
IoT Mashups with the WoTKit

Michael Blackstock, Rodger Lea
Media and Graphics Interdisciplinary Centre

University of British Columbia
Vancouver, Canada

mblackst@magic.ubc.ca, rlea@ece.ubc.ca

Abstract—Toward reducing barriers for developing applications
for the Internet of Things, researchers have connected things to
the web enabling the development of IoT mashups. While
establishing a Web of Things for mashup development has been
an important step forward, we believe that web-centric IoT
toolkits have the potential to increase the use of Internet-enabled
things further by increasing the pool of developers and
applications that can take advantage of the connected physical
world. In this paper we derive several key requirements for IoT
mashup toolkits based on existing systems, past research and our
experience with an IoT mashup toolkit called the Web of Things
Toolkit (WoTKit). Unlike other systems, the WoTKit aims to
address key requirements for IoT mashup developers in one
system. From this experience we derive key lessons learned for
the community toward improving toolkits for developing IoT
mashups.

I. INTRODUCTION
The Internet of Things (IoT) promises to enable novel

applications in areas such as home automation, the
environment, social networks, transportation, and health. To
ease the development of large scale IoT applications, various
high-end IoT or M2M platforms and toolkits have been
developed. While their power and flexibility often affords the
broadest range of possible solutions, this can come at the cost
of complexity and a steep learning curve for web developers
who aim to build IoT mashup applications: web applications
using data and services available on the web. Mashups are
often personalized, situational, short-lived, non-business
critical applications developed using familiar web development
tools and technologies [8]. We believe that innovative and
novel new IoT services will be realized when tools are
available that reduce barriers to entry for the development of
this important class of applications.

Toward this goal, researchers have built on the ubiquity of
web protocols and the Representational State Transfer (REST)
architectural style of the web [1] to connect “islands of
functionality” [2] calling this approach the Web of Things [3–
5]. Things are identified by URIs and use a common protocol
(HTTP) for stateless interaction between clients and servers.
Using web protocols makes the creation of mashups possible
allowing developers to combine data from both physical data
sources and virtual sources on the web [6–8]. While leveraging
the ubiquity of the web is an important step forward, we
believe a further step, of developing web-centric IoT mashup
toolkits has the potential to increase the use of Internet-enabled
things further by increasing the pool of developers and

applications that can take advantage of the connected physical
world.

In this paper we derive the requirements of IoT mashup
toolkits from several representative existing systems and our
experience with a platform we’ve developed called the Web of
Things Toolkit (WoTKit). Based on three years of experience
with this system and other systems [9–11], we derive key
lessons learned to share with the community. These lessons
aim to shape the future evolution of WotKit but also, we hope,
help shape and improve other toolkits and contribute to the
vision of the IoT as a foundation for novel and innovative new
applications and services.

II. BACKGROUND
Several high-end IoT or M2M systems such as ThingWorx

[12] , AirVantage [13] and Axeda [14] provide many of the
capabilities required for large scale IoT application
development. Unlike more web-centric systems, these systems
include support for non-HTTP protocols, device management,
data management, and security. While these systems are
flexible and powerful, they often require an investment by
qualified developers to fully utilize their capabilities.
Additionally, these systems generally do not have a focus on
web development, and do not aim to enable a connected
Internet of Things where things are shared on the Internet to
create quick mashup applications. Rather these systems
concentrate on customized, and often closed, business solutions
for specific applications and organizations.

In contrast, there have been a number of web centric
platforms for the IoT that aim to encourage rapid IoT
application development. Pachube [15] aggregates collections
of data streams called feeds to store information about sensors
and the data they emit over time. The service also provides a
directory of applications that provide processing, integration
and data visualization capabilities. Developers can send data to
the system, or set up device gateways to be polled by hosting a
web server. The system supports the notion of triggers, where
data from a feed can be sent immediately to a specified URL
when a condition is met. A key feature of Pachube is the
ability to share sensors and data, allowing others to take
advantage of the integration work of others.

The Open Sen.se toolkit [16] aims to provide a set of
applications for users to track data from themselves and their
things. Users create dashboards called Sense Boards
containing the user interface from a wide collection of plug ins
installed by the user to enter, visualize and process data.

Developers can easily integrate devices such as a suitably
equipped Arduino by sending or receiving data from named
input and output feeds that containing time stamped values
using its RESTful API. Output feeds allow Sen.se to not only
collect sensor data, but also control things. Unlike Pachube,
Open Sen.se feeds can contain integers, float, boolean and
string values. Currently, Sen.se devices cannot be shared with
others on the system.

