
QUANTUM STOCHASTIC CONVOLUTION COCYCLES III

J. MARTIN LINDSAY AND ADAM G. SKALSKI

Abstract. Every Markov-regular quantum Lévy process on a multiplier C∗-
bialgebra is shown to be equivalent to one governed by a quantum stochastic
differential equation, and the generating functionals of norm-continuous con-
volution semigroups on a multiplier C∗-bialgebra are then completely char-
acterised. These results are achieved by extending the theory of quantum
Lévy processes on a compact quantum group, and more generally quantum
stochastic convolution cocycles on a C∗-bialgebra, to locally compact quan-
tum groups and multiplier C∗-bialgebras. Strict extension results obtained
by Kustermans, together with automatic strictness properties developed here,
are exploited to obtain existence and uniqueness for coalgebraic quantum sto-
chastic differential equations in this setting. Then, working in the universal
enveloping von Neumann bialgebra, we characterise the stochastic generators
of Markov-regular, *-homomorphic (respectively completely positive and con-
tractive) quantum stochastic convolution cocycles.

Introduction

Let G be a locally compact quantum semigroup, in other words a multiplier
C∗-bialgebra. The main results of this paper are as follows: a concrete realisa-
tion of each abstract quantum Lévy process on G which is Markov-regular (that
is, has norm-continuous expectation semigroup) as a quantum stochastic process
in some Fock space (Corollary 6.2), and a characterisation of the generators of
norm-continuous convolution semigroups of states on G (Theorem 6.3). These are
achieved by the development of a general theory of quantum stochastic evolutions
with tensor-independent identically distributed increments, culminating in infinites-
imal characterisations of Markov-regular *-homomorphic, respectively completely
positive and contractive, quantum stochastic convolution cocycles (Theorem 5.2).
As a consequence of our results, a large family of examples of quantum Lévy pro-
cesses on G is generated. These are indexed by a nondegenerate representation of
G (as a C∗-algebra) and a vector from the representing Hilbert space.

The notion of quantum Lévy process generalises that of classical Lévy process on
a semigroup. It was first introduced by Accardi, Schürmann and von Waldenfels, in
the purely algebraic framework of ∗-bialgebras ([ASW]), and was further developed
by Schürmann and others ([Sch], [Fra]) who, in particular, extended it to other
noncommutative forms of independence (free, boolean and monotone), still in the
algebraic context. Inspired by Schürmann’s reconstruction theorem, which states
that every quantum Lévy process on a ∗-bialgebra can be equivalently realised on a
symmetric Fock space, we first showed how the algebraic theory of quantum Lévy
processes can be extended to the natural setting of quantum stochastic convolution
cocycles ([LS1]). These are families of linear maps (lt)t≥0 from a ∗-bialgebra B
to operators on the symmetric Fock space F , over a Hilbert space of the form
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L2(R+; k), satisfying the following cocycle identity with respect to the ampliated
CCR flow (σt)t≥0:

ls+t = ls ⋆ (σs ◦ lt), s, t ≥ 0,

together with regularity and adaptedness conditions. Our approach enabled us to
then establish a theory of quantum Lévy processes on compact quantum groups and,
more generally, quantum stochastic convolution cocycles on operator space coalge-
bras ([LS3]). An extensive list of examples is included in Section 8 of that paper.
The recent development of a satisfactory theory of locally compact quantum groups
([KuV]) provides the challenge which is addressed in the current work, namely to
extend our analysis to the locally compact realm.

On the algebraic level the theories of quantum stochastic convolution cocycles
on compact and locally compact quantum semigroups look similar, however their
analytic aspects have a rather different nature. Whereas the coproduct on a com-
pact quantum semigroup B takes values in the spatial tensor product B⊗B, which
led us to an operator-space theoretic development of the theory and enabled us to
establish the main results in the corresponding natural category of operator-space
coalgebras, a noncompact locally compact quantum semigroup B is a nonunital
C∗-algebra whose coproduct takes values in the multiplier algebra of B ⊗ B. Con-
sequently, C∗-algebraic methods come more to the fore, with the strict topology
([Lan]), strict maps ([Ku1]) and enveloping von Neumann algebras all playing cru-
cial roles. The modern approach to quantum stochastics involves matrix spaces as
a natural tool for combining C∗-algebraic quantum state spaces with von Neumann
algebraic quantum noise ([LW3]), and this was successfully exploited in [LS3]. In
the context of the present paper, the strict topology on the initial C∗-algebra has
to be harnessed to the matrix-space technology, so that both may be exploited in
tandem.

The paper divides into three parts. The first part of the paper (Sections 1 and 2)
is devoted to a careful analysis of relations between the strict topology on multi-
plier algebras and the norm-ultraweak hybrid topology on matrix spaces, automatic
strictness of certain completely bounded maps, connections with the enveloping von
Neumann algebra and ultraweak extension, and compatibility between extensions
of maps continuous with respect to these topologies. Here also basic properties of
multiplier C∗-bialgebras are described and a universal enveloping construction is
given.

The second part of the paper (Sections 3, 4 and 5), is devoted to developing the
necessary quantum stochastic theory. Apart from its immediate applications in this
work, the contents of these sections may be of wider interest to quantum stochastic
analysts. Section 3 contains a brief summary of the relevant ‘standard’ theory;
weak and strong coalgebraic quantum stochastic differential equations are treated
in Section 4, where an automatic strictness result is used to establish uniqueness of
weak solutions. Quantum stochastic convolution cocycles are analysed in Section 5,
where Markov-regular completely positive contraction cocycles are shown to satisfy
quantum stochastic differential equations, and the form of the stochastic generator
is given, for these and for *-homomorphic cocycles.

In the last part (Section 6), quantum Lévy processes are defined in our setting,
and are shown to be realisable as Fock space convolution cocycles when they are
Markov-regular. This leads to the characterisation of the generating functionals of
norm-continuous convolution semigroups of states on a locally compact quantum
semigroup B as functionals which have the form

γ(b) = 〈η, π(b)η − ǫ(b)η〉, b ∈ B,
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where π is a nondegenerate representation of B on a Hilbert space h and η is a vector
in h. Examples of Poisson-type (i.e. norm-continuous) convolution semigroups of
states on a locally compact quantum semigroup are thereby readily produced, and
their associated quantum Lévy processes constructed.

Our most satisfactory results are obtained in the case of Markov-regular quantum
Lévy processes. A general theory of weakly continuous convolution semigroups of
functionals on multiplier C∗-bialgebras is initiated in [LS4]. In that paper every
such semigroup of states on a multiplier C∗-bialgebra of discrete type is shown to
be automatically norm-continuous so that all the results of this paper apply directly
in that case. In [LS4] we have used Theorem 6.3 of this paper to derive a classical
result on conditionally positive-definite functions on a compact group.

General notations. In this paper the multiplier algebra and universal envelop-

ing von Neumann algebra of a C∗-algebra A are denoted by Ã and A respectively.
The notations are intended to emphasise the view of these objects as two forms of

completion of A, enjoying the natural inclusions A ⊂ Ã ⊂ A. The symbols ⊗ , ⊗
and ⊗ are used respectively for linear/algebraic, spatial/minimal and ultraweak
tensor products, of spaces and respecively, linear, completely bounded and ultra-
weakly continuous completely bounded maps. For any Hilbert space h, we have the
ampliation and Hilbert space, given respectively by

ιh : B(H; K) → B(H ⊗ h; K ⊗ h), T 7→ T ⊗ Ih, and ĥ := C ⊕ h. (0.1)

where context determines the Hilbert spaces H and K.

1. Strict extensions, tensor products and χ-structure maps

In this section we recall some definitions and relevant facts about Hilbert C∗-
modules ([Lan]), strict topologies ([Ku1]), tensor products and h-k-matrix spaces
([LW3]). We establish an automatic strictness result and show how strict tensor
product constructions compare with h-matrix space constructions over a multiplier
C∗-algebra. The section ends by recalling a central concept for quantum Lévy
processes, namely that of χ-structure maps.

