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Robust Quantization for General Similarity Search
Yuchen Guo∗, Guiguang Ding∗, and Jungong Han

Abstract—The recent years have witnessed the emerging of vec-
tor quantization (VQ) techniques for efficient similarity search.
VQ partitions the feature space into a set of codewords and
encodes data points as integer indices using the codewords. Then
the distance between data points can be efficiently approximated
by simple memory lookup operations. By the compact quantiza-
tion, the storage cost and searching complexity are significantly
reduced, thereby facilitating efficient large-scale similarity search.
However, the performance of several celebrated VQ approaches
degrades significantly when dealing with noisy data. Additionally,
it can barely facilitate a wide range of applications as the
distortion measurement only limits to ℓ2 norm. To address the
shortcomings of the squared Euclidean (ℓ2,2 norm) loss function
employed by the VQ approaches, in this paper, we propose
a novel robust and general VQ framework, named RGVQ, to
enhance both robustness and generalization of VQ approaches.
Specifically, a ℓp,q-norm loss function is proposed to conduct the
ℓp-norm similarity search, rather than the ℓ2 norm search, and
the q-th order loss is used to enhance the robustness. Despite
the fact that changing the loss function to ℓp,q norm makes VQ
approaches more robust and generic, it brings us a challenge
that a non-smooth and non-convex orthogonality constrained ℓp,q-
norm function has to be minimized. To solve this problem, we
propose a novel and efficient optimization scheme and specify
it to VQ approaches and theoretically prove its convergence.
Extensive experiments on benchmark datasets demonstrate that
the proposed RGVQ is better than the original VQ for several
approaches, especially when searching similarity in noisy data.

Index Terms—Vector quantization, similarity search, efficiency,
large scale, robustness, generalization, optimization, experiment

I. INTRODUCTION

S
IMILARITY search, a.k.a., nearest neighbor (NN) search,

is of great importance in various applications, such as data

mining [1], machine learning [2], information retrieval [3], and

etc. Formally, NN search is defined as follows: given a set S of

points in a metric space M and a query point q ∈ M, find the

closest point in S to q. One straightforward way is to linearly

scan S and compute the distance d(q, xi) between q and

any point xi ∈ S. However, when dealing with a large-scale

dataset, linear scanning is time consuming due to the expensive

distance computing operations. Therefore, how to perform

efficient NN search in large-scale dataset is an important

and practical problem, which has drawn considerable research

interest from both academia and industry in the past decades.
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Fig. 1: Illustration of vector quantization based ANN search.

Considering the difficulty of exact NN search for large-

scale dataset, approximate NN (ANN) search is regarded as

a more practical solution which can simultaneously achieve

orders of magnitude speed-ups than exact NN search and near

optimal accuracy with proper designs [4]. One paradigm is to

utilize the tree structure, such as k-d tree [5]. Theoretically,

by recursively bi-partitioning the feature space, tree structure

can reduce the frequency of distance computation to O(log n).
However, because of the curse of dimensionality, tree structure

may degenerate to sub-linear complexity in high-dimensional

spaces since it needs to visit too many branches [6]. Al-

ternatively, vector quantization (VQ) emerges recently which

is capable of handling high-dimensional data. Different from

tree structure that reduces the number of scanned points, the

aim of VQ is to speed up the exhausting distance computing.

Specifically, VQ partitions the space into a set of codewords,

i.e., a codebook C (|C| ≪ |S|), and then quantizes each

point xi into the codewords. After the quantization, the feature

vector of each point is no longer needed and only an integer

index denoting which codeword the point is quantized into is

stored. Given a query, its distance d(q, cj) to all codewords can

be pre-computed and stored in a distance table. The distance

d(q, xi) can be approximated by d(q, cI(xi)) where I(xi)
denotes the index for xi. Obviously, we can obtain d(q, cI(xi))
through a simple memory look-up operation using the pre-

computed distance table. Although VQ requires a linearly scan

of S, the look-up operation for distance computing is much

faster than the floating-point operations such that the overall

searching is quite efficient. Empirically, VQ takes less than 10
seconds to linearly scan a 1-billion-size dataset and it achieves

real-time search if proper optimization is further employed [7].

The most representative VQ approaches include hashing-

based Iterative Quantization (ITQ) [8], [9] which focuses on

binary quantization, Product Quantization (PQ) [10], [11], [12]

which segments a space into several orthogonal subspaces and
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(c) SIFT1M, 64 bits, p = 1
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Fig. 2: Traditional VQ approaches perform bad with the noisy data and can not deal with some other similarity measures.

the quantization is performed in each subspace independently,

and Additive Quantization (AQ) [13], [14], [15], [16] which

constructs several independent codebooks and each point is

approximated by summing up the selected codewords from

each codebook. As VQ approaches can achieve extreme data

compression and support efficient ANN search for large-scale

dataset, they have been adopted by many applications, such as

image retrieval [17], [18], [19], [20] and many other tasks [21].

A. Problem Statement

The extraordinary performance and widely usage of the VQ

approaches motivate as to closely investigate these algorithms.

Though specific formulations may have tiny differences, these

VQ approaches can be all formulated as a general problem:

min
R,Q,C

n∑

i=1

‖xiR−Q(xi, C)‖
2
2, s.t. RR′ = I (1)

where xi ∈ R
d is the d-dimensional feature vector, Q is the

quantization function with the codebook C, R ∈ R
d×d is a

rotation matrix which can optimize the quantization [8], [10],

[16], and I is the identity matrix. A close look at the objective

function reveals that a squared ℓ2 loss is applied to measure the

distortion. But unfortunately, this sort of distance measurement

comes with certain vulnerabilities. For instance, there are noise

and outliers in real-world datasets but the squared loss is

sensitive to them because their large distortion will dominate

the sum of the squared loss [22], [23], [24], which may

markedly degrade the quality of quantization codes. Solving

this problem becomes important when we need to search

nearest neighbors for data in the wild, such as Flickr images

and YouTube videos, as the noises are commonly existed. To

verify our observation, we carried out an experiment based on

SIFT1M [25] dataset, in which the noise is manually added

into the training data and we plot the ANN search performance

of two representative VQ approaches, ITQ [8] and OPQ [10],

w.r.t. the noise ratio, which is shown in Fig. 2(a) and 2(b)

respectively. Obviously, the performance of VQ degrades

significantly in the noisy environment, even with only 1%
noisy data. Secondly, existing VQ approaches work well for

ℓ2-norm similarity search, i.e., d(q,xi) = ‖q− xi‖2 because

they focus on minimizing ℓ2-norm distortion defined in Eq.

(1). However, when other measurements, such as Manhattan

distance dM (q,xi) = ‖q−xi‖1 [26], are used, their optimiza-

tion objective may fail to well preserve the similarity structure.

In practice, the preferred measure means may need to be

defined by users depending on the specific applications, which

indicates that a good similarity search algorithm should be

generic enough to deal with different distance measurements.

