, 1/2)

=
Γ(a + 1/2)

Γ(a)Γ(1/2)

xa

a
√

1− x
2F1

(

1/2, 1, a + 1;
x

x− 1

)

=
Γ(a + 1/2)

Γ(a)Γ(1/2)

xa

a
√

1− x
2F1

(

1, 1/2, a + 1;
x

x− 1

)

=
Γ(a + 1/2)

Γ(a)Γ(1/2)

xa

a
√

1− x

Γ(a + 1)

Γ(1/2)Γ(a + 1/2)

∫ 1

0

t−1/2(1− t)a−1/2(1− zt)−1dt

=
xa

π
√

1− x

∫ 1

0

t−1/2(1− t)a−1/2(1− zt)−1dt,

z = x
x−1

andΓ(1/2) =
√

π. Notice thatz < 0 as0 < x < 1. It follows that:

Ix(a + 1/2, 1/2) =
xa+1/2

π
√

1− x

∫ 1

0

t−1/2(1− t)a(1− zt)−1dt,

Ix(a + 1, 1/2) =
xa+1

π
√

1− x

∫ 1

0

t−1/2(1− t)a+1/2(1− zt)−1dt.
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Therefore,

Ix(a, 1/2) + Ix(a + 1, 1/2)

=
xa

π
√

1− x

∫ 1

0

t−1/2(1− t)a−1/2(1− zt)−1[1 + x(1− t)]dt

≥
xa

π
√

1− x

∫ 1

0

t−1/2(1− t)a−1/2(1− zt)−1[2
√

x(1− t)]dt = 2Ix(a + 1/2, 1/2).

This holds as1 + x(1− t) ≥ 2
√

x(1− t), for 0 < x < 1 and0 ≤ t ≤ 1. To verify,

setu = x(1− t) and square both sides:

(1 + u)2 = 1 + 2u + u2 = (1− u)2 + 4u > 4u.

The relation holds as0 < u < 1 and the proof of convexity iscomplete.

Lemma 3.2 There exists an integerq where2 ≤ q ≤ t− 1 such that:

G(n) ≥ 0 for n = 1, . . . , q

G(n) < 0 otherwise.

Proof

G(n) = bin

(

n− 1, t− 2,
1

2

)

− (1− ε)bin

(

n− 1, t− 2,
1

2
(1 + ε)

)

=

(
1

2

)t−2
(

t− 2

n− 1

)
(
1− (1 + ε)n−1(1− ε)t−n

)
.

Notice that:

G(1) =

(
1

2

)t−2 (
1− (1− ε)t−1

)
> 0, (3.17)

G(2) =

(
1

2

)t−2

(t− 2)
(
1− (1− ε2)(1− ε)t−3

)
> 0 (for t ≥ 3),

(
1

2

)t−2
(

t− 2

n− 1

)

> 0, (3.18)
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for 0 < ε ≤ 1 andn = 1, . . . , t − 1. From Equation (3.17) and Equation (3.18) it

suffices to show that the sequenceH(n) = (1− (1 + ε)n−1(1− ε)t−n) is decreas-

ing in n for n = 1, . . . , t− 1.

H(n + 1)−H(n) =
(
1− (1 + ε)n(1− ε)t−n−1

)
−
(
1− (1 + ε)n−1(1− ε)t−n

)

=
(
(1 + ε)n−1(1− ε)t−n−1

)
(−2ε) < 0,

for n = 1, ..., t − 1 and0 < ε ≤ 1. Therefore, the sequenceG(n) has all negative

terms preceded by non-negative terms. The integerq in the lemma is set to be the

last non-negative term in the sequenceG(n), where2 ≤ q ≤ t− 1.

Lemma 3.3

t−1∑

n=1

F (n)G(n) ≤
t−1∑

n=1

F ′(n)G(n), where F ′(n) =
q − n

q − 1
F (1) +

n− 1

q − 1
F (q).

Proof It follows from Lemmas 3.1 and 3.2 thatF (n) ≤ F ′(n) andG(n) ≥ 0 for

n = 1, . . . , q, therefore:

q∑

n=1

F (n)G(n) ≤
q∑

n=1

F ′(n)G(n).

It also follows from Lemmas 3.1 and 3.2 thatF (n) > F ′(n) andG(n) < 0 for

n = q + 1, . . . , t− 1, therefore:

t−1∑

n=q+1

F (n)G(n) ≤
t−1∑

n=q+1

F ′(n)G(n).

After expanding the binomial coefficients and rearranging (see Appendix A.2):

t−1∑

n=1

F ′(n)G(n) =
1

2
(2ε−ε2)F (1)+

1

2
ε2F (q)+

1

2

t− q − 1

q − 1
ε2(F (q)−F (1)). (3.19)

As 1
2

t−q−1
q−1

ε2 > 0, F (q) < F (1) andF (n) < 0.5, then the third term is negative and
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hence from Lemma 3.3 and Equation (3.19):

t−1∑

n=1

F (n)G(n) ≤
1

2
(2ε− ε2)F (1) +

1

2
ε2F (q) <

1

2
(2ε− ε2)

1

2
+

1

2
ε2 1

2
=

ε

2
.

A contradiction has been made and
∑t−1

n=1 F (n)G(n) < ε/2, therefore Theorem 3.1

has been proved fort ≥ 3. It remains to show that the theorem holds fort = 2.

Using Equation (3.12) and Equation (3.8):

rεg(2, 0) = |α− β|

√
σ2

x

2π
(1− 2F (1))

> (1− ε) |α− β|

√
σ2

x

2π
(1− 2F (1)) = rεg(2, ε),

as0 < ε ≤ 1 andF (1) < 0.5. This completes the proof of Theorem3.1.

Theorem 3.1 states that the expected instantaneous reward at timet is maximised by

ε = 0. It is then immediate that the cumulative rewardRεg(T, ε) =
∑T

t=1 rεg(t, ε),

which is what we wish to maximise, is also maximised byε = 0. This implies that

the greedy policy, on average, outperforms anyε-greedy policy for this one-armed

bandit problem. Given these findings, Figure 3.3 shows the averaged instantaneous

and cumulative reward at timet from 20,000 repeated simulations of the same prob-

lem, with the theoretical expectations overlayed. The empirical evidence verifies

the theoretical findings that the instantaneous reward (and hence cumulative reward

also) is maximised byε = 0. In other words, theε-greedy policy is a suboptimal

policy for this one-armed bandit problem with covariates.

In contrast, finite-time analyses of multi-armed bandit problems (Auer et al.,

2002; Vermorel and Mohri, 2005; Pavlidis et al., 2008b) have concluded, through

empirical evidence, that the optimally tunedε-greedy policy can haveε > 0. The

difference between this evidence and our findings, is due to the exploration re-

quirements of the two problems. In our one-armed bandit problem only one ac-

tion requires any exploration, and since this action is already selected 50% of the

time with a greedy policy, no further exploration is required with anε-greedy pol-

icy. Conversely, in a multi-armed bandit problem, more actions require exploration.
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Figure 3.3: Average rewards for a range ofε-greedy policies ((a) instantaneous
reward and (b) average cumulative reward) whereσ2

x/σ
2
η = 1. Theoretical expecta-

tions are overlayed (in grey).

Moreover there are no such guarantees on exploring each action sufficiently with a

greedy policy and consequently optimal actions are often overlooked. As a result,

anε-greedy policy withε > 0, can outperform the greedy policy.

3.4 Theε-first Policy

Theε-first policy dictates that all the agent’s exploration is at the beginning (for the

first εT iterations) followed by greedy selection for the remaining iterations. When

the agent explores, actiona1 is always pulled and it follows from Equation (3.10)
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that the expected reward ofε-first rεf (t) = E(r1(t)) = 0 for t ≤ εT + 1. To find

the expected reward fort > εT + 1, consider the probability of errorFεf (t, ε) with

this policy. Using the same reasoning as before, we find:

Fεf (t, ε) =
t−εT−1∑

n=1

B(n, t− εT, 0)F (n + εT ), (3.20)

with F (n) as given in Equation (3.6) andB(n, t, ε) as given in Equation (3.7). No-

tice thatFεf (t, ε) < 0.5 (for t ≥ 2) as with theε-greedy policy. This probability of

error follows as there is a minimum ofεT +1 guaranteed pulls from exploration and

initialisation, and any further pulls occur from greedy selection over the remaining

t− εT −2 opportunities, each with probability 50%. In the same way that Equation

(3.11) was derived (see Appendix A.1), it follows that:

rεf (t, ε) = |α− β|

√
σ2

x

2π
(1− 2Fεf (t, ε)) for t > εT + 1. (3.21)

Again this expected reward is positive asFεf (t, ε) < 0.5. Larger values ofε reduce

the probability of error fort > εT +1 and thus have a higher expected reward in this

region – this is thebenefit of exploration. Conversely, larger values ofε correspond

to a longer period of exploration where the expected reward is zero – this is thecost

of exploration. The expected cumulative reward isRεf
(T, ε) =

∑T
t=1 rεf

(t, ε) and

we can maximise this numerically using Equation (3.21) to find the optimalε.

This optimal value will not necessarily be zero as the following numerical re-

sults show. In particular, Figure 3.4(a) displays the expected reward at timet, for

the game of lengthT = 50 shown in Figure 3.3, for various values ofεT , where

the benefit and cost of exploration can be clearly seen. Summing the rewards from

Figure 3.4(a) generates Figure 3.4(b) which is the expected cumulative reward at

timeT = 1, . . . , 50 for the fixed values ofεT . Fixing εT in this way has shown that

the greedy policy can be beaten and there are regions ofT whereεT = 0, 1, 2, . . .

are optimal in terms of maximising the expected cumulative reward.

Figure 3.5(a) displays how the optimal value ofεT grows withT for various

values ofσ2
x/σ

2
η. The range of values ofT where a specific value ofεT is optimal
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Figure 3.4: Expected rewards for a range ofε-first policies ((a) instantaneous reward
(with T = 50) and (b) average cumulative reward) whereσ2

x/σ
2
η = 1.

become larger asεT increases, indicating thatεT grows more slowly thanT . This

idea can also be seen in Figure 3.5(b), which shows a plot of optimalε for values

of T . The non-smooth shape of this plot is due to the fact thatεT is represented

as a step-function taking integer values only. The key observation, however, is that

the optimalε decreases and approaches zero asT →∞ (although forσ2
x/σ

2
η = 0.2

this happens very slowly), which concurs with the studies of Woodroofe (1979) and

Sarkar (1991) which proved the greedy policy was asymptotically optimal. Never-

theless, in finite time, a well chosenε in theε-first policy will outperform the greedy

policy, signifying the benefits of correctly balancing exploration and exploitation in

an action selection policy.
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Figure 3.5: Optimal values of (a)εT and (b)ε for the ε-first policy, with various
values ofσ2

x/σ
2
η.

3.5 An On-line Algorithm

In this section, we construct an algorithm that can effectively attempt to learn the

optimal ε-first policy on-line. This algorithm is simple, and makes use of the the-

oretically derived expected reward of theε-first policy, given in Equation (3.21).

This expected reward is dependent on the reward function parameters:α, σ2
x and

σ2
η. The agent does not know the true values of these parameters, but can recursively

estimate them on-line.α is estimated using least squares Equation (3.2),σ2
x is es-

timated using the sample variance of observed covariate values andσ2
η is estimated
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from the residuals from the regression:

σ̂2
η =

1

n− 1
ξ̂′ξ̂, (3.22)

where thejth component of the vector̂ξ is,

ξ̂j = r1(tj)− α̂x(tj). (3.23)

With these estimates the agent can then compute estimates of the expected cumu-

lative reward (from the current timet to the final time-stepT ) of exploring for one

more iteration(Rxplr(t)) or selecting greedily(Rxplt(t)) for the rest of the game:

Rxplt(t) =
T∑

v=t

(
rεf (v, (t− 2)/T )|α̂, σ̂2

η, σ̂
2
x

)
, (3.24)

Rxplr(t) =
T∑

v=t

(
rεf (v, (t− 1)/T )|α̂, σ̂2

η, σ̂
2
x

)
, (3.25)

which are computed using Equation (3.21) where the sample estimatesα̂, σ̂2
η, σ̂

2
x are

used instead of their unknown true values. Notice that the number of exploration

steps forRxplr(t) andRxplt(t) is t− 1 andt− 2, respectively, as the first time-step

is initialisation and the decision at time-stept is the one being determined and is

henceε-first exploration withRxplr(t) or greedy selection withRxplt(t). The agent

simply follows the policy (Rxplr(t) or Rxplt(t)) with the highest estimated reward

for the next iteration, and then recomputes for the next iteration with the new sample

estimates.

If the greedy policy dictates selecting actiona1 anyway then the agent does not

need to execute the algorithm at each iteration (although parameter estimates are

still updated). If the agent determines that a greedy policy is better than exploration

then, unlike withε-first, exploration can still be revisited at future time-steps if the

new sample estimates dictate this. In this way, the algorithm is self-correcting and

performs better than simply estimating the optimalε on-line during the initial time-

steps, where sample errors are still large. Note that an initialisation period of length
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2 is required, where actiona1 is pulled twice, such that sample estimates of the

covariance and noise variance (σ̂2
x andσ̂2

η) can be obtained.

Table 3.1 shows the average performance of this on-line algorithm (averaged

over 20,000 repeats1) for various values ofσ2
x/σ

2
η, as compared with variousε-first

policies, where the game-length2 is T = 100. The rewards are normalised between

0 and 1, where 1 is the expected reward to an oracle that knows all parameters and

0 is the expected reward of a random policy. We report all rewards in this thesis in

this manner as this allows results between experiments to be comparable.

Table 3.1: Average rewards of the on-line algorithm and variousε-first policies

σ2
x/σ2

η ε = 0 0.02 0.05 0.1 0.15 0.2 On-line
5 0.882 0.887 0.883 0.858 0.822 0.780 0.894
2 0.755 0.764 0.769 0.764 0.744 0.717 0.776
1 0.618 0.626 0.638 0.639 0.629 0.614 0.640

0.5 0.478 0.482 0.493 0.501 0.499 0.492 0.501
0.2 0.318 0.322 0.327 0.3330.340 0.333 0.331

Avg. 0.610 0.616 0.622 0.619 0.606 0.587 0.628

As expected, performance degrades for each policy asσ2
x/σ

2
η decreases and the

relative amount of noise increases. For a given value ofσ2
x/σ

2
η, the on-line approach

yields a reward close to or better than the best performingε-first policy (denoted in

bold), and when rewards are averaged across experiments then the on-line approach

performs best overall. In fact, Table 3.2 compares the on-line algorithm against the

optimal ε-first policy, and we see that the on-line approach yields rewards that are

comparable with the optimal off-line reward. Note that the relative performance

degrades for higher noise problems, as the sample estimates have larger variance.

Moreover, notice that the average number of exploration steps has increased ac-

cordingly with increases in the noise variance, albeit slowly. This shows that the

amount of exploration is being driven, to some extent, by the degree of uncertainty

the agent has regarding the rewards of the unknown action.

1This number of repeats ensures the standard errors of all average rewards are less than1×10−3.

2This value ofT is selected as it is used in Chapter 4, justified by the fact that real-world static
problems are likely to be short-length, so we want algorithms that can yield high rewards quickly.
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Table 3.2: Comparison of on-line and optimal off-line policies

σ2
x/σ2

η
Off-line (ε-first) On-line
Opt. ε Reward % Optimal Avg. exp.steps

5 0.03 0.888 100.8% 1.43
2 0.06 0.769 100.8% 1.84
1 0.08 0.640 100.0% 2.04

0.5 0.10 0.501 100.1% 2.14
0.2 0.13 0.340 97.5% 2.21

The on-line algorithm often marginally outperforms the optimalε-first policy

and this is because the on-line algorithm can respond to the circumstances of each

game – for example, a favourable start to the game, where rewards are observed

with little noise and yield faster than expected convergence to the true regression

parameterα, will mean no more exploration is required. Conversely, noisy obser-

vations that lead to a high probability of error, will lead to more exploration. In

this way, the on-line approach is again showing that it is driven by the amount of

uncertainty as it plays.

Figure 3.6(a) shows the average rate of exploration over time for various values

of σ2
x/σ

2
η. The rate decays to zero over time and does this more slowly for high

noise problems, which is desirable behaviour. Figure 3.6(b) however, displays a

histogram of the number of explorative steps over the 20,000 repeats for a high-

noise problem. Notice that the algorithm often does not perform any additional

exploration after the 2 initialisation steps. As previously mentioned, this is some-

times due to a fortuitous initialisation period where observations are not noisy and

the correct value ofα has been immediately learnt. On other occasions however,

the observations could be noisy but still ‘aligned’ on the regression plane, yielding

an under-estimate of the noise variance (as the residuals are small) and an incorrect

estimate ofα which causes suboptimal actions to be selected. In such cases, the

algorithm will prematurely cease exploration, explaining the slight degradation in

performance with high-noise problems. This issue is addressed in the next chapter,

where we build an algorithm for a more general problem that is more responsive to

the uncertainty of parameter estimates when choosing the next action.
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Figure 3.6: Explorative behaviour of on-line approximation algorithm: (a) the av-
erage rate of exploration over time and (b) a histogram of the total number of ex-
plorative steps (forσ2

x/σ
2
η = 0.2).

3.6 Summary

In this chapter we have theoretically derived the expected rewards of theε-greedy

and ε-first policies for a one-dimensional one-armed bandit problem. We have

proved thatε-greedy is optimised by settingε=0 butε-first is optimised withε > 0

(beyond some time-lengthT ). In addition, we have constructed an algorithm for

approximatingε-first on-line, without the need for ana priori fixed exploration

parameter. We do this by estimating unknown parameters on-line and then approx-

imating the optimal action. A key component of this is measuring the amount of

uncertainty (by estimating the variance of the noise and covariate) and using this

to drive exploration – more uncertainty leads to greater levels of exploration being

required.

Extending these theoretical findings to higher-dimensional covariates or multi-

armed problems is not trivial. The distributions of parameter estimates can be

found, but their interactions in terms of how they influence the probability of error

means finding analytic representations of errors and rewards is usually not possible.

In addition, the introduction of multivariate distributions almost inevitably leads to

numerical approximations of any representations that can be found. As a result,

the expected rewards of various policies can simply be found through Monte Carlo

simulations (rather than numerically approximating reward representations that are
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intractable and contain high dimensional distributions). For these reasons, we do

not find any more specific reward representations of bandit frameworks. Instead

we focus on developing algorithms for adapting exploration on-line in the proceed-

ing chapters, using the concept of uncertainty driven exploration introduced in this

chapter.
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Chapter 4

On-line Adaptation of Exploration in

Bandit Problems

In Chapter 2 we performed a critical analysis of the various policies and algorithms

constructed for the bandit problem. We demonstrated that there is a shortage of

parameter-free methods that can generalise across the many bandit frameworks, in

particular for settings that include side information and dynamics (see Table 2.1).

In fact, theε-greedy policy is the only such method (andε-first for static rewards),

but these policies are not parameter-free and require the exploration parameterε to

be fixeda priori. As previously noted, the performance of these algorithms can

deteriorate rapidly with a poorly selectedε value and setting this value correctly is

unfeasible in many applications, as this requires prior knowledge of the problem

faced, which is precisely what the agent is trying to learn.

For these reasons, in this chapter and the next, we construct an algorithm,ε-

ADAPT, that can adapt exploration on-line in a computationally efficient manner,

without the need for any exploration parameters. In this chapter, we focus on the

static reward case (we focus exclusively on dynamic rewards in Chapter 5), and

construct an algorithm for settings that are with or without side information. The

latter setting is considered as most policies and algorithms cannot be used with

side information – and we can therefore evaluate the performance of our algorithm

against more alternatives. The generalisation to include side information, however,
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is particularly significant as our algorithm is the first on-line (and parameter-free)

algorithm that can be used in this setting.

In Chapter 3, we performed a theoretical analysis of theε-greedy andε-first

policies for a one-armed bandit problem. We derived the expected rewards and the

optimal exploration parameters. In particular, we proved that the optimalε in ε-first

will be non-zero (beyond some game-length) and then constructed an algorithm

that attempted to find this optimal rate of exploration on-line. The empirical results

were favourable, with average rewards that were close to or better than the optimal

off-line policy. In this chapter, we extend this approach first to higher-dimensional

covariates and then to multi-armed problems. In addition, we make several im-

provements to the basic approach introduced in the last chapter, such as learning

which regions of the covariate space should be explored and which actions require

most exploration. In other words,ε-ADAPT not only learnshow muchto explore,

but alsowhento explore andwhich actionsto explore.

In general, planning out an optimal exploration policy for the duration of a

finite-length game is an intractable computation (Sutton and Barto, 1998), scaling

exponentially in the length of the game and the number of actions available. To

reduce the computation to quadratic-time, we make use of the properties of theε-

first policy, such thatε-ADAPT need only decide whether to explore or exploit for

the next time-step. In more detail, the likelihood of exploring at each iteration is

driven by the amount ofuncertaintythe agent currently has – captured by calculat-

ing statistics from past interactions with the environment. Our algorithm therefore

adapts as it playsto effectively tune the exploration parameter without the need for

any other free parameters. We note that many policies and algorithms presented in

Table 2.1 scale linearly in time (rather than quadratically), but this increased level

of computation withε-ADAPT is required to remove the need for an exploration

parameter to be seta priori.

The remainder of this chapter is structured as follows. In Section 4.1 we con-

structε-ADAPT for the one-armed bandit with covariates problem, and then per-

form a preliminary empirical evaluation. We extendε-ADAPT to the multi-armed

problem in Section 4.2 and then perform a detailed empirical evaluation in Section
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4.3, for both simulated and real data. Summary remarks follow in Section 4.4.

4.1 The One-Armed Bandit with Covariates Problem

In the one-armed bandit with covariates problem, the agent must select between

actions{a1, a2}, where the rewards for each action are given by:

r1(t) =f(x(t), α) + η(t), (4.1)

r2(t) =g(x(t), β) + ω(t), (4.2)

wherex(t) is thep-dimensional covariate observed at timet. η(t) andω(t) are

i.i.d. noise processes assumed to be normally distributed and centred at zero with

varianceσ2
η andσ2

ω respectively (both unknown to the agent). It is assumed the

agent knows the functionsf andg and the parametersβ of the known action, but

not the parameter values of the unknown actionα – this is precisely what the agent

must learn. As in Pavlidis et al. (2008a), the covariate is assumed to be drawn from a

known distribution, with unknown parameters (for example a multivariate Gaussian

with unknown mean vectorμx and unknown covariance matrixΣx). The objective

of the agent is to correctly partition the covariate space between areas where each

action is optimal – the agent hence has to learn this decision boundary accurately

and quickly to achieve a high reward.

As previously mentioned, exploration in the one-armed bandit with covariates

problem involves selecting unknown actiona1, when actiona2 is expected to yield

a larger reward, given the observed covariate valuex(t). To illustrate the need to

control the amount of exploration performed in this problem, in Figure 4.1 we show

expected rewards using theε-first policy with the 10-dimensional covariate problem

studied in Section 4.1.2, for various values of the noise varianceσ2
η. As in Section

3.1.5, we normalise the rewards between 0 and 1, where 1 is the expected reward

to an oracle that knows all parameters and 0 is the expected reward of a random

policy. The optimal value ofε (denoted by a star) is highly dependent on the level

of noise variance, and furthermore the performance ofε-first can degrade quickly
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Figure 4.1: Expected reward of theε-first policy (averaged over 10,000 repeats) for
0 ≤ ε ≤ 0.25 in the 10-dimensional setup used in Section 4.1.2.

for badly tunedε, particularly when the amount of noise is low – this motivates the

construction of an algorithm to control exploration on-line, which we describe in

the next section.

4.1.1 Theε-ADAPT Algorithm

In this section, we construct an on-line algorithm,ε-ADAPT, that learns to effec-

tively control the amount of exploration in the one-armed bandit with covariates

problem. At each iteration, the agent updates its predictions of the unknown pa-

rameters of the reward function and the covariate. For example, with a multivariate

Gaussian covariate, the agent maintains estimatesμ̂x andΣ̂x, along withα̂ andσ̂2
η,

using the sample estimates from the past history of interactions. These statistics

indicate the likelihood of each action being optimal for future covariate values and

the amount of uncertainty the agent has regarding this. It is this uncertainty that

dictates the likelihood with which the agent will explore or exploit at each iteration.

In an on-line setting, the agent only needs to select an action for the next iter-

ation, and does not have to submit a policy for the remainder of the game. Never-

theless, the agent cannot ignore the possible action choices that follow the current

one, which presents the agent with an intractable calculation. To combat this issue,
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we use theε-first policy as the building block of our algorithm (as motivated in the

previous chapters). In particular, we make use of Theorem 4.1 – a new theorem

regarding the optimality ofε-first policies in finite time.

Theorem 4.1 Rεf (T, c/T ) > Rεf (T, 0) and c ≥ 1 ⇒ Rεf (T, 1/T ) > Rεf (T, 0)

(for all T, c ∈ Z+).

Rεf (T, c/T ) is the expected cumulative reward of theε-first policy for a game of

lengthT , whereε = c/T . This theorem states that if anε-first policy that explores

for one or more iterations outperforms a greedy policy then anε-first policy that

explores for exactly one iteration also outperforms a greedy policy. This property

can be clearly seen in Figure 4.1 where the expected reward of theε-first policy is

always monotonically increasing betweenε = 0 and the optimalε value.

Proof (sketch): Suppose thatRεf (T, 1/T ) < Rεf (T, 0). As the two policies are

identical after one iteration (i.e. they are both greedy), it follows thatRεf (T, 0)

selects the known action first andRεf (T, 1/T ) selects the unknown action first.

The proof now has two key steps:

1. If the game were to be one iteration shorter, thenRεf (T − 1, 1/(T − 1)) <

Rεf (T − 1, 0). To see this consider removing the last action at timeT , which

is a greedy action. This subtracts more from the reward ofRεf (T, 1/T ) than

Rεf (T, 0)), as Rεf (T, 1/T ) would have a larger number of samples with

which to estimateα and hence a reduced probability of error (and hence

higher expected reward) in this final iteration.

2. It then follows thatRεf (T, 2/T ) < Rεf (T, 1/T ). This is because adding an

extra exploration step at the beginning will add more reward toRεf (T − 1, 0)

thanRεf (T − 1, 1/(T − 1)), as there areT − 1 proceeding exploitation steps

(rather thanT − 2), so the increased knowledge ofα, and hence reduced

probability of error, benefits more future iterations.

We can then consider a game two iterations shorter and continue this inductive

process (c−1 times) to showRεf (T, c/T ) < Rεf (T, 0), which completes theproof.
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The significance of this result is that all the agent now needs to compute at time

t is which policy is expected to yield a larger reward:Rεf (T
∗, 0) or Rεf (T

∗, 1/T ∗),

whereT ∗ = T − t + 1 (the length of the game remaining). This follows because

if any more exploration needs to be performed in a static problem, it should be

performed immediately. Therefore, from Theorem 4.1, the agent needs to explore

if and only if anε-first policy with one initial exploration step outperforms a greedy

policy (or ε-first with 0 initial exploration steps) for a game starting at timet. If the

agent could calculate this exactly, the optimal on-line policy can be computed using

Algorithm 4.1 – an algorithmic representation of the optimalε-first policy.

Algorithm 4.1 Optimal on-line policy
1: for t = 1 to T do
2: Observex(t) {Covariate}
3: Update unknown parameters of covariate distribution
4: if t ≤ D or Rεf (T

∗, 1/T ∗) > Rεf (T
∗, 0) or E[r1(t)|x(t), α̂] >

E[r2(t)|x(t), β] then
5: Select actiona1 and receive rewardr1(t)
6: Updateα̂ andσ̂2

η {Only updated whena1 is selected}
7: else
8: Select actiona2 and receive rewardr2(t)
9: end if

10: end for
11: D is the required length of initialisation for sample estimates to exist.

This policy receives exactly the same reward as the optimally tuned off-lineε-

first policy, but requires knowledge of all the unknown parameters. The challenge

therefore lies in approximating the unknown expected rewards,Rεf (T
∗, 1/T ∗) and

Rεf (T
∗, 0). We use sample estimates so that the agent, at timet, can perform a

Monte Carlo (MC) simulation of the rest of the game, to see which policy yields

the highest expected cumulative reward. This involves generating future covariate

values (x′(s)) and rewards (r′i(s)|x
′(s), β, α̂, σ̂2

η) for i = 1, 2 ands = 1, . . . , T ∗,

and then simulating the game with each policy to see which performs better. An

alternative approach would be to to try and find these values analytically, but this in

an intractable calculation – as the number of future action sequences rises exponen-

tially with the length of the game. The analytical expressions can be approximated,
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but these can only be done case-by-case dependent on the covariate distribution

and type of reward function. We therefore resort to MC approximation due to its

simplicity and generality.

The shortcoming of the Monte Carlo approach, however, is that if we simu-

late the rest of the game from timet using the sample estimates, then the greedy

approach will always outperformε-first. This is because the MC estimate ofα̂ (de-

notedᾱ) will already have converged tôα and is then used to drive future rewards,

so exploration is deemed not to be required. To avoid this, we need to introduce

uncertainty in the estimate of̂α, which reflects the uncertainty in the true game. So

in addition to simulating the rest of the game, we also regenerate covariate values

and rewards that were used to estimateα̂ prior to timet, such that the MC estimate

ᾱ is perturbed from the true sample estimate. This creates uncertainty in the sim-

ulated game that mimics the uncertainty in the true game, and provides a reason

to explore. The on-line approximation ofRεf (T
∗, 0) (andRεf (T

∗, 1/T ∗)) follows

Algorithm 4.2. We note that an alternative method is to directly sample the MC

estimate ofᾱ at timet (rather than resampling covariates prior to timet), but this

can only be done when an analytical representation of the distribution ofα̂ can be

found – which is only easily attained in the 1-dimensional problem considered in

Chapter 3.

