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Abstract

The parabolic algebra was introduced by Katavolos and Power, in 1997, as the weak∗-

closed operator algebra acting on L2(R) that is generated by the translation and

multiplication semigroups. In particular, they proved that this algebra is reflexive, in

the sense of Halmos, and is equal to the Fourier binest algebra, that is, to the algebra

of operators that leave invariant the subspaces in the Volterra nest and its analytic

counterpart.

We prove that a similar result holds for the corresponding algebras acting on Lp(R),

where 1 < p < ∞. It is also shown that the reflexive closures of the Fourier binests on

Lp(R) are all order isomorphic for 1 < p < ∞.

The weakly closed operator algebra on L2(R) generated by the one-parameter

semigroups for translation, dilation and multiplication by eiλx, λ ≥ 0, is shown to be a

reflexive operator algebra with invariant subspace lattice equal to a binest. This triple

semigroup algebra, Aph, is antisymmetric in the sense that Aph ∩ A∗
ph = CI, it has

a nonzero proper weakly closed ideal generated by the finite-rank operators, and its

unitary automorphism group is R. Furthermore, the 8 choices of semigroup triples

provide 2 unitary equivalence classes of operator algebras, with Aph and A∗
ph being

chiral representatives.

In chapter 4, we consider analogous operator norm closed semigroup algebras.

Namely, we identify the norm closed parabolic algebra Ap with a semicrossed product

for the action on analytic almost periodic functions by the semigroup of one-sided

translations and we determine its isometric isomorphism group. Moreover, it is shown

that the norm closed triple semigroup algebra AG+
ph is the triple semi-crossed product



x

Ap ×vG+, where v denotes the action of one-sided dilations. The structure of isometric

automorphisms of AG+
ph is determined and A

G+
ph is shown to be chiral with respect to

isometric isomorphisms.

Finally, we consider further results and state open questions. Namely, we show

that the quasicompact algebra QAp of the parabolic algebra is strictly larger than the

algebra CI +K(H), and give a new proof of reflexivity of certain operator algebras,

generated by the image of the left regular representation of the Heisenberg semigroup

H+.
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Introduction

The operator algebras considered in this thesis are basic examples of Lie semigroup

algebras by which we mean a weak operator topology closed algebra generated by the

image of a Lie semigroup in a unitary representation of the ambient Lie group. The

study of the reflexivity, in the sense of Halmos [62], of non-selfadjoint algebras that are

generated by semigroups of operators was begun by Sarason in 1966 [68], where he

proved that H∞(R), viewed as a multiplication algebra on H2(R), is reflexive. Since

then, several results about 2-parameter Lie semigroup algebras have been obtained.

Let {Dµ, µ ∈ R} and {Mλ, λ ∈ R} be the groups of translation and multiplication

respectively acting on the Hilbert space L2(R), given by

Dµf(x) = f(x− µ), Mλf(x) = eiλxf(x).

It is well-known that these 1-parameter unitary groups are continuous in the strong

operator topology (SOT), that they provide an irreducible representation of the Weyl-

commutation relations, MλDµ = eiλµDµMλ, and that the SOT-closed operator algebra

they generate is the von Neumann algebra B(L2(R)) of all bounded operators. (See

Taylor [72], for example.) On the other hand it was shown by Katavolos and Power in

[38] that the weak∗-closed non-selfadjoint operator algebra Ap, known as the parabolic

algebra, generated by the semigroups for µ ≥ 0 and λ ≥ 0 is a reflexive algebra,
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containing no selfadjoint operators, other than real multiples of the identity, and

containing no nonzero finite rank operators.

The hyperbolic algebra, denoted by Ah was first considered by Katavolos and Power

in [39] and the invariant subspace lattice Lat Ah, viewed as a lattice of projections with

the weak operator topology, was identified as a 4-dimensional manifold. Furthermore,

Levene and Power have shown ([44]) the reflexivity of an analogous hyperbolic algebra,

the algebra generated by the multiplication and dilation semigroups on L2(R). The

latter semigroup is given by the operators Vt, with

Vtf(x) = et/2f(etx),

for t ≥ 0. The notation reflects the fact that translation unitaries are induced by

the biholomorphic automorphims of the upper half plane which are of parabolic type,

and the dilation unitaries are induced by those of hyperbolic type.We also note that

Levene [43] has shown the reflexivity of the Lie semigroup operator algebra of SL2(R+)

for its standard representation on L2(R) in terms of the composition operators of

biholomorphic automorphisms.

One of the aims in establishing reflexivity and related properties is to understand

better the algebraic structure of these somewhat mysterious algebras. Establishing

reflexivity can provide a route to constructing operators in the algebra and thereby

deriving further algebraic properties.

Although the reflexivity of non-selfadjoint operator algebras has been studied

intensively over the last fifty years, the developments have been largely confined within

the limits of operator algebras acting on Hilbert spaces. For example, general nest

algebras, being the most characteristic class of reflexive noncommutative non-selfadjoint

operator algebras since they were introduced by Ringrose in 1965 [64], have a well-
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developed general theory on Hilbert spaces (Davidson [15]). However, only sporadic

results can be found for nest algebras on Banach spaces (see [70], [74], [12]).

In chapter 2, we consider the operator algebras Ap
par on Lp(R) for 1 < p < ∞,

which are similarly generated by the multiplication and translation semigroups, viewed

now as bounded operators on Lp(R). Our main result is that Ap
par is also reflexive and,

moreover, is equal to Ap
FB, the algebra of operators that leave invariant each subspace

in the Fourier binest Lp
FB given by

Lp
FB = {0} ∪ {Lp[t,∞) : t ∈ R} ∪ {eiλxHp(R) : λ ∈ R} ∪ {Lp(R)}

where Hp(R) is the usual Hardy space for the upper half plane. This lattice of closed

subspaces is a binest equal to the union of two complete continuous nests of closed

subspaces.

A complication in establishing the reflexivity of the parabolic and hyperbolic

algebras on Hilbert space is the absence of an approximate identity of finite rank

operators, a key device in the theory of nest algebras ([15], [21], [22]). However, it was

shown that the subspace of Hilbert-Schmidt operators is dense for both algebras and

that these operators could be used as an alternative. In contrast Annoussis, Katavolos

and Todorov [2] have shown that direct integral decomposition arguments provide a

route to reflexivity for various discrete noncommutative semigroup algebras. For the

Lp theory we need a corresponding substitute. We define a right ideal of what we refer

to as (p, q)-integral operators which we show is able to play the role of the (two-sided)

ideal of Hilbert-Schmidt operators. As a substitute for the techniques of Hilbert space

geometry and tensor product identifications used in [37], [38], [44], we make use of more

involved measure theoretic arguments appropriate for the (p, q)-integrable operators.
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We also obtain a number of properties of the parabolic algebra on Lp(R), that

correspond to the classical case. Namely, Ap
par is antisymmetric (or triangular [33]), in an

appropriate sense, and Ap
par contains no non-trivial finite rank operators. Furthermore,

the lattice of Ap
par is order isomorphic to the lattice of A2

par for all 1 < p < ∞.

In chapter 3, we consider the ultraweakly closed operator algebra acting on L2(R)

which is generated by the parabolic algebra Ap, together with the semigroup of dilation

operators Vt, t ≥ 0. Our main result is that this operator algebra is reflexive and is

equal to Alg L, the WOT-closed algebra of operators that leave invariant each subspace

in the lattice L of closed subspaces given by

L = {0} ∪ {L2(−α,∞), α ≥ 0} ∪ {eiβxH2(R), β ≥ 0} ∪ {L2(R)}.

This lattice is a binest, being a sublattice of the Fourier binest LFB. We denote the

triple semigroup algebra by Aph since it is generated by the algebras Ap and Ah.

As stated above, the lattice LFB, endowed with the weak operator topology for the

orthogonal projections of these spaces, is homeomorphic to the unit circle and forms

the topological boundary of a bigger lattice Lat Alg LFB, the so-called reflexive closure

of LFB. This lattice is equal to the full lattice Lat Ap of all closed invariant subspaces

of Ap and is homeomorphic to the unit disc. In contrast we see that the binest L for

Aph is reflexive as a lattice of subspaces; L = Lat Alg L.

As in the analysis of Ap and Ah the classical Paley-Wiener theorem (in the form

F (H2(R)) = L2(R+)) and the F. and M. Riesz theorem feature repeatedly in our

arguments. The analysis of the triple semigroup algebra Aph turns out to be considerable

more challenging than that of the parabolic algebra. For the determination of the

subspace Aph ∩ C2 we obtain a two-variable variant of the Paley-Wiener theorem which

is of independent interest. This asserts that if a function k(x, y) in L2(R2) vanishes

on a proper cone C with angle less than π, and its two-variable Fourier transform
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F2k vanishes on the (anticlockwise) rotated cone R−π/2C, then k lies in the closed

linear span of a pair of extremal subspaces with this property. These subspaces are

rotations of the "quarter subspace" L2(R+) ⊗ H2(R). This is a seemingly classical

function theoretic fact but we are unaware of any precedent. We also obtain a number

of further interesting properties.

• The triple semigroup algebra Aph is also antisymmetric. In contrast to Ap and

Ah the algebra contains non-zero finite rank operators which generate a proper

weak operator topology closed ideal.

• The unitary automorphism group is isomorphic to R and is implemented by the

group of dilation unitaries.

• We also see that, unlike the parabolic algebra, Aph has chirality in the sense that

Aph and A∗
ph are the reflexive algebras of spectrally isomorphic binests which

are not unitarily equivalent. Also the 8 choices of triples of continuous proper

semigroups from {Mλ : λ ∈ R}, {Dµ : µ ∈ R} and {Vt : t ∈ R} give rise to

exactly 2 unitary equivalence classes of operator algebras.

In chapter 4, we turn to the analysis of analogous norm closed operator algebras

generated by semigroups. In the norm closed case considered here we take advantage

of the theory of discrete semicrossed products. In particular, we prove that there are

natural identifications

Ap = AAP ×τ R+
d , AZ+

ph = Ap ×v Z+ , AR+

ph = Ap ×v R+
d

where Ap is the norm closed parabolic algebra, AAP is the algebra of analytic almost

periodic functions in L∞(R) and AG+
ph is generated by Ap and a semigroup {Vt : t ∈ G+}.

The notion of semicrossed products began with Arveson [6] in 1967, and was

developed by the studies developed by Peters [52] and McAsey and Muhly [48] in
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the early eighties. Since then, several studies of semicrossed products of C∗-algebras

have been under investigation by various authors [17, 35, 58]. To avoid categorical

issues we shall simply define all the semicrossed products algebras that we consider

as subalgebras of their associated C∗-crossed products [51]. Indeed, in the case of the

semicrossed product Ap, this algebra coincides with its universal counterpart, defined

as usual in terms of all contractive covariant representations of the generator semigroup

[60]. However, we do not know if this persists for the triple semicrossed product algebra

AG
+

ph .

Many of the results of isomorphisms of crossed products are concerned with the

case of the discrete group Z (see [58]), whereas we also deal with the group of the real

numbers endowed again with the discrete topology. This case is more subtle since the

group C∗-algebra of Rd is the algebra of the almost periodic functions, which brings

into play limit characters that arise from the Bohr compactification of Rd. Moreover,

the introduction of the triple semigroup semicrossed product makes the identification

of the maximal ideal space of the algebra problematic. Nevertheless we obtain the

following main results. We determine explicitly the isometric automorphism groups of

the norm closed parabolic algebra Ap and the norm closed triple semigroup algebras

AG
+

ph , where G = Z or Rd. Also we show that the norm closed triple semigroup algebras

are chiral with respect to isometric isomorphisms.

In the final chapter, we provide further results and state open questions. We

introduce the quasicompact algebra QAp, that is the C∗-algebra that arises from the

intersection of the quasitriangular algebra of Ap and its adjoint algebra. The main

result here is that QAp is strictly larger than the algebra CI +K(H). The proof gives

a novel construction of bounded operators in the algebra that takes advantage of the

unbounded triangular truncation. In the second part of the chapter, we provide a new

proof of reflexivity of the operator algebra, considered by Anoussis, Katavolos and
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Todorov [2], which is generated by the image of the left regular representation of the

Heisenberg semigroup H+, and we also consider related algebras.





Chapter 1

An Introduction to Operator

Algebras

1.1 Preliminaries

1.1.1 Fourier series

The theory of Fourier series (and Fourier transform presented in the next subsection)

can be found in [40]. Throughout this chapter we are viewing the unit circle T as

the quotient group R/2πZ. Given a function f ∈ L1(T) and n ∈ Z, the nth Fourier

coefficient of f is

f̂(n) = 1
2π

∫ π

−π
f(θ)e−inθdθ.

Proposition 1.1.1. A function f ∈ L1(T) satisfies f̂(n) = 0 for all n ∈ Z, if and

only if f = 0.

We focus first our attention on L2(T), since the set of functions {einx}n∈Z is an

orthonormal basis of the space. Hence it follows by Parseval’s identity that for every f
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in L2(R) we have

f =
∞∑

n=−∞
f̂(n)einx and

∞∑
n=−∞

|f̂(n)|2 = ∥f∥2.

In the general case, let f ∈ L1(T) and write

sn(x) =
n∑

k=−n
f̂(k)eikx

for the partial sums of the Fourier series of f . One might hope that still sn converge

to f in L1 norm, but this is not necessarily the case. However, there are other ways to

recapture f from its Fourier series. Define

σn = 1
n+ 1(s0 + s1 + · · · + sn), n ∈ Z+

the Cesaro means of the Fourier series for f . Then

σn(x) = 1
2π

∫ π

−π
f(t)Kn(x− t)dt

where Kn is the Fejer’s kernel given by

Kn(x) = 1
n+ 1

(
sin n+1

2 x

sin 1
2x

)2

.

Fejer’s kernel is an approximate identity on L1(T) and has the following properties

(i) Kn ≥ 0;

(ii) 1
2π
∫ π

−πKn(x)dx = 1;

(iii) if 0 < δ < π, then lim
n→∞

sup
|x|≥δ

|Kn(x)| = 0.
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Theorem 1.1.2. Let f be a function in Lp(T), where 1 ≤ p < ∞. Then the Cesaro

means σn of the Fourier series for f converge to f in the Lp-norm. If f is in L∞(T) then

{σn} converges to f in the weak∗-topology on L∞(T). In addition, if f is continuous,

then {σn} converges uniformly to f .

1.1.2 Fourier transform

Let F be the Fourier transform on L1(R), which is given by the formula

Ff(x) := f̂(x) = 1√
2π

∫
R
f(y)e−ixydy.

By the Riemann-Lebesgue lemma the Fourier transform of an L1 function is a continuous

function vanishing at infinity. In addition f has zero Fourier transform if and only if

f = 0. This comes out readily from the inverse formula, which in the special case that

f̂ is integrable takes the form

f(x) = 1√
2π

∫
R
f̂(y)eixydy.

Given now a function in L1(R) ∩ L2(R), it follows from the Plancherel theorem

that its Fourier transform is in L2(R) and the Fourier transform map is an isometry

with respect to the L2 norm. This implies that the Fourier transform restricted

to L1(R) ∩ L2(R) can be extended uniquely to an isometric map L2(R) → L2(R).

This isometry is actually a unitary and it is called the Fourier-Plancherel Transform.

In addition, by the inverse formula on L1(R) ∩ L2(R), we obtain that F 2f(x) =

f(−x), F 3 = F ∗ and F 4 = I.

We know F : L1(R) → L∞(R) contractively, and we have seen that it also extends

to a contraction L2(R) → L2(R). Therefore, by the Riesz interpolation theorem, F
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defines for every p ∈ [1, 2] a contractive linear map Lp(R) → Lq(R), where q is the

conjugate exponent of p.

1.1.3 The Hardy space Hp, p ∈ [1,∞]

The details of the theory of Hardy spaces can be found in [25, 31] and [41].

Given an open subset S of the complex plane, we denote by Hol(S) the set of

holomorphic functions on S. For any p ≥ 1 we define the Hardy space of the open unit

disk D as follows

Hp(D) =
{
f ∈ Hol(D) : sup

0≤r≤1

∫ π

−π
|f(reiθ)|p dθ2π < ∞

}
, 1 ≤ p < ∞,

H∞(D) =
{
f ∈ Hol(D) : sup

z∈D
|f(z)| < ∞

}
.

If we consider the boundary behavior of holomorphic functions, we can identify Hp(D)

with a closed subspace of Lp(T). A key tool in this theory is the Poisson kernel, that

is the family of functions Pr, for 0 ≤ r < 1 given by

Pr(θ) = 1 − r2

1 − 2r cos θ + r2 .

Check that {Pr}r∈[0,1) is an approximate identity for L1(T), since it satisfies the

properties of a kernel:

(i) Pr(θ) ≥ 0;

(ii) 1
2π
∫ π

−π Pr(θ)dθ = 1, 0 ≤ r < 1;

(iii) if 0 < δ < π, then lim
r→1

sup
|θ|≥δ

|Pr(θ)| = 0.
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Define the Poisson integral of a function f̃ ∈ Lp(T) by the formula

f(reiθ) = 1
2π

∫ π

−π
f̃(t)Pr(θ − t)dt.

Theorem 1.1.3. (Fatou) A function f lies in Hp(D) for 1 ≤ p ≤ +∞ if and only if

f is the Poisson integral of a function f̃ ∈ Lp(T), such that

∫ π

−π
f̃(θ)einθdθ = 0, n = 1, 2, 3, . . . . (1.1)

Then f has non-tangential limits which exist and agree with f̃ at almost every point of

the unit circle. In addition, we obtain that ∥f∥p = ∥f̃∥p.

Hence we define the Hardy space Hp(T) of the unit circle as the space of all functions

in Lp(T) that have zero nth Fourier coefficient, for every n < 0. When p = 1, this

identification is not obvious but it follows from the F. and M. Riesz theorem ([31]).

Theorem 1.1.4. (Szegö) Let 1 ≤ p ≤ ∞ and f ∈ Lp(T) be a function with log |f | ∈

L1(T). Define the function

[f ] : D → C : z 7→ exp
{

1
2π

∫
T

eiθ + z

eiθ − z
log |f(θ)|dθ

}
. (1.2)

Then [f ] lies in Hp(D) and the boundary value function B[f ] satisfies

|B[f ](θ)| = |f(θ)|, for almost every θ ∈ T.

Moerover, for every nonzero function f ∈ H1(T), the function log |f(θ)| lies in L1(T).

Let now ω be the homeomorphism of D\{1} onto the closed upper half plane C+

ω(z) = i
1 + z

1 − z
.
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Then ω induces for every p ∈ [1,∞) the isometric map

Φp : Lp(D) → Lp(C+) : (Φpf)(z) =
(

1√
π(z + i)

)2/p

f(ω−1(z)), z ∈ C+, (1.3)

and

Φ∞ : L∞(D) → L∞(C+) : (Φ∞f)(z) = f(ω−1(z)), z ∈ C+. (1.4)

Therefore, we identify the Hardy spaces of the disc with the corresponding spaces

Hp(C+) =
{
f ∈ Hol(C+) : sup

y>0

∫
R

|f(x+ iy)|pdx < ∞
}
, 1 ≤ p < ∞,

H∞(C+) =
{
f ∈ L∞(C+) : sup

z∈C+
|f(z)| < ∞

}
.

Similarly, we can lift the Poisson formula to the half plane and get the respective

identifications with closed subspaces of Lp(R)

Hp(R) =
{
f ∈ Lp(R) :

∫
R

f(t)
t+ z

dt = 0, z ∈ C+
}
, 1 ≤ p < ∞,

H∞(R) =
{
f ∈ L∞(R) :

∫
R
f(t)

( 1
t+ z

− 1
t+ i

)
dt = 0, z ∈ C+

}
.

The following corollary about the set of zeros of a function f in Hp is immediate

from Theorem 1.1.4 and echos the fact that f is a non-tangential limit of holomorphic

functions.

Corollary 1.1.5. Every function f ∈ Hp(T), with 1 ≤ p ≤ ∞, cannot vanish on a set

of strictly positive Lebesgue measure unless f is identically zero. The same also holds

for f ∈ Hp(R).

The next theorem gives a characterization of H2(R), using the Fourier-Plancherel

transform.

Theorem 1.1.6. (Paley-Wiener theorem) FH2(R) = L2(R+).
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A trivial application of the above theorem shows that the set H2(R) of complex

conjugates f of functions f ∈ H2(R) is the orthogonal complement of H2(R). Hence

the subspaces H2(R) and L2(R+) are in generic position1 in the sence of Halmos ([26]).

Theorem 1.1.7. (Riesz factorization theorem) A function f is in H1(R) if and only

if there exist g, h ∈ H2(R) with f = g · h and ∥f∥1 = ∥g∥2∥h∥2.

Combining the two above theorems we get that the integral of a function f ∈ H1(R)

is zero. Indeed, let g, h be in H2(R), such that f = h · g. Then

∫
R
f(x)dx = ⟨g, h⟩ = 0.

We continue with two elementary density lemmas for the Hardy spaces Hp(R) on

the line, for p ∈ (1,∞). For each u in the open upper half plane C+ of C let

bu(x) = 1
x+ u

, x ∈ R.

Since bu extends to a holomorphic function in the upper half plane, given by the formula

z 7→ 1
z+u , it is a routine calculation to show that it lies in Hp(R), for every p ∈ (1,∞).

Lemma 1.1.8. The linear spans of the sets D1 = {bu|u ∈ C+}, D2 = {bubw|u,w ∈ C+}

are both dense in Hp(R), for 1 < p < ∞.

Proof. Fix some p ∈ (1,∞) and suppose that there exists some f ∈ Hp(R) that does

not lie in the closed linear span of D1. Then by the Hahn - Banach theorem, there exists

a function g in Lq(R), where q is the conjugate exponent of p, such that
∫
R bug = 0, for

all u ∈ C+, and
∫
R fg ̸= 0. But

∫
R
bug = 0, ∀u ∈ C+ ⇔

∫
R

g(x)
x+ u

dx = 0, ∀u ∈ C+ ⇔ g ∈ Hq(R).

1We say that two subspaces M, N of a Hilbert space H are in generic position when M ∩ N =
M ∩ N⊥ = M⊥ ∩ N = M⊥ ∩ N⊥ = {0}.
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Consider now the respective Poisson extensions of the functions f and g on the upper

half plane. Hölder’s inequality yields that the product of the respective Poisson

extensions of f and g on the upper half plane lies in H1(C+). Hence the boundary

value function fg is in H1(R), so
∫
R fg = 0, which gives a contradiction.

Now, for any distinct u,w ∈ C+, observe that

bu(x)bw(x) = bu(x) − bw(x)
w − u

.

Define

hn = (ni− u)bubni = bu − bni.

Since hn → bu pointwise, as n → ∞, and |hn(x)| ≤ |bu(x)| for sufficiently large n, for

all x ∈ R, it follows from dominated convergence that hn
∥·∥p→ bu. Therefore, given

u ∈ C+, the function bu lies in the closed linear span of D2, so by the first part of the

lemma, the proof is complete.

Lemma 1.1.9. Let C+
Q = {u ∈ C+ : u = x + iy, where x, y ∈ Q}. For every t ∈ R

the countable set

Λt = {buDtbw|u,w ∈ C+
Q}

is dense in Hp(R), for every p ∈ (1,∞).

Proof. Observe first that

Dtbw(x) = 1
(x− t) + w

= 1
x+ (w − t) = bw−t(x), x ∈ R.

Since Q is dense in R, the rest of the proof is a simple application of dominated

convergence.
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Definition 1.1.10. A function f ∈ L∞(T) is called unimodular if |f(θ)| = 1 for

almost every θ ∈ T. The identification (1.4) allows us to extend the definition of

unimodular functions in L∞(R).

Beurling’s theorem ([29], [63]) gives a characterization of the closed subspaces of

an Lp(T) space that are shift invariant. We recall that a subspace K ⊆ Lp(T) is shift

invariant if eixK is contained in K. Here we give the analogue of the result on the real

line.

Theorem 1.1.11. (Beurling) Given p ∈ (1,∞), let M be a closed subspace of Lp(R)

such that eiλxM ⊆ M for all λ ∈ Z+. Then M is either of the form Lp(E) for some

Borel subset E ⊆ R or M is equal to ϕHp(R) for some unimodular function ϕ.

Proposition 1.1.12. Let ϕ ∈ L∞(R) be a unimodular function such that ϕH2(R) =

H2(R). Then ϕ is constant a.e..

1.2 Fundamental algebras

In this section we review briefly the theory of C∗-algebras, von Neumann and nest

algebras, which will be necessary to read this thesis. Most of this theory can be found

in the monographs of Davidson [15, 16] and in [49].

1.2.1 C∗-algebras

Definition 1.2.1. A Banach algebra A is a complex algebra equipped with a

complete submultiplicative norm:

∥ab∥ ≤ ∥a∥ ∥b∥, ∀a, b ∈ A.

If A has a unit 1 then it is called unital and we may assume that ∥1∥ = 1.
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Definition 1.2.2. If A is a unital Banach algebra, the spectrum of an element a ∈ A

is

σ(a) = {λ ∈ C : λ1 − a is not invertible}.

The spectrum of an element a is always a non-empty compact set. Therefore, the

spectral radius ρ(a) = max{|λ| : λ ∈ σ(a)} is a non-negative real number.

Proposition 1.2.3. For each a in a Banach algebra A , the spectral radius is deter-

mined by ρ(a) = lim
n→∞

∥an∥1/n.

Definition 1.2.4. A C∗-algebra A is a Banach algebra equipped with an involution

a 7→ a∗ satisfying the C∗-condition

∥a∗a∥ = ∥a∥2, ∀a ∈ A.

An element a in A is called normal when a∗a = aa∗. Also, a is unitary, if we

have a∗a = aa∗ = 1. A normal element a is selfadjoint, when it satisfies the property

a = a∗. We will call a selfadjoint element a positive if σ(a) ⊂ R+. Finally, a is a

projection if it satisfies a = a∗ = a2; that is, a is a selfadjoint idempotent.

Proposition 1.2.5. If a is a selfadjoint element of a C∗-algebra A, then the C∗-property

implies ρ(a) = ∥a∥.

Corollary 1.2.6. There is at most one norm on a Banach ∗-algebra making it to a

C∗-algebra.

Let now H be a Hilbert space. The collection of bounded linear operators on H,

denoted by B(H), is a C∗-algebra. The linear structure is clear. The product is by

composition of operators and the involution is given by the adjoint operator. The
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C∗-norm is the operator norm given by

∥T∥ = sup{∥Th∥ : h ∈ H, ∥h∥ ≤ 1},

for any T in B(H).

Definition 1.2.7. A representation of a C∗-algebra A, or a norm-closed subalgebra,

is a pair (H,ϕ), where H is a Hilbert space and ϕ : A → B(H) is a contractive

homomorphism. Also, ϕ is called non-degenerate if for every nonzero h ∈ H there

exists a ∈ A such that ϕ(a)h ̸= 0.

Every homomorphism between two C∗-algebras is contractive if and only if it is a

∗-homomorphism. Furthermore, when these morphisms are also injective, then they

are isometric. A representation is called faithful, when it is injective. Moreover, the

image of a representation of a C∗-algebra is always closed ([32]).

An important class of representations of a C∗-algebra A, or a norm-closed subal-

gebra A, are the characters on A. A character acting on A is a bounded nonzero

multiplicative linear functional ϕ : A → C. The set of all the characters on A is

denoted by M(A) and it is called the character space of A.

Proposition 1.2.8. If A is a commutative norm closed algebra, then the set M(A) is

in one-to-one correspondence with the set of maximal ideals in A.

The character space M(A) of a norm closed algebra A, equipped with the weak∗-

topology

ϕi
w∗
→ ϕ ⇔ ϕi(a) → ϕ(a), ∀a ∈ A

is a weak∗-closed subset of the unit ball of the dual space of A. Hence, by Alaoglu’s

theorem ([14]), it is weak∗-compact.
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Theorem 1.2.9. If A is a commutative C∗-algebra, then the Gelfand transform

A → C0(M(A)) : a 7→ â, where â(ϕ) = ϕ(a), (ϕ ∈ Â).

is an isometric ∗-isomorphism between C∗-algebras.

In the noncommutative case, a C∗-algebra may have no multiplicative linear func-

tionals (e.g. the C∗-algebra of complex n× n matrices Mn(C)). Nonetheless, we have

similar results using positive linear functionals 2 of norm 1, which are called states.

Theorem 1.2.10. (GNS construction) For every state f on a C∗-algebra A there is

a triple (πf , Hf , ξf ), where πf is a representation of A on some Hilbert space Hf and

ξf ∈ Hf is a cyclic (i.e. πf (A)ξf = Hf) unit vector such that

f(a) = ⟨πf (a)ξf , ξf⟩, ∀a ∈ A.

Theorem 1.2.11. (Gelfand - Naimark) For every C∗-algebra A there exists a faithful

representation (π,H).

Therefore, every abstract C∗- algebra can be thought as a closed subalgebra of

bounded linear operators acting on a Hilbert space H.

1.2.2 Norm closed algebras of analytic functions

The disc algebra

The disc algebra A(D) is the algebra of holomorphic functions f : D → C, where f

extends to a continuous function on the closed unit disc. Given the supremum norm,

2A linear functional ϕ acting on a C∗-algebra A is called positive if ϕ(a) ≥ 0, for every positive
element a ∈ A.
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A(D) becomes a norm closed subalgebra of H∞(D). One can check that the function

f(z) = e
z+1
z−1 (1.5)

lies in H∞(D), but not in A(D), so A(D) is a proper subalgebra of H∞(D) (see Chapter

6 in [31] for further details). Hence, if we identify each f ∈ A(D) with its boundary

values, A(D) consists of the continuous functions on the unit circle, whose Fourier

coefficients vanish on the negative integers. Since each f is the norm limit of its Cesaro

polynomials, we have

A(D) = ∥ · ∥-alg{einx : n ∈ Z+}.

The disc algebra has been studied extensively over the last century. We shall focus

on the maximal ideal space of A(D), since it will play an important role in chapter 4.

One can check that given λ ∈ D, the set

Iλ = {f ∈ A(D) : f(λ) = 0}

is a maximal ideal in A(D), since it is the kernel of the point evaluation character

f 7→ f(λ). The following result can be found in [31].

Theorem 1.2.12. Every maximal ideal of A(D) is the kernel of a point evaluation

character, for some point λ in the closed unit disc.

The algebra of analytic almost periodic functions

The theory of almost periodic functions was mainly created in 1925 by Bohr [10] and

was substantially developed during the 1930s by Bochner, Besicovich, Stepanov and

others. The reader can refer to [1, 9, 46, 69] for more details.
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Definition 1.2.13. A set E ⊆ R is called relatively dense if there exists λ > 0 such

that any interval of length λ contains at least one element of E. Given a function

f : R → C and ϵ > 0, a real number τ is called an ϵ-translation number of f , if

sup
t∈R

|f(t+ τ) − f(t)| ≤ ϵ.

A continuous function f is almost periodic if and only if for any ϵ > 0 the set of

ϵ-translation numbers is relatively dense in R.

Example 1.2.14. Every trigonometric polynomial of the form

p(x) =
n∑
k=1

cke
iλkx, with ck ∈ C, λk ∈ R,

is an almost periodic function.

We denote by AP (R) the algebra of almost periodic functions and we equip it

with the supremum norm. Using a standard approximation argument, one can check

that AP (R) is a norm closed selfadjoint algebra of Cb(R), hence it is a C∗-algebra. In

addition, we have the following result (see [9], Chapter 1).

Proposition 1.2.15. If f ∈ AP (R) and inf{|f(x)| : x ∈ R} > 0, then 1/f ∈ AP (R).

It can be shown that AP (R) is isometrically isomorphic to the C∗-algebra C(RB)

of continuous functions on the Bohr compactification of the real numbers ([69]). Recall

that the Bohr compactification of the real line, denoted by RB, can be identified by

Pontryagin’s duality theorem with the dual topological group of the discrete real line

([65]).

Theorem 1.2.16. (Approximation theorem) For every f ∈ AP (R) and ϵ > 0, there

exists a trigonometric polynomial pϵ, such that ∥f − pϵ∥ < ϵ.
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Theorem 1.2.17. (Mean value theorem) Let f be an almost periodic function. The

mean value of f , given by the formula

lim
T→∞

1
2T

∫ T

−T
f(t)dt,

exists.

Applying the mean value theorem we can define Fourier coefficients for almost

periodic functions. Given λ ∈ R define the contractive linear map ϵλ by

ϵλ(f) = lim
T→∞

1
2T

∫ T

−T
f(t)e−iλtdt. (1.6)

Bochner introduced an important class of approximation polynomials, known as the

Bochner - Fejer polynomials, which is suggested by Fejer’s classical theorem on the

Cesaro summability of the Fourier series of a periodic function.

Theorem 1.2.18. Given f almost periodic function, the set of nonzero coefficients of

f is at most countable.

Let now B = {b1, b2, . . . , bn, . . . } be a countable set of real numbers. The set B

is called rationally independent if for every r1, r2, . . . , rn ∈ Q, n ∈ N arbitrary, the

equality

r1b1 + r2b2 + · · · + rnbn = 0

implies that all of r1, r2, . . . , rn are zero. A rationally independent set B is a rational

basis of a countable set Λ = {λ1, λ2, . . . , λn, . . . }, if every λn is representable as a

finite linear combination of the bj’s with rational coefficients, that is

λn = r
(n)
1 b1 + r

(n)
2 b2 + · · · + r(n)

mk
bmk

, (n = 1, 2, . . . )
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where r(n)
j ∈ Q. It is clear that every countable set Λ of real numbers has a basis B

contained in the set. If Λ is rationally independent, then take B = Λ; otherwise the

basis can be obtained by eliminating successively those λn’s that are linear combinations

of the preceding ones.

Suppose now f is an almost periodic function and B = {b1, b2, . . . , bn, . . . } is a

rational basis for the nonzero Fourier coefficients of f . Denote by Kb1,...,bm the Bochner

- Fejer kernel, that is the function given by

Kb1,...,bm(t) =
∑

|ν1|<(m!)2
.........

|νm|<(m!)2

(
1 − |ν1|

(m!)2

)
. . .

(
1 − |νm|

(m!)2

)
e−it( ν1

m! b1+···+ νm
m! bm). (1.7)

One can check that this composite kernel shares the same properties with the Fejer

kernel. Namely

(i) Kb1,...,bm ≥ 0;

(ii) lim
T→∞

1
2T
∫ T

−T Kb1,...,bm(t)dt = 1;

For more details, the reader can look at [46]. Define the Bochner - Fejer trigonometric

polynomials of f by

σm(f)(t) = lim
T→∞

1
2T

∫ T

−T
f(t+ s)Kb1,...,bm(s)ds =

=
∑

|ν1|<(m!)2
.........

|νm|<(m!)2

(
1 − |ν1|

(m!)2

)
. . .

(
1 − |νm|

(m!)2

)
ϵ ν1

m! b1+···+ νm
m! bm

(f)e−it( ν1
m! b1+···+ νm

m! bm).

Check that the terms of these polynomials differ from zero if and only if the respective

Fourier coefficients of f are nonzero.

Theorem 1.2.19. For every almost periodic function f

σm(f) ∥·∥→ f, as m → ∞.
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We focus now on the non-selfadjoint algebra of analytic almost periodic functions,

that is the norm closed algebra generated by the functions {eiλx : λ ≥ 0}. It is evident

that this algebra, denoted by AAP (R), is contained in H∞(R), so it is an integral

domain.

Proposition 1.2.20. AAP (R) is properly contained in H∞(R).

Proof. Let f be the step function on T

f(x) =


1, if x ∈ [−π, 0]

2, if x ∈ (0, π)
.

One can check that f ∈ L∞(T) and log |f | ∈ L1(T), so it follows by Theorem 1.1.4

that the function [f ] given by formula (1.2) lies in H∞(D). Moreover, the boundary

function of [f ], which we call B[f ], satisfies |B[f ]| = |f | almost everywhere on T. We

apply now the isometric map Φ∞ given in (1.4) to transfer the function [f ] to the

upper half plane. Define

g(z) := (Φ∞[f ])(z) = [f ]
(
z − i

z + i

)
, (z ∈ C+).

Since g ∈ H∞(C+), its boundary function, denoted by Bg, lies in H∞(R). In addition

|Bg(x)| =


1, for almost every x > 0

2, for almost every x < 0
.

Hence the function Bg is not in AAP (R).

These types of algebras have been studied by Besicovich ([9], Chapter III) and

the theory has been considerably extended by the work of Arens and Singer in the

1960s ([4, 5, 11]). We exhibit two results of this theory that we shall use extensively

in Chapter 4. First we describe the continuous automorphisms of AAP (R). Define
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the multiplicative linear map ϕc,k on the non-closed algebra of analytic trigonometric

polynomials by

ϕc,k(eiλx) = c(λ)eikλx,

where k > 0 and c : R → T homomorphism (so c ∈ RB).

Theorem 1.2.21. (Arens) The map ϕc,k extends to a continuous automorphism of

AAP (R). Moreover, for every continuous automorphism ϕ of AAP (R), there exist

k > 0 and c ∈ RB, such that ϕ = ϕc,k.

Consider now the maximal ideal space of AAP (R). If we identify AAP (R) with

the closed subalgebra of H∞(C+), we obtain the point evaluation characters

χz(f) = f(z),

where z ∈ C+. It is evident that there are others. For instance, if I denotes the set of

functions f in AAP (R), such that f(n) converges to zero as n goes to infinity, it is

clear that I is a proper closed ideal in AAP (R). Hence I is contained in a maximal

ideal in AAP (R), so there exists a character χ in M(AAP (R)), such that χ(f) = 0,

for every f ∈ I. It is obvious now that χ is not one of the characters χz. The natural

question, as in the case of H∞, is to ask if the set of the point evaluation characters

χz is dense in M(AAP (R)). The following theorem gives an affirmative answer to this

question.

Theorem 1.2.22. (Arens - Singer) The maximal ideal space of AAP (R) can be iden-

tified with the compact topological space

RB × [0,∞) ∪ {∞}.
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1.2.3 Operator topologies and compact operators

There are several Hausdorff locally convex topologies that can be defined on B(H)

besides the operator norm [32]. The strong operator topology or SOT-topology is

defined as the topology of pointwise convergence on the Hilbert space H. So given a

net (Ti)i of operators in B(H), it follows

Ti
SOT→ T, when Tix

i→ Tx, ∀x ∈ H.

The topology on B(H) generated by the separating family of seminorms

B(H) → R+ : T 7→ |⟨Tx, y⟩|, (x, y ∈ C)

is called the weak operator topology or WOT- topology on B(H). Hence we write

Ti
WOT→ T ⇔ ⟨Tix, y⟩ i→ ⟨Tx, y⟩, ∀x, y ∈ H.

Recall now that a finite rank operator is a bounded operator such that its range

is finite dimensional. In particular, an operator F of finite rank n takes the form

F : H → H : x 7→
n∑
k=1

⟨x, hk⟩gk,

with {hk} and {gk} linearly independent. In addition, an operator K is compact if

the image of the unit ball under K is precompact. Equivalently, K is the norm limit

of finite rank operators. The set of compact operators acting on H is a closed ideal in

B(H) and it will be denoted by K(H).

Let now K be a compact operator. It follows from the spectral theorem that the

positive operator |K| = (K∗K)1/2 has eigenvalues s1 ≥ s2 ≥ . . . with limn sn = 0.
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The numbers sn = sn(K) are called the singular values of K. For 1 ≤ p ≤ ∞, let

Cp denote the von Neumann - Schatten classes of compact operators, such that

{sn(K)} belongs to ℓp.

Define a norm on Cp by

∥K∥p =
∑
n≥1

sn(K)p
1/p

.

Then ∥ · ∥p is indeed a norm (see Corollary 1.9 in [15]) and the space (Cp, ∥ · ∥p) is

a Banach space. Of particular interest are the trace class operators C1, and the

Hilbert-Schmidt operators C2. Recall that a bounded operator acting on L2(R) is

Hilbert-Schmidt if and only if it can be represented as an integral operator Int k with

kernel k ∈ L2(R2) ([27]), given by

(Int k f)(x) =
∫
R
k(x, y)f(y)dy.

Proposition 1.2.23. Let E be a orthonormal basis of a Hilbert space H. Then the

map

C1 → K(H)∗ : u 7→ tr(u·), where tr(v) =
∑
x∈E

⟨v(x), x⟩

is an isometric linear isomorphism, that is independent of the choice of the basis. The

same also holds for the map

B(H) → C∗
1 : v 7→ tr(·v).
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Thus, B(H) can be viewed as a dual space. The ultraweak or weak∗-topology

on B(H) is the weak∗-topology on B(H), generated by the seminorms

B(H) → R+ : u 7→ |tr(uv)|, (v ∈ C1).

Remark 1.2.24. 1. In general, the WOT topology is coarser than both SOT and

weak∗-topology, while the norm topology is the finest. However, the WOT and

weak∗ topologies coincide on the norm bounded sets of B(H), and hence the

closed unit ball of B(H) is WOT and weak∗-compact, by Alaoglu’s theorem

([14]).

2. A linear functional acting on B(H) is WOT-continuous if and only if it is SOT-

continuous. Hence it follows by the Hahn - Banach separation theorem ([14])

that a convex subset of B(H) is SOT-closed if and only if it is WOT-closed.

3. The linear operations are continuous for all of these topologies, while the ring

multiplication is separately continuous. Also, it is easy to check that the involution

operator T 7→ T ∗ is WOT and weak∗-continuous, while it is not SOT-continuous.

4. Since the WOT topology is coarser than both SOT and weak∗-topology, a

SOT-convergent (or weak∗-convergent) net of operators is automatically WOT-

convergent. On the other hand, a norm-bounded net is WOT-convergent if and

only if it is weak∗-convergent.

1.2.4 von Neumann algebras

Let H be a Hilbert space and S ⊆ B(H). We define its commutant to be the set

S ′ = {T ∈ B(H) : TS = ST,∀S ∈ S} .
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The set S ′ is a unital algebra and it is SOT-closed.

Definition 1.2.25. A von Neumann algebra M acting on a Hilbert space H is a

selfadjoint subset of B(H), that satisfies the property

M = M′′.

Theorem 1.2.26. (Double commutant theorem) If A ⊆ B(H) is a unital selfadjoint

algebra, then the following are equivalent :

(α) A is a von Neumann algebra

(β) A is SOT-closed

In general, a C∗-algebra may have no non-trivial projections. For example, if X is a

connected locally compact Hausdorff space, then the C∗-algebra C0(X) of continuous

functions on X contains no non-trivial projections . However, in the subcategory of

von Neumann algebras, we always have sufficiently many projections, in order to form

a generating set in the sense of the following proposition.

Proposition 1.2.27. Let M be a von Neumann algebra acting on Hilbert space H.

Then M is the norm closed linear span of its projections. Furthermore, if H is separable,

there is a countable set E ⊆ M of projections, such that E ′′ = M.

1.2.5 Reflexive algebras

Given a set S of operators, the lattice of all closed subspaces, that are left invariant

by every element of S, is denoted Lat S. Similarly, if L is a lattice of subspaces, then

Alg L denotes the algebra of all bounded operators leaving each element of L invariant.

Definition 1.2.28. An algebra A is reflexive, if A = Alg Lat A; in the same spirit,

a lattice L is called reflexive if L = Lat Alg L.
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Remark 1.2.29. 1. For any lattice of subspaces L, the algebra Alg L is WOT-

closed;

2. for any algebra A, we have

A ⊆ Aw∗
⊆ AWOT ⊆ Alg Lat A;

3. therefore, if an algebra is reflexive, it coincides with its weak∗-closure and its

WOT-closure.

Thus a reflexive operator algebra is determined by its invariant subspaces. The

origins of studying reflexive algebras go back in 1966, when Donald Sarason proved

that H∞(R) viewed as a multiplication algebra on H2(R), is reflexive ([68]). The

class of reflexive algebras can be considered as a non-selfadjoint generalization of von

Neumann algebras, since if M is a von Neumann algebra, then Lat M consists of all

the subspaces, whose projections lie in the commutant of M. Hence Alg Lat M = M′′.

On the other hand, the analogue of double commutant theorem does not hold for

non-selfadjoint algebras. A counterexample of a SOT-closed algebra which is not

reflexive is the subalgebra of 2 by 2 matrices of the form


a b

0 a

 : a, b ∈ C

 .

This algebra is smaller than the algebra of upper triangular matrices


a b

0 c

 : a, b, c ∈ C


but has the same invariant subspaces, so it is not reflexive. The next definition

generalizes reflexivity for operator spaces.
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Definition 1.2.30. Let S be a subspace of B(H) for some Hilbert space H. The

reflexive hull of S is the set

Ref(S) = {T ∈ B(H) : Tξ ∈ Sξ, for all ξ ∈ H},

where Sξ is the linear subspace {Sξ : S ∈ S}.

Proposition 1.2.31. Let A be a unital subalgebra of B(H). Then Ref(A) = Alg Lat A.

Proof. Let A ∈ Ref(A) and K ∈ Lat A. Then for every ξ ∈ K, we get that Aξ ∈ Aξ.

Since Aξ ⊆ K, it follows that A lies in Alg Lat A. On the other hand, let A be in

Alg Lat A and ξ ∈ H. Since A is unital, ξ ∈ Aξ. Then Aξ ∈ Lat A, so Aξ ∈ Aξ, hence

A ∈ Ref(A).

In this section, we will focus on nest algebras, which have been studied intensely

in the last 50 years ([15, 57]), since their consideration by Ringrose in [64]. Their

importance, even in finite-dimensions, lies in the fact that they provide the most

fundamental class of noncommutative non-selfadjoint operator algebras.

Definition 1.2.32. A nest is a totally ordered set N of closed subspaces of a Hilbert

space H containing {0} and H, which is complete with respect to the natural lattice

operations, namely the intersection and the closed span.

Given a subspace N belonging to a nest N , define

N− = ∨{N ′ ∈ N : N ′ < N}

and

N+ = ∧{N ′ ∈ N : N ′ > N}.
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The non-trivial subspaces N ⊖N− are called atoms of N . If the atoms of N span H,

then the nest is atomic. If there are no atoms, it is called continuous.

Definition 1.2.33. Given a nest N , the nest algebra T (N ) is defined as the set of

all operators T , such that TN ⊆ N for every N ∈ N .

Every nest algebra is SOT-closed proper non-selfadjoint subalgebra of B(H) if and

only if the nest is not trivial.

Example 1.2.34. • Let Pn be an increasing sequence of finite dimensional sub-

spaces, such that their union is dense in H. Then P = {Pn : n ≥ 1} ∪ {{0}, H}

is an atomic nest. T (N ) consists of all the operators which have a block upper

triangular matrix with respect to P .

• Let H = L2(R). For each t ∈ R, let Nt consist of all functions f in L2(R) such

that f(x) = 0 a.e. on (−∞, t]. Then Nv = {Nt : t ∈ R} ∪ {{0}, L2(R)} is a

continuous nest, which is known as the Volterra nest.

• Given a nest N on a Hilbert space H and a unitary operator U : H → K,

then the set UN is nest on the Hilbert space K. Thus, if we denote by F

the Fourier-Plancherel transform on L2(R), the nest Na = F ∗Nv is called the

analytic nest.

Clearly, a nest algebra is reflexive. It turns out that every nest is also reflexive ([64]).

Actually, a nest algebra contains an abundance of operators. Note that a von Neumann

algebra may have no nonzero finite rank operators. For example, the multiplication

algebra Mm = {Mf : f ∈ L∞(R)}, that is the algebra of operators Mf ∈ B(L2(R))

given by

Mfg = fg, (g ∈ L2(R)), (1.8)

contains no compact operators. In contrast, for nest algebras we have the following

result (see 3.11 in[15]) :
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Theorem 1.2.35. (Erdos density theorem) The finite rank contractions in a nest

algebra A are dense in the unit ball of A in the SOT-topology. Hence it follows

by Remark 1.2.24 that they are dense in the unit ball as well in the WOT and the

weak∗-topology.

Apart from reflexivity of a nest algebra A, that enables us to examine if a given

element of B(H) lies in A, we have the following theorem about its distance induced

by the operator norm ([7, 55]).

Theorem 1.2.36. (Arveson’s distance formula) Let A be a nest algebra on B(H),

corresponding to a nest N . Then, for every operator T ∈ B(H), we have :

d(T,A) := inf
A∈A

∥T − A∥ = sup
N∈N

∥(I − PN)TPN∥.

Given a nest algebra A, its compact pertubation A +K(H) is called the quasitri-

angular algebra associated with A . Since K(H) is an ideal in B(H), it is evident

that A + K(H) is an algebra. The fact that it is also norm closed follows from the

weak∗-density of A ∩ K(H) in A ([23]). In fact, this is a corollary of an elementary

theorem of Rudin [66].

Theorem 1.2.37. (Rudin) Suppose that Y and Z are closed subspaces of a Banach

space X and let Φ be a collection of linear transformations in B(X), such that

1. ΛZ ⊆ Z, ∀Λ ∈ Φ;

2. ΛX ⊆ Y, ∀Λ ∈ Φ;

3. sup{∥Λ∥ : Λ ∈ Φ} = M < +∞;

4. Given y ∈ Y and ϵ > 0 there exists a Λ ∈ Φ such that ∥y − Λy∥ < ϵ.

Then Z + Y is also a closed subspace of X.
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Corollary 1.2.38. (Fall, Arveson, Muhly) Let A be a nest algebra acting on a Hilbert

space H. Then the quasitriangular algebra A +K(H) is norm closed.

Proof. It suffices to show that A +K(H) satisfies the conditions of Theorem 1.2.37.

Take Z = A, Y = K(H) and define Φ be the collection of transformations

ΛF : B(H) → B(H) : T 7→ FT

with F finite rank operator in the unit ball of A. The three first conditions are evidently

satisfied. The fourth condition holds, since by Theorem 1.2.35 there exists a net of

finite rank operators that converge to the identity operator in the weak∗-topology.

1.3 The parabolic and the hyperbolic algebra

1.3.1 Translation - multiplication algebras

Before introducing the parabolic and the hyperbolic algebras, it is helpful to consider

the weak∗-closed algebras on L2(R) generated by the multiplication and translation

operators, as these algebras have the same set of invariant subspaces as their generators.

Define the operator groups :

λ → Mλ : (Mλf)(x) = eiλxf(x)

and

µ → Dµ : (Dµf)(x) = f(x− µ).
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Note that these two groups satisfy the so-called Weyl relations (see[47])

MλDµ = eiλµDµMλ, ∀λ, µ ∈ R.

By elementary functional analysis, the weak∗-closed algebra generated by the unitary

group {Mλ}λ∈R consists of all the multiplication operators :

weak∗-alg{Mλ : λ ∈ R} = {Mϕ : ϕ ∈ L∞(R)}.

Note that the algebra on the right hand side is the multiplication algebra Mm, defined

in the previous section. One can check that Mm is a maximal selfadjoint abelian

algebra of B(L2(R)), so it is WOT-closed (see for example Theorem 7.8 in [15]). Since

it contains the generators Mλ for all λ, it suffices to show the opposite inclusion. If that

is not true, then by the Hahn - Banach separation theorem ([14]), there is a function

ϕ ∈ L∞ and a weak∗-continuous linear functional on B(L2(R)), say

ω : B(L2(R)) → C,

that annihilates the algebra on the left hand side and ω(Mϕ) = 1. On the other hand,

the restriction of ω on the multiplication algebra Mm induces a weak∗-continuous

functional on L∞(R), which we denote by ω again. Hence there exist h ∈ L1(R), such

that

ω(f) →
∫
R

f(x)h(x)dx.

Now since ω(Mλ) = 0, for every λ ∈ R, the Fourier transform of h is the zero function,

which implies that h = 0. Therefore ω(Mϕ) = 0, for every ϕ ∈ L∞, so our claim is

true.
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Similarly we have

weak∗-alg{Mλ : λ ≥ 0} = {Mϕ : ϕ ∈ H∞(R)} =: MH∞ .

Since the translation group is unitarily equivalent to the multiplication group via the

Fourier transform, there are similar identifications for the translation algebra Dm,

that is generated by the operators Dµ. The next result can be found in [72].

Proposition 1.3.1. The algebra M = weak∗-alg{Mλ, Dµ : λ, µ ∈ R} coincides with

the algebra of all bounded operators on L2(R).

Finally, the identification, that ties these ideas with nest algebras,

weak∗-alg{Mλ, Dµ : λ ∈ R, µ ≥ 0} = Alg Nv

is given in [61].

1.3.2 The parabolic algebra

Define on the Hilbert space L2(R), the (doubly) non-selfadjoint Fourier binest

algebra

AFB = Alg(Na ∪ Nv),

where Na and Nv are the analytic and Volterra nest, respectively. It’s trivial to check

that AFB is a reflexive algebra, being the intersection of two reflexive algebras, and

that AFB contains no non-zero finite rank operators and no non-trivial selfadjoint

operators, i.e. AFB ∩ A∗
FB = CI.

Define now the parabolic algebra Ap as the weak∗-closed operator algebra that

is generated by the two SOT-continuous unitary semigroups of operators {Mλ, λ ≥ 0}
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and {Dµ, µ ≥ 0} acting on L2(R). Since the generators of Ap leave the binest invariant,

we have that Ap ⊆ AFB. Katavolos and Power showed in [38] that these two algebras

are equal, but we will present this result as it was proved in [42] :

Proposition 1.3.2. Given k ∈ L2(R2), define Θp(k) : (x, t) 7→ k(x, x− t). Then

AFB ∩ C2 ⊆ {Int k | Θp(k) ∈ H2(R) ⊗ L2(R+)}

where Int k denotes the Hilbert-Schmidt operator acting on L2(R) given by

(Int k f)(x) =
∫
R
k(x, y)f(y)dy.

Now, given h ∈ H2 ∩ H∞(R), ϕ ∈ L1 ∩ L2(R+), let h ⊗ ϕ denote the function

(x, y) 7→ h(x)ϕ(y). The integral operator Int k, that is induced by the function

k = Θ−1
p (h⊗ ϕ), lies in the parabolic algebra. In particular, we have Int k = Mh∆ϕ,

where ∆ϕ is the bounded operator that is defined by the sesquilinear form

⟨∆ϕf, g⟩ =
∫
R

∫
R
ϕ(t)Dtf(x)g(x)dxdt, where f, g ∈ L2(R).

Since the linear span of such functions k of separate variables is dense in the space

H2(R) ⊗ L2(R+), it follows by the proposition above that

{Int k | Θp(k) ∈ H2(R) ⊗ L2(R+)} ⊆ Ap ∩ C2

and this implies

AFB ∩ C2 ⊆ Ap ∩ C2.
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The opposite inclusion is evident, so the Fourier binest algebra and the parabolic

algebra contain the same Hilbert-Schmidt operators.

Proposition 1.3.3. Ap has a bounded approximate identity of Hilbert-Schmidt oper-

ators. In other words, there exists a norm bounded sequence (Tn)n∈N of operators in

Ap ∩ C2 such that Tn SOT→ I.

Therefore, by a density argument which also features in Chapters 2 and 4 (see [42],

Corollary 3.11), we get the following theorem.

Theorem 1.3.4. (Katavolos - Power) The parabolic algebra coincides with the Fourier

binest algebra. Since AFB is plainly reflexive, the same holds for Ap.

Finally, we note that the binest Na∪Nv is not reflexive. In [38], a cocycle argument

is used to show that the invariant subspace lattice of the parabolic algebra is

Lat Ap = {Kλ,s|λ ∈ R, s ≥ 0} ∪ Nv

where Kλ,s = MλMϕsH
2(R) and ϕs(x) = e−isx2/2. Thus, given s ≥ 0, we have the

nest Ns = MϕsNa. Any pair of distinct nests in Lat Ap intersects only in the trivial

subspaces. If we view Lat Ap as a set of projections endowed with the SOT-topology,

then it is homeomorphic to the closed unit disc and the topological boundary is the

binest.

1.3.3 The hyperbolic algebra

In this subsection, we consider the algebra that is generated by the multiplication

and dilation semigroups. Particularly, let {Vt : t ∈ R} be the one parameter SOT-

continuous unitary group of dilation operators, acting on L2(R) by

(Vtf)(x) = et/2f(etx).
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L2(R)

(0)

H2(R) L2(R+)MϕsH
2(R) s → +∞

MλH
2(R) DµL

2(R+)MϕsMλH
2(R)

Na Ns Nv

Fig. 1.1 The invariant subspace lattice of the parabolic algebra

One can check that the two groups satisfy the commutation relations

VtMλ = MλetVt.

The hyperbolic algebra, introduced by Katavolos and Power ([39]), is defined as the

weak∗-closed operator algebra

Ah = weak∗-alg{Mλ, Vt|λ, t ≥ 0}.

On the other hand, take the following two subspace lattices

LD = {L2[−α, β] : α, β ∈ [0,+∞]} ∪ {{0}, L2(R)}

LL = {dsH2(R) : s ∈ R} ∪ {{0}, L2(R)}

where ds : R → C is the unimodular function ds(x) = |x|is. Note that neither of these

lattices is a nest, since they are not totally ordered. Define now the dilation lattice
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algebra

ADL = Alg(LD ∪ LL).

In a similar way to how we presented in the parabolic case, Levene and Power ([44])

proved that Ah is equal to ADL. Since the generators of the hyperbolic algebra leave

the bilattice invariant, we have Ah ⊆ ADL. The key idea again is to identify the

Hilbert-Schmidt operators. Let Q = {(x, y) ∈ R2 |xy ≥ 0} and p be the almost

everywhere defined function

p(x) =
√
xχ(0,+∞)(x) + i

√
−xχ(−∞,0)(x).

Proposition 1.3.5. Given k ∈ L2(Q), define Θh(k) : (x, t) 7→ p(x)et/2k(x, etx). Then

ADL ∩ C2 ⊆ {Int k | Θh(k) ∈ H2(R) ⊗ L2(R+)}.

Let h ∈ H2(R), ϕ ∈ L1 ∩ L2(R+) and let k = Θ−1
h (h ⊗ ϕ). Then the integral

operator, that is induced by k, lies in the hyperbolic algebra and more specifically

Int k = MphVϕ, where Vϕ is defined by the bounded sesquilinear form

⟨Vϕf, g⟩ =
∫
R

∫
R
ϕ(t)Vtf(x)g(x)dxdt, f, g ∈ L2(R).

Thus, we have that the Hilbert Schmidt operators in Ah and ADL coincide, so by

proving that the hyperbolic algebra contains a bounded approximate identity of Hilbert

Schmidt operators, we obtain the following result.

Theorem 1.3.6. (Levene - Power) The dilation lattice algebra and the hyperbolic

algebra are equal. Thus Ah is reflexive.
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The bilattice LD ∪ LL is not reflexive, since the invariant subspace lattice of the

hyperbolic algebra is the set

Lat Ah = {Kz,λ,µ | z ∈ C∗, λ, µ ≥ 0} ∪ LD,

where Kz,λ,µ = MυzMeλ,µ
H2(R), and the functions υz and eλ,µ are given by the formulas

υz(x) = χ(0,+∞)(x) + z χ(−∞,0)(x) and eλ,µ(x) = ei(λx+µx−1), respectively. Once again,

this lattice, viewed as a lattice of projections with the SOT-topology, is homeomorphic

to a compact and connected manifold, but in this case it is 4-dimensional.



Chapter 2

The parabolic algebra on Lp spaces

In this chapter we introduce the corresponding parabolic algebras on Lp(R). To avoid

any confusion we denote the parabolic algebra acting on Lp(R) by Ap
par. Therefore

the algebra A2
par is the algebra introduced in the previous chapter. We show that for

any p ∈ (1,+∞) the parabolic algebra Ap
par is reflexive and is equal to the Fourier

binest algebra. To prove this, we define a right ideal of integral operators with Bochner

integrable kernel functions, which we show is able to play the role of the (two-sided)

ideal of Hilbert-Schmidt operators. Most of the results are contained in [36].

2.1 The space Lp(R;Lq(R)), for 1 < p, q < ∞

We now introduce some notation and terminology associated with the classical space

Lp(R;Lq(R)). This space is a space of kernel functions for what we refer to as the

(p, q)-integral operators. For more details, we refer the reader to [53],[54].

Let p, q ∈ [1,+∞]. Define S(R;Lq(R)) to be the space of measurable simple

functions; i.e. the functions f : R → Lq(R) taking only finitely many values :

f(x) =
n∑
k=1

χAk
(x)gk,
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where {Ak}k=1,...,n is a finite family of Borel measurable pairwise disjoint sets and where

gk ∈ Lq(R).

Definition 2.1.1. A function f : R → Lq(R) is said to be strongly measurable if

there is a sequence (fn) in S(R;Lq(R)), tending to f pointwise a.e.. Also, f is weakly

measurable, if given ω ∈ (Lq(R))∗ the function t 7→ ω(f(t)) is Borel measurable.

The relationship between strong and weak measurability is given by the following

theorem of Pettis [53], who introduced the notion of almost separably valued functions.

Definition 2.1.2. Let 1 ≤ q ≤ ∞. A function f : R → Lq(R) is almost separably

valued, if there is a conull Borel set A ⊆ R, such that f(A) is separable.

Theorem 2.1.3. A function f : R → Lq(R) is strongly measurable if and only if it is

weakly measurable and almost separably valued.

Example 2.1.4. Define f : R → L∞(R) by f(x) = χ(−∞,x]. Then f is not almost

separably valued, and hence not strongly measurable, since ∥f(x) − f(t)∥∞ = 1 for

x ̸= t. However, for q ∈ (1,∞), the function g : R → Lq(R), given by g(x) = χ(−∞,x]f ,

where f ∈ Lq(R), is strongly measurable. To see this, note that Lq(R) is separable and

given ω ∈ Lp(R), where p is the conjugate exponent of q, we have

ω(g(x)) =
∫
R
ω(y)χ(−∞,x](y)f(y)dy =

∫ x

−∞
ω(y)f(y)dy,

which is measurable, being the limit of absolutely continuous functions.

The definition of Lp spaces of Lq-valued functions is analogous to the case of

scalar valued functions. One can check first that strong measurability of a function

f : R → Lq(R) ensures measurability in the usual sense of the scalar-valued function

x 7→ ∥f(x)∥q (see for example [53]). Define Lp(R;Lq(R)) as the set of equivalence

classes (modulo equality for almost every x ∈ R) of strongly measurable functions
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f that satisfy
(∫

R ∥f(x)∥pqdx
)1/p

< ∞ for 1 ≤ p < ∞, and esssup∥f(·)∥q for p = ∞.

Each of the above spaces endowed with the respective norm

∥f∥p,q =
(∫

R
∥f(x)∥pqdx

)1/p
, for p ∈ [1,∞),

∥f∥∞,q = esssup∥f(·)∥q , for p = ∞,

becomes a Banach space.

Remark 2.1.5. In the case p = q = 2 we have the natural isomorphisms

L2(R;L2(R)) ∼= L2(R) ⊗ L2(R) ∼= L2(R2).

For the rest of the subsection, the exponents p, q lie on the open interval (1,∞).

Given f1, f2, . . . , fn ∈ Lp(R) and g1, g2, . . . , gn ∈ Lq(R), define

f : R → Lq(R) : f(x) 7→
n∑
k=1

fk(x)gk.

We denote this function by
n∑
k=1

fk ⊗ gk and we write F(R;Lq(R)) for the subspace

of Lp(R;Lq(R)) formed by such functions. Finally, we write F(R;S(R)) for the set of

functions
n∑
k=1

fk ⊗ χAk
, where {Ak}k=1,...,n is a partition of the real line.

Proposition 2.1.6. The following sets are dense in Lp(R;Lq(R)).

1. S(R;Lq(R)) ∩ Lp(R;Lq(R));

2. F(R;Lq(R)) ∩ Lp(R;Lq(R));

3. F(R;S(R)) ∩ Lp(R;Lq(R)).

Proof. The argument for the density of the first two sets can be found in [54]. For the

last set it suffices to prove that given f ∈ Lp(R), g ∈ Lq(R), we can find a sequence
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(fn) of elements in F(R;S(R)) ∩ Lp(R;Lq(R)), that converges to f ⊗ g with respect to

the ∥ · ∥p,q norm. By the classical theory of Lq spaces, there is a sequence of simple

functions

gn =
n∑
k=1

akχAk
, ak ∈ C,

such that gn → g in Lq(R). Then the functions f ⊗ gn lie in F(R;S(R)) ∩Lp(R;Lq(R))

and

∥f ⊗ gn − f ⊗ g∥p,q = ∥f∥p∥gn − g∥q → 0.

To simplify the notation, we drop Lp(R;Lq(R)) for each of the above sets. So

when it causes no confusion, we write S(R;Lq(R)) for the respective dense subspace of

Lp(R;Lq(R)).

The characterization of the dual space of Lp(R;Lq(R)) is again analogous to the

scalar valued case, after we take account of duality in the range space Lq(R) (see [54]).

Proposition 2.1.7. Let p, q ∈ (1,∞) be conjugate exponents. The dual space of

Lp(R;Lq(R)) is isometrically isomorphic to Lq(R;Lp(R)) by the map

α : Lq(R;Lp(R)) → (Lp(R;Lq(R)))∗ : α(k̃)(k) =
∫ ∞

−∞

∫ ∞

−∞
k(x)(y)k̃(x)(y)dy dx.

where k ∈ Lp(R;Lq(R)) and k̃ ∈ Lq(R;Lp(R)).

Lemma 2.1.8. Given an operator T ∈ B(Lq(R)), there is a unique bounded linear

operator

T̃ : Lp(R;Lq(R)) → Lp(R;Lq(R))

such that given f ⊗ g ∈ F(R;Lq(R))

T̃ (f ⊗ g) = f ⊗ Tg.
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Moreover, the map T 7→ T̃ is isometric.

Proof. Let f =
n∑
k=1

χAk
⊗gk, such that gk ∈ Lq(R) and {Ak}k=1,...,n are pairwise disjoint

Borel sets. By linearity, calculate

∥T̃ f∥pp,q =
∥∥∥∥∥

n∑
k=1

χAk
⊗ Tgk

∥∥∥∥∥
p

p,q

=
∫
R

∥∥∥∥∥
n∑
k=1

χAk
(x)Tgk

∥∥∥∥∥
p

q

dx =

=
∫
R

(∫
R

∣∣∣∣∣
n∑
k=1

χAk
(x)Tgk(y)

∣∣∣∣∣
q

dy

)p/q
dx =

∫
R

(∫
R

n∑
k=1

χAk
(x)|Tgk(y)|qdy

)p/q
dx =

=
∫
R

(
n∑
k=1

χAk
(x)∥Tgk∥qq

)p/q
dx ≤

∫
R

(
n∑
k=1

χAk
(x)∥T∥q∥gk∥qq

)p/q
dx =

= ∥T∥p
∫
R

(
n∑
k=1

χAk
(x)∥gk∥qq

)p/q
dx = ∥T∥p

∫
R

(
n∑
k=1

χAk
(x)

∫
R

|gk(y)|qdy
)p/q

dx =

= ∥T∥p
∫
R

(∫
R

∣∣∣∣∣
n∑
k=1

χAk
(x)gk(y)

∣∣∣∣∣
q

dy

)p/q
dx = ∥T∥p∥f∥pp,q.

Since the set S(R;Lq(R)) is dense in Lp(R;Lq(R)), the operator T̃ is bounded. To

show that the mapping T 7→ T̃ is isometric, check that given g ∈ Lq(R)

∥χ[0,1] ⊗ g∥pp,q =
∫
R

∥χ[0,1](x)g∥pqdx =
∫ 1

0
dx ∥g∥pq = ∥g∥pq .

This yields an upper bound for the norm of the operator T

∥Tg∥pq = ∥χ[0,1] ⊗ Tg∥pp,q = ∥T̃ (χ[0,1] ⊗ g)∥pp,q ≤ ∥T̃∥ ∥χ[0,1] ⊗ g∥pp,q = ∥T̃∥p ∥g∥pq ,

so the proof is complete.

Lemma 2.1.9. Let p, q ∈ (1,∞). The linear map

Θ : Lp(R;Lq(R)) → Lp(R;Lq(R)) : Θ(f)(x)(y) 7→ f(x)(x− y)

is a bijective isometry onto Lp(R;Lq(R)).
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Proof. It suffices again to consider f ∈ S(R;Lq(R)). Let f(x) =
n∑
k=1

χAk
⊗ gk as before.

First, in order to obtain that Θf is strongly measurable, it suffices to show that given

ω ∈ Lp(R), the function

ω(Θf(·)) = R → C : x 7→ ω(Θf(x)) =
∫
R
ω(y)(Θf)(x)(y)dy

is measurable. This is trivial to prove, since

ω(Θf(x)) =
∫
R
ω(y)

n∑
k=1

χAk
(x)gk(x− y)dy =

=
n∑
k=1

χAk
(x)

∫
R
ω(y)gk(x− y)dy =

n∑
k=1

χAk
(x)(ω ∗ gk)(x),

and applying Young’s inequality, the function ω ∗ gk lies in L∞(R). Now

∥Θf∥pp,q =
∫
R

∥Θ(f)(x)∥pqdx =
∫
R

(∫
R

∣∣∣∣∣
n∑
k=1

χAk
(x)gk(x− y)

∣∣∣∣∣
q

dy

)p/q
dx =

=
∫
R

(∫
R

∣∣∣∣∣
n∑
k=1

χAk
(x)gk(y)

∣∣∣∣∣
q

dy

)p/q
dx =

∫
R

∥f(x)∥pqdx = ∥f∥pp,q.

Since Θ−1 = Θ, the map is bijective.

2.1.1 The Fourier binest algebra Ap
FB and the parabolic alge-

bra

In this subsection, we give the natural generalization of the Fourier binest algebra on

Lp spaces. The Volterra nest N p
v is the continuous nest consisting of the subspaces

Lp([t,+∞)), for t ∈ R, together with the trivial subspaces {0}, Lp(R). The analytic

nest N p
a is defined to be the chain of subspaces

eiλxHp(R), λ ∈ R,
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together with the trivial subspaces. We claim that the nest N p
a is totally ordered; the

chain of subspaces eiλxH2(R) is evidently totally ordered, since it is unitarily equivalent

with the Volterra nest. By Lemma 1.1.8 the space eiλxH2(R) ∩ Lp(R) is dense in

eiλxHp(R), for every p ∈ (1,∞), so our claim follows trivially. Note that in the special

case where p = ∞, the above nests are not complete with respect to the norm closed

span, but with the weak∗-closed linear span. These nests determine the Volterra nest

algebra Ap
v = Alg N p

v and the analytic nest algebra Ap
a = Alg N p

a , both of which are

reflexive operator algebras.

The Fourier binest is the subspace lattice

Lp
FB = N p

v ∪ N p
a

and the Fourier binest algebra Ap
FB is the non-selfadjoint algebra Alg Lp

FB of operators

which leave invariant each subspace of Lp
FB. The reflexivity of Ap

FB is immediate from

its definition.

Given p ∈ (1,+∞), let J be the flip operator given by (Jf)(x) = f(−x). Note that

J is the isometric operator that takes the Volterra nest to its counterpart

(N p
v )⊥ := {0} ∪ {Lp(−∞, t] : t ∈ R} ∪ {Lp(R)}

and the analytic nest to

(N p
a )⊥ := {0} ∪ {e−iλxHp(R) : λ ∈ R} ∪ {Lp(R)}.

Hence JAp
FBJ is the binest algebra generated by the lattice JLp

FB = (N p
v )⊥ ∪ (N p

a )⊥.

Since the spaces eiλxHp(R) and Lp[t,∞) are naturally complemented and have trivial

subspaces it is straightforward to adjust the Hilbert space arguments [38] to see that
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Ap
FB is an antisymmetric operator algebra, meaning that Ap

FB ∩ JAp
FBJ = CI, and

also that the algebra contains no non-zero finite rank operators.

To define the parabolic algebra Ap
par, we recall the definition of the strong operator

topology (SOT). Given a net (Ti)i∈I of bounded operators on a Banach space X, we

say that Ti SOT→ T , where T ∈ B(X), if and only if Tix → Tx, for every x ∈ X. In other

words, the SOT-topology on B(X) is defined as the topology of pointwise convergence

on X. Check that in the case that X is a Hilbert space the above definition coincides

with the definition of SOT-topology given in subsection 1.2.3.

The parabolic algebra Ap
par is defined as the SOT-closed operator algebra on Lp(R)

that is generated by the two isometric semigroups {Mλ, λ ≥ 0}, {Dµ, µ ≥ 0}. As we

stated in subsection 1.3.2, Katavolos and Power defined the parabolic algebra, in the

case p = 2, to be the weak∗-closed algebra that is generated by the translation and

multiplication semigroups and they proved that this algebra is equal to the SOT-closed

algebra A2
FB. Hence the two definitions of the parabolic algebra on L2(R) coincide.

2.1.2 Integral Operators on Lp(R)

Let p ∈ (1,∞) and q be its conjugate exponent. Given k ∈ Lp(R;Lq(R)), the linear

map

(Int k f)(x) =
∫
R
k(x)(y)f(y)dy

defines a bounded operator on Lp(R). Indeed, given f ∈ Lp(R), applying the Hölder

inequality we obtain

∫
R

∣∣∣∣∣
∫
R
k(x)(y)f(y)dy

∣∣∣∣∣
p

dx ≤ ∥k∥pp,q∥f∥pp.
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We will refer to such an operator as (p,q)-integral operator and denote the set

of (p, q)-integral operators by

Gp = {Int k : k ∈ Lp(R;Lq(R))}.

Remark 2.1.10. 1. The above calculation also proves that the norm ∥ · ∥p,q dom-

inates the operator norm, and so given (kn)n≥1, k ∈ Lp(R;Lq(R)), such that

kn
∥·∥p,q→ k, then Int kn → Int k.

2. In the special case p = 2, then G2 = C2, where C2 is the ideal of the Hilbert-

Schmidt operators on L2(R).

Lemma 2.1.11. Gp is a right ideal in B(Lp(R)).

Proof. Let T ∈ B(Lp(R)). Given f ∈ Lp(R) and k ∈ Lp(R;Lq(R)), such that

k =
n∑
κ=1

fκ ⊗ gκ, we have

(Int kTf)(x) =
∫
R
k(x, y)(Tf)(y)dy =

n∑
κ=1

fκ(x)
∫
R
gκ(y)(Tf)(y)dy =

=
n∑
κ=1

fκ(x)
∫
R
T ∗gκ(y)f(y)dy,

where T ∗ is the adjoint operator of T . Therefore Int kT = Int k̃, where k̃ =
n∑
κ=1

fκ⊗T ∗gκ.

In the general case, let k ∈ Lp(R;Lq(R)) and km =
n∑
κ=1

f (m)
κ ⊗ g(m)

κ , such that km
∥·∥p,q→ k.

Applying the above argument, we have Int kmT = Int k̃m, where k̃m =
n∑
κ=1

f (m)
κ ⊗T ∗g(m)

κ .

Then, by Lemma 2.1.8, there is a unique operator T̃ ∗ ∈ B(Lp(R;Lq(R)), such that

∥k̃m − k̃l∥p,q =
∥∥∥∥∥

n∑
κ=1

f (m)
κ ⊗ T ∗g(m)

κ −
n∑
κ=1

f (l)
κ ⊗ T ∗g(l)

κ

∥∥∥∥∥
p,q

=

=
∥∥∥∥∥T̃ ∗

(
n∑
κ=1

f (m)
κ ⊗ g(m)

κ −
n∑
κ=1

f (l)
κ ⊗ g(l)

κ

)∥∥∥∥∥
p,q

≤
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≤
∥∥∥T̃ ∗

∥∥∥ ∥∥∥∥∥
(

n∑
κ=1

f (m)
κ ⊗ g(m)

κ −
n∑
κ=1

f (l)
κ ⊗ g(l)

κ

)∥∥∥∥∥
p,q

=

=
∥∥∥T̃ ∗

∥∥∥ ∥km − kl∥p,q.

It follows that the sequence (k̃m)m is a Cauchy sequence, so by the completeness of

Lp(R;Lq(R)), it converges to some k̃ ∈ Lp(R;Lq(R)). Since the ∥ · ∥p,q norm dominates

the operator norm, the sequence (Int k̃n)n of (p, q)-integral operators converges to Int k̃.

Thus, by the uniqueness of the limit, we obtain Int kT = Int k̃.

2.2 Reflexivity

In this section, we prove that the parabolic algebra Ap
par is reflexive, given p ∈ (1,∞).

In particular, we will show that Ap
par = Ap

FB. Since the generators of Ap
par leave

the subspaces of the binest Lp
FB invariant, we have Ap

par ⊆ Ap
FB. Hence it suffices

to prove that Ap
FB ⊆ Ap

par. In the following proposition, we make use of the linear

transformation Θ defined in Lemma 2.1.9.

Proposition 2.2.1. Let Int k ∈ Gp ∩ Ap
FB. Then k satisfies the following properties:

1. Θk ∈ Lp(R;Lq(R+));

2. For every Borel set A of finite measure, Int(Θk)χA lies in Hp(R).

Proof. Let Int k ∈ Gp ∩ Ap
FB.

1. Since Int kLp[t,∞) ⊆ Lp[t,∞), for every t ∈ R, it follows that k(x)(y) = 0, for

almost every (x, y) ∈ R2, such that y > x. Therefore, Θk(x) ∈ Lq(R+) for almost

every x ∈ R.
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2. Since M−λ Int kDµMλH
p(R) ⊆ Hp(R), for every λ, µ ∈ R, given functions

f ∈ Hp(R), g ∈ Hq(R), we have that

∫
R
(M−λ Int kDµMλf)(x)g(x)dx = 0 ⇔∫

R

(∫
R
e−iλxk(x)(y)eiλ(y−µ)f(y − µ)g(x)dy

)
dx = 0 y→x−y⇔∫

R

(∫
R

Θk(x)(y)e−iλ(y+µ)f(x− y − µ)g(x)dy
)
dx = 0.

Therefore, for every q ∈ L1(R), we obtain

∫
R

(∫
R

(∫
R

Θk(x)(y)e−iλ(y+µ)f(x− y − µ)g(x)dy
)
dx
)
q(µ)dµ = 0.

Take q(µ) = χA(µ), where A is a Borel set of finite measure. Then, by Fubini’s

theorem

∫
R

(∫
R

(∫
R

Θk(x)(y)e−iλ(y+µ)f(x− y − µ)g(x)dy
)
dx
)
χA(µ)dµ = 0 ⇔∫

R

(∫
R

(∫
R

Θk(x)(y)e−iλ(y+µ)f(x− y − µ)g(x)χA(µ)dµ
)
dy
)
dx = 0 µ→µ−y⇔∫

R

(∫
R

(∫
R

Θk(x)(y)e−iλµf(x− µ)g(x)χA(µ− y)dµ
)
dy
)
dx = 0.

Thus

∫
R

(∫
R

(∫
R

Θk(x)(y)f(x− µ)g(x)χA(µ− y)dy
)
dx
)
e−iλµdµ = 0. (2.1)

We claim that the function

Φ : R → C : µ 7→
∫
R

(∫
R

Θk(x)(y)f(x− µ)g(x)χA(µ− y)dy
)
dx
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is a well defined L1 function. By Tonelli’s theorem, it suffices to show that

∫
R

(∫
R

(∫
R

∣∣∣Θk(x)(y)f(x− µ)g(x)χA(µ− y)
∣∣∣dµ) dy) dx < ∞.

We have

∫
R

(∫
R

(∫
R

∣∣∣Θk(x)(y)f(x− µ)g(x)χA(µ− y)
∣∣∣dµ) dy) dx =

=
∫
R

(∫
R

(∣∣∣Θk(x)(y)
∣∣∣ ∫

R

∣∣∣f(x− µ)χA(µ− y)
∣∣∣dµ) dy) ∣∣∣g(x)

∣∣∣dx =

=
∫
R

(∫
R

(∣∣∣Θk(x)(y)
∣∣∣ ∫

R

∣∣∣f(x− y − µ)χA(µ)
∣∣∣dµ) dy) ∣∣∣g(x)

∣∣∣dx.
By Young’s inequality the function c := |f | ∗ χA lies in Lp(R), so the expression

above is equal to

∫
R

(∫
R

∣∣∣Θk(x)(y)c(x− y)
∣∣∣dy) ∣∣∣g(x)

∣∣∣dx =
∫
R

(∫
R

∣∣∣k(x)(y)c(y)
∣∣∣dy) ∣∣∣g(x)

∣∣∣dx
which by Hölder’s inequality is bounded by ∥c∥p∥k∥p,q∥g∥q, so our claim is proven.

Hence it follows by the equation (2.1) that the Fourier transform of the function

Φ is the zero function, so we obtain that

∫
R

(∫
R

Θk(x)(y)f(x− µ)g(x)χA(µ− y)dy
)
dx = 0 (2.2)

for almost every µ ∈ R. Fix some µ ∈ R, such that equation (2.2) holds. Hence

by Lemma 1.1.9

∫
R

(∫
R

Θk(x)(y)h(x)χA(µ− y)dy
)
dx = 0

for every h in a dense subset of Hq(R). Moreover, since the set A was freely

chosen and χA(µ− y) = DµJχA(y) = χB(y), where B = {µ− a : a ∈ A} and J
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is again the flip operator, it follows that

∫
R

(∫
R

Θk(x)(y)h(x)χA(y)dy
)
dx = 0

⇒
∫
R
(Int(Θk)χA)(x)h(x)dx = 0

for every Borel set A of finite measure. Hence Int(Θk)χA annihilates a dense

subspace of Hq(R), so by Hölder’s inequality lies in the annihilator of Hq(R),

which is Hp(R).

Our next goal is to determine a dense set of Gp ∩ Ap
FB. We start with an approxi-

mation lemma.

Lemma 2.2.2. Let ϕ ∈ L1(R). Then, given p ∈ [1,∞), the convolution operator

∆ϕ : Lp(R) → Lp(R) : f 7→ ϕ ∗ f,

is bounded. Furthermore, if ϕ has essential support in R+, then ∆ϕ belongs to the

SOT-closed algebra generated by {Dt | t ∈ R+}.

Proof. The continuity of ∆ϕ is immediate by Young’s inequality, which also gives

∥∆ϕ∥ ≤ ∥ϕ∥1. The argument of the second claim is similar to that for p = 2 [42].

Suppose first that ϕ has compact support [a, b], for some b > a ≥ 0. Given n ∈ N and

m ∈ {0, 1, . . . , n − 1}, define αm,n =
∫ τ(m+1,n)
τ(m,n) ϕ(s)ds, where τ(m,n) = a + m

n
(b − a).

We claim that the sequence (Tn)n given by

Tn =
n−1∑
m=0

αm,nDτ(m,n)
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converges in the SOT-topology to ∆ϕ. Consider f ∈ Lp. Then by Hahn - Banach

theorem

∥(∆ϕ − Tn)f∥p = sup
{∣∣∣∣∣
∫
R
(∆ϕ − Tn)f(x)g(x)dx

∣∣∣∣∣ : ∥g∥q = 1
}

=

= sup
{∣∣∣∣∣
∫
R

n−1∑
m=0

∫ τ(m+1,n)

τ(m,n)
ϕ(t)

(
(Dt −Dτ(m,n))f(x)

)
dtg(x)dx

∣∣∣∣∣ : ∥g∥q = 1
}

=

= sup
{∣∣∣∣∣
∫
R

∫
R
ϕ(t)

(
(Dt −Dρn(t))f(x)

)
dtg(x)dx

∣∣∣∣∣ : ∥g∥q = 1
}

≤

≤ sup
{∫

R

(∫
R

∣∣∣ϕ(t)
(
(Dt −Dρn(t))f(x)

)
g(x)

∣∣∣dx) dt : ∥g∥q = 1
}

where ρn(t) = a+ b−a
n

⌊
(t−a)n
b−a

⌋
, t ∈ [a, b]. Now

∫
R

∣∣∣ϕ(t)
(
(Dt −Dρn(t))f(x)

)
g(x)

∣∣∣dx ≤ |ϕ(t)| ∥(Dt −Dρn(t))f∥p∥g∥q,

so it follows that

∥(∆ϕ − Tn)f∥p ≤
∫
R

|ϕ(t)|∥(Dt −Dρn(t))f∥pdt.

Since ∥(Dt − Dρn(t))f∥p → 0 as n → ∞ and |ϕ(t)| ∥(Dt − Dρn(t))f∥p ≤ 2|ϕ(t)| ∥f∥p,

we get that ∥(∆ϕ − Tn)f∥p → 0, by dominated convergence theorem. This proves the

second claim of the theorem , in the case where ϕ has compact support. The general

case, is a simple application of Young’s inequality.

Remark 2.2.3. In the L2(R) case, there is a simpler proof, using the unitary Fourier-

Plancherel transform F . Note that

∆ϕ = F ∗Mϕ̂F.
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Since ϕ ∈ L1(R+), it follows that ϕ̂ ∈ H∞(R). Therefore, the multiplication operator

Mϕ̂ lies in the SOT-closed algebra generated by {M−λ : λ ∈ R+}. Hence, using the

fact that Dλ = F ∗M−λF , the proof is complete.

Lemma 2.2.4. Let h ∈ Hp(R), ϕ ∈ Lq(R+), where p ∈ (1,∞) and q is its conjugate

exponent. Define k = Θ−1(h⊗ ϕ). Then, the operator Int k lies in Gp ∩ Ap
par.

Proof. First, consider h ∈ H∞(R), ϕ ∈ L1(R+). Then

(Int kf)(x) =
∫
R

Θ−1(h⊗ ϕ)(x)(y)f(y)dy =

=
∫
R
h(x)ϕ(x− y)f(y)dy = (Mh∆ϕf)(x),

so ∥ Int k∥ ≤ ∥h∥∞∥ϕ∥1. By the previous lemma ∆ϕ ∈ SOT-alg{Dt : t ∈ R+},

hence Int k ∈ Ap
par. Take now h ∈ Hp(R) and ϕ ∈ Lq(R+). Then there exist

hm ∈ (H∞ ∩Hp)(R), ϕm ∈ (L1 ∩ Lq)(R+), such that hm
∥·∥p→ h and ϕm

∥·∥q→ ϕ. Now it

is straightforward to show that hm ⊗ ϕm
∥·∥p,q→ h⊗ ϕ. Since the norm ∥ · ∥p,q dominates

the operator norm and Ap
par is norm closed,

Int k = Int(Θ−1(h⊗ ϕ)) ∈ Ap
par.

Moreover, the fact that h and ϕ lie in Hp(R) and Lq(R+) respectively implies that

Int k ∈ Gp.

Proposition 2.2.5. Gp ∩ Ap
FB = Gp ∩ Ap

par, for every p ∈ (1,∞).

Proof. Let Gp ∩ Ap
FB be strictly larger than Gp ∩ Ap

par. Since the subspace

{k ∈ Lp(R;Lq(R)) : Int k ∈ Gp ∩ Ap
par}



58 The parabolic algebra on Lp spaces

is closed in Lp(R;Lq(R)), by Riesz’s lemma ([67]) there exists an element Int k0 ∈

Gp ∩ Ap
FB, where k0 lies in the unit sphere of Lp(R;Lq(R)), such that

inf{∥k0 − k∥p,q : Int k ∈ Gp ∩ Ap
par} >

9
10 .

Since F(R;Lq(R)) is dense in Lp(R;Lq(R)) and Θ is a bijective isometry, there exists

a ∈ Θ−1(F(R;Lq(R))), such that

∥k0 − a∥p,q <
1
10 .

Also, by the boundedness of the Riesz projection from Lp(R) to Hp(R) [31], we can

write the element a, as a = b+ c+ d+ e where

b = Θ−1(
N1∑
k=1

h1
k ⊗ g1

k), withh1
k ∈ Hp(R), g1

k ∈ Lq(R+),

c = Θ−1(
N2∑
k=1

h2
k ⊗ g2

k), withh2
k ∈ Hp(R), g2

k ∈ Lq(R−),

d = Θ−1(
N3∑
k=1

h3
k ⊗ g3

k), withh3
k ∈ Hp(R), g3

k ∈ Lq(R+),

e = Θ−1(
N1∑
k=1

h4
k ⊗ g4

k), withh4
k ∈ Hp(R), g4

k ∈ Lq(R−).

Note that at least one of the elements c, d, e has norm bigger than 1
4 . For otherwise,

since ∥k0 − b∥p,q > 9
10 , we have

∥k0 − a∥p,q = ∥k0 − b− (c+ d+ e)∥p,q ≥ ∥k0 − b∥p,q − ∥c+ d+ e∥p,q >
3
20 .

Without loss of generality, let ∥c∥p,q > 1
4 . By the Hahn - Banach theorem and

Proposition 2.1.7, there exists ω ∈ Lq(R;Lp(R)), such that |ω(c)| > 1
4 and ∥ω∥ = 1.

Hence, by Proposition 2.1.6 and the definition of the element c, we may assume that



2.2 Reflexivity 59

∥ω∥ ≤ 3
2 and ω is given by the formula

ω(k) =
n∑

m=1

∫
R

(∫
R
k(x)(y)fm(x)χAm(x− y)dy

)
dx =

=
n∑

m=1

∫
R
(Int(Θk)χAm)(x)fm(x)dx

where fm ∈ Hq(R) and {Am}m=1,...,n is a family of Borel subsets of R−. So it follows

from Proposition 2.2.1 that

3
2∥k0 − a∥p,q ≥ |ω(k0 − a)| = |ω(k0) − ω(b) − ω(c) − ω(d) − ω(e)| = |ω(c)| > 1

4 ,

which is a contradiction.

The following proposition and proof follow the pattern for the case p = 2, given in

[42].

Proposition 2.2.6. For every p ∈ (1,∞), the algebra Ap
par contains a bounded ap-

proximate identity of elements in Gp.

Proof. Take hn(x) = ni
x+ni and ϕn(y) = nχ[0,1/n](y). It is trivial to see that hn ∈ Hr(R)

and ϕn ∈ Lr(R+), for every r ∈ (1,∞). Moreover, hn and ϕn lie in the respective unit

balls of H∞(R) and L1(R). Let kn = Θ−1(hn ⊗ ϕn). As in the proof of Lemma 2.2.4,

we have Int kn = Mhn∆ϕn and ∥ Int kn∥ ≤ ∥hn∥∞∥ϕn∥1 ≤ 1. Since hn → 1 uniformly

on compact sets of the real line, it follows that Mhn

SOT→ I. Now given f ∈ CC(R), note

that

∥∆ϕnf − f∥pp =
∫
R

∣∣∣∣∣
∫
R
nχ[0,1/n](y)f(x− y)dy − f(x)

∣∣∣∣∣
p

dx =

=
∫
R

∣∣∣∣∣
∫ 1/n

0
nf(x− y)dy − f(x)

∣∣∣∣∣
p

dx.
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Check that
∣∣∣∣∣ ∫ 1/n

0 nf(x− y)dy − f(x)
∣∣∣∣∣
p

≤ 2p∥f∥p∞χs(x), where S is the compact set

S = {x+ τ |x ∈ suppf, τ ∈ [0, 1]}.

Hence by dominated convergence ∆ϕnf → f . Since CC(R) is dense in Lp(R) it follows

that ∆ϕn

SOT→ I. Multiplication is SOT-continuous on the closed unit ball of bounded

operators, so Mhn∆ϕn

SOT→ I.

Theorem 2.2.7. For every p ∈ (1,∞), the parabolic algebra Appar is equal to the

Fourier binest algebra Ap
FB.

Proof. As we have noted before, it suffices to prove that Ap
FB ⊆ Appar. Let T ∈ Ap

FB

and (Xn)n≥1 be the bounded approximate identity of the previous proposition. By

Lemma 2.1.11 and Proposition 2.2.5, the operators XnT lie in Gp ∩ Ap
FB = Gp ∩ Ap

par.

Since Ap
par is SOT-closed, the given operator T = SOT − lim

n
XnT lies in Ap

par.

Proposition 2.2.8. The Fourier binest algebra A∞
FB is strictly larger than the parabolic

algebra A∞
par.

Proof. Recall first that by Proposition 1.2.20 the algebra AAP (R) of analytic almost

periodic functions is strictly smaller than H∞(R). Choose a function ϕ that lies in

H∞(R) and it is not an element of AAP (R). It suffices to show that Mϕ /∈ A∞
par. If this

is not the case, there is some sequence pn(Mλ, Dµ) in the non-closed algebra generated

by {Mλ, Dµ : λ, µ ≥ 0} which converges strongly to Mϕ. Thus for any f ∈ L∞(R), we

have ∥∥∥∥∥pn(Mλ, Dµ)f −Mϕf

∥∥∥∥∥
∞

→ 0, as n → ∞.

Choosing f ≡ 1, it follows that

∥∥∥∥∥pn(Mλ, I)f −Mϕf

∥∥∥∥∥
∞

→ 0, as n → ∞,
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and so ϕ ∈ AAP (R), a contradiction.

Remark 2.2.9. It remains unclear to the author whether the parabolic operator

algebras A1
par and A∞

par acting on the respective Banach spaces L1(R) and L∞(R) are

reflexive operator algebras.

2.3 The lattice of the parabolic algebra

Let Kp
λ,s = MλMϕsH

p(R) where ϕs(x) = e−isx2/2. This is evidently an invariant

subspace for the multiplication semigroup and for s ≥ 0 one can check that it is

invariant for the translation semigroup. Thus for s ≥ 0 the nest N p
s = MϕsN p

a is

contained in Lat Ap
par and these nests are distinct. Suppose now that p = 2. With the

strong operator topology for the associated orthogonal subspace projections it can be

shown ([38]) that the set of these nests for s ≥ 0, together with the Volterra nest N 2
v ,

is homeomorphic to the closed unit disc. A cocycle argument given in [38] leads to the

fact that every invariant subspace for A2
par is of this form for p = 2. That is

Lat A2
par = {K2

λ,s|λ ∈ R, s ≥ 0} ∪ N 2
v . (2.3)

We prove now the corresponding result for the general case of Ap
par, where 1 < p < ∞.

Let K be a non-trivial element of Lat Ap
par. Then the subspace K ∩ L2(R) is

invariant under the generators of the parabolic algebra. Therefore, the ∥ · ∥2-closure of

K ∩ L2(R) lies in Lat A2
par. On the other hand, by Theorem 1.1.11, either K = Lp(E)

for some Borel set E ⊆ R or K = MϕH
p(R) for some unimodular function ϕ. In the

first case, where K = Lp(E), then

Lp(E) ∩ L2(R)∥·∥2 ∈ Lat A2
par ⇒ L2(E) ∈ Lat A2

par ⇒ E = [t,∞),
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for some t ∈ R. In the second case, K = MϕH
p(R), which implies

MϕHp(R) ∩ L2(R)∥·∥2 ∈ Lat A2
par ⇒ MϕH

2(R) ∈ Lat A2
par ⇒ Mϕ = MϕsMλ,

for some s ∈ [0,+∞), λ ∈ R. Hence, we have the following result.

Theorem 2.3.1. Given p ∈ (1,∞), the invariant subspace lattice of the algebra Ap
par

is

Lat Ap
par = {Kp

λ,s|λ ∈ R, s ≥ 0} ∪ N p
v .

Recall that the reflexive closure of a set of closed subspaces L is the subspace lattice

Lat Alg L. Thus the theorem identifies the reflexive closure of the binest Lp
FB.

Remark 2.3.2. In [38], Katavolos and Power proved that Lat A2
par, viewed as a

topological space of projections on L2(R), endowed with the strong operator topology,

is homeomorphic to the closed unit disc. In particular, they obtained the so-called

strange limit

PK2
λ,s

SOT→ PL2[λ,+∞), as s → ∞,

which relies on the Paley - Wiener theorem and the fact that the Fourier transform

is unitary on L2(R). Even though the Riesz projection from Lp(R) onto Hp(R)

remains bounded, it is unknown to the author if the above convergence still holds, for

p ∈ (1,+∞)\{2}.

We expect that the operator algebras Ap
par, for 1 < p < ∞, are pairwise non

isomorphic, even as rings of linear operators. However, the standard methods for such

a demonstration (which go back to Eidelheit [20]) rely on exploiting the presence of

rank one operators to deduce an isomorphism between the underlying Banach spaces.

Possibly the (p, q)-integral operators could once again play a substitute role in this

demonstration.



Chapter 3

The triple semigroup algebra

3.1 Introduction

In this chapter, we consider the weak∗-closed operator algebra Aph, that is generated by

the semigroups of multiplication, translation and dilation operators, that is the sets of

operators Mλ, Dµ, Vt, for λ, µ, t ≥ 0, respectively. Our main result is that this operator

algebra, viewed as a subalgebra of B(L2(R)), is reflexive and, moreover, is equal to

Alg L, the algebra of operators that leave invariant each subspace in the lattice L of

closed subspaces given by

L = {0} ∪ {L2(−α,∞), α ≥ 0} ∪ {eiβxH2(R), β ≥ 0} ∪ {L2(R)}.

This lattice is a binest, being the union of two complete nests of closed subspaces.

We also obtain the following further properties. The triple semigroup algebra Aph is

antisymmetric in the sense that Aph ∩ A∗
ph = CI. In contrast to Ap and Ah the algebra

Aph contains non-zero finite rank operators and these generate a proper weak∗-closed

ideal. Also, Aph has the rigidity property that its unitary automorphism group is

isomorphic to R and implemented by the group of dilation unitaries.
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We also see that, unlike the parabolic algebra, Aph has chirality in the sense

that Aph and A∗
ph are not unitarily equivalent despite being the reflexive algebras of

spectrally isomorphic binests. Furthermore the 8 choices of triples of continuous proper

semigroups from {Mλ, λ ∈ R}, {Dµ : µ ∈ R} and {Vt : t ∈ R} give rise to exactly 2

unitary equivalence classes of operator algebras. These results can be found in [37].

3.2 Antisymmetry

We now show that Aph, like its subalgebras Ap and Ah, is an antisymmetric operator

algebra. In fact we shall prove that the containing algebra Alg L is antisymmetric. A

key step of the proof is the next lemma which will also be useful in the analysis of

unitary automorphisms. We write C+ for the set of complex numbers with positive

imaginary part.

Lemma 3.2.1. Let h, g ∈ H2(R), c, d ∈ C+ and let (x+c)h(x) = (x+d)g(x) for almost

every x in a Borel set A of positive Lebesgue measure. Then (x+ c)h(x) = (x+ d)g(x)

almost everywhere in R.

Proof. We have

(x+ c)h(x) = (x+ d)g(x) ⇔ x(h(x) − g(x)) + c(h(x) − g(x)) + (c− d)g(x) = 0

⇔ (x+ c)(h(x) − g(x)) + (x+ c)(c− d)g(x)
x+ c

= 0

⇔ (x+ c)
(
h(x) − g(x) + (c− d)g(x)

x+ c

)
= 0.

Since 1
x+c ∈ H∞(R) we have h(x) − g(x) + (c−d)g(x)

x+c ∈ H2(R) and so it suffices to prove

the following. Given h ∈ H2(R) and c ∈ C+, with (x+ c)h(x) = 0 almost everywhere

in A, then (x+ c)h(x) = 0 almost everywhere. This is evident from Corollary 1.1.5.



3.2 Antisymmetry 65

In the next proof we write Dg for the operator FMgF
∗ with g ∈ H∞(R). This lies

in the weak∗-closed algebra generated by the operators Dµ = FMµF
∗, for µ ≥ 0, and

so belongs to Ap and to Alg L.

Theorem 3.2.2. The selfadjoint elements of Alg L are real multiples of the identity.

Proof. Let A ∈ Alg L ∩ (Alg L)∗. Then A is reduced by subspaces L2(−µ,+∞), for

µ ≥ 0, and MλH
2(R), for λ ≥ 0.

In particular, since A reduces the subspace L2(R+), it commutes with the projections

PL2(R+) and PL2(R−). Hence A can be considered as a "block diagonal" operator with

respect to the decomposition L2(R−) ⊕ L2(R+). Moreover, it follows by elementary

measure theory that the compression of A in L2(R−) commutes with every projection

MχB
, where χB is the characteristic function of a Borel set B in L2(R−). Since the

commutant of a set is always a WOT-closed algebra, it follows that A
∣∣∣∣∣
L2(R−)

commutes

with Mf for every f ∈ L∞(R−). Since the algebra Mm of multiplication operators is

a maximal abelian von Neumann algebra, we conclude that A
∣∣∣∣∣
L2(R−)

= Mf , for some

f ∈ L∞(R−).

Since A reduces the subspaces MλH
2(R), for all λ ≥ 0, applying similar arguments

for the operator FAF ∗ where F is the Fourier-Plancherel transform, we get a similar

decomposition.

We conclude that A admits two direct sum decompositions

A = PL2(R−)MfPL2(R−) + PL2(R+)XPL2(R+) = PH2(R)DgPH2(R) + P
H2(R)Y PH2(R),

where f ∈ L∞(R−), g ∈ H∞(R) and X (resp. Y ) is an uniquely determined operator

on L2(R+) (resp. H2(R)).

Let h(x) = 1
x+c with c ∈ C+. Then, by the first decomposition,

Ah = Mfh+ PL2(R+)XPL2(R+)h,
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h−1Ah = f + h−1PL2(R+)XPL2(R+)h

and so for x in R− we have h−1(x)(Ah)(x) = f(x). Also Ah is in H2(R) and so by the

previous lemma, h−1Ah is determined by f and there is a function ϕ independent of c

which extends f . Thus h−1Ah = ϕ and Ah = ϕh. Since the linear span of the family

{h : R → C
∣∣∣h(x) = 1

x+c , c ∈ C+} is dense in H2(R), we have A
∣∣∣
H2(R)

= Mϕ

∣∣∣
H2(R)

.

However, by the second decomposition arguing similarly, we have A
∣∣∣
H2(R)

= Dg

∣∣∣
H2(R)

.

Thus, given h1 ∈ H2(R)\{0}, we have for every µ ∈ R,

MϕDµh1 = DgDµh1 = DµDgh1 = DµMϕh1.

Thus ϕ(x)h1(x − µ) = ϕ(x − µ)h1(x − µ) for almost every x ∈ R and so ϕ(x) = c

almost everywhere for some c ∈ C. Now we have A
∣∣∣
H2(R)

= A
∣∣∣
L2(R−)

= cI and it follows

from the density of H2(R) + L2(R−) in L2(R) that A = cI, as required.

3.3 Finite rank operators in Alg L

It follows immediately from the definition of the binest L that the weak∗-closed space

I = P+B(L2(R))(I −Q+)

is contained in Alg L, where P+ and Q+ are the orthogonal projections for L2(R+) and

H2(R). From this and Lemma 3.4.2 it follows that, in contrast to the subalgebras Ap

and Ah, the algebra Aph contains finite rank operators. Also, it is straightforward to

construct a pair of nonzero operators in I whose product is zero, and so, unlike the

semigroup algebra H∞(R), it follows also that the triple semigroup algebra Aph is not

an integral domain.
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We now show that in fact the space I contains all the finite rank operators in Alg L.

Let N −
v and N +

a be the subnests of Nv and Na whose union is L.

Proposition 3.3.1. The weak∗-closed ideal generated by the finite rank operators in

Alg L is the space I. Moreover, each operator of rank n is decomposable as a sum of n

rank one operators in Alg L.

Proof. Let

Int k : f →
n∑
j=1

⟨f, hj⟩gj

be a nonzero finite rank operator in Alg L, with {hj} and {gj} linearly independent

functions in L2(R). There is some λ0 ≥ 0, such that Mλ0H
2(R) ∩ span{gi : i =

1, . . . , n} = {0}. Since Mλ0H
2(R) ∈ L it follows that if f ∈ Mλ0H

2(R) then ⟨hi, f⟩ = 0,

for every i = 1, . . . , n. This in turn implies that hi ∈ Mλ0H
2(R).

We see now that the functions hi have full support and, moreover, their set of

restrictions to R+ is a linearly independent set of functions. Thus there are functions

f1, . . . , fn in L2(R+) with ⟨fi, hj⟩ = δij. Since Int k is in Alg N −
v it follows that each

function gi lies in L2(R+).

Since Int k ∈ Alg N +
a it now follows that if f ∈ H2(R) then ⟨f, hj⟩ = 0 for each j.

This holds for all such f and so hj ∈ H2(R)⊥ for each j. Since I ⊆ Alg L the rank

one operators determined by the hj and gj lie in Alg L and the second assertion of the

proposition follows. The first assertion follows from this.

As we will see in the next section, the ideal I plays a key role in the proof of

reflexivity of the triple semigroup algebra.
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3.4 Reflexivity

We now show that the algebra Aph is reflexive, that is Aph = Alg Lat Aph, and for this

it will be sufficient to show that Aph is the binest algebra Alg L. Figure 3.1 depicts

the inclusion of Lat Aph in Lat Ap implied by the following lemma.

Lemma 3.4.1. Lat Aph = L.

Proof. Since Aph is a superalgebra of Ap we have Lat Aph ⊆ Lat Ap. Given a subspace

K ∈ Lat Ap, as in Eq. (2.3), there are two cases to consider.

Suppose first that K = MλMϕsH
2(R), where ϕs(x) = e−isx2/2, where s ≥ 0, λ ∈ R.

Then K ∈ Lat Aph if and only if VtK ⊆ K for t ≥ 0. Given f ∈ H2(R), we have

Vt(e−isx2/2eiλxf(x)) = et/2e−is(etx)2/2eiλ(etx)f(etx) = et/2e−i(se2t)x2/2ei(λe
t)xf(etx).

Thus VtK ⊆ K if and only if s = 0 and λ ≥ 0.

For the second case let K = L2[α,+∞), for α ∈ R. Then VtK ⊆ K if and only if

α ≤ 0 and so the proof is complete.

Since Aph ⊆ Alg L is evident, it suffices to prove the converse inclusion. Our

strategy is once again to identify the Hilbert-Schmidt operators in these two algebras.

Given a function k ∈ L2(R2) let kF , kF ∗ and Vtk denote the kernel functions of the

integral operators F Int kF ∗, F ∗ Int kF and Vt Int k respectively. We now note that

kF = JF2k, where J is the flip operator, with (Jf)(x, y) = f(x,−y), and F2 is the

two-dimensional Fourier transform

(F2f)(ξ, ω) = 1
2π

∫
R

∫
R
f(x, y)e−i(xξ+yω)dxdy.
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L2(R)

{0}

H2(R) L2(R+)

MλH
2(R) DµL

2(R+)

Fig. 3.1 The binest L shown (in bold lines) as a subset of the Fourier binest.

Indeed

(F Int kF ∗f)(x) = 1√
2π

∫
R
(Int kF ∗f)(y)e−ixydy

= 1√
2π

∫
R

(∫
R
k(y, ω)(F ∗f)(ω)dω

)
e−ixydy

= 1
2π

∫
R

(∫
R
k(y, ω)

(∫
R
f(ξ)eiωξdξ

)
dω
)
e−ixydy

= 1
2π

∫
R

(∫
R

∫
R
k(y, ω)e−ixyeiωξdydω

)
f(ξ)dξ

=
∫
R
(F2k)(x,−ξ)f(ξ)dξ.

The significance of the above observation is that we can make use of properties of

the 2D Fourier transform, and especially the fact that it commutes with the rotation

operators (see Theorem IV.1.1 in[71]). That is

F2Rθ = RθF2
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where Rθ represents the operator of clockwise rotation, for θ > 0, and θ ∈ [−π, π).

Considering the rotation operators as acting on the space of the kernel functions

we have the following reformulation of the characterization of the Hilbert-Schmidt

operators of the parabolic algebra;

Ap ∩ C2 = {Int k : k ∈ Rπ/4(L2(R+) ⊗H2(R))} = {Int k : kF ∈ Rπ/4(L2(R+) ⊗H2(R))}.

To prove this, one can check that Int k ∈ Ap ∩ C2 if and only if k(x, y) and kF (x, y) = 0,

for almost every x < y. Hence

Ap ∩ C2 = {Int k : k ∈ Rπ/4(L2(R+) ⊗ L2(R))} ∩ {Int k : kF ∈ Rπ/4(L2(R+) ⊗ L2(R))}.

By our previous observation

k ∈ Rπ/4(L2(R+) ⊗ L2(R)) ⇔ JF2k ∈ JF2Rπ/4(L2(R+) ⊗ L2(R))

⇔ kF ∈ R−π/4(H2(R) ⊗ L2(R))

⇔ kF ∈ Rπ/4(L2(R) ⊗H2(R)),

so our claim follows.

The convenience of the above characterization is apparent in the proof of the next

lemma. Let I0 be the closure of the ideal generated by the finite rank operators of

Alg L with respect to the Hilbert-Schmidt norm.

Lemma 3.4.2. I0 ⊆ Aph ∩ C2.

Proof. Let Int k lie in the ideal I0. It follows from Proposition 3.3.1 that k ∈ L2(R+) ⊗

H2(R) and so kF is an element of H2(R) ⊗ L2(R−). Without loss of generality we

may assume that kF (x, y) = h(x)g(y), where h ∈ H2(R), g ∈ L2(R−). Define for every
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t ≥ 0 the functions

ht(x) = Vth(x) = et/2h(etx) and gt(y) = g(−y).

Consequently, each function ktF (x, y) = ht(x)gt(x− y) lies in R−π/4(H2(R) ⊗ L2(R−)).

Since this space can be written as Rπ/4(L2(R+)⊗H2(R)), it follows that Int kt ∈ Ap∩C2

where kt = (ktF )F ∗ . Therefore, since Vt Int k = F ∗V−t Int kFF , it suffices to show that

V−tk
t
F converges in norm to kF as t → ∞.

V−tk
t
F (x, y) = e−t/2 ktF (e−tx, y) = e−t/2 ht(e−tx) gt(e−tx− y)

= e−t/2et/2h(ete−tx)g(y − e−tx)e−t/2 = h(x)g(y − e−tx) → h(x)g(y),

as t → +∞. Assume now that g is continuous and let ϵ > 0. Then

∫
R

(∫
R

∣∣∣V−tk
t
F (x, y) − kF (x, y)

∣∣∣2dy) dx =
∫
R

(∫
R

∣∣∣h(x)
(
g(y − e−tx) − g(y)

) ∣∣∣2dy) dx =

=
∫
R\K

|h(x)|2
(∫

R

∣∣∣g(y − e−tx) − g(y)
∣∣∣2dy) dx+

∫
K

|h(x)|2
(∫

R

∣∣∣g(y − e−tx) − g(y)
∣∣∣2dy) dx

with K compact subset of R, such that

∫
R\K

|h(x)|2dx ≤ ϵ

8∥g∥2
2
.

Hence

∫
R\K

|h(x)|2
(∫

R

∣∣∣g(y − e−tx) − g(y)
∣∣∣2dy) dx ≤ 4

∫
R\K

|h(x)|2∥g∥2
2dx ≤ ϵ

2 .

On the other hand, choose C compact, such that

∫
R\C

∣∣∣g(y − e−tx) − g(y)
∣∣∣2dy ≤ ϵ

4∥h∥2
2
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for every x ∈ K. In addition, g is uniformly continuous on C, so there exists positive

t0, such that for every t ≥ t0 we get

|g(y − e−tx) − g(y)|2 ≤ ϵ

4|C| ∥h∥2
2
,

where |C| is the Lebesgue measure of C. Then

∫
K

|h(x)|2
(∫

R

∣∣∣g(y − e−tx) − g(y)
∣∣∣2dy) dx =

=
∫
K

|h(x)|2
(∫

R\C

∣∣∣g(y − e−tx) − g(y)
∣∣∣2dy +

∫
C

∣∣∣g(y − e−tx) − g(y)
∣∣∣2dy) dx ≤

≤ ϵ

4∥h∥2
2

∫
K

|h(x)|2dx+
∫
K

|h(x)|2
(∫

C

ϵ

4|C| ∥h∥2
2
dy

)
dx = ϵ

4 + ϵ

4 = ϵ

2 .

Thus

∥V−tk
t
F − kF∥2 → 0 as t → ∞.

The general case is straightforward from the density of continuous functions in L2.

Therefore V−t Int ktF converges to Int kF and hence Int k ∈ Aph ∩ C2.

The next lemma is crucial for the proof of the reflexivity of the triple semigroup

algebra and also yields the two-variable variant of the Paley-Wiener theorem given in

Corollary 3.4.4.

Given θ0 ∈ [0, π), let

Qθ0
1 =

{
(x, y) ∈ R2 : arctan(y/x) ∈

[
−π

2 − θ0,
π

2

]}
Qθ0

2 =
{
(x, y) ∈ R2 : arctan(y/x) ∈ [−π, θ0]

}
.
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Define also the set

Kθ0 = {k ∈ L2(R2) : esssupp k ⊆ Qθ0
1 } ∩ {k ∈ L2(R2) : esssupp kF ⊆ Qθ0

2 }

(see Figure 3.2) and the set

Sθ0 = span{Rθ(L2(R+) ⊗H2(R)), θ ∈ {0, θ0}}∥·∥
.

x

y

esssupp kθ0

⋂
x

y

θ0

esssupp kF

Fig. 3.2 A function k ∈ L2(R2) is an element of Kθ0 , if and only if both esssupp k and
esssupp kF lie in the respective shaded areas.

Lemma 3.4.3. Kθ0 = Sθ0, for every θ0 ∈ [0, π).

Proof. Let k ∈ Rθ(L2(R+)⊗H2(R)), with θ ∈ {0, θ0}. Expressing the essential support

of k in polar coordinates, it is just routine to show that esssuppk ⊆ Qθ0
1 . Also the

function kF lies in the space JF2Rθ(L2(R+) ⊗H2(R)), which can be written as

JF2Rθ(L2(R+) ⊗H2(R)) = R−θJF2(L2(R+) ⊗H2(R)) = R−θ(H2(R) ⊗ L2(R−)).

Hence esssupp kF ⊆ Qθ0
2 , and so it follows that Sθ0 ⊆ Kθ0 .

To prove the other inclusion, assume that there is a function k ∈ Kθ0 ∩ S⊥
θ0 . Then

the Hilbert space geometry of L2(R2) ensures that

∥k + kS∥ > ∥k∥, ∀ kS ∈ Sθ0\{0}. (3.1)
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Define now the orthogonal projections Pθ = proj(R−θ(L2(R)⊗L2(R−)), θ ∈ {0, θ0, π/2}.

Noting that Pπ/2 = proj(L2(R+) ⊗ L2(R)), decompose k as the sum of two orthogonal

parts,

k = Pπ/2 k + P⊥
π/2 k

where P⊥
π/2 = I − Pπ/2. Applying to both sides the operator JF2, we have

kF = (Pπ/2 k)F + (P⊥
π/2 k)F .

Consider now the representation

kF = P0(Pπ/2 k)F + P⊥
0 (Pπ/2 k)F + Pθ0(P⊥

π/2 k)F + P⊥
θ0(P⊥

π/2 k)F . (3.2)

Since P0(Pπ/2 k)F ∈ H2(R)⊗L2(R−) which is the space JF2(L2(R+)⊗H2(R)), it follows

that (P0(Pπ/2 k)F )F ∗ lies in Sθ0 . Similarly, taking into account that k ∈ L2(Qθ0
1 ), we have

P⊥
π/2 k ∈ Rθ0(L2(R+)⊗L2(R)), which implies that (P⊥

π/2 k)F lies in R−θ0(H2(R)⊗L2(R)).