Again, to demonstrate this, we plot the ℓ1-norm distortion (i.e.,∑
i ‖xiR−Q(xi, C)‖

1
1) w.r.t. the number of iterations of ITQ

and OPQ in Fig. 2(c) and 2(d) respectively. It can be observed

that the distortion keeps increasing with more iterations, rather

than decreasing, because their optimization algorithms are

designed for ℓ2-norm distortion instead of the ℓ1-norm one.

This inevitably leads to less effective quantization function,

thereby resulting in worse search performance.

B. Contributions

The two problems mentioned above are important for VQ

approaches from both theoretical and practical perspectives,

but underestimated by the previous works. This motivates us to

develop an improved VQ framework with dual goal to enhance

both algorithm robustness and generalization. Recently, several

works have demonstrated that the q-th order (q < 2, especially

q ≤ 1) of ℓ2 loss, i.e., ‖xiR−Q(xi, C)‖
q
2, is less susceptible to

the noise and outliers in data than the squared loss [27], [28].

In addition, according to the triangle inequality, preserving

the ℓp-norm distance can be achieved by minimizing the ℓp-

norm distortion, i.e., ‖xiR − Q(xi, C)‖p. Therefore, in this

paper, we propose a general VQ framework using a ℓp,q-

norm loss function for learning ℓp-norm similarity-preserving

quantization function with more robustness, termed as RGVQ.

In summary, this paper makes the following contributions:

• We put forward a new ℓp,q-norm loss function for vector

quantization based ANN search. It is robust to noise and

outliers by adopting a small q (e.g., q ≤ 1) and supports

ℓp-norm (p ≤ 2) similarity search with the ℓp-norm loss.

• To minimize the obtained orthogonality constrained ℓp,q-

norm function, a novel and efficient iterative optimization

algorithm is proposed and its convergence property is

theoretically investigated. To our best knowledge, it is

the first work that provides the theoretical solution to this

challenging non-smooth and non-convex problem.

• We specify our framework to several celebrated VQ

approaches, including ITQ, OPQ, and AQ. Extensive

experiments on benchmark datasets demonstrate the su-

periority of the improved approaches to the original ones.

In addition, it is worthwhile to highlight two important prop-

erties of RGVQ framework from the application perspectives:
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TABLE I: Some notations and descriptions in this paper.

Notation Description

n the number of training samples

d the dimension of training samples

C the number of codebooks

k the number of codewords in each codebook

xi the i-th sample

cmj the j-th codeword in the m-th codebook

R a rotation matrix

p, q positive scalars for matrix norm

I the indexing function

• RGVQ is robust to the noise, enabling us to search sim-

ilarity in wild data. Such an framework is favorably de-

manded by the applications like Internet image retrieval.

Extensive image retrieval experiments on benchmarks

collected from the Internet demonstrate the effectiveness.

• Our algorithm is more generic in the sense that multiple

distortion measurements are implemented in one frame-

work, allowing us to facilitate a wide range of applica-

tions in which various measurements may be requested.

II. PRELIMINARIES AND RELATED WORK

A. Vector Quantization Approaches

In this paper, we focus on three celebrated VQ approaches,

Iterative Quantization (ITQ) [8], [9], (Optimized) Product

Quantization (PQ) [10], [11], [12], and Additive Quantization

(AQ) [13], [14], [15], [16]. As was mentioned above, these

approaches share a general learning objective presented in

Eq. (1) but they have different specific formulations and basic

ideas. In this section, we will introduce them in details.

ITQ focuses on binary quantization defined as Q(xi, C) =
sign(xiR), where sign(x) = 1 if x > 0 or −1 otherwise. Its

learning objective is to find the optimal rotation matrix R to

minimize the distortion between the original features and the

binary embedding as follows:

min
R

OITQ =

n∑

i=1

‖xiR − sign(xiR)‖22, s.t. RR′ = I (2)

After the binarization, the original distance is approximated

by the Hamming distance which is defined as the number of

different bits between binary codes (a.k.a., hashcodes), and its

computation can be accelerated by either memory look-up or

the bit operations (like bit XOR), both of which are efficient.

PQ is a k-means clustering like quantization approach. Its

basic idea is to cluster the samples into a set of codewords

C = {cj}kj=1 and the distance d(q,xi) can be approximated

by d(q, cI(xi)) which can be pre-computed and stored in a

distance table. Obviously, increasing the codebook size (i.e.,

k) can partition the space more finely, which improves the

distance approximation accuracy. In the extreme case where

k = n, each training sample is quantized to itself such that the

distance is precisely approximated. However, when k is large,

computing the distance table, i.e., d(q, cj), becomes a time-

consuming step. Therefore, it is preferable to construct a large

codebook while the extra distance computation is not heavy.

To address this issue, PQ proposes to partition the space into C
orthogonal subspace and the quantization is performed in each

subspace independently. Specifically, after the segmentation,

each subspace is ds = d/C dimension and the final codeword

is constructed by the concatenation of the sub-codeword

from each subspace, i.e., cI(xi) = [c1I1(xi)
, ..., cCIC (xi)

] where

cmj ∈ Cm is a codeword from the m-th subspace. Suppose

there are k codewords for each subspace, i.e., |Cm| = k, the

total number of codewords in the original space is kC , which

is extremely large. In addition, the distance is approximated

by ‖xi − q‖22 ≈
∑C

m=1 ‖q
m − cm

Im(xi)
‖22 where qm is

the component of q in the m-th subspace. In this way, the

distance table, i.e., d(qm, cmj ), can be computed in each

subspace independently, which reduces the total complexity to

O(C · k · d
C
) = O(kd). For good ANN results, PQ minimizes

the distortion between the original features and the codewords:

min
R,cm

j
,Im

OPQ =
n∑

i=1

‖xiR− [c1I1(xi)
, ..., cCIC(xi)

]‖22, s.t.RR
′ = I (3)

where R is to optimize the quantization, whose effectiveness

has been demonstrated by several works [10], [16]. Suppose

x̂i = xiR is the rotated data, in PQ, each sub-codebook Cm
is learned by k-means clustering in the m-th subspace over

{x̂i}ni=1 and the quantization function is defined as Q(xi, C) =
[c1

I1(xi)
, ..., cC

IC(xi)
] where Im(xi) = argminj‖x̂

m
i − cmj ‖22. At

the searching/testing phase, the query q is also rotated by R.

AQ is motivated by the multi-codebook idea of PQ. Differ-

ent from PQ which constructs the final codeword by concate-

nation, AQ constructs the final codeword by the summation

of sub-codewords. In addition, the sub-codeword in PQ is ds
dimension while AQ directly constructs sub-codewords in the

original space which leads to d-dimensional sub-codeword.