Paraimpu [17], [18] is a relatively new system now entering
widespread testing1 that aims to connect physical and virtual
things to Web including arduino devices, social networks and
other IoT platforms such as Pachube. Paraimpu provides a
palette of configurable sensors, actuators and connections that
provide processing capability such as filtering and mapping
between sensor inputs and actuator outputs. Sensors and
actuators can be public, allowing them to be shared between
Paraimpu users who are also your friends2.

ThingSpeak [19] supports a simple data model of channels
that contains up to eight typed fields. Each field is visualized
on the channel page of the site. ThingSpeak includes several
applications that support web service integration, triggers, and
integration with twitter. “Plug ins” that can display data from
ThingSpeak in mashups can be created on the platform.

Tools and frameworks have emerged to ease the
development of mashup applications [8], [20–23]. Yahoo Pipes
is used to collect and process data using a dataflow-
programming paradigm. Google Fusion Tables3 can be used to
collect and merge data for use in visualizations. Mixup [21]
and QedWiki [23] from IBM are mashup tools that integrate
information from the web at the presentation layer. Unlike
web-centric IoT toolkits, these general-purpose mashup all
require integration work to aggregate data from objects in the
real world.

1 Alpha testing is ongoing as of April 22, 2012.
2 Paraimpu friends are Twitter followers.
3 Google Fusion Tables

http://www.google.com/fusiontables/public/tour/index.html#
Accessed May 7, 2012

Each of these representative systems bring to light one or
more requirements for a comprehensive IoT mashup toolkit.
We believe that no one system to date has addressed them all.
Pachube for example, supports only numeric sensor data, and
its built in processing capability is limited to the ability to send
triggers when a certain criteria is met. Pachube and ThingSpeak
focus on supporting storage for sensor feeds, but do not support
visualization dashboards as part of the toolkit. Sen.se supports
built in visualization and processing components, but does not
supporting sharing devices with others on the platform itself.
Paraimpu supports easy integration, but no visualization,
focusing on connecting input sensors to output actuators that
include physical devices and social networks. Sen.se uses
individual applications for processing and visualization,
making it difficult for a developer to combine components, and
write new processing components with the platform itself.
Both ThingSpeak and Pachube have easy to use and RESTful
APIs, but do not include flexible visualization dashboards or a
processing engine out of the box.

In the next section we describe our experience with
developing mashup applications using WoTKit with the goal of
better understanding the complete set of requirements for an
effective IoT mashup toolkit.

III. MASHUP EXPERIENCE
Like others, we envision IoT applications in a variety of

areas such as home automation, the environment, social
networks, transportation, and health monitoring. To date we
have found the early implementation of WoTKit flexible and
robust enough to begin using it for development. Initially we
focused on collecting a wide variety of data to make it
available on the system for web developers.

Researchers in the health domain have found WoTKit to be
a useful prototyping tool [24]. The system was used to monitor
the output from Bluetooth based pulse oximeters. These
sensors were connected to a Bluetooth PAN host, which
relayed the data to the WoTKit for visualization to facilitate
patient monitoring during movement and transportation. The
sensors and dashboard on a laptop for monitoring are shown in
[24].

We have also used the WoTKit to prototype a mobile air
quality monitoring application. To gather the needed data we
wrote a simple script to query for updates to air quality
information supplied on a public web site. This was then
pushed into the WoTKit in a format that made it easy to
process by a mobile application .

For transportation-related scenarios we have integrated
several sources of location data. We have written simple
applications for Android phones that relay the GPS coordinates
of the user to the system periodically. We have also created a
Google Latitude gateway to relay the location of users in the
system for monitoring transportation patterns. To monitor
several vehicles in a prototype dispatch application, the
WoTKit’s Processing Engine was used to aggregate sensors
and display them on the Google Maps widget in the dashboard.

Figure 1. Laptop connected to Bluetooth Pulse Oximeter with

WoTKit dashboard

A recent application used multiple sensors on Android and iOS
smart phones to send users’ locations and their transportation
mode inferred from both GPS and accelerometer readings as in
[25]. An aggregation script then accessed the WoTKit API to
view traffic congestion as shown in Figure 2. Unlike our
previous transportation applications, this aggregation script
performs periodic processing on a single feed that collects
sensor data from all users, rather than processing the data as it
arrived using the WoTKit Processing Engine.