Hilbert C∗-modules and multiplier algebras. For Hilbert C∗-modules E and
F over a C∗-algebra C, L(E;F ) denotes the space of adjointable operators E → F .
Hilbert C∗-modules are endowed with a natural operator space structure under
which Mn(L(E;F )) is identified with L(En;Fn), where the column direct sums En

and Fn are also Hilbert C-modules, and L(E;F ) ⊂ CBC(E;F ), the space of right
C-linear completely bounded maps E → F ([BlM]). The strict topology on L(E;F )
is the locally convex topology generated by the seminorms T 7→ ‖Te‖ + ‖T ∗f‖
(e ∈ E, f ∈ F ); it is Hausdorff and complete. The closed subspace of L(E;F )
generated by the elementary maps |f〉〈e| : x 7→ f〈e, x〉 (e ∈ E, f ∈ F ) is denoted
K(E;F ). The unit ball of K(E;F ) is strictly dense in that of L(E;F ), K(E) is a
C∗-algebra and L(E) is a model for its multiplier algebra. In particular, viewing
a C∗-algebra A as a Hilbert C∗-module over itself, K(A) = A so that L(A) is a

model for the multipler algebra Ã. A net of positive contractions (ei)i∈I in A is
an approximate identity for A if and only if ei → 1

Ã
strictly. When A is unital

the strict topology coincides with the norm topology. For Hilbert spaces h and k,
|h〉 := B(C; h) and |k〉 are Hilbert C∗-modules over C, L(|h〉; |k〉) and K(|h〉; |k〉) are
naturally identified with B(h; k) and K(h; k) respectively, and the strict topology
on L(|h〉; |k〉) corresponds to the strong*-topology on B(h; k). When a C∗-algebra

A acts nondegenerately on a Hilbert space h, the multiplier algebra Ã is realised as
the double centraliser of A in B(h): {x ∈ B(h) : ∀a∈A xa, ax ∈ A}, the inclusion
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Ã ⊂ A′′ holds and bounded strictly convergent nets in Ã converge (strong*- and
thus) σ-weakly.

Two elementary classes of strictly continuous maps that feature below are com-
ponent maps εkl : L(E1 ⊕ E2) → L(Ek;El), T = [Tij ] 7→ Tkl, where the col-
umn direct sum E1 ⊕ E2 is a Hilbert C-module, and multiplication operators
L(E;F ) → L(E′;F ′), T 7→ X∗TY , where X ∈ L(F ′;F ) and Y ∈ L(E′;E) for
Hilbert C-modules E′ and F ′.

Strict maps and extensions. There is a more prevalent notion in the theory
than strict continuity. A bounded operator ϕ from K = K(E;F ) to L′ = L(E′;F ′)
where E′ and F ′ are Hilbert C∗-modules over a C∗-algebra C′, is called strict if it is
strictly continuous on bounded sets; the collection of such maps, denoted Bβ(K;L′),
is a closed subspace of B(K;L′); we describe some of its contents below. Here we
are particularly interested in the classes Bβ(A;B) for C∗-algebras A and spaces B
of the form B(h; k) where h and k are Hilbert spaces. An important general class of
strict maps is the set of *-homomorphisms ϕ : A → L(E), for a C∗-algebra A and
Hilbert C∗-module E, which are nondegenerate in the sense that Linϕ(A)E = E.

For a C∗-algebra A, let A denote its universal enveloping von Neumann algebra,
let ρ be the embedding A → A and let ι be the inclusion/natural map A∗ →

A
∗

= (A∗)
∗∗. The map ι∗ ◦ ρ∗∗ : A∗∗ → (A∗)

∗ = A is a *-isomorphism for the
common Arens product on A∗∗ and a weak*-σ-weak homeomorphism. Since A acts

nondegenerately in the universal representation, Ã may be viewed as a subalgebra
of A. All of this is well-known. For ease of reference we collect together some
extension properties which will play an important role here. The notation Bσ

stands for bounded ultraweakly continuous.

Theorem 1.1. Let A be a C∗-algebra with multiplier algebra Ã and universal en-
veloping von Neumann algebra A.

(a) Let ϕ ∈ Bβ(A;L) where L = L(E;F ) for C∗-modules E and F over a C∗-

algebra C. Then ϕ has a unique strict extension ϕ̃ : Ã → L, moreover ϕ̃ is
bounded and ‖ϕ̃‖ = ‖ϕ‖.

(b) Let ψ ∈ B(A;B) where B = B(h; k) for Hilbert spaces h and k. Then ψ has
a unique normal extension ψ ∈ Bσ(A;B), moreover ‖ψ‖ = ‖ψ‖.

(c) Let φ ∈ Bβ(A;B) where B = B(h; k) = L(|h〉; |k〉) for Hilbert spaces h and

k. Then φ̃ = φ|
Ã
.

In (a), ϕ̃† = ϕ̃† where ϕ† : A → L(F ;E) is defined by ϕ†(a∗) = ϕ(a)∗; similarly,

in (b) ψ† = ψ
†
. When F = E, ϕ̃ is positive/completely positive/multiplicative if ϕ

is, and likewise for ψ and ψ when k = h.

Proof. (a) is proved in [Ku1] in the case E = F = C. The general case is obtained
by applying this case with C = K(E ⊕ F ) and composing with the strict map
L(E⊕F ) → L(E;F ), T = [Ti,j] 7→ T21. (b) is well-known: set ψ := ι∗◦ψ∗∗◦j where
ι is the natural map/inclusion B∗ → (B∗)

∗∗ = B∗ and j is the natural isometric

isomorphism A → A∗∗. Since the unit ball of A is strictly dense in that of Ã ([Lan],
Proposition 1.4), (c) follows from the fact that strictly convergent bounded nets
converge σ-weakly. The last part follows from Kaplansky’s density theorem and
its Hilbert C∗-module counterpart (just used), and the separate strict (respectively
σ-weak) continuity of multiplication and corresponding continuity of the adjoint
operation, in a multiplier algebra (respectively von Neumann algebra). �
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Remarks. (i) The extensions commute with matrix liftings:

ϕ(n)˜= ϕ̃(n) : Mn(A)̃ = Mn(Ã) →Mn(L) = L(En;Fn)

ψ(n) = ψ
(n)

: Mn(A) = Mn(A) →Mn(B) = B(hn; kn),

so ‖ϕ̃‖cb = ‖ϕ‖cb when ϕ ∈ CBβ(A;L) and ‖φ‖cb = ‖φ‖cb when ψ ∈ CB(A;B).
(ii) Clearly the range of ϕ̃ is contained in the strict closure of the range of ϕ,

and the range of ψ is contained in the σ-weak closure of the range of ψ.
(iii) As a consequence of (a), strict maps may be composed in the following sense:

if ϕ1 ∈ Bβ(A1; Ã2) and ϕ2 ∈ Bβ(A2; Ã3), for C∗-algebras A1,A2 and A3, then a 7→
ϕ̃2(ϕ1(a)) is strict with unique strict extension ϕ̃2◦ϕ̃1; following the widely adopted

convention (e.g. [Lan]), it is simply denoted ϕ2 ◦ϕ1, thus ϕ2 ◦ϕ1 ∈ Bβ(A1; Ã3). For

a nondegenerate *-homomorphism ϕ : A → C̃, ϕ̃ is a unital *-homomorphism, and

conversely every nondegenerate *-homomorphism ϕ : A → C̃ is the restriction of a

strict unital *-homomorphism Ã → C̃.

Warning. We now write Bβ(Ã;L) for the class of strict maps Ã → L where, for
us, L will always be either of the form B(h; k) = L(|h〉; |k〉) for Hilbert spaces h

and k or of the form C̃ for a C∗-algebra C (or both: B(h) = L(|h〉) = K(h)˜). Use
of this notation therefore always needs to reflect the algebras of which the source
(and target) multiplier algebras are.

We note that the theorem delivers a commutative diagram of isometric isomor-
phisms:

Bβ(A;B)

%%LLLLLLLLLL

// Bσ(A;B)

Bβ(Ã;B)

99rrrrrrrrrr

(1.1)

for any C∗-algebra A and space B of the form B(h; k) for Hilbert spaces h and k.

Definition. Let ϕ ∈ Bβ(A;L(E)) for a C∗-algebra A and Hilbert C∗-module E.
We call ϕ preunital if its strict extension is unital: ϕ̃(1) = I.

Remark. For *-homomorphisms this is equivalent to nondegeneracy; in general it
is equivalent to ϕ(eλ) → 1 for some/every C∗-approximate identity (ei)i∈I for A,
but is stronger than the condition Linϕ(A)E = E ([Lan], Proposition 2.5; Corollary
5.7).

Automatic strictness and strict tensor products. In the next theorem we
establish an automatic strictness property and identify a natural class of maps for
strict tensoring. First some notation. When A is the spatial tensor product A1⊗A2,

for C∗-algebras A1 and A2, Ã is denoted A1 ⊗̃A2. Note the relation

Ã1 ⊗ Ã2 ⊂ A1 ⊗̃A2 (1.2)

Theorem 1.2. Let A, A1 and A2 be C∗-algebras.