Formally, AQ constructs C codebooks Cm = {cmj }kj=1 where

cmj ∈ R
d. The quantization function is defined as Q(xi, C) =∑C

m=1 c
m
Im(xi)

. Because we have ‖q− xi‖
2
2 = ‖q‖22+‖xi‖22−

2〈q,xi〉, it is straightforward to approximate the distance by

‖q− xi‖
2
2 ≈ ‖q‖22 + ‖xi‖22 − 2

∑C

m=1〈q, c
m
Im(xi)

〉 using the

pre-computed table 〈q, cmj 〉∀m,j . Analogous to PQ, AQ can

also construct kC codewords in the original space and the

complexity to construct the distance table is only O(Ckd).
Moreover, AQ attempts to minimize the distortion as follows:

min
R,cm

j
,Im

OAQ =
n∑

i=1

‖xiR−
C∑

m=1

cmIm(xi)
‖22, s.t. RR′ = I (4)

Theoretically, AQ can be regarded as the generalization of PQ

by removing the orthogonal constraints on the sub-codebooks.

Because more flexible codeword combination is given, smaller

distortion and more accurate quantization can be achieved such

that AQ performs better than PQ to some extent [14], [16].

Based on the VQ approaches, the storage cost is markedly

compressed and the distance computation is accelerated. For

example, in PQ, if we set k = 256 for each sub-codebook,

it requires only 1 byte (8 bits) to store the index Im(xi) for

a sample. Even if we use 8 sub-codebooks, the memory cost

for one sample is only 8 bytes (64 bits) and the storage for all

sub-codebooks are independent from the data. Therefore, only
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8 gigabytes are required for a 1-billion-size dataset, which

can be can be easily handled by only one single machine.

During searching, the complexity to compute the distance table

is O(Ckd) at most. Since we have Ck ≪ n (in the above

example, Ck = 8 × 256 = 2, 048 and n = 1B), the com-

plexity is almost ignorable. When computing d(xi,q), only C
memory look-up operations and C− 1 addition operations are

required which is far fewer than directly computing d(xi,q)
in an element-wise way, especially for high-dimensional data.

B. Other Related Works

The main focus of this paper is on enhancing the robustness

and generalization of existing VQ approaches by introducing

the ℓp,q-norm loss function to evaluate the quantization distor-

tion. However, we notice several works for some other prob-

lems are related to our work [28], [29], [30]. Therefore, it is

necessary to introduce them and discuss their difference. Gen-

erally, their difference comes from three folds. Firstly, the tasks

are different. We focus on vector quantization for efficient

and general similarity search including image retrieval, while

the others mainly focus on tasks like dictionary learning [28],

representation learning [29], and projection learning [30]. In

fact, we are the first to introduce a robust loss function and

consider the generalization simultaneously in the field of VQ,

which motivates us to propose the ℓp,q-norm loss. Moreover,

we specify the general framework to three celebrated VQ

approaches, ITQ, PQ, and AQ, which is also very useful in

practice. Secondly, the formulations are different. Generally,

the ℓ2,q-norm (especially ℓ2,1-norm) loss is adopted in many

robust learning approaches [28], [29], [30]. But the ℓp,q-norm

is more general and complicated than them and it seems that

it is difficult to directly apply their optimization algorithm

to ℓp,q-norm loss. Some works also consider the ℓp-norm

term. For example, the ℓ1-norm term is considered in sparse

coding [31] and the ℓp-norm is considered in [28]. But it

should be pointed out that our formulation employs ℓp-norm

to evaluate the reconstruction distortion while their approaches

use it only as a sparsity regularization term for coefficients

which element-wise decoupled. Obviously, our formulation is

more difficult and general especially when coupling with the

q-th order upon the ℓp norm and the orthogonality constraint.

Thirdly, the solutions are different. As stated, our problem is

an orthogonality constrained ℓp,q-norm minimization problem.

Unlike some works considering parts of the problem, e.g., ℓ2,q-

norm minimization is considered in [28], we systematically

solve the general problem and provide the theoretical analysis

for the solution. In addition, in Section V, we demonstrate

that that the optimization algorithm is consistently effective

and efficient under different settings.

III. THE PROPOSED FRAMEWORK

A. Overall Objective Function

The first goal of this paper is to enhance the robustness of

VQ approaches. In the current framework, squared Euclidean

(i.e., ℓ2,2-norm) loss is adopted. In fact, because of the square

operation, the loss function tends to assign large weight to

large-loss samples. However, in practice, the large loss is

often caused by noise and outliers. The loss function, in such

a situation, will focus on the noise but fail to capture the

intrinsic structure of samples, i.e., it is sensitive to noise,

which has been empirically demonstrated in Fig. 2(a) and

2(b). To address this issue, we should reduce the weight of

large-loss samples. In this paper, we propose to replace the

squared loss by the q-th order loss. It has been demonstrated

in several literatures [22], [23], [24], [32] that the loss function

is more robust (less sensitive) to the noise and outliers in data

in case of q < 2, especially q ≤ 1. Motivated by this idea, we

reformulate Eq. (1) from squared loss into q-th order loss as:

min
R,Q,C

ORQ =

n∑

i=1

‖xiR−Q(xi, C)‖
q
2, s.t. RR′ = I (5)

where q < 2. It is not difficult to observe the following fact.

When q > 1, the objective prefers to decrease the distortion

of large-loss entries because it is obvious that the larger x (the

distortion) is, the larger |xq − (x−∆x)q| (the change in loss)

is if ∆x is identical, which indicates the loss is encouraged

to fit the noisy data. On the other hand, when q ≤ 1, the

situation is different where the loss focuses more on the small-

loss entries which are normal data. In this way, we can enhance

the robustness of functions by setting q < 2, especially q ≤ 1.

Although the ℓ2,q-norm loss function is more robust to the

noise, it is still questionable whether it works well for the other

similarity/distance measurements, like Manhattan distance. In

fact, just like the results shown in Fig. 2(c) and 2(d), the ℓ2-

norm loss may fail when dealing with ℓ1-norm based similarity

search. To address this issue, we firstly revisit one important

theoretical building block of VQ, i.e., the triangle inequality:

|‖x− y‖p−‖Q(x)−Q(y)‖p| ≤ K1‖x− y−Q(x)+Q(y)‖p

≤ K2(‖x−Q(x)‖p + ‖y −Q(y)‖p) (6)

where ‖x‖p = (
∑

j |xj |
p)

1
p is the ℓp-norm of a vector,

K1 = K2 = 1 for normal vector norm (i.e., p > 1) and

they are some constants for quasi-norm (i.e., 0 < p ≤ 1),

and Q(x) denotes the quantization result of x. The first term

denotes the distance approximation error between the original

feature based distance (‖x− y‖p) and the quantized feature

based distance (‖Q(x)−Q(y)‖p), in which we expect the error

to be as small as possible, i.e., the distance approximation

using the quantized vectors is more accurate. The last term

is exactly the distortion caused by the quantization function

(‖x − Q(x)‖p). Obviously, the distortion provides an upper

bound for the distance approximation. Therefore, decreasing

the distortion leads to more accurate distance approximation

and further results in better ANN performance [8], [10], [15].