To gauge the system’s usefulness for home automation
applications we have written simple gateways for Phidget
sensors and actuators such as servo motors. More recently we
have used the system to monitor activity using Zigbee based
temperature, light and power sensors which deliver, via a
gateway, data to visualizations supplied by the WoTKit on the
web. We have integrated several hardware sensors including
light sensors and custom power sensors connected to power
bars and outlets.

In support of these mashups and other applications we
provide a simple mechanism for posting sensor data and
support a variety of sensor feeds ranging from physical
infrastructure such as CPU, Network and power usage, through
web data (scraped via tools such as Beautiful Soup4) such as
airport arrival/departures, ferry and bus status upto softer
sensor sources such as ‘Tweets’ and other social network feeds.

IV. TOOLKIT REQUIREMENTS
Based on our understanding of existing toolkits and our

experience with the deployment of WoTKit mashups, we have
identified seven abstract requirements that a web-centric IoT
toolkit needs to address:

A. Meta-data and Data Storage
While it is clear that IoT platforms need to store thing data,

e.g. sensor readings etc, it is perhaps less clear that they also

4 Beautiful Soup. http://www.crummy.com/software/BeautifulSoup/.

Accessed March 15, 2012.

need to store information about the things they are managing
on behalf of the community of developers they serve, as well as
some subset of the sensor data generated. Meta-data includes
location, tags, and descriptions, enabling users to find things
for their mashups. Sensor data includes numerical physical
sensor readings such as temperature, light, power, or less
structured data such twitter updates.

Tight integration of meta-data with sensor data and a simple
means to query and use this meta level information is
invaluable for rapid mashup development. While it is possible
for meta-data to reside elsewhere, perhaps even in devices
connected to the IoT, an ability to quickly search and connect
to data sources provides an easy and intuitive way for
application developers to locate and use thing data.

B. Integration
It can be difficult to integrate things with the web. Several

toolkits, especially Sen.se and Paraimpu make it easy to
integrate data from variety of devices such as Arduino-based
projects, as well as web-based data sources such as social
network feeds.. New gateways need to be developed that
provide a web server interface to the thing. This means that the
integrator needs to decide on the appropriate representations for
things, decide on a security models for access and sharing. In
some cases, it can be difficult to make the web presence of
things available to the outside world because of firewalls.

To simplify this integration task, most toolkits serve as a
hub for interacting with things. When the state of things
changes, or periodically, a script or gateway can send
information to the platform where it is saved and/or relayed to
applications. There should be no need for each developer to set
up a web server and decide on a suitable representation for the
things they would like to integrate – the toolkit can provide this
service.

C. Visualization
To make it easier to create useful and aesthetically pleasing

visualizations, Se.nse and several general-purpose mashup
tools provide a variety of visualizations of data from things ‘out
of the box’. Google and others have contributed visualization
frameworks to make it straightforward for web developers to
draw graphs, charts and maps. Unfortunately these
frameworks depend on different representations for the data.
The Google Chart Tools API 5 has its own JSON data
representation, the jQuery Flot plug-in6 uses another; Google
Maps uses KML and the Google Maps API. To make it
straightforward to generate visualizations, a toolkit should
bridge the gap between the data representations of data from
things to that needed for visualization frameworks.

While these frameworks have made it easier for developers
to programmatically add custom visuals to their custom

5 Google Charts Tools.

https://developers.google.com/chart/interactive/docs/index.
Accessed May 10, 2012.

6 Flot jQuery Plug-in. http://code.google.com/p/flot/. Accessed May
10, 2012.

Figure 2. Traffic hotspots application aggregates

transportation mode and location.

applications, in many cases developers just need a quick way of
visualizing different types of data. For example, a gauge can
be used to visualize speed, a map to visualize location, and a
bar chart to see power use over time. Toolkits should support a
ready-to-use dashboard for quickly visualizing data from the
platform, or to control various actuators in a flexible manner.

D. Control
Sen,se and Paraimpu not only collect data but can output

data, to control or actuate things. This may include sending a
message to a twitter feed, turning on or off an LED, or moving
a servo. In addition to collecting data from sensors, it should
be possible for a toolkit to control things and send data to the
web. It may be desirable for a mashup to turn on the heat just
before I arrive home in the evening, water plants when the soil
becomes too dry, or tweet the current temperature in a
greenhouse to open or close windows. To do this, the toolkit
should support a means for transmitting to web-connected
devices and data feeds.