(a) Let ϕ ∈ CB(A;B) where B = B(h; k) for a Hilbert spaces h and k. Then ϕ

is strict and ϕ̃ = ϕ|
Ã
. In particular, all *-homomorphisms A → B(h) are

strict.
(b) Let ϕi ∈ LinCPβ

(
Ai; C̃i

)
for C∗-algebras C1 and C2. Then, there is a

unique map ϕ1 ⊗ ϕ2 ∈ LinCPβ(A1 ⊗ A2; C1 ⊗̃C2) extending the algebraic
tensor product map ϕ1 ⊗ϕ2.

Proof. (a) In view of Theorem 1.1 it suffices to prove that ϕ is strict. It follows from
the Wittstock-Paulsen-Haagerup Decomposition Theorem ([EfR], Theorem 5.3.3)
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that ϕ = ψ ◦ π where π is a *-homomorphism A → B(H) for some Hilbert space H

and ψ : B(H) → B is of the form X 7→ R∗XS, for some operators R ∈ B(k; H) and
S ∈ B(h; H). Moreover, replacing H by H′ := Linπ(A)H, π by its compression to H′

R and S by RP and SP where P is the orthogonal projection H → H′, if necessary,
we may suppose that π is nondegenerate and therefore strict, when viewed as a map
into L(|H〉). Since ψ is strict L(|H〉) → L(|h〉; |k〉), ϕ is too. (b) By linearity we may
suppose that ϕ1 and ϕ2 are completely positive. The result then follows easily from
Kasparov’s extension of the Stinespring Decomposition Theorem ([Lan], Theorem
5.6). �

Remarks. It follows from Part (a) and the remarks after Theorem 1.1 that (1.1)
restricts to a commutative diagram of completely isometric isomorphisms

CB(A;B)

&&MMMMMMMMMMM

// CBσ(A;B)

CBβ(Ã;B)

88ppppppppppp

(1.3)

where A and B are as in (1.1). In particular, we have complete isometries

A
∗ ∼= Ã

∗
β
∼= A∗. (1.4)

By operator space considerations Ran(ϕ1 ⊗ϕ2) ⊂ C̃1 ⊗ C̃2. Part (b) leads to the

following useful notation. For ϕi ∈ LinCPβ

(
Ai; C̃i

)
(i = 1, 2) we denote the unique

strict extension of ϕ1 ⊗ ϕ2 by ϕ1 ⊗̃ϕ2. Thus

ϕ1 ⊗̃ϕ2 ∈ LinCPβ

(
A1 ⊗̃A2; C1 ⊗̃C2

)
. (1.5)

Note the following consequence of Part (a) and its proof, which provides a source
for tensoring as in Part (b).

Corollary 1.3. For a C∗-algebra A and Hilbert space h,

CB
(
A;B(h)

)
= Lin CPβ

(
A;B(h)

)
. (1.6)

Remark. This ‘strict decomposability’ property is very useful. For a general multi-
plier algebra target space, completely bounded maps need neither be strict nor be
linear combinations of completely positive maps.

h-k-Matrix spaces. Let V be an operator space in B(H; K), set B = B(h; k)
for two further Hilbert spaces h and k with total subsets S and T , and let Z ∈
B(H ⊗ h; K ⊗ k) = B(H; K)⊗B. Then the following are equivalent:

EξZEη ∈ V for all ξ ∈ T, η ∈ S;

(idB(H;K) ⊗ω)(Z) ∈ V for all ω ∈ B∗;

where, for a Hilbert space vector ξ,

Eξ := I ⊗ |ξ〉 : u 7→ u⊗ ξ and Eξ := (Eξ)
∗ = I ⊗ 〈ξ|, (1.7)

and I is the identity operator on the appropriate Hilbert space. The collection of
operators Z enjoying this property is an operator space which is denoted V⊗MB and
called the (right) h-k-matrix space over V. It is situated between the norm-spatial
and ultraweak-spatial tensor products:

V ⊗B ⊂ V ⊗M B ⊂ V⊗B

and the latter inclusion is an equality if and only if V is σ-weakly closed. If ϕ ∈
CB(V; V′) for another concrete operator space V

′ then there is a unique map, its h-
k-lifting, denoted ϕ⊗MidB, from V⊗MB to V′⊗MB satisfying Eξ(ϕ⊗MidB)(Z)Eη =
ϕ(EξZEη) for all ξ ∈ k, η ∈ h and Z ∈ V ⊗M B; it is completely bounded, with
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‖ϕ⊗M idB ‖cb = ‖ϕ‖cb and completely isometric if ϕ is (unless B = {0}), moreover
it extends ϕ⊗ idB , and it coincides with ϕ⊗ idB when V is σ-weakly closed and ϕ is
σ-weakly continuous. The next proposition confirms the compatibility of h-k-matrix
spaces and h-k-liftings on the one hand, and strict tensor products of algebras and
strict maps on the other. First note the identity

‖η‖2REηX = R
(
X ⊗ |η〉〈η|

)
Eη, (1.8)

for Hilbert space operators R ∈ B(H ⊗ h; H) and X ∈ B(H) and vectors η ∈ h.

Proposition 1.4. Let A be a C∗-algebra and let h be a Hilbert space. Then, in any
faithful nondegenerate representation of A (such as its universal representation),

A ⊗̃K(h) ⊂ Ã ⊗M B(h),

for the induced concrete realisations of Ã and A ⊗̃K(h). Moreover, if ψ ∈ LinCPβ(A; C̃)
for another C∗-algebra C, also faithfully and nondegenerately represented, then

ψ ⊗̃ idK(h) ⊂ ψ̃ ⊗M idB(h) .

Proof. Set B = B(h) and K = K(h). Let T ∈ A ⊗̃K and ζ, η ∈ h. First note
that (1.8) implies that

‖η‖2EζTEηa = EζT
(
a⊗ |η〉〈η|

)
Eη, a ∈ A; (1.9)

similarly,

‖ζ‖2aEζTEη = Eζ
(
a⊗ |ζ〉〈ζ|

)
TEη, a ∈ A; (1.10)

and so EζTEη ∈ Ã. Thus T ∈ Ã⊗MB. This proves that A ⊗̃K ⊂ Ã⊗MB, and (1.9)
and (1.9) now imply that the map

T ∈ A ⊗̃K 7→ EζTEη ∈ Ã

is strictly continuous. Therefore the maps

Eζ
(
ψ̃ ⊗M idB

)
(·)Eη = ψ̃(Eζ ·Eη) and Eζ

(
ψ ⊗̃ idK

)
(·)Eη

are strictly continuous A ⊗̃K → C̃ and agree on the strictly dense subspace A⊗K.
They therefore agree on A ⊗̃K and the result follows. �

Remark. In the universal representation of A we have the further compatibility
relations,

Ã ⊗M B(h) ⊂ A⊗B(h) and ψ̃ ⊗M idB(h) ⊂ ψ⊗ idB(h) .

C∗-algebras with character. The following notion plays an important role in
the theory. Recall the notation (0.1).

Definition. A χ-structure map on a C∗-algebra with character (A, χ) is a linear

map ϕ : A → B(ĥ), for some Hilbert space h, satisfying

ϕ(a∗b) = ϕ(a)∗χ(b) + χ(a)∗ϕ(b) + ϕ(a)∗∆ϕ(b), (1.11)

where ∆ :=
[

0
Ih

]
∈ B(ĥ) (no relation to coproducts).

In terms of its block matrix form ϕ = [ γ µ
λ ν ], λ is a kind of derivation (see

below) and µ = λ† : a 7→ λ(a∗)∗. More specifically, the following result, established
in [LS3], gives the general form of χ-structure maps.

Theorem 1.5. Let (A, χ) be a C∗-algebra with character and let ϕ be a linear map

A → B(ĥ), for some Hilbert space h. Then the following are equivalent.

(i) ϕ is a χ-structure map.
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(ii) ϕ has block matrix form

a 7→

[
γ(a) 〈ξ|ν(a)
ν(a)|ξ〉 ν(a)

]
where γ := ωξ ◦ ν for ν := π − ιh ◦ χ, (1.12)

in which (π, h) is a representation of A (as a C∗-algebra) and ξ is a vector
in h.

If ϕ is a χ-structure map with such a block matrix form then it is necessarily strict,
moreover π is nondegenerate if and only if ϕ̃(1) = 0.