Fortunately, based on the triangle inequality, it is straightfor-

ward to observe that learning ℓp-norm similarity preserving

quantization function can be achieved by minimizing the ℓp-

norm distortion. In the extreme case where the distortion is 0
(i.e., Q(x) = x), the distance is perfectly approximated (i.e.,

‖x− y‖p = ‖Q(x) − Q(y)‖p). Theoretically, existing VQ

approaches, including ITQ, PQ, and AQ, can be regarded as

a special case (p = 2) of our scheme. To clarify it, we can
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rewrite the loss in Eq. (5) from the ℓ2-norm loss to the ℓp-norm

loss, leading to the overall objective function of RGVQ:

min
R,Q,C

ORG = ‖XR−Q(X, C)‖qp,q =
n∑

i=1

‖xiR−Q(xi, C)‖
q
p

s.t. RR′ = I (7)

where ‖A‖p,q denotes the entrywise (in row) matrix ℓp,q norm

of matrix A. So far, we derive the ℓp,q-norm loss function for

RGVQ framework from the original ℓ2,2-norm loss of VQ.

B. Optimization Algorithm

The motivation of changing the ℓ2,2-norm loss into the ℓp,q-

norm loss is clear and reasonable, which makes VQ more

robust to noisy data and generalizable for different distance

measurements. However, it is challenging to minimize the ob-

tained orthogonality constrained ℓp,q-norm function because it

becomes a non-smooth and non-convex optimization problem

when p ≤ 1 or q ≤ 1. Solving this problem is much more

difficult than minimizing the ℓ2,2-norm in the original VQ, for

which many solutions are available [8], [10], [14]. To solve it,

we propose an efficient optimization algorithm shown below.

It should be noticed that there are a rotation matrix R,

quantization function Q and the codebook C in the objective

function, and it is very difficult, if not impossible, to optimize

them as a whole. Therefore, following the traditional VQ

framework, we adopt an iterative optimization scheme to

update any of them while keeping the others fixed as follows.

Update R. This is the most difficult part in the entire

solution, which is also an important theoretical contribution

of this paper. The ℓp,q-norm is neither smooth nor convex,

and meanwhile, the orthogonality constraint limits the feasible

set, therefore making the problem more difficult. First, we

denote yi = Q(xi, C) as the quantized vector, which is fixed

when updating R. Then, to solve the problem, we rewrite the

complicated ℓp,q-norm loss into a weighted ℓ2,2-norm loss as:

min
RR′=I

O =
n∑

i=1

‖wi ◦ (yi − xiR)‖22 = ‖W ◦ (Y −XR)‖2F (8)

where X = [x1; ...;xn] ∈ R
n×d represent the original training

vectors, Y = [y1; ...;yn] ∈ R
n×d are the quantized vectors,

W = [w1; ...;wn] ∈ R
n×d is the weighting matrix, ‖ · ‖F is

the Frobenius norm of a matrix, and “◦” denotes the element-

wise multiplication operation. Specifically, the elements of the

weighting matrix in our algorithm are computed as follows:

fi = ‖yi − xiR‖q−p
p , gij = |yij − xiR∗j |p−2

wij = (figij)
0.5 (9)

Based on the above definition, it is easy to verify that Eq.

(8) is numerically equivalent to Eq. (7). Now if we keep W

fixed, the problem is transformed into a weighted ℓ2,2-norm

problem. Fortunately, solving this problem is much easier than

solving the original as it is smooth and convex. The only

challenge left in this problem is to address the orthogonality

constraint which limits the feasible set. In this paper, we

adopt the framework proposed by Wen et al. [33] which is

a gradient-descent based algorithm but takes the orthogonality

constraint into consideration. In particular, we first compute

the derivative of O w.r.t. the variable R as:

G =
∂O

∂R
= X′(W ◦W ◦ (XR −Y)) (10)

In the conventional gradient descent method, we just need to

update R along the direction given by the derivative with a

tiny step. However, this strategy will violate the orthogonality

constraint which moves R out of the feasible set. Therefore,

more operations on the gradient are required to address the

orthogonality constraint. Following the framework [33], a

skew-symmetric matrix is constructed based on G as below:

A = GR′ −RG′ (11)

Having obtained G and A, the following step is to search the

next point using the Crank-Nicolson-like scheme [34], [35]:

Rt+1 = Rt − τA(
Rt+1 +Rt

2
) (12)

where τ is a tiny step size. The solution to the problem is:

Rt+1 = (I+
τ

2
A)−1(I−

τ

2
A)Rt (13)

The objective function value in Eq. (8) will keep decreasing

w.r.t. the updating rule in Eq. (13) until the stationary point is

achieved and Rt+1 also satisfies the orthogonality constraint.

Please refer to [33] for the detailed proof. We update R by

fixing W as we can see W depends on R. Therefore, we can

update R and W in an iterative manner. This strategy can

decrease the loss in Eq. (7), whose proof will be given later.

Update Q and C. When the rotation matrix R is fixed, we

can update the quantization function Q and the corresponding

codebook C. In this paper, we focus on three celebrated VQ

approaches, ITQ, PQ, and AQ, which achieve state-of-the-

art ANN performance, and therefore we specify our RGVQ

framework into these approaches. As they have different

formulations and codebook construction methods, the updating

rules should be different, each being discussed below. For

simplicity, we denote x̂i = xiR in the following derivation.

ITQ. ITQ focuses on binary quantization and the sign
function is adopted, so it does not have a codebook C. Thus,

extending it from the ℓ2,2 normal loss in the original VQ to the

ℓp,q norm loss in RGVQ is the easiest one. Moreover, we can

observe that the quantization in ITQ is element-wise decoupled

even with the ℓp,q-norm loss. Therefore, the quantized vector

is yij = sign(x̂ij), which is the quantization function for ITQ.

PQ. In the original PQ with ℓ2,2-norm loss,it only requires

performing k-means clustering in each subspace to learn each

sub-codebook Cm and the corresponding function Im. In the

RGVQ framework with the ℓp,q-norm loss, its loss function

for this step is more complicated, which is written as follows:

min
cm
j
,Im

ORGPQ =

n∑

i=1

(

C∑

m=1

ds∑

j=1

(x̂m
ij − cmIm(xi)j

)p)
q
p (14)

If p = q which is the case of original PQ, the problem can be

solved in each subspace attributable to decoupled subspaces.

However, in the general framework, we have p 6= q in most

cases, which makes the problem more complicated because the

(·)
1
p operation couples each subspace, i.e., the quantization
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Algorithm 1 Optimization Algorithm for RGVQ

Input: Training data X; Parameters p ≤ 2 and q ≤ p;

Output: Orthogonal matrix R; Codebooks Cm;

1: Initialize R = I, x̂i = xiR;

2: repeat

3: Update weights by Eq. (9);

4: For ITQ: update yij = sign(xiR∗j);
5: For PQ: solve Eq. (17) for each subspace by Minkowski

weighted kmeans clustering [36];

6: For AQ: solve Eq. (19) by sequential residual minimiza-

tion [13], [16] for each sub-codebook;

7: Compute quantized vector yi with current Q;

8: Update weights by Eq. (9);

9: Update R by Eq. (13) and x̂i = xiR;

10: until Convergence.