E. Sharing
Pachube and Sen.se provide a capability for users to share

their integrated thing data streams and, in some cases, other
toolkit components. A key enabler for the web of things is to
permit others to access and use the things that have been
published publicly on the web. It should be possible for users to
make use of things that others have shared and to make use of
things in their own applications, perhaps in ways unanticipated
by the owner of the thing. This requirement means we need a
sophisticated set of mechanisms to publish and share things -
and ways to find and access those things.

F. Processing and Alerts
An easy to use information processing capability to support

simple data processing is included with Sen.se as well as
toolkits like Yahoo Pipes. In many scenarios, data from
multiple sensors needs to be combined and processed. In some
cases, alerts need to be sent when an interesting event occurs;
Pachube includes such an alerting capability. One challenge in
providing data processing capability in a toolkit is the need to
find a balance between ease of use, expressivity and generality
in a programming language. Ideally a toolkit should allow
developers to create their own processing facilities, either by
combining existing processing modules, or creating new ones.
Toward addressing this issue for developers, visual
programming languages have been used to ease the
development of mashups. Yahoo Pipes allows developers to
easily combine Internet data from various sources to provide
new sources of data and simple visuals. Some systems such as
Sen.se and Paraimpu provide configurable processing
components that can be dropped into the system as is, but these
components are relatively stand alone, making it difficult to
combine them to process data in unanticipated ways.

G. Application Programming Interface
Existing IoT Mashup systems support developers by

providing an API to the things they integrate, making it
possible to scale the application from a quick prototype to more
advanced application services. Since a toolkit cannot provide
all of the functionality needed by an application, it is important
to support the integration of external applications and
components. Once an application is prototyped, a suitable API
allows developers to create their own custom applications,
visualizations and processing components, or integrate new
sources of data into the system. Ideally, the programming
interface should be RESTful to allow web developers to take
advantage of the extensive tools and techniques available.

These abstract requirements have evolved out of an analysis
of existing systems and our own work, which has spanned wide
area UbiComp platforms [9], [26], IoT platforms [11] and most
recently the WoTKit. In the next sections we describe the
WoTKit and its design and implementation.

V. WOTKIT OVERVIEW
WoTKit is a Java web application that leverages the Spring

Framework7 a popular development framework for enterprise
applications. The data model consists of sensors with fields
describing either a sensor or actuator connected to the system.
Sensors are associated with time stamped sensor data
containing multiple typed fields. To deliver sensor data
between components, a standard Java Messaging Service
(JMS) broker called Active MQ8 is used for moving new data
between components for fast processing and control
applications. The high level architecture of WoTKit is shown in
Figure 3.

Included in the main web application is a data model for
managing user’s dashboards and visualizations. Visualizations

7 Spring Framework http://www.springsource.org/. Accessed May 10,

2012
8 Active MQ http://activemq.apache.org/. Accessed May 10, 2012

Figure 3. WoTKit architecture

are associated with sensors to create “widgets” that are added
to the user's dashboard for rapid visualization of sensor data.
When a dashboard is displayed in the browser, it requests the
user’s dashboard configuration and dynamically draws the
various visuals containing sensor data.

A key difference between WoTKit and other web centric-
toolkits is in how visualization and processing facilities are
delivered. Rather than providing these components as
applications or plug-ins, they are provided as core system
facilities. Like others, the WoTKit serves as a sensor data
aggregator, visualization, remote control and processing tool.
It aggregates data from a variety of sensors, and allows simple
control messages to be passed to actuators. WoTKit allows
users to quickly find and subscribe to sensor data of interest,
process data and visualize the data using widgets on a
dashboard. By providing these built in facilities, we do not
prevent developers from creating their own applications; but
we supply easy to use baseline functionality for users to get up
and running quickly.

A. Sensor Gallery
The WoTKit sensor gallery provides a way for users to

search for sensors of interest that they have contributed
themselves, or that others have made available on the system.
Developers can elect to subscribe to a sensor, adding it to their
sensor list making it available for generating visualizations and
processing pipes.

B. Gateways and Thing Integration
Integration gateways for the WoTKit are generally simple

scripts that (optionally) register discovered sensors, gather data
from the sensors they serve, and push data into the system
either periodically or when the data changes. Because these
gateways are web clients, not servers themselves, they can be
located behind firewalls. They typically consist of only a few
lines of code to register themselves, update their state, and get
control messages.