Our algorithm for controlling exploration on-line,ε-ADAPT, follows Algorithm

4.1, with Rεf (T
∗, 0) andRεf (T

∗, 1/T ∗) approximated using Algorithm 4.2. The

MC computation can in fact be repeated several times to smooth the estimates of

the two competing policies, but this is not necessary for our algorithm to work.

In fact, in the simulations performed in Section 4.1.2, the MC estimate was only

repeated twice at each iteration, as more repeats had no particular extra benefit –

an interesting result which we discuss more in Section 4.2 for the full multi-armed

bandit problem.

The covariate value at timet is not replaced by a new sample in Algorithm

4.2, but kept at the true observed value – a key component ofε-ADAPT. This al-

lows ε-ADAPT to decide which regions of the covariate space are worth exploring

and which are not. For example, if the expected reward of the unknown action is
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Algorithm 4.2 On-line MC approximation ofRεf (T
∗, 0) (andRεf (T

∗, 1/T ∗))
1: Inputs: t (current time-step),T (length of game)n (no. of timesa1 selected

prior to timet), sample estimates (̂α, σ̂2
η, . . .)

2: for s = 1 to T ∗ + n do
3: Generatex′(s) {New Covariate}
4: if s = n + 1 then
5: x′(s) = x(t) {True covariate value kept at timet only}
6: end if
7: if s ≤ n or E[r′1(s)|x

′(s), ᾱ] > E[r′2(s)|x
′(s), β] then

8: Select actiona1 and receive rewardr′(s) = r′1(s). Updateᾱ
9: else

10: Select actiona2 and receive rewardr′(s) = r′2(s)
11: end if
12: end for
13: Rεf (T

∗, 0) =
∑T ∗+n

s=n+1 r′(s) {MC approximation}
14: Replacen with n + 1 in Line 7 to calculate approximation ofRεf (T

∗, 1/T ∗).

only marginally smaller than the known action (given the covariate value), then the

benefits of exploration (through increased learning of parametersα andσ2
η) can out-

weigh the costs (the myopic loss of selecting a sub-optimal action). Whereas with

other covariate values the short-term costs might exceed the long-term benefits.

This includes a notion of cost-inclusive exploration toε-ADAPT, where at ear-

lier steps the algorithm is willing to forego a lot of reward for 1 exploration step

whereas later exploration is only worthwhile if the cost to the reward is negligible.

In this sense,ε-ADAPT attempts to detectwhenbest to explore and not just how

much. This is something thatε-greedy andε-first policies are not able to do, as

they are off-line policies, and further motivates the use of an on-line exploration

algorithm.

ε-ADAPT is based on theε-first policy, but does not require any parameters to

be seta priori that govern the amount of total exploration.ε-ADAPT only requires

parameters that are used within the estimation module or for the distributions spec-

ified in the MC approximation, but these can be estimated during play, and do not

need to be seta priori. In addition, the need for MC distributions can be removed

(by using nonparametric bootstrapping techniques (Efron and Tibshirani, 1993) for

example) and we nevertheless provide evidence in Section 4.1.2 thatε-ADAPT can
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work well even with misspecified modelling assumptions.

Occasionallyε-ADAPT might undershoot (due to poor sample estimates and/or

error from the MC approximation) and start exploiting too early. For these reasons,

we continue to decide whether to explore or exploit ateveryiteration until the end

of the game. In this way,ε-ADAPT is naturally self-correcting and will explore at

a later stage (if necessary) to compensate for any lack of earlier exploration.

ε-ADAPT is computationally efficient, scaling quadratically inT (as the MC

approximation in Algorithm 4.2 is of maximum lengthT and is repeatedT times).

The relationship with the dimensionality of the covariatep depends on the infer-

ence procedure used to estimate the parameterα. For linear reward models, least

squares can be used (orderp3) or recursive least squares (Haykin, 2002) (orderp2)

if a further saving is required (at a marginal increase to the error of the estimates

for low sample-length data), see Appendix B for the full algorithm.ε-ADAPT can

handle non-linear reward functions, using techniques such as non-linear regression.

In addition, the algorithm can deal with non-Gaussian covariates and error terms by

either explicitly coding them in (where tractable) or by using nonparametric boot-

strapping techniques. In the case of bootstrapping, covariate values and rewards

could be resampled (with replacement) from the original dataset of observed side

information and past rewards. This is particularly applicable in our setting where

covariate information is generally assumed to be i.i.d. over time.

4.1.2 Numerical Results

In this section, we testε-ADAPT for the one-armed bandit with covariates problem.

We first compareε-ADAPT against the on-line algorithm developed in Section 3.5

for the one-dimensional covariate problem, to examine the benefits of using the

MC approximation technique. We then consider linear reward functions with both

a 5-dimensional and 10-dimensional covariate, to test the ability ofε-ADAPT to

learn from a higher-dimensional covariate. Finally, we also test the robustness ofε-

ADAPT to a misspecified noise model, where the noise is assumed to be normally

distributed, but is in fact eithert-distributed (heavy-tailed) or gamma distributed
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(skewed). This tests the dependence ofε-ADAPT on correct modelling assumptions

in the MC approximation. As this chapter considers static problems, we compare

ε-ADAPT against theε-first policy in all numerical experiments in this chapter. All

rewards are again normalised between 0 and 1, where 0 is the average reward of a

policy that always randomly selects between actions and 1 is the average reward of

an oracle that knows all reward coefficients beforehand.

• 1-dimensional Covariate

We first repeat the numerical experiments of Section 3.5 with theε-ADAPT algo-

rithm for a game of lengthT = 100. We consider this game-length throughout

this chapter for two reasons. First, static problems are likely to be short-length in

real-world applications, because the environment often changes and the decision

problem evolves to a new one. Secondly, we want to test the performance of algo-

rithms in finite time and expose policies and algorithms that only perform well after

several time-steps (many of which will have optimal asymptotic behaviour).

Table 4.1 displays the average rewards and average rates of exploration ofε-

ADAPT (over 20,000 repeats), along with the results for the optimalε-first policy

and the alternative on-line algorithm.ε-ADAPT is the best performing algorithm in

each case. Notice also, that the average number of exploration steps has increased

much more than with the alternative approach, as the noise increases, which sug-

gests the algorithm is being driven to a greater extent by the uncertainty surrounding

the sample estimates.

Table 4.1: Comparison of on-line and optimal off-line policies (withε-ADAPT)

σ2
x/σ2

η
Off-line (ε-first) On-line Algorithm of Section3.5 ε-ADAPT
Opt. ε Reward Reward % Optimal Avg. exp. Reward % Optimal Avg. exp.

5 0.03 0.888 0.894 100.8% 1.43 0.897 101.0% 1.33
2 0.06 0.769 0.776 100.8% 1.84 0.783 101.7% 2.78
1 0.08 0.640 0.640 100.0% 2.04 0.659 102.9% 5.12

0.5 0.10 0.501 0.501 100.1% 2.14 0.514 102.7% 6.28
0.2 0.13 0.340 0.331 97.5% 2.21 0.370 108.8% 7.35

To gain further insight, in Figure 4.2(a) we show the rate of exploration over

time (averaged over all simulations) for various values ofσ2
x/σ

2
η. In contrast to
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Figure 3.5(a), notice that the rate of exploration decays more slowly and does not

reach zero until the final time-step. This is due to the fact that the probability of

error will be non-zero for the duration of the game and exploration can be worth-

while, even at a late stage, with certain covariate values and coefficent estimates –

it is only until the final time-step that the algorithm stops exploring and fully ex-

ploits. There is also a much bigger difference between the amount of exploration

performed throughout for different values ofσ2
x/σ

2
η, again showing that exploration

is driven by uncertainty. Figure 4.2(b) displays a histogram of the number of explo-

rative time-steps (over the 20,000 repeats) for the high noise problem. In contrast

to Figure 3.5(b),ε-ADAPT does not get caught under-exploring as often, which

explains the much stronger performance in terms of cumulative reward gained.
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Figure 4.2: Explorative behaviour ofε-ADAPT with a 1-D covariate: (a) the aver-
age rate of exploration over time and (b) a histogram of the total number of explo-
rative steps (forσ2

x/σ
2
η = 0.2).

To further explain the strong performance ofε-ADAPT in this problem we in-

vestigate to what extent the algorithm has determinedwhenexploration should be

performed, as well as how much overall. Figure 4.3(a) displays a histogram of all

covariate values observed in the entire simulation and partitions them according to

whetherε-ADAPT decides to explore or exploit (whereσ2
x/σ

2
η = 1). First of all,

ε-ADAPT is usually partitioning the covariate space correctly, by selectinga1 for

x(t) > 0 anda2 otherwise. Interestingly,ε-ADAPT appears to explore for the full

range of covariate values, but proportionately less so whenx(t) is close to zero.

This is due to the fact that reward observations in this region are not particularly
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informative aboutα, so exploration has little value. This is a feature of this type of

reward function, where rewards are fixed through the origin, and does not extend to

reward functions where the intercept of the reward function is unknown (as we see

in later sections).

Figure 4.3(b) displays a frequency plot showing the average proportion of times

ε-ADAPT explores whena2 is predicted to be optimal (for the covariate bins gener-

ated in Figure 4.3(a)). This plot reveals thatε-ADAPT is explicitly considering the

covariate value when making exploration decisions. Aside from less exploration

nearx(t) = 0, notice that the algorithm explores more for positive covariate values

– this is where the greedy action is in fact suboptimal, and the algorithm is respond-

ing to this by exploring more. This is a key feature ofε-ADAPT and explains its

strong performance. When the covariate is positive, but the greedy action deter-

minesa2 is optimal, thenε-ADAPT is likely to have high noise variance estimates

and the difference between̂α andβ is likely to be small. These factors make ex-

ploration more likely and meanε-ADAPT can correct erroneous greedy decisions

more effectively then anε-first or ε-greedy policy. In addition, exploration is more

likely for covariate values that are closer to (but not near)x(t) = 0 rather than val-

ues from the tails of the distribution, as this is deemed less costly to the immediate

reward. ε-ADAPT therefore also incorporates the cost of exploration, a feature of

the algorithm we investigate more in future sections.

• 5-dimensional Covariate

We now testε-ADAPT for a 5-dimensional covariate using linear reward functions

given by:

r1(t) =

p∑

i=1

αixi(t) + ηt, r2(t) =

p∑

i=1

βixi(t) + νt,

whereβ is known andα is unknown. p is the dimension of the covariate where

x1(t) = 1 (so thatα1 becomes the intercept of the reward plane) andx2,...,p(t) ∼

N (μx, Σx). A multivariate normal covariate is used as this distribution can accu-

rately model several real-world data sources (Cox and Small, 1978), but this is not
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Figure 4.3: Histograms of (a) the covariate distribution partitioned into regions of
exploration/exploitation and (b) the frequency of explorative actions whena2 is
greedy optimal, usingε-ADAPT on a 1-D covariate problem.

a requirement for our algorithm to work. We testedε-ADAPT over 20,000 repeated

simulations for a game of length 100 with the following parameter values:1

1In this section we setβ to be a vector of zeros, without loss of generality. Any problem can be
transformed to this by subtracting

∑p
i=1 βixi(t), which is known, from each observed reward.
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The parameter values are selected such that each action is optimal in approxi-

mately 50% of the covariate space, which maximises the importance of learning the

correct decision boundary quickly. We simulated the problem for various values of

the noise varianceσ2
η and quantify this using thecovariance to noise ratio(Pavlidis

et al., 2008b), CNR= ‖Σx‖1

σ2
η

, where‖Σx‖1 is the 1-norm ofΣx. The larger the CNR,

the more informative observations are aboutα, making the learning problem easier.

The only other parameters we could change are the reward coefficients – this has a

similar effect to changing the CNR though, in that separating the distance between

actions dissipates the effect of noise (and vice-versa). We choose to report CNR

values, however, as this allows our results to be commensurate across dimensions.

Note that the CNR values for the experiments performed in the last section with a

1-dimensional covariate (and in Section 3.5) are simply equal toσ2
x/σ

2
η.

Table 4.2 displays results forε-ADAPT and severalε-first policies for various

CNR values (where CNR values are set with consideration of the range ofε-values

considered). Lower CNR values correspond to lower rewards for each policy, as

the learning problem is more difficult. For each CNR value, however,ε-ADAPT

performs close to the best performingε-first policy.2 Moreover,ε-ADAPT is the

best overall when the rewards are averaged, even though these problems naturally

favour exploration rates of 5-10% (which will not always be the case).

Table 4.3 comparesε-ADAPT with the optimally tuned off-lineε-first policy

from the same set of experiments. The reward is always within 95% of the off-line

optimal, although the performance degrades as the noise increases – this is because

2Note that the optimalε in all future experiments in this thesis is now found empirically rather
than theoretically.
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Table 4.2: Average rewards with a 5-D covariate

CNR ε = 0 0.02 0.05 0.1 0.15 0.2 ε-ADAPT
100 0.845 0.857 0.850 0.816 0.775 0.730 0.856
50 0.772 0.796 0.802 0.783 0.750 0.710 0.800
20 0.630 0.661 0.687 0.696 0.680 0.654 0.685
10 0.501 0.535 0.567 0.5900.591 0.576 0.574
5 0.383 0.411 0.442 0.4700.480 0.475 0.458

Avg. 0.626 0.652 0.670 0.671 0.6550.629 0.675

the errors in the sample estimates are larger, yielding on-line approximations that

are not as accurate. Nevertheless, lower values of the CNR require more exploration

from the agent, andε-ADAPT has responded to this by performing more exploration

steps on average (last column). The performance ofε-ADAPT no longer exceeds

that of the optimalε-first policy, as was the case in the 1-dimensional problem. This

is due to the increased number of reward coefficient estimates and covariate distri-

bution parameters used in the MC approximation of Algorithm 4.2, which make

optimal exploration decisions harder to learn on short time-scales. Nevertheless,

ε-ADAPT still performs best on average and we further test the robustness of this

algorithm with a 10-dimensional covariate in the next section.

Table 4.3: Comparison ofε-ADAPT and optimalε-first with a 5-D covariate

CNR
Off-line (ε-first) On-line (ε-ADAPT)
Opt. ε Reward % Optimal Avg. exp.steps

100 0.02 0.857 99.9% 3.04
50 0.04 0.803 99.7% 4.17
20 0.09 0.697 98.3% 5.76
10 0.13 0.592 96.9% 6.78
5 0.15 0.480 95.5% 7.55

Figure 4.4 displays the average amount of exploration performed at each time-

stept (after initialisation) for various CNR values. As in the 1-dimensional case,

the amount of exploration performed is naturally higher for low CNR values and

generally decreases as the game is played. For low CNR values, there is initially a

small increase in exploration over time. This is due to the small number of sample

estimates when theε-ADAPT algorithm commences, leading to potential under-
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estimates in the amount of noise and subsequent under-exploration. This is soon

corrected however, as the algorithm learns that more exploration is needed to cor-

rectly partition the covariate space. This may seem to be a weakness of the algo-

rithm, but after relatively few sample estimates, it is difficult to distinguish between

the different types of problems. Forcing the algorithm to explore more initially

would reduce the rewards for problems with higher CNR values where high rates of

exploration are not needed.ε-ADAPT is therefore adapting to the game as it plays.
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Figure 4.4: Average rate of exploration performed at timet with a 5-D covariate
usingε-ADAPT, for various CNR values. Rates fort < 7 are not reported as this is
during the initialisation period.

Figure 4.5 displays histograms of the number of exploration steps performed

within a game for low and high CNR values – the spread is due to both the noise

in the sample estimates (and subsequent MC approximation) and the circumstances

of each game (a favourable start to the game means less exploration needs to be per-

formed later and vice-versa). Overall,ε-ADAPT rarely gets caught under-exploring,

as the algorithm naturally self-corrects if it learns the incorrect partitioning of the

covariate space.
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Figure 4.5: Histograms showing the total number of exploration steps performed
with a 5-D covariate byε-ADAPT for CNR values of (a) 100 (low noise) and (b) 5
(high noise).

• 10-dimensional Covariate

To test the robustness ofε-ADAPT to a high-dimensional covariate, we repeat the

same experiments using a 10-dimensional covariate with parameters:

α =
[
−0.1 −0.4 −0.4 −0.5 −0.4 −0.2 −0.4 −0.3 −0.1 −0.1

]
,

μx =
[
−0.5 −0.2 −0.1 −0.4 −0.2 −0.4 −0.5 −0.3 −0.3

]
,

Σx = diag
([
−0.5 −0.3 −0.7 −0.1 −0.9 −0.8 −0.1 −1.0 −0.1

])
.

We choose a diagonal matrix forΣx to maximise the effect of the increased di-

mensionality on the learning problem, and the remaining values are set such that

each covariate has a different impact on the reward function. Tables 4.4 and 4.5

display the expected rewards for the same on-line and off-line policies, where the

magnitude of CNR values has been deliberately reduced by increasing the noise.

This is because higher dimension problems require less exploration (see Pavlidis

et al. (2008b) for a detailed explanation).ε-ADAPT has again yielded a reward

that is within 95% of the optimal and furthermore, has performed best on average

against the range ofε-first policies considered. The performance ofε-ADAPT has

not been affected by the increased number of parameters it is required to learn as

the algorithm is robust to anyp-dimensional covariate.
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Table 4.4: Average rewards with a 10-D covariate

CNR ε = 0 0.02 0.05 0.1 0.15 0.2 ε-ADAPT
20 0.832 0.833 0.817 0.777 0.732 0.685 0.831
10 0.788 0.795 0.787 0.755 0.715 0.672 0.791
5 0.718 0.731 0.734 0.715 0.684 0.646 0.731
2 0.586 0.605 0.620 0.622 0.606 0.581 0.618
1 0.471 0.490 0.509 0.522 0.518 0.504 0.511

Avg. 0.679 0.691 0.693 0.678 0.6510.618 0.696

Table 4.5: Comparison ofε-ADAPT and optimalε-first with a 10-D covariate

CNR
Off-line (ε-first) On-line (ε-ADAPT)
Opt. ε Reward % Optimal Avg. exp.steps

20 0.01 0.835 99.6% 2.36
10 0.02 0.795 99.5% 3.31
5 0.04 0.735 99.5% 4.42
2 0.08 0.624 99.0% 5.87
1 0.11 0.522 97.9% 6.73

• Misspecified Noise Models

Finally, we explore the behaviour ofε-ADAPT when assumptions fail (as they may

in real-world applications). In particular, we look at two common departures from

a Gaussian noise model – asymmetric and heavy-tailed noise distributions. Specif-

ically, we generate the noise process usingt(3) (heavy-tailed) and gamma(2, θ)

(skewed) distributions (where the gamma distribution is recentred at mean zero and

the first parameter is the shape parameter and the second is the scale which we vary

in simulations). This allows us to check whetherε-ADAPT is robust to misspecified

noise models. We ran simulations for the 10-dimensional covariate with the alter-

native noise models, and scaled the noise so that we used the same range of CNR

values. The results are presented in Table 4.6. As can be seen, the performance

of ε-ADAPT has not been affected despite false assumptions regarding the noise

model – which is a particularly desirable type of robustness if these methods are to

be applied to real-world problems.
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Table 4.6: Performance ofε-ADAPT with misspecified noise models

t(3) noise gamma(2,θ) noise

CNR
ε-first ε-ADAPT ε-first ε-ADAPT

Opt. ε Reward %Opt. Opt.ε Reward %Opt.
20 0.01 0.841 99.7% 0.01 0.836 99.5%
10 0.01 0.805 99.7% 0.02 0.799 99.3%
5 0.03 0.751 99.8% 0.03 0.743 99.4%
2 0.06 0.649 99.6% 0.07 0.634 99.0%
1 0.09 0.554 98.9% 0.10 0.532 98.7%

4.2 The Multi-Armed Bandit with Covariates Problem

In this section we extendε-ADAPT so that it can be applied to multi-armed bandit

problems, where there is more than one unknown action available. This is achieved

by constructing an index for each action on-line, and then selecting at each iteration

the action with the highest index value, in a similar vein to the Gittins Indices (as

described in Section 2.2.4). Using this method,ε-ADAPT is then able to reason

aboutwhich actionto explore in addition to learningwhento explore andhow much

overall.

In the multi-armed bandit with covariates problem, the agent selects between

actions{ai, i = 1, . . . , k}, with rewards given by:

ri(t) = fi(x(t), αi) + ηi(t), (4.3)

where, as in the one-armed case,x(t) is ap-dimensional covariate observed at time

t andηi(t) are i.i.d. noise processes which are normal and centred at zero with

varianceσ2
i . The agent is assumed to know the form of each functionfi, but not the

reward coefficientsαi – which is what the agent must learn to correctly partition

the covariate space between the actions.

We seek to extend theε-ADAPT approach of Section 4.1 to multiple action

problems. Theorem 4.1 also holds for multi-armed problems, so we can construct

ε-ADAPT based on theε-first policy as before. In the simplest case, this could

be performed by following Algorithms 4.1 and 4.2 in exactly the same way, ex-
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cept thatRεf (T
∗, 1/T ∗) is instead approximated by randomly selecting one of the

non-greedy actions at timet in the MC approximation of Algorithm 4.2. Then if

Rεf (T
∗, 1/T ∗) > Rεf (T

∗, 0), a random non-greedy action is also selected in the

actual game. This method retains the characteristics ofε-ADAPT for one-armed

problems, in that the agent controlshow muchandwhenexploration is performed,

but has the same disadvantages as theε-first andε-greedy policies in that explo-

ration is performed randomly. So to further improve on theε-first methodology we

also choosewhich actionshould be explored at each time-step, such that globally

suboptimal actions (actions that are suboptimal for all covariate values) are never

selected again after sufficient exploration, allowing other actions to be explored

more. We do this by constructing an index for each actionRεf (T, t, i), which is

the expected reward of selecting actioni next, and then selecting greedily for the

remainder of the game (lengthT − t + 1).

We therefore defineε-ADAPT as an algorithm that sequentially approximates

a value (Rεf (T, t, i)) for each action, and then selects the action with the highest

value at each iteration. We provide the pseudo-code forε-ADAPT in Algorithm

4.3 and the MC approximation ofRεf (T, t, i) in Algorithm 4.4. Note thatD is the

required number of times each action must be selected during initialisation. With

linear rewards (see Equation (2.3)) for example,D = p + 1, such thatε-ADAPT

has estimates of the noise varianceσ2
i before the indices are calculated.

We generate past and future rewards and covariates in exactly the same way

as before, by sampling from the covariate distribution using the sample estimates

updated in Line 5 of Algorithm 4.3. Again, we retain the same covariate value at

time t, so that the agent can decidewhento explore (Line 10, Algorithm 4.3).ε-

ADAPT can then calculate the indicesRεf (T, t, i) for each action, as detailed in

Algorithm 4.4. The MC approximation simulates the game for the full duration

T , but uses only rewards gained from timet onwards to findRεf (T, t, i). In the

time-steps beforet, each action must be selected the number of times it has been

selected in the actual game, such that the uncertainty of each individual action in

the approximation mimics the true uncertainty. It is in this way thatε-ADAPT can

then determine which action to explore.
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Algorithm 4.3 ε-ADAPT for the Multi-ArmedBandit
1: C = 0 {Initialise Action count}
2: for t = 1 to T do
3: T ∗ = T − t + 1
4: Observe covariatex(t)
5: Update unknown parameters of covariate distribution
6: if t ≤ kD then
7: Select actioni wherei = 1 + t mod k {Initialisation}
8: else
9: Generate new Covariatesx′(s) ∀1 ≤ s ≤ T

10: x′(t) = x(t) {Keep same covariate at timet}
11: Generate new rewardsr′i(t) ∀1 ≤ i ≤ k, 1 ≤ t ≤ T using estimated

reward coefficientŝαi and estimated noise varianceσ̂2
i

12: for i = 1 to k do
13: ApproximateRεf (T, t, i) {Algorithm 4.4}
14: end for
15: Select actioni (1 ≤ i ≤ k) that maximisesRεf (T, t, i)
16: end if
17: Receive rewardr(t) = ri(t)
18: Updateα̂i andσ̂2

i

19: C(i) = C(i) + 1 {Update action count}
20: end for

The ε-ADAPT approach is somewhat similar to the Gittins Indices (see Sec-

tion 2.2.4), in that an index is attributed to the value of selecting each action. Our

method, however, offers three important advantages. First, we do not require that

rewards are discounted over time. Secondly, Gittins Indices do not generalise to in-

clude covariates, and are restricted to Bernoulli or normally distributed rewards for

the non-covariates setting – where their extension to other reward distributions are

non-trivial. Finally,ε-ADAPT is significantly less expensive to compute. Specif-

ically, ε-ADAPT scales linearly in the number of armsk and quadratically in the

length of the gameT – this is computationally more expensive thanε-first (which is

linear inT ), but is a necessary cost to remove the need for an exploration parameter.

Note also that the estimation of reward coefficientsαi,j for a linear reward model is

quadratic in the dimensionp of the covariatex(t), if we use recursive least squares

(see Appendix B).
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Algorithm 4.4 MC Approximation ofRεf (T, t, i) index
1: for s = 1 to T do
2: if s < t then
3: Select an actioni such that each action is selectedC(i) times whens = t

and receive rewardr′(s) = r′i(s)
4: Updateᾱi

5: else ifs = t then
6: Select actioni and receive rewardr′(s) = r′i(s)
7: Updateᾱi

8: else
9: Select actionj that maximises E

(
r′j(s)|ᾱj , x

′(s)
)

(1 ≤ j ≤ k) and receive
rewardr′(s) = r′j(s)

10: Updateᾱj

11: end if
12: end for
13: Rεf (T, t, i) =

∑T
s=t r

′(s)

Finally, the MC approximation of Algorithm 4.4 can be repeated several times,

and the indices can be averaged, to smooth the overall estimates. In practice how-

ever, when performing numerical tests we again found that 2 repeats were usually

sufficient to find the best action to explore, and more repeats had no particular extra

benefit. This is because if the optimal action is not clear from only a few MC re-

peats, then it is likely that all of the competing best actions are ‘good choices’ and

the cost of picking a marginally suboptimal action is low. Furthermore, if several

actions have high uncertainty then those not selected immediately are extremely

likely to be selected in subsequent iterations. The ordering of these selections is

therefore not of prime importance – identifying which actions and how much to

explore is more significant.

4.3 Numerical Results

In this section we test the performance ofε-ADAPT for a range of multi-armed

bandit problems. We first study the bandit with covariates problem in Section 4.3.1,

with varying numbers of actions and covariate dimensions. Then in Section 4.3.2,

we evaluateε-ADAPT for the bandit problem with no covariates, which allows a
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comparison with existing parameter-free methods (which have not been extended

for problems with side information) such as the POKER algorithm and the UCB

policy (reviewed in Sections 2.2.5 and 2.2.3 respectively). Finally, in Section 4.3.3,

we testε-ADAPT with a real data set from theContent Distribution Networkprob-

lem (CDN) where an agent must minimise the sum of delays whilst retrieving data

through a network with several sources available. This data set is used as the data

is spiky and non-normal. We can therefore test the robustness ofε-ADAPT to mis-

specified modelling assumptions and to real-world non-smooth data sets.

4.3.1 Bandit with Covariates Problem

In this section we testε-ADAPT for the bandit with covariates problem for a 2-

armed problem, a 3-armed problem (with a globally suboptimal action) and a 10-

armed problem (with a 10-dimensional covariate).

• 2-armed problem

We start with a basic 2-armed problem with reward functions and covariate distri-

bution as given in Figure 4.6. These are selected such that each action is optimal

in 50% of the covariate space – in order to maximise the difficulty of the learning

problem faced.

Table 4.7 displays the average rewards forε-ADAPT and variousε-first policies

and yet againε-ADAPT has performed best overall. Table 4.8 comparesε-ADAPT

with the optimalε-first policy whereε-ADAPT performs particularly well with the

lower range of CNR values where the MC approximation is most accurate.

Table 4.7: Average rewards with a 2-armed problem

CNR ε = 0 0.02 0.05 0.1 0.15 0.2 ε-ADAPT
200 0.876 0.894 0.888 0.849 0.803 0.755 0.906
100 0.843 0.862 0.868 0.840 0.796 0.750 0.878
50 0.780 0.808 0.826 0.813 0.778 0.737 0.828
20 0.662 0.686 0.719 0.730 0.717 0.689 0.720
10 0.529 0.569 0.598 0.625 0.625 0.609 0.609

Avg. 0.738 0.764 0.780 0.771 0.744 0.708 0.788



Chapter 4. On-line Adaptation of Exploration in Bandit Problems 93

-3 -2 -1 0 1 2

-0.2

-0.1

0

0.1

0.2

0.3

X
2
(t)

E
xp

ec
te

d 
re

w
ar

d

 

 

Action 1
Action 2

0

0.1

0.2

0.3

0.4

p(
X

2(t
))

Figure 4.6: Reward functions for a 2-armed problem where the covariate distribu-
tion (given below) is centred at the intersection of Action 1 and Action 2 and has
variance 1.