11: Return R and Cm;

loss in one subspace has influence on the decision in the

other subspaces. To simplify the problem, we also adopt the

weighting method in Eq. (9) and rewrite the loss function as:

min
cm
j
,Im

O =

n∑

i=1

fi(

C∑

m=1

‖x̂m
i − cmIm(xi)

‖pp) (15)

Obviously, after the transformation, each subspace becomes

decoupled. To clarify it, we can rewrite Eq. (15) as follows:

min
cmj ,Im

O =

C∑

m=1

Om =

C∑

m=1

(

n∑

i=1

fi‖x̂
m
i − cmIm(xi)

‖pp) (16)

Therefore, in each subspace we solve the problem below:

min
cm
j
,Im

Om =

n∑

i=1

fi‖x̂
m
i − cmIm(xi)

‖pp (17)

which leads to a Minkowski weighted kmeans clustering [36]

problem similar to the original kmeans clustering but with

ℓp-norm loss and weighted samples. It can be easily solved in

the EM framework by iteratively updating the index Im(xi) =
argminj‖x̂

m
i −cmj ‖ and the centers cmj by the simple gradient

descent algorithm. Such a procedure can be performed in each

subspace m independently. In this way, the function value in

Eq. (15) is decreased until convergence is achieved, which also

decreases the function value ORGPQ in Eq. (14).

AQ. In the RGVQ framework, the objective function to

update Q and C of AQ with ℓp,q-norm loss is written as below:

min
cm
j
,Im

ORGAQ =

n∑

i=1

‖x̂i −
C∑

m=1

cmIm(xi)
‖qp (18)

In order to simplify the problem, we also adopt the weighting

method mentioned before, which leads to the following loss:

min
cm
j
,Im

O =

n∑

i=1

fi‖x̂i −
C∑

m=1

cmIm(xi)
‖pp (19)

To solve this problem, we adopt the sequential learning

scheme [13], [16] which is widely utilized in many opti-

mization problems, such as matching pursuit [37], sparse

coding [38], and binary learning [39]. In particular, each sub-

codebook Cm is optimized to minimize the residual sequen-

tially by fixing the other sub-codebooks. Denote the residual

vector as rmi = x̂i −
∑

m′ 6=m cm
′

Im′ (xi)
. When the other sub-

codebooks are fixed, the problem w.r.t. Cm is reduced to:

min
cm
j
,Im

Om =

n∑

i=1

fi‖ri − cmIm(xi)
‖pp (20)

which is a Minkowski weighted kmeans clustering, of which

the updating rules for cmj and Im are introduced in PQ. In this

way, we can repeat the residual vector computing and sub-

codebook updating for each sub-codebooks until convergence.

IV. THEORETICAL ANALYSIS

A. Convergence Analysis

In the above section, we introduce how to optimize the

challenging ℓp,q-norm loss defined by Eq. (7) in the specific

situations of ITQ, PQ, and AQ, which is summarized in

Algorithm 1. To simplify the complicated problem, we propose

a weighting method shown in Eq. (9) and optimize the

transformed problems in Eq. (8), (15), and Eq. (19). From the

definition of the weights in Eq. (9), it can be observed that the

weights are related to the variables R, Cm, and Im which are

to be optimized. In our algorithm, we iteratively update the

weights and the variables by fixing the other one. However,

it is not easy to figure out why decreasing the transformed

loss can decrease the original loss in Eq. (7) since they are

not strictly equivalent. In this section, we will theoretically

and rigourously prove that the loss function in Eq. (7) is non-

increasing at each iteration of Algorithm 1, which implies that

the algorithm can reach a stationary point of Eq. (7) finally.

At the first of the proof, we introduce the following lemma:

Lemma 1: Given any a > 0 and 0 < b ≤ a, for ∀x ≥ 0, we

have the inequality: axb − bxa + b− a ≤ 0.

Proof 1: Denote c = b/a and f(x) = xc − cx + c − 1.

Apparently, f(1) = 0. Then, we have f ′(x) = cxc−1 − c,
leading to f ′(1) = 0. In addition, f ′′(x) = c(c− 1)xc−2 ≤ 0
when x ≥ 0 because 0 < c ≤ 1. This implies f ′(x) ≥ 0 ∀x ∈
[0, 1] and f ′(x) ≤ 0 when x > 1. Therefore, f(x) ≤ f(1) = 0.

Finally, we can obtain af(xa) = axb − bxa + b − a ≤ 0.�

Based on Lemma 1, we can prove the following theorem:

Theorem 1: The objective function ORG in Eq. (7) is non-

increasing under the updating rules for R in Eq. (13), and

Cm and Im which can minimize Eq. (15) and (19).

Proof 2: Let S = Y −XRt, Z = Y −XRt+1, we have:

Ot
RG =

n∑

i=1

(

d∑

j=1

|sij |
p)

q
p ,Ot+1

RG =

n∑

i=1

(

d∑

j=1

|zij |
p)

q
p (21)

Based on the proof in [33], we know that the updating rule in

Eq. (13) can decrease the value of O in Eq. (8), i.e., we have

∑

ij

figijz
2
ij ≤

∑

ij

figijs
2
ij . (22)
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Now if we set a = 2, b = p, x will be |zij |/|sij |. Based on

the Lemma 1 above, we can obtain the following inequalities

2(
|zij |

|sij |
)p − p(

|zij |

|sij |
)2 + p− 2 ≤ 0

⇒|zij |
p −

p

2
|sij |

p−2|zij |
2 ≤ |sij |

p −
p

2
|sij |

p−2|sij |
2

⇒
∑

ij

fi(|zij |
p −

p

2
gijz

2
ij) ≤

∑

ij

fi(|sij |
p −

p

2
gijs

2
ij)

(23)

Combining inequalities (22) with (23) will bring us
∑

i

fi‖zi‖
p
p =

∑

ij

fi|zij |
p ≤

∑

ij

fi|sij |
p =

∑

i

fi‖si‖
p
p

(24)

Denote a = p, b = q, and x = ‖zi‖p/‖si‖p, then we get

p(
‖zi‖p
‖si‖p

)q − q(
‖zi‖p
‖si‖p

)p + q − p ≤ 0

⇒‖zi‖
q
p −

q

p
‖si‖

q−p
p ‖zi‖

p
p ≤ ‖si‖

q
p −

q

p
‖si‖

q−p
p ‖si‖

p
p

⇒
∑

i

(‖zi‖
q
p −

q

p
fi‖si‖

p
p) ≤

∑

i

(‖si‖
q
p −

q

p
fi‖si‖

p
p)

(25)

Again, if we combine inequalities (24) with (25), we obtain

Ot+1
RG =

∑

i

‖zi‖
q
p ≤

∑

i

‖si‖
q
p = Ot

RG (26)

which means ORG in Eq. (7) is non-increasing w.r.t. Eq. (13).

Denote S = Qt(X, Ct)−XR, Z = Qt+1(X, Ct+1)−XR.

We can also have Eq. (21). In addition, by minimizing the

loss function value in Eq. (15) and (19), we can obtain Eq.