Therefore,

Pθ0(P⊥
π/2 k)F ∈ R−θ0(H2(R) ⊗ L2(R−))

and so (Pθ0(P⊥
π/2 k)F )F ∗ lies in Sθ0 .

It follows then, subtracting these operators, that Int k′ is an operator in Kθ0 where

k′ = (P⊥
0 (Pπ/2 k)F )F ∗ + (P⊥

θ0(P⊥
π/2 k)F )F ∗
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and

k′
F = P⊥

0 (Pπ/2 k)F + P⊥
θ0(P⊥

π/2 k)F .

The first function in the sum for k′
F is in H2(R) ⊗ L2(R+), and is supported in the

upper half plane, while the second function is supported in the half plane y ≤ x tan θ0.

However, we also have k′
F ∈ L2(Qθ0

2 ) and so it follows that the component functions for

k′
F have disjoint essential supports, as indicated in Figure 3.3. This figure also depicts

the two forms of the semi-infinite lines on which (almost every) restriction of k′
F agrees

with the restriction of a function in H2(R). (This local co-analyticity follows from the

observations following the identity 3.2.)

x

y

Fig. 3.3 The essential support of k′
F .

It now follows from these essential support observations that

k′
F = Pθ0P

⊥
0 (Pπ/2 k)F + P⊥

θ0P0(P⊥
π/2 k)F
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and hence that

∥k′
F∥2 = ∥Pθ0P

⊥
0 (Pπ/2 k)F∥2 + ∥P⊥

θ0P0(P⊥
π/2 k)F∥2.

Comparing norms we have

∥k∥2 = ∥Pπ/2 k∥2 + ∥P⊥
π/2 k∥2 = ∥(Pπ/2 k)F∥2 + ∥(P⊥

π/2 k)F∥2

= ∥Pθ0P
⊥
0 (Pπ/2 k)F∥2 + ∥(Pθ0P

⊥
0 )⊥(Pπ/2 k)F∥2 + ∥P⊥

θ0P0(P⊥
π/2 k)F∥2 + ∥(P⊥

θ0P0)⊥(P⊥
π/2 k)F∥2

= ∥k′
F∥2 + ∥(Pθ0P

⊥
0 )⊥(Pπ/2 k)F∥2 + ∥(P⊥

θ0P0)⊥(P⊥
π/2 k)F∥2

and so ∥k∥ ≥ ∥k′
F∥ = ∥k′∥. Since k has been chosen extremally the inequality (3.1)

now implies that ∥k∥ = ∥k′∥ and so

(Pθ0P
⊥
0 )⊥(Pπ/2 k)F = (Pθ0P

⊥
0 )⊥(P⊥

π/2 k)F = 0.

But (Pπ/2 k)F ∈ H2(R) ⊗ L2(R) and (P⊥
π/2 k)F ∈ R−θ0(H2(R) ⊗ L2(R)) and so both

functions are equal to zero, since every H2(R)-slice is zero on a non-null interval.

Consequently k = 0 and this completes the proof.

Corollary 3.4.4. Let 0 < α < π/2 and let Cα be the proper cone of points (x, y)

with x ≥ 0 and | arctan y/x| < α. Then the following conditions are equivalent for a

function k ∈ L2(R2).

(i) k vanishes on Cα and F2k vanishes on R−π/2Cα.

(ii) k lies in the closed linear span of Rα/2(H2(R) ⊗ L2(R−)) and R−α/2(H2(R) ⊗

L2(R+)).

Our next goal is to make use the previous lemma to show that

Alg L ∩ C2 = (Ap ∩ C2) + I0
∥·∥2

.
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First, we determine the Hilbert-Schmidt operators of Alg L.

Lemma 3.4.5. {k : Int k ∈ Alg L ∩ C2} ⊆ Kπ/4.

Proof. Suppose first that k ∈ L2(R2) is a kernel function such that Int kL2[λ,+∞) is

a subspace of L2[λ,+∞), for every λ ≤ 0. Let x < λ < 0, and take f ∈ L2(λ,+∞).

Then

∫
R
k(x, y)f(y)dy = (Int kf)(x) = 0.

Thus k(x, y) = 0 for almost for every y > λ and esssupp k ⊆ Q
π/4
1 .

Suppose next that k ∈ L2(R2) and Int kMλH
2(R) ⊆ MλH

2(R) for every λ ≥ 0.

Then the following equivalent inclusions hold for all λ > 0.

Int kMλH
2(R) ⊆ MλH

2(R),

F Int kF ∗FMλH
2(R) ⊆ FMλH

2(R),

F Int kF ∗DλL
2(R+) ⊆ DλL

2(R+),

F Int kF ∗L2[λ,+∞) ⊆ L2[λ,+∞).

Thus Int kFL2[λ,+∞) ⊆ L2[λ,+∞), for every λ ≥ 0. Given x < 0 and f ∈ L2(R+) we

have

∫
R
kF (x, y)f(y)dy = (Int kFf)(x) = 0

and so it follows that kF (x, y) = 0 for almost for every y > 0. Also, for x ≥ 0 and

f ∈ L2[λ,+∞) with λ > x, we again have (Int kFf)(x) = 0 and so esssupp kF ⊆ Q
π/4
2 ,

as required.

Lemma 3.4.6. The algebras Aph ∩ C2 and Alg L ∩ C2 coincide.
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Proof. By the previous lemma and Lemma 3.4.3, we have {k : Int k ∈ Alg L∩C2} ⊆ Sπ/4,

where

Sπ/4 = Rπ/4(L2(R+) ⊗H2(R)) + L2(R+) ⊗H2(R)∥·∥

Thus, noting the form of the kernels for Hilbert-Schmidt operators in Ap (given prior

to Lemma 5.2) and the form for operators in I0 it follows that

Sπ/4 = {k : Int k ∈ (Ap ∩ C2) + I0
∥·∥2}.

Applying Lemma 3.4.2, the desired inclusion follows.

We have noted in Proposition 1.3.3 that Ap∩C2 contains an operator norm bounded

sequence which is an approximate identity for the space of all Hilbert-Schmidt operators.

Since this sequence also lies in Aph it follows from the previous lemma that the weak∗

closures of Aph ∩ C2 and Alg L ∩ C2 coincide. Thus, the following theorem is proved.

Theorem 3.4.7. The operator algebra Aph is reflexive, with Aph = Alg L = Ap + Iw
∗
.

3.5 The unitary automorphism group of Aph

In the case of the parabolic algebra the group of unitary automorphisms, X →

AdU(X) = UXU∗, was identified in [38] as the 3-dimensional Lie group of automor-

phisms Ad(MλDµVt) for λ, µ and t in R. The following theorem shows that the larger

algebra Aph is similarly rigid.

Theorem 3.5.1. The unitary automorphism group of Aph is isomorphic to R and

equal to {Ad(Vt) : t ∈ R}.
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Proof. Let Ad(U) be a unitary automorphism of Aph. Since Aph = Alg L it follows

from Lemma 3.4.1 and the asymmetric order structure of the binest L that

UH2(R) = H2(R), UMλH
2(R) = MµH

2(R) (3.3)

where µ ≥ 0 depends on λ ≥ 0 and µ : R+ → R+ is a continuous bijection. Also

UL2(R−) = L2(R−), UL2(−λ′, 0) = L2(−µ′, 0) (3.4)

with µ′ : R+ → R+ is a continuous bijection.

Note that the subspaces L2(−λ,∞) of L2(R−) form a continuous nest of multiplicity

one and so it follows from (3.4) and elementary nest algebra theory (see Davidson [15]

for example) that the unitary operator U has the form U = MψCf ⊕ U1, where ψ is a

unimodular function in L∞(R−), f : R− → R− is a strictly increasing bijection, and

Cf is the unitary composition operator on L2(R−) with

(Cfg)(x) = (f ′(x))1/2g(f(x)).

Let h ∈ L2(R). Then for x ∈ R− we have

(UMλh)(x) = (ψCfMλh)(x) = ψ(x)eiλf(x)(f ′(x))1/2h(f(x)) = eiλf(x)(Uh)(x).

Take c ∈ C+ and let hc ∈ H2(R) be the function for which (Uhc)(x) = 1
x+c . Then

(UMλhc)(x) = eiλf(x) 1
x+ c

and so

(x+ c)gλ,c(x) = eiλf(x),
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where gλ,c = UMλhc ∈ H2(R). By Lemma 3.2.1 the functions (x + c)gλ,c(x) are

independent of c and agree for all real x. Thus there is a unique extension of eiλf(x) to

R, say ϕλ(x), such that

ϕλ(x) = eiλf(x), for almost every x ∈ R−

and

ϕλ(x) = (x+ c)gλ,c(x), for almost every x ∈ R.

It now follows that

UMλhc = Mϕλ
Uhc.

Since the closed linear span of the functions hc = U∗ 1
x+c , c ∈ C+, is equal to H2(R),

we obtain

UMλh = Mϕλ
Uh. (3.5)

for every h ∈ H2(R). On the other hand, we have shown that the equation (3.5)

also holds for h ∈ L2(R−). So it follows from the density of H2(R) + L2(R−) that

UMλ = Mϕλ
U . Hence ϕλ is inner. Now (3.3) implies that

MµH
2(R) = Mϕλ

H2(R).

Therefore, ϕλ(x)/eiµx is equal to a unimodular constant cλ = eiαλ depending on λ.

Thus, for every x ∈ R−, we have

iλf(x) − iµx = iαλ
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or equivalently

f(x) = µ

λ
x+ αλ

λ
.

It follows that αλ = 0, since f(0) = 0, and that µ = βλ for some positive constant β.

Thus, for x < 0,

(Cfh)(x) = β1/2h(βx) = (Vlog βh)(x).

Writing t = log β, we have Uh = ψVth+ U1h, and so with h(x) = 1
x+d and x < 0 we

have (Uh)(x) = ψ(x)(Vth)(x) and

etx+ d

et/2 (Uh)(x) = ψ(x).

By Lemma 3.2.1 again, etx+d
et/2 Uh is determined by ψ and there is analytic function ϕ

such that

etx+ d

et/2 Uh = ϕ.

We conclude that Uh = ϕVth for all such h and so ϕ is unimodular. Since UH2(R) =

H2(R) it follows that almost everywhere ϕ is a unimodular constant, η say. Thus

U = ηVt and the proof is complete.

Remark 3.5.2. Note that the binest Lα,β given by

Lα,β = {0} ∪ {L2(α′,∞), α′ ≤ α} ∪ {eiβ′xH2(R), β′ ≥ β} ∪ {L2(R)}
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is equal to DαMβL. Thus Lα,β is unitarily equivalent to L. Also the unitary operator

U = DαMβ provides a unitary isomorphism AdU : Alg L → Alg Lα,β between their

reflexive algebras.

3.6 Further binests

Once again, write N −
v and N +

a for the subnests of Nv and Na whose union is L. Also

let N +
v ,N −

a be the analogous subnests of Nv and Na for which P− = (I − P+) is the

atomic interval projection for N +
v and Q+ is the atomic interval projection for N −

a .

By the F. and M. Riesz theorem the orbit of H2(R) under the Fourier-Plancherel

transform F is the subspace H2(R) together with the three subspaces

FH2(R) = L2(R+), F 2H2(R) = H2(R), F 3H2(R) = L2(R−).

More generally, the lattice Lat Ap, with the weak operator topology for subspace

projections, forms one quarter of the Fourier-Plancherel sphere, and the Fourier-

Plancherel transform F effects a period 4 rotation of this sphere. (see [45])

We now note that there are 8 binest lattices which are pairwise order isomorphic

as lattices and which have a similar status to L = N +
a ∪ N −

v . These fall naturally

into two groupings of 4. Write J for the unitary operator F 2, so that Jf(x) = f(−x).

(There will be no conflict here with notation from the previous section.) Writing K for

{f : f ∈ K}, these groupings are

N +
a ∪ N −

v , N +
v ∪ N −

a , N +
a ∪ JN −

v , JN +
v ∪ N −

a

and

N −
a ∪ N +

v , N −
v ∪ N +

a , N −
a ∪ JN +

v , JN −
v ∪ N +

a
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forming the orbits of the subspace lattices N +
a ∪ N −

v and N −
a ∪ N +

v under F . Note

that the symbols “+” and “−” indicate the “upper” and “lower” choices for the atomic

interval of the nest. Since F induces an order isomorphism of the lattices, F respects

these symbols. By Theorem 3.4.7 and the identities

FMλF
∗ = Dλ, FDµF

∗ = M−µ, FVtF
∗ = V−t

it follows that the binest algebras for these 8 binests are (respectively) equal to weak∗-

closed operator algebras for the following generating semigroup choices for {Mλ}, {Dµ}

and {Vt}:

+ + + − + − − − + + −−

+ + − − + + − − − + −+

View the lattice L = N +
a ∪ N −

v as the right-handed choice in Figure 3.1, write Lr

for L, and view Ll = N −
a ∪ N +

v as the left-handed choice. From the observations above

the 8 binests determine either 1 or 2 unitary equivalence classes of triple semigroup

algebras. In fact there are two classes.

Theorem 3.6.1. The triple semigroup algebra Aph = Alg Lr is not unitarily equivalent

to triple semigroup algebra A∗
ph = Alg Ll

Proof. By Theorem 3.4.7, A∗
ph = (Alg(N +

a ∪ N −
v ))∗ which is the binest algebra for the

union of the nests (N +
a )⊥ and (N −

v )⊥. We have

(N +
a )⊥ = JN −

a , (N −
v )⊥ = JN +

v

and so it suffices to show that the binests

N +
a ∪ N −

v , N −
a ∪ N +

v
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are not unitarily equivalent.

Suppose, by way of contradiction, that for some unitary U the binest U(N +
a ∪ N −

v )

coincides with N −
a ∪ N +

v . Then

FU(N +
a ∪ N −

v ) = F (N −
a ∪ N +

v ) = N −
v ∪ N +

a .

We have N −
v = {L2(λ,∞), λ ≤ 0} and so by elementary nest algebra theory, as in the

proof of Theorem 3.5.1,

FU = MψCf ⊕X

for some unimodular function ψ on R− and a composition operator Cf on L2(R−)

associated with a continuous bijection f .

We have

FU : eiλxH2(R) → e−iµxH2(R)

with µ = µ(λ) : R+ → R+ a bijection.

Take hc ∈ H2(R) such that FUhc = 1
x−c ∈ H2(R), with c ∈ C+. Then, for

x < 0, λ > 0,

(FUMλhc)(x) = (MψCfMλhc)(x),

(FUMλhc)(x) = (eiλf(x)MψCfhc)(x),

(FUMλhc)(x) = eiλf(x)(FUhc)(x),

gλ,c(x) = eiλf(x) 1
x− c

,

where gλ,c = FUMλhc ∈ H2(R). We may apply Lemma 3.2.1 as in the proof of

Theorem 3.5.1 (although to H2(R) functions here) to deduce that

FUMλ = Mϕλ
FU,
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where ϕλ is the unique extension of eiλf(x) to the real line. Hence ϕλ is a unimodular

function that satisfies

Mϕλ
H2(R) = M−µH2(R).

This yields that iλf(x) + iµx = 0 for all x ∈ R−, so it follows that µ = −f(x)
x
λ. This

is a contradiction, as desired, since µ is an increasing function.

The fact that Aph = Alg Lr and A∗
ph = Alg Ll fail to be unitarily equivalent

expresses the following chirality property.

Definition 3.6.2. We say that a reflexive operator algebra A is chiral if

(i) A and A∗ are not unitarily equivalent, and

(ii) Lat A and Lat A∗ are spectrally equivalent in the sense that there is an order

isomorphism θ : Lat A → Lat A∗ such that for each pair of interval projections

{P1 − P2, Q1 −Q2} for Lat A the projection pairs

{P1 − P2, Q1 −Q2}, {θ(P1) − θ(P2), θ(Q1) − θ(Q2)}

are unitarily equivalent.

While the spectral invariants for a pair of projections are well-known (Halmos [26])

there is presently no analogous classification of binests.





Chapter 4

Norm closed semigroup algebras

4.1 Discrete Crossed Products

Crossed products of C∗-algebras were introduced by Murray and von Neumann as a

tool for studying groups that act on C∗-algebras as automorphisms, since they provide

a larger algebra that encodes both the original C∗-algebra and the group action. The

reader may look for more details in [13, 16, 59, 75]. In this thesis, we will restrict our

attention to discrete crossed products, where G is a discrete abelian group.

Definition 4.1.1. A C∗-dynamical system is a triple (A, G, α) that consists of a

unital C∗-algebra A, a discrete abelian group G and a homomorphism

α : G → Aut(A) : s 7→ αs.

Given a C∗-dynamical system, a covariant representation is a pair (π, U), such that

π is a representation of A on some Hilbert space H and U : s 7→ Us is a unitary

representation of G on the same space, that also satisfies the formula

Usπ(A)U∗
s = π(αs(A)), ∀A ∈ A, s ∈ G.
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We form the complex vector space AG of finitely supported A-valued functions of

G:

AG = span{δs ⊗ A : s ∈ G, A ∈ A}, where δs(t) =


1, if t = s

0, if t ̸= s

and endow it with ring multiplication and involution given by

(δs ⊗ A) · (δt ⊗B) = (δs+t ⊗ Aαs(B))

(δs ⊗ A)∗ = (δ−s ⊗ α−s(A∗))

respectively. The algebra AG becomes a normed ∗-algebra with the norm:

∥∥∥∥∥ ∑
s∈F
F⊂⊂G

(δs ⊗ As)
∥∥∥∥∥
ℓ1

=
∑
s∈F
F⊂⊂G

∥As∥,

where the notation F ⊂⊂ G means that F is a finite subset of G. The elements∑
s∈F
F⊂⊂G

(δs ⊗ As) will be called (generalized) trigonometric polynomials.

Each (π, U) covariant representation induces a ∗-homomorphism on AG, since the

linear map π o U in AG with

(π o U)

 ∑
s∈F
F⊂⊂G

(δs ⊗ As)

 =
∑
s∈F
F⊂⊂G

π(As)Us

is bounded:

∥∥∥∥∥∥(π o U)

 ∑
s∈F
F⊂⊂G

(δs ⊗ As)


∥∥∥∥∥∥ ≤

∑
s∈F
F⊂⊂G

∥π(As)∥ ≤
∑
s∈F
F⊂⊂G

∥(As)∥ =
∥∥∥∥∥∥
∑
s∈F
F⊂⊂G

(δs ⊗ As)
∥∥∥∥∥∥
ℓ1

.
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We define the C∗-algebra A ×α G as the completion of AG with respect to the norm

∥F∥ := sup{∥(π o U)(F )∥ : (π, U) covariant representation of AG}.

Observe that A ×α G satisfies the universal property :

If (π, U) is a covariant representation of the dynamical system (A, G, α),

then there is a representation π̃ of A ×α G, such that π̃(δs ⊗ A) = π(A)Us.

To prove that the crossed product norm is a C∗-norm and not just a seminorm,

we need a covariant representation that admits a faithful representation of AG. By

the Gelfand Naimark theorem, let π be a faithful representation of A on some Hilbert

space H. Define the covariant representation (π̃,Λ) of (A, G, α), such that

π̃ : A → B(ℓ2(G,H)) : (π̃(A)x)(s) = π(α−s(A))(x(s)) (4.1)

and Λ is the left regular representation on ℓ2(G,H)

Λ : G → B(ℓ2(G,H)) : (Λtx)(s) = x(s− t) (4.2)

for all s, t ∈ G, A ∈ A, x ∈ ℓ2(G,H). One can easily verify that π̃ is a representation

of A and Λ is a unitary representation of G. Also we have the covariance condition;

(Λtπ̃(A)Λ∗
tx)(s) = (π̃(A)Λ∗

tx)(s− t) = π(αt−s(A))(Λ∗
tx(s− t)) =

= π(α−sαt(A))(x(s)) = (π̃(αt(A))x)(s).
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Note first that the algebra A is isometrically embedded into the crossed product by

the inclusion map

ι : A → A ×α G : A 7→ (δ0 ⊗ A).

To prove that ι is an isometry, let δs,ξ be the vector in ℓ2(G,A) that is defined by

δs,ξ(t) := δs,tξ =


ξ, if t = s

0, if t ̸= s

.

Then

Λtδs,ξ = δs+t,ξ and π̃(A)δs,ξ = δs,π(α−s(A))ξ,

for every t, s ∈ G,A ∈ A, ξ ∈ H. Calculate

∥(δ0 ⊗ A)∥2 ≥ sup
∥ξ∥=1

∥(π̃ o Λ)(δ0 ⊗ A)δ0,ξ∥2
ℓ2(G,H) = sup

∥ξ∥=1
∥π̃(A)δ0,ξ∥2

ℓ2(G,H) =

= sup
∥ξ∥=1

∥π(A)ξ∥2
H = ∥A∥2.

The opposite inclusion is straightforward from the fact that ∥A∥ = ∥(δ0 ⊗ A)∥ℓ1 .

For every s ∈ G, we denote by Vs the operator

Vs : H → ℓ2(G,H) : ξ 7→ δs,ξ
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so its adjoint operator has the form V ∗
s : ℓ2(G,H) → H : x 7→ x(s). Given now any

element ∑
s∈F
F⊂⊂G

(δs ⊗ As) ∈ AG and ξ ∈ H we have

V ∗
0 (π̃ o Λ)

 ∑
s∈F
F⊂⊂G

(δs ⊗ As)

V0ξ =
∑
s∈F
F⊂⊂G

V ∗
0 π̃(As)Λsδ0,ξ =

∑
s∈F
F⊂⊂G

V ∗
0 π̃(As)δs,ξ =

=
∑
s∈F
F⊂⊂G

V ∗
0 δs,π(α−s(As))ξ =

∑
s∈F
F⊂⊂G

δs,0π(α−s(As))ξ =

= π(A0)ξ.

Hence it follows readily from the equality ∥π(A0)∥ =
∥∥∥∥∥V ∗

0 (π̃oΛ)

 ∑
s∈F
F⊂⊂G

(δs ⊗ As)

V0

∥∥∥∥∥,
that ∥A0∥ ≤ ∥ ∑

s∈F
F⊂⊂G

(δs ⊗ As)∥. Therefore, one can define the contractive map

E0 : AG → A :
∑
s∈F
F⊂⊂G

(δs ⊗ As) 7→ A0. (4.3)

Check also that for every X = ∑
s∈F
F⊂⊂G

(δs ⊗ As) ∈ AG we get E0(XX∗) = ∑
s∈F
F⊂⊂G

A∗
sAs,

so the map E0 keeps the cone of positive elements of AG invariant. So we have proved

the following

Proposition 4.1.2. The map E0 is an expectation 1 on AG and extends by continuity

to a map on A ×α G with the same properties.

Define the t-th Fourier coefficient of X ∈ A ×α G by

Et(X) = E0(X(δ−t ⊗ 1)) ∈ A.

1An expectation of a C∗-algebra onto a subalgebra is a positive, unital idempotent map.
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Note that for every element X = ∑
s∈F
F⊂⊂G

(δs ⊗ As) ∈ AG and t ∈ G, we get Et(X) = At,

and so it follows

X =
∑
s∈F
F⊂⊂G

(δs ⊗ Es(X)).

We can now see that the left regular representation π̃ o Λ of AG is faithful. Given

X = ∑
s∈F
F⊂⊂G

(δs ⊗ As) ∈ AG such that ∥(π̃ o Λ)(X)∥ = 0, then for every t ∈ G we have

∥At∥ = ∥π(At)∥ = ∥V ∗
0 (π̃ o Λ)(X(δ−t ⊗ 1))V0∥ ≤ ∥(π̃ o Λ)(X)∥ = 0.

Therefore At = 0 for every t ∈ G, but this yields that X = 0.

Remark 4.1.3. Since the left regular representation is faithful, we can define the

reduced crossed product norm on AG

∥ · ∥r = ∥(π̃ o Λ)(·)∥.

The norm ∥ · ∥r does not depend on the choice of the faithful representation π (see

[13]). The completion of AG with respect to the reduced crossed product norm gives

rise to the reduced crossed product, denoted by A ×r
α G. Moreover, repeating the

proof of Proposition 4.1.2, one can show that the contraction E0 given by the formula

(4.3) extends to an expectation Ẽ0 on A ×r
α G.

Remark 4.1.4. In the general case, the construction via the left regular representation

of G is not sufficient to determine the norm of the crossed product. Although in the

special case that G is discrete abelian, so amenable 2, the reduced crossed product

2A group G is called amenable if there is a left translation invariant state on L∞(G)
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equals the full crossed product. In the following subsection, we will give a proof of this

claim in the case where G is the discrete group of real numbers.

4.1.1 Crossed Products by Rd

From now on, the group G is either Z or Rd; we use Rd to denote R equipped with the

discrete topology. The theory about crossed products by Z can be found in [16]. In

this section, we develop the theory for Rd.

Proposition 4.1.5. Let (A,Rd, α) be a C∗-dynamical system. Each X ∈ A ×α Rd has

only a countable number of nonzero Fourier coefficients.

Proof. Let (Yn)n be a sequence of generalized trigonometric polynomials in A ×α Rd

such that

∥X − Yn∥ ≤ 1
n
.

We denote by Γn the finite set of indices of nonzero Fourier coefficients of Yn and by Γ

the set

∪n∈NΓn.

The set Γ is countable. Suppose now k /∈ Γ; then

∥Ek(X)∥ ≤ ∥Ek(X) − Ek(Yn)∥ + ∥Ek(Yn)∥ ≤ ∥X − Yn∥ ≤ 1
n

for every n ∈ N.
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Given a C∗-dynamical system (A,Rd, α), fix λ ∈ T. Then the map U : s 7→ (δs⊗λs·1)

is a unitary representation of Rd , such that

Usι(A)U∗
s = (δs ⊗ λs · 1)(δ0 ⊗ A)(δ−s ⊗ λs · 1) = (δ0 ⊗ αs(A)) = ι(αs(A)),

for every A ∈ A. Hence the pair (ι, U) is a covariant representation of (A,Rd, α), and

so the universal property of A ×α Rd induces an automorphism:

ϕλ : A ×α Rd → A ×α Rd : (δs ⊗ A) 7→ (δs ⊗ λsA).

Moreover, given X ∈ A ×αRd the map t 7→ ϕeit(X) is norm continuous for every t ∈ R;

indeed, one can check it first on the unclosed algebra of trigonometric polynomials and

extend it to the closure by a standard approximation argument. So, given T > 0, we

can define

ΦT (X) = 1
2T

∫ T

−T
ϕeit(X)dt.

Check that ∥ΦT (X)∥ ≤ 1
2T
∫ T

−T ∥ϕeit(X)∥dt = ∥X∥, so ∥ΦT∥ ≤ 1. Given a trigono-

metric polynomial Y = ∑
s∈F
F⊂⊂R

(δs ⊗ As) in A ×α Rd, we have

ΦT (Y ) = 1
2T

∫ T

−T
ϕeit(Y )dt =

= 1
2T

∫ T

−T

∑
s∈F
F⊂⊂R

(δs ⊗ eitsAs)dt =

=
∑
s∈F
F⊂⊂R

(δs ⊗ As)
1

2T

∫ T

−T
(δ0 ⊗ eits · 1)dt.

Compute now the limit lim
T→∞

1
2T
∫ T

−T (δ0 ⊗ eits · 1)dt.

• s = 0. lim
T→∞

1
2T
∫ T

−T (δ0 ⊗ 1)dt = lim
T→∞

1
2T · 2T (δ0 ⊗ 1) = (δ0 ⊗ 1);
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• s ̸= 0. lim
T→∞

1
2T
∫ T

−T (δ0 ⊗ eits · 1)dt = lim
T→∞

1
2T

eiT s−e−iT s

is
(δ0 ⊗ 1) → (δ0 ⊗ 0), as T → ∞.

Hence by the linearity of limits, we obtain that

lim
T→∞

ΦT (Y ) = (δ0 ⊗ A0).

Define now

Φ0(Y ) = lim
T→∞

ΦT (Y ) = lim
T→∞

1
2T

∫ T

−T
ϕeit(Y )dt.

Since ∥ΦT (Y )∥ ≤ ∥Y ∥ for all T > 0, it follows that ∥Φ0(Y )∥ ≤ ∥Y ∥, for every gener-

alized trigonometric polynomial Y . So Φ0 can be extended to a linear contraction in

A×αRd. In addition, since the family of operators {ΦT : T > 0} is uniformly bounded,

applying a simple approximation argument, it follows that Φ0(X) = lim
T→∞

ΦT (X). This

proves the following result.

Proposition 4.1.6. Let E0 be the expectation defined in Theorem 4.1.2 and X ∈

A ×α Rd. Then Φ0(X) = lim
T→∞

1
2T
∫ T

−T ϕeit(X)dt = ι(E0(X)).

Applying standard arguments for kernels of approximating polynomials ([9, 46]),

we can obtain the analogue of Bochner - Fejer’s theorem.

Given a rationally independent set {β1, . . . , βm} of real numbers and X ∈ A ×α Rd,

one can define the Bochner-Fejer polynomial

σ(β1,...,βm)(X) =
∑

|ν1|<(m!)2
.........

|νm|<(m!)2

(
1 − |ν1|

(m!)2

)
. . .

(
1 − |νm|

(m!)2

)
(δ ν1

m!β1+···+ νm
m! βm

⊗E ν1
m!β1+···+ νm

m! βm
(X)).

(4.4)

Note that a term of σ(β1,...,βm)(X) in (4.4) differs from zero if and only if the respective

Fourier coefficient of the term is nonzero.
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Proposition 4.1.7.

σ(β1,...,βm)(X) = lim
T→∞

1
2T

∫ T

−T
ϕeit(X)(δ0 ⊗K(β1,...,βm)(t))dt,

where K(β1,...,βm) is the Bochner - Fejer kernel for almost periodic functions.

Proof. Fix n and compute

σ(β1,...,βm)(X) =
∑

|ν1|<(m!)2
.........

|νm|<(m!)2

(
1 − |ν1|

(m!)2

)
. . .

(
1 − |νm|

(m!)2

)
(δ ν1

m!β1+···+ νm
m! βm

⊗ E ν1
m!β1+···+ νm

m! βm
(X)) =

=
∑

|ν1|<(m!)2
.........

|νm|<(m!)2

(
1 − |ν1|

(m!)2

)
. . .

(
1 − |νm|

(m!)2

)
(δ0 ⊗ E0(X(δ− ν1

m!β1−···− νm
m! βm

⊗ 1)))(δ ν1
m!β1+···+ νm

m! βm
⊗ 1) =

=
∑

|ν1|<(m!)2
.........

|νm|<(m!)2

(
1 − |ν1|

(m!)2

)
. . .

(
1 − |νm|

(m!)2

)
Φ0(X(δ− ν1

m!β1−···− νm
m! βm

⊗ 1))(δ ν1
m!β1+···+ νm

m! βm
⊗ 1) =

= lim
T→∞

1
2T

∫ T

−T

∑
|ν1|<(m!)2
.........

|νm|<(m!)2

(
1 − |ν1|

(m!)2

)
. . .

(
1 − |νm|

(m!)2

)
ϕeit(X)(δ0 ⊗ e−it( ν1

m!β1+···+ νm
m! βm) · 1)dt =

= lim
T→∞

1
2T

∫ T

−T
ϕeit(X)(δ0 ⊗K(β1,...,βm)(t) · 1)dt.

Corollary 4.1.8. For every finite rationally independent set {β1, . . . , βm}, the map

σ(β1,...,βm) is contractive.

Let X ∈ A ×α Rd. By the previous lemma we have

∥σ(β1,...,βm)(X)∥ ≤ lim
T→∞

1
2T

∫ T

−T
∥ϕeit(X)∥∥(δ0 ⊗K(β1,...,βm)(t) · 1)∥dt =

= lim
T→∞

1
2T

∫ T

−T
K(β1,...,βm)(t)dt∥X∥ = ∥X∥.
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Let now X ∈ A ×α Rd and (Yn)n be a sequence of generalized trigonometric

polynomials in A ×α Rd that converges to X. Define Γ = ∪nΓn as in the proof of

Proposition 4.1.5 and let B = (β1, β2, . . . , βm, . . . ) be a rational basis of Γ.

Theorem 4.1.9. σ(β1,...,βm)(X) ∥·∥→ X, as M → ∞.

Proof. We will show first that σ(β1,...,βm)(Yn)
∥·∥→ Yn, for every n ∈ N. Fix some n ∈ N.

Suppose that Yn is the trigonometric polynomial ∑
s∈F
F⊂⊂R

(δs ⊗ As). Since B is also a

rational basis of the indices of the nonzero Fourier coefficients of Yn we have

σ(β1,...,βm)(Yn) =

= lim
T→∞

1
2T

∫ T

−T
ϕeit(Yn)(δ0 ⊗K(β1,...,βm)(t) · 1)dt =

= lim
T→∞

1
2T

∫ T

−T

∑
s∈F
F⊂⊂R

(δs ⊗ eitsAs)(δ0 ⊗K(β1,...,βm)(t) · 1)dt =

=
∑
s∈F
F⊂⊂R

(
(δs ⊗ As)

(
lim
T→∞

1
2T

∫ T

−T
eits(δ0 ⊗K(β1,...,βm)(t) · 1)dt

))

→
∑
s∈F
F⊂⊂R

(δs ⊗ As)(δ0 ⊗ 1) =
∑
s∈F
F⊂⊂R

(δs ⊗ As).

Given now ϵ > 0, choose trigonometric polynomial Yn0 with ∥X − Yn0∥ < ϵ/3. Then

there exists m0 ∈ N, such that ∥Yn0 −σ(β1,...,βm)(Yn0)∥ ≤ ϵ/3, for every m > m0. Hence,

it follows from Corollary 4.1.8 that for all m > m0 we have

∥X − σ(β1,...,βm)(X)∥ ≤ ∥X − Yn0∥ + ∥Yn0 − σ(β1,...,βm)(Yn0)∥ + ∥σ(β1,...,βm)(Yn0 −X)∥ ≤

≤ 2∥X − Yn0∥ + ∥Yn0 − σ(β1,...,βm)(Yn0)∥ ≤ ϵ.

Corollary 4.1.10. Let X ∈ A ×α Rd, such that Es(X) = 0, for every s ∈ R. Then

X = 0.
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Proof. Since Es(X) = 0, for every s ∈ R, it follows that Φs(X) = ι(Es(X)) = 0, for

every t ∈ R. Hence the Bochner-Fejer polynomials of X are trivial, so by Theorem

4.1.9 we have X = 0.

Recall now the left regular representation of the C∗-dynamical system, given by the

formulas (4.1) and (4.2). As we stated in Remark 4.1.3 the left regular representation

gives rise to the reduced crossed product. The following result comes readily from the

previous theorem.

Proposition 4.1.11. Let (A,Rd, α) be a C∗-dynamical system. Then the reduced

crossed product A ×r
α Rd coincides with the full crossed product A ×α Rd.

Proof. By the universal property of the full crossed product, there is a representation

ϕ : A ×α Rd → A ×r
α Rd : (δs ⊗ A) 7→ π̃(A)Λs.

It suffices to show that ϕ is faithful. We need first to point out some observations

about these two C∗-algebras.

By Remark 4.1.3, one can define on A ×r
α Rd the contractive maps

Ẽt : A ×r
α Rd → A :

∑
s∈F
F⊂⊂R

π̃(As)Λs → π̃(At).

Let now {Φt : t > 0} be the family of contractions on A ×α Rd, given by the formula

Φt(X) = Φ0(X(δ−t ⊗ 1)), (4.5)

where Φ0 is the operator defined in Proposition 4.1.6. It follows by routine calculations

on the subalgebra of trigonometric polynomials and standard density arguments that

Ẽt ◦ ϕ = ϕ ◦ Φt, for all t ∈ R.
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Let now X ∈ A ×α Rd, such that ϕ(X) = 0. Then (Ẽt ◦ ϕ)(X) = 0 for every t ∈ R,

which implies that (ϕ ◦ Φt)(X) = 0. Since the left regular representation is a faithful

representation of ARd, it follows that Φt(X) = 0, for every t ∈ R. Hence by Corollary

4.1.10 we have X = 0.

As a simple consequence of the above proposition we obtain the following useful

inequality. Note that it essentially corresponds to the elementary fact that the norm of

an Rd × Rd operator matrix X dominitates the norm of any of its columns.

Proposition 4.1.12. Let A be a C∗-algebra acting on a Hilbert space H and ξ be a

unit vector in H. For every X ∈ A ×α Rd and F arbitrarily chosen finite subset of R,

we have

∥(ĩdo Λ)(X)∥2 −
∑
s∈F
F⊂⊂R

∥α−s(Es(X))ξ∥2 ≥ 0.

Proof. Applying Proposition 4.1.11, it suffices to prove the result for the reduced crossed

product norm. Let id be the identity representation of A on H and Y = ∑
s∈F
F⊂⊂R

(δs ⊗As)

be a generalized trigonometric polynomial in A ×α Rd. Note first that

∥∥∥∥∥((ĩd o Λ)(X) −
∑
s∈F
F⊂⊂R

(ĩd o Λ)(δs ⊗ As)
)
δ0,ξ

∥∥∥∥∥
2

= ∥(ĩd o Λ)(X)δ0,ξ∥2 +
∥∥∥∥∥ ∑

s∈F
F⊂⊂R

ĩd(As)δs,ξ
∥∥∥∥∥

2

−
∑
s∈F
F⊂⊂R

⟨(ĩd o Λ)(X)δ0,ξ, ĩd(As)δs,ξ⟩ −
∑
s∈F
F⊂⊂R

⟨ĩd(As)δs,ξ, (ĩd o Λ)(X)δ0,ξ⟩

Since ĩd(As)δs,ξ = δs,α−s(As)ξ = Vs(α−s(As)ξ) and δs,ξ is orthogonal to δt,η for s ̸= t, it

follows that
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∥∥∥∥∥((ĩd o Λ)(X) −
∑
s∈F
F⊂⊂R

(ĩd o Λ)(δs ⊗ As)
)
δ0,ξ

∥∥∥∥∥
2

= ∥(ĩd o Λ)(X)δ0,ξ∥2 +
∑
s∈F
F⊂⊂R

∥α−s(As)ξ∥2

−
∑
s∈F
F⊂⊂R

⟨V ∗
s (ĩd o Λ)(X)V0ξ, α−s(As)ξ⟩ −

∑
s∈F
F⊂⊂R

⟨α−s(As)ξ, V ∗
s (ĩd o Λ)(X)V0ξ⟩.

One may check that V ∗
s (ĩd o Λ)(X)V0 = α−s(Es(X)), so adding and subtracting∑

s∈F
F⊂⊂R

∥α−s(Es(X))ξ∥2, we obtain that the above expression is equal to

∥(ĩd o Λ)(X)δ0,ξ∥2 −
∑
s∈F
F⊂⊂R

∥α−s(Es(X))ξ∥2 +
∑
s∈F
F⊂⊂R

∥α−s(Es(X))ξ − α−s(As)ξ∥2.

Note that the last formula takes its lowest value when ∑
s∈F
F⊂⊂R

∥α−s(Es(X))ξ−α−s(As)ξ∥2 =

0, which happens in the case we choose As = Es(X). Since the left hand side is non-

negative, we deduce that

∥(ĩd o Λ)(X)δ0,ξ∥2 −
∑
s∈F
F⊂⊂R

∥α−s(Es(X))ξ∥2 ≥ 0.

4.1.2 Semicrossed products

Definition 4.1.13. Let (A, G, α) be a C∗-dynamical system. If B is a unital closed

subalgebra of A andG+ is a unital semigroup ofG, we define the semicrossed product

B ×α G
+ as the closed subalgebra of the full crossed product, that is generated by the

elements (δ0 ⊗ b), (δs ⊗ 1), with b ∈ B and s ∈ G+.
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Proposition 4.1.14. Let (A,Rd, α) be a C∗-dynamical system. Then the semicrossed

product A ×α R+
d is equal to the set

AR+ = {X ∈ A ×α Rd : Es(X) = 0, for all s < 0}.

Proof. If X is a trigonometric polynomial in A ×α R+
d , then it is trivial to see that X

lies in AR+ . The latter set is closed, since it is the intersection of the kernels kerEs for

all s > 0, so the first inclusion is proved. For the converse inclusion, suppose X ∈ AR+ .

If X = 0, there is nothing to prove. If X ̸= 0, then the only nonzero Fourier coefficients

of X have nonnegative indices, so the Fejer-Bochner polynomials of X lie in A ×α R+
d .

Hence by Theorem 4.1.9 we have that X ∈ A ×α R+
d .

The following corollary follows trivially by routine calculations on the generalized

trigonometric polynomials of the semicrossed product algebra.

Corollary 4.1.15. Let (A,Rd, α) be a C∗-dynamical system. The restriction of the

expectation E0 to A ×α R+
d is a contractive homomorphism onto A.

4.1.3 The algebra AP (R) revisited

Proposition 4.1.16. Let G be a discrete abelian group. The crossed product C ×G

(with the trivial action) is isometrically isomorphic to the C∗-algebra C(Ĝ) of continuous

functions on the dual group Ĝ.

Proof. The crossed product C ×G is a unital commutative algebra, so by the Gelfand

transform (see 1.2.9) it is isometrically isomorphic with C(M(C×G)). Hence it suffices

to identify M(C ×G)) with Ĝ.
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If χ ∈ M(C ×G), we may restrict to G ⊂ CG ⊆ C ×G. Since χ is multiplicative,

χ
∣∣∣
G

is a group homomorphism. Define

α : M(C ×G)) → Ĝ : χ 7→ χ
∣∣∣
G
.

• α is injective; indeed, if χ
∣∣∣
G

= ϕ
∣∣∣
G

then it follows by linearity that χ
∣∣∣
CG

= ϕ
∣∣∣
CG

.

Hence χ = ϕ, since they are continuous on M(C ×G)) and they coincide on a

dense subset.

• α is surjective; given χ ∈ Ĝ, define the ∗-homomorphism

πχ : CG → C :
∑
s∈F
F⊂⊂G

(δg ⊗ ag) 7→
∑
s∈F
F⊂⊂G

χ(g)ag.

Then

∥∥∥∥∥πχ
 ∑

s∈F
F⊂⊂G

(δg ⊗ ag)


∥∥∥∥∥ =

∥∥∥ ∑
s∈F
F⊂⊂G

χ(g)ag
∥∥∥ ≤

∑
s∈F
F⊂⊂G

∥χ(g)∥ ∥ag∥ =

=
∑
s∈F
F⊂⊂G

∥ag∥ =
∥∥∥ ∑

s∈F
F⊂⊂G

(δg ⊗ ag)
∥∥∥
ℓ1
.

So by the universal property of crossed products, we can extend πχ to a nonzero

representation of C ×G on C.

• α is evidently continuous. Since its domain is a compact space, α is a homeomor-

phism.

Set now G equal to Rd. Applying the above proposition we obtain that C × Rd is

isometrically isomorphic with C(RB), where RB is the Bohr compactification of the

real numbers. As we stated in Chapter 1, C(RB) can be identified as a C∗-algebra with
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the algebra AP (R) of almost periodic functions ([69]). In the following proposition we

provide a proof, using the machinery of crossed products.

Proposition 4.1.17. The commutative C∗-algebras AP (R) and C(RB) are isomorphic.

Proof. By Proposition 4.1.16, we identify C(RB) with the crossed product C × Rd.

Define the covariant representation (π, U) of the C∗-dynamical system (C,Rd, id) by

the formulas

C → AP (R) : c 7→ c · 1

and

R → AP (R) : λ 7→ eiλx.

By the universal property of crossed products, we obtain a representation π̃ given by

π̃ : C × Rd → AP (R) :
∑
s∈F
F⊂⊂R

(δs ⊗ as) 7→
∑
s∈F
F⊂⊂R

as e
isx.

Let now X ∈ C × Rd, such that π̃(X) = 0. One can check that, as in the proof of

Proposition 4.1.11 that (π̃ ◦ Eλ)(X) = (ϵλ ◦ π̃)(X), where ϵλ is given by the formula

(1.6). Hence it follows that Eλ(X) = 0, for every λ ∈ R, so we have by Theorem 4.1.9

that X = 0. Thus, π̃ is injective and the proof is complete.

Consider now the closed subalgebra AAP (R) of analytic almost periodic functions.

Applying Proposition 4.1.14 and Corollary 4.1.15, we have the following result.

Proposition 4.1.18.

AAP (R) = {f ∈ AP (R) : ϵλ(f) = 0, for every λ < 0}.
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Moreover, the compression of the contractive map ϵ0 to AAP (R) is multiplicative; hence

it induces a character x∞ that satisfies

x∞

 ∑
λ∈F

F⊂⊂R+

cλe
iλx

 7→ c0.

As we stated in theorem 1.2.21, the set of continuous automorphisms of AAP (R)

is the set {ϕc,k : c ∈ RB, k ∈ R+}, where ϕc,k are the multiplicative linear maps that

satisfy

ϕc,k(eiλx) = c(λ)eikλx.

Proposition 4.1.19. Every automorphism ϕc,k is isometric.

Proof. Fix some c ∈ RB and k ∈ R+. One can check that (ĩd, uc,k), where ĩd : C →

AP (R) : c 7→ c · 1R and uc,k : Rd → AP (R) : λ 7→ c(λ)eikλx, gives a covariant

representation of the C∗-dynamical system (C,Rd, id). Hence by the universal property,

we have a representation of the C∗-algebra C × Rd ≃ C(RB) ≃ AP (R) of almost

periodic functions, given by

ĩd o uc,k : AP (R) → AP (R) : eiλx 7→ c(λ)eikλx. (4.6)

The representation ĩd o uc,k is evidently faithful, so it is isometric. Moreover, the

restriction of ĩdouc,k to the invariant subalgebra AAP (R) is equal to ϕc,k, so the proof

is complete.
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4.2 The norm closed parabolic algebra Ap

Let (AP (R),Rd, τ) be a C∗-dynamical system, where τ induces the group of translation

automorphisms:

(τsf)(x) = f(x− s), f ∈ AP (R).

Our goal in this section, is to prove that the abstract discrete crossed product AP (R)×τ

Rd is isometrically isomorphic to a concrete C∗-algebra acting on L2(R).

Proposition 4.2.1. The crossed product AP (R) ×τ Rd is a simple algebra, i.e. it has

no non-trivial two-sided closed ideals.

Proof. Let J be a non-zero two-sided closed ideal. Hence there exists an element

X ∈ J , such that Φs(X) ̸= 0, for some s ∈ R. Using the integral formula Φ0(X) =

lim
T→+∞

1
2T
∫ T

−T ϕeit(X)dt that we proved in the previous section, we will prove that Φs(X)

belongs to J . Since J is closed, it suffices to prove that ϕeit(X) ∈ J . Suppose first that

X is a generalized trigonometric polynomial ∑
s∈F
F⊂⊂R

(δs ⊗ fs). Compute the product

(δ0 ⊗ eitx)X(δ0 ⊗ e−itx) =
∑
s∈F
F⊂⊂R

(δs ⊗ eitxfs)(δ0 ⊗ e−itx) =

=
∑
s∈F
F⊂⊂R

(δs ⊗ eitxfsτs(e−itx)) =

=
∑
s∈F
F⊂⊂R

(δs ⊗ eitxfse
−it(x−s)) =

=
∑
s∈F
F⊂⊂R

(δs ⊗ eitsfs) = ϕeit(X).

Hence, it follows by a standard approximation argument that (δ0 ⊗ eitx)X(δ0 ⊗ e−itx) =

ϕeit(X) for any X ∈ AP (R) ×τ Rd.
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Similarly, we get Φs(X) = Φ(X(δ−s ⊗ 1)) ∈ J , so there exists some nonzero

f ∈ AP (R), such that (δ0 ⊗ f) ∈ J . Since the action of the group can be described by

the product of the covariant relation, it follows (δ0 ⊗ τs(f)) ∈ J for every s ∈ R.

Claim: We may assume that inf{|f(x)| : x ∈ R} ≥ c > 0.

Since f · f ∗, nf ∈ AP (R) for every n ∈ N, we may assume that f(x) ≥ 0, for every

x ∈ R and ∥f∥ > 2. Let ϵ = 1
2 . Then there is T = T (ϵ) > 0, such that for every

interval I of length T , there exists ℓ ∈ I that satisfies

|f(x+ ℓ) − f(x)| < ϵ,∀x ∈ R.

On the interval [0, T ], we may assume that f(x) > 1, for every x ∈ [0, T
n
], for some

n ∈ N (otherwise, work with g = τs(f), for suitable s). Then, let fk = τk T
n
(f), for

k = 0, 1, . . . , n− 1 and define

g(x) =
n−1∑
k=0

fk(x), x ∈ R.

Then g(x) > 1, for every x ∈ [0, T ]. In the general case where x ∈ R, there exists

ℓ ∈ [x − T, x], such that |f(x − ℓ) − f(x)| < ϵ. Since ℓ gives that bound uniformly

for all y ∈ R, it yields that |fk(x − ℓ) − fk(x)| < ϵ, for every k ∈ {0, 1, . . . , n − 1}.

Therefore, there exists some k, such that |fk(x)| > 1 − ϵ = 1
2 . Hence g(x) > 1

2 and that

completes the proof of our claim.

Now, since the value inf{|f(x)| : x ∈ R} is positive, we have by Proposition 1.2.15

that the multiplicative inverse 1/f is a bounded almost periodic function. Then

(δ0 ⊗ f)(δ0 ⊗ 1/f) = (δ0 ⊗ 1) ∈ I,

so I coincides with the crossed product.
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Remark 4.2.2. The simplicity of crossed product algebras has been studied extensively

over the last 50 years (see for example [19, 28]). In particular, Archbold and Spielberg

proved in [3] that given a C∗-dynamical system (A, G, α), with A commutative and G

discrete, the crossed product A ×α G is simple if and only if the action of the group on

A is minimal3 and topologically free4.

Definition 4.2.3. Let Bp be the C∗-algebra that is generated by the set of all the

multiplication and translation operators Mλ and Dµ acting on L2(R) respectively. Since

the span of the products MλDµ is closed under the operations of ring multiplication

and involution, we get that

Bp = span{MλDµ : λ, µ ∈ R}∥·∥
.

Theorem 4.2.4. The C∗-algebras AP (R) ×τ Rd and Bp are isomorphic.

Proof. Define the covariant representation (π,D), where:

π : AP (R) → B(L2(R)) : eiλx 7→ Mλ

and

D : Rd → B(L2(R)) : µ 7→ Dµ.

It is trivial to see that π is a representation of AP (R) and D is a unitary representation,

so it suffices to prove the covariance relation. Compute

Dµπ(eiλx)D∗
µ =DµMλD

∗
µ

3The action of a group G on a C∗-algebra A is called minimal if A does not contain any non-trivial
G-invariant ideals.

4An action α on a commutative algebra A is said to be topologically free if for any finite set
F ⊆ G\{eG}, the set ∩t∈F {χ ∈ M(A)|χ ◦ αt ̸= χ} is dense in M(A).
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and

π(τµ(eiλx)) =π(eiλ(x−µ)) = e−iλµπ(eiλx) = e−iλµMλ,

hence the covariant relation holds by the Weyl relations. By the universal property of

the crossed product, this yields a representation between two C∗-algebras

(π oD) : AP (R) ×τ Rd → C∗(π(AP (R)), D(Rd)) : (π oD)
∑
s∈F
F⊂⊂R

(δs ⊗ fs) 7→
∑
s∈F
F⊂⊂R

π(fs)Ds.

Observe that C∗(π(AP (R)), D(Rd)) = Bp. Since AP (R) ×τ Rd is a simple algebra and

ker(πoD) is a two sided ideal, (πoD) is injective, which yields that it is an isometric

∗-isomorphism.

Remark 4.2.5. By the general theory of crossed products, the mapping

En : Bp → Bp :
∑
s∈F
F⊂⊂R

π(fs)Dµs 7→ Mfn

is contractive. Moreover, we have a similar expectation for the Dµ operators. By the

Weyl relations, we have the covariant relation (ρ,M)

ρ : AP (R) → B(L2(R)) : eiλx 7→ Dλ

and

M : Rd → B(L2(R)) : µ 7→ M−µ.



4.2 The norm closed parabolic algebra Ap 109

Hence, we have the isomorphism

(ρoM) : AP (R) ×τ Rd → Bp : (ρoM)
∑
s∈F
F⊂⊂R

(δs ⊗ fs) 7→
∑
s∈F
F⊂⊂R

ρ(fs)M−s.

Therefore, we have the contractions

Zm : Bp → Bp :
∑
s∈F
F⊂⊂R

ρ(fs)M−λs 7→ Dfm .

Applying the natural isometric isomorphisms Mf 7→ f and Dg 7→ g, we can identify

the range of the maps En and Zm with AP (R).

One may check that (ρoM) ◦ (πoD)−1 ∈ Aut(Bp), that sends Ds to M−s and Mλ

to Dλ. Since Bp is a concrete operator algebra on L2(R), by the Stone-von Neumann

theorem (ρ oM) ◦ (π oD)−1 = Ad(F ), where F is as usual the Fourier-Plancherel

transform ([47]).

The closed subalgebra of Bp generated by {Mλ, Dµ : λ, µ ≥ 0} is called the (norm

closed) parabolic algebra and it is denoted by Ap. Evidently,

(π oD)−1(Ap) = AAP (R) ×τ R+
d ,

where AAP (R) is the norm closed algebra of analytic almost periodic functions.

Applying the contractions En, Zm we obtain by the standard Fejer-Bochner argument

that

AAP (R) ×τ R+
d = {X ∈ AP (R) ×τ Rd : En(X) = Zm(X) = 0, for all n,m < 0}.

From now on, we identify Ap with the semicrossed product AAP (R) ×τ R+
d . The first

question to wonder for the norm closed algebra is once again the integral domain
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question, as in the WOT-closed case. The question still seems hard to solve, because

of the absence of a first nonzero coefficient. However we can prove that Ap contains no

non-trivial idempotents. The following lemma is the key.

Proposition 4.2.6. The spectrum of every element X in Ap is connected.

Proof. Let X ∈ AAP (R) ×τ R+
d with spectrum Sp(X) = U ∪ V , where U, V are

non-empty disjoint compact subsets of C. By the density of generalized trigonometric

polynomials in Ap, there exists an element X0 = ∑
s∈F

F⊂⊂R+

MgsDs, such that Sp(X0) is

not connected (for this standard Banach algebra fact see for example Theorem 1.1 in

[30]). Abusing the notation, we write again that Sp(X0) = U ∪ V , for some non-empty

disjoint compact sets U and V .

Claim: The norm closed commutative algebra generated by a trigonometric polynomial

Z0, denoted by A(Z0), is an integral domain.

Let M > 0 and let Fn be the finite set of positive indices of the nonzero Fourier

coefficients of Zn
0 (so F1 = F\{0}). Since Z0 has only a finite set of nonzero Fourier

coefficients, there exists N > 0, such that for every n > N we have

Fn ∩ [0,M ] = ∅.

Define F0 = ∪N
n=1Fn ∪ {0}. Then for every t ∈ [0,M ]\F0 and Y =

N∑
n=0

cnZ
n
0 generalized

polynomial we have Et(Y ) = 0. Since the subspace of generalized polynomials is dense

in A(Z0) we obtain by continuity of the maps Et that

Et(Y ) = 0, for all Y ∈ A(Z0).

If Y is a nonzero element in A(Z0), then it has some nonzero Fourier coefficient, say

Et0(Y ). Hence the set of indices of nonzero Fourier coefficients of Y in [0, t0] is finite

and nonempty , so it follows that Y has a first nonzero Fourier coefficient.
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Let now Y1, Y2 be two nonzero elements of A(Z0) and let m1 and m2 be the indices

of their respective first nonzero Fourier coefficients. Then m1 +m2 is the first nonzero

Fourier coefficient of the product Y1Y2, since

Em1+m2(Y1Y2) = Em1(Y1)τm1(Em2(Y2))

and Em1(Y1), τm1(Em2(Y2)) are two nonzero elements of the integral domain AAP (R).

Thus, we proved our claim.

On the other hand, since Sp(X0) ⊆ U ∪ V , there are holomorphic functions

f, g defined on U ∪ V , given by f
∣∣∣
U

= g
∣∣∣
V

= 1 and f
∣∣∣
V

= g
∣∣∣
U

= 0. Therefore it

follows by Runge’s theorem ([14]) and the holomorphic functional calculus ([62]) that

f(X0), g(X0) ∈ A(X0) and

f(X0)g(X0) = 0,

which contradicts the fact that A(X0) is an integral domain.

Corollary 4.2.7. Ap contains no non-trivial idempotents.

4.2.1 Isometric Automorphisms of Ap

In this section, our goal is to determine the isometric automorphisms of the norm

closed parabolic algebra. Interestingly there is a richer diversity than in the WOT-span

context. The automorphisms are strongly related to the characters of the discrete real

line and the Arens - Singer theory for analytic almost periodic functions [4, 11].

Recall that given a unitary map U ∈ B(L2(R)), we can define the automorphism

Ad(U) : B(L2(R)) → B(L2(R)) : T 7→ UTU∗.
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For convenience, if Ad(U) keeps a subspace of B(L2(R)) invariant, we denote its

restriction to the subspace by the same notation. The main theorem of this section is

the following.

Theorem 4.2.8. Let Φ be an isometric automorphism of Ap. Then Φ has the form

Φ(MλDµ) = c(µ)d(λ) Ad(Vt)(MλDµ), λ, µ ∈ R+ (4.7)

where t ∈ R and c, d are characters of the discrete group of the real numbers. Moreover,

the formula (4.7) gives always a well-defined isometric automorphism of Ap.