Proof. The first part is Theorem A6 of [LS3]. This implies that ϕ is completely
bounded and so, by Theorem 1.2, ϕ is strict. After strict extension, the last part
now follows by inspection. �

We say that the χ-structure map ϕ is implemented by the pair (π, ξ). Note the
following alternative expression:

ϕ(a) =

[
〈ξ|
Ih

] (
π(a) − χ(a)Ih

) [
|ξ〉 Ih

]
(a ∈ A)

Remarks. Thus λ is a π-χ-derivation, in other words λ(ab) = λ(a)χ(b) + π(a)λ(b)
(a, b ∈ A), which is implemented.

By the separate strict/σ-weak continuity of multiplication, it follows that if ϕ is
a χ-structure map then ϕ̃ is a χ̃-structure map and ϕ is a χ-structure map.

We shall need the following result in Section 6.

Lemma 1.6. Let (A, χ) be a C∗-algebra with character. Then, for any functional
γ ∈ A∗, if γ is positive on Kerχ then γ̃ is positive on Ker χ̃ and γ is positive on
Kerχ.

Proof. It suffices to prove that A+ ∩ Kerχ is strictly dense in Ã+ ∩ Ker χ̃ and σ-

weakly dense in A+ ∩Kerχ. Let a ∈ Ã+ ∩Ker χ̃. The Kaplansky Density Theorem
for multiplier algebras ([Lan], Proposition 1.4) implies that there is a bounded net
(ci)i∈I of selfadjoint elements in A converging strictly to a1/4. Set ai = b∗i bi where

bi := ci
(
ci − χ(ci)

)
∈ Kerχ.

Then ai ∈ A+ ∩ Kerχ and separate strict continuity of multiplication on bounded
subsets of A, and strictness of χ, imply that (ai)i∈I converges strictly to a. The
ultraweak density of A+ ∩ Kerχ in A+ ∩ Kerχ is proved similarly, by appealing to
the standard Kaplansky Density Theorem (for von Neumann algebras). �

2. Multiplier C∗-bialgebras

It is convenient to consider bialgebras in both the C∗- and W ∗- categories and
a universal enveloping operation linking the two.

Definition. A (multiplier) C∗-bialgebra is a C∗-algebra B with coproduct, that is
a nondegenerate *-homomorphism ∆ : B → B ⊗̃B satisfying the coassociativity
conditions

(idB ⊗∆) ◦ ∆ = (∆ ⊗ idB) ◦ ∆.

A counit for (B,∆) is a character ǫ on B satisfying the counital property:

(idB ⊗ǫ) ◦ ∆ = (ǫ⊗ idB) ◦ ∆ = idB .

Remarks. The above definitions extend those for unital C∗-bialgebras, for which

B̃ = B and B ⊗̃B = B ⊗ B. The strict extension of a coproduct is a unital *-

homomorphism and the strict extension of a counit is a character on B̃. Note

however that, in general, (B̃, ∆̃) is not itself a C∗-bialgebra as the inclusion B̃⊗ B̃ ⊂
B ⊗̃B is usually proper.
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Examples of counital C∗-bialgebras include locally compact quantum groups in
the universal setting ([Ku2]), in particular all coamenable locally compact quantum
groups are included. If the assumptions on the coproduct ∆ are weakened to it
being completely positive, strict and preunital then the resulting structure is called
a (multiplier) C∗-hyperbialgebra (cf. [ChV]).

Let B be a C∗-bialgebra. The convolute of φ1 ∈ LinCPβ(B; Ã1) and φ2 ∈

LinCPβ(B; Ã2) for C∗-algebras A1 and A2 is defined by

φ1 ⋆ φ2 := (φ1 ⊗ φ2) ◦ ∆ ∈ LinCPβ(B; A1 ⊗̃A2).

We denote its strict extension by φ1 ⋆̃ φ2. Associativity of both of these convolutions

follows from the associativity of ⊗̃ and coassociativity of ∆̃. For each C∗-algebra
A define a map

RA : LinCPβ(B; Ã) → CBβ(B; B ⊗̃A), φ→ idB ⋆φ = (idB ⊗φ) ◦ ∆.

In case A = C, LinCPβ(B; Ã) is simply B∗ and we have

RC(ϕ1 ⋆ ϕ2) = RCϕ1 ◦RCϕ2, ϕ1, ϕ2 ∈ B
∗.

When B is counital each RA has left-inverse

EA : CBβ(B; B ⊗̃A) → CBβ(B; Ã), ψ → (ǫ⊗ idB) ◦ ψ. (2.1)

Remarks. By the complete positivity and strictness of the coproduct

RA

(
CPβ(B; Ã)

)
⊂ CPβ

(
B; B ⊗̃A

)

for any C∗-algebra A. In particular, by (1.6),

RK(h)

(
CB(B;B(h))

)
⊂ LinCPβ

(
B; B ⊗̃K(h)

)
.

Note also that, when ϕ1 ∈ CB(B;B(h1)) and ϕ2 ∈ CB(B;B(h2)) for Hilbert spaces
h1 and h2,

ϕ1 ⋆ ϕ2 ∈ CB(B;B(h1 ⊗ h2)).

For convenience we summarise useful properties of the R-maps next.

Proposition 2.1. Let B be a C∗-bialgebra and let A be a C∗-algebra. Then RA

is a completely contractive map into CBβ(B; B ⊗̃A) with image in the subspace

LinCPβ(B; B ⊗̃A) and, after strict extension, RC is furthermore a homomorphism

of Banach algebras: (B∗, ⋆) ∼=
(
(B̃)∗β , ⋆̃

)
→ CBβ(B̃). When B is counital, RA is

completely isometric with completely contractive left-inverse EA and RC is further-
more a unital algebra morphism.

We now turn briefly to the W ∗-category.

Definition. A von Neumann bialgebra is a von Neumann algebra M with coprod-
uct, that is a normal unital *-homomorphism ∆ : M → M⊗M which is coassocia-
tive:

(idM ⊗∆) ◦ ∆ = (∆⊗ idM) ◦ ∆.

A counit for (M,∆) is a normal character ǫ on M satisfying

(idM ⊗ ǫ) ◦ ∆ = (ǫ⊗ idM) ◦ ∆ = idM .

Convolution in this category is straightforward. Let φ1 ∈ CBσ(M;Z1) and φ2 ∈
CBσ(M;Z2) for σ-weakly closed concrete operator spaces Z, Z1 and Z2, then

φ1 ⋆ φ2 := (φ1 ⊗φ2) ◦ ∆ ∈ CBσ(M;Z1 ⊗Z2),

so that we may define a map

Rσ
Z : CBσ(M;Z) → CBσ(M; M⊗Z), φ 7→ idM ⋆φ =

(
idM ⊗φ

)
◦ ∆.
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In particular,

Rσ
C(ϕ1 ⋆ ϕ2) = Rσ

Cϕ1 ◦R
σ
Cϕ2 ∈ CBσ(M), for ϕ1, ϕ2 ∈ M∗.

When M is counital Rσ
Z has left-inverse

Eσ
Z : CBσ(M; M⊗Z) → CBσ(M;Z), ψ 7→ (ǫ⊗ idZ) ◦ ψ.

Proposition 2.2. Let (B,∆) be a C∗-bialgebra. Then (B,∆) is a von Neumann

bialgebra. Moreover, if ǫ is a counit for B then ǫ is a counit for B.

Proof. The map ∆ is a normal, unital *-homomorphism and the normal maps

(id
B
⊗∆) ◦ ∆ and (∆⊗ id

B
) ◦ ∆.

agree on B, which is σ-weakly dense in B, and so coincide. In the counital case, ǫ
is a normal character on B and the normal maps

(
id

B
⊗ ǫ
)
◦ ∆,

(
ǫ⊗ id

B

)
◦ ∆ and id

B

agree on B and so coincide. �

Naturally, we refer to (B,∆), respectively (B,∆, ǫ) as the universal enveloping
von Neumann bialgebra (resp. counital von Neumann bialgebra) of B.

Remark. The two forms of R-map enjoy an easy compatibility: if φ ∈ LinCPβ

(
B; Ã

)

for a C∗-algebra A then

RAφ = Rσ
A
φ, (2.2)

and similarly for the E maps in the counital case.

From now on we shall denote all maps of the form Rσ
Z , respectively Eσ

Z , by Rσ,
respectively Eσ, and similarly abbreviate all maps of the form RA and EA to R and
E .