(24) directly. Then together with Eq. (25) we obtain Eq. (26),

which indicates that ORG in Eq. (7) is non-increasing when

we update Cm and Im by minimizing Eq. (15) and (19). �

We have the following inequalities with the above proofs:

ORG(Qt,Rt) ≥ ORG(Qt+1,Rt) ≥ ORG(Qt+1,Rt+1) (27)

which states that ORG is non-increasing with Algorithm 1.

B. Complexity Analysis

Apparently, our optimization is more complicated than that

of the original VQ approaches, it is worthwhile to analyze the

algorithm complexity. In fact, since VQ approaches are applied

to large-scale dataset, we care more about the relationship

between the complexity and the training set size n. When

updating R, only the gradient computation in Eq. (10) is

related to n, whose complexity is O(n). For ITQ, updating

the binary codes requires O(n) time. For PQ, we need to

solve C sub-problems in each subspace given by Eq. (17). In

the original ℓ2,2-norm loss, updating Cm just needs to compute

the average of samples belonging to the same cluster, which

can be achieved in only one step. In our method, we have

to adopt the gradient descent algorithm to update cmj which

needs more steps to reach the optimum. Fortunately, we can

adopt the mini-batch based stochastic gradient descent (SGD)

where a small batch of training samples (e.g., 256), rather

than the whole set, are required to compute the gradient in

one single step. Although many steps are required, each step

only utilizes a small number of samples such that reaching the

TABLE II: The statistics of datasets.

#database #training #query #feature

SIFT1M 1m 100k 10k 128
GIST1M 1m 100k 1k 960

CIFAR-10 50k 50k 10k 512
NUS-WIDE 184k 50k 1, 866 500

optimum needs to traverse the whole set for just a few times.

In our experiment, we empirically find out that when trained

with 100k samples and 256 mini batch, traversing the training

set once (i.e., ≈ 400 steps) can result in good performance.

In fact, we can notice that the mini-batch SGD has achieved

great success recently for gradient based optimization, such

as deep model training [40], [41]. Wen et al. [42] also

demonstrate that the mini-batch SGD works well for kmeans

clustering loss. Therefore, training by mini-batch SGD has a

comparable complexity to the original kmeans in our case.

For AQ, we can also adopt the mini-batch SGD to solve

the sub-problem in Eq. (20) whose complexity is O(n). In

addition, as will be demonstrated in the experiment section,

Algorithm 1 can always converge within about 200 iterations.

In summary,the increase in complexity due to the use of a

more complicated optimization is very limited, meaning that

the overall complexity of RGVQ is comparable to that of VQ.

V. EXPERIMENT AND DISCUSSION

A. Datasets

VQ approaches are so general that can be applied to

different kinds of features, including features for image [43],

[44], video [45], text [46], [47], or sensing data [48], [49]. To

better compare our framework with previous VQ approaches,

we mainly focus on image features in the experiment below.

To demonstrate the effectiveness of RGVQ for ANN search,

we adopt two widely used benchmarks for evaluation. The first

benchmark is SIFT1M [25] which consists of 128-dimensional

SIFT [50] descriptors. It is made up of 1 million base vectors,

10k query vectors, and 100k vectors for model training. The

second dataset is GIST1M [25] containing 960-dimensional

GIST [51] descriptors. This dataset contains 1 million vectors

as the base, 1k vectors as query set and 100k training vectors.

As introduced in the contributions, RGVQ is robust to noise,

which is favorably demanded by the real-world applications

like Internet image retrieval. To validate the superiority of

RGVQ to the original VQ for image retrieval, we also conduct

experiments on two widely used real-world image retrieval

dataset. The first dataset is CIFAR-10 [52] which has 60k

images from 10 kinds of objects, such as “dog” and “truck”.

This dataset is a subset of 80M Tiny Image [53] which

is constructed by collecting the images returned by search

engines (like Google) using an object name as the query.

Each image is represented as a 512-dimensional GIST feature.

For this dataset, 50k images are used as the base and the

other 10k images form the query set. The second dataset is

NUS-WIDE [54] which is collected from the user uploaded

images in Flickr. This dataset has 186, 577 images and each

images is annotated by at least one of ten concepts from the
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Fig. 3: Performance comparison between ITQ+ and ITQ w.r.t. the noise ratio. We set l = 10 for ground truth.

users. The 500-dimensional bag-of-visual-word feature based

on SIFT is utilized for image representation. 1% (1, 866)

images are used as the queries and the other as the database.

From the construction methods of these real-world datasets

(search engine returned images or user uploaded and annotated

images), we can see they are very noisy, making them ideal

benchmarks for testing the robustness of various approaches.

The statistics of the datasets are summarized in TABLE II.

B. Settings

Since the primary purpose of this paper is to enhance

the robustness and the generalization of existing state-of-the-

art VQ approaches, we therefore consider three representa-

tive approaches, Iterative Quantization (ITQ) [8], (Optimized)

Product Quantization (PQ) [10], [12], and Additive Quan-

tization (AQ) [13], [14], [15]. Specifically, we extend the

original approaches from the ℓ2,2-norm based VQ framework

into the proposed ℓp,q-norm based RGVQ framework and

then optimize them based on Algorithm 1. When no further

statement is given and no ambiguity is triggered, we set p = 2
and q = 1 for most experiment scenarios and we denote the

enhanced versions as ITQ+, OPQ+, and AQ+ respectively.

For each sample, we can adopt VQ or RGVQ approaches to

quantize it into a fixed-length codes, whose length is denoted

as L. When constructing the codes, the below settings are

adopted. For ITQ which focuses on learning binary hashcodes,

following [8], the original sample is firstly projected into a

L-dimensional space by PCA and the rotation matrix R ∈
R

L×L is learned in the L-dimensional space. Then we use

the sign function on the rotated data to get the hashcodes

and the distance between a query and a sample is given by

the Hamming distance (the number of different bits). For PQ

and AQ, following [10], [14] the size of each sub-codebook

is set as k = 256 such that the integer index Im(xi) needs

exact 1 byte (8 bits). Therefore, to learn 64-bit codes, we

should construct C = 64/8 = 8 sub-codebooks. Moreover,

we adopt the asymmetric distance computation for computing

the distance as we introduced in the previous part of this paper.

For all approaches, including both VQ and RGVQ, iterative

optimization algorithms are adopted for learning quantization

models. As suggested by the original literatures [10], [14],

[21], their learning procedures can converge with 200 itera-

tions. In the upcoming parts, we will show that RGVQ can also

converge fast. Therefore, for all VQ and RGVQ approaches,

the maximum number of iterations is consistently set to 200.

C. Robustness Study

We firstly investigate the robustness of RGVQ against the

noise and outliers. Specifically, we adopt the ANN search task

using the SIFT1M and GIST1M datasets. To better investigate

this property we have manually added some noise to the

training data. In particular, each dimension of each manually

added noisy point is sampled from 100 × N (0, 1) where N
denotes a Gaussian distribution. Obviously, the distribution of

noisy data is different from the that of the original data. A

robust algorithm should pay more attention to the normal data.