One of the key reasons for the strong performance ofε-ADAPT is the algo-

rithm’s ability to detect when best to explore. This occurs asε-ADAPT explicitly

considers the current covariate value when making each decision. To explore this

feature in more detail, Figure 4.7 shows the distribution of covariate values over

all simulations and separates them into regions of exploration and exploitation for

the first and second halves of the game. As expected, the amount of exploration

decreases and the correctness of exploitation decisions improve over time. Notice

however, that unlike Figure 4.3,ε-ADAPT is exploring more for covariate values

near the decision boundary. This occurs asε-ADAPT now needs to learn the in-

tercept of the reward plane (which was earlier fixed) and covariate values near the

decision boundary are still informative regarding the correct partitioning of the co-

variate space. This feature is verified in Figure 4.8 which shows the average pro-

portion of times each covariate value is used for exploration (using the same bins
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Table 4.8: Comparison ofε-ADAPT and optimalε-first with a 2-armed problem

CNR
Off-line (ε-first) On-line (ε-ADAPT)
Opt. ε Reward % Optimal Avg. exp.steps

200 0.03 0.895 101.2% 1.37
100 0.04 0.870 100.9% 2.45
50 0.06 0.827 100.1% 4.05
20 0.09 0.736 97.8% 6.81
10 0.11 0.629 96.8% 8.61

for the covariate as in Figure 4.7) for the two halves of the game. Covariate values

near the decision boundary are used much more for exploration than from the tails

of the distribution as exploration is not as costly here whilst still being informative.

This includes a notion of cost-inclusive exploration intoε-ADAPT and explains the

potential for higher rewards than the optimalε-first policy.
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Figure 4.7: Histograms of the covariate distribution partitioned into regions of ex-
ploration/exploitation for (a) the first 50 time-steps and (b) the final 50 time-steps,
for a 2-armed bandit problem.

• 3-armed problem

We now study a 3-armed bandit problem where the third action is globally subopti-

mal (i.e. it is suboptimal for all possible covariate valuesx(t)). This problem is of

particular interest asε-first methods do not choose which action should be explored,

and will continue to explore an action even if the agent knows it is globally subopti-

mal. It is of interest to see whetherε-ADAPT can do better and learn to not explore

suboptimal actions. We keep the same setup as for the two-armed problem and we
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Figure 4.8: Histograms of the average proportion of explorative actions, given a
particular covariate value, in (a) the first 50 time-steps and (b) the final 50 time-
steps, for a 2-armed bandit problem.

add a third action as shown in Figure 4.9. We repeat our simulations with this third

action to check how quicklyε-ADAPT can learn to never select this action.
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Figure 4.9: Reward functions for a 3-armed problem where the covariate distribu-
tion as given in Figure 4.6. Action 3 is globally suboptimal.

To this end, Table 4.9 demonstrates the performance ofε-ADAPT with respect

to the optimally-tunedε-first policy. As can be seen, the addition of a suboptimal

arm that confounds the decision making process has not affected the performance

of ε-ADAPT with respect to the optimalε-first policy. There is a slight loss in per-

formance for low-noise problems due to the extra round of initialisation required

by ε-ADAPT (to gain unbiased noise variance estimates), but a slight improvement

with high-noise problems where a good exploration policy is particularly impor-
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tant. Moreover, notice that the optimal exploration rates forε-first are lower than

with the 2-armed problem (cf. Table 4.8) as exploration is more costly (if performed

randomly), leaving the other 2 actions under-explored. Conversely,ε-ADAPT has

performed marginally more exploration than in the 2-armed problem, as there are

more actions and hence more indices to construct. This suggests that this explo-

ration is performed more intelligently than withε-first.

Table 4.9: Average rewards with a 3-armed problem

CNR
Off-line (ε-first) On-line (ε-ADAPT)
Opt.ε Reward Reward % Optimal Avg. exp.

200 0.00 0.893 0.891 99.8% 1.40
100 0.00 0.867 0.869 100.3% 2.56
50 0.02 0.835 0.835 100.0% 4.63
20 0.04 0.757 0.747 98.7% 8.80
10 0.07 0.675 0.654 96.9% 12.13

To investigate this further, Figure 4.10 shows that the suboptimal action has

been selected infrequently for exploration (even for a high-noise problem) and Fig-

ure 4.11 shows that the rate with which the suboptimal action is selected decreases

rapidly over time, irrespective of the CNR value. This demonstrates thatε-ADAPT

has learnt to adapt to the problem faced and correctly selectwhich actionsto ex-

plore, whilst also correctly controlling the overall amount of exploration. This al-

lows more exploration to be performed, particularly for high-noise problems, in

such a way that is less costly than the random exploration ofε-first andε-greedy

policies.

• 10-armed problem

So far we have demonstrated the ability ofε-ADAPT to partition the covariate space

into regions where each action is optimal, and also to learn and identify if any ac-

tions are globally suboptimal. Every bandit problem in higher dimensions (whether

that is in the number of actions or covariates) will be an extension of the above

mentioned examples. Nonetheless, to check whetherε-ADAPT is indeed robust to

high-dimensional covariates and a large number of actions, we now testε-ADAPT
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Figure 4.10: The average number of times each action is selected for exploration
by ε-ADAPT where (a) CNR = 100 and (b) CNR = 20, for a 3-armed problem.
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Figure 4.11: The average frequency of selecting the globally suboptimal action
(Action 3) over time for various CNR values with a 3-armed problem. The initial
rate of 1/3 is the average rate during the initialisation period.

for a 10-armed problem with a 10-dimensional covariate. We extend the length of

the game to 200 iterations, to allow for the initialisation period of length 100.

Table 4.10 shows results forε-ADAPT compared with the optimalε-first policy

for a range of CNR values. The optimal value ofε is close to zero for all prob-

lems – this is a feature of problems with a high-dimensional covariate (Pavlidis

et al., 2008a), as the extensive side information and long initialisation period render

additional exploration to be of no particular value.ε-ADAPT explores more as the

algorithm explores intelligently and learns not to explore suboptimal actions or with

covariate values far from decision boundaries. Moreover,ε-ADAPT yields rewards

that are again consistently close to the optimally-tunedε-first policy.
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Table 4.10: Average rewards with a 10-armed problem

CNR
Off-line (ε-first) On-line (ε-ADAPT)
Opt.ε Reward Reward % Optimal Avg. exp.

50 0 0.721 0.709 98.3% 8.9
20 0.01 0.675 0.671 99.4% 11.0
10 0.01 0.651 0.647 99.4% 12.7
5 0.02 0.616 0.601 97.6% 14.5

4.3.2 Bandit Problem without Covariates

In this section we check howε-ADAPT performs in the standard bandit problem,

with no side information. This allowsε-ADAPT to be compared with the POKER

algorithm (Section 2.2.5) and the UCB policy (Section 2.2.3), which are the only

other methods that are free of exploration parameters – but have no obvious exten-

sion to the bandit with covariates problem.

• 2-armed problem

We first testε-ADAPT for a simple 2-armed bandit problem (length 100) with nor-

mally distributed rewards (with means 0.5 and 1 and varianceσ2
η). Table 4.11 dis-

plays results for 10,000 repeats, where we also include results for variousε-first

policies, the POKER algorithm and UCB1-Normal – a UCB approach specifically

designed for normally distributed rewards (see Equation (2.10)).ε-ADAPT is the

only approach that outperforms allε-first policies when rewards are averaged and

also outperforms the POKER algorithm and the UCB policy for each value of the

noise variance – which is a particularly desirable result given thatε-ADAPT works

for a broader range of problems. The poor performance of UCB1-Normal is at-

tributed to the fact that any action is explored if it has been selected less than 8log(t)

times at timet – for a 2-armed problem this means exploration effectively occurs

for at least the first 66 iterations (and for an even longer period for problems with

more actions). This renders this policy of limited use in finite-time problems and is

hence most useful for its desirable asymptotic properties.

Table 4.12 provides a comparison with the optimalε-first policy and the POKER

algorithm for each value ofσ2
η used. Performance degrades more rapidly with the
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Table 4.11: Average rewards for a 2-armed problem with no covariates

σ2
η ε = 0 0.02 0.05 0.1 0.15 0.20 UCB1-Normal POKER ε-ADAPT

0.05 0.967 0.957 0.929 0.880 0.8300.780 0.237 0.961 0.962
0.1 0.917 0.932 0.923 0.879 0.830 0.779 0.217 0.930 0.948
0.2 0.827 0.869 0.892 0.870 0.827 0.778 0.191 0.873 0.911
0.5 0.645 0.716 0.7780.801 0.785 0.754 0.183 0.736 0.800
1 0.501 0.572 0.653 0.6910.697 0.684 0.160 0.597 0.698

Avg. 0.772 0.809 0.835 0.824 0.794 0.755 0.181 0.819 0.859

POKER algorithm as the noise increases, whereasε-ADAPT yields rewards that are

still within 95% of the optimally tunedε-first policy, even for high noise problems.

Both on-line algorithms correctly learn to explore more as the noise increases, but

POKER does this to a lesser extent, and with no more than 2 exploration steps the

algorithm performs similarly to anε-first policy withε = 0.02. ε-ADAPT, however,

explores to a more optimal level as the agent’s high levels of uncertainty are driving

exploration directly.

Table 4.12: Comparison of optimal exploration rates for a 2-armed problem with
no covariates

σ2
η

Off-line (ε-first) On-line(POKER) On-line (ε-ADAPT)
Opt.ε Reward % Opt Avg. exp. % Opt Avg. exp.

0.05 0.00 0.967 99.4% 0.65 99.4% 0.77
0.1 0.02 0.932 99.8% 0.89 101.7% 1.09
0.2 0.05 0.892 97.9% 1.27 102.2% 1.82
0.5 0.10 0.801 91.8% 1.69 99.9% 3.44
1 0.17 0.698 85.5% 1.95 96.9% 4.80

• 5-armed problem

We now testε-ADAPT for a 5-armed bandit problem to test the algorithm’s ability

to correctly choose the most important actions to explore when there is no side

information available. This time we bound the rewards in the interval[0, 1], which

allows for a comparison with the other UCB policies constructed by Auer et al.

(2002). These policies only require an initialisation period ofk rounds, which is

much shorter than with UCB1-Normal, and will therefore perform much better in

finite-time problems. In fact, it is noted in Auer et al. (2002) that UCB1-Tuned is
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the best performing UCB policy in all experiments, so we restrict our attention to

this policy in this section.

One of the best known distributions bounded in the interval[0, 1] is the beta

distribution and we choose to use this distribution to draw the rewards from each of

the 5 actions. We consider 4 different problems, where the 5 actions always have

expected rewards of 0.3, 0.4, 0.5, 0.6 and 0.7 respectively, but with each problem we

increase the variance of the beta distributions, which makes the learning problem

harder. These reward distributions are displayed in Figure 4.12.
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Figure 4.12: 4 different 5-armed bandit problems where each action is beta-
distributed. The parameters are set such that the expected reward of each action
is 0.3, 0.4, 0.5, 0.6 and 0.7 respectively. The variance of each distribution increases
with the problem number.

The average rewards ofε-ADAPT, POKER and UCB1-Tuned are displayed in

Table 4.13, whereT = 100. Note that we adjust the initialisation ofε-ADAPT such

that each action is selected once (rather than twice), and the reward variance of

each action is then estimated as being equal to the variance of all observed rewards.

If a second reward of an action is observed this estimate is then replaced by the

sample variance estimate from the past rewards for this action only. This allows for

a fair comparison with POKER and UCB1-Tuned which both require initialisation
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periods of lengthk.

In the experiments,ε-ADAPT and POKER performed close to or better than the

optimally tunedε-first policy. Both algorithms benefit from selecting which action

should be explored based on both their uncertainty and potential for increased future

reward. This is in spite of the fact that neither algorithm assumes a beta distribution,

nor rewards bounded in the interval[0, 1]. In fact, we have configuredε-ADAPT

to continue to assume normally distributed rewards, which again shows robustness

to misspecified models and explains the slight loss in performance for Problem 4

where the distributions are highly non-normal. UCB1-Tuned however, performs

poorly for all experiments, despite having the most restrictive assumptions. The

policy over-explores each time and this exploration is not driven by uncertainty –

in fact the policy explores marginally more for the easier learning problems, which

is not desirable behaviour.

Both ε-ADAPT and POKER explore more for the harder problems. On this oc-

casion, POKER has learnt the right level of overall exploration, which is in contrast

to Table 4.12, where the algorithm under-explored for a 2-armed problem. This

inconsistency is due to the choice ofδμ in the algorithm (see page 41 for a more

detailed discussion), which effectively controls the overall amount of exploration.

Although this choice removes the need for an exploration parameter, it can nega-

tively affect finite-time performance for certain types of problem. This feature is

not investigated any further in this thesis (as the POKER algorithm is not applicable

to dynamic or multi-agent decision problems) and we conclude that POKER andε-

ADAPT are comparable in terms of performance for the bandit problem with no

covariates – but we reiterate thatε-ADAPT is a much more generalisable approach.

Table 4.13: Comparison of policies for a 5-armed problem with no covariates

Problem Off-line (ε-first) UCB1-Tuned POKER ε-ADAPT
Number Opt.ε Reward % Opt Avg. exp. % Opt Avg. exp. % Opt Avg. exp.

1 0.00 0.937 64.9% 37.49 99.4% 2.01 99.7% 1.39
2 0.00 0.851 70.9% 37.03 101.8% 3.35 102.5% 5.47
3 0.02 0.765 78.4% 35.04 102.5% 5.37 101.2% 10.95
4 0.04 0.735 81.2% 33.31 99.8% 6.00 99.2% 13.00
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Figure 4.13 shows the average number of times each action is selected for ex-

ploration in Problem 2 and Problem 4 byε-ADAPT. Even for the high-variance

problem, action 4 is selected most for exploration – as this is the action that is

closest to the optimal action (action 5). Action 5 is also occasionally selected for

exploration, which occurs whenε-ADAPT has incorrectly found a different action

(usually action 4) to be optimal. This shows that the algorithm self-corrects and

does not converge to selecting sub-optimal actions as often as other algorithms and

policies might.
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Figure 4.13: The average number of times each action is selected for exploration
by ε-ADAPT with (a) Problem 2 and (b) Problem 4 for the 5-armed beta-distributed
bandit problems.

4.3.3 Real Data

Finally in this section we compareε-ADAPT with theε-first policy and the POKER

algorithm using real data. The data is from a real-worldContent Distribution Net-

work problem (CDN) where an agent must must retrieve data through a network

with several sources available (see Vermorel and Mohri (2005) for a more detailed

description, and a link to the data source which has been made publicly available).

The sources can be viewed as the actions and the delays as rewards (where a small

delay yields a high reward and vice-versa). The objective of the agent therefore is

to minimise the sum of delays from a series of retrievals.

Table 4.14 displays the average retrieval delay using each algorithm for prob-

lems ranging from 2 to 5 arms. We performed 10,000 repeats (game length 100),
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each time randomly sampling the actions used and then randomly ordering the la-

tencies (such that repeat experiments are not performed). The objective is to min-

imise the average delay, and all three methods perform relatively equally for this

data set withε-ADAPT performing marginally best overall, although theε-first fig-

ures given are from the optimally tuned parameter (given in parentheses in the ta-

ble). Notice that the optimalε value decreases as the number of actions increase,

this is because random exploration is more costly. The number of exploration steps

performed byε-ADAPT however (also given in the table in parentheses), increases

with the number of actions. As demonstrated in Section 4.3.1 with a 3-armed prob-

lem and Section 4.3.2 with a 5-armed problem, this is because the algorithm learns

to eliminate the worst actions quickly and explore more between the best actions. In

summary,ε-ADAPT works well with this real data set – despite the algorithm mod-

elling the observation noise as being normally distributed (which is not the case,

in fact the data is quite spiky). This again demonstrates thatε-ADAPT is robust to

misspecified modelling assumptions.

Table 4.14: Comparison of algorithms with real data

No. Actions ε-first POKER ε-ADAPT
2 38.18(0.05) 38.21 38.00(2.52)
3 37.22(0.02) 37.12 37.27(5.80)
4 36.50(0.01) 36.54 36.70(8.35)
5 35.02(0.00) 34.78 34.64(11.27)

Avg. 36.73 36.66 36.65

4.4 Summary

In this chapter we have constructedε-ADAPT, the first algorithm for balancing

exploration with exploitation in an on-line and incremental manner for the bandit

with covariates problem. The algorithm is based on the effective and simpleε-first

policy, but removes the need for ana priori fixed exploration parameter, using on-

line approximation techniques. We first constructedε-ADAPT for the one-armed

bandit problem and then extended this to multiple actions using an indexing ap-

proach that shares characteristics with the Gittins indices. We then performed an
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exhaustive simulation study to show thatε-ADAPT is robust to varying numbers of

actions, high degrees of noise, high-dimensional covariates and performs well with

real data. Our simulation results also show thatε-ADAPT is competitive with, and

can outperform, optimally tuned off-line policies and performs best overall when

results are averaged over experiments, for both the generalised bandit with covari-

ates setting and the commonly studied special case of the standard bandit problem

(with no covariates). We note that we have not testedε-ADAPT for non-linear re-

wards and non-normal covariates, where bootstrapping techniques could be used to

regenerate new rewards and covariates. Furthermore, we have not yet placed any

theoretical bounds on the finite-time performance ofε-ADAPT – this is reserved

for future work and discussed further in Chapter 8.

The ε-ADAPT algorithm fills an important void in the bandit literature, in that

we now have an on-line algorithm that can effectively balance the exploration-

exploitation trade-off for the bandit with covariates framework – without any fixed

exploration parameters. In the next chapter we make the important next step of ex-

tendingε-ADAPT for bandit problems with dynamic rewards. We can then revisit

Table 2.1 and analyse howε-ADAPT compares with other policies and algorithms

and indeed offers one of the most generalisable approaches across all bandit frame-

works.
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Chapter 5

Adapting Exploration in Dynamic

Environments

In the previous chapter we constructed an on-line algorithm for adapting explo-

ration in static bandit problems,ε-ADAPT. Most real world decision making prob-

lems, however, are likely to change over time – as discussed in Section 2.1.5. Fur-

thermore, many decision problems that are modelled as static problems may in fact

have some form of dynamics that are unknown or unexpecteda priori, which should

not be ignored by a reward-maximising agent. Dynamic decision making problems

are particularly challenging, however, as not only is predicting future rewards more

complicated, but also the optimal balance between exploration and exploitation is

closely related with the dynamics of the problem, and will change as the decision

problem itself changes.

In this chapter, we construct a dynamic version ofε-ADAPT, where the reward

functions of each action change over time. In dynamic environments, we require

ε-ADAPT to adapt as it playsand quickly respond to changes in the reward struc-

ture that yields significant changes to the optimality of different actions. As in the

previous chapter, we do this by capturing the uncertainty surrounding each action,

which will automatically increase if the reward process significantly changes, and

we then use this uncertainty to drive exploration on-line. In this way, theε-ADAPT

method is naturally suited to dynamic problems, but we make several significant
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changes to the static version of the algorithm for this to work.

Many policies and algorithms presented in Table 2.1 are not suitable for dy-

namic environments. Several policies, however, including SoftMax (Section 2.2.2)

and Reinforcement Learning type approaches (Section 2.2.6), can be used in a

dynamic reward setting, by estimating the expected reward of each action using

Q-learning (rather than recursive averaging). The learning rate parameterλ (see

Equation (2.15)) can be adjusted dependent on the rate of change of the reward pro-

cess –λ values close to 1 forget past data quickly and weight the reward estimate

towards the most recently observed rewards. These approaches, however, are only

designed to work for the standard bandit problem, with no side information.

This is in contrast to theε-greedy policy, which has been implemented in a dy-

namic bandit with covariates framework in Pavlidis et al. (2010). In this study, the

coefficients of linear reward functions are assumed to change over time, following

an ESTAR process (see Equation (2.4)), such that the optimal partitioning of actions

in the covariate space changes over time. The estimated reward coefficients are then

estimated using the Recursive Least Squares (RLS) algorithm with adaptive forget-

ting (Haykin, 2002, p.662). This algorithm learns to weight recent observations

more heavily dependent on therate of dynamics(i.e. the speed at which the re-

ward process is changing) – and is hence analogous to Q-learning (with an adaptive

learning rate) for the non-covariates setting. We use RLS with adaptive forgetting

with ε-ADAPT in this chapter, and hence review the algorithm in more detail in

Section 5.1.

It is argued in Pavlidis et al. (2010) thatε-greedy is a better policy for dynamic

bandit problems thanε-first or ε-decreasing as there is a constant need to explore.

In other words, in dynamic environments an agent needs to adapt over time, rather

than converge to a fixed decision rule, so constant exploration is required to keep

track of any significant changes. Theε-greedy policy still requires ana priori fixed

exploration parameter, so for the same reasons outlined in Chapter 4, we construct

an on-line algorithm that removes the need for this exploration parameter. Never-

theless, rather than extendingε-ADAPT to dynamic problems by using an on-line

approximation of the optimalε-greedy policy, we instead continue to useε-first as
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the building block of our algorithm. We adjust our approach, however, such that

the game is considered on a moving window whose size is dependent on the rate of

dynamics. This has the important advantage thatε-ADAPT can continue to make

near-optimal decisions without having to model the type of dynamics or predict

future changes in the reward structure. We also adjust the estimates of the noise

variance (which drives exploration) to include the uncertainty created by changes

to the reward functions, and not just the amount from observation noise. This al-

lows ε-ADAPT to retain the same characteristics as seen in Chapter 4 for the static

case, i.e. the algorithm determineshow much, whenandwhich actionsto explore

over time. We detail theε-ADAPT algorithm for dynamic bandits in Section 5.2.

We analyse the applicability ofε-ADAPT to dynamic bandit problems by per-

forming a thorough simulation study in Section 5.3. We first testε-ADAPT against

variousε-greedy policies for drifting reward processes in Section 5.3.1, using the

ESTAR framework. Then we construct a new bandit framework in Section 5.3.2,

where reward coefficients jump over time to new values at unknown times gov-

erned by a Poisson distribution. This tests the robustness ofε-ADAPT to suddenly

changing environments (as well as the more gradual drift of an ESTAR process).

We then show that the dynamic version ofε-ADAPT can be successfully applied to

static problems (Section 5.3.3), with only a small loss in performance as compared

with the static version analysed in the previous chapter. Finally, in Section 5.3.4 we

combine all three reward processes (ESTAR/jumps/static) in one decision-making

problem. We conclude and discuss future work in Section 5.4.

5.1 The RLS Algorithm with Adaptive Forgetting

In this section we detail the RLS algorithm with adaptive forgetting, which will

be used byε-greedy andε-ADAPT to estimate reward coefficients over time with

linear reward functions. Furthermore,ε-ADAPT uses outputs from this algorithm

to control the window sizes of the MC approximations and the on-line estimates of

the noise variance (which we outline in Section 5.2). The line-by-line algorithm is

given in Appendix B, where the significant step is the update of theλ(t) parameter,
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given by:

λ(t) =
[
λ(t− 1) + ωψ̂T (t− 1)x(t)ξ(t)

]λ+

λ−

, (5.1)

where,

ξ(t) =r(t)− α̂T (t− 1)x(t). (5.2)

λ(t) is used to effectively place more weight on recent observations. At the ex-

tremes,λ(t) → 1 corresponds to weighting all observations equally, and the stan-

dard RLS algorithm (used in Chapter 4) is recovered by settingλ(t) = 1; con-

versely asλ(t)→ 0 the algorithm places all weight on the most recent observation.

In practice, the values thatλ(t) can take are truncated, with the upper limit set close

to unity and the lower limit in the region of 0.8 (Niedzwiecki, 2000) – which is the

value we use in this chapter. The quantityλ(t) is often referred to as anexponential

weighting factoror simply as thelearning rate(Haykin, 2002), but in this thesis we

refer toλ(t) as aforgetting factor, as in Soderstrom et al. (1978) and Sayed (2003).

The RLS algorithm with adaptive forgetting propagatesλ(t) in the direction of

the gradient of the one-step-ahead residual errorξ(t) (Anagnostopoulos, 2010) –

i.e. large errors in predicting the reward (based on the current coefficient estimates)

will shift λ(t) towards the lower truncation limit and vice-versa. The rate at which

λ(t) is adjusted is controlled by the meta-learning rateω (which should be set close

to zero (Haykin, 2002)). We note that removing the need to fix the forgetting factor

a priori has removed one parameter but created three more: the meta-learning rate

ω and the upper and lower truncation limits forλ(t). This is still preferable to fixed

forgetting however, as the latter two parameters are easily fixed at practical values

(as discussed in the previous paragraph) and the meta-parameterω is much less

sensitive than changing a fixedλ valuea priori (Anagnostopoulos, 2010). More-

over, adapting the forgetting factor on-line allows the RLS algorithm to better track

reward coefficients when the optimal forgetting factor changes over time (Anagnos-

topoulos, 2010) – i.e. when the rate of change of the reward coefficients varies over

time, which is particularly useful for unpredictable dynamic environments.
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An alternative method for inferring reward coefficients is to perform ordinary

recursive least squares over a window of historic time-steps (Haykin, 2002). This

method avoids having to adapt forgetting factors on-line, but has the disadvantage

that window sizes are fixeda priori and are difficult to adapt on-line, which can

yield poor results when the rate of dynamics changes over time. Moreover, per-

forming least squares over a window requires storing past data-sets (which is not

required in RLS with adaptive forgetting), so this method is not fully-online and

can create computational issues with large data sets (for example when there is a

large volume of side information).

Another method is to use state-space modelling (Durbin and Koopman, 2001)

to try and fit the sequence of reward coefficients to a model that can then predict

future values. We choose not to follow this approach however, as we study scenarios

where the type of dynamics are unknown and unpredictable. As a result, we do not

wish to impose a model on the reward processes and prefer methods that are able

to handle all sorts of dynamics using exactly the same algorithm. For the same

reasons, we dismiss using particle filter techniques (Gordon et al., 1993).

For these reasons we use RLS with adaptive forgetting in this chapter, and to

demonstrate the benefits of using this algorithm, in Figure 5.1 we show its average

performance using the Poisson jump framework studied in Section 5.3.2. The for-

getting factorλ(t) on average takes low values immediately after jumps – as the

algorithm learns that it should forget past data quickly.λ(t) then incrementally

grows until the next jump occurs. As a result, the reward coefficient is (on aver-

age) tracked more accurately than by using the optimal rate of fixed forgetting, as

demonstrated in the figure. We note that in frameworks such as ESTAR (which

we introduced in detail in Section 2.1.5), where the rate of change is constant over

time,λ(t) will converge to the optimal fixedλ value over time (Anagnostopoulos,

2010).

When applied to the multi-armed bandit problem, the RLS algorithm with adap-

tive forgetting is applied to each action separately, such thatk separate forgetting

factorsλi(t) are used. This has the important advantage that actions with different

reward dynamics can be modelled separately and estimation is more accurate. Each
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Figure 5.1: (a) Coefficient values from a Poisson jump process with average RLS
estimates (using adaptive and constant forgetting) and (b) the corresponding av-
erage adaptive forgetting factor (with the jumps indicated by vertical grey lines).
The observation noise variance is equal to 0.1 and results are averaged over 10,000
repeats.

set of reward coefficients (and corresponding forgetting factors) are therefore not

updated at each time-step, as bandit problems are opaque and rewards from unse-

lected actions are not observed. Therefore, even a decision making problem with a

fixed rate of dynamics (such as ESTAR) requires an adaptive forgetting factor – as

the sequence of observed rewards for each action is unlikely to be regularly spaced

over time. This makes the RLS algorithm with adaptive forgetting even more ap-

propriate for dynamic bandit problems. The alternative, of trying to fill in missing

values, is an open problem and beyond the scope of this thesis.

5.2 ε-ADAPT for Dynamic Bandit Problems

In this section we show howε-ADAPT can be extended to bandit problems in dy-

namic environments. Perhaps the most obvious approach would be to design an

algorithm that models the dynamics, and then uses this model to generate future

rewards in the MC approximation of theε-ADAPT indicesRεf (T, t, i) (similarly

to Algorithm 4.4 for the static case); however, we do not take this approach for

two key reasons. First, forecasting a dynamic process is often challenging, partic-

ularly if we do not want to make any underlying modelling assumptions or impose
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any additional parameters on the algorithm. Secondly, the opacity of bandit prob-

lems means the sequence of observed rewards are usually not regularly spaced over

time (as mentioned in Section 5.1), which further complicates the use of any mod-

elling techniques. Instead, we compute the MC approximation of each index over

a smaller window and assume the decision problem is static in this window, such

that we do not need to explicitly model the dynamics. In Section 5.2.1 we detail

how this window size is determined and in Section 5.2.2 we describe other key

changes to the algorithm and provide the pseudo-code forε-ADAPT for dynamic

bandit problems.

5.2.1 Window Sizes forε-ADAPT

To avoid modelling potentially unpredictable dynamics,ε-ADAPT considers a static

game over a shorter window at each time-step. Specifically, at each time-stept, ε-

ADAPT considers a window size ofTW (t) = TB(t) + T F (t), whereTB(t) and

T F (t) are the number of past and future time-steps (respectively) used in the MC

approximation byε-ADAPT, as shown in Figure 5.2. This approach disregards

the impact of time-stepss that are in the distant past or future (s < t − TB(t) and

s ≥ t+T F (t)) at timet, which makes sense in dynamic problems, as action choices

and observed rewards in these regions are not as relevant to the current decision

problem (for suitable values ofTB(t) andT F (t)). Furthermore, this method allows

the regeneration of new covariates and rewards to be performed in a static setting

(using the current reward coefficient estimates) and avoids any issues of modelling

dynamics.