3. Quantum stochastics

Fix now, and for the rest of the paper, a complex Hilbert space k referred to as

the noise dimension space. For c ∈ k define ĉ :=
(
1
c

)
∈ k̂; and for any function g

with values in k let ĝ denote the corresponding function with values in k̂, defined by

ĝ(s) := ĝ(s). Let F denote the symmetric Fock space over L2(R+; k), let S denote
the linear span of {d[0,t[ : d ∈ k, t ∈ R+} in L2(R+; k) (for purposes of evaluating,
we always take these right-continuous versions) and let E denote the linear span of

{ε(g) : g ∈ S} in F , where ε(g) denotes the exponential vector
(
(n!)−

1
2 g⊗n

)
n≥0

.

(There will be no danger of confusion with the inverse of an R-map!) Also define

e0 :=

(
1

0

)
∈ k̂ and ∆QS := P{0}⊕k =

[
0

Ik

]
∈ B(k̂). (3.1)

Quantum stochastic processes, differential equations and cocycles. A de-
tailed summary of the relevant results from QS analysis ([LW1-4], [LS2]) is given
in [LS3]. We shall therefore be brief here.

For operator spaces V and W, with W concrete, P(V → W) denotes the space of
adapted proceses k = (kt)t≥0 thus, for t ∈ R+,

kt ∈ L
(
E ;L(V; W ⊗M |F〉)

)
, written ε 7→ kt,ε. (3.2)

As in [LS3], we abbreviate to P⋆(V) when W = C. Its associated maps κf,g
t : V → W

(f, g ∈ S, s, t ∈ R+) are defined by

κ
f ′,f
t (x) =

(
idW ⊗M〈ε′|

)
kt,ε(x), x ∈ V,
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where ε = ε(f[0,t[) and ε′ = ε(f ′
[0,t[). For us here the pair (V,W) will be either (M,C)

or (M,M) for a von Neumann algebra M, or (A,C) or (Ã,C) for a C∗-algebra A

with multiplier algebra Ã. Thus W ⊗M |F〉 is either |F〉 or M⊗|F〉. The process k

is weakly initial space bounded if each κf,g
t is bounded, and weakly regular if further

sup
{
‖κf,g

s ‖ : s ∈ [0, T ]
}
< ∞, for all T ≥ 0. Here ‘column-boundedness’ usually

obtains: kt,ε ∈ B(V; W ⊗M |F〉) or CB(V; W ⊗M |F〉), for each t ∈ R+ and ε ∈ E .
For von Neumann algebras M and N, a process k ∈ P(M → N) is called normal if

each κ
f,g
t is normal. It follows that if k ∈ P(M → N) is bounded (meaning that

each kt is bounded) and normal then each map kt is normal M → N⊗B(F). Note
that, by Theorem 1.2, any completely bounded process l ∈ P⋆(A) on a C∗-algebra
A is necessarily strict in the sense that each map lt : A → B(F) is strict.

For φ ∈ L(k̂;CB(V; V ⊗M |k̂〉) and κ ∈ CB(V; W), where both V and W are
concrete operator spaces, kφ,κ denotes the unique weakly regular process k ∈ P(V →
W) satisfying the quantum stochastic differential equation

dkt = kt · dΛφ(t), k0 = ιF ◦ κ, (3.3)

where ιF denotes the ampliation W → W ⊗M B(F) x 7→ x ⊗ IF . The solution is
given by

kt,ε =
∑

n≥0

Λn
t,ε ◦ (κ ◦ φn)

where φn is an n-fold composition of matrix liftings of φ, Λn
t,ε : W ⊗M |B(k̂⊗n)〉 →

W ⊗M |F〉 is the ε-column of the n-fold multiple QS integration map, and the sum
is norm-convergent in CB(V; W ⊗M |F〉).

When W = V and κ = idV, k is a weak quantum stochastic cocycle on V (denoted
kφ), that is it satisfies k0 = ιF and for s, t ∈ R+ and f, g ∈ S,

κ
f,g
0 = idV, κ

f,g
s+t = κf,g

s ◦ κ
S∗

s f,S∗
s g

t (f, g ∈ S, s, t ∈ R+) (3.4)

where (St)t≥0 is the isometric semigroup of right-shifts on L2(R+; k). Let (σt)t≥0

denote the induced endomorphism semigroup on B(F), ampliated to W ⊗M B(F).
Then, when k is a completely bounded process, the cocycle relation simpiflies to

ks+t = ks · σs ◦ kt,

where the extended composition notation (which we do not need to go into here)
is explained in [LS3].

4. Coalgebraic quantum stochastic differential equations

For this section we fix a C∗-bialgebra B, which we do not assume to be counital,
and consider the coalgebraic quantum stochastic differential equation

dlt = lt ⋆ dΛϕ(t), l0 = ιF ◦ η, (4.1)

where ϕ ∈ SL(k̂, k̂; B∗) and η ∈ B∗.

Definition. By a form solution of (4.1) is meant a family
{
λ

f,g
t

∣∣f, g ∈ S, t ∈ R+

}

in B∗ satisfying

(i) the map s 7→
(
λf,g

s ⋆ ϕf̂(s),ĝ(s)

)
(b) is locally integrable;

(ii) λ
f,g
t (b) − e〈f,g〉η(b) =

∫ t

0
ds
(
λf,g

s ⋆ ϕf̂(s),ĝ(s)

)
(b)

for all f, g ∈ S, t ∈ R+ and b ∈ B.

Remarks. Let f, g ∈ S and b ∈ B. By automatic strictness of bounded linear

functionals on B, (i) makes sense. By (ii) it follows that λf,g
t (b) is continuous in t,

and so is locally bounded. Therefore, by the Banach-Steinhaus Theorem, λf,g
t is

locally bounded in t and (ii) therefore implies that (i) refines to
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(i)′ the map s 7→ λf,g
s is continuous,

which in turn implies that (ii) refines to

(ii)′ λf,g
t − e〈f,g〉η =

∫ t

0 ds λ
f,g
s ⋆ ϕf̂(s),ĝ(s),

the integrand being piecewise norm-continuous R+ → B∗.

The following automatic strictness property is needed to establish uniqueness for
form solutions. Recall the strict extension notation ⋆̃ .

Lemma 4.1. Let ϕ ∈ SL(k̂, k̂; B∗) and η ∈ B∗. Then every form solution
{
λ

f,g
t

∣∣f, g ∈

S, t ∈ R+

}
of (4.1) is strict in the sense that it satisfies

(ii)̃ λ̃
f,g
t − e〈f,g〉η̃ =

∫ t

0 ds λ
f,g
s ⋆̃ ϕf̂(s),ĝ(s) for all f, g ∈ S and t ∈ R+,

where λ̃f,g
t :=

(
λ

f,g
t

)
.̃

Note that the integrand in (ii)̃ is piecewise continuous R+ → (B̃)∗β .

Proof. Let
{
λ

f,g
t

∣∣f, g ∈ S, t ∈ R+

}
be a form solution of (4.1) and let f, g ∈ S and

t ∈ R+. Define bounded linear functionals

Φ :=

∫ t

0

ds λf,g
s ⋆ ϕf̂(s),ĝ(s) and Ψ :=

∫ t

0

ds λf,g
s ⋆̃ ϕf̂(s),ĝ(s)

on B and B̃ respectively. Note that each Riemann approximant ΨP of Ψ equals
(ΦP )̃ where ΦP is the corresponding Riemann approximant of Φ. The extension

map B
∗ → B̃

∗ is (isometric and thus) continuous therefore

Ψ = limΨP = (lim ΨP )̃ = Φ .̃

Since Φ = λ
f,g
t − e〈f,g〉η it follows that Ψ = (λf,g

t )̃ − e〈f,g〉η̃. Thus form solution is
strict. �

With this we have uniqueness as well as existence for form solutions.

Theorem 4.2. Let ϕ ∈ SL(k̂, k̂; B∗) and η ∈ B∗, for a C∗-bialgebra B. Then the
quantum stochastic differential equation (4.1) has a unique form solution.

Proof. For each c, d ∈ k let (pc,d
t )t≥0 denote the norm-continuous one-parameter

semigroup generated by ϕĉ,d̂ ∈ B∗, in the unitisation of the Banach algebra (B∗, ⋆).

For f, g ∈ S and t ∈ R+, set

λ
f,g
t := η ⋆ p

c0,d0

t1−t0 ⋆ · · · ⋆ p
cn,dn

tn+1−tn

where t0 = 0, tn+1 = t, {t1 < · · · < tn} is the (possibly empty) set of points in
]0, t[ where f or g is discontinuous and (ci, di) = (f(ti), g(ti)) for i = 0, · · · , n.

This defines an element λf,g
t of B

∗. It is easily verified that the resulting family{
λ

f,g
t

∣∣f, g ∈ S, t ∈ R+

}
is a form solution of (4.1).

Suppose now that µ is the difference of two form solutions, and let f, g ∈ S and
t ∈ R+. Then Lemma 4.1 yields the identity

(
µ

f,g
t

)
˜=

∫ t

0

ds µf,g
s ⋆̃ ϕf̂(s),ĝ(s),

which may be iterated. Estimating after repeated iteration (and using the isometry

B̃∗
β
∼= B∗) we have

‖µf,g
t ‖ ≤

tn

n!
sup

s∈[0,t]

‖µf,g
s ‖max

{
‖ϕĉ,d̂‖ : c ∈ Ran f, d ∈ Ran g

}n

which tends to 0 as n→ ∞. Thus µ = 0, proving uniqueness. �
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We now show how stronger forms of solution are obtained when the coefficient
of the quantum stochastic differential equation is a bounded mapping rather than
just a form. Below the following natural inclusions are invoked:

B
(
B;B(h; h′)

)
∼= B

(
h′, h; B∗

)
⊂ SL

(
h
′, h; B∗

)
,

ϕ 7→
(
(ζ, η) 7→ ϕζ,η := 〈ζ, ϕ(·)η〉

)
,

for Hilbert spaces h and h′. Recall the notation for the solution of a QS dif-
ferential equation introduced above equation (3.3), and the column notation for
processes (3.2).

Theorem 4.3. Let ϕ ∈ CB
(
B;B(k̂)

)
and η ∈ B∗, for a C∗-bialgebra B. Set

l̃ϕ,η := kφ̃,η̃ and l
ϕ,η

:= kφ,η where φ := Rϕ.

Thus φ̃ ∈ CBβ

(
B̃; B ⊗̃K(k̂)

)
and φ = Rσϕ ∈ CBσ

(
B; B⊗B(k̂)

)
.

(a) Abbreviating l
ϕ,η

to l and l̃ϕ,η to l̃ we have, for all ε ∈ E and t ∈ R+,
(i) lt,ε ∈ CBσ

(
B; |F〉

)
;

(ii) l̃t,ε = lt,ε|B̃;

(iii) l̃t,ε ∈ CBβ

(
B̃; |F〉

)
.

(b) For all f, g ∈ S and t ∈ R+, setting

λ
f,g

t := ωε(f[0,t[),ε(g[0,t[) ◦ l
ϕ,η

t and κf,g
t := Eε(f[0,t[)k

φ
t (·)Eε(g[0,t[), (4.2)

(i)
{
λ

f,g

t |B
∣∣ f, g ∈ S, t ∈ R+

}
is the unique form solution of (4.1);

(ii) λ
f,g

t = η ◦ κf,g
t and Rσ λ

f,g

t = (Rσ η) ◦ κ
f,g
t .

Proof. Fix ε ∈ E and t ≥ 0. By linearity we may assume that ε = ε(g). Below we
adopt the normal extension notation α⋆ β := α ⋆ β.

(a) (i) The operator lt,ε is a norm-convergent sum, in CB
(
B; |F〉

)
, of terms of

the form Λn
t,ε ◦

(
η ⋆ϕ ⋆ n

)
(n ∈ Z+), and each map η ⋆ ϕ ⋆ n is σ-weakly continuous.

Since CBσ

(
B; |F〉

)
is a norm-closed subspace of CB

(
B; |F〉

)
it remains only to show

that the bounded operator Λn
t,ε : B

(
k̂⊗n

)
→ |F〉 is σ-weakly continuous. By the

Krein-Smulian Theorem it suffices to prove this on bounded sets. This follows from
the following identity for multiple QS integrals:

〈
ε(f),Λn

t (A)ε(g)
〉

=

∫

∆n
t

ds
〈
πf̂ (s), Aπĝ(s)

〉
e〈f,g〉, A ∈ B(k̂⊗n),

since the integrand is a step function on ∆n
t := {s ∈ R

n : 0 ≤ s1 ≤ · · · ≤ sn ≤ t}.

(ii) Since l̃t,ε is a norm-convergent sum, in CB(B̃; |F〉), of terms of the form

Λn
t,ε◦(η ⋆̃ ϕ ⋆̃ n), this follows from (i) and the identity η ⋆ϕ ⋆ n|

B̃
= η ⋆̃ ϕ ⋆̃ n (n ∈ Z+).

(iii) This follows from (i) and (ii) since, for any map α ∈ CBσ(B; |F〉), (α|B)˜=
(α|

B̃
)˜(see (1.3)).

(b) (i) This follows from the identity

ωε,ε′ ◦ kφ,η
s ◦ φĉ,d̂ = ωε,ε′ ◦ kφ,η

s ⋆ ϕĉ,d̂, ε, ε′ ∈ E , c, d ∈ k, s ∈ R+,

where φĉ,d̂ :=
(
id

B
⊗ωĉ,d̂

)
◦ φ.

(ii) The first identity expresses the general relation between kφ,η and kφ ([LS2]).

By (i), it follows from the proof of Theorem 4.2 that λ
f,g

t may be written in the
form

η ⋆ p
c0,d0

t1−t0 ⋆ · · · ⋆ pcn,dn

tn+1−tn
,
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where pc,d
t denotes the normal extension of pc,d

t . Thus Rσλ
f,g

t equals

Rση ◦ P
c0,d0

t1−t0 ◦ · · · ◦ P
cn,dn

tn+1−tn
,

where P
c,d

t := exp t
(
φĉ,d̂

)
= Rσp

c,d
t . (ii) therefore now follows from the semigroup

representation of the standard QS cocycle kφ ([LW2]). �

Notation. Setting l
ϕ,η
t,ε = l

ϕ,η

t,ε |B (t ∈ R+, ε ∈ E) defines a process lϕ,η ∈ P⋆(B),
which we denote by lϕ when B is counital and η = ǫ. This extends the notation
introduced in [LS3] for the unital case.

Remark. In view of the identity

(
kφ,η

s ◦ φ
)

ε(f),f̂(s)
= l

ϕ,η

s,ε(f) ⋆ϕf̂(s),

l
ϕ,η

satisfies

lt = ιF ◦ η +

∫ t

0

ls ⋆ ϕ dΛ(s), t ∈ R+.

In this sense, lϕ,η is a strong solution of (4.1).

Note that only the coalgebraic structure of B has been used so far, not its alge-
braic structure.

We end this section by noting some correspondence between convolution pro-
cesses and associated standard processes. Recall the notation for QSDE solutions
introduced above equation (3.4).

Proposition 4.4. Let l = lϕ and l = l
ϕ
, where ϕ ∈ CB(B;B(k̂)) for a counital

C∗-bialgebra B, and set k = kφ where φ := Rϕ. Then

(a) l is unital if and only if k is.
(b) l is completely bounded (respectively, completely positive or *-homomorphic)

if and only if k is, in which case

kt = Rσlt, lt = Eσkt and ‖lt‖cb = ‖kt‖cb, t ∈ R+.

Proof. In the notations (4.2), Theorem 4.3(b)(ii) implies that,

λ
f,g

t = Eσκ
f,g
t and κf,g

t = Rσλ
f,g

t , f, g ∈ S, t ∈ R+.

Thus (a) follows from the unitality of the maps ǫ and ∆. Moreover, if k is completely
bounded then, since

ωε,ε′ ◦ l
ϕ,η

t = λ
f,g

t = Eσκ
f,g
t = ωε,ε′ ◦ Eσkt,

where ε = ε(f[0,t[ and ε′ = ε(f ′
[0,t[, for all f, f ′ ∈ S and t ∈ R+, it follows that

lt = Eσkt (t ∈ R+), in particular l is completely bounded. Conversely, if l is
completely bounded then lt = lt (t ∈ R+) and

(
id

B
⊗ωε,ε′

)
◦ Rσ lt = Rσλ

f,f ′

t = κ
f,f ′

t =
(
id

B
⊗ωε,ε′

)
◦ kt

for all f, f ′ ∈ S and t ∈ R+, so kt = Rσlt (t ∈ R+), therefore k is com-
pletely bounded. The rest follows from the fact that ∆ and ǫ⊗ idB(F) are *-
homomorphisms. �
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5. Quantum stochastic convolution cocycles

For this section we fix a counital C∗-bialgebra B.