To illustrate, the following shell script posts the current
CPU use of a PC to a sensor to the default data fields called
value. This script assumes the CPU sensor has already been
registered on the system.

#!/bin/sh
while (true) do
 cpu=$(uptime | sed 's/.*load averages: \([0-
9]\.[0-9]*\).*/\1/')
 echo "average cpu use: "$cpu
 curl –user {user}:{password} –data "value="$cpu
http://{host}/api/sensors/{user}.cpu/data
 sleep 60
done

More advanced gateway scripts can send data to the
platform by posting additional named fields containing numeric
or string data specified by the user.

Actuators can also be connected to the system. A simple
dashboard visualization containing a radio button switch,
message field and a slider is used to signal connected actuators.
To receive signals behind a firewall, actuators subscribe to
control messages sent to the sensor. Using HTTP long polling,
thing gateways listen for control messages. When an
application or dashboard controller widget sends a signal, the
device gateway receives a JSON encoded message, and does
the appropriate thing such as turning on or off a switch, or
moving a servo.

C. Dashboard
For quickly visualizing sensor data, the WoTKit provides a

JavaScript based dashboard for quickly and easily displaying a
variety of sensor data visualizations and control components as
illustrated in Figure 4. The dashboard supports the generation
and placement of widgets: a combination of a thing with a
chosen visualization. To support widgets, the system supports
representations needed by the visualization code hosted on the
browser platform. The system currently leverages Google
Maps, the Google Chart Tools and Flot; the WoTKit client side
dashboard framework can incorporate other JavaScript
visualizations as needed.

D. Processing Services
An event-based data processing subsystem called the Processor
is provided with the WoTKit. Sensor data is processed as it is
pushed into the system from gateway components. The main
purpose of the system is to allow users to generate new, and in
some cases, higher-level sensor information from lower level
sensor data in a straightforward manner. The primary interface
is a visual programming environment that leverages the WireIt
toolkit9 for JavaScript-based visual languages presenting an
interface similar to Yahoo Pipes. The programming paradigm
is a data flow where processing pipes made up of connected
modules are built by end users to generate new sensor data
from other systems in the system.

A management page provides a list of pipes that the user
currently has running. Using this page, users can start, stop and
edit the pipes. Administrators can manage all pipes for all
users on the system. To develop a new pipe, or edit an existing
pipe, the visual programming interface allows users to drag and
drop modules to the main pane and then connect them with
wires as illustrated in Figure 5.

9 WireIt: A JavaScript Wiring Library.

http://neyric.github.com/wireit/. Accessed May 15, 2012

Figure 4. Example WoTKit dashboard.

Once the user saves and executes the pipe, it is first checked

for errors and “compiled” by instantiating pipe modules in the
server. The system subscribes to data sent into any sensor
input modules, and based on the configuration of these
modules in the pipes, executes the pipe on behalf of the user.

Our implementation uses a multithreaded execution
scheduler to process sensor data as it is added to the system.
When a user creates a pipe, modules are instantiated as shown
in Figure 6. Typically a pipe will include one or more sensor
input modules to subscribe to data from sensors and add it to
the execution queue. The multithreaded scheduler waits on this
queue, retrieves the next message containing data, looks up the
next module instance in the pipe and calls the module’s
process() function to process the message. The executing
module may then add additional messages to the execution
queue before it exits.

To date we have implemented several modules in the
following categories:

Input/output. These modules are the primary integration
point with the rest of the system.

Processing. The system currently supports two modules
for processing: an aggregator module takes data from two
sensors, adds a new field to the data to indicate the originating
sensor, and sends this aggregated data to its output connection.
A threshold module sends a single message to an output
connector when the value of the input data meets a condition.
To reset the output, another input called the trigger is used. We
anticipate adding more built in processing components for
averaging, filtering and other useful primitives.

Testing and Debugging. To see data as it flows through a
pipe, a Monitor module can be added. Data that is sent to these
modules appears in a pane on the visual editor when the pipe is
executing. This can be used for testing and debugging pipes
under development.

Alerting. To allow users to send alerts, the system includes
an email module that will send emails to a configured email
address containing message data. This can be used in tandem
with the threshold module to send an email when a certain
condition is reached. We anticipate the system supporting

other integrations such as RSS feeds, social network feeds,
SMS messaging and others.

User scripting. Finally, we include the ability for end
users to write their own modules using a scripting language,
currently Python. By convention, the script takes input from an
input dictionary, executes some code, and then puts any output
into an output dictionary for downstream processing. Once a
script is found to be useful, the user may save copies of these
scripts for use in other pipes. Having this capability allows the
user to extend the built in primitives with new modules as
needed.

E. RESTful Service Interface
The WoTKit has a RESTful API for things allowing

applications to control things, get the historical data from
things and register new things and their meta-data with the
system. Applications register sensors with the system by
POSTING a JSON representation of the sensor to the following
URL.
 http://{host}/api/sensors/{sensor-name}

The sensor representation consists of the sensor name, a
long name used for the user interface, the location of the
sensor, whether it is a public or private sensor, and the
information about the fields of data used by the sensor.

The primary APIs are for sending and receiving data into
the system using the sensor. Gateways POST fields to the data
URL
 http://{host}/api/sensors/{sensor-name}/data

While applications GET data from the same URL,
specifying query parameters for the range of data required by
the application and the representation. The system currently
supports CSV, KML (specific for location sensors), HTML and
a JSON format for direct use by Google visualizations.

F. WoTKit Summary
By providing these services, the WoTKit addresses the
requirements outlined in Section 4 as follows:
• Data storage for things meta-data such as a description,

location, and the data things produce is included. WoTKit
can store meta-data including the name, description, and
location of sensors and actuators as well as multiple non-

Figure 6. Processing engine architecture.

Figure 5. WoTKit processor pipe editor based on WireIt.

numeric (string) sensor data values in a single sensor
reading.

• To share things, WoTKit users can specify whether their
things are public or private, allowing users to take
advantage of the integration work of others using the
Sensor Gallery.

• Things are integrated by writing simple HTTP client
scripts that either push (POST) new data in to the system,
or poll for actuator control commands.

• A built in visualization dashboard is included making it
easy for developers to view a variety of visualizations and
add them to their applications.

• The processing engine allows developers to create new
processing pipes combining built in modules, and the
creation of new modules using a scripting language.

• An easy to use API to register new sensors, publish data,
and retrieve data in several formats including CSV, JSON
and HTML is included.

Like Sen.se, the WoTKit provides a flexible dashboard;
processing components are included and sensor feeds can
contain numeric and string types, however, the WoTKit
focuses less on the integration of applications into the platform
user interface, rather providing basic built in visuals and
processing components. Like Pachube and ThingSpeak,
WoTKit serves as an aggregator of sensor data, allowing
developers to push data into the system for others to use.
Unlike Pachube, WoTKit and others support non-numeric feed
values and unlike Pachube, the WoTKit includes a more
comprehensive event-based processing engine. Like Paraimpu
the WoTKit can create pipes that act as connectors, connecting
sensor data to actuators such as email and other output
modules, however, the power of the pipes, however the
processing engine’s flexibility allows it to be used for sensor
data processing as well as connectors.

VI. LESSONS LEARNED
Our experience with the WoTKit, and examining similar

systems has highlighted the need for certain key features and
apporaches that provide the right balance between ease of use
and flexibility for web developers.

Data Schema and Representations. From our experience,
it is important to have a very flexible representation for things
and the data they generate. Like Pachube we decided to give
every sensor a location, however, in some cases, we found this
did not make sense: a mobile phone’s location changes
constantly; a social network feed doesn’t necessarily have a
location. Initially our system focused on supporting numeric
sensor data values only, but we quickly realized we needed
more flexibility. Based on this experience, we have chosen to
take a very generic approach to data. Our need to support both
“hard” physical sensors such as temperature, speed and light
readings, as well as soft sensors such as information from the
web and social networks implies a sensor data model that
allows both very simple schema initially that can be extended
to more complex schema in the platform.

Sharing. Several WoT toolkits support sharing things and
their data to allow users of the system to take advantage of the
integration work of others. This is an important facility; some
developers will not be interested or able to integrate all of the
things needed for their applications. A facility for sharing
things with friends using social networks [10] or the public is
critical and may cause a network effect – the more things on a
given toolkit platform, the more valuable that platform is to the
users of that platform.

Component Model. In addition to sharing things, it is
useful to add new visuals and processing components to a
toolkit over time. In some systems visuals and data processing
are both exposed as dashboard components, other systems
expose processing components as “connectors”, while others
integrate both visual and processing components as “apps”. In
the WoTKit, we have found it necessary to integrate
visualization components (widgets) differently from processing
pipe components, and unlike Sen.se, for example, believe these
components are sufficiently different to warrant separate toolkit
integration points.