Reduced window 
Size: TW(t) = TB(t)+ TF(t) 

 
 

0   t-TB  t  t+TF  T  

Figure 5.2: Window sizes used byε-ADAPT in the MC approximation.

The main challenge now lies in selecting the window sizesTB(t) andT F (t) for

the MC approximation of each index. After all, problems that are changing rapidly
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require shorter windows than problems that are drifting slowly. To avoid introduc-

ing any further complicated algorithms or models, we can find appropriate values

for T B(t) andT F (t) from the outputs from the RLS algorithm with adaptive for-

getting, which is otherwise used to estimate reward coefficient values. Specifically,

we use the forgetting factorsλi(t) for each actionai as a metric for how fast the

decision making problem is changing overall – low values ofλi(t) suggest high

rates of dynamics (and vice-versa). We first introduce the concept ofeffective sam-

ple sizewhich is a measure of the effective number of samples being used in the

linear regression (if the problem was static and all samples were equally informa-

tive). At timet the effective sample size, denotedESSi(t), depends on all previous

forgetting factors (Niedzwiecki, 2000):

ESSi(t) =λi(ti(ni)) + λi(ti(ni))λi(ti(ni − 1)) + . . . =

ni∑

j=1

ni∏

τ=j

λi(ti(τ))

=

{
λi(t)(1 + ESSi(t− 1)) when actionai is selected;

ESSi(t− 1) otherwise.
(5.3)

whereti is the sequence of time-steps for which actionai has been selected (a total

of ni times).

• Forward-looking window size

To set the forward-looking window size,T F (t), a näıve approach would be to set

this value as
∑k

i=1 ESSi(t − 1), the sum of the effective sample sizes. This ap-

proach only makes sense if the effective sample sizes are not going to change in

future time-steps, such that the decision made at timet is unlikely to impact any of

the coefficient estimates after timet +
∑k

i=1 ESSi(t − 1). In a dynamic system,

however, the rate of dynamics can change and past forgetting factors will have an

increasingly smaller impact on future effective sample sizes. Furthermore, in the

early stages of the game, the effective sample size will be small and will naturally

increase over time (see Equation (5.3)). Consequently, we only make use of the

existing forgetting factorsλi(t) to setT F (t), as this value is the most informative

regarding the current rate of dynamics and future effective sample sizes. If the cur-
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rent rates of forgetting were to remain the same in future time-steps then it can be

seen from Equation (5.3) thatESSi(t)→ 1/(1−λi(t)) ast→∞. We can use this

result to set:

T F (t) = min

(
k∑

i=1

1

1− λi(t)
, T − t + 1

)

, (5.4)

whereT F (t) does not exceed the length of the horizonT − t + 1. This is a much

more appropriate choice forT F (t) as past dynamics are no longer being used to

predict future dynamics. Moreover, the required inverse relationship between the

window size and the current rate of dynamics is achieved, without any new param-

eters or additional modelling assumptions. A more sophisticated method could be

constructed where future sample sizes are calculated for specific future time-steps

(rather than takingt→∞), but we avoid this approach as it requires consideration

of the frequency with which each action is selected and hence involves additional

modelling of future dynamics.

• Backward-looking window size

The calculation of the backward-looking window size,T B(t), could also be set to

the sum of the effective sample sizes
∑k

i=1 ESSi(t − 1) – this would be a suitable

choice for transparent problems where all rewards are observed and every forgetting

factor can be updated at each time-step. For bandit problems, however, this is yet

again a poor choice of window size, precisely because of the irregular number of

time-steps between each observation and subsequent RLS update. For example, the

effective sample size of an action may be large (as the action previously yielded

rewards that suggested slow-moving reward coefficients and a forgetting factor that

is close to 1), but the action may not have been selected for a long time. In such

cases, there is still some uncertainty regarding the future rewards of this action, so

it should not be selected too many times during the backward-looking window. In

other words, the effective sample size of each action does not mean this action has

actuallybeen sampled this many times in recent time-steps.
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To combat this issue, we count how many times each action has been selected

in the window(t− T F (t), t− 1) and then select each action this many times in the

MC approximation. We choose to look back over the forward-looking window size

so that our two window sizes are consistent in size and respond to the current rate

of dynamics (reflected through theλi(t) values) in the same way. We make an im-

portant adjustment however, that reflects the scale of dynamics in recent time-steps.

Specifically, the count for each action is re-weighted dependent on the historicλi(t)

values inside the window – this places more weight on actions which have yielded

rewards that are not changing as fast and as a result have less uncertainty.ε-ADAPT

is then more likely to explore actions that have demonstrated recent large changes

to their reward structure. We can hence formulate the backward-looking window

size as:

TB(t) =
k∑

i=1

Cw(i) (5.5)

where,

Cw(i) = max
[
W
(
ESSi(t− 1)− ESSi(t− T F (t))

)
, D
]
,

W =
T F (t)

∑k
i=1 (ESSi(t− 1)− ESSi(t− T F (t)))

, (5.6)

whereESSi(t − 1) − ESSi(t − T F (t)) is the effective sample size within the

reduced window,W is a re-weighting constant andD is the minimum number of

samples required for unbiased coefficient estimates to exist. Each action is then

selectedCw(i) times in the backwards window of the MC approximation.Cw(i) is

required to be at leastD so thatε-ADAPT has estimates of the reward coefficients

at the end of the window. This is a reasonable imposition, however, as actions that

are only selectedD times will have high uncertainty and are likely to be selected

for exploration.

Using these values forTB(t) andCw(i) in the MC approximation creates two

desirable properties. First, actions that have not been selected recently are more

likely to be explored byε-ADAPT in future time-steps (asCw(i) is small). This
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is key, as actions that have been predictable and selected many time in the past,

but have not been selected recently, should continue to be explored. Otherwise

ε-ADAPT would be incorrectly extrapolating the observed rate of dynamics from

many time-steps in the past – which is a naı̈ve approach in dynamic environments.

Secondly,ε-ADAPT re-weights the values ofCw(i) within the window, such that

actions that are suggesting recent fast-changing coefficients are down-weighted and

vice-versa. This component allowsε-ADAPT to distinguish between actions that

have differing rates of dynamics – such that actions which may have “jumped”

to new reward coefficient values have down-weightedCw(i) values and are hence

more likely to be explored.

5.2.2 Pseudo-code forε-ADAPT

The ε-ADAPT algorithm for dynamic bandit problems is based on the same ba-

sic concept asε-ADAPT for static problems. At each time-step, however, the MC

approximation occurs on a reduced windowT W (t) = TB(t) + T F (t) ≤ T , as

discussed in Section 5.2.1. Indices (now denotedRεf (T
B(t), T F (t), t, i)) are cal-

culated for each action (with the same intention as that in Section 4.2) and then the

action with the highest index value is selected. The full pseudo-code is provided in

Algorithm 5.1, with the MC approximation of the indices given in Algorithm 5.2.

The significant changes from the static version ofε-ADAPT have been denoted in

blue type font. We note thatε-ADAPT can also be used for dynamic rewards where

there is no side information (as in the static case) by settingx(t) = 1.

There is one other key difference between the static and dynamic versions of

the algorithm: the estimates of the noise variancesσ̂2
i for each action. In the static

setting, these values are calculated by averaging the squares of the residuals in the

regression (as in Equation (3.22)). In the dynamic setting, however, the residual

errors will change over time in response to jumps or changes in the rate of drift. As

a result, we use an adaptive measure of the noise variance for each action, which is



5.2 ε-ADAPT for Dynamic Bandit Problems 116

Algorithm 5.1 ε-ADAPT for Dynamic BanditProblems
1: n = 0 {Initialise Action count}
2: for t = 1 to T do
3: Observe covariatex(t)
4: Update unknown parameters of covariate distribution
5: if t ≤ kD then
6: Select actioni wherei = 1 + t mod k {Initialisation}
7: else
8: CalculateT F (t), TB(t) andCw(i) ∀1 ≤ i ≤ k {from Equations (5.4),

(5.5) and (5.6) (respectively)} SetTW (t) = TB(t) + T F (t)
9: Generate new Covariatesx′(s) ∀1 ≤ s ≤ TW (t)

10: x′(TB(t) + 1) = x(t) {Keep same covariate at timet}
11: Generate new rewardsr′i(s) ∀1 ≤ i ≤ k, 1 ≤ s ≤ TW (t) using estimated

reward coefficientŝαi and estimated noise varianceσ̂2
i (t− 1)

12: for i = 1 to k do
13: ApproximateRεf (T

B(t), T F (t), t, i) {Algorithm 5.2}
14: end for
15: Select actioni (1 ≤ i ≤ k) that maximisesRεf (T

B(t), T F (t), t, i)
16: end if
17: Receive rewardr(t) = ri(t)
18: Updateα̂i, λi(t) andσ̂2

i (t)
19: ni(t) = ni(t− 1) + 1 andnj(t) = nj(t− 1) (for j 6= i) {Action counts}
20: end for

recursively updated (when the action is selected) as follows:

σ̂2
i (t) = λi(t)

(
ξ̂i(t)

2

ni

+
ni − 1

ni

σ̂2
i (t− 1)

)

+ (1− λi(t))ξ̂i(t)
2, (5.7)

whereξ̂i(t) = ri(t) − α̂ix(t) is the residual error at timet. This adaptive mea-

sure is equivalent to the approximation of the variance using adaptive Q-learning,

with a finite-sample adjustment for lowni values. The measure is used as it does

not require any additional parameters and is consistent with the RLS updates of the

reward coefficients. Notice that̂σ2
i (t) is no longer an estimate of the observation

noise varianceσ2
i in Equation (2.3). In fact, this measure ensures that the noise

variance estimates used in Algorithm 5.2 track both the observation error and the

measurement error resulting from dynamics. As a result recent abrupt changes in
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Algorithm 5.2 MC Approximation ofRεf (T
B(t), T F (t), t, i) index

1: for s = 1 to TB(t) + T F (t) do
2: if s ≤ TB(t) then
3: Select an actioni such that each action is selectedCw(i) times afters =

TB(t) and receive rewardr′(s) = r′i(s)
4: Updateᾱi

5: else ifs = TB(t) + 1 then
6: Select actioni and receive rewardr′(s) = r′i(s)
7: Updateᾱi

8: else
9: Select actionj that maximises E

(
r′j(s)|ᾱj , x

′(s)
)

(1 ≤ j ≤ k) and receive
rewardr′(s) = r′j(s)

10: Updateᾱj

11: end if
12: end for
13: Rεf (T

B(t), T F (t), t, i) =
∑T W (t)

s=T B(t)+1
r′(s)

the reward structure will increase overall levels of exploration. Moreover, if only

certain actions have changed (and not others), then exploration will be reserved for

these actions. The significance of using these adaptive measures is thatε-ADAPT

is now more able to determine when and which actions to explore in dynamic envi-

ronments, which we demonstrate through simulations in the next section.

Theε-ADAPT algorithm is robust to different types of dynamics including slow

drifts and abrupt jumps in the reward structures. The key reason for this robustness

is the fact thatε-ADAPT does not attempt to model dynamics, allowing a wide

range of dynamics to be handled using the same algorithm. Exploration is driven by

uncertainty – through both the noise variance estimates and the size of the windows

in the MC approximation. These values are themselves driven by the forgetting

factors, whichε-ADAPT uses to gauge the current rate of dynamics and influence

how past data should be weighted. Furthermore, the dynamic version ofε-ADAPT

can in fact be readily applied to static problems, as the forgetting factor will stay

close to 1. As a result,ε-ADAPT considers a large window size (possibly the full

window of lengthT ) in the MC approximation (see Equations (5.4) and (5.5)) and

in addition the noise variance estimate (Equation (5.7)) becomes equivalent to the
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estimate used in the static setting. Theε-ADAPT algorithm consequently becomes

almost identical to the static version of Chapter 4. We test all these claims further

in the next section where we run theε-ADAPT algorithm in static, drifting and

abruptly changing environments.

5.3 Numerical Results

In this section we test theε-ADAPT algorithm against theε-greedy algorithm for

various dynamic multi-armed bandit problems. We compare againstε-greedy as

this is the only other policy or algorithm that can be extended to dynamic settings

and can also include side information (see Table 2.1). First we consider the ESTAR

process considered in Pavlidis et al. (2010) where reward coefficients drift around

an equilibrium value over time (Section 5.3.1). We then construct a new dynamic

framework where reward coefficients jump to new values at unknown times, as gov-

erned by a Poisson distribution (Section 5.3.2). We also check whetherε-ADAPT

for dynamic bandit problems can perform well in static problems, by comparing

performance against the results of the previous chapter (Section 5.3.3). Finally, we

test a novel 3-armed setting where the rewards of each action follows one of the

above mentioned processes (ESTAR, jumps or static), to check whetherε-ADAPT

can learn to respond to unpredictable and random dynamics and intelligently ex-

plore the best actions at the correct time-steps (Section 5.3.4).

5.3.1 ESTAR Process

The ESTAR process, which we introduced in Section 2.1.5, is a drifting process

which jumps back to an equilibrium value if the process drifts far in either direction.

The ESTAR process has been used to model exchange rates in Kilian and Taylor

(2003), for example. This mean-reverting process ensures that the decision problem

does not degenerate to one where one action is globally optimal. In our simulations

we setγ = 1 to allow enough drift such that the optimal partitioning of covariates

changes throughout the game, but not so much that one action often dominates the
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covariate space. The parameterσ2
υ dictates the speed of change and Pavlidis et al.

(2010) recommends values in the range[0, 0.2], as higher values are too fast to track

(especially as bandit problems are opaque). Otherwise, the frequency of change

becomes much faster than the frequency of selection and the sampled process looks

like white noise. In our experiments we considerσ2
υ values of 0.01 and 0.1, to

consider both slow and fast changing processes.

Figure 5.3 demonstrates how the optimal partitioning of the covariate space

evolves over 50 time-steps with the twoσ2
υ values for a 2-armed problem. The

equilibrium value of the coefficients and the covariate distribution are as given in

Figure 4.6. Whenσ2
υ = 0.01, the decision boundary drifts slowly over time, but

jumps back to the equilibrium value of -0.5 (as att ≈ 15) if there is large drift.

In contrast, whenσ2
υ = 0.1, the decision boundary jumps around frequently but

occasionally shows periods of slower moving drift. By testing these two ESTAR

processes, we examine the robustness ofε-ADAPT to different ratios of drifts and

jumps in the dynamic bandit problem.
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Figure 5.3: The optimal partitioning of covariates in a 2-armed dynamic bandit
problem where coefficient values change according to an ESTAR process, where
the rate of change is (a)σ2

υ = 0.01 or (b) σ2
υ = 0.1. The equilibrium coefficient

values and the reward functions are the same as those used in Section 4.3.1.

We testedε-ADAPT against variousε-greedy policies for the 2 ESTAR pro-

cesses over 10,000 repeats. We repeated simulations across a range of CNR val-
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ues1, where the equilibrium coefficient values and the covariate distribution are the

same as those used in the static setting in Section 4.3.1. Throughout this section,

we extend the length of game toT = 1, 000, as this gives the decision making

problems enough time to change from their initialised states. The results of the

simulations are reported in Table 5.1, where optimal off-line exploration rates are

found numerically to 2 decimal places. The performance of each policy/algorithm

and the amount of exploration required increases as bothσ2
υ increases and the CNR

decreases, as the dynamic decision boundary becomes harder to track. In fact, ex-

ploration is even required when there is no observation noise (CNR= ∞), as the

unknown dynamics still create uncertainty. We include results forε-first to demon-

strate the expected poor performance of this policy in dynamic problems.ε-ADAPT

andε-greedy perform much better in comparison – as both approaches explore both

actions throughout the game and adapt to the changing decision boundary more

quickly. In fact,ε-ADAPT performs marginally better, despite not requiring an op-

timally tuned exploration parameter – this is attributed to the fact thatε-ADAPT

will learn on-line to not explore for costly covariate values, and allows on-line ap-

proaches to outperform optimally tuned off-line policies.

Table 5.1: Average rewards for the ESTAR Process

σ2
υ CNR

ε-greedy ε-first ε-ADAPT
Opt.ε Reward Opt.ε Reward %Optimal Reward % Optimal Avg. exp.

0.01 100 0.01 0.506 0.01 0.505 99.6% 0.518 102.4% 6.93
0.01 10 0.04 0.426 0.01 0.422 99.0% 0.423 101.6% 7.88
0.01 1 0.08 0.273 0.05 0.268 98.4% 0.525 101.9% 10.22
0.1 ∞ 0.06 0.191 0.02 0.185 96.8% 0.196 102.7% 8.45
0.1 100 0.06 0.192 0.02 0.189 98.6% 0.197 102.8% 8.46
0.1 10 0.06 0.183 0.02 0.175 95.7% 0.185 101.5% 8.82

To investigate the strong performance ofε-ADAPT further, in Figure 5.4 we

display the average forgetting factors and noise variance estimates over time, where

CNR= 10 (with σ2
i = 0.1) andσ2

υ = 0.01. All parameters appear to converge to

an equilibrium value, though note thatσ̂2
i converges to a value that is higher than

1Note that CNR values track changes to the observation noise varianceσ2
i (as defined in Equation

(4.3)) and not the noise variance of the ESTAR processσ2
υ which determines the rate of dynamics.
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the true observed noise variance. As mentioned earlier, this is because the estimate

includes the uncertainty from the dynamics and is used to encourage the necessary

increased levels of exploration. We display the average rate of exploration over

time in Figure 5.5 for the range of CNR values, whereσ2
υ = 0.01. The average rate

quickly converges to a stable value for the entirety of the problem (as the window

sizes and noise variance estimates also converge to fixed values), except for the fi-

nal time-steps as the horizon draws near. Note that the rate of dynamics is constant

with an ESTAR process and as a resultε-ADAPT has learnt to explore consistently

throughout the game. Moreover, the strong performance of the algorithm suggests

that the windows sizes used in Algorithm 5.2 are correctly calibrated with the ob-

served rate of dynamics.
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Figure 5.4: The average value of (a)λi(t) and (b)σ̂2
i (t) over all time-steps where

CNR = 10 andσ2
υ = 0.1, as calculated byε-ADAPT using RLS with adaptive

forgetting, for an ESTAR dynamic 2-armed problem.

5.3.2 Poisson Jumps

In this section we construct a different type of dynamic bandit problem, namely

one where reward coefficients jump to new values at unknown times, and otherwise

remain at the same values. This type of reward process can exist in financial time

series for example, where rewards of various instruments are often directly linked

to macro-economic factors such as interest rates (Cont and Tankov, 2004), or in cli-

matological data gathered from remote sensors (Jensen et al., 1995). In this section,

we select each coefficient uniformly from the interval[−1, 1] and the time between
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Figure 5.5: The average rate of exploration over time byε-ADAPT for various CNR
values whereσ2

υ = 0.01, for an ESTAR dynamic 2-armed problem.

jumps is drawn from a Poisson(ζ) distribution. The resulting process is displayed in

Figure 5.1(a) where we demonstrated that RLS with adaptive forgetting is an appro-

priate technique for tracking changes to coefficient values. In our simulations in this

section we useζ values of 50 and 200 (and various CNR values) to test the robust-

ness ofε-ADAPT to detect the presence of jumps in the data. We fix the timings of

the jumps to be the same in all simulations, but only to accurately demonstrate the

average behaviour of the algorithm before and after jumps occur – the coefficients

of the reward functions are not fixed over the experiments. Table 5.2 displays the

results ofε-ADAPT against the optimalε-greedy (andε-first) policy over 10,000

repeats. Againε-ADAPT has correctly identified how much to explore (exploring

more for problems that have frequent jumps or are noisy) and has outperformed the

optimal ε-greedy (andε-first) policy. Notice that the optimalε for these two poli-

cies is always small, even for high-noise problems – this is because large degrees

of exploration are only worthwhile if performed immediately after jumps.

Figures 5.6-5.8 demonstrate whyε-ADAPT performs well with this type of re-

ward process. Immediately after jumps occur (as indicated by the grey vertical

lines), the average forgetting factor decreases and the average noise variance es-
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Table 5.2: Average rewards for the Poisson Jump Process

ζ CNR
ε-greedy ε-first ε-ADAPT

Opt.ε Reward Opt.ε Reward %Optimal Reward % Optimal Avg. exp.
50 100 0.06 0.674 0.00 0.649 96.3% 0.686 101.8% 4.39
50 10 0.06 0.614 0.00 0.580 94.5% 0.619 100.9% 4.97
50 1 0.07 0.522 0.01 0.479 91.7% 0.525 100.5% 6.49
200 100 0.03 0.848 0.00 0.825 97.3% 0.861 101.5% 2.65
200 10 0.03 0.829 0.00 0.805 97.1% 0.846 102.0% 3.22
200 1 0.03 0.777 0.01 0.757 97.4% 0.787 101.2% 5.29

timate increases (see Figure 5.6). As a result,ε-ADAPT calculates indices over

shorter windows with more uncertainty – which makes exploration more likely, as

shown in Figures 5.7 and 5.8 for the two jump frequencies. Between the jumps,

the rate of exploration decreases asε-ADAPT learns the new coefficient values and

the uncertainty decreases.ε-ADAPT therefore performs better thanε-greedy as the

algorithm learns when to explore more (rather than exploring at a constant rate), as

driven by the varying degrees of uncertainty.
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Figure 5.6: The average value of (a)λi(t) and (b)σ̂2
i (t) over all time-steps where

CNR = 10 and ζ = 200, as calculated byε-ADAPT using RLS with adaptive
forgetting, for a Poisson jump dynamic 2-armed problem.

5.3.3 Static Problems

In this section we check whether the dynamic version ofε-ADAPT can be applied

to static bandit problems. We repeat all simulations from the 2-armed bandit with
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Figure 5.7: The average rate of exploration over time byε-ADAPT for various CNR
values whereζ = 200, for a Poisson jump dynamic 2-armed problem.

0 200 400 600 800 1000
0

0.05

0.1

0.15

0.2

0.25

0.3

t

ra
te

 o
f e

xp
lo

ra
tio

n

 

 
CNR = 100
CNR = 10
CNR = 1

Figure 5.8: The average rate of exploration over time byε-ADAPT for various CNR
values whereζ = 50, for a Poisson jump dynamic 2-armed problem.

covariates problem studied in Section 4.3.1, this time including the dynamic version

of ε-ADAPT. The results are displayed in Table 5.3. As can be seen, there is only

a marginal loss in performance with the dynamic version ofε-ADAPT which is

attributed to the fact that the algorithm must learn to use the full window in the cal-
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culation of the indices in Algorithm 5.2 – which will happen if the forgetting factor

is as close as possible to 1 (i.e. the upper limit of the forgetting factor truncation).

Table 5.3: Comparison of static and dynamic versions ofε-ADAPT with a static
2-armed problem

CNR
Staticε-ADAPT Dynamicε-ADAPT

Reward Avg. exp.steps % Optimal Avg. exp.steps
200 0.906 1.37 100.0% 1.26
100 0.878 2.45 100.0% 2.23
50 0.828 4.05 100.0% 3.60
20 0.720 6.81 99.8% 5.85
10 0.609 8.61 99.1% 7.65

To investigate this further, in Figure 5.9 we show the average forgetting factors

over time (for the high noise problem, CNR= 10) and the average rate of explo-

ration for a range of CNR values. Despite the high levels of observation noise, the

forgetting factor does not (on average) deviate far from its initial value of 1, which

explains the comparable performance with the static version ofε-ADAPT. As a re-

sult, the average rate of exploration decays at similar rates as were seen in the static

setting.
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Figure 5.9: (a) The average value ofλi(t) for CNR = 10 and (b) the average rate of
exploration for a range of CNR values, as calculated byε-ADAPT using RLS with
adaptive forgetting, for a static 2-armed problem.
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5.3.4 Mixture of Processes

Finally, in this section we testε-ADAPT with a novel 3-armed problem, where we

combine the previous considered settings, such that one action has a static reward

function and the others have reward coefficients that change according to a Poisson

jump (η = 50) or ESTAR process (σ2
υ = 0.01)2. We do this to test the robustness of

ε-ADAPT to scenarios where each action demonstrates different types of dynam-

ics. We display the expected rewards for two cases in Figure 5.10, against various

ε-greedy andε-first policies, where each case assigns different observation noise

variance to each action. In both cases,ε-ADAPT performs best overall as it treats

each action differently – which happens as the forgetting factors and noise vari-

ance estimates are different for each action (as demonstrated earlier in this section).

Note that the optimal off-line determined value ofε for the ε-greedy is high (in

both cases), as the combination of ESTAR and Poisson jumps renders the decision

problem as highly dynamic.
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Figure 5.10: Expected rewards forε-ADAPT and variousε-greedy andε-first poli-
cies where the orderings of the observation noise variances are (a) static> ESTAR
> jumps and (b) jumps> ESTAR > static. CNR values (which determine the
variance) are fixed at 2.5/10/40 in each figure.

2We use the same covariate distribution as shown in Figure 4.6. The equilibrium coefficients of
the ESTAR action are as in Action 1 of Figure 4.6. The Poisson Jump action is as defined in Section
5.3.2 and the static action has reward coefficientsα0 = −0.1 andα1 = 0. These values are selected
such that each action has likely regions of optimality in the covariate space.



Chapter 5. Adapting Exploration in Dynamic Environments 127

5.4 Summary

In this section we have extended theε-ADAPT algorithm to dynamic bandit prob-

lems where reward coefficients change over time. Theε-ADAPT approach is nat-

urally suited to dynamic problems. Nevertheless, the extension involved several

significant changes to the static version – including changing the window size of

the MC approximations and changing the estimate of the noise variance, to include

the uncertainty of dynamics. These adjustments were performed by using outputs

from the RLS with adaptive forgetting factor. Specifically, we used the forgetting

factor as an indicator of the rate of dynamics and combined this with sample sizes

and observation errors to measure the rate of uncertainty and use this to drive ex-

ploration on-line.

Our simulations indicate thatε-ADAPT is an effective algorithm for dynamic

bandit problems, including processes where reward functions can jump or drift over

time (or combinations of the above). In addition,ε-ADAPT can be successfully ap-

plied to the static bandit problems investigated in the previous chapter. Moreover,

ε-ADAPT is not a tailor made algorithm for specific settings (such as jumps, drifts

etc) – exactly the same algorithm has been applied to each decision making prob-

lem we have considered, and performance is consistently strong.ε-ADAPT makes

no attempt to model the dynamics which makes the algorithm robust to all sorts of

unpredictable changes in the environment. We consider this to be significant, partic-

ularly as several real-world phenomena exhibit unpredictable behaviour that models

have been unable to predict or capture (such as financial data or climate models).

For dynamic reward processes that can be modelled or predicted, state-space mod-

els or particle filters can be used, the implementation of this withinε-ADAPT is

reserved for future work (see Chapter 8).

We note that in this chapter we have considered dynamic bandit problems where

rewards change over time and not the covariate side information. In fact, as noted

in Pavlidis et al. (2010),“a time varying covariate distribution plays no role in

the transformation of a static sequential decision making problem into a dynamic

problem”. This is because the optimal partitioning of a covariate space is unaf-



5.4 Summary 128

fected by time varying covariates alone. For these reasons we have considered a

fixed covariate distribution, though we note thatε-ADAPT could be extended to

such cases by using adaptive forgetting to draw new covariates (for the MC approx-

imations) based on recent observations only.ε-ADAPT could also be extended to

problems where new actions arrive or leave over time – a framework studied by

Whittle (1981) for the non-covariates setting, which was calledarm-acquiring ban-

dits. Actions that arrive could be assigned high levels of uncertainty which makes

subsequent exploration very likely. We reserve such extensions for future work.

The dynamic version ofε-ADAPT does not require any exploration parameters

– the parameters used in the RLS algorithm with adaptive forgetting are required for

inferring coefficient values, we just happen to exploit outputs from this algorithm to

drive exploration on-line. In addition, the computational complexity ofε-ADAPT

is now bounded linear in time – as the window size of the MC approximations

are constrained by the upper truncation limit of the forgetting factorsλi(t). For

short-length static problems however, the window size will usually consider the full

window (lengthT ), so the resulting algorithm still usually scales quadratically in

time. Nevertheless the dynamic versionε-ADAPT is actually more computationally

efficient than its static counterpart, especially when the rate of dynamics is high.

To bring the findings of the last two chapters together, we insert our static and

dynamic version ofε-ADAPT into Table 2.1, which cross-compared the existing

algorithms and policies in the literature. We display this amalgamated table in Table

5.4. ε-ADAPT has filled a void in the bandit literature – the need for an algorithm or

policy that is free of exploration parameters and can be applied to settings that are

dynamic and/or include side information. We also note that the dynamic version of

ε-ADAPT could be applied without knowledge of the game-lengthT , though this

will marginally affect performance.