Definition. A family
{
λ

f,g
t

∣∣f, g ∈ S, t ∈ R+

}
in B∗ is a form quantum stochastic

convolution cocycle on B if it satisfies

λ
f,g
0 = ǫ, λ

f,g
s+t = λf,g

s ⋆ λ
S∗

s f,S∗
s g

t , f, g ∈ S, s, t ∈ R+,

where (St)t≥0 is the isometric shift semigroup on L2(R+; k).

Note that for such a cocycle

p
c,d
t := λ

c[0,t[,d[0,t[

t

defines one-parameter semigroups {pc,d}c,d∈k in the unital Banach algebra (B∗, ⋆)
which we refer to as the associated convolution semigroups of the cocycle. The
cocycle is said to be Markov-regular if each of its associated semigroups is norm-
continuous.

Definition. A process l ∈ P⋆(B) is a (weak) QS convolution cocycle on B if its
associated family {ωε(f[0,t[),ε(f

′
[0,t[

) ◦ lt| f, f
′ ∈ S, t ∈ R+} is a form QS cocycle on B.

Remarks. (i) Let l ∈ P⋆(B) be a completely bounded QS convolution cocycle on B.
Then l is a QS convolution cocycle in the full sense:

ls+t = ls ⋆
(
σs ◦ lt

)
, l0 = ιF ◦ ǫ, s, t ∈ R+,

where (σs)s≥0 is the injective *-homomorphic semigroup of right shifts on B(F)
and the identification

B(F) = B(F[0,s[)⊗ σs

(
B(F)

)

is invoked.
(ii) It follows from the proof of Theorem 4.2 that, for ϕ ∈ SL

(
k̂, k̂; B∗

)
, the

unique form solution of the QS differential equation

dlt = lt ⋆ dΛϕ(t), l0 = ιF ◦ ǫ, (5.1)

is a Markov-regular weak QS convolution cocycle on B.

(iii) Form-cocycles may equally be defined on B̃ and B with the requirement
of strictness/normality, and ǫ replaced by ǫ̃, respectively ǫ. From the correspon-
dence (1.3) it follows that any one of these uniquely determines the others.

Our essential strategy for analysing QS convolution cocycles is to work in the
universal enveloping von Neumann bialgebra B and, by transferring between con-
volution and standard QS cocycles using the maps Rσ and Eσ, to apply the theory
developed in [LW1-4], and [LS2].

We first establish a converse to Remark (ii) above.

Proposition 5.1. Let l be a Markov-regular, completely positive, contractive quan-

tum stochastic convolution cocycle on B. Then there is a unique map ϕ ∈ CB(B;B(k̂))
such that l = lϕ.

Proof. Set k :=
(
Rσlt

)
t≥0

, where lt := lt (t ≥ 0). Then k is a standard quantum

stochastic cocycle on B which is Markov-regular, completely positive, contractive
and normal. Therefore, by Theorem 5.10 of [LW2] and Theorem 5.3 of [LW1], k has

a stochastic generator φ ∈ CBσ

(
B; B⊗B(k̂)

)
, moreover for c, d ∈ k, its associated

semigroup P c,d has generator (id
B
⊗ωĉ,d̂)◦φ. Set ϕ := Eσφ ∈ CBσ

(
B;B(k̂)

)
. Since

lt = Eσkt, the associated convolution semigroup pc,d of l has generating functional

ǫ ◦
(
id

B
⊗ωĉ,d̂

)
◦ φ = ωĉ,d̂ ◦ ϕ
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which equals the generating functional of the associated convolution semigroup of
the QS convolution cocycle l

ϕ
. It follows that l = l

ϕ
where ϕ := ϕ|B and so

l = lϕ. �

We refer to ϕ as the stochastic generator of the QS convolution cocycle l. The
proof of the next result now proceeds similarly to those of Theorems 5.1 and 6.1
in [LS3].

Theorem 5.2. Let l be Markov-regular quantum stochastic convolution cocycle on
B. Then the following equivalences hold:

(a) (i) l is completely positive and contractive;

(ii) l = lϕ for a map ϕ ∈ CB(B;B(k̂)) which is expressible in the form

ϕ1−ϕ2 where ϕ1 ∈ CP (B;B(k̂)) and ϕ2 = ǫ(·)
(
∆QS+ |ζ〉〈e0|+ |e0〉〈ζ|

)

for some ζ ∈ k̂, and satisfies ϕ̃(1) ≤ 0.
In this case, the convolution cocycle l is preunital if and only if its stochastic
generator ϕ satisfies ϕ̃(1) = 0.

(b) (i) l is completely positive and preunital ;

(ii) l = lϕ for a map ϕ ∈ CB(B;B(k̂)) expressible in the form

a 7→

[
〈ξ|
D∗

]
ν(a)

[
|ξ〉 D

]
for ν := ρ− ιK ◦ ǫ, (5.2)

in which (ρ,K) is a nondegenerate *-representation of B (as C∗-algebra),
D is an isometry in B(k; K) and ξ is a vector in K.

(c) (i) l is *-homomorphic;
(ii) l = lθ where θ is an ǫ-structure map;
(iii) l = lθ for a map θ expressible in the form

a 7→

[
〈c|
Ik

]
ν(a)

[
|c〉 Ik

]
where ν := π − ιk ◦ ǫ, (5.3)

for a *-homomorphism π : B → B(k) and vector c ∈ k.
In this case, the convolution cocycle l is nondegenerate if and only if the
*-representation π is.

Proof. In case (i) of (a), (b) and (c) we let ϕ be the stochastic generator of l, let

l = l
ϕ

=
(
lt
)
t≥0

, and set k = kφ where φ = Rσϕ ∈ CBσ

(
B; B⊗B(k̂)

)
. Thus k is a

Markov-regular standard QS cocycle on B and ϕ = Eσφ.
(a) If (i) holds then k is completely positive and contractive, by Proposition 4.4,

and normal. Therefore, by Theorem 5.10 of [LW2], there is a map Φ ∈ CPσ(B; B⊗B(k̂))

and operator Z ∈ B⊗〈k̂| such that

φ(x) = Φ(x) −
(
x⊗ ∆QS + Z∗(x⊗ 〈e0|) + (x ⊗ |e0〉)Z

)
(x ∈ B) (5.4)

and φ(1) ≤ 0. It follows that ϕ(1) ≤ 0 and

ϕ = Ψ − ǫ(·)
(
∆QS + |ζ〉〈e0| + |e0〉〈ζ|

)

where Ψ = EσΦ and 〈ζ| =
(
ǫ⊗ id〈k̂|

)
(Z). Thus (ii) holds with ψ = Ψ|B, moreover

if l is preunital then l is unital and so k is too, therefore φ(1) = 0 so ϕ(1) = 0 also.
Conversely, if (ii) holds then, taking normal extensions,

ϕ = ψ − ǫ(·)
(
∆QS + |ζ〉〈e0| + |e0〉〈ζ|

)

and so (5.4) holds with Φ = Rσψ and Z = 1
B
⊗ 〈ζ|. Therefore, by [LW1] Theorem

5.3, k is completely positive and contractive and so, by Proposition 4.4, l is too.
Similarly, if ϕ(1) = 0 then φ(1) = 0 so k is unital, thus l is too, and therefore l is
preunital. This proves (a).
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(b) If (i) holds then, choosing ψ and ζ as in (a), let
[
〈ξ|
D∗

]
ρ(·)

[
|ξ〉 D

]

be a minimal Stinespring decomposition of ψ. Thus (ρ,K) is a nondegenerate
representation of B and

(
∆QS + |ζ〉〈e0| + |e0〉〈ζ|

)
= ψ̃(1) =

[
‖ξ‖2 〈ξ|D
D∗|ξ〉 D∗D

]
,

so D is isometric and (ii) holds. Conversely, suppose that (ii) holds. Then ϕ(1) = 0

and it is easily verified that ϕ has the form given in Part (ii) of (a), with ζ =
( 1

2‖ξ‖2

D∗ξ

)
,

therefore (i) holds by (a). This proves (b).
(c) If (i) holds then k is *-homomorphic so, by [LW1] Proposition 6.3, φ is a

structure map:

φ(x∗y) = φ(x)∗ι(y) + ι(x)∗φ(y) + φ(x)∗(1
B
⊗ ∆QS)φ(y) (x, y ∈ B), (5.5)

where ι denotes the ampliation map x 7→ x ⊗ IF . Since ǫ⊗ idB(̂k) is a unital

*-homomorphism this implies that

ϕ(x∗y) = ϕ(x)∗ǫ(y) + ǫ(x)∗ϕ(y) + ϕ(x)∗∆QS ϕ(y) (x, y ∈ B) (5.6)

and so (ii) holds. Suppose conversely that (ii) holds. By separate σ-weak continuity

of multiplication in B it follows that (5.6) holds and a brief calculation confirms the
identity