Note that in the special case where the characters c, d are continuous in the standard

norm of the reals, then their respective automorphisms are unitarily implemented by

Mλ and Dµ, for some λ, µ ∈ R. The idea of the proof is to work with the induced

homeomorphism of the maximal ideal space of the commutative algebra Ap/Cp, where

Cp is the commutator ideal of Ap. Similar arguments for the case of crossed products

by Z+ can be found in [60, 73]. The first step is to identify the commutator ideal

Cp. Define the contractions En, Zm as in the previous section and the character x∞ of

AAP (R), as it was defined in 4.1.18.

Lemma 4.2.9. The commutator ideal Cp is equal to the set

{α ∈ Ap : E0(α) = 0, Z0(α) = 0}.

Proof. If α = xy − yx ∈ Cp, then evidently E0(α) = Z0(α) = 0. On the other hand,

for every λ, s > 0 with λs not equal to 2nπ (n ∈ N), we have eiλx = fs − fs ◦ τs, where

fs = eiλx(1 − e−iλs)−1. Hence eiλxDs ∈ Cp, for such λ, s. Since Cp is an ideal it follows

that eiλxDs ∈ Cp for every λ, s > 0. Since these two sets have the same generators (as

ideals), the proof is complete.
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Lemma 4.2.10. Ap/Cp = {Mf +Dg + Cp : f, g ∈ AAP (R)}.

Proof. It suffices to prove that the RHS is closed. Let (an)n∈N be a sequence, such that

an = Mfn +Dgn + Cp converging to some a ∈ Ap/Cp, that is

inf
u∈Cp

∥an − a+ u∥ → 0, as n → +∞.

We may assume that E0(Dgn) = 0. Since E0 is contractive we have that

∥E0(an) − E0(a)∥ ≤ ∥an − a+ u∥,∀u ∈ Cp

⇒∥Mfn − E0(a)∥ ≤ inf
u∈Cp

∥an − a+ u∥ → 0, as n → ∞.

Similarly, we get that ∥Dgn − [Z0(a) − Z0(E0(a))]∥ → 0, as n → ∞, so ∥an − [E0(a) +

Z0(a) − Z0(E0(a))] + Cp∥ converges to 0, as n goes to infinity. Hence a = E0(a) +

Z0(a) − Z0(E0(a)) + Cp.

Let now Φ ∈ Aut(Ap). Then Φ induces an automorphism Φ̃ ∈ Aut(Ap/Cp) and a

homeomorphism γ0 between the maximal ideals that contain Cp, defined by

γ0(ζ)(α + Cp) = ζ(Φ̃(α + Cp)), ζ ∈ M(Ap/Cp).

Here, we use the fact that every maximal ideal that contains the commutator ideal

is the kernel of a character of the algebra. We want to determine these characters.

Write AAP1 and AAP2 for the function algebras, both isometrically isomorphic to

AAP (R), that are generated by the multiplication and translation unitary semigroups,

respectively. Define the mapping

M(Ap) → M(AAP1) × M(AAP2) : ζ 7→ (ζ|AAP1 , ζ|AAP2),
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where the codomain carries the usual product topology.

Lemma 4.2.11. This map is a homeomorphism onto the subset

(M(AAP1) × {x∞}) ∪ ({x∞} × M(AAP2)).

Proof. Let ζ ∈ M(Ap), such that ζ(Mλ) ̸= 0, for some λ > 0. Then it follows by the

Weyl relations that ζ(Dµ) = 0, for every µ > 0. Similarly with the roles of Mλ and

Dµ reversed. Hence ζ maps into the set. On the other hand, let (z, x∞) be a point in

the union set. Define on the generalized trigonometric polynomials the multiplicative

linear functional ζ by

ζ

 ∑
λ,µ∈F

cλ,µMλDµ

 =
∑
λ,µ∈F

cλ,µz(Mλ)x∞(Dµ) =

=
∑
λ∈F

cλ,0z(Mλ).

But then ζ = z ◦ E0, so it is bounded and extends to a character of Ap. Similarly, we

have that for every point (x∞, z) corresponds the character z ◦ Z0. It remains to show

that the map is injective and homeomorphic, but this is routine.

Let χ∞ be the preimage of (x∞, x∞). This the "first coefficient character" on Ap

χ∞

 ∑
λ,µ∈F

cλ,µMλDµ

 = c0,0.

Now, Theorem 1.2.22 implies that the maximal ideal space of AAP (R) is the compact

topological space RB × [0,∞)∪{∞}, where RB is the Bohr compactification of the real

numbers. Write ∆1,∆2 for the maximal ideal spaces of AAP1 and AAP2, respectively.

Hence, the maximal ideals of Ap that contain Cp form the connected topological space

∆1 ⊔χ∞ ∆2.
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Lemma 4.2.12. γ0 fixes χ∞. Moreover, either γ0(∆1) = ∆1, or γ0(∆1) = ∆2.

Proof. Given x ∈ C+ ∪ {∞}, let zx ∈ M(AAP (R)) be the evaluation character at x

and ζx, ηx be the preimage of the points (zx, x∞) and (x∞, zx), respectively. Note that

the set

Mev(Ap) = {ζx, ηx : x ∈ C+ ∪ {∞}}

is dense in ∆1 ⊔χ∞ ∆2. Also, with the relative product topology, this is homeomorphic

to the space

(C+ × {∞}) ∪ ({∞} × C+) ∩ {(∞,∞)}.

Since Mev(Ap) is connected, so is the entire character space M(Ap) and its homeo-

morphic space ∆1 ⊔χ∞ ∆2. If we remove the point χ∞, then the character space, with

the relative topology, fails to be connected. We claim that χ∞ is the only point in the

character space with this topological property.

If χ ̸= χ∞ is in Mev(Ap), then the set of the remaining evaluation characters,

with the relative topology, remains connected, and it contains χ in its closure. Hence

the space (∆1 ⊔χ∞ ∆2)\{χ} remains connected. If χ is a limit character, then once

again the space (∆1 ⊔χ∞ ∆2)\{χ} contains the dense connected set Mev(Ap), so it is

connected.

Hence χ∞ is a fixed point for homeomorphisms.

Consider now the restriction of the homeomorphism γ0 to (∆1 ⊔χ∞ ∆2)\{χ∞}. Since

every homeomorphism maps connected components to connected components, the

second assertion of the lemma follows.

Hence we have two cases.
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Case 1 γ0 keeps ∆1 and ∆2 fixed. Let x ∈ R and let ζx, ηx be the characters defined

in the proof of the previous lemma. Since γ0 keeps ∆1 invariant, we have

0 = γ0(ζx)(Dµ) = ζx(Φ̃(Dµ)) = E0(Φ̃(Dµ))(x).

Hence E0(Φ̃(Dµ)) = 0 for every µ > 0. Therefore Φ̃(Dµ + Cp) = Dh + Cp, for

some h ∈ AAP (R). Repeating the argument for Φ̃−1, we have that Φ̃|Z0(Ap/Cp)

gives an automorphism of AAP (R). Thus, it follows by Theorem 4.1.19 that

Φ̃(Dµ + Cp) = c(µ)Dk1µ + Cp, for some k1 > 0, c(µ) ∈ T.

Applying the same argument on the elements Φ̃(Mλ+Cp), using the ηx characters

this time, we get

Φ̃(Mλ + Cp) = d(λ)Mk2λ + Cp, for some k2 > 0, d(λ) ∈ T.

Hence Φ(Mλ) = d(λ)Mk2λ + A, where A lies in Cp. The following lemma is the

only point of the proof of Theorem 4.2.8 that we will make use of the fact that Φ

is isometric.

Lemma 4.2.13. Φ(Mλ) = dλMk2λ.

Proof. First note that

∥Φ(Mλ)∥ = ∥Mλ∥ = 1 = ∥d(λ)Mk2λ∥.

If suffices to prove that every Fourier coefficient of A is zero. We consider the left

regular representation (ĩd,Λ) of the crossed product. Let F be a finite subset
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of positive real numbers and ξ a norm one function in L2(R). By Proposition

4.1.12 we have

1 = ∥Φ(Mλ)∥2 ≥
∑

s∈F∪{0}
∥τ−s(Es(Φ(Mλ))) · ξ∥2

L2(R) =

= ∥d(λ)eik2λx · ξ∥2
L2(R) +

∑
s∈F

∥τ−s(Es(A)) · ξ∥2
L2(R) =

= 1 +
∑
s∈F

∥τ−s(Es(A)) · ξ∥2
L2(R).

So τ−s(Es(A)) = 0, which implies that Es(A) is the zero function, for every s ∈ F .

Since F was arbitrarily chosen, we obtain by Corollary 4.1.10 that A = 0.

Similarly using the left regular representation that corresponds to the (ρoM)

representation of the crossed product, we obtain Φ(Dµ) = c(µ)Dk1µ.

Now the Weyl relations yield

Φ(MλDµ) = Φ(eiλµDµMλ).

The LHS gives

Φ(MλDµ) = Φ(Mλ)ϕ(Dµ) = d(λ)Mk2λc(µ)Dk1µ =

= d(λ)c(µ)eiλk1k2µDk1µMk2λ,

while the RHS is

Φ(eiλµDsMλ) = eiλµc(µ)Dk1µd(λ)Mk2λ = eiλµd(λ)c(µ)Dk1µMk2λ.
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Therefore k1k2 = 1 and so the automorphisms Φ(MλDµ) = Mk2λDk1µ correspond

to the automorphisms Ad(Vt), by taking t = log k1. Each automorphism of the

above form is induced by a covariant respesentation of (AP (R),Rd, τ), so by the

universal property of the crossed product it extends to an algebra automorphism

of Bp.

Define on L2(R) the covariant representation (yd,t, wc,t) of the C∗−dynamical

system (AP (R),Rd, τ), where

yd,t : AP (R) → B(L2(R)) : f 7→ Mĩdoud,et (f),

where ĩd o ud,et are given in equation (4.6), and

wc,t : Rd → B(L2(R)) : µ 7→ c(µ)Dµe−t .

Indeed, the pair (yd,t, wc,t) is a covariant representation, since

wc,t(µ)yd,t(eiλx)wc,t(−µ) = c(µ)Dµe−td(λ)Mλetc(−µ)D−µe−t =

= e−iλµd(λ)Mλet = e−iλµyd,t(eiλx). = yd,t(τµ(eiλx))

Hence, by the universal property of the crossed product, we obtain the induced

isometric automorphism yd,t o wc,t of Bp that satisfies

MλDµ 7→ d(λ)c(µ)MλetDµe−t .

It is evident now that the automorphism Φ given in relation (4.7) is of the form

yd,t o wc,t (restricted to Ap), for some t ∈ R and c, d ∈ RB.
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Case 2 γ0 flips ∆1 and ∆2. Repeating the argument of the previous case, we end up

with

Φ(Mλ) = d(λ)Dk1λ and Φ(Dµ) = c(µ)Mk2µ.

Applying again the Weyl commutation relations, we calculate

Φ(Mλ)Φ(Dµ) = eiλµΦ(Dµ)Φ(Mλ) ⇔ d(λ)c(µ)Dk1λMk2µ = eiλµd(λ)c(µ)Mk2µDk1λ

⇔ d(λ)c(µ)Dk1λMk2µ = eiλµ(1+k1k2)d(λ)c(µ)Dk1λMk2µ

which implies that k1k2 = −1, but this is impossible, since k1, k2 are both positive

real numbers.

This completes the proof of Theorem 4.2.8.

4.3 Triple semigroup algebras

As described in the previous section, the dilation operators {Vt : t ∈ R} implement

isometric automorphisms of the C∗-algebra Bp. Let G be the discrete group Rd or Z

and (Bp, G, v) be the C∗-dynamical system, where v is the group of automorphisms

that are unitarily implemented by the operators Vt

v : G → Aut(Bp) : t 7→ vt = Ad(Vt).

Hence, this enables us to define the crossed product, denoted by Bp ×v G. Denote by

Hk the contraction from Bp ×v G onto Bp

Hk(
∑

λ,µ,t∈F
F finite

(ϵt ⊗ cλ,µ,tMλDµ)) =
∑

λ,µ,t∈F
F finite

cλ,µ,kMλDµ.
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Our next goal is to show that the norm closed algebra

BG
ph := ∥ · ∥-alg{Mλ, Dµ, Vt : λ, µ ∈ R, t ∈ G}

is isometrically isomorphic to Bp×vG. By the universal property of the crossed product

we have the representation

((π oD) o V )
∑

λ,µ,t∈F
F finite

(ϵt ⊗ cλ,µ,tMλDµ) 7→
∑

λ,µ,t∈F
F finite

cλ,µ,tMλDµVt.

The following proposition is the key to prove that the above representation is actually

an isometric isomorphism.

Proposition 4.3.1. Given t0 ∈ G, the mapping

∑
λ,µ,t∈F
F finite

cλ,µ,tMλDµVt 7→
∑

λ,µ,t∈F
F finite

cλ,µ,t0MλDµ

is contractive, so it extends to a linear contraction H̃t0 on BG
ph.

Proof. It suffices to prove it for t0 = 0. By Poincare’s recurrence theorem [24], there

exists an increasing unbounded sequence {Mn}n∈N of natural numbers, such that

eiλMn → 1, as n → ∞ and for all λ ∈ F.

Since DMnVtD
∗
Mn

WOT→ 0 for every t ̸= 0, one can check that

lim
n→∞

⟨DMncλ,µ,tMλDµVtD
∗
Mn
f, g⟩ =


⟨cλ,µ,0MλDµf, g⟩, if t = 0

0 if t ̸= 0
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Hence

∑
λ,µ,t∈F
F finite

cλ,µ,tDMnMλDµVtD
∗
Mn

WOT→
∑

λ,µ,t∈F
F finite

cλ,µ,0MλDµ.

Therefore, the proof follows by observing that

〈 ∑
λ,µ,t∈F
F finite

cλ,µ,tDMnMλDµVtD
∗
Mn
f, g

〉
≤ ∥

∑
λ,µ,t∈F
F finite

cλ,µ,tMλDµVt∥ ∥f∥ ∥g∥,

for all f, g ∈ L2(R).

Corollary 4.3.2. The map (πoD)oV is an isometric ∗-isomorphism of the C∗-algebra

Bp ov Z.

Proof. Let X ∈ Bp ov Z, such that ((π o D) o V )(X) = 0. Then by the previous

proposition we get H̃k(((πoD)oV )(X)) = 0, for every k ∈ G. But H̃k◦((πoD)oV ) =

(π o D) ◦ Hk, since the equality holds for trigonometrical polynomials. Therefore

((π o D) ◦ Hk)(X) = 0, which implies that Hk(X) = 0, so X = 0. Hence the

representation (π oD) o V is faithful, so isometric.

We denote by AG+
ph the norm closed algebra that is generated by the semigroups of

Mλ, Dµ, Vt, where λ, µ ∈ R+, t ∈ G+. The algebra AZ+
ph is called the partially discrete

triple semigroup algebra, while the algebra AR+
ph is called the triple semigroup

algebra.

Let CG
+

ph be the commutator ideal of AG+
ph . To describe CG

+
ph we need first the

following lemma.

Fix t > 0 and let Jt be the closed ideal of AAP (R) generated by the functions of

the form

eiλx − ϕ0,et(eiλx) = eiλx − eiλe
tx,
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for λ > 0.

Lemma 4.3.3. The ideal Jt is equal to the ideal I0 = {f ∈ AAP (R) : f(0) = x∞(f) =

0}.

Proof. It is clear that I0 contains Jt. To prove the inverse inclusion, note that I0

has codimension 2, and so it suffices to show that the same holds for Jt. Define the

subspace J̃t = span{a+ ceix : a ∈ Jt, c ∈ C}. We claim that J̃t is closed.

Let {an + cne
ix}n be a convergent sequence, such that an ∈ Jt and cn ∈ C. We

claim that the limit of the sequence, say a, lies in J̃t. Denote by x1 the character of

AAP (R) given by the formula

x1(f) 7→ f(0). (4.8)

Hence an(0) + cn → a(0). However, since an ∈ Jt, it follows that an(0) = 0, for all

n ∈ N. Therefore

cn → a(0) ⇒ cne
ix → a(0)eix, as n → ∞.

So an = an + cne
ix − cne

ix → a − a(0)eix. Since Jt is closed, it contains a − a(0)eix.

Hence

a = a− a(0)eix + a(0)eix ∈ J̃t,

so J̃t is closed.

Hence, it suffices to prove that

J̃t = span{eiλx : λ > 0}∥·∥∞
.
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Since Jt is an ideal in AAP (R), we get

ei(κ+λ)x − ei(κ+λet)x − eix ∈ J̃t, for all κ, λ ∈ (0,∞).

Choose κ+ λ = 1, so eiρx ∈ J̃t for every ρ ∈ [1, et). Thus, by induction, we have that

eiρe
(n−1)tx − eiρe

ntx − eiρe
(n−1)tx = −eiρentx ∈ J̃t,

and

eiρe
−ntx − eiρe

−(n−1)tx + eiρe
−(n−1)tx = eiρe

−ntx ∈ J̃t,

for every ρ ∈ [1, et) and n ∈ N. Hence eiλx ∈ J̃t, for all λ ∈ (0,∞), and hence the proof

is complete.

Proposition 4.3.4. The commutator ideal CG+
ph is equal to the set

ker(E0◦H0)∩ker(Z0◦H0)∩
⋂
t∈G+

(ker(χ∞ ◦Ht) ∩ ker(x1 ◦ E0 ◦Ht) ∩ ker(x1 ◦ Z0 ◦Ht)) .

(4.9)

Proof. Let I be the set described in (4.9). Since I is the intersection of kernels of

bounded linear operators, it is closed. One can check that if X = ∑
λ,µ,t∈F
F finite

cλ,µ,tMλDµVt

is a trigonometric polynomial in I, then it satisfies

1. cλ,0,0 = c0,µ,0 = c0,0,t = 0, for all λ, µ ∈ R+, t ∈ G+;

2. ∑
λ
cλ,0,t = ∑

µ
c0,µ,t = 0, for all t ∈ G+.

It is elementary to show that if X, Y trigonometric polynomials in AG
+

ph , then XY −

Y X ∈ I. Since multiplication is jointly continuous with respect to the operator norm,

it follows by the density of trigonometric polynomials in AG+
ph that XY − Y X ∈ I, for
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every X, Y ∈ AG
+

ph . Similarly, working first with trigonometric polynomials, we obtain

that I is closed under the ideal operations.

For the converse inclusion, let X ∈ I. By Theorem 4.1.9, it suffices to show that

Ht(X)Vt ∈ CG
+

ph , for every t ∈ G+. As we proved in Lemma 4.2.9, one can check that

Ht(X) − E0(Ht(X)) − Z0(Ht(X)) + (E0 ◦ Z0)(Ht(X)) ∈ CG
+

ph ,

since it lies in Cp. Moreover, we obtain by the definition of I that (E0 ◦ Z0)(Ht(X)) =

(χ∞ ◦Ht)(X) = 0, so it follows that

Ht(X)Vt − E0(Ht(X))Vt − Z0(Ht(X))Vt ∈ CG
+

ph .

Hence it suffices to show that E0(Ht(X))Vt and Z0(Ht(X))Vt lie in CG
+

ph .

Write E0(Ht(X))Vt = MfVt, for some f ∈ AAP (R). Since X ∈ I, f satisfies the

properties x∞(f) = f(0) = 0. So by the previous lemma there exist gn ∈ AAP (R), n ∈

N, such that f = lim
n

(gn − ϕ0,et(gn)), which implies that MfVt = lim
n

(MgnVt − VtMgn),

so MfVt lies in CG
+

ph . Similarly every element DfVt ∈ I belongs to CG
+

ph , so our proof is

complete.

Before this subsection ends, we prove the existence of two more contractive maps,

which will be helpful in the next section.

Proposition 4.3.5. The maps

∑
λ,µ,t∈F
F finite

cλ,µ,tMλDµVt 7→
∑
λ,t∈F
F finite

cλ,0,tVt

∑
λ,µ,t∈F
F finite

cλ,µ,tMλDµVt 7→
∑
µ,t∈F
F finite

c0,µ,tVt

are contractive.
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Proof. The proof uses similar arguments as in Proposition 4.3.1, working now with the

WOT-limits

∑
λ,µ,t∈F
F finite

cλ,µ,tV
∗
nMλDµVtVn

WOT→
∑
λ,t∈F
F finite

cλ,0,tVt

∑
λ,µ,t∈F
F finite

cλ,µ,tVnMλDµVtV
∗
n

WOT→
∑
µ,t∈F
F finite

c0,µ,tVt,

as n → ∞.

4.3.1 The algebra AZ+

ph

We focus now on the partly discrete triple semigroup algebra AZ+
ph . In order to determine

the isometric automorphisms of AZ+
ph , we work again on the induced homeomorphism

of the character space onto itself. Define the characters x1 ∈ M(AAP (R)), such that

x1(f) = f(0), and χ∞ = (x∞, x∞) as before. Let also y0 be the character in the disc

algebra A(D) (see [31]), given by y0(f) = f(0).

Proposition 4.3.6. The mapping

ψ : M(AZ+

ph ) → M(AAP1) × M(AAP2) × M(A(D)) : χ 7→ (χ
∣∣∣
AAP1

, χ
∣∣∣
AAP2

, χ
∣∣∣
A(D)

)

is continuous into the subset

(M(AAP1) × {x∞} × {y0}) ∪ ({x∞} × M(AAP2) × {y0})∪

∪({x1} × {x∞} × M(A(D))) ∪ ({x∞} × {x1}×M(A(D))) ∪ ({x∞} × {x∞} × M(A(D))).

Proof. Let χ be a character in M(AZ+
ph ). Then

χ
∣∣∣
Ap

∈ M(Ap) and χ
∣∣∣
∥·∥-alg{Vt:t∈Z+}

∈ M(A(D)).
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One can check that if χ
∣∣∣
Ap

does not correspond to a point {χ∞, (x1, x∞), (x∞, x1)},

then by the commutation relations we get that χ(Vt) = 0, for all positive t.

On the other hand, if χ
∣∣∣
∥·∥-alg{Vt:t∈Z+}

≠ 0, then by the commutation relations we

have three cases for χ
∣∣∣
Ap

∈ M(Ap):

1. χ(Mλ) = 1 and χ(Dµ) = 0, which corresponds to the character (x1, x∞) in

M(Ap).

2. χ(Mλ) = 0 and χ(Dµ) = 1, so we get the character (x∞, x1).

3. χ(Mλ) = χ(Dµ) = 0, which gives χ∞.

Hence the mapping ψ is well defined. Continuity is evident, so the proof is complete.

Note that every element in the codomain of ψ corresponds to a multiplicative linear

functional defined on the non-closed algebra of trigonometric generalized polynomials.

Write once again ∆1, ∆2 for the sets M(AAP1)×{x∞}×{y0} and {x∞}×M(AAP2)×

{y0} respectively. If χ is such a multiplicative functional, then the contraction H0 yield

that χ is bounded and extends to a character of AZ+
ph . Therefore, any maximal ideal of

Ap corresponding to a point (∆1 ⊔χ∞ ∆2)\{χ∞, (x1, x∞), (x∞, x1)} is contained in a

unique maximal ideal in AZ+
ph . Similarly, by Lemma 4.3.5 any multiplicative functional

of the form (x1, x∞, y), (x∞, x1, y), with y ∈ M(A(D)), is bounded. We denote by ∆3

the sets of characters that give χ(Mλ) = 1, for all λ, and by ∆4 the characters that

satisfy χ(Dµ) = 1, for all µ.

The pursuit of the continuity of the remaining multiplicative functionals (on the

dense subalgebra) that correnspond to the points (x∞, x∞, y), we write ∆0, is more

subtle and it remains unclear to the author if this formula can generate a bounded

character of AZ+
ph .

Remark 4.3.7. It is trivial to show that given an element u of the commutator ideal

of a commutative Banach algebra A, then χ(u) = 0 for every character χ of A. The
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opposite direction is not true in the case that A contains quasinilpotent elements.

A complication with AZ+
ph is that we cannot determine if the elements of the form

Vt −MλVt −DµVt + CZ+
ph , λ, µ ∈ R+, t ∈ Z+ are quasinilpotent, a property which turns

out to be equivalent to the continuity of specific elements in ∆0.

We now obtain a partial identification of the character space of AZ+
ph , which is

sufficient for our main results in the next section. See Figure 4.1.

∆3 ∆1 ∆0 ∆2 ∆4

Fig. 4.1 The topological space ∆0 ⊔ ∆1 ⊔ ∆2 ⊔ ∆3 ⊔ ∆4.

Proposition 4.3.8. The character space M(AZ+
ph ) has the form ∆̃0 ⊔∆1 ⊔∆2 ⊔∆3 ⊔∆4,

where ∆̃0 is either the point {x∞, x∞, y0} or a closed disc in ∆0.

Proof. If there is no continuous character of M(AZ+
ph ) in ∆0, apart from {x∞, x∞, y0},

then there is nothing to prove. Assume now that χ is a continuous character in ∆0, so

χ(Vt) = zt for some z ̸= 0 in the unit disk. Hence

|
∑
t

χ(at)zt| ≤ ∥
∑
t

atVt∥ , at ∈ Ap.

Applying the dual automorphisms ϕeiθ of Ap ov Z+ for any θ ∈ (0, 2π), it follows that

|
∑
t∈N

χ(at)(zeiθ)t| ≤ ∥
∑
t∈N

eiθtatVt∥ = ∥
∑
t∈N

atVt∥.



128 Norm closed semigroup algebras

Therefore, by the maximum principle, each multiplicative linear functional of the form

atVt 7→ χ(at)wt, where |w| ≤ |r|, is continuous.

Theorem 4.3.9. The isometric isomorphisms of AZ+
ph are of the form

Φ(Mλ) = Mk1λ, Φ(Dµ) = Dk2µ and Φ(Vt) = c(t)Vt, (4.10)

where k1k2 = 1 and c : t 7→ c(t) is multiplicative.

Proof. Let Φ be an isometric isomorphism of AZ+
ph . Once again we consider the induced

homeomorphism

γ : M(AZ+

ph ) → M(AZ+

ph ) : χ 7→ χ ◦ Φ−1.

It follows by Proposition 4.3.8 that γ fixes the subset of characters ∆p = ∆1 ⊔(x∞,x∞,y0)

∆2. Hence the ideal I = ∩χ∈∆pkerχ is fixed by Φ. By Proposition 4.3.1 it follows

that the quotient algebra AZ+
ph /I is isomorphic to Ap/Cp. So the naturally induced

automorphism Φ̃ of the quotient algebra satisfies

Φ̃(Mλ + I) = d(λ)Mk1λ + I

Φ̃(Dµ + I) = c(µ)Dk2µ + I

where k1k2 = 1 and c, d are characters of the discrete group of the real numbers.

Applying the same argument as in Lemma 4.2.13 we get that Φ(Mλ) = d(λ)Mk1λ

and Φ(Dµ) = c(µ)Dk2µ. Now, since the characters in ∆3 are continuous, by the

commutation relations we get that

Φ(Vt)Φ(Mλ) = Φ(Mλet)Φ(Vt) ⇒ d(λ) = d(λet) ⇒ d(λ) = 1.
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Similarly, using the continuity of the characters in ∆4, we get that c(µ) = 1, for every

µ > 0. The argument to determine the image of the dilation operators is developed

entirely on L2(R). Since Φ(Vt)Mk1λ = Mk1λetΦ(Vt), if we right multiply both sides by

V ∗
t , we get

Φ(Vt)V ∗
t Mk1λet = Mk1λetΦ(Vt)V ∗

t .

Hence Φ(Vt)V ∗
t commutes with every Mλ, λ ∈ R, so it lies in the multiplication

algebra Mm, since this algebra is maximal abelian. Mimicking the same argument

for the commutation relation with the translation operator, we get that Φ(Vt)V ∗
t is

also in the translation algebra Dm. But the intersection of these two algebras is the

multiples of the identity operator, so Φ(Vt) = c(t)Vt. We proved that Φ satisfies

Φ(Mλ) = Mk1λ, Φ(Dµ) = Dk2µ,Φ(Vt) = c(t)Vt, where k1k2 = 1. Moreover since c is

multiplicative, we obtain that c(t) = eiθt, for some θ ∈ [0, 2π) independent of t. By

the universal property of the crossed product, any such mapping can extend to an

isometric isomorphism of Ap ov Z+.

Theorem 4.3.10. The algebra AZ+
ph is chiral.

Proof. It suffices to prove that AZ+
ph is not isometrically isomorphic to its conjugate

algebra (AZ+
ph )∗. If Φ was such an isomorphism, then following the same proof as in the

previous theorem we get that Φ(Mλ) = M−k1λ and Φ(Dµ) = D−k2µ. But then again,

we can prove that Φ(Vt)V ∗
t = c(t)I, so Φ(Vt) = c(t)Vt /∈ (AZ+

ph )∗.