This concludes the analysis of single-agent problems in this thesis. In the fol-

lowing chapters, we investigate the exploration-exploitation trade-off in multi-agent

decision making problems. We will study the nature and meaning of exploration in

multi-agent domains and attempt to extend theε-ADAPT approach to the various

frameworks we consider.
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Chapter 6

Exploring in a Multi-Agent Bandit

Problem

In the previous chapters we have studied the exploration-exploitation trade-off in

single-agent sequential decision making problems, where one agent repeatedly se-

lects between a finite set of actions. For the remainder of this thesis, however,

we study the exploration-exploitation trade-off inmulti-agentsequential decision

making problems, where multiple interacting agents must simultaneously choose

between actions in the same environment. Multi-agent sequential decision making

problems are ubiquitous and have been widely applied to applications as diverse as

online auctions (Rogers et al., 2007b), sensor networks (Wang and Cheng, 2008)

and disaster management (Ramchurn et al., 2008) amongst many others. In fact,

it is likely that most real-world sequential decision making problems are likely to

include at least one other decision maker, whose actions cannot be ignored. For

these reasons, we investigate the role of exploration-exploitation in the multi-agent

domain, and attempt to extend theε-ADAPT algorithm to various important frame-

works.

In this chapter we study the impact of communication between agents, to inves-

tigate the importance of agentsexploringtheircommunicationdecisions, as well as

their action decisions, in order to learn the best actions to select in an unknown en-

vironment. We investigate communication problems because, in many multi-agent
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scenarios, information relevant to the decision problem is likely to be distributed

amongst agents. This information, however, can often be communicated between

agents during the decision making process. Consider a disaster management sce-

nario, for example. Emergency service vehicles may have differing information

about the locations of injured civilians and the outcomes of different actions are

unknowna priori, but these agents can communicate such information to achieve a

better coordinated solution (at an associated time cost). Agents can therefore learn

and explore through communicationandaction decisions.

To study the role of exploration-exploitation in multi-agent communication prob-

lems (such as the disaster management scenario), we construct a novel framework

which is an extension of the single-agent bandit with covariates problem. Specifi-

cally, we construct a multi-armeddecentralisedbandit problem, where each agent

controls a (non-overlapping) subset of the available actions. In addition, each agent

only observes a subset of the covariate, representing its partial view of the world.

Furthermore, we allow agents to initiate communication between themselves (at a

cost) exchanging potentially useful covariate values that were previously unknown

to the agents.

The communication of information between agents is an important feature of

many scenarios modelled by multi-agent systems. Furthermore, the use of the

bandit setting allows us to specifically investigate the relationship between com-

munication and the exploration-exploitation trade-off. This is because in a bandit

setting the covariate distribution and its relationship to the rewards of each action

are unknown and must be learnt over time. Each agent must therefore learn when

and which agents to communicate with, to avoid unnecessary and costly commu-

nication exchanges. The exploration-exploitation trade-off is hence important to

both communicationand action decisions in multi-agent sequential decision mak-

ing problems. In this chapter, we show that this trade-off can be effectively balanced

using adoubleε-greedyor doubleε-first policy, at the cost of introducing a second

exploration parameter. We then go on to show that both exploration parameters can

be effectively tuned on-line by extending theε-ADAPT algorithm.

The structure of this chapter is as follows. In Section 6.1 we provide a brief
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background on multi-agent sequential decision making and communication prob-

lems, and the role of the exploration-exploitation trade-off therein. Then in Section

6.2, we introduce the novel multi-agent bandit framework, which allows communi-

cation between agents. In Section 6.3 we construct an effective policy for commu-

nication and action selection decisions that addresses the exploration-exploitation

trade-off. In particular, we propose a novel method of valuing communication be-

tween agents, called VOC (Value Of Communication), which finds the best myopic

communication decision. We also propose novel exploration policies for this prob-

lem called doubleε-greedy and doubleε-first, which consider the exploration of

communication decisions as well as action decisions. We test the doubleε-first pol-

icy empirically in section 6.4, and discuss the significance of these findings. Finally,

in Section 6.5 we extend theε-ADAPT algorithm to this multi-agent framework and

demonstrate empirically that exploration of both action and communication deci-

sions can be effectively adapted on-line, without any prefixed exploration parame-

ters, at a slight cost to the reward. Summary remarks follow in Section 6.6.

6.1 Multi-Agent Sequential Decision Making and Communica-

tion Problems

Multi-agent sequential decision making problems have been extensively studied

in Markov games(Littman, 1994; Wang and Sandholm, 2003), otherwise known

asstochastic games(Shapley, 1953), and also inDecentralised Markov Decision

Processes(Dec-MDPs) andDecentralised Partially Observable Markov Decision

Processes(Dec-POMDPs) (Bernstein et al., 2002). These frameworks, where the

decision problem changes dependent on the previous state and the subsequent se-

lection of joint actions only, can be seen as multi-agent extensions of Markov De-

cision Processes (MDPs) (Finzi and Lukasiewicz, 2004), which we introduced in

Section 2.1.6. Most literature in these frameworks has assumed the reward function

is known, so there is no exploration-exploitation trade-off. In other literature, how-

ever, the reward function has been treated as unknown, but in these cases the explo-

ration policies used are almost exclusively borrowed from the bandit literature. For
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example, Hu and Wellman (2003) and Wang and Sandholm (2003) useε-greedy,

Carmel and Markovitch (1999) use SoftMax exploration and Littman (1994) com-

binesε-greedy with Q-learning.

The background provided in Chapter 2 therefore also serves as a background to

balancing the exploration-exploitation trade-off in multi-agent sequential decision

making problems, and many of the algorithms and policies can be applied without

any adjustments or changes. A notable addition to the multi-agent literature, how-

ever, isR-MAX (Brafman and Tennenholtz, 2003), which allocates an optimistic

initial estimate to each state and joint action in a stochastic game and updates these

estimates until they are assumed to be known (after a sufficient number of visits).

This method, which is a multi-agent extension of Q-learning with optimistic initial

estimates (Section 2.2.6), ensures under-explored states and joint actions are more

likely to be visited in the future. As with Q-learning however, R-MAX requires

several parameters that affect finite-time performance, and in addition it is not clear

how to extend this algorithm to dynamics or problems with side information. For

these reasons we continue to use the simpler and more flexibleε-greedy approach

as the building block of the off-line and on-line policies constructed in this chapter.

Communication between agents in multi-agent sequential decision making prob-

lems has been previously considered in Bayesian games (Gerardi, 2004) which are

games where information about the rewards of other agent’s actions is unknown or

incomplete. The extension to Bayesian games where agents can communicate is

based on the idea ofcheap talk(Farrell and Rabin, 1996), where agents can freely

communicate without directly affecting the rewards of the game to each agent. This

form of communication is therefore strategic, as agents can attempt to mislead other

agents with false information for potential self-benefit (Farrell, 1987). Communi-

cation in games has also been considered in network formation games (see Jackson

et al. (2003) for a review) where agents must decide whether or not to form links

with each other to form a network. In some studies of this problem agents have

been allowed to communicate preferences to each other, either at no cost (Aumann

and Myerson, 1988) or with a one-off cost (Bala and Goyal, 2000), before any links

are made. We note that in this chapter, we consider a different communication
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framework to that studied in Bayesian games or Network formation games. Specif-

ically, communication is costly and incurred every time information is passed – this

is more realistic in various applications, for example in sensor networks (Krause

et al., 2006) and disaster management (Ramchurn et al., 2008).

Finally we note that multi-armed bandit problems have been recently studied in

a decentralised multi-agent context in Liu and Zhao (2010) and Gai and Krishna-

machari (2011). In this framework, a number of distributed agents compete over

the set ofk actions, but there is no communication, so agents can “collide” and

select the same action. In this case, the agents that collide either receive no re-

ward or share the reward from that action in some arbitrary way. The application

in mind for this framework is agents contending for opportunistic spectrum access

over multiple channels in cognitive radio networks. Our framework in this chapter

is very different, as we allow agents to communicate, and do not consider the case

of conflicts over actions.

6.2 The Multi-Agent Bandit Framework

Consider ak-armed bandit and letK denote the set of actions, where|K| = k.

Now consider a set of agentsN (|N | = n), where each agentai
1 controls a disjoint

subsetCi of K for i = 1, . . . , n (i.e. the assignment of actions to agents forms a

partition of the set of actions):

n⋃

i=1

Ci = K and Ci ∩ Cj = ∅ ∀i, j, i 6= j.

Each action is controlled by one agent only, thus avoiding potential conflicts in

action selection decisions. In this version of the bandit problem, each agentai can

select any number of actions from subsetCi at each time step. Each actionc ∈ K

has a reward functionrc(t) based on ap-dimensional covariatex(t) with added

observation noise, as used in Chapter 4 (see Equation (4.3)):

1In this chapter agents (rather than actions) are denotedai.
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rc(t) = fc(x(t), αc) + ηc(t). (6.1)

The covariatex(t) is generated from a fixed multivariate distribution, with pa-

rameters unknown to the agents. The coefficient vectorsαc for c = 1, . . . , k are

predetermined and also unknown to the agents, and precisely what the agents must

learn. We consider fixed coefficient parameters (rather than dynamic) so that we

can explicitly focus on the challenges inherent in multi-agent exploration, rather

than confounding the decision problem with the difficulties of tracking dynamic

decision boundaries (as investigated in the previous chapter).

Each agentai only observes a subsetyi(t) of x(t) at timet, representing the

agent’s partial view of the world. To keep the framework flexible, the subsets of

agents’ covariate information can be overlapping and there may be covariate infor-

mation that is not observed by any of the agents at certain time-steps. Agentai

can request a specific missing covariate valuey∗(t) from another agentaj that has

observed this value at a cost denotedΠ(y∗(t)|ai, aj , x(t), t). Agents can request

several covariate values from several different agents and the communication cost

can be dependent on any function ofx(t) or t, which agents are communicating or

the number of communications (which can also be limited by bandwidth capacity

(Rogers et al., 2005)). This is called the “communication stage” and is an important

component of extending bandit problems to realistic multi-agent sequential decision

making problems.

The agents are assumed to know the communication cost function (and any

bandwidth limitations)a priori and to also know which covariate values other

agents are observing. Given this, each agent can request unknown covariate values

from the least costly agent that has this information. The agent is therefore assumed

to know the cost for requesting each subsety′i(t) ⊆ yC
i (t) by communication. The

setyC
i (t) is the compliment ofyi(t), but crucially does not contain any covariates

that are not observed by any agents (and hence cannot be communicated). The total
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communication cost is then denotedΠ(y′i(t)) and is given by:

Π(y′i(t)) =
∑

y∗(t)∈y ′i(t)

Π(y∗(t)|ai, aj(y∗(t)), x(t), t) (6.2)

whereaj(y∗(t)) is the least costly agent from which to acquirey∗(t). We assume

this total cost is known for each subsety′i(t) so that we can explicitly focus on the

exploration-exploitation trade-off rather than learning to estimate communication

costs on-line. In the simplest case, however, the communication cost is propor-

tional to the number of covariates requested and is independent ofx(t) or t and

is equal and known to each agent – this would often be the case that the cost of

communication is only dependent on the volume and not on the type of information

passed.

Agents do not have to communicate ‘fully’ with other agents and exchange all

their covariate information – this is costly and unnecessary (particular when agents

share overlapping information). This framework is richer and more general as it

allows for partial communication between agents, which is why in our algorithms

agentai optimises over the set of unknown covariatesyC
i (t) rather than over the set

of other agentsaj (i 6= j). For applications where agents can only fully communi-

cate, then the agent must then search over a restricted subset ofyC
i (t).

Agents are assumed to receive covariate values truthfully if they are requested

– this is feasible because there is no strategic communication in this framework (as

opposed to the “cheap talk” principle discussed in the previous section). The re-

ward function, as given in Equation (6.1), is independent of the actions of all other

agents, which is the simplest version of a multi-agent communication problem. The

interaction between agents therefore occurs at the communication level, and the ac-

tion selection problem is essentially still a single-agent problem. This allows us to

explicitly consider the impact of communication in this chapter, and its relation-

ship to the exploration-exploitation trade-off. Reward functions that are affected by

the actions of other agents are considered in the next chapter, where we study the

relationship between exploration-exploitation and game theoretic reasoning.

Returning to the communication problem in this chapter, after the communica-
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tion stage, each agentai must then make the decision as to which actions to select

from Ci. The agent only receives rewards from actions that are selected, and zero

otherwise. Each agent therefore faces a series of interdependent one-armed bandit

problems (which are all tied to the same covariate value). This is called the “action

stage”. Each agent therefore has a “two-stage” decision process which happens

strictly sequentially – although effective policies must consider the impact of one

decision on the other. Algorithm 6.1 outlines the sequential decision process each

agent follows.

Algorithm 6.1 Two-stage decision process for agentai

1: for t = 1 toT do
2: Observeyi(t) ⊆ x(t)
3: Choose covariates valuesy′i(t) ⊆ yC

i (t)
4: Incur Communication costΠ(y′i(t)) {See Equation (6.2)}
5: Choose actions to selectSi(t) ⊆ Ci

6: Receive rewardrai
(t)

7: end for

The cumulative reward,Rai
(T ), is the sum of the rewards received at each time-

step,rai
(t), which in turn is the sum of all rewards observed at timet minus the

communication cost, i.e.:

Rai
(T ) =

T∑

t=1

rai
(t) , rai

(t) =
∑

c∈Si(t)

rc(t)− Π(y′i(t)), (6.3)

whereSi(t) is the subset of actions selected by agentai at timet. The communi-

cation cost has been placed in the same currency as the reward, so that each agent

only needs to maximise one function (namelyRai
(T )), which again allows a clear

analysis of the interaction between communication and the exploration-exploitation

trade-off. With this reward function, an agent should select an action if the expected

reward is positive. This creates a series of interdependent one-armed bandit prob-

lems with covariates. The interdependence occurs because the rewards are based on

the same covariatex(t) and the benefit of receiving one additional covariate value is

shared between all actions, but the communication cost is only incurred once by the
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agent. Therefore, the various policies and algorithms for the one-armed bandit with

covariates problem, introduced in Section 2.2, are applicable to this framework. In

particular, theε-greedy andε-first policies are used to construct the doubleε-greedy

and doubleε-first policies (respectively), which are introduced in more detail in the

next section.

Each agent has to learn the reward function parameterαi despite only observ-

ing a subset of the full covariatex(t). There are thus two learning problems for the

agents: the estimation of parameters subject to noisy data and a missing value prob-

lem. These have to be handled concurrently with reward seeking behaviour and thus

increases the challenge that each agent faces. High volumes of communication and

action selection lead to faster learning, however this can lead to negative rewards –

so the agent faces an exploration-exploitation trade-off. Furthermore, the additional

communication decision makes the problem of finding a good policy more subtle,

in that communication and action decisions have to be jointly considered. A novel

method is therefore needed, as the exploration-exploitation of both action and com-

munication decisions have not previously been considered in the same framework.

This is discussed in more detail in the next section.

6.3 A Policy for Action and Communication Decisions

The inclusion of multiple communicating agents to the bandit problem introduces

a two-stage decision process for each agent, as outlined in the previous section. In

the communication stage, agents choose which missing covariates they would like

to observe, and then request these values at a corresponding cost. There are es-

sentially two reasons for an agent to communicate: the myopic gain to an agent’s

subsequent action decision, and the improved learning of unknown parameters. The

myopic gain can be estimated using theValue Of Communication(VOC) which is

constructed in Section 6.3.1. The agent can also explore communication decisions

to speed up the learning of unknown parameters. To this end, we constructdouble

ε-greedyanddoubleε-first policies in Section 6.3.2, which both encourage explo-

ration by communication (where the greedy decision is to pick the optimal myopic
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communication action using the VOC). Similarly, in the action stage, agents have

the same two reasons to select actions: the myopic gain to the reward function and

the improved learning of unknown parameters. We show that the optimal myopic

action can be found automatically, as part of the VOC, and action exploration forms

part of the doubleε-greedy/ε-first policy.

Finally, whether or not an agent has communicated or acted, parameter esti-

mates must be updated from the observations. In a bandit problem with fully ob-

served covariates this could be done using regression for a linear reward function (as

in Chapter 4), however in the multi-agent framework an agent must handle missing

data during parameter estimation. The agent has two basic choices of how to deal

with missing data (Scheffer, 2002). The first is case deletion, which in standard in-

ference problems can be either listwise (deleting an entire case if it contains missing

data) or pairwise (cases are only deleted if they contain missing data in the analysis

being carried out). The second method is imputation, which involves estimating the

missing values dependent on other values that have been observed. In the context

of our problem, the agent estimates all the reward coefficients using linear regres-

sion, so deletion would have to be listwise and hence this method throws away a

lot of data when the agent does not observe the full covariate. For this reason, we

use imputation. Specifically, we adopt a maximum likelihood approach and use the

Expectation-Maximisation (EM) algorithm (outlined in Section 6.3.3) to update es-

timated reward coefficients in an effective and computationally efficient way, in the

presence of missing data.

We note that in the previous chapter we dismissed using algorithms to predict

future rewards from missing data in a dynamic rewards setting. In a static setting,

however, dealing with missing data is much simpler as models for dynamics are not

required, which is why we use the EM algorithm.

6.3.1 The Value of Communication

Agentai observes a subset of covariatesyi(t) at timet. After the communication

stage the agent will observe a subset of covariateszi(t) = yi(t) ∪ y′i(t). Agentai
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controls a subset of actionsCi ⊆ K and must decide which actionc ∈ Ci to select.

If agentai has a reward function given by Equation (6.3) then the agent would select

actionc ∈ Ci if E(rc(t)|zi(t), α̂c) > 0, where:

E(rc(t)|zi(t), α̂c) = A +
∑

xd(t) 6∈zi(t)

α̂c,d

∫
xd(t) p(xd(t)|zi(t))dxd(t)

A = α̂c,1 +
∑

xd(t)∈zi(t)

α̂c,dxd(t), (6.4)

whererc(t) is given by Equation (6.1) and p(xd(t)|zi(t)) is the probability ofxd(t)

givenzi(t). Equation (6.4) is the myopic reward to agentai for selecting actionc

at timet. Agentai can then find the optimal subset of actionsSi,t ⊆ Ci to select at

time t using Algorithm6.2.

Algorithm 6.2 Optimal myopic action for agentai at timet

1: Observezi(t) = yi(t) ∪ y′i(t)
2: for c ∈ Ci do
3: Calculate E(rc(t)|zi(t), α̂c) from Equation (6.4)
4: if E(rc(t)|zi(t), α̂c) > 0 then
5: c ∈ Si(t)
6: end if
7: end for
8: Select actionsSi(t) ⊆ Ci

9: Receive rewardrai
(t) {as given in Equation (6.3)}

Before agentai communicates, its expected reward at timet is the Value Of

Silence(VOS) given by:

VOSai
=
∑

c∈Ci

max(0, E(rc(t)|yi(t))) . (6.5)

Note that the VOS is bounded below by zero, corresponding to the agent selecting

no actions at timet, which occurs when all actions are expected to yield a negative

reward.

Agentai can observe a subset of covariatesy′i(t) ⊆ yC
i (t) by communication at

a costΠ(y′i(t)) (as defined in Section 6.2). If agentai knows the joint distribution
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of xt then it can find the VOC for the subsety′i(t):

VOCai,y ′i(t)
=
∑

c∈Ci

VOCc,y ′i(t)
− Π(y′i(t)), (6.6)

where,

VOCc,y ′i(t)
=

∫
max



0, B +
∑

xd(t)∈y ′i(t)

α̂c,dxd(t)



 p(y′i(t)|yi(t))dy′i(t), (6.7)

B = α̂c,0 +
∑

xd(t)∈y i(t)

α̂c,dxd(t) +
∑

xd(t) 6∈zi(t)

α̂c,d

∫
xd(t) p(xd(t)|yi(t))dxd(t).

The VOC calculates whether the probability that the expected reward of an ac-

tion is positive or negative, after observingy′i(t). In the instances where this is

negative the agent would not select this action and thus receive no reward, but still

incur the costs of communication. The VOC is therefore the expected reward to

agentai at timet, with myopic action selection, if it first requests to observe the

covariate valuesy′i(t). Agentai can maximise this value over all possible subsets

y′i(t) ⊆ yC
i (t) (not including the empty set,y′i(t) = ∅, which is the VOS given

in Equation (6.5)), to find the maximum VOC value. The agent then requires this

value to be bigger than the VOS, otherwise the agent should not communicate at all.

If the communication cost is zero then trivially the maximum VOC would always

correspond to choosing the full subsety′i(t) = yC
i (t). In effect, each agent must

learn to partition the space of observed covariate values into regions where, in each

region, a specific subset of unknown covariates is the optimal subset to observe

through communication.

Algorithm 6.3 outlines how agentai can find the optimal subset of covariates

to request by communication using the VOC. The number of possible subsets of

y′i(t) grows exponentially with the size ofyC
i (t), so this search is computationally

intensive for large volumes of unobserved side information. In such cases, however,

approximations such as forward induction could be used and furthermore, the size
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of y′i(t) is likely to be restricted by bandwidth in many applications, which will also

restrict the size of this computation.

The solution presented in Algorithm 6.3 is only optimal myopically, as the ben-

efits of exploration have not been factored in. Furthermore, the VOC can only be

found precisely with perfect knowledge of the conditional densities of the covari-

ates and the coefficients of the reward function. In reality, these have to be learnt

by the agents over time, and hence the VOC can only be approximated on-line.

Additional exploration of communication decisions can therefore have a positive

effect on the cumulative reward, as this improves future communication decisions

(through the increased learning of the VOC boundaries), which in turn will improve

future action decisions. Exploration of actions can benefit an agent’s reward also, in

the same way as with the single-agent bandit problems studied in Chapters 3-5. As

a result, in the next section we outline an effective exploration policy, that combines

exploration through communication and actiondecisions.

Algorithm 6.3 Optimal myopic communication decision for agentai at timet using
the VOC

1: Observeyi(t) ⊆ x(t)
2: for all y′i(t) ⊆ yC

i (t) do
3: for all c ∈ Ci do
4: Find VOCc,y ′i(t)

{Equation (6.7)}
5: end for
6: VOCai,y ′i(t)

=
∑

c∈Ci
VOCc,y ′i(t)

− Π(y′i(t))
7: end for
8: Find VOSai

{Equation (6.5)}
9: if maxy ′i(t)

VOCai,y ′i(t)
> VOSai

then
10: Request covariatesy′i(t) by communication
11: else
12: Do not communicate
13: end if

6.3.2 The Doubleε-greedy and Doubleε-first Policies

The communication and action policies detailed in the last section are optimal my-

opic policies, and are thus purely greedy (or exploitative). Nevertheless, in order to
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improve the accuracy of these decision over time, the agents may have to perform

additional exploration to aid their learning. We note, however, that actions by the

agents can be explorative as well as exploitative, particularly if the VOC encourages

a high volume of communication, or if expected reward calculations encourage a

high proportion of actions to be selected. Nonetheless, in a noisy environment with

unknown parameters it is likely that additional exploration may benefit the agents.

Exploration by communication can be easily increased by requesting more covari-

ate values than the VOC suggests. Exploration by action, similarly, can be increased

by selecting additional actions, even though their expected rewards are negative.

To encourage exploration by both communication and action, a doubleε-greedy

policy is proposed, which uses theε-greedy policy separately for both decision pro-

cesses. We use theε-greedy approach for the same reasons as before: its simplicity,

applicability to broad frameworks and its consistent strong performance in finite-

time experiments. In the context of this multi-agent framework, we can construct

a doubleε-greedy policy, where covariates that are not selected for communication

using the VOC are still requested – each with probabilityε1, and actions that are

not selected because of their positive estimated expected reward are still selected –

each with probabilityε2. This policy is formalised in Algorithm 6.4. The optimal

parameters,ε1 andε2, are inter-dependent and will depend on factors such as the

communication cost, the degree of noise in the data, and the unknown coefficients

of the rewardfunction.

Algorithm 6.4 Doubleε-greedy Policy
1: Setε1 andε2

2: for t = 1 to T do
3: Observeyi(t) ⊆ x(t)
4: Find optimal subset of covariatesy′i(t) ⊆ yC

i (t) to request through commu-
nication using VOC{Using Algorithm 6.3}

5: Request each covariatey∗(t) that is an element ofyC
i (t), but not an element

of yi(t) or y′i(t), with probabilityε1

6: Find optimal subset of actions to selectSi(t) ⊆ Ci {Using Algorithm 6.2}
7: Select each action that is inCi, but not inSi(t), with probabilityε2

8: Update unknown parameters
9: end for
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A similar policy can be devised using theε-first policy. Specifically a doubleε-

first policy, where all covariate values are requested and all actions are selected for

the firstε1T andε2T iterations (respectively). Afterwards, the agent is greedy and

uses the VOC exclusively for communication decisions and maximises expected

reward for action decisions. In the static bandit problems studied in Chapters 3 and

4, we stated thatε-first would perform better thanε-greedy as the agent has more

future time-steps to benefit from past exploration. This would not necessarily be the

case in the multi-agent bandit problem however, as the agent might gain less myopic

value in receiving all covariates for the firstε1T iterations for example, rather than

having fewer additional covariate values spread throughout the game. For this rea-

son we propose both policies and note that the stronger performing policy is likely

to be dependent on the number of actions each agent controls and the dimension of

unobserved covariates.

6.3.3 Dealing with Missing Data

The agents have to iteratively update parameter estimates of the reward functions

and covariates (Line 8, Algorithm 6.4). With linear reward functions, the coeffi-

cients can be updated using recursive least squares estimation (see Appendix B).

The agents, however, do not always observe all covariate values, even after com-

munication. This induces a missing value problem and the agent has the choice of

imputing these missing values or deleting observations if they contain missing data

(as discussed on page 139). Due to the potential high occurrence of missing data,

deletion methods are not practical for this framework. We therefore impute the data

using a likelihood approach. To this end, an Expectation-Maximisation (EM) algo-

rithm (Dempster et al., 1977) in conjunction with least squares estimation can be

used, to iteratively update each agent’s parameters. The EM algorithm is a com-

putationally efficient and robust method for dealing with missing data, that can be

practically implemented even if the number of agents/variables are high – which is

important for the application of multi-agent systems to realistic scenarios.

In more detail, the EM algorithm is a procedure for maximum likelihood infer-
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ence in the presence of missing data. Starting from an initial guess of the values

for the parameter vector,θ(0), it employs an iterative update step, each time choos-

ing θ(i + 1) to maximise the expected log-likelihood of the observed data, where

the expectation is taken over the missing data with respect to the current estimate

θ(i). Once the change in expected log-likelihood is smaller than some pre-defined

threshold then the algorithm terminates and missing values have been imputed.

6.4 Numerical Results

In this section we test the framework and proposed policies in a 2-agent version

of the problem. We consider the case where each agent controls one action and

observes a different covariate value – specifically, the covariate is 3-dimensional

(the first dimension is always equal to 1 as in Equation (2.3)) and one agent always

observes the second dimension and the other the third. This is perhaps the simplest

possible formulation of the multi-agent framework and is considered firstly to illus-

trate the selection behaviour of the policies and secondly to show that exploration

is needed even though the decision problem is relatively simple. The behaviour of

systems with more agents and higher-dimensional covariates will share characteris-

tics with this case study, but the detailed study of which is reserved for future work.

In the 2-agent problem, the reward function of agentai (i = 1, 2) is given by:

ri(t) =
3∑

j=1

αi,jxj(t) + ηi(t), (6.8)

The coefficient valuesαi,j are predetermined and unknown to the agents. The co-

variate valuesx2:3(t) are i.i.d. draws from a bivariate normal distribution:x2:3(t) ∼

N (μ, Σ), where the parameters are unknown to the agents (recall thatx1(t) = 1).

In our experiments we set:

μ = 0, Σ =

(
1 0.4

0.4 1

)

, α =

(
0.1 0.3

0.2 0.2

)

,
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such that the covariate values are weakly correlated and each agent can therefore

benefit from accurately learning the VOC. Agentai only observesxi+1(t) at each

iteration. The noiseηi(t) is also normally distributed and i.i.d., with zero mean and

variance 0.05 (such that CNR = 20). The length of play considered is 100 iterations,

long enough for the agents to start exploiting, but short enough such that the agents

must learn quickly and effectively.

6.4.1 Application of the VOC

The optimal myopic communication decision can be found if the agentai knows

the values ofαi,1, αi,2, μ andΣ; however the agent must learn these over time. In

this 2-agent scenario, the VOC from Equation (6.6) becomes (see Appendix C.1):

VOCai
= (α̂i,1 + α̂i,i+1xi+1(t) + α̂i,j+1c1) Φ

(

−sign(α̂i,j+1)
c3 − c1
√

c2

)

+ α̂i,j+1

√
c2

2π
exp

(
−(c3 − c1)

2

2c2

)

− Π, (6.9)

whereΠ is the communication cost (assumed constant) and,

c1 =μ̂j +
Σ̂i,j

Σ̂i,i

(xi+1(t)− μ̂i),

c2 =Σ̂j,j −
Σ̂2

i,j

Σ̂i,i

,

c3 =
−α̂i,1 − α̂i,i+1xi+1(t)

α̂i,j+1

.

for i = 1, 2 (wherej = 2, 1), whereΣ̂i,j is the{i, j}th entry of the matrix̂Σ (and

similarly for other vectors and matrices).Φ(x) is the cdf of the standard normal

distribution and the valuesc1 andc2 are the mean and variance, respectively, of the

unknown covariate,xj+1(t), given the known covariate,xi+1(t). The VOC is there-

fore only dependent on the parameters that agentai needs to learn, the observed

covariatexi+1(t) and the communication cost. The VOS from Equation (6.5) sim-
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ply becomes (see Appendix C.1):

VOSai
= max(0, α̂i,1 + α̂i,i+1xi+1(t) + α̂i,j+1c1) (6.10)

Agent ai communicates if the VOC is greater than the VOS. To this end, Figure

6.1(a) displays VOCa1 and VOSa1 for different values ofx2(t) and for various com-

munication costs (which are set as constant values), with the distribution ofx2(t)

plotted underneath. There is a region where the VOC is higher than the VOS (ex-

cept with the highest communication cost) and the agent should communicate when

the observed covariate value falls in this region. The agent can find this “region of

communication” over time, by learning the unknown parameters correctly. In this

region the unknown covariate value will be informative as to whether the expected

reward is positive or negative. Conversely, for covariate values outside the region

of communication, the optimal action decision is clear enough (as the agent knows

whether the reward is likely to be positive or negative) and it is hence not worth

incurring the communication cost to verify this. As expected, the region of com-

munication is larger for smaller communication costs.