Push or Pull Sensor Data. Today most web-centric
toolkits can poll data from things periodically, or wait for
things to push data into the system. One disadvantage to
polling is that the infrastructure needs to poll for data even if
there is no change, just to ensure up to date historical data is
available. Another is that gateways cannot be behind firewalls.
Gateways that push data to the system, may send data that no
application or user is interested in. To reduce the frequency of
polling, it may be worthwhile having thing gateways maintain
some history, and respond to short-term historical requests on
demand. Similarly, a gateway can be configured to send data
only when there is an interested subscriber. Currently the
WoTKit relies on gateways to send data to the system
regularly, however, we intend to add support for subscriptions
and polling for data in future versions.

Processing Model. Just as data can be pulled or pushed
into a toolkit, it is possible to process data as it is “pushed” or
added to the system, or when it is queried by applications.
Push processing allows alerting and filtering data before it is
saved but does not support aggregation and processing of
historical data. Pull-based processing allows historical data to
be process when it is queried and potentially cached for periods
of time. We believe a toolkit should support both mechanisms.
Future versions of our processing engine will support both
models, providing a similar visual programming interface for
both event and query-based data processing.

Batteries Included. In this paper we outlined some of the
basic requirements for a WoT toolkit. From our experience
with the WoTKit, we found that when end users can quickly
capture data and visualize it, they are willing to invest time in
exploring further the capabilities of the toolkit such as data
processing, alerting capabilities and the API. Essentially, a
toolkit with “batteries included”, ie with sufficient features and
functionality to get the user up and running quickly, is
necessary. While we believe this to be true, it is not clear what
the minimum set of visualization processing and integration
components are required. We intend to continue building

applications and leverage techniques from non-IoT mashup
toolkits to answer this question (e.g. [20–22]).

VII. CONCLUSIONS
The WoTKit and other IoT mashup toolkits offer the

promise of easing application development for web developers.
By lowering barriers to developing mashups these toolkits will
encourage the uptake of the IoT. Based on our experience with
the WoTKit we outline several lessons learned to better serve
mashup application developers, improve our toolkit and inform
the design and implementation of other toolkits to support the
vision of the IoT as a foundation for novel and innovative new
applications and services.

VIII. ACKNOWLEDGEMENTS
We would like to acknowledge the contributions of Vincent

Tsao, Nima Kaviani, Ian Henry, Tom Hazelton, Walter Karlen,
and Ashkan Deylami for the testing and development of the
WoTKit and Adrian Friday for his comments and suggestions.
Funding has been provided by NSERC and Nokia Corp.

IX. REFERENCES

[1] R. T. Fielding and R. N. Taylor, “Principled Design of the
Modern Web Architecture,” ACM Transactions on Internet
Technology (TOIT), vol. 2, no. 2, pp. 115–150, May 2002.

[2] W. Drytkiewicz, I. Radusch, S. Arbanowski, and R. Popescu-
Zeletin, “pREST: a REST-based protocol for pervasive
systems,” in Mobile Ad-hoc and Sensor Systems, 2004 IEEE
International Conference on, 2004, pp. 340– 348.

[3] D. Guinard, V. Trifa, and E. Wilde, “A resource oriented
architecture for the Web of Things,” in Internet of Things (IOT),
2010, 2010, pp. 1–8.

[4] D. Guinard, V. Trifa, F. Mattern, and E. Wilde, “From the
Internet of Things to the Web of Things: Resource Oriented
Architecture and Best Practices,” in Architecting the Internet of
Things, D. Uckelmann, M. Harrison, and F. Michahelles, Eds.
New York Dordrecht Heidelberg London: Springer, 2011, pp.
97–129.

[5] S. Duquennoy, G. Grimaud, and J.-J. Vandewalle, “The Web of
Things: Interconnecting Devices with High Usability and
Performance,” in Embedded Software and Systems, 2009. ICESS
’09. International Conference on, 2009, pp. 323–330.

[6] T. Mikkonen and A. Salminen, “Towards Pervasive Mashups in
Embedded Devices,” in Embedded and Real-Time Computing
Systems and Applications (RTCSA), 2010 IEEE 16th
International Conference on, 2010, pp. 35–42.

[7] D. Guinard, V. Trifa, T. Pham, and O. Liechti, “Towards
physical mashups in the web of things,” in Proceedings of the
6th international conference on Networked sensing systems,
Pittsburgh, Pennsylvania, USA, 2009, pp. 196–199.