Ω(u∗v) =
(
id

B
⊗ ǫ
)
(u)∗Ω(v) + Ω(u)∗

(
id

B
⊗ ǫ
)
(v) + Ω(u)∗

(
1

B
⊗ ∆QS

)
Ω(v),

where Ω :=
(
id

B
⊗ϕ

)
, for simple tensors u, v ∈ B⊗B. Since both sides are sepa-

rately σ-weakly continuous the identity is valid for all u and v in B⊗B. Substituting
in u = ∆x and v = ∆y we see that φ satisfies (5.5). Therefore, by Corollary 4.2 of
by [LW4], k is *-homomorphic thus, by Proposition 4.4, l is too and therefore (ii)
holds. The equivalence of (ii) and (iii) is the general form of an ǫ-structure map
(see (1.12)). In view of (a), the last part is easily seen from the representation (iii).
This completes the proof. �

Remark. The proper hypothesis for Parts (a) and (b) above is that B be a (multi-
plier) C∗-hyperbialgebra, since the multiplicative property of ∆ is not used in their
proof. The above result therefore generalises Theorems 5.1 and 6.2 of [LS3] to the
locally compact category.

6. Quantum Lévy processes on multiplier C∗-bialgebras

In this section we extend the definition of weak quantum Lévy process to mul-
tiplier C∗-bialgebras and establish a reconstruction theorem which is analogous to
Schürmann’s for purely algebraic bialgebras ([Sch]) and extends ours, proved for
unital C∗-bialgebras in [LS3].

Throughout this section B denotes a fixed counital C∗-bialgebra.

Definition. A weak quantum Lévy process on B over a C∗-algebra-with-a-state

(A, ω) is a family
(
js,t : B → Ã

)
0≤s≤t

of nondegenerate *-homomorphisms for which

the functionals λs,t := ω ◦ js,t satisfy the following conditions, for 0 ≤ r ≤ s ≤ t:

(i) λr,t = λr,s ⋆ λs,t;
(ii) λt,t = ǫ;
(iii) λs,t = λ0,t−s;
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(iv)

ω̃

(
n∏

i=1

jsi,ti
(xi)

)
=

n∏

i=1

λsi,ti
(xi)

whenever n ∈ N, x1, . . . , xn ∈ B and the intervals [s1, t1[, . . . , [sn, tn[ are
disjoint;

(v) λ0,t → ǫ pointwise as t→ 0.

A weak quantum Lévy process is called Markov-regular if λ0,t → ǫ in norm, as
t→ 0.

Remarks. In the case of unital C∗-bialgebras we did not insist that the *-algebra
A was a C∗-algebra.

As in the unital case, we refer to the weakly continuous convolution semigroup
(λt := λ0,t)t≥0 on B as the one-dimensional distribution of the process, and call
the process Markov-regular if this is norm-continuous, in which case we refer to
the convolution semigroup generator as the generating functional of the process
([LS4]). Moreover, as in the unital case, we call two weak quantum Lévy processes
equivalent if their one-dimensional distributions coincide.

The generating functional γ of a Markov-regular weak quantum Lévy process,
being the generator of a norm-continuous convolution semigroup of states, is real,
that is γ = γ† where γ†(a) := γ(a∗), conditionally positive, that is positive on the
ideal Ker ǫ, and its strict extension satisfies γ̃(1) = 0. Note that if l ∈ P⋆(B) is a QS
convolution cocycle on B, with noise dimension space k, which is *-homomorphic
and preunital then, setting A := K(F), ω := ωε(0), and js,t := σs ◦ lt−s for all
0 ≤ s ≤ t, we obtain a weak quantum Lévy process on B, called a Fock space
quantum Lévy process, which is Markov-regular if l is. Our goal now is to estab-
lish a converse, in other words to extend the reconstruction theorem of [LS3] to
the nonunital case. We give an elementary self-contained proof, independent of
automatic implementability/complete boundedness properties of χ-structure maps.
Recall Lemma 1.6.

Theorem 6.1. Let γ ∈ B∗ be real, conditionally positive and satisfy γ̃(1) = 0.
Then there is a (Markov-regular) Fock space quantum Lévy process with generating
functional γ.

Proof. By Theorem 5.2 it suffices to show that there is a Hilbert space k and an ǫ-

structure map ϕ : B → B(k̂) of the form [ γ ∗
∗ ∗ ] satisfying ϕ̃(1) = 0. Set γ̃0 := γ̃|Ker ǫ̃

and let ψ be the map B → B̃, b 7→ b− ǫ(b)1. By Theorem 1.1 and Lemma 1.6, γ̃ is
real and γ̃0 is positive. Since also γ̃(1) = 0,

q : (a, b) 7→ γ(a∗b) − γ(a)∗ǫ(b) − ǫ(a)∗γ(b) = γ̃0

(
ψ(a)∗ψ(b)

)
(6.1)

defines a nonnegative sesquilinear form on B. Let k and d : B → k be respectively
the Hilbert space and induced map obtained by quotienting B by the null space of
q and completing, so that

d(B) = k and 〈d(a), d(b)〉 = q(a, b), a, b ∈ B,

and let δ be the linear map B → |k〉, b 7→ |d(b)〉. Then, by the complete boundedness
of γ̃ and ψ,

∥∥δ(n)(A)u
∥∥2

=
〈
u, (γ̃0)

(n)
(
ψ(n)(A)∗ψ(n)(A)

)
u
〉
≤ ‖γ̃‖cb‖ψ‖

2
cb‖A‖

2‖u‖2,

for all n ∈ N, A ∈Mn(B) and u ∈ Cn, so δ is completely bounded and we have

δ(a)∗δ(b) = γ(a∗b) − γ(a)∗ǫ(b) − ǫ(a)∗γ(b), a, b ∈ B. (6.2)
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Now ∥∥d(ab) − ǫ(b)d(a)
∥∥2

= γ̃0

(
ψ(b)∗a∗aψ(b)

)

≤ ‖a‖2 γ̃0

(
ψ(b)∗ψ(b)

)
= ‖a‖2‖d(b)‖2, a, b ∈ B,

so there are bounded operators π(a) on k satisfying

π(a)d(b) = d(ab) − ǫ(b)d(a), a, b ∈ B. (6.3)

Using the density of d(B) it is straightforward to verify that the map a 7→ π(a)
defines a *-representation of B on k. From (6.3), δ is a (π, ǫ)-derivation and so,

from (6.2), ϕ :=
[

γ δ†

δ π−ιk

]
defines an ǫ-structure map B → B(k̂), and therefore it

only remains to prove that ϕ̃(1) = 0. Since γ̃(1) = 0, this follows from the identities

δ(a)∗δ(b) = γ
(
a∗b− ǫ(a)∗b− a∗ǫ(b)

)
and π(a)δ(b) = δ(ab) − δ(a)ǫ(b), a, b ∈ B,

and the density of
⋃
{Ran δ(b) : b ∈ B} = d(B) in k. �

This has two significant consequences.

Corollary 6.2. Every Markov-regular weak quantum Lévy process is equivalent to
a Fock space quantum Lévy process.

The second consequence uses the deeper fact that every ǫ-structure map is im-
plemented (see Theorem 1.5).

Theorem 6.3. Let γ ∈ B∗. Then the following are equivalent:

(i) γ is the generating functional of a norm-continuous convolution semigroup
of states on B;

(ii) γ is real, conditionally positive and satisfies γ̃(1) = 0;
(iii) There is a nondegenerate representation (π, h) of B and vector η ∈ h such

that γ = ωη ◦ (π − ιh ◦ ǫ).

As stated earlier, the above results mean that all the Poisson-type convolution
semigroups of states on B are easily constructed, along with their associated quan-
tum Lévy processes.

In [LS3] we also introduced a stronger notion of product system quantum Lévy
processes on a unital and counital C∗-bialgebra B and established the following
two facts: each Fock space quantum Lévy process on B is in particular a product
system quantum Lévy process and each product system quantum Lévy process
determines in a natural way a weak quantum Lévy process on B with the same
finite-dimensional distribution. The definition of a product system quantum Lévy
process extends naturally to the nonunital case, with the assumption of unitality
— of the ∗-homomorphisms constituting the process — replaced by nondegeneracy,
and the proofs of the above two facts remain valid.
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