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PROPERNESS AND SIMPLICIAL RESOLUTIONS
FOR THE MODEL CATEGORY dgCat

JULIAN V. S. HOLSTEIN

AsstracT. We give an elementary proof that the model category of
dg-categories over a ring of flat dimension 0 is left proped ave
provide a construction of simplicial resolutions in dgegries, given

by categories of Maurer-Cartan elements.

1. INTRODUCTION

We provide proofs of the following properties of the modetegmry
dgCat, of dg-categories (with the Morita or Dwyer-Kan model sturef
over a ringk.

e Whenk has flat dimension 0, the categatgCat, is left proper.
¢ Natural simplicial resolutions idgCat are given by dg-categories
of Maurer-Cartan elements.

Left properness is essential to show the existence of Bddsfie
localizations of dg-categories. (Under stronger asswmptionk left
properness also follows from![7].) We also remark tig€Cat is cellular
and there is a Quillen equivalent combinatorial subcategerithout
assumptions on the existence of large cardinals).

Simplicial resolutions allow for constructions of exptimiapping spaces
and simplicial actions. These play a crucial role in catdgog
cohomology to Morita cohomology, segl [4]. We construct diong
resolutions by an explicit if somewhat lengthy computatiativated by
the Cech globalization in[[10]. Note that the explicit combimats of
this construction have appeared in other contextsK lis the nerve of
a category this is the data of ah,-functor, see for example [5]. If
K is any simplicial set one recovers thelocal systems defined in[1].
We feel that the interpretation here as the cotensor acticsingplicial
sets ondgCat, computed via simplicial resolutions, provides a satigfyi
conceptual viewpoint.

These results are taken from the author’s thesis. Thanksl@eeto
lan Grojnowski and Jon Pridham for helpful discussions a#i a® to
Zhaoting Wei and the anonymous referee for useful questmorsections

and suggestions.
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1.1. Conventions. We assume the reader is familiar with the theory of dg-
categories. Basic references are [6] and [16].

Recall in particular that there are two model structuresig€at,, the
category of diferential graded categories over a rikg These are the
Dwyer-Kan model structure, constructed inl[12], and the ikdomodel
structure [[13] which is its left Bousfield localization, ¢ii4]. We will
often not distinguish between them as our results will appligoth model
categories.

We use homological grading conventions, alffelientials decrease the
degree. The degree is indicated by a subscript or the ineéesguperscript,
Ci=C".

2. DG-CATEGORIES OVER A RING OF FLAT DIMENSION O FORM A LEFT PROPER,
CELLULAR, COMBINATORIAL MODEL CATEGORY

2.1. Left properness. In this section we will show that the model category
of dg-categories over a fieldis left proper. Recall that a model category is
left properif any pushout of a weak equivalence along a cofibration ignaga
a weak equivalence.

Remark2.1 Recall thadgCatwith the Dwyer-Kan model structure is right
proper since every object is fibrant, and it is not right propih the Morita
model structure, as is shown explicitly by Example 4.10 &i[1

Before proceeding to the proof we mention two closely relatsults
from the literature. Dwyer and Kan prove left propernessdionplicial
categories on a fixed set of objectslin [2].

If we strengthen our assumption andkétave global dimension 0, then it
follows from Corollary 1.3 in[[7] thatgCat, is left proper. To see this, note
that in this case all chain complexes okeare cofibrant in the projective
model structure, so the results in [7] apply. Indeed, anyrchamplex is
a direct limit of its canonical filtration by bounded belowbsomplexes. If
all k-modules are projective this is a special direct limit in ske@se of [11],
hence the limit is a K-projective object and hence cofibrant.

Theorem 2.2.If k has flat dimension 0 the model categaigyCat, is left
proper.

Proof. Left Bousfield localization preserves left properness fseposition
3.4.4 of [3], so it is enough to shodgCat with the Dwyer-Kan model
structure is left proper.

The main work is in showing that pushout along the generating
cofibrations preserves quasi-equivalences.

To see this sfiices note first that transfinite compositions are just filtered
colimits, and filtered colimits preserve quasi-equivaémas follows: A
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filtered colimit of categories can be computed set-thecadlyi on objects
and morphisms. Now filtered colimits preserve weak equihads of
simplicial sets and hence of mapping spaces. They also rpeetee
homotopy category since a filtered colimit of equivalendesategories is
an equivalence of categories and taking the homotopy categonmutes
with filtered colimits. Second, if pushout along some mapserees
weak equivalences then so does pushout along a retract lyofiality
of colimits. Since all cofibrations are retracts of transéirécompositions
of generating cofibrations, it does indeedff®e to check generating
cofibrations.