[8] Jin Yu, B. Benatallah, F. Casati, and F. Daniel, “Understanding
Mashup Development,” Internet Computing, IEEE, vol. 12, no.
5, pp. 44–52, 2008.

[9] M. Blackstock, R. Lea, and C. Krasic, “Evaluation and Analysis
of a Common Model for Ubiquitous Systems Interoperability,”
in Proceedings of the 6th International Conference on Pervasive
Computing, Berlin, Heidelberg, 2008, pp. 180–196.

[10] M. Blackstock, R. Lea, and A. Friday, “Uniting online social
networks with places and things,” in Proceedings of the Second

International Workshop on Web of Things, New York, NY,
USA, 2011, pp. 5:1–5:6.

[11] M. Blackstock, N. Kaviani, R. Lea, and A. Friday, “MAGIC
Broker 2: An open and extensible platform for the Internet of
Things,” in Internet of Things (IOT), 2010, 2010, pp. 1–8.

[12] “ThingWorx – The 1st Application Platform for the Connected
World,” ThingWorx – The 1st Application Platform for the
Connected World. [Online]. Available:
http://www.thingworx.com/. [Accessed: 13-Mar-2012].

[13] “AirVantage M2M Cloud Platform.” [Online]. Available:
http://www.sierrawireless.com/productsandservices/AirVantage.
aspx. [Accessed: 12-Mar-2012].

[14] “Axeda Application and Data Integration Platform,” Axeda
Application and Data Integration Platform. [Online]. Available:
http://www.axeda.com/. [Accessed: 13-Mar-2012].

[15] “Pachube - The Internet of Things Real-Time Web Service and
Applications,” The Internet of Things Real-Time Web Service
and Applications. [Online]. Available:
http://www.pachube.com/. [Accessed: 12-Mar-2012].

[16] “Open Sen.se Feel, Act, Make sense,” Feel, Act, Make sense.
[Online]. Available: http://open.sen.se/. [Accessed: 12-Mar-
2012].

[17] “Paraimpu - The Web of Things is more than Things in the
Web:,” Paraimpu.crs4.it. [Online]. Available:
http://paraimpu.crs4.it/. [Accessed: 12-Mar-2012].

[18] A. Pintus, D. Carboni, and A. Piras, “The anatomy of a large
scale social web for internet enabled objects,” in Proceedings of
the Second International Workshop on Web of Things, New
York, NY, USA, 2011, pp. 6:1–6:6.

[19] “The Internet of Things - ThingSpeak,” The Internet of Things -
ThingSpeak. [Online]. Available: https://thingspeak.com/.
[Accessed: 12-Mar-2012].

[20] J. Yu, B. Benatallah, R. Saint-Paul, F. Casati, F. Daniel, and M.
Matera, “A framework for rapid integration of presentation
components,” in Proceedings of the 16th international
conference on World Wide Web, Banff, Alberta, Canada, 2007,
pp. 923–932.

[21] J. Yu, B. Benatallah, F. Casati, F. Daniel, M. Matera, and R.
Saint-Paul, “Mixup: a development and runtime environment
for integration at the presentation layer,” in Proceedings of the
7th international conference on Web engineering, Como, Italy,
2007, pp. 479–484.

[22] K. Ito and Y. Tanaka, “A visual environment for dynamic web
application composition,” in Proceedings of the fourteenth ACM
conference on Hypertext and hypermedia, Nottingham, UK,
2003, pp. 184–193.

[23] “IBM - Service Oriented Architecture (SOA): QED Wiki.”
[Online]. Available: http://www-
01.ibm.com/software/solutions/soa/newsletter/jan07/article_QE
Dwiki.html. [Accessed: 07-May-2012].

[24] W. Karlen, M. Blackstock, and J. M. Ansermino, “Location
independence in patient monitoring,” in Anesthesia &
Analgesia, Las Vegas, USA, 2011, vol. 113, p. 37.

[25] S. Reddy, M. Mun, J. Burke, D. Estrin, M. Hansen, and M.
Srivastava, “Using mobile phones to determine transportation
modes,” ACM Trans. Sen. Netw., vol. 6, no. 2, pp. 13:1–13:27,
Mar. 2010.

[26] M. Blackstock, R. Lea, and C. Krasic, “Toward wide area
interaction with ubiquitous computing environments,” in
Proceedings of the First European conference on Smart Sensing
and Context, Berlin, Heidelberg, 2006, pp. 113–127.