To understand the boundary of the algorithm, we continuously

change the noise ratio (NR: the ratio between the manually

added noise points and the original points), and evaluate the

ℓ2-norm similarity search performance of different approaches.

Following the settings in [10], [15], [21], we use Recall@R
as the metric to evaluate ANN search performance, which

reflects the ratio between the number of the true positives in

the first R retrieved points given by VQ or RGVQ approaches

and the total number of the true positives in the database. More

precisely, the true positives for each query are defined as the

top l nearest neighbors of the query in the database by running

a brute-force linear scan measured by the ℓp-norm distance.
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Fig. 4: Performance comparison between OPQ+ and OPQ w.r.t. the noise ratio. We set l = 100 for ground truth.

0 1 2 3 4 5
0.1

0.2

0.3

0.4

0.5

Noise ratio (%)

R
e

c
a

ll@
1

0
0

0

 

 

AQ+
AQ

(a) SIFT1M, 16 bits

0 1 2 3 4 5
0.4

0.5

0.6

0.7

0.8

Noise ratio (%)

R
e

c
a

ll@
1

0
0

0

 

 

AQ+
AQ

(b) SIFT1M, 32 bits

0 1 2 3 4 5
0.76

0.82

0.88

0.94

1

Noise ratio (%)

R
e

c
a

ll@
1

0
0

0

 

 

AQ+
AQ

(c) SIFT1M, 64 bits

0 1 2 3 4 5
0.4

0.5

0.6

0.7

0.8

Noise ratio (%)

R
e

c
a

ll@
1

0
0

0
0

 

 

AQ+
AQ

(d) GIST1M, 16 bits

0 1 2 3 4 5
0.6

0.7

0.8

0.9

1

Noise ratio (%)

R
e

c
a

ll@
1

0
0

0
0

 

 

AQ+
AQ

(e) GIST1M, 32 bits

0 1 2 3 4 5
0.6

0.7

0.8

0.9

1

Noise ratio (%)

R
e

c
a

ll@
1

0
0

0
0

 

 

AQ+
AQ

(f) GIST1M, 64 bits

Fig. 5: Performance comparison between AQ+ and AQ w.r.t. the noise ratio. We set l = 100 for ground truth.

The comparison between RGVQ (ITQ+, OPQ+, and AQ+)

and VQ (ITQ, OPQ, and AQ) under different code lengths

and noise ratios is shown in Fig. 3, 4, and 5. It can be

observed that RGVQ is better than VQ at all situations,

including different approaches, code lengths, and noise ra-

tios, in terms of the Recall. On average, ITQ+, OPQ+ and

AQ+ have improved the recall over ITQ, OPQ, and AQ by

12.2%, 10.8%, and 9.85% when NR = 5%, demonstrating

that RGVQ with ℓp,q-norm (q = 1) loss is indeed more robust

to the noise than the original VQ with squared loss. Moreover,

it is worthwhile to point out that the results actually reveal the

following properties of the proposed RGVQ framework.

Firstly, RGVQ performs observably better than VQ in most

cases even when applying to the original dataset where no

manual noise is added to the training data (i.e., NR = 0). The

major reason is that the data are from the real-world dataset, on

which the noises and outliers have existed. Therefore, it turns

out that noisy data and outliers in the real-world dataset are

indeed influential in the performance of VQ because their large

errors may dominate the total distortion due to the squared

loss. In contrast, in RGVQ, we adopt the q-th (q < 2) order

loss function that can effectively suppress the effect of noisy

data and outliers as the learned parameters can better capture

the intrinsic information in the dataset. In other words, the

proposed RGVQ is better suited to deal with data in the wild.

Secondly, When NR gets increased from 0 to 5%, the
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Fig. 6: Performance comparison between RGVQ and VQ on CIFAR-10.
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Fig. 7: Performance comparison between RGVQ and VQ on NUS-WIDE.

similarity search performance of all VQ approaches degrades

rapidly. This phenomenon once again demonstrates that VQ is

sensitive to noise and outliers in data because of the squared

loss, as we have mentioned before. On the contrary, RGVQ

approaches show relatively more stable performance in most

cases when we increase NR. More importantly, it can be

seen that the performance gap between the corresponding ap-

proaches from RGVQ framework and VQ framework becomes

even larger when increasing NR. This again demonstrates the

superior robustness of the proposed RGVQ against the noise.

Moreover, it is observed that ITQ+ is more robust than

OPQ+ and AQ+ since the performance drop of ITQ+ when

NR raises from 0 to 5% is less significant. One possible reason

is that ITQ+ focuses on binary quantization while OPQ+ and

AQ+ adopt real-value quantization. As we will show later,

ITQ+ has larger distortion because the binary quantization is

not that flexible. In this case, the influence of large-distortion

entries is relatively smaller in ITQ+ as the majority of entries

has large distortion to some extent. Moreover, as OPQ+ and

AQ+ have better performance at first, it is more likely that

their performance drops more significantly.

D. Image Retrieval Results

From the application perspective, the robustness of RGVQ

enables us to search similarity in wild data such as Internet

images. To demonstrate the superiority of RGVQ over VQ,

we adopt two widely used image benchmark datasets collected

from Web, CIFAR-10 and NUS-WIDE, for the image retrieval

task. In particular, in this task, the true positives for each

query are defined as the images in the database which share at

least one semantic labels/concepts with the query, following

[8], [17], [55]. To evaluate the performance, we adopt the

Precision-recall curve as the metric, which reflects the pre-

cision (the ratio between the number of true positives and

that of retrieved images) at different recall levels. Generally,

a higher curve indicates that the true positives have higher

ranks which is desired for image retrieval task. Moreover,

mean Average Precision (mAP) is also utilized as a numeric

evaluation metric. It is defined as the area under the Precision-

recall curve and a larger value stands for a better performance.

The results of RGVQ approaches and VQ approaches

on CIFAR-10 and NUS-WIDE are presented in Fig. 6 and

Fig. 7 respectively. It can be seen that RGVQ consistently

outperforms VQ with observable margins with different code

length on two datasets. In fact, the real-world image sets

are always noisy. Unfortunately, existing approaches fail to

consider the influence of noise data. As we have analyzed

around Eq. (5), when q is large, the learning procedure prefers

to decrease the loss of large-distortion entries, while it focuses

more on the small-distortion entries when q is small. In the

VQ approaches, the squared Euclidean distance is employed

to measure the loss to which the noisy samples may contribute

significantly since the square operation puts larger weight

to the entries with larger distance which are more likely to

be noise. Consequently, the models pay too much attention

to the noise such that the intrinsic structure of data is not

well exploited. On the other hand, by utilizing the q-th order

(q < 2) of the Euclidean distance, the noisy samples contribute

less to the loss function than the squared one. The superior

performance of RGVQ again demonstrates that considering the

influence of noise, like by setting q = 1 in RGVQ framework,

is indeed helpful to build effective and efficient ANN search

systems in the real-world applications, like image retrieval.
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Fig. 8: The effect of q on RGVQ.
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Fig. 9: Performance comparison between ITQ+ and ITQ for ℓp-norm similarity search.