Recall the generating cofibrationsagCat [15]. We writek for the dg-
category with one object with endomorphisknsoncentrated in degree 0.
Also let .(n — 1) have two objects andb and Endé) = End(p) = k[0]
while Hom@, b) = k.g with g in degreen—1 and Homl, a) = 0. Finally let
2(n) be obtained by”(n-1) by adding a generating morphisnof degree
nto.(n— 1) withdf = g. Then the generating cofibrationsdgCat are
given by® — kand by.(n—- 1) - 2(n) for all n € Z.

It is clear that pushout alorily— k preserves quasi-equivalences.

So consider the generating cofibratiofiin — 1) — 2(n) with a map
j: Z(n-1) - ¥ and a quasi-equivalende: ¥ — &. In forming the
pushforward we adjoin a new médpwith df = j(g). We call the resulting
categorys”. Then let£” be the pushout of”(n — 1) —» Z(n) alongF o j.

The pushout along has the same objects @& The morphism space is
obtained by collecting maps frof@ to D, graded by how often they factor
throughf: j(@ — j(b). Write € (A, B) etc. for the enriched hom-spaces
Hom, (A, B) etc. Then the hom-spaces#’ are given as follows:

(1) %’(C.D)=Tot® (¢(C,D)a (¢(j(b),D)okfeT®%(C, j@))

HereT = 3 .0(Z(j(b), j(a)) ® k. f)®" and we introduce a horizontal degree

nwith % (C, D) in degree-1. The right hand side has a verticaffdrential

d, given by the internal dierential and a horizontal fierentiald, given by

f — j(g) € Hom(j(b), j(a)) composed with the necessary compositions.
If the functorF is not the identity on objects frord to & we factor

F=QoH: ¥>9%9 > &

whereZ has as objects the objects@fbut Hom, (A, B) = Homs(FA, FB).
ThenH is identity on objects an@ is an isomorphism on hom-spaces. We
form the pushforward and obtain the factorizatln= Q' o H’ through?’.

So it sufices to prove the following two lemmas. O

Lemma 2.3. The functor Q defined as above is a quasi-equivalence if Q
is.
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Proof. Note thatQ’ is quasi-essentially surjective @ is since bothy? —
2" and& — & are essentially surjective as pushout algngoes not
change the set of objects.

Next we use a spectral sequence to compute the hom-spagéails”.
To construct the spectral sequence we filter the right-hiledod Equatiof fL
(with 2 respectively? in place of¢’) by columns, i.e. by. Let (V, dy + d,)
denote any Hom space i@’ or &”. The filtration is bounded below and
exhaustive for the direct sum total complgxand hence the associated
spectral sequence

qu = Hp.q(GrpV) = Epy, = Hpig(V)

converges. Now GX) = (V, d,) and the map induced by’ is given byQ
on all the hom-spaces making up the right-hand side of Eouidti Since
Q induces isomorphisms on hom-spaces, it induces isomonghos their
direct sums and tensor products and tisnduces an isomorphisms on
the E!-page of the spectral sequences computing hom-spacgs and
&’. HenceQ induces an isomorphism on th&°-page. For any pair of
objectsC, D in 2’ this gives an isomorphis@’(C, D) = &’(QC, QD), so
Q' induces quasi-isomorphisms on hom-spaces.

Note that since” (n — 1) maps tof’ via Z all the hom-spaces involved
in computings” (QC, QD) are indeed images of hom-space%in |

Lemma 2.4. The functor H defined as above is a quasi-equivalence if H
is.

Proof. Note thatH’ is quasi-essentially surjectivehf is for the same reason
thatQ' is.

To consider the féect of H* on mapping spaces we follow the same
argument as in the previous lemma. Now only induces weak
equivalences on hom-spaces, but we know all hom-spacesaamavérk
by assumption. Hence the tensor product in Equdtlon 1 presejuasi-
isomorphisms. So we have a quasi-isomorphism betweeEtipages of
the spectral sequences and hence betWEepages andH’ induces quasi-
isomorphisms on hom-spaces. |

Remarlk2.5. If k does not have flat dimension 0 then the conclusion is false.
We can adapt Example 2.7 in/ [9] to the case of dg-categoriesk have
positive flat dimension, then there exists a paitkehodulesM, N with
Tor{(M, N) # 0. We will consider thé-algebraA = k@& M & N with trivial
productM & N. Then Tok(A, A) # 0. View A as a dg-algebra concentrated
in degree 0 and take a free resolutiBrof A. Next consider bott® andB

as dg-categories with one object. They are quasi-equivaldaw attach

a free generator té and toB by pushout along the generating cofibration
Z(-1) - 2(0). We then have\(x) =~ P, __, A*" andB(y) ~ &, , B"

n>1
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(note that the tensor product here is the underived tenswiupt overk).
But sinceH; (B ® B) = Tor{(A, A) # 0 andA(x) is concentrated in degree 0
the two pushouts are not quasi-equivalent, dg@at, is not left proper.