Figure 6.1(b) demonstrates how the agent, using the doubleε-first policy, has

learnt the region of communication in relation to each communication cost for a

particular replication of the 2-armed problem. Furthermore, the agent has made the

correct action and communication decisions for most observed covariate values and

has therefore learnt to partition the covariate space correctly. The points highlighted

by green squares show the points where exploration by communication has occurred

(i.e. the agent has been willing to explore outside of the region of communication

to aid its learning). For other parameter values the region of communication may

not exist (if the covariance between the known and unknown covariate is high for

example) or be infinite (if the communication cost is zero for example). Neverthe-

less, this region does not have to be explicitly found as the VOC only needs to be

calculated for the covariate values observed at each iteration.
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Figure 6.1: (a) VOCa1 and VOSa1 over different values ofx2(t) for varying con-
stant communication costs (with the distribution ofx2(t) plotted below) and (b) the
decisions by agenta1, using a doubleε-first policy, over 100 iterations withε1 and
ε2 set at 10% with Π = 0.05 (top) andΠ = 0.1 (bottom), for a 2-armed problem.
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6.4.2 Performance of the Doubleε-first Policy

In the previous section, we outlined how the agents can approximate the VOC and

demonstrated that this approximation can be made accurately with some degree of

exploration. In this section, we explore the effect of the doubleε-first policy on the

agent’s cumulative reward. We use the doubleε-first policy for this problem, rather

than the doubleε-greedy policy, as for the 2-dimensional case considered in this

section, the doubleε-first policy will perform better on average. This is because

there is only one explorative choice for both communication and action and it is

beneficial to do these explorative steps early in the game.

To this end, Figure 6.2 shows the average cumulative reward to agenta1 (over

10,000 repeats) for various communication costs, using the doubleε-first policy

over a grid of values forε1 andε2 ranging between0 and25%. The optimal com-

bination of parameters is denoted with a cross. Notice that the agent benefits from

exploring by both communication and action – greedy selection in either decision

process leads to poor performance. Additionally, there is a correlation betweenε1

andε2 that is dependent on the communication cost. As expected, the amount of

optimal exploration by communication (ε1), is inversely related to the communica-

tion cost. To a lesser extent, the amount of optimal exploration by action (ε2) is

positively correlated with the communication cost; this is due to the fact that a to-

tal amount ofglobal exploration is required, and as exploration by communication

becomes more costly, the agent requires more exploration by action to perform a

reasonable amount of learning (and vice-versa).

6.5 Implementing theε-ADAPT Algorithm

In the previous section we demonstrated that the agents can effectively balance the

exploration-exploitation trade-off in this multi-agent framework by using a dou-

ble ε-first policy. This off-line policy requires an additional exploration parameter,

however, which further restricts the feasibility of implementing this policy in any

practical domain. To this end, in this section we extend theε-ADAPT on-line algo-
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Figure 6.2: The average cumulative reward to agenta1, for various communication
costs: a) 0.05, (b) 0.075, (c) 0.1 and (d) 0.125, using a doubleε-first policy, where
0 ≤ ε1, ε2,≤ 25%.
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rithm of Chapter 4 to the multi-agent bandit framework, where communication and

action decisions are adapted on-line. The main challenge lies in removing the need

for both exploration parameters, without incurring too much loss in the overall re-

ward (as compared with the optimally tuned off-line policy). We describe how this

can be done in Section 6.5.1 and then report on some simulations in Section 6.5.2.

6.5.1 Adapting Communication and Action Decisions On-Line

As with the doubleε-greedy/ε-first approach (see Algorithm 6.4), we continue to

select myopically optimal communication and action decisions (using the VOC).

Rather than requesting additional covariates and selecting additional actions with

some predefined probability, we now determine this rate of exploration using on-

line MC approximations that mimic the decision problem faced. For the single-

agent one-armed bandit problem of Chapter 4, we regenerated past covariates and

rewards and then simulated the rest of the game to see which policy performed

better: greedy selection or one more round of exploration. The likelihood of ex-

ploration was driven by the agent’s level of uncertainty, which was linked to the

amount of noise and the sample size of the unknown action.

In the multi-agent setting, however, this method of approximation would require

repeating past covariates and rewards with missing values (due to the partially-

observed side information) and then using embedded EM algorithms at each step

of the MC approximation. This is computationally demanding and very problem

specific. Furthermore, there is the complication of the two-stage decision process

and deciding whether to explore by communication or action. To overcome these

issues, we instead perform an MC approximation of a decision problem that issim-

ilar to the one faced by each agent, in terms of the amount and type of exploration

required. Specifically, we capture the effect of increased occurrence of missing

values by increasing the noise variance estimates used in the MC approximation,

such that missing values create more uncertainty which in turn encourages more

exploration. We then do not need to regenerate the problem with partial covariate

observations and can instead regenerate with a fully-observed covariate (such that
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we also do not need to compute VOC values), but with increased reward observation

noise. This method of approximation transforms the multi-agent problem into the

simplest sequential decision making problem (i.e. a bandit problem) which is then

a much easier task for the agent in terms of balancing exploration with exploitation.

The key step is therefore how to calculate the noise variance estimates for each

actionc ∈ Ci to incorporate the uncertainty from missing data. We can do this at

time t using the following estimate:

σ̂2
ηc

(t) =
1

nc

(
(nc − 1)σ̂2

ηc
(t− 1) + ξ2

)
, (6.11)

ξ =



rc(t)−
∑

xd(t)∈zi(t)

α̂c,dxd(t)−
∑

xd(t) 6∈zi(t)

α̂c,dE(xd(t)|zi(t))



 ,

when the action is selected (and kept the same otherwise).σ̂2
ηc

(t) is therefore the

estimatedpredictionerror given the observed information. The instantaneous pre-

diction error,ξ, will on average be higher when there are more missing covariates

(xd(t) 6∈ zi(t)), which increases the value ofσ̂2
ηc

(t). Note that we did something

similar in Chapter 5 with dynamic problems, where we regenerated a similar prob-

lem that was static with increased noise variance for highly dynamic problems.

In addition, we saw in the previous section that the optimal rates of exploration

by communication and action are interdependent and the balance between the two

optimal rates are tied to the communication cost. For this reason, we perform two

types of MC approximation: one for exploration by communication and the other

for exploration by action. We outline theε-ADAPT algorithm in Algorithm 6.5,

with the communication MC approximation given in Appendix C.2 (Algorithm C.1)

and the action MC approximation identical to that given in Algorithm 4.2 for single-

agent one-armed problems2. The MC approximations are similar, but the crucial

difference between them is the increased cost of communication, which is explicitly

factored in with exploration by communication (line 23, Algorithm C.1).

2Note that in Line 5 of Algorithm 4.2, we keep the true covariate at timet. This may be not fully
observed in the multi-agent problem, so we draw unknown values conditional on observed values.
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Algorithm 6.5 ε-ADAPT for a Multi-Agent BanditProblem
1: for t = 1 to T do
2: Observeyi(t) ⊆ x(t)
3: Find optimal subset of covariatesy′i(t) ⊆ yC

i (t) to request through commu-
nication using VOC{Algorithm 6.3}

4: Request additional covariates,z∗i (t), that maximise the function
Rεf (T

∗, z′i(t)) {Algorithm C.1}
5: Find optimal subset of actions to selectSi(t) ⊆ Ci {Algorithm 6.2}
6: Calculate approximations forRεf (T

∗, 0) andRεf (T
∗, 1/T ∗) for remaining

actions{Algorithm 4.2}
7: Select actions whereRεf (T

∗, 0) < Rεf (T
∗, 1/T ∗)

8: Update noise variance estimatesσ2
ηc

(t) {Equation (6.11)}
9: Update unknown parameters{Using EM-algorithm with missing values}

10: end for

6.5.2 Numerical Results

In this section we repeated the experiments of Section 6.4 to compareε-ADAPT

against the doubleε-first policy, to see how our on-line algorithm performs against

an optimally tuned off-line policy. The results are displayed in Table 6.1.ε-ADAPT

has yielded a high reward that is approximately 95% of the optimal doubleε-first

policy, despite the difficult challenge of removing two exploration parameters. The

table also shows thatε-ADAPT yields a significant improvement as compared with

the greedy policy or when only one decision process is optimally explored (so that

there is only one exploration parameter and the other is set to zero). The perfor-

mance ofε-ADAPT could be potentially further improved if missing values were

incorporated, but as discussed earlier, this would slow the algorithm down consid-

erably. Furthermore, this would be anad hocversion ofε-ADAPT, whereas the

algorithm proposed in this section retains the same characteristics as the algorithms

used in previous chapters, which demonstrates the algorithm’s flexibility.

Table 6.1: Comparison ofε-ADAPT and off-line policies for a multi-agent problem
Π Reward Opt. Dbl.ε-first ε1 = ε2 = 0 (greedy) Opt.ε2, ε1 = 0 Opt. ε1, ε2 = 0

0.05 0.545 93.6% 140.7% 116.6% 129.9%
0.075 0.468 95.9% 136.0% 121.3% 126.5%
0.1 0.427 96.5% 124.2% 120.8% 111.2%
0.125 0.415 95.2% 118.3% 118.3% 101.3%
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To gain more insight, Figure 6.3 demonstrates the rate of exploration (by com-

munication and action) over time. Both types of exploration decay over time, as

they should, and moreoverε-ADAPT explores more by communication for low

communication costs (and vice-versa). This demonstrates thatε-ADAPT can learn

how to explore, in addition to when, which action and how much (as demonstrated

in previous chapters).
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Figure 6.3: The average rate of exploration byε-ADAPT (by communication and
action) over time for high and low communication costs, for a 2-armed problem.

6.6 Summary

In this chapter we have proposed a new framework for modelling sequential deci-

sion making problems in multi-agent systems. We have extended the multi-armed

bandit problem to investigate the exploration-exploitation trade-off in a multi-agent

context. Specifically, we have investigated sequential decision making of commu-

nication decisions between agents, which is relevant and applicable to many other

multi-agent problems.

In more detail, we have constructed novel algorithms for selecting communi-

cation and action decisions. The exploitative element of these algorithms involve

using the Value of Communication (VOC) to myopically value the optimal com-
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munication and action decisions. The explorative element was first designed using

a doubleε-greedy or doubleε-first policy, which randomly performs more com-

munication or selects additional actions, to benefit the agent’s learning. Later we

extended theε-ADAPT algorithm (constructed in Chapter 4) to this framework,

which removes the need for any prefixed exploration parameters.

In an empirical evaluation of a 2-agent problem, both the doubleε-first and

ε-ADAPT methods significantly outperformed the greedy policy. Moreover, both

methods, which combine exploration by both communication and action, perform

better than doing exploration by one method and not the other.ε-ADAPT performs

close to the optimal doubleε-first policy, despite having to remove two prefixed

exploration parameters. Furthermore, we have shown that agents can benefit from

exploring by communication – agents should hence not communicate with other

agents for myopic gain only. This novel framework has therefore developed new

ideas about balancing exploration-exploitation in a multi-agent setting where re-

wards of actions are unknowna priori. The framework also includes the possibility

of agents communicating, which is central to many real world scenarios modelled

by MAS.

This framework is novel in that exploration-exploitation of joint action and

communication decisions are considered simultaneously, however the framework

is restrictive in that the interaction of agents is constrained to communicating side

information – there is no interaction of rewards between agents. We consider this

more realistic feature in the next chapter, where we consider 2×2 repeated games

with unknown rewards, which introduces game theoretic considerations into the

exploration-exploitation trade-off.
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Chapter 7

Learning and Exploring in 2-player

Repeated Games

In the previous chapter we extended bandit problems to multi-agent systems such

that agents could communicate information prior to subsequent action selections.

This extension is adistributedbandit problem (a phrase first coined by Claus and

Boutilier (1998)), where the control of actions and knowledge of side information is

partitioned between participating agents in the system. In this framework, however

the reward functions of the individual agents are not explicitly affected by the ac-

tions of other agents – which is not realistic in a number of multi-agent applications.

If individual mobile sensors are controlled by agents in a distributed network, for

example, the expected value of one sensor choosing to move to a certain area is de-

pendent on the locations of other sensors (Stranders et al., 2009). Alternatively, the

expected reward for an action made by an emergency service vehicle in a disaster

is likely to be dependent on the actions of other vehicles (Ramchurn et al., 2008).

To this end, in this chapter we consider a different extended bandit framework

where the rewards to each agent are explicitly affected by the actions of others.

Specifically, we study a 2-agent problem, where each agent has two available ac-

tions, but all expected rewards are unknowna priori. This extension of the bandit

problem is therefore a 2-player repeated game, which has been extensively studied

for general games in Fudenberg and Maskin (1986) and Abreu (1988), amongst
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many others, and also for specific case games, such as theIterated Prisoner’s

Dilemmaproblem in Axelrod (1987), for example. The key difference between

this literature and our framework is that we assume expected rewards for differ-

ent sets of joint actions are unknowna priori and must be learnt over time. This

is more realistic in several agent applications (as discussed in Chapter 6) and cre-

ates an exploration-exploitation trade-off for each agent. Moreover, the study of

repeated games with unknown rewards incorporate ideas from both decision the-

ory and game theory, allowing a detailed study of how the exploration-exploitation

trade-off should be combined with game theoretic reasoning in finite-time multi-

agent problems. Note that in this chapter we refer to action selection policies as

strategies, to acknowledge the relevant strategic and game theoretic considerations

made by each agent.

The repeated games with unknown rewards framework has been well studied

(Claus and Boutilier, 1998; Chapman et al., 2011; Babes et al., 2009; Marden et al.,

2009) but findings have been restricted to proving convergence to Nash equilib-

ria (defined in Section 7.1) in 2-player games for various homogeneous strategies

in self-play. There have been few inroads however in finding strategies that max-

imise reward in finite time against both homogeneous and heterogeneous oppo-

nents, which is the focus of this chapter, in particular as this is more relevant and

applicable to real-world multi-agent scenarios. As noted in Claus and Boutilier

(1998), the problem of learning rewards in games can also be viewed as a dis-

tributed bandit problem – we therefore continue to use bandit exploration policies.

We restrict our attention to two-agent, two-action problems (also known as 2×2

games), to focus on the fundamental relationship between learning, exploration and

strategic interaction. We note, however, that this characterisation is still useful in

a wider setting (with more agents and actions) as, in particular, many real-world

situations can be modelled in this way (Govindan and Wilson, 2010). Specifically,

the actions of all opposing agents are represented as the action of one agent and all

sub-optimal actions are treated as the alternative action to the optimal.

In more detail, in this chapter we first examine the impact of both agents us-

ing non-explorative strategies such as greedy and fictitious play (defined in Section
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7.2). Specifically, we show that in the presence of unknown rewards, these strategies

can exhibit behaviour quite different from the known rewards setting. We explain

this behaviour by proving that non-explorative strategies can converge to non-Nash

equilibria for 2×2 games. We then consider introducing exploration to one agent,

initially by using ε-greedy, and demonstrate the benefits against a non-explorative

opponent. Specifically, we provide simulation results from various motivating ex-

amples, to show that an explorative agent canexploit by exploring– i.e. gain a

higher reward at the expense of the opponent’s, with a suitably tuned exploration

parameter. This motivates extending theε-ADAPT algorithm to this framework,

to see if exploration can be adapted on-line without the need for ana priori tuned

exploration parameter.

This chapter is structured as follows. Section 7.1 outlines the framework and

case study games used in this chapter. Section 7.2 defines two separate types of

multi-agent learners: individual and joint-action learners. We also propose several

different strategies for selecting actions. Section 7.3 investigates some of our case

study games with strategies using no exploration and Section 7.4 provides a proof

showing the possible convergence of such strategies to non-Nash equilibria. Sec-

tions 7.5 and 7.6 investigate our case study games but this time with the agents

using explorative strategies. In Section 7.7 we extendε-ADAPT to this framework

and perform some simulations against off-line strategies. Summary remarks follow

in Section 7.8.

7.1 Framework and Case Study Games

Agent A and agent B repeatedly play a stage game where they both choose between

Action 1 and Action 2 at each time-step,t = 1, 2, 3, . . . , T . Agentk = {A, B}

receives a rewardrk(t), where:

rA(t) = a(i, j) + η(t), (7.1)

rB(t) = b(i, j) + ν(t), (7.2)
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wherei, j ∈ {1, 2} are the actions picked by agents A and B respectively, at timet.

η(t) andν(t) are noise processes which are i.i.d. Gaussian and centred at zero with

varianceσ2
η andσ2

ν respectively. The expected reward matrix of the stage game

follows Table 7.1. The agents’ objective is to maximise their cumulative reward

Rk(T ) =
∑T

t=1 rk(t). The agents observe their own reward and the action selected

by the opponent, but not the reward received by the opponent.

AgentB
Action 1 Action2

Agent A
Action 1 a(1, 1), b(1, 1) a(1, 2), b(1, 2)
Action 2 a(2, 1), b(2, 1) a(2, 2), b(2, 2)

Table 7.1: Expected reward matrix of the 2×2 stage game

Reward matrices wherea(i, j) = −b(i, j) (∀i, j) are referred to as zero sum

games (and non-zero sum games otherwise). ANash Equilibrium(Nash, 1951)

exists when each agent is playing a strategy such that no individual agent can

benefit from a unilateral change to their strategy. In a 2×2 game, for example,

a(1, i) > a(2, i) andb(j, 1) > b(j, 2) (∀i, j) corresponds to a Nash Equilibrium of

both agents selecting Action 1 – referred to as apure strategyNash Equilibrium.

On the other hand, whena(1, 1) > a(2, 1), a(1, 2) < a(2, 2), b(1, 1) < b(1, 2)

andb(2, 1) > b(2, 2) (for example), then the Nash Equilibrium is for both agents

to play amixed strategy(a randomised strategy where Action 1 is selected with

probabilityp1 and Action 2 with probability1− p1). Conversely,a(1, 1) > a(2, 1),

a(1, 2) < a(2, 2), b(1, 1) > b(1, 2) andb(2, 1) < b(2, 2) corresponds to 2 or 3 possi-

ble Nash Equilibria: two pure (both agents selecting Action 1 or both agents select-

ing Action 2) and possibly one mixed (ifa(1, 1) > b(1, 1) anda(2, 2) < b(2, 2) for

example). There is at least one Nash Equilibrium in any 2×2 game (Nash, 1951).

The number and type of Nash equilibria is dependent on the structure of the

expected reward matrix, and there are many possible such configurations in a 2×2

game (three of which were detailed in the previous paragraph). For the remainder of

this chapter we focus our attention to two well-studied repeated games to illustrate

the performance of our various strategies. Together, these games characterise con-
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flicts that frequently arise between reward-maximising agents. In later sections, we

will see that both games demonstrate differing sub-optimal and non-Nash behaviour

with non-explorative strategies and furthermore, the optimal level of exploration is

markedly different due to the underlying reward structure. This motivates the in-

clusion of both case study games. Note that each case study game represents the

expected reward for each joint action – the actual reward received is observed with

noise. In addition, the rewards in each case study game are set such that random

action selection by both agents yields an expected reward of zero.

• Case Study Game 1: Matching Pennies

Consider the following zero-sum stage game, known as matchingpennies:

AgentB

Action 1 Action2

Agent A
Action 1 1,−1 −1, 1

Action 2 −1, 1 1,−1

Agent A wishes to match (both agents selecting the same action) and agent B prefers

not to match. There is hence no pure strategy Nash equilibrium, instead the Nash

equilibrium is a pair of mixed strategies where both agents select each action with

probability 0.5.

• Case Study Game 2: Prisoner’s Dilemma

We also consider the following non-zero sum stage game, known as prisoner’s

dilemma:
AgentB

Action 1 Action2

Agent A
Action 1 1, 1 −2, 2

Action 2 2,−2 −1,−1

The Nash equilibrium is for both agents to “defect” and select Action 2 (a pure

strategy Nash equilibrium), despite the fact that this joint action pair is not Pareto
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efficient (both agents could gain a higher reward by “cooperating” through selecting

action 1), which is why each agent faces a dilemma. In a repeated game setting,

however, there exist several strategies that can outperform playing the Nash strategy

for every stage game (Rogers et al., 2007a, and references therein).

We note that there exist several other interesting case games, such as games

with two pure and one mixed strategy Nash equilibria (for example, “Battle of the

Sexes” (Dixit et al., 2004)) or games with one pure strategy Nash equilibrium that is

Pareto efficient (consider switching the rewards in the prisoner’s dilemma for both

agents selecting Action 1 and Action 2), which is in effect a bandit problem. The

two case study games, however, characterise the range of possible problems faced

(at least in the context of the exploration-exploitation trade-off), as exploration is

extremely costly in one game and highly beneficial in the other, as we demonstrate

from Section 7.3 onwards.

7.2 On-line Learning Strategies

Before investigating our case study games in more detail, we first outline some

strategies that the agents can use in a repeated game setting. The agents do not

know the reward structure of the stage gamea priori. The agents therefore have two

distinct learning operations:estimatingthe rewards andadaptingto the opponent’s

strategy. These have to be handled concurrently with reward seeking behaviour, oth-

erwise agents will often select sub-optimal actions. There are two distinguishable

forms of multi-agent learning that the agents can use to sequentially estimate and

adapt (Claus and Boutilier, 1998).Independent learners(ILs) would apply learning

in the classical sense, ignoring the existence of the other agent. Conversely,Joint

action learners(JALs) would make decisions based on their own past actions in

conjunction with those of the opponent. JALs are more sophisticated in that they

use observations of both the reward received and the action selected by the oppo-

nent to learn (thus using all the information provided to the agent). Specifically,

JALs estimate rewards in the joint action space and can adapt to the opponent by

making inferences on its past history of actions. ILs however, estimate rewards in
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an individual action space and adapt using this information only.

In various numerical simulations performed in Claus and Boutilier (1998) for

cooperative games, ILs were found to perform not much differently from JALs with

only slightly slower convergence to a Nash equilibrium. Nevertheless, this conver-

gence was guaranteed by using SoftMax exploration (Section 2.2.2) and it is not

clear how performance might differ between ILs and JALs against heterogeneous

opponents, particularly in finite time. It is for these reasons that we consider both

ILs and JALs in our analysis.

7.2.1 Independent Learners (ILs)

After selecting an action, the agents only observe their own reward and which ac-

tion the opponent selected. ILs however, choose to ignore the opponent and make

inferences based on the reward received only. The decision problem is then anal-

ogous to a bandit problem and the estimated expected reward of each action (â(1)

andâ(2) for agent A) can be simply updated at timet using recursive averaging:

â(i)← â(i) +
1

nA
i (t)

(rA(t)− â(i)) , (7.3)

for i = 1, 2 when actioni is selected, and similarly for agent B.nA
i (t) is the number

of times agent A has selected actioni prior to time t. The agents must then use

these estimated rewards to select an action to play at the next iteration. In the

absence of any exploration, the obvious way to do this is to adopt a greedy strategy

and select the action with the higher valued estimate – we refer to this strategy as

bandit greedy.

Exploration of actions is however required to guarantee convergence to Nash

equilibria (Chapman et al., 2011), but can also improve performance in finite time

for bandit problems (as demonstrated in Chapters 3-5). We choose to investigate

this in our framework using anε-greedy strategy, for reasons discussed later.
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7.2.2 Joint Action Learners (JALs)

Contrary to ILs, JALs learn on the joint action space by observing the actions se-

lected by the opponent. In the 2-player, 2-action game studied here, each agent has

4 running estimates of rewards:â(i, j) and b̂(i, j) for i, j = 1, 2. These can again

be updated by agent A and B respectively at timet, using recursive averaging:

â(i, j)← â(i, j) +
1

ni,j(t)
(rA(t)− â(i, j)) , (7.4)

updated when agent A selects actioni and B selectsj (and similarly for agent B).

ni,j(t) is the number of times joint action{i, j} has been selected up to timet.

The agents must use these joint action reward estimates, together with the past

history of actions, to select the next action. There are several game-theoretic meth-

ods with which this can be done, including fictitious play (Brown, 1951), adaptive

play (Young, 1993), regret-matching strategies (Marden et al., 2007) and one-shot

Nash (Fudenberg and Maskin, 1986). In this research, we consider the agents us-

ing fictitious play as this strategy does not require knowledge of the opponent’s

rewards (required to calculate one-shot Nash and regret-matching strategies) and

is also suitable for a game with a static reward process (an adaptive play strategy

would be more naturally suited to dynamic rewards). Furthermore, fictitious play

(with known rewards) has been shown to converge to a Nash equilibrium for a vari-

ety of games including zero-sum games (Brown, 1951), potential games (Monderer

and Shapley, 1996), games that are solvable by iterated elimination of dominant

strategies (Nachbar, 1990) and more recently all 2×N games where an appropriate

tie-breaking rule is used to separate actions of equal preference (Berger, 2005).

Games that converge to a Nash equilibrium under fictitious play are said to have

the Fictitious Play Property. In the case of convergence towards a mixed strategy

equilibrium, fictitious play selects actions deterministically (as opposed to stochas-

tically), but converges to selecting each action at the average frequency as deter-

mined by the probability weightings of the mixed strategy equilibrium. Both case

study games introduced in Section 7.1 have the Fictitious Play Property. We can

define thefictitious playstrategy for 2×2 games as follows. The agents select the
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best responseto the empirical frequency of actions selected by the opponent thus

far. Suppose that at timet agent B has selected Action 1 fornB
1 (t) past plays (and

Action 2 for t− nB
1 (t)− 1). Action 1 is a best response to agent A if and only if:

nB
1 (t)a(1, 1)+(t−nB

1 (t)−1)a(1, 2) ≥ nB
1 (t)a(2, 1)+(t−nB

1 (t)−1)a(2, 2), (7.5)

and Action 2 is a best response if the inequality is reversed. The agents, how-

ever, do not know the true values of the rewards and instead select thepredicted

best response, using the estimated rewards from Equation (7.4) rather than the un-

known true values. Without any exploration, there is no guarantee that fictitious

play will converge to a Nash equilibrium, due to the fact that rewards are observed

with noise (as we prove in Section 7.4). Claus and Boutilier (1998) use SoftMax

exploration with fictitious play for cooperative games and Chapman et al. (2011)

useε-decreasing exploration with fictitious play for non-cooperative and potential

games – though only Chapman et al. (2011) prove that their strategy converges to a

Nash equilibrium for specific games with the correct decay rate forε. As with ILs,

we will again useε-greedy exploration and define theε-FP strategy as follows:

with probability

{
1− ε select action that is the predicted best response

ε select action that is the predicted worst response

7.2.3 Strategies for 2×2 Games with Unknown Rewards

We have constructed strategies for both ILs and JALs and also explorative and non-

explorative agents. Henceforth we refer to these strategies as they are denoted in

Table 7.2. For both ILs and JALs we initialise these strategies with both agents

selecting each action once (in a random order) as would often be done in a bandit

problem (Auer et al., 2002). The JALs initially estimate the reward of unselected

joint actions as the average reward of all selected actions thus far, until these joint

actions are eventually selected and the estimates are then replaced with the estimates

from Equation (7.4). We therefore do not assume each joint action is sampled once,

as this requires coordinated initialisation – although all our results and proofs in this

chapter could be extended to deal with this and other initialisation procedures.
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Table 7.2: Different types of strategies for on-line learning agents

On-lineLearning
Joint Action Leaner (JAL) Individual Leaner(IL)

Exploration
No Type I: fictitious play Type II: banditgreedy
Yes Type III:ε-FP Type IV:ε-greedy

7.3 Non-Explorative Strategies

In this section we consider agents playing with non-explorative strategies (ie. Type

I or Type II strategies from Table 7.2). These strategies would perform well in

a setting with known rewards, but we are interested in the impact of no explicit

exploration when rewards are unknown. We present simulation results for both case

study games, where each stage game is repeated 50 times – this length of game is

sufficiently long such that agents can learn in a noisy environment but short enough

such that fast learners are rewarded. Note that for simplicity we set the observation

noise variance to be equal for each agent in all simulations in this chapter.

7.3.1 Case Study Game 1: Matching pennies

• Type I: fictitious play vs. Type I: fictitious play

If both agents use fictitious play with full knowledge of the rewards then the em-

pirical frequencies of both agents converge to the mixed strategy Nash equilibrium.

With no prior knowledge and no exploration, however, no such convergence is guar-

anteed. Figure 7.1 shows the average proportion of times that Action 1 is selected by

each agent over the course of the game, for the matching pennies game of length 50

(over 100,000 repeats). Each subplot shows results for games with different noise

variances (where top left is the lowest variance and bottom right is the highest).

As can be seen, for low noise variances, the action selection frequencies con-

verge towards the Nash equilibrium without any additional exploration. As the

magnitude of the noise increases, however, the agents increasingly play pure strate-

gies. This is due to a lack of exploration. For example, agent B may have observed
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an unusually low reward for Action 2 in an early round of the game and calculates

Action 1 to be the dominant strategy. Action 2 is never revisited to correct this error

and the agent is subsequently exploited by agent A (who selects Action 1 to match).