4.3.2 The algebra AR+

ph

The approach to the triple semigroup algebra is similar to the case of AZ+
ph . Note that

the algebra generated by the unitary semigroup {Vt}t≥0 is isometrically isomorphic to
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AAP (R). Writing AAP3 for this algebra, we obtain that the mapping

M(AR+

ph ) → M(AAP1) × M(AAP2) × M(AAP3) : χ 7→ (χ
∣∣∣
AAP1

, χ
∣∣∣
AAP2

, χ
∣∣∣
AAP3

)

is continuous into the subset

(M(AAP1) × {x∞} × {x∞}) ∪ ({x∞} × M(AAP2) × {x∞})∪

∪({x1} × {x∞} × M(AAP3)) ∪ ({x∞} × {x1}×M(AAP3)) ∪ ({x∞} × {x∞} × M(AAP3)).

We also keep the notation for ∆1,∆2,∆3,∆4,∆0 as in the previous section. Note now

that each disk is homeomorphic to the topological space RB × [0,∞) ∪ ∞. Again,

the continuity of the characters in ∆1,∆2,∆3 and ∆4 follows from Propositions 4.3.1

and 4.3.5, while it is unknown to the author if the multiplicative linear functionals

in ∆0 are continuous. Moreover, it remains also unclear if Proposition 4.3.8 holds

in this case, since we may have continuous limit characters in ∆0. Nonetheless, let

χz be the multiplicative functional in ∆0, that evaluates a function in AAP3 to the

point z of the upper half plane of C. If χz was continuous, then mimicking the

proof of 4.3.8, we would get that any multiplicative functional of the form χw, where

Im(w) ≥ Im(z), is continuous. Moreover, any limit character in the closure of the set

{χw : Im(w) ≥ Im(z)} would be continuous.

Given now any isometric isomorphism Φ of AR+
ph , define the induced homeomorphism,

say γ, of the character space M(AR+
ph ) onto itself. Since by Theorem 1.2.22 the set of

limit characters has empty interior, it follows that γ permutes the discs. Hence it fixes

the set ∆p of characters that map the family of the dilation operators {Vt}t>0 to zero.

This is the closure of the set of characters of the norm closed parabolic algebra that are

extended uniquely in the triple semigroup algebra. Hence using the same arguments

we get that the restriction of Φ in Ap is a isometric automorphism of the parabolic
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algebra. Then, repeating the last argument of the proof of Theorem 4.3.9, we have the

corresponding result;

Theorem 4.3.11. The isometric isomorphisms of AR+
ph are of the form

Φ(Mλ) = Mk1λ, Φ(Dµ) = Dk2µ and Φ(Vt) = c(t)Vt,

where k1k2 = 1 and c : t 7→ c(t) is multiplicative. Furthermore, the algebra AR+
ph is

chiral.

Remark 4.3.12. As we showed in Theorem 3.5.1, the unitary automorphisms of the

weak∗-closed triple semigroup algebra Aph are of the form Ad(Vt). It is still unknown

if these are also the isometric isomorphisms of the algebra. In particular, it remains

unclear to the author if the dual automorphisms of the norm closed algebra AR+
ph can

be extended to its weak∗-closure.





Chapter 5

Further results/research

5.1 Quasicompact algebras

By the term quasicompact algebra, we mean an algebra of the type

QA = (A +K(H)) ∩ (A∗ +K(H)) ,

where A is a (usually weak∗-closed) operator algebra and K(H) is the ideal of the

compact operators on the Hilbert space on which A acts. We will refer to the algebra

QA as the quasicompact algebra of A.

In the past, analogous algebras have been studied systematically in the theory of

function spaces. The major example is the algebra of quasicontinuous functions

QC(T) = (H∞(T) + C(T)) ∩ (H∞(T)∗ + C(T)) ,

a C∗-algebra that contains strictly the algebra C(T) of continuous functions on the

unit circle (see [18]).
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In the case where the operator algebra A is a selfadjoint algebra, it is trivial

to see that QA = A + K(H). In general, the question of whether QA is equal to

A ∩ A∗ +K(H) seems to be deep.

The first result in this connection for non-selfadjoint operator algebras is related

with the quasitriangular algebra QAv of the Volterra nest. Let

Pv : C2(L2(R)) → Av ∩ C2(L2(R))

be the triangular truncation operator with respect to the Volterra nest. Even

though Pv is a contractive projection in the Hilbert-Schmidt norm, it is an unbounded

operator with respect to the operator norm (see [15]). This fact leads to the following

theorem.

Theorem 5.1.1. The quasicompact algebra QAv is strictly larger than the algebra

Av ∩ A∗
v +K(H).

We omit the proof, because it can be obtained by the same method used to prove

Theorem 5.1.5 below, with some simplifications.

In this section, we study the quasicompact algebra of Ap. Theorem 1.2.37 yields

that QAp is a C∗-algebra. Our goal is to answer the following problem :

Is the quasicompact algebra of Ap strictly larger than Ap ∩ A∗
p +K(H) = CI +K(H)?

Lemma 5.1.2. The restriction of the triangular truncation operator Pv

∣∣∣
Ap+A∗

p

is

unbounded.

Proof. Let pn be a real coefficient polynomial on T with supremum norm 1, such that

the polynomials fn(z) = pn(z) − pn(z) satisfy the property ∥fn∥∞ → 0. For example,

take

pn(z) = cn
n∑
k=1

1
k
zk.
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for appropriate constants cn. Let Z be a unitary operator in Ap with full spectrum,

such as M1. Take (Fn) to be a bounded approximate identity of Hilbert-Schmidt

operators in the unit ball of Ap. It is trivial to see that F ∗
n is a bounded approximate

identity on the space of Hilbert-Schmidt operators in A∗
p.

By the functional calculus, we have ∥pn(Z)∥ = ∥pn∥ = 1. Hence there exists a

sequence (ξn) in the unit sphere of L2(R), such that ∥pn(Z)ξn∥ > 2/3, for every n ∈ N.

If we fix some n ∈ N, then we get pn(ZFm)ξn → pn(Z)ξn. Therefore, we can choose

inductively a subsequence (Fmn), which will be denoted by (Fn), such that

∥pn(ZFn)ξn∥ > 1/2.

Since pn(ZFn) is an element of Ap, we have ⟨K, pn(ZFn)∗⟩H−S = 0, for every Hilbert-

Schmidt operator K ∈ Av and n ∈ N. Thus

∥Pv(pn(ZFn) − pn(ZFn)∗)∥ =∥Pv(pn(ZFn)) − Pv(pn(ZFn)∗)∥ =

= ∥pn(ZFn)∥ ≥ ∥pn(ZFn)ξn∥ > 1/2.

On the other hand, since ZFn is a contraction for every n ∈ N, von Neumann’s

inequality([50]) yields

∥p(ZFn) + q(ZFn)∗∥ ≤ ∥p+ q∥

for all p, q polynomials in the disc algebra. Taking p = pn and q = −pn, it follows

∥pn(ZFn) − pn(ZFn)∗∥ ≤ ∥pn − pn∥ → 0,

which completes the proof.
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Lemma 5.1.3. Let K be a compact operator in B(L2(R)). Given ϵ > 0, there exists

C compact subset of R, such that for all f ∈ L2(R) we have

1. ∥Kf∥ ≤ ∥K∥(∥PCf∥ + ϵ∥f∥);

2. ∥PR\CKf∥ ≤ ϵ∥f∥.

Proof. It suffices to prove it for K finite rank operator. Let gi, hi ∈ L2(R), i ∈

{1, . . . , n} such that

Kf =
n∑
i=1

⟨f, gi⟩hi, for all f ∈ L2(R).

For every compact set C we get

∥Kf∥ ≤
∥∥∥∥∥

n∑
i=1

⟨PCf, gi⟩hi
∥∥∥+

∥∥∥∥∥
n∑
i=1

⟨PR\Cf, gi⟩hi
∥∥∥ ≤

≤ ∥KPCf∥ +
n∑
i=1

∥PR\Cgi∥ ∥hi∥ ∥f∥.

Let ϵ > 0. Choose C1 such that

∥PR\C1gi∥ ≤ ϵ ∥K∥
n∑
i=1

∥hi∥

for all gi. Similarly,

∥PR\CKf∥ =
∥∥∥∥∥

n∑
i=1

⟨f, gi⟩PR\Chi
∥∥∥ ≤

n∑
i=1

∥gi∥ ∥PR\Chi∥ ∥f∥,

so we can choose C2 that satisfies

max
i

{∥PR\C2hi∥} ≤ ϵ ∥K∥
n∑
i=1

∥gi∥
.
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Take C = C1 ∪ C2.

Lemma 5.1.4. The algebra CI +K(H) is norm closed.

Proof. Let (cnI +Kn)n be a Cauchy sequence in CI +K(H) with cn ∈ C and Kn ∈

K(H). Then, given ϵ > 0, there exists N0 ∈ N such that for every n,m ≥ N0 we have

∥(cn − cm)I +Kn −Km∥ ≤ ϵ/2.

Take n,m > N0. By Lemma 5.1.3, there exists f ∈ L2(R) with unit norm such that

∥Knf∥ + ∥Kmf∥ < ϵ/4. Hence we obtain that

|cn − cm| = ∥(cn − cm)f∥ ≤ ∥(cn − cm)f + (Kn −Km)f∥ + ∥(Kn −Km)f∥ ≤ ϵ.

Thus (cn)n is a Cauchy sequence, which implies that the limit of the sequence (cnI+Kn)n

lies in CI +K(H).

Now, we are in the position to give an affirmative answer to the problem stated

above.

Theorem 5.1.5. The quasicompact algebra of Ap is strictly larger than the algebra

Ap ∩ A∗
p +K(H) = CI +K(H).

Proof. Take operators pn(ZFn) as in the proof of Lemma 5.1.2. Since these operators

are compact, there exist compact intervals Kn of the real line, such that for any

f ∈ L2(R) we have

∥pn(ZFn)f∥ ≤ ∥PKnf∥ + 1
2n∥f∥ (5.1)

and

∥PR\Knpn(ZFn)f∥ ≤ 1
2n∥f∥ (5.2)
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where PKn is the projection on Kn. We also demand

∥ (pn(ZFn) − pn(ZFn)∗) f∥ ≤ ∥pn(ZFn) − pn(ZFn)∗∥
(

∥PKnf∥ + 1
2n∥f∥

)
(5.3)

and

∥PR\Kn (pn(ZFn) − pn(ZFn)∗) f∥ ≤ 1
2n∥pn(ZFn) − pn(ZFn)∗∥ ∥f∥. (5.4)

Choose tn >> 0, in order to force the sets Λn = Kn + tn := {xn + tn : xn ∈ Kn} to

be disjoint, and in particular

max Λn < min Λn+1.

We also write Λ0 = R\ ∪∞
n=1 Λn. Since the projection of triangular truncation with

respect to the binest commutes with AdDt , it follows that the operators

An = Dtn(pn(ZFn))D∗
tn

lie in Ap.

Claim 1: Given f ∈ L2(R), the sequence {
n∑
k=1

Akf}n is convergent.

To prove our claim, it suffices to show that the given sequence is Cauchy. Let

ϵ > 0, we need to configure n0 = n0(ϵ, f) ∈ N such that for every n,N > n0 we have

∥
N∑
k=n

Akf∥ ≤ ϵ. Denote by C the compact set ∪N
m=nΛm. Then

∥∥∥∥∥
N∑
k=n

Akf

∥∥∥∥∥
2

=
∫
R\C

∣∣∣∣∣
N∑
k=n

Akf

∣∣∣∣∣
2

+
∫
C

∣∣∣∣∣
N∑
k=n

Akf

∣∣∣∣∣
2

.

We estimate each integral separately.

•
∫
R\C

∣∣∣∣∣
N∑
k=n

Akf

∣∣∣∣∣
2

=
∥∥∥∥∥PR\C

N∑
k=n

Akf

∥∥∥∥∥
2

≤
(

N∑
k=n

∥PR\CAkf∥
)2

≤
(

N∑
k=n

1
2k ∥f∥

)2

=
(

N∑
k=n

1
2k

)2

∥f∥2.
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•
∫
C

∣∣∣∣∣
N∑
k=n

Akf

∣∣∣∣∣
2

=
∫
R

∣∣∣∣∣
N∑

m=n
PΛm

N∑
k=n

Akf

∣∣∣∣∣
2

≤ 2
∫
R

∣∣∣∣∣
N∑

m=n
PΛmAmf

∣∣∣∣∣
2

+ 2
∫
R

∣∣∣∣∣
N∑

m=n

N∑
k=n
k ̸=m

PΛmAkf

∣∣∣∣∣
2

.

The first term gives

∫
R

∣∣∣∣∣
N∑

m=n
PΛmAmf

∣∣∣∣∣
2

=
N∑

m=n
∥PΛmAmf∥2 ≤

N∑
m=n

(∥PΛmf∥ + 1
2m∥f∥)2 ≤

≤
N∑

m=n

(
∥PΛmf∥2 +

( 2
2m + 1

22m

)
∥f∥2

)
≤

≤ ∥PCf∥2 +
(

N∑
m=n

( 2
2m + 1

22m

))
∥f∥2.

Note that for every ϵ1 > 0, we can choose n0 big enough such that ∥PAf∥ ≤ ϵ1∥f∥,

where A = ∪∞
m=n0Λm.

For the second term, it follows by relation (5.2) that

∫
R

∣∣∣∣∣
N∑

m=n

N∑
k=n
k ̸=m

PΛmAkf

∣∣∣∣∣
2

=
∥∥∥∥∥

N∑
m=n

N∑
k=n
k ̸=m

PΛmAkf

∥∥∥∥∥
2

=
∥∥∥∥∥

N∑
k=n

N∑
m=n
m ̸=k

PΛmAkf

∥∥∥∥∥
2

=

=
∥∥∥∥∥

N∑
k=n

PC\Λk
Akf

∥∥∥∥∥
2

≤
(

N∑
k=n

∥PC\Λk
Akf∥

)2

≤

≤
(

N∑
k=n

1
2k ∥f∥

)2

=
(

N∑
k=n

1
2k

)2

∥f∥2.

Combining the above estimates we get

∥∥∥∥∥
N∑
k=n

Akf

∥∥∥∥∥
2

≤

3
(

N∑
k=n

1
2k

)2

+ 2
N∑

m=n

( 2
2m + 1

22m

)
+ 2ϵ2

1

 ∥f∥2.

Hence, there exists n0 ∈ N such that ∥
N∑
k=n

Akf∥2 ≤ ϵ, for all n,N > n0, so we proved

our claim.

Claim 2: The sequence {
n∑
k=1

Ak}n is uniformly bounded.
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Let f ∈ L2(R). Then

∥∥∥∥∥
n∑
k=1

Akf

∥∥∥∥∥
2

= lim
M→∞

∥∥∥∥∥
M∑
m=0

PΛm

n∑
k=1

Akf

∥∥∥∥∥
2

.

Then

∥∥∥∥∥
M∑
m=0

PΛm

n∑
k=1

Akf

∥∥∥∥∥
2

≤ 2
∥∥∥∥∥

n∑
k=1

PΛk
Akf

∥∥∥∥∥
2

+ 2
∥∥∥∥∥

n∑
k=1

M∑
m=0
m̸=k

PΛmAkf

∥∥∥∥∥
2

.

Applying now the relation (5.1) we obtain

∥∥∥∥∥
n∑
k=1

PΛk
Akf

∥∥∥∥∥
2

≤
n∑
k=1

(
∥PΛk

f∥ + 1
2k ∥f∥

)2
=

=
n∑
k=1

∥PΛk
f∥2 +

n∑
k=1

( 2
2k + 1

22k

)
∥f∥2 ≤ 4∥f∥2.

Moreover

∥∥∥∥∥
n∑
k=1

M∑
m=0
m̸=k

PΛmAkf

∥∥∥∥∥
2

≤

 n∑
k=1

∥∥∥∥∥
M∑
m=0
m ̸=k

PΛmAkf

∥∥∥∥∥


2

≤
(

n∑
k=1

∥PR\Λk
Akf∥

)2

≤
(

n∑
k=1

1
2k ∥f∥

)2

=

=
(

n∑
k=1

1
2k

)2

∥f∥2 ≤ ∥f∥2.

Hence the norms ∥
n∑
k=1

Ak∥ are uniformly bounded. Write K := supn ∥
n∑
k=1

Ak∥ < ∞.

Define the operator A acting on L2(R) by the formula

Af = lim
n

n∑
k=1

Akf,

By our first claim the operator A is well defined. One can check that it is also linear by

routine calculations. Our second claim tells us that ∥Af∥ ≤ K∥f∥, for every f ∈ L2(R),

so A is bounded. In particular A is by construction the SOT-limit of the sequence
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{
n∑
k=1

Ak}n, so it lies in Ap. Define now the Hilbert-Schmidt operators

Xn := An − A∗
n = Dtn(pn(ZFn) − pn(ZFn)∗)D∗

tn

and note that ∥Xn∥ → 0. Mimicking similar arguments as above we get that the

sequence of the partial sums of
∞∑
n=1

Xn is Cauchy with respect to the operator norm, so

the norm limit X =
∞∑
n=1

Xn lies in the norm closure of the Hilbert-Schmidt operators,

which yields that X is a compact operator acting on L2(R). Since involution is

continuous in the WOT-topology, we get that A− A∗ = X. Therefore,

A ∈ (Ap +K(H)) ∩ (A∗
p +K(H)),

so it remains to show that A /∈ CI +K(H).

Assume that this is not true, so by Lemma 5.1.4 there exists c ∈ C and K ∈ K(H),

such that

A = cI +K.

We left multiply both sides by the projection PΛ0 . Recall that multiplication is

separately SOT-continuous, so PΛ0A is the SOT-limit of the operators {
n∑
k=1

PΛ0Ak}n.

Moreover we have the estimates

∥PΛ0Ak∥ ≤ 1
2k , for every k ∈ N,

so the above sequence converges uniformly to PΛ0A. Therefore PΛ0A is a compact

operator. Since we created the sets Λn by one-sided shifts, Λ0 is an unbounded set of
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infinite measure, and this yields that c = 0. But this implies that A is compact, which

gives the desired contradiction.

It is natural to consider also the intersection of different quasitriangular algebras. In

particular, it remains unclear to the author if the algebra (Av +K(H)) ∩ (Aa +K(H))

is strictly larger than Ap + K(H). The question seems to be closely related to the

general open problem of a distance formula for the parabolic algebra (see [56] for

example).

5.2 Operator Algebras from the discrete Heisen-

berg semigroup

5.2.1 The algebra TL(H+)

Let H be the (discrete) Heisenberg group, that is the group of all matrices of the

form

[n, k,m] =


1 m n

0 1 k

0 0 1



where k,m, n ∈ Z. We write H+ for the semigroup of H that consists of the elements

[n, k,m] with k,m ≥ 0 and n ∈ Z. One can check that H+ is generated by the elements

u = [0, 0, 1], v = [0, 1, 0], w = [1, 0, 0] and w−1 = [−1, 0, 0].

The element w is central and uv = wvu.
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Recall that the left regular representation of a discrete group G on ℓ2(G) is given

by the formula

L : G → B(ℓ2(G)) : (Lgx)(h) = x(g−1h), x ∈ ℓ2(G), g, h ∈ G.

We identify the space ℓ2(H) with the Hilbert space H = ℓ2(Z) ⊗ ℓ2(Z) ⊗ ℓ2(Z) by the

map that sends the element of the canonical orthonormal basis of H corresponding

to wnvkum ∈ H to the elementary tensor en ⊗ ek ⊗ em. Note that the subspace

H = ℓ2(Z) ⊗ ℓ2(Z+) ⊗ ℓ2(Z+) is left invariant by L(H+). The weak∗-closed algebra

generated by the image of the left regular representation of H+, restricted to the

invariant subspace H, will be denoted by TL(H+). Hence TL(H+) is generated by the

operators Lu, Lv, Lw and L−1
w on H given by:

Lu(en ⊗ ek ⊗ em) = en+k ⊗ ek ⊗ em+1

Lv(en ⊗ ek ⊗ em) = en ⊗ ek+1 ⊗ em

Lw(en ⊗ ek ⊗ em) = en+1 ⊗ ek ⊗ em.

Since the span of these operators is closed under multiplication, the algebra TL(H+)

coincides with the weak∗-closed span of the set

{LnwLkvLmu : n ∈ Z, k,m ∈ Z+}.

The following result can be found in [2].

Theorem 5.2.1. (Anoussis, Katavolos and Todorov) The algebra TL(H+) is reflexive.

The main tools of the proof in [2] were the bicommutant property of TL(H+) and the

use of a direct integral decomposition for non-selfadjoint algebras ([8]). In the following,
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we will give a more direct proof of the result by applying a result of Kakariadis [34].

First we need to give a short introduction to the theory of the w∗-semicrossed products.

Let A ⊆ B(H0) be a unital weak∗-closed subalgebra and α : A → A be a contractive

weak∗-continuous endomorphism of A. Denote by H the Hilbert space H0 ⊗ ℓ2(Z+).

The w∗-semicrossed product A ×α Z+ is a weak∗-closed subalgebra of B(H), where we

can represent both the algebra A and the action of the endomorphism α. Define the

faithful representation

π : A → B(H) : a 7→ diag{αn(a) : n ∈ Z+} =



a 0 0 . . .

0 α(a) 0 . . .

0 0 α2(a) . . .

... ... . . . .


.

We also represent Z+ on H by the isometries V n = IH0 ⊗ sn, where IH0 is the identity

operator in B(H0) and s is the unilateral shift acting on ℓ2(Z+). Check that pair (π, V )

satisfies the covariant relation

π(a)V = V π(α(a)),

hence it will be called covariant pair.

Definition 5.2.2. The w∗-semicrossed product A ×α Z+ is the weak∗-closure of

the linear space of the "analytic polynomials"
N∑
n=0

V nπ(an), an ∈ A.

It follows from the covariance relation that the w∗-semicrossed product is a unital

non-selfadjoint subalgebra of B(H). In particular, A×αZ+ lies in the w∗-tensor product

A⊗B(ℓ2(Z+)), that is the weak∗-closure of the algebra generated by the elementary

tensors a⊗ b, with a ∈ A, b ∈ B(ℓ2(Z+)).
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A standard tool that we use in the theory of w∗-semicrossed products is a Fejer-

type lemma. Consider for every s ∈ T the unitary operator Us ∈ B(H), given by

Us(h⊗en) = einsh⊗en. Given T ∈ B(H) and n ∈ Z define the “mth-Fourier coefficient”

Gm(T ) = 1
2π

∫
T
UsTU

∗
s e

−imsds

where the integral is considered as the weak∗-limit of Riemann sums. One can check

that for every m ∈ Z, the function Gm(·) is weak∗-continuous. If we set now

σn(T )(t) = 1
n+ 1

n∑
k=0

k∑
m=−k

Gm(T )eimt,

then σn(T )(0) w∗
→ T . The Fourier coefficient Gm(T ) can be represented in the “matrix

form” of an operator as the mth-diagonal of T . For every m,n ∈ Z+, let the “matrix

elements” Tm,n ∈ B(H0) of T be defined by

⟨Tm,nh, g⟩ = ⟨T (h⊗ en), g ⊗ em⟩, h, g ∈ H0.

Then

Gm(T ) =


V m(∑

n≥0
Tm+n,n ⊗ pn), if m ≥ 0

(∑
n≥0

Tn,−m+n ⊗ pn)(V ∗)−m, if m < 0,

where pn ∈ B(ℓ2(Z+)) is the projection onto [en]. For the proof of the following theorem

we refer the reader to [34].
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Proposition 5.2.3. An operator T ∈ B(H) belongs to the w∗-semicrossed product if

and only if Tm,n ∈ A for every m,n ∈ Z and

Gm(T ) =


V mπ(Tm,0), if m ≥ 0

0, if m < 0

In the special case where α is implemented by a unitary w acting on the space H0,

so that α(a) = waw∗ for all a ∈ A, we can create a new covariant pair, by transfering

the action of the endomorphism α in the representation of Z+ on H. Indeed, take the

pair (ρ,W ), where ρ is the representation

ρ : B(H0) → B(H) : b 7→ b⊗ 1ℓ2(Z+) =


b 0 . . .

0 b . . .

... ... . . .



and the operator W as follows

W = w∗ ⊗ s =



0 0 0 . . .

w∗ 0 0 . . .

0 w∗ 0 . . .

... ... . . . . . .


.

Denote now by A ×w Z+ the weak∗-closure of the "analytic polynomials"
N∑
n=0

W nρ(an),

with an ∈ A. Note that A ×w Z+ is unitarily equivalent to A ×α Z+, via the unitary

Q = ∑
n≥0

w−n ⊗ pn. Therefore we refer to A ×w Z+ as the w∗-semicrossed product, as

well. Furthermore, Proposition 5.2.3 yields the following characterization.
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Proposition 5.2.4. An operator T ∈ B(H) belongs to the w∗-semicrossed product if

and only if Gm(T ) = Wmρ(am) for some am ∈ A, when m ≥ 0 and Gm(T ) = 0 when

m < 0.

The aforementioned result of Kakariadis is the next theorem ([34], Theorem 2.9).

The main argument of the proof is an elaborate adaptation of Sarason’s proof for the

reflexivity of H∞(T) given in [68].

Theorem 5.2.5. (Kakariadis) If A is a reflexive algebra, then A×wZ+ is also reflexive.

Let now H0 = ℓ2(Z) ⊗ ℓ2(Z+) and A be the weak∗-closed algebra that is generated

by the operators ℓw, ℓ−1
w and ℓv, which act on H0 as follows

ℓw(en ⊗ ek) = en+1 ⊗ ek

ℓv(en ⊗ ek) = en ⊗ ek+1.

Note that the operators ℓw,ℓv commute, so A is unitarily equivalent with the algebra

L∞(T) ×I Z+, where I is the identity operator acting on ℓ2(Z). Hence it follows from

the previous theorem that A is reflexive. Define now on H0 the unitary operator

ℓu(en ⊗ ek) = en−k ⊗ ek.

Since ℓvℓu = ℓwℓuℓv, the operator ℓu implements an automorphism of A. Hence, if

H = H0 ⊗ ℓ2(Z+), the semicrossed product A ×u Z+ is a reflexive subalgebra of B(H).

We want to determine the generators ρ(ℓw), ρ(ℓv), ℓ∗
u ⊗ s of the w∗-semicrossed product.

Compute

ρ(ℓw)(en ⊗ ek ⊗ em) = en+1 ⊗ ek ⊗ em = Lw(en ⊗ ek ⊗ em)

ρ(ℓv)(en ⊗ ek ⊗ em) = en ⊗ ek+1 ⊗ em = Lv(en ⊗ ek ⊗ em)
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(ℓ∗
u ⊗ s)(en ⊗ ek ⊗ em) = en+k ⊗ ek ⊗ em+1 = Lu(en ⊗ ek ⊗ em).

Therefore the algebras A ×u Z+ and TL(H+) are weak∗-closed algebras that share the

same generators, so they coincide. Therefore we established again the reflexivity of the

latter algebra and thus we obtain a new proof of theorem 5.2.1.

5.2.2 Some subalgebras of TL(H+)

Let now TL(H+)− be the subalgebra of TL(H+) that is generated by the operators

IH , Lu, Lv, L
∗
w. Check that this algebra contains the element LuLv = LwLvLu, but not

the element Lw. Applying the same arguments as above we can identify TL(H+)−

with a w∗-semicrossed product. Indeed, if A− is the weak∗-closed algebra that is

generated by the operators IH0 , ℓ
∗
w and ℓv, then A− can be identified with the algebra

H∞(T) ×I Z+, with H∞(T) viewed as an operator algebra, acting by multiplication

on L2(T). The unitary operator ℓu induces an endomorphism of A−. Since the latter

algebra is reflexive, we obtain that A− ×u Z+ is reflexive. Since TL(H+)− is equal to

the w∗-semicrossed product algebra, we have the following theorem.

Theorem 5.2.6. The algebra TL(H+)− is reflexive.

Consider now the strictly positive Heisenberg semigroup H++, the subgroup of H+

that consists of the elements [k,m, n], where k,m, n ≥ 0. We are interested in the

weak∗-closed algebra TL(H++) generated by the operators Lg, g ∈ H++ acting on the

invariant subspace ℓ2(H++). In particular, using a similar identification of ℓ2(H++)

with the Hilbert space H = ℓ2(Z+)⊗ℓ2(Z+)⊗ℓ2(Z+), the algebra TL(H++) is generated

by the operators IH , Lu, Lv and Lw on H, where IH is the identity operator in B(H),

and the rest are the restriction of the corresponding operators defined in the previous

section. Again, by the commutation relations, the algebra TL(H++) is equal to the

weak∗-closed linear span of the products LnwLkvLmu , where n,m, k ∈ Z+.
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It is natural to ask about the reflexivity and possible identifications of the algebra

TL(H++) with w∗-semicrossed products. However, the standard proof that was used

above gives no result, so new arguments need to be developed for this case.
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