E. Effect of Parameter q

There is one important parameter q in RGVQ which controls

the order of the distortion. Here, we investigate how the

approaches will behave when varying q. To do so, we change

the value of q and plot the corresponding performance of

RGVQ approaches on the benchmark datasets with different

binary code length and noise ratios. The results are illustrated

in Fig. 8. It is noticed that VQ is a special case of RGVQ

when q = 2. We have the observations below from the results.

Firstly, in all settings, we can find a Bell-shape curve for all

approaches. Basically, the model is affected by both noise and

normal data. With a large q (say, q > 1.5), RGVQ will increase

the weight of those large-distortion entries such that the model

will be biased by them. Unfortunately, due to the existence of

noisy entries and their large distortions, the learned model

will deviate significantly to fit the outliers from the one which

best suits to the normal data. Therefore, the performance of all

RGVQ approaches degrades significantly when we increase q
from 1.5 to 2, especially in more noisy settings, e.g., NR =
5%. On the other hand, if q is too small (say, q < 0.5), we

cannot obtain good results either. According to the principle,

the difference between normal and noisy data becomes smaller

in this case, though the effect of outliers is suppressed. In the

extreme case where q = 0, every entry has the same distortion

1 such that any model is the solution for this case. Thus, it

is almost impossible to find the optimal model for normal
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Fig. 10: Performance comparison between OPQ+ and OPQ for ℓp-norm similarity search.
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Fig. 11: Performance comparison between AQ+ and AQ for ℓp-norm similarity search.

data. This interprets why RGVQ approaches perform worse

when we decrease q from 0.5 to 0.25, especially when there

is less noise, e.g., NR = 0. In Fig. 8, we can see that RGVQ

approaches perform stably good when q ∈ [0.75, 1.25] where

the effect of outliers on the model is effectively suppressed and

that a model which can well fit to the normal data is learned.

Secondly, we can observe that the performance-vs-q curve

behaves differently at different noise levels. Specifically, given

a small NR, e.g., NR = 0, RGVQ approaches seem more

sensitive to q when q < 1, because the the performance

changes dramatically when varying q in this range. On the

other hand, given a large NR, e.g., NR = 5%, they become

more sensitive when q > 1. The reason is analogous to our

analysis in the last paragraph. When there is little noise, the

primary target of RGVQ is to fit the normal data. In this case,

the performance may degrade rapidly if q is too small because

the the loss is too indiscriminative. On the other hand, as a

result of the increasing noise, the primary target of RGVQ

becomes to suppress the influence of noise. Thus, increasing

the value of q when q > 1 leads to much worse performance.

F. ℓp-norm Similarity Search

As stated as an important property of RGVQ, it can support

similarity search with different metrics based on the demand
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Fig. 12: Convergence study, ITQ+, SIFT1M, 64 bits.
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Fig. 13: Convergence study, OPQ+, SIFT1M, 32 bits.
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Fig. 14: Convergence study, AQ+, SIFT1M, 32 bits.

specified by the users while the original VQ only focuses

on the ℓ2-norm similarity search. In this subsection, we will

demonstrate the effectiveness of RGVQ for general ℓp-norm

similarity search. For RGVQ, we can set the parameter p
depending on the specific task and we set q = 1 consistently.

Specifically, we consider the ℓ2-norm (Euclidean distance),

ℓ1.5-norm, and ℓ1-norm (Manhattan distance) similarity search.

In the specific task, the ground truth is obtained by running a

brute-force linear scan measured by the ℓp-norm (p = 2, 1.5
and 1) distance in the three tasks respectively.

The recall curves (which reflects the recall level w.r.t. the

number of retrieved points) of RGVQ approaches and VQ

approaches for three different tasks on two datasets with

different code length are summarized in Fig. 9, 10, and 11.

Here, we use ℓ2-norm retrieval performance as the reference

as the original VQ approaches are designed for this task.

We can observe that RGVQ approaches have relatively more

stable performance on different tasks whereas VQ approaches

perform much worse on other two tasks than on ℓ2-norm task.

For example, the Recall@1000 of ITQ drops from 0.651 for

ℓ2-norm to 0.474 for ℓ1-norm on SIFT1M with 64 bits, that

of OPQ drops from 0.690 for ℓ2-norm to 0.527 for ℓ1-norm,

and that of AQ drops from 0.774 for ℓ2-norm to 0.619 for

ℓ1-norm on SIFT with 32 bits. Consequently, the performance

gap between the corresponding RGVQ approaches and VQ

approaches becomes much larger when we change p from 2
to 1.5 and 1. In addition, combining with the results in Fig.

2(c) and 2(d), we can see that the learning algorithms of VQ

approaches may unavoidably lead to larger ℓp-norm distortion,

which is the minimizing objective, with more iterations since

it adopts ℓ2 loss, thus resulting in worse ANN search perfor-

mance. Fortunately, the RGVQ framework takes the issue into

consideration and it is formulated as a more general ℓp,q-norm

loss function which can be applied to different settings such

that it can well support the general ℓp-norm similarity search.

G. Convergence Study

As an important theoretical contribution of this paper, we

propose an efficient optimization algorithm, Algorithm 1, for

optimization the challenging orthogonality constrained ℓp,q-

norm minimization problem. We have rigourously proved that

Algorithm 1 leads to nonincreasing objective value. Now, we
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empirically investigate its convergence property by conducting

the experiment on SIFT1M dataset. Because Algorithm 1 is

designed for the general ℓp,q-norm loss function, we assign

different values to p and q and plot the function value of three

specific approaches. The objective function value for ITQ+,

OPQ+, and AQ+ w.r.t. the number of iterations with different

settings are plotted in Fig. 12, 13, and 14 respectively. As

can be seen, the objective value decreases steadily with more

iterations and can achieve a nearly stable value within less than

100 iterations, which verifies the effectiveness of Algorithm 1.

VI. CONCLUSION

In this paper, we have presented an enhanced VQ frame-

work, termed RGVQ, which changes the ℓ2,2-norm loss in the

original VQ framework to a more general ℓp,q-norm loss. The

benefits are twofold. On the one hand, the algorithm becomes

more robust to the noise, which potentially makes RGVQ

better suited to search similarity in the real-world data. On

the other hand, promoting to ℓp,q-norm loss allows RGVQ

to handle various applications, where different distance mea-

surements are requested. The major technical challenge comes

from minimizing the new ℓp,q-norm loss function, which is a

non-smooth and non-convex optimization problem. To solve

this orthogonality constrained ℓp,q-norm minimization prob-

lem, we propose an efficient algorithm and rigorously prove

its convergence. We specify the algorithm to three celebrated

approaches. Comprehensive experiments on two NN search

benchmarks demonstrate that RGVQ performs significantly

better than VQ, and validate that RGVQ is robust to noise

and works well for ℓp-norm similarity search. Moreover, from

the application perspective, the extensive results on two image

retrieval benchmarks also verify that RGVQ works better than

VQ on real-world scenarios as it is more general and robust.
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