This pattern can explain all 4 possible combinations of pure strategies being played.

The initial observations are the most crucial, as this is when reward estimates

are furthest from their true values, and can therefore have the biggest impact on

the long-term convergence of the strategies. Different initialisation procedures will

also effect the long-term convergence of a strategy. Specifically, a longer and more

explorative initialisation will result in more games converging to Nash equilibria,

for the same strategy, than with a shorter initialisation sequence.
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Figure 7.1: Density plots showing the proportion of times Action 1 is selected by
agent A (p(a1)) and agent B (p(b1)) over the course of the game in the matching
pennies case study game of length 50 over 100,000 repeats for noise variances of
0.25 (top left), 0.5 (top right), 1 (bottom left) and 2 (bottom right). Both agents are
JALs using Fictitious Play.
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• Type II: bandit greedy vs. Type II: bandit greedy

If both agents are ILs using the bandit greedy strategy, then even with full knowl-

edge of rewards, convergence to the Nash equilibrium is not guaranteed. Figure

7.2 (left) displays average rewards from the same setup as Figure 7.1, except both

agents are ILs. The noise variance has been deliberately set low and despite this

both agents are playing pure strategies – approximately half the games favour agent

A and the remainder agent B. The lack of exploration immediately forces one agent

to commit to an action first and then the other exploits this choice.

• Type I: fictitious play vs. Type II: bandit greedy

In Figure 7.2 (right), agent A is a JAL (using fictitious play) and agent B is an

IL. Some games resulted in plays close to the Nash equilibrium but the majority

converged to pure strategies where agent A (the JAL) exploits agent B. Learning

on the joint action space allows agent A to distinguish between matched and un-

matched actions and exploit agent B who plays a bandit problem and often settles

on one action. This advocates the use of joint action learning, over independent

learning, in the unknown rewards setting.
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Figure 7.2: Density plots showing the average rewards for agent A and agent B in
the matching pennies case study game of length 50 over 100,000 repeats for a noise
variance of 0.25, where both agents are ILs (left) and agent A is a JAL and agent B
an IL (right).
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7.3.2 Case Study Game 2: Prisoner’s Dilemma

• Type I: fictitious play vs. Type I: fictitious play

For the prisoner’s dilemma game, fictitious play would immediately converge to

both agents defecting with known rewards, as this is a dominant action and hence

is a best response regardless of the frequency of the opponent’s actions. Figure 7.3

displays average rewards, in the unknown rewards setting, for 2 fictitious players

playing the prisoner’s dilemma game of length 50 (for 100,000 repeats), with low

noise variance (left) and high variance (right).
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Figure 7.3: Density plots showing the average rewards for agent A and agent B in
the prisoner’s dilemma case study game of length 50 over 100,000 repeats for noise
variances of 0.25 (left) and 2 (right). Both agents are JALs using Fictitious Play.

Notice that although around half of the games have converged to the agents

defecting and receiving the Nash equilibrium reward of -1, other games have both

agents “cooperating” and selecting the dominated pure strategy. This happens by

chance from the noisy reward estimates. When the noise variance is high some

games also converge to cooperate/defect. This non-Nash convergence is again due

to the lack of exploration of the joint action space, which has resulted in incorrectly

calculated best responses, especially when the noise variance is high. This selection

of dominated strategies has actually resulted in a higher expected reward to each

agent than if the rewards were known, due to the Pareto optimality of cooperating.
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In particular, the clustering of rewards around(1, 1) has improved the expected

reward from -1 (with known rewards) to -0.01 when the noise variance is low and

-0.19 when the noise variance is high.

• Type II: bandit greedy vs. Type II: bandit greedy

Figure 7.4 (left) displays the same results for two ILs using bandit greedy (left). For

this game setting, the ILs have performed similarly to JALs with almost identical

convergence characteristics – although the larger clusters of average reward values

suggest that the convergence has been slightly slower (this was also found to be the

case in Claus and Boutilier (1998)).

• Type I: fictitious play vs. Type II: bandit greedy

In Figure 7.4 (right) we show results for a JAL against an IL (right). On this oc-

casion, the IL has performed as well as the JAL with very similar action selection

behaviour. This is because, for this reward structure, the problem is more like a ban-

dit problem – with one action dominating the other. Explicit knowledge of the joint

action space is therefore of no particular benefit if the agent is indifferent between

the actions of the opponent and trying to calculate a best response.
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Figure 7.4: Density plots showing the average rewards for agent A (RA) and agent
B (RB) in the prisoner’s dilemma case study game of length 50 over 100,000 repeats
for noise variance of 0.25, where both agents are ILs (left) and agent A is a JAL and
agent B an IL (right).
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7.4 Convergence of Non-Explorative Strategies

2×2 games, with the genericity assumption1, can have either 0, 1 or 2 pure strat-

egy Nash equilibria, 0 or 1 mixed strategy Nash equilibria and at least 1 Nash

equilibrium (of any kind) overall (Dixit et al., 2004). In the previous section we

demonstrated that, with unknown rewards, two fictitious players will not necessar-

ily converge to playing a Nash equilibrium strategy in finite time. A number of

simulated games resulted in both agents sticking to a non-Nash pure strategy. In

fact, we prove the possible convergence of all four pure strategy profiles, at least

two of which are non-Nash, in Theorem 7.1.

Theorem 7.1 In a 2×2 game with a priori unknown rewards (and with the generic-

ity assumption) there is a non-zero probability that the joint strategies of two agents

using a fictitious play strategy will converge to any one of the 4 pure strategy profiles

– at least two of which are non-Nash.

Proof Consider, without loss of generality, both agents converging to Action 1.

There is a probability greater than 0 thatâ(2, 1) < a(1, 1) and b̂(1, 2) < b(1, 1)

at a certain time-step, as the noise is unbounded. It suffices to prove that there

is a probability greater than 0 such thatâ(1, 1) > â(2, 1) (and b̂(1, 1) > b̂(1, 2))

perpetually. In this formulation, the estimateâ(1, 1) is an average of i.i.d Gaussian

samples,Xi ∼ N (a(1, 1), σ2
η). Suppose thatδ = a(1, 1)− â(2, 1) whereδ > 0. We

are therefore trying to prove that:

∞∏

j=1

P

(∑j
i=1 Xi

j
> a(1, 1)− δ

)

> 0 for δ > 0, (7.6)

which after some rearranging is equivalent to proving that if:

Yi
iid
∼ N (δ, 1), Wj =

j∑

i=1

Yi, (7.7)

1The genericity assumption (Pruzhansky, 2003) states that an agent has a preferred action for
every fixed action of the opponent, specificallya(1, 1) 6= a(2, 1), a(1, 2) 6= a(2, 2), b(1, 1) 6= b(1, 2)
andb(2, 1) 6= b(2, 2).
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then, (
∞∏

j=1

P (Wj > 0)

)

> 0 for δ > 0. (7.8)

The processWj is a random walk, or a discretised Brownian motion with positive

drift δ. We have from Chang (1999) that the probability of continuous Brownian

motionWt (with positive driftδ) never falling below zero for1 ≤ t ≤ ∞ is e−2δ2
>

0. The probability for the discretised version is therefore bounded below by this.

We have hence proved that there is a probability greater than 0 such thatâ(2, 1) <

â(1, 1) perpetually. The proof for̂b(1, 2) < b̂(1, 1) follows by symmetry. By this

logic, there is a probability greater than zero that both agents perpetually choose

Action 1 as their best response (see Equation (7.5)) and hence there is a non-zero

probability that both agents converge to Action 1. By symmetry, convergence to

any 4 pure strategy combinations ispossible.

Theorem 7.1 is concerned with asymptotic properties of infinite-length games,

which is not of direct relevance in finite-time problems, as studied in this the-

sis. Nevertheless, Theorem 7.1 helps to explain the finite-time behaviour of non-

explorative strategies that we demonstrated in Section 7.3. This non-Nash and po-

tential suboptimal finite-time performance leads us to consider explorative strate-

gies, which we construct and investigate in detail in the following sections.

7.5 Explorative vs. Non-Explorative Strategies

In Sections 7.3 and 7.4 we analysed ILs and JALs with no exploration and proved

that convergence to non-Nash pure strategies is possible. Now we consider the

impact of introducing explorative actions. As defined in Table 7.2, we consider

an ε-FP strategy for JALs (Type III) and anε-greedy strategy for ILs (Type IV).

First we consider only agent A selecting explorative actions for our two case study

games, to see whether a non-explorative agent can be easily exploited to gain a

higher reward.
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7.5.1 Case Study Game 1: Matching pennies

• Type III: ε-FP vs. Type I: fictitious play

Figure 7.5 displays simulated results for JALs (i.e.ε-FP against fictitious play) for

the matching pennies game of length 50 (with a relatively high noise variance of

1). In the left figure, agent A selects the predicted worst response10% of the time

and in the right figure30%. In both cases agent A has received a higher reward

than agent B (there are more matched actions than unmatched actions), despite this

being a zero-sum symmetric game. Agent A has exploited agent B for two key

reasons:

• The agents have no longer both converged to pure strategies where actions are

not matched and agent A receives a low reward. This is the first benefit of ex-

ploration to agent A – the agent is no longer exploited by the opponent as the

exploration causes agent A to learn that this is not a best response (compare

with Figure 7.1 (bottom left) where agent A is occasionally exploited).

• Agent B, in the absence of any exploration, is still sometimes playing a pure

strategy and agent A has learnt to exploit this (by matching) for close to

(1 − ε)% of plays and gain a high reward. Moreover, notice that agent B

selects pure strategies more often whenε = 0.3. This feature can be at-

tributed to the fact that agent A is playing a more mixed strategy (due to the

added exploration) which gives agent B rewards close to 1 (rather than -1)

more often. Consequently, the exploration of agent A prevents agent B from

switching action as its predicted best response action is less likely to change.

The second benefit of exploration is of particular interest – exploiting agent B too

often, such that it consistently receives a low utility, is more likely to make the

agent switch action. Therefore agent A benefits from a high exploration parameter

even if it has learnt the expected reward values. This feature can be viewed as agent

A explicitly managing its mixed strategy to maintain long term rewards. Higher

values ofε come at the cost of less frequent exploitation, but has the benefit that
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the opposing agent is easier to exploit. This exploitation yields a high utility to the

explorative agent – far greater than the Nash equilibrium utility of 0.
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Figure 7.5: Density plots showing the proportion of times Action 1 is selected by
agent A (p(a1) and agent B (p(b1)) in the matching pennies case study game of
length 50 over 100,000 repeats for a noise variance of 1, where agent B is a fictitious
player and agent A is playingε-FP withε=0.1 (left) andε=0.3 (right).

To explain these results in more detail, the benefit of explicitly managing a

mixed strategy can be derived from the theoretical reasoning used in Section 7.4

(where we proved non-Nash convergence of non-explorative strategies). In partic-

ular, notice that there is a positive probability that a non-explorative agent never

switches action and continuously selects a pure action. In such instances this posi-

tive probability for agent B is greater if the expected utility of the pure action is kept,

with a higher likelihood, above a required level (which isa(1, 1) − δ in Equation

(7.7)) – which can be done by agent A exploring and selecting the suboptimal ac-

tion. The trade-off, however, is exploring too much such that agent A is penalised

and agent B is rewarded (above the Nash expected reward) despite continuously

playing this pure action.

Figure 7.6 (left) displays the expected reward to agent A forε ∈ [0, 1], for a

selection of noise variances, for the game of length 50. Agent A has benefited

from exploring by having a positive reward in a symmetric zero-sum game, when

0 < ε < 0.5. It is easy to see thatε = 0.5 will yield an expected reward of 0 for all
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noise variances as agent A selects each action exactly50% of the time. Forε > 0.5,

agent A selects the predicted worst response more often than not and thus allows

agent B to take a positive reward. The optimal value ofε is larger for small noise

variances, which initially appears counter-intuitive. After all, lower noise variance

corresponds to an easier learning problem. It must be remembered, however, that

the only way agent A can gain a positive reward is to keep agent B on a pure strategy.

For low noise variances this is hard to do (see Figure 7.1 (top left)), as the opponent

quickly learns the correct best response of a mixed strategy. Agent A therefore has

to keep its strategy very mixed in order to keep agent B’s predicted response on the

pure action. Conversely, large variances make agent B’s predicted best responses

more erroneous. Agent A can afford to exploit this more often and hence gain a

higher expected reward, by playing with a smallerε value.

Figure 7.6 (right) displays the optimal value ofε for a range of noise variances,

along with the corresponding average expected rewards. The pattern emerges that

higher noise variances, correspond to lower optimalε, which in turn correspond to

higher potential rewards. Note that the optimal value ofε is of course unknown to

the agenta priori which motives the extension ofε-ADAPT to this framework in

Section 7.7.
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Figure 7.6:ε/-FP against fictitious play in the matching pennies case study game
of length 50. (left) The Average expected reward to agent A and agent B (shaded)
for the range ofε values for different noise variances and (right) Optimalε and
corresponding average expected reward over a range of noise variances.
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• Type IV:ε-greedy vs. Type II: bandit greedy

Figure 7.7 (left) considers the same matching pennies game except with ILs, where

agent A usesε-greedy (withε = 0.1) and agent B uses bandit greedy with no explo-

ration. Agent A has again learnt to not be exploited with unmatched pure strategies

and has learnt to often exploit agent B. The introduction of this exploration, how-

ever, has now introduced some convergence of the empirical action frequencies

to the mixed strategy equilibrium (compare with Figure 7.2 (left), although note

that this convergence can only be seen on the histograms on each axis). Figure 7.7

(right) displays the expected reward to agent A forε ∈ [0, 1], for a selection of noise

variances. The properties of the results are similar to Figure 7.6 (left) for JALs in

that the explorative agent can exploit with0 < ε < 0.5. For ILs however, the opti-

mal ε is smaller and less dependent on the noise variance. This lower value can be

attributed to the fact that the greedy strategy learns more slowly than fictitious play

and hence agent B can be exploited at a higher frequency without forcing the agent

to change action.
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Figure 7.7: (left) Density plot showing the proportion of times Action 1 is selected
by agent A (p(a1)) and agent B (p(b1)) in the matching pennies case study game
of length 50 over 100,000 repeats for a noise variance of 0.25, where agent B is
playing bandit greedy and agent A is playingε-greedy withε=0.1. (right) Average
expected reward to agent A and agent B (shaded) for the full range ofε values with
different noise variances.
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• Type III: ε-FP vs. Type II: bandit greedy and Type IV:ε-greedy vs. Type I:

fictitious play

Finally, we show results for the same setup except in Figure 7.8 (left) agent A uses

ε-FP and agent B uses bandit greedy and (right) agent A usesε-greedy and agent B

uses fictitious play.ε-FP already exploits bandit greedy whenε = 0 (see Figure 7.2

(right)) and only benefits from a non-zeroε when the noise variance is high – so ex-

ploration is not always required to maximise reward.ε-greedy, however, is able to

recover the deficit whenε = 0 and exploit the fictitious player for certain values of

ε < 0.5. It can be concluded from these results that exploiting a non-explorative fic-

titious player requires careful management of the agent’s mixed strategy (and hence

a largeε) to prevent the opponent from switching strategies. In contrast, a bandit

greedy strategy can be exploited with less exploration, as the opponent here is an

IL and is therefore slower to learn that it should switch action. Nevertheless with

high noise variance, a small amount of exploration will always benefit an agent, as

this will help reduce the high initial estimation error of the reward estimates.
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Figure 7.8: Average expected reward to agent A and agent B (shaded), in the match-
ing pennies case study game, for the range ofε values for different noise variances
where (left) agent A usesε-FP and agent B uses bandit greedy and (right) agent A
usesε-greedy and agent B uses FP.
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7.5.2 Case Study Game 2: Prisoner’s Dilemma

• Type III: ε-FP vs. Type I: fictitious play and Type IV:ε-greedy vs. Type II: bandit

greedy

We now briefly return to the prisoner’s dilemma example. Figure 7.9 displays re-

sults for ε-FP against fictitious play andε-greedy against bandit greedy. In both

scenarios, agent A has a better reward than agent B, for low values ofε > 0. For

JALs the reward is maximised withε = 0 and for ILs withε ≈ 0.1. These lower

optimalε values (compared with matching pennies) can be attributed to the fact that

agent B cannot be kept on the dominated strategy (cooperate) by playing a mixed

strategy. In addition, the prisoner’s dilemma is an unusual type of game where

the Nash equilibrium is Pareto dominated – so learning and playing the true best

response quickly results in lower rewards.
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Figure 7.9: Average expected reward to agent A and agent B (shaded), in the pris-
oner’s dilemma case study game, for the range ofε values for different noise vari-
ances where (left) agent A usesε-FP and agent B uses fictitious play and (right)
agent A usesε-greedy and agent B uses bandit greedy.

7.5.3 Summary of Results

We have seen that exploring the action space, by playing the action that is estimated

to perform worst, can in fact be beneficial to the agent’s reward in finite time. An

explorative agent can outperform a non-explorative agent as it learns the rewards
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from the action space more quickly and can then exploit the opponent, particularly

if the opponent is stuck playing non-Nash strategies. The optimal value ofε, the

exploration parameter, is quite varied depending on the structure of the game and

the noise variance. In particular, if the game has a mixed strategy Nash equilibrium,

then the agent canexploit by exploring, i.e. explicitly manage its mixed strategy,

with a highε value, to maintain long term rewards. Nevertheless, even with only

pure strategy Nash equilibria, a small amount of exploration can still allow an agent

to exploit a non-explorative learner.

7.6 Explorative Strategies

In this section we consider both agents using explorative strategies. As documented

in Chapman et al. (2011), a suitable exploration strategy will ensure convergence

to a Nash equilibrium in certain games. The exploration parameter has to decay at

a suitable rate, such that each action is infinitely explored but also action selections

are greedy in the limit, i.e. the probability the correct best response is selected tends

to 1 ast → ∞. Such action selection strategies are calledgreedy in the limit with

infinite exploration (GLIE)(Singh et al., 2000). Chapman et al. (2011) prove that

fictitious play withε-decreasing exploration (ε decaying at rate 1/t) will converge to

a Nash equilibrium in any game with the fictitious play property. In contrast, Claus

and Boutilier (1998) argue (without proof) that both ILs and JALs (using SoftMax

exploration) will converge to a Nash equilibrium in any cooperative game.

Our explorative strategies,ε-FP andε-greedy, guarantee infinite exploration for

ε > 0, but are not greedy in the limit as the exploration parameter remains con-

stant. We deliberately keep this parameter constant to maximise reward in finite

time – refer to the previous section where we showed that an explorative agent can

maximise reward by explicitly managing its mixed strategy profile throughout the

game. In addition, decayingε in finite time requires an additional decay parameter

or function. Only when both agents explore and the game is sufficiently long does

decayingε makes sense, as the joint action space becomes thoroughly explored over

time.



Chapter 7. Learning and Exploring in 2-player Repeated Games 179

Nevertheless, even without a decaying exploration parameter, there is fast con-

vergence towards the Nash equilibrium. See, for example, Figure 7.10 where two

JALs (left) both usingε-FP (Type III) and two ILs (right) usingε-greedy (Type IV)

both converge towards the mixed Nash equilibrium in the matching pennies game

(Case study game 1). Without exploration (see Figure 7.1 (bottom left) and Figure

7.2 (left)), there exists only occasional convergence to the mixed Nash for JALs and

none for ILs. Note that, as expected, the convergence of ILs appears slower than

with JALs: there is clear evidence in each corner of the plot, that the agents are

learning at a slower rate to move away from pure strategies and towards the mixed

strategy Nash equilibrium.
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Figure 7.10: Density plots showing the average rewards for agent A and agent B in
the matching pennies case study game of length 50 over 100,000 repeats for a noise
variance of 1, where both agents are JALs usingε-FP (left) and both agents are ILs
usingε-greedy (right).ε=0.1 for all strategies.

The optimal value ofε for a certain strategy is dependent on the strategy type and

parameter values used by the opposing agent. In Figure 7.11 we display the average

cumulative reward to agent A over a grid ofεA and εB values, whereεA refers

to the exploration parameter used by agent A (and similarly for B). Each subplot

corresponds to a different pair of strategies or a different case study game. In the

matching pennies game, the optimal value ofε is high for both ILs and JALs and

generally above theε value of the opponent – exploration is not costly in this game
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where mixed strategies perform best. In contrast, in the prisoner’s dilemma game,

the optimal value ofε is much closer to 0 (but is now higher with ILs) and usually

below theε value of the opponent – exploration is costly here as non-dominant

action selection can often be exploited by a less explorative agent.
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Figure 7.11: Average cumulative rewards (over 10,000 repeats) to agent A over
a grid of εA and εB values, where (top figures) both players are usingε-FP and
(bottom) both players are usingε-greedy and the case study game is (left figures)
matching pennies and (right) prisoner’s dilemma. The optimal value ofεA, given a
value ofεB, is denoted by a star. In all figures, the game length is 50 and the noise
variance is 1.

7.7 ε-ADAPT in Repeated Games

In this chapter we have demonstrated that exploration of actions can benefit an

agent’s total reward in 2×2 repeated games with unknown rewards. The optimal
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amount of exploration, however, is dependent on several factors other than the

amount of observation noise: such as the structure of the game (in terms of types

and number of Nash equilibria) and the type of strategy and degree of exploration

used by the opponent. In addition, the relationship between the amount of obser-

vation noise and the optimal amount of exploration is not necessarily positively

correlated, as is typically the case in single-agent bandit problems (see Chapters 3-

5). The relationship, in fact, was found to be negatively correlated for the matching

pennies game (see Section 7.5) for reasons related to theexploitabilityof the oppos-

ing agent. Taking all these features together, the optimal rate of exploration (with

anε-greedy strategy) was found to range from anywhere between 0% and 50%.

In this section we propose adapting the degree of exploration on-line using the

ε-ADAPT approach constructed in earlier chapters. An adaptive on-line approach

to exploration is particularly useful in this framework, due to the sensitivity of opti-

mal exploration rates with respect to the type of repeated game and opposing agent

strategies encountered. Adapting exploration on-line using an IL approach can be

immediately performed using Algorithm 4.3 for multi-armed bandit problems. This

is because independent learners ignore the presence of other agents and the prob-

lem can be effectively treated as a single-agent bandit problem. We have seen in

previous sections, however, that JALs always perform better than ILs in finite-time

problems as JALs make use of observing the action selected by the opponent. For

this reason, we constructε-ADAPT to learn rewards on the joint action space and

explicitly consider the sequence of actions selected by the opposing agent.

The optimal amount of exploration is dependent on several factors such as

the game structure and opponent strategy, but these are unknowna priori, and

moreover, opponent rewards arenot observed throughout the game. It is there-

fore extremely challenging to gauge appropriate rates of exploration without know-

ing whether the opponent will exploit explorative strategies (as with the prisoner’s

dilemma game) or can be exploited with a mixed strategy (as with matching pen-

nies). We constructε-ADAPT, however, without violating the assumption that op-

ponent rewards are unobserved and instead make use of the sequence of actions

selected by the opponent to model its future behaviour.
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7.7.1 Theε-ADAPT Algorithm

ε-ADAPT constructs an index based approximation for each actionai at timet. In

addition to regenerating past and future rewards in the MC approximation, the al-

gorithm also simulates the future behaviour of the opponent, to find the best action

to select at timet. Specifically, prior rewards are first regenerated for each joint

actionni,j(t) times (the number of times each action has been selected thus far), ac-

tion ai is then selected at timet, and then future actions are selected using fictitious

play. Future opponent actions are drawn stochastically, where Action 1 is drawn

with probability p̃B(t) (and Action 2 with probability1 − p̃B(t)). The resulting

ε-ADAPT algorithm for 2×2 games with unknown rewards follows Algorithms 7.1

and7.2.

Algorithm 7.1 ε-ADAPT for 2×2 Games with Unknown Rewards
1: ni,j(0) = 0 ∀i, j {Initialise Action count}
2: for t = 1 to T do
3: if t ≤ 2 then
4: Select each action once{Initialisation}
5: else
6: Generate new rewardsr′i,j(s) ∀i, j and for1 ≤ s ≤ T using estimated

reward coefficientŝa(i, j) and estimated noise variancesσ̂2(i, j)
7: for i = 1 to 2 do
8: ApproximateRfp(T, t, i) {Algorithm 7.2}
9: end for

10: Select actioni (1 ≤ i ≤ 2) that maximisesRfp(T, t, i)
11: end if
12: Observe opponent actionj and corresponding rewardrA(t) {Equation (7.1)}
13: Updateâ(i, j), σ̂2(i, j) andp̃B(t)
14: ni,j(t) = ni,j(t − 1) + 1 (nk,l(t) = nk,l(t − 1) for {k, l} 6= {i, j}) {Action

counts}
15: end for

The key differences with theε-ADAPT algorithm for multi-armed bandits (Al-

gorithms 4.3 and 4.4) are denoted in blue. The first of these is the variance estimate

of joint action{i, j} (Line 13 of Algorithm 7.1). This value cannot be estimated

using sample estimates whenni,j(t) < 2, but can be instead estimated using the

variance of all observed rewards – this is an idea borrowed from Vermorel and
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Algorithm 7.2 MC Approximation ofRfp(T, t, i) index

1: ñb(j) = 0 (for j = 1, 2)
2: for s = 1 to T do
3: if s < t then
4: Select joint action{i, j} such that each action is selectedni,j(t) times

whens = t and receive rewardr′(s) = r′i,j(s)
5: else ifs = t then
6: Sample actionj for Agent B (Action 1 with probabilitỹpB(t))
7: Select actioni and receive rewardr′(s) = r′i,j(s)
8: else
9: Sample actionj for Agent B (Action 1 with probabilitỹpB(t))

10: Select actioni that maximises̃a(i, 1)ñb(1) + ã(i, 2)ñb(2) {Fictitious play
estimate of best response} and receive rewardr′(s) = r′i,j(s)

11: end if
12: Updateã(i, j)
13: ñb(j) = ñb(j) + 1
14: end for
15: Rfp(T, t, i) =

∑T
s=t r

′(s)

Mohri (2005) which allows sample estimates to be calculated without full initial-

isation. This is particularly useful in this multi-agent framework as the agent has

only partial control of the joint action space and cannot guarantee seeing a par-

ticular joint action without the cooperation of the opposing agent. This method

therefore allowsε-ADAPT to calculate the noise variance of each joint action sep-

arately, which means that rarely selected joint actions have high uncertainty and

ε-ADAPT is more likely to try and explore these actions.

The other key difference toε-ADAPT is the explicit consideration of future

actions that might be selected by the opponent. This is particularly evident in lines

6-10 of Algorithm 7.2, whereε-ADAPT is predicting future actions of the opposing

agent (lines 6 and 9) and then using fictitious play to select future actions dependent

on the opponent’s past action choices (line 10). The future actions of the opposing

agent are drawn stochastically, where Action 1 is selected with probabilityp̃B(t).

p̃B(t) could be selected in a number of ways. In the simplest case this value could

be set to equal the frequency of times Action 1 has been selected thus far:p̃B(t) =

(n1,1(t) + n2,1(t))/(t − 1), but even if the opposing agent is a fictitious player
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(or using another stationary strategy), this measure will often not predict future

actions of the opponent well. This is because a learning agent can select actions very

differently at various stages of the game, as the agent’s knowledge of the rewards

constantly changes over time. It is therefore more appropriate to use an adaptive

measure to predict future opponent actions. Specifically, we weight previous action

choices more heavily using a forgetting factorλ, such that:

p̃B(t) =
I1(t) + λI1(t− 1) + λ2I1(t− 2) + . . .

(
1−λt

1−λ

) , (7.9)

whereI1(t) is an indicator function that is equal to 1 if Action 1 is selected at time

t and 0 otherwise. This probability can also be found recursively:

p̃B(t) =
1

1− λt

(
(1− λ)I1(t) + λ(1− λt−1)p̃B(t− 1)

)
. (7.10)

As t → ∞ this recursion approaches̃pB(t) = (1 − λ)I1(t) + λp̃B(t − 1), which

is identical to the belief update used in geometric fictitious play (Fudenberg and

Levine, 1998). The version given in Equation (7.10) is therefore equivalent to ge-

ometric fictitious play with a finite-sample adjustment. Overall, this estimate is

appropriate for opponent strategies that are both stationary and adaptive – this is be-

cause in the unknown rewards setting, agents can change their behaviour throughout

the learning process.

We note thatλ could be adapted on-line, as performed in Chapter 5 for dynamic

bandit problems and in Smyrnakis (2010) for geometric fictitious play, but in our

experiments we keepλ constant at 0.8 so that we can directly focus on the issue of

adapting exploration on-line. Finally, we note thatε-ADAPT could directly replace

the fictitious play estimate in the MC approximation (Line 10, Algorithm 7.2) with

something more sophisticated, such as stochastic fictitious play (Fudenberg and

Levine, 1998) or generalised weakened fictitious play (Leslie and Collins, 2006).

In our experiments, however, we testε-ADAPT against an agent using fictitious

play (with ε-greedy exploration). For this reason we use the fictitious play estimate

in the MC approximation, so that we can test for the improvements from adapting
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exploration on-line, and not the improvements from better strategic action selection.

7.7.2 Numerical Results

In this section we testε-ADAPT against a range ofε-FP strategies for both the

matching pennies and prisoner’s dilemma case study games. Recall from Sec-

tion 7.6 (and in particular Figure 7.11) that optimal rates of exploration can vary

markedly dependent on the case study game, the opponent strategy and the obser-

vation noise variance. For this reason, we testε-ADAPT for each case study game

over a grid of noise variances and opponentε values. We repeat each experiment

10,000 times and the results are displayed in Figure 7.12.ε-ADAPT has gained a

better reward than itsε-FP counterpart for large regions of the parameter grid. In the

other regions the rewards are comparable, withε-ADAPT rarely yielding a reward

that is smaller than the opponent. Note that differences are plotted rather than ratios

as rewards can be negative.
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Figure 7.12: Average difference to the cumulative reward (over 10,000 repeats)
of ε-ADAPT against theε-FP strategy over a grid ofεB values and noise vari-
ances, where the case study game is (left) matching pennies and (right) prisoner’s
dilemma. In both figures the game length is 50.

To investigate this further, in Figure 7.13 we plot the average number of explo-

rative steps performed byε-ADAPT in the same set of experiments for each case

study game. An explorative step here refers to time-steps where theε-ADAPT algo-

rithm chooses to select the predicted worst response in the MC approximation. The
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overall amount of exploration is generally higher in the matching pennies game, as

it should be, as exploration is less costly when mixed strategies cannot be exploited

as easily. Moreover, for the matching pennies game, the amount of exploration de-

creases as both the noise increases and the value ofε decreases, again as it should

(see Figures 7.6 and 7.11). For high noise variance and low values ofε, the oppo-

nent is more likely to be on a pure strategy and hence easier to exploit.ε-ADAPT

learns to exploit the opponent more often (and explore less) in such cases. This

happens because the value forp̃B(t) is likely to be close to 0 or 1 andε-ADAPT

learns that selecting the predicted worst response is costly.

For the prisoner’s dilemma game, the amount of exploration increases with

noise variance, as the presence of a dominant strategy makes this problem more

like a bandit problem. The relationship between the amount of exploration and the

value ofε, however, is dependent on the noise variance and the attributed behaviour

of the opponent. Overall,ε-ADAPT has learnt to explore the correct amount de-

pendent on the noise variance, the structure of the game and the type of opponent

faced. ε-ADAPT is therefore able to learnwho to explore against, in addition to

how much, when and which action.
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Figure 7.13: Average number of explorative steps performed byε-ADAPT (over
10,000 repeats) against theε-FP strategy over a grid ofεB values and noise vari-
ances, where the case study game is (left) matching pennies and (right) prisoner’s
dilemma. In both figures the game length is 50.
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7.8 Summary

In this chapter we have studied 2-player repeated 2×2 games where expected re-

wards are unknowna priori. The agents must learn as they play, and hence must

simultaneously estimate rewards and adapt to the opponent. We investigated two

fundamental learning techniques: Individual Learning (IL) and Joint Action Learn-

ing (JAL). Both ILs and JALs, when used with suitable exploration strategies, have

been shown in Claus and Boutilier (1998) and Chapman et al. (2011) to converge

to a Nash equilibrium for certain games. In this chapter, however, we demonstrated

and proved that ILs (using the greedy strategy) and JALs (using fictitious play) with

no exploration, have no such guarantee of converging to a Nash equilibrium in any

game – and hence are often suboptimal strategies. We then constructed exploration

strategies, based on theε-greedy strategy from bandit problems, and showed that

an agent can sometimes use this strategy to exploit a non-explorative opponent. We

found surprisingly high optimal values ofε, for games with a mixed strategy Nash

equilibrium, as the agent couldexploit by exploring– or in other words explicitly

manage its mixed strategy, to keep its opponent on a favourable pure strategy, and

hence maintain long term rewards. In other games, however, the optimal explo-

ration rate was close or equal to zero.

The wide-ranging optimal exploration rates motivated the extension ofε-ADAPT

to this framework, such that exploration could be adapted on-line without the need

for an a priori fixed exploration parameter. By predicting future opponent action

selections on-line,ε-ADAPT was able to find a near-optimal exploration rate and

perform better than most explorative fictitious play strategies. Theε-ADAPT al-

gorithm is therefore applicable in a multi-agent context and is able to consider the

presence of other agents in balancing the exploration-exploitation trade-off on-line.

This work could be extended by considering unknown classes of opponents (be-

yond fictitious play) that can be learnt over time by an agent, along with the reward

function. This further complicates the exploration-exploitation trade-off however,

and we reserve such extensions for future work (see Chapter 8).
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Chapter 8

Conclusions

In this chapter, we present an overview of the contributions of this thesis towards

understanding the exploration-exploitation trade-off in sequential decision making

problems. First, in Section 8.1, we summarise the research undertaken and the main

results from each chapter. Then, in Section 8.2, we identify key directions for future

work that arise from the findings in this thesis.

8.1 Summary of Results

We have studied the exploration-exploitation trade-off in several important sequen-

tial decision making problems, all of which are useful extensions of the classic

multi-armed bandit problem. Chapters 3-5 focused on single-agent problems, and

Chapters 6 and 7 considered the role of exploration in multi-agent systems. In par-

ticular, we have studied scenarios where:

Chapters 3 and 4:The agent observes side information that helps identify the op-

timal action at each time-step, known as the bandit with covariates problem

Chapter 5: The agent must consider rewards that are changing over time

Chapter 6: Multiple-agents can communicate missing side information

Chapter 7: Agents must consider the actions of other agents to identify the optimal

exploration strategy
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In each instance, we have studied the role that the exploration-exploitation trade-off

plays in terms of maximising reward in finite time, which was the first objective that

we outlined at the beginning of this thesis. First of all, we note that all the problems

considered are connected with the idea that the agent has additional information

other than the observed rewards (such as side information or the actions selected by

other agents) which should not be ignored and plays a vital role in terms of the opti-

mal balance between exploration and exploitation. Further to this, the main results

and insights we have gained in this direction can be summarised as follows:

• For the simplest bandit with covariates problem, we proved that the optimal

exploration rate in finite-time problems is zero for theε-greedy policy, but

non-zero for theε-first policy (beyond trivial game lengths).

• For more general static bandit problems, we proved that the optimal on-line

ε-first policy can be computed on-line by considering the exploration deci-

sion in the next time-steponly. This result is particularly significant as it

forms the key reason behind the computational tractability of our new on-line

algorithm,ε-ADAPT.

• On the other hand, exploration is required throughout a dynamic bandit prob-

lem, but the overall amount is dependent on the type and rate of dynamics,

i.e. changes such as smooth drifts or abrupt jumps.

• In multi-agent communication problems, agents can benefit from exploring

communication decisions, as well as action selection decisions. The optimal

balance between the two is dependent on the communication cost.

• In 2-player repeated games with unknown rewards, an agent canexploit by

exploring in games with mixed strategy Nash equilibria, but exploration is

much more costly in games with dominant strategies. We found the optimal

amount of exploration to be highly dependent on the reward structure and

type of opponent faced.
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Our second objective was to develop practical and implementable algorithms for

the various frameworks studied. To this end, we have used the results and insights

highlighted above to construct an on-line algorithm,ε-ADAPT, which can approxi-

mate the optimal exploration decision at each time-step for each decision problem.

The algorithm is based on theoretical properties of theε-first policy, which has been

found to perform consistently strongly (often best of all) in a variety of empirical

studies in the literature.

The need for constructing theε-ADAPT algorithm was motivated in Chapter 2,

where we conducted an extensive review of existing policies and algorithms used

to balance exploration and exploitation in bandit problems. Specifically, the only

policy that was found to be flexible enough to be used in all the frameworks con-

sidered in this thesis is theε-greedy policy, but this policy requires an exploration

parameter to be tuneda priori, the optimal value of which is highly variable and

unknown to the agent.ε-ADAPT, on the other hand, is free of exploration parame-

ters, and extends naturally to a range of sequential decision making problems. This

is because withε-ADAPT exploration is driven byuncertainty– the more unsure

ε-ADAPT is about the rewards from an action, the more likely that this action is

explored.

In the case of dynamic rewards, for example,ε-ADAPT would have high uncer-

tainty about actions that suddenly start yielding different rewards, and this action

is then explored more. In this way the algorithm is able to detectwhich actionto

explore. After implementing and testingε-ADAPT for all frameworks we consid-

ered, we demonstrated that the algorithm is also able to learnhow muchto explore,

whento explore (in the presence of side information),how to explore (when ex-

ploration by communication is also available) and finallywho to explore against

(in the case of repeated games). We testedε-ADAPT against optimally tunedε-

first andε-greedy policies, and found the performance to be consistently close to

the better-performing off-line policy for each framework. We have therefore con-

structed a robust algorithm for adapting exploration on-line in sequential decision

making problems which can achieve strong finite-time performance in both single

and multi-agent problems.
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To summarise, in this thesis we have investigated the fundamental role that the

exploration-exploitation trade-off plays in terms of maximising finite-time reward

in sequential decision making problems. Not only is it important that the overall

amount of exploration performed by an agent is at some required level, but the

presence of side information and other agents in a decision problem means explo-

ration needs to be performed at the right times and with the correct actions. To

this end, we have developed the first on-line algorithm that can approximate these

optimal exploration decisions on-line, without the need for a prefixed exploration

parameter.

8.2 Future Work

There remain a number of open issues to be addressed beyond those considered in

this thesis. First and foremost, the next step is to construct theoretical performance

bounds for the finite-time performance of theε-ADAPT algorithm, to establish the

overall robustness of the algorithms to different problem setups. Finite-time bounds

have been given little attention in sequential decision making problems in general,

with most theoretical analysis restricted to finding optimal asymptotic properties. A

notable exception is the class of Upper Confidence Bound (UCB) algorithms (which

we reviewed in Section 2.2.3), which bounds finite-time performance for static ban-

dit problems with no side information, where rewards are bounded in the interval

[0, 1]. Further theoretical evaluations and findings have also been found in restricted

settings in Cesa-Bianchi and Lugosi (2006). In our case, we would like to bound

the performance ofε-ADAPT in more general problems with unbounded rewards

where side information is present, as this is more useful in applications. Due to the

MC approximations used byε-ADAPT, together with the presence of unbounded

rewards and side information, constructing theoretical finite-time bounds is partic-

ularly challenging. To combat this challenge, however, we can bound performance

(under expectation) against that of the optimalε-first policy. This can be done by

calculating the mean and variance of the MC approximations and then using these

values to measure the accuracy of selecting optimalε-first actions on-line.
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Other useful directions of future work include:

Arm acquiring bandits and infinite-action problems: As discussed in Section

2.1.1, arm acquiring bandits study scenarios where new actions arrive throughout

the decision problem.ε-ADAPT naturally extends to such scenarios as a new action

will be treated with high uncertainty and explored more soon after arrival. It is less

clear, however, how a decision problem changes if new agents arrive over time, but

againε-ADAPT could be constructed to explore this agent more in such circum-

stances (whether that is by communication or action selection). The case of infinite

actions is interesting, asε-ADAPT does not naturally extend to this approach due to

the indexing approach used for each action. A simple but naı̈ve solution might be to

discretise the action space to make the problem finite action, but this is not always

possible and balancing the exploration-exploitation trade-off in such circumstances

is still an open problem.

State-space modelling:Using state-space modelling techniques to predict future

rewards in dynamic bandit problems. Although we dismissed using this approach

in Chapter 5, as we wanted to consider unpredictable dynamics, it would still be

useful to extendε-ADAPT to scenarios where dynamics can be fitted to a certain

model, as will often be the case with climatological or financial data for example.

In such cases, the model can be used to regenerate future rewards in the MC ap-

proximation byε-ADAPT, rather than assuming the decision problem is static in

some window, which will lead to more accurate MC approximations. Rewards are

not always observed, however, which induces a missing value problem, the solution

of which is still very much an open area of research.

Modelling unknown adversaries: In repeated games with unknown rewards an

agent could attempt to learn the type of opponent faced, in order to develop a bet-

ter counter-strategy. This means the agent has an exploration-exploitation trade-off

whilst trying to learn about opponents and not just through learning the reward func-

tion. This feature could also be studied in games with more than 2 agents, which can

introduce strategic interactions such astacit collusion– where agents agree to team

up and exploit other agents, without explicitly communicating such preferences.
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This has already been investigated in a known rewards setting in Sykulski et al.

(2010b) and Munoz de Cote et al. (2010) and applied to a 3-player game known as

the Lemonade Stand Game– extending these results to the unknown rewards set-

ting can combine this work with the findings in this thesis and further investigate

the relationship between game theory and the exploration-exploitation trade-off.

Applications: Finally, ε-ADAPT can be further tested with real-world data sets (in

addition to that performed in Section 4.3.3 for a data-retrieval problem) from wire-

less sensor network problems, multi-target tracking assignments and web-based ad-

vertising problems for example, where we can implement the dynamic bandit ver-

sion of ε-ADAPT. Furthermore, the multi-agent frameworks that we have studied,

can be tested (together with the off-line and on-line policies we constructed) against

real-data from mobile sensor problems and on-line auctions.
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Appendix A

Derivations and Proofs for

One-Armed Bandit Framework

A.1 Derivation of ε-greedy Expected Reward

Derivation of Equation (3.11): Consider the caseα > β:

rg(t) = Fεg(t, ε)

(∫ 0
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is the pdf of a Rayleigh

distribution (defined onx(t) ∈ [0,∞)). By symmetry the result holds forβ > α

also.
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A.2 Expansion of Binomial Coefficients in Theorem 3.1

Derivation of Equation (3.19):
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Appendix B

The RLS Algorithm with Adaptive

Forgetting

Start with initial valueŝα(0) = 0, P (0) = δI, λ(0) = 1, S(0) = 0 andψ̂(0) = 0

(whereδ is a large positive number andI is the identity matrix). Then fort =

1, 2, . . . , compute:

k(t) =
λ−1(t− 1)P (t− 1)x(t)

1 + λ−1(t− 1)xT (t)P (t− 1)x(t)
, (B.1)

ξ(t) =r(t)− α̂T (t− 1)x(t), (B.2)

α̂(t) =α̂(t− 1) + k(t)ξ(t), (B.3)

P (t) =λ−1(t− 1)P (t− 1)− λ−1(t− 1)k(t)xT (t)P (t− 1), (B.4)

λ(t) =
[
λ(t− 1) + ωψ̂T (t− 1)x(t)ξ(t)

]λ+

λ−

, (B.5)

S(t) =λ−1(t),
[
I − k(t)xT (t)

]
S(t− 1)

[
I − x(t)kT (t)

]

λ−1(t)k(t)kT (t)− λ−1(t)P (t), (B.6)

ψ̂(t) =
[
I − k(t)xT (t)

]
ψ̂(t− 1) + S(t)x(t)ξ(t). (B.7)

Computing Equations (B.1-B.4) withλ = 1 corresponds to the standard RLS al-

gorithm used in Section 4 for static regression problems. Equations (B.5-B.7) are

required to adapt the forgetting factorλ(t) over time. The bracket followed byλ−

andλ+ in Equation (B.5) indicates truncation.
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Appendix C

Addition Material for the

Multi-Agent Bandit Problem

C.1 Derivation of VOC and VOS for 2-armed Problem

From Equation (6.6) it follows that (for̂αi,j+1 > 0):

VOCai
+ Π

=

∫
max(0, α̂i,1 + α̂i,2x2(t) + α̂i,3x3(t)) p(xj+1(t)|xi+1(t))dxj+1(t),

=

∫ ∞

c3

(α̂i,1 + α̂i,2x2(t) + α̂i,3x3(t)) p(xj+1(t)|xi+1(t))dxj+1(t),

= (α̂i,1 + α̂i,i+1xi+1(t))

∫ ∞

c3

p(xj+1(t)|xi+1(t))dxj+1(t)

+ α̂i,j+1

∫ ∞

c3

xj+1p(xj+1(t)|xi+1(t))dxj+1(t),

wherec3 =
−α̂i,1−α̂i,i+1xi+1(t)

α̂i,j+1
. Now,

p(xj+1(t)|xi+1(t)) ∼ N (c1, c2),






c1 = μ̂j +
Σ̂i,j

Σ̂i,i
(xi+1(t)− μ̂i)

c2 = Σ̂j,j −
Σ̂2

i,j

Σ̂i,i
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Therefore it follows that:

VOCai
+ Π

= (α̂i,1 + α̂i,i+1xi+1(t) + α̂i,j+1c1)
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c3

p(xj+1(t)|xi+1(t))dxj+1(t)

+ α̂i,j+1
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c3

(xj+1 − c1)p(xj+1(t)|xi+1(t))dxj+1(t),

= (α̂i,1 + α̂i,i+1xi+1(t) + α̂i,j+1c1)

[

1− Φ
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c2

)]

+ α̂i,j+1

∫ ∞
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up(u|xi+1(t))du,
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du,
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√
c2

2π
exp

(

−
(c3 − c1)

2

2c2

)

du,

and similarly forα̂i,j+1 > 0, to get Equation (6.9). The VOS can be found more

immediately from Equation (6.5):

VOSai
= max(0, E(α̂i,1 + α̂i,i+1xi+1(t) + α̂i,j+1xj+1(t)|xi+1(t))) ,

= max(0, α̂i,1 + α̂i,i+1xi+1(t) + α̂i,j+1c1) .

Note that the VOC and VOS implemented in all algorithms use on-line estimates of

α, μ andΣ, as the true values are unknown.
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C.2 MC approximation of Optimal Exploration by Communi-

cation

Algorithm C.1 On-line MC approximation ofRεf (T
∗, z′i(t))

1: Inputs:T ∗ = T − t + 1 , n (no. of times each action selected prior to timet),
sample estimates (̂α, σ̂2

η, . . .),
2: for all z′i(t) 6∈ yC

i (t) ∩ y′Ci (t) do
3: Denote additional communication cost asΠ(z′i(t))
4: for s = 1 to T ∗ + max(n) do
5: Generatex′(s) {New Covariate}
6: if s = max(n) + 1 then
7: for d = 1 to p do
8: if xd(t) ∈ z′i(t) then
9: x′

d(s) = xd(t) {True covariate value kept at timet, for observed
covariate values only}

10: else
11: Drawx′

d(s) conditional onz′i(t)
12: end if
13: end for
14: end if
15: for all c ∈ Ci do
16: if max(n)− nc ≤ s ≤ max(n) or E[r′c(s)|x

′(s), ᾱc] > 0 then
17: Select actionc and receive rewardr′c(s). c ∈ S ′

i

18: Updateᾱc using EM with missing covariates
19: end if
20: end for
21: r′ai

(s) =
∑

c∈S′
i(t)

r′c(s)
22: end for
23: Rεf (T

∗, z′i(t)) =
∑T ∗+max(n )

s=max(n )+1 r′ai
(s)− Π(z′i(t)) {MC approximation}

24: end for
25: Rεf (T

∗, z∗i (t)) = maxz ′i(t)
Rεf (T

∗, z′i(t))

The benefit of exploration (by communication) occurs in lines 16 and 18, where if

the agent observes more covariates then the agent can make better action decisions

and updatēαc with fewer missing covariate values. The cost of exploration occurs

in line 23, where increased communication has an increased cost which is removed

from the cumulative reward functionRεf (T
∗, z′i(t)).
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T. Lu, D. Ṕal, and M. Ṕal. Contextual multi-armed bandits.Proceedings of the 13th Inter-

national Conference on Artificial Intelligence and Statistics, pages 485–492, 2010.

R.D. Luce.Individual choice behavior. Wiley New York, 1959.

W.G. Macready and D.H. Wolpert. Bandit problems and the exploration/exploitation trade-

off. IEEE Transactions on Evolutionary Computation, 2(1):2–22, 1998.

J.G. March. Exploration and exploitation in organizational learning.Organization Science,

2(1):71–87, 1991.

J.R. Marden, G. Arslan, and J.S. Shamma. Regret based dynamics: Convergence in weakly

acyclic games.Proceedings of the 6th International Conference on Autonomous Agents

and Multiagent Systems, pages 1–8, 2007.

J.R. Marden, H.P. Young, G. Arslan, and J.S. Shamma. Payoff based dynamics for multi-

player weakly acyclic games.SIAM Journal on Control and Optimization, 48(1):373–

396, 2009.

N. Meuleau and P. Bourgine. Exploration of multi-state environments: Local measures and

back-propagation of uncertainty.Machine Learning, 35(2):117–154, 1999.

G.E. Monahan. A survey of partially observable Markov decision processes: Theory, mod-

els, and algorithms.Management Science, 28(1):1–16, 1982.

D. Monderer and L.S. Shapley. Potential games.Games and Economic Behavior, 14(1):

124–143, 1996.

E. Munoz de Cote, A.M. Sykulski, A.C. Chapman, and N.R. Jennings. Automated planning

in repeated adversarial games.Proceedings of the 26th International Conference on

Uncertainty and Artificial Intelligence, pages 376–383, 2010.

J.H. Nachbar. Evolutionary selection dynamics in games: Convergence and limit properties.

International Journal of Game Theory, 19(1):59–89, 1990.

J. Nash. Non-cooperative games.The Annals of Mathematics, 54(2):286–295, 1951.



REFERENCES 208

G. Neumann, M. Pfeiffer, and W. Maass. Efficient continuous-time reinforcement learning

with adaptive state graphs.Proceedings of the 18th European Conference on Machine

Learning, pages 250–261, 2007.

M. Niedzwiecki. Identification of time-varying processes. Wiley Chichester, UK, 2000.

J. Nino-Mora. Computing a classic index for finite-horizon bandits.INFORMS Journal on

Computing, Articles in Advance, pages 1–14, 2010.

D.G. Pandelis and D. Teneketzis. On the optimality of the Gittins index rule for multi-

armed bandits with multiple plays.Mathematical Methods of Operations Research, 50

(3):449–461, 1999.

S. Pandey, D. Agarwal, D. Chakrabarti, and V. Josifovski. Bandits for taxonomies: A

model-based approach.Proceedings of the SIAM International Conference on Data Min-

ing (SDM), pages 216–227, 2007.

N.G. Pavlidis, D.K. Tasoulis, N.M. Adams, and D.J. Hand. Dynamic multi-armed bandit

with covariates.Proceedings of the 18th European Conference on Artificial Intelligence,

pages 777–779, 2008a.

N.G. Pavlidis, D.K. Tasoulis, and D.J. Hand. Simulation studies of multi-armed bandits

with covariates.Proceedings of the 10th International Conference on Computer Model-

ing and Simulation, pages 493–498, 2008b.

N.G. Pavlidis, N.M. Adams, D. Nicholson, and D.J. Hand. Prospects for bandit solutions

in sensor management.The Computer Journal, 53(9):1370–1383, 2010.

V. Pruzhansky. On finding CURB sets in extensive games.International Journal of Game

Theory, 32(2):205–210, 2003.

S.D. Ramchurn, A. Rogers, K. Macarthur, A. Farinelli, P. Vytelingum, I. Vetsikas, and

N.R. Jennings. Agent-based coordination technologies in disaster management.Proceed-

ings of the 7th International Conference on Autonomous Agents and Multiagent Systems:

demo papers, pages 1651–1652, 2008.

H. Robbins. Some aspects of the sequential design of experiments.Bulletin of the American

Mathematical Society, 58:527–35, 1952.



REFERENCES 209

A. Rogers, E. David, and N.R. Jennings. Self-organized routing for wireless microsensor

networks.IEEE Transactions on Systems, Man and Cybernetics, Part A, 35(3):349–359,

2005.

A. Rogers, R.K. Dash, S.D. Ramchurn, P. Vytelingum, and N.R. Jennings. Coordinating

team players within a noisy iterated prisoners dilemma tournament.Theoretical Com-

puter Science, 377(1-3):243–259, 2007a.

A. Rogers, E. David, N.R. Jennings, and J. Schiff. The effects of proxy bidding and mini-

mum bid increments within eBay auctions.ACM Transactions on the Web, 1(2):9, 2007b.

D. Rosenberg, E. Solan, and N. Vieille. Social learning in one-arm bandit problems.Econo-

metrica, 75(6):1591–1611, 2007.

M. Rothschild. A two-armed bandit theory of market pricing.Journal of Economic Theory,

9(2):185–202, 1974.

J. Sarkar. One-armed bandit problems with covariates.The Annals of Statistics, 19(4):

1978–2002, 1991.

A.H. Sayed.Fundamentals of adaptive filtering. Wiley-IEEE Press, 2003.

J. Scheffer. Dealing with missing data.Research Letters in the Information and Mathemat-

ical Sciences, 3(1):153–160, 2002.

G. Shani, R.I. Brafman, and S.E. Shimony. Model-based online learning of POMDPs.

Proceedings of the 16th European Conference on Machine Learning, pages 353–364,

2005.

L.S. Shapley. Stochastic games.Proceedings of the National Academy of Sciences, 39(10):

1095–1100, 1953.

S. Singh, T. Jaakkola, M.L. Littman, and C. Szepesvari. Convergence results for single-step

on-policy reinforcement-learning algorithms.Machine Learning, 38(3):287–308, 2000.

M. Smyrnakis. Game-theoretical approaches to decentralised optimisation. PhD thesis,

Department of Mathematics, University of Bristol, 2010.



REFERENCES 210

T. Soderstrom, L. Ljung, and I. Gustavsson. A theoretical analysis of recursive identification

methods.Automatica, 14(3):231–244, 1978.

R. Stranders, A. Farinelli, A. Rogers, and N.R. Jennings. Decentralised coordination of

mobile sensors using the max-sum algorithm.Proceedings of the 21st International

Joint conference on Artificial Intelligence, pages 299–304, 2009.

A.L. Strehl, C. Mesterharm, M.L. Littman, and H. Hirsh. Experience-efficient learning

in associative bandit problems.Proceedings of the 23rd International Conference on

Machine Learning, pages 889–896, 2006.

M.J.A. Strens. A bayesian framework for reinforcement learning. InProceedings of the

17th International Conference on Machine Learning, pages 943–950. Morgan Kaufmann

Publishers Inc., 2000.

R.S. Sutton.Temporal credit assignment in reinforcement learning. PhD thesis, University

of Massachusetts Amherst, 1984.

R.S. Sutton and A.G. Barto.Reinforcement learning: An introduction. MIT press, 1998.

A.M. Sykulski, N.M. Adams, and N.R. Jennings. On-line adaptation of exploration in

the one-armed bandit with covariates problem.Proceedings of the 9th International

Conference on Machine Learning and Applications, pages 459–464, 2010a.

A.M. Sykulski, A.C. Chapman, E. Munoz de Cote, and N.R. Jennings. EA2: The winning

strategy for the inaugural lemonade stand game tournament.Proceedings of the 19th

European Conference on Artificial Intelligence, pages 209–214, 2010b.

M.A.L. Thathachar and P.S. Sastry. A new approach to the design of reinforcement schemes

for learning automata.IEEE Transactions on Systems, Man and Cybernetics, 15(1):168–

175, 1985.

W.R. Thompson. On the likelihood that one unknown probability exceeds another in view

of the evidence of two samples.Biometrika, 25(3/4):285–294, 1933.

J.N. Tsitsiklis. A short proof of the Gittins index theorem.The Annals of Applied Proba-

bility, 4(1):194–199, 1994.



REFERENCES 211

D. Van Dijk, T. Ter̈asvirta, and P.H. Franses. Smooth transition autoregressive models - a

survey of recent developments.Econometric Reviews, 21(1):1–47, 2002.

M.P. Van Oyen, D.G. Pandelis, and D. Teneketzis. Optimality of index policies for stochas-

tic scheduling with switching penalties.Journal of Applied Probability, 29(4):957–966,

1992.

J. Vermorel and M. Mohri. Multi-armed bandit algorithms and empirical evaluation.Pro-

ceedings of the 16th European Conference on Machine Learning, pages 437–448, 2005.

C.C. Wang, S.R. Kulkarni, and H.V. Poor. Arbitrary side observations in bandit problems.

Advances in Applied Mathematics, 34(4):903–938, 2005a.

C.C. Wang, S.R. Kulkarni, and H.V. Poor. Bandit problems with side observations.IEEE

Transactions on Automatic Control, 50(3):338–355, 2005b.

T.Y. Wang and Q. Cheng. Collaborative event-region and boundary-region detections in

wireless sensor networks.IEEE Transactions on Signal Processing, 56(6):2547–2561,

2008.

X.F. Wang and T. Sandholm. Reinforcement learning to play an optimal Nash equilibrium

in team Markov games.Advances in Neural Information Processing Systems, pages

1603–1610, 2003.

C.J.C.H. Watkins. Learning from delayed rewards. PhD thesis, Cambridge University,

1989.

R. Weber. On the Gittins index for multiarmed bandits.The Annals of Applied Probability,

2(4):1024–1033, 1992.

M.L. Weitzman. Optimal search for the best alternative.Econometrica: Journal of the

Econometric Society, 47(3):641–654, 1979.

P. Whittle. Multi-armed bandits and the Gittins index.Journal of the Royal Statistical

Society, Series B, 42(2):143–149, 1980.

P. Whittle. Arm-acquiring bandits.The Annals of Probability, 9(2):284–292, 1981.



REFERENCES 212

P. Whittle. Restless bandits: Activity allocation in a changing world.Journal of Applied

Probability, 25A:287–298, 1988.

M. Woodroofe. A one-armed bandit problem with a concomitant variable.Journal of the

American Statistical Association, 74(368):799–806, 1979.

M. Woodroofe. Sequential allocation with covariates.Sankhȳa: The Indian Journal of
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