Hence the model category of dg-categories is left properdfanly if all
dg-categories afeflat, i.e. if and only ifk has flat dimension 0, equivalently
if kis von Neumann regular.

In [9] the existence of a proper model for simplidkahlgebras is proven.
A similar result for dg-categories is beyond the scope o Work.

2.2. Cellularity and combinatoriality. One of the main uses of proper-
ness is in constructing left Bousfield localizations. Theycedditional
assumption needed is that the model category is eitherdaethu combi-
natorial. We now show that both are satisfieddgCat.

Proposition 2.6. The two model category structures dgCat are cellular.

Proof. Recall that a model category is cellular if it is cofibrantgngrated
with generating cofibrationlsand generating trivial cofibratiorksuch that
the domains and codomains of the elements afe compact, the domains
of the elements of are small relative td and the cofibrations ardfective
monomorphisms. See Chapter 10[df [3] for more details.

Left Bousfield localization preserves being cellular seedrem 4.1.1
of [3]. So itis enough to showgCat with the Dwyer-Kan model structure
is cellular.

The domains and codomains of elementsl cdre categories with at
most two objects and perfect hom-spaces, so maps from tligsetoto
relativel-complexes factor through small subcomplexes. So domaids a
codomains of are compact.

Similarly the domains of the elements dhave two objects and perfect
hom-spaces. Hence taking maps from a domaihafmmutes with filtered
colimits. So domains od are small relative to.

We are left to check that relatiMecell complexes, i.e. transfinite com-
positions of pushouts of generating cofibrations, d@fective monomor-
phisms, i.e. any relativé-cell complexf: X — Y is the equalizer of
Y 33 Y LIk Y. Note that we form the pushout along a generating cofibration
by attaching maps freely. If we forfd@” and%” from % by attaching maps
freely then the equalizer will have the same objects and ¢ne-spaces are
given by considering morphisms of the pushout that are imtlagje of both
¢’ and%”. But these are precisely the hom-space® of |

Definition 2.7. Let A be a regular cardinal. An objeétin a category? is
A-presentabléf it is small with respect tal-filtered colimits, i.e. if for every
A-filtered colimit colimB; the map colim Hon4, B;) — Hom(A, colim B;)
is an isomorphism. We s&yis presentabléf it is A-presentable for some
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A cocomplete category iscally presentabléf for some regular cardinal
it has a sefb of 1-presentable objects such that every object.istirected
colimit of objects inS.

Definition 2.8. A model category iscombinatorial if the underlying
category is locally presentable.

It is known that there exist combinatorial models for all bodintly
generated model categories under a large cardinal assampti [8]. We
notice that this assumption is not necessarydfpCat.

Proposition 2.9. The categorydgCat is Quillen equivalent to a combina-
torial subcategory.

Proof. This follows immediately from the proof of the main theorefjg].
Let 2 denote either of the two model structures dgCat. Let S be
the collection of objects that are domains or codomains efgienerating
cofibrations and generating trivial cofibrations. (Se€ [fds]an explicit
description.) Clearh\§ is a set. Let¥ denote the full subcategory &
with objectsS. Definens(X) to be the colimit of the forgetful diagram
(s— A) — sindexed by the overcategory | A. Then an objecA € Z is
S -generatedf it is isomorphic tons(X).

Now by the proof of Theorem 1.1 inl[8] the subcategorysefienerated
objects of 7 is a model categor@s which is Quillen equivalent to the
original one. Moreover, by Proposition 3.1 of [8s is locally presentable
if every object inS is presentable. But this is clear since the objectS in
have finitely many objects and generating morphisms. O

Remark2.10 Note that Vognka’s principle is not needed here since the
objects ofS are presentable.

3. SMPLICIAL RESOLUTIONS OF DG-CATEGORIES

In this section we will construct explicit simplicial furarial resolutions
¢ +— %. in dgCat. Again, we can consider either model structure on
dgCat.

We first recall the basic definitions. Latbe the simplex category and
consider the constant diagram functor.# — .#*". Then asimplicial
resolution M for M € .# is a fibrant replacement farM in the Reedy
model structure on#Z*”. (For a definition of the Reedy model structure
see for example Chapter 15 ofl [3].) The dual notion isogimplicial
resolution M.

We recall two applications:

By using simplicial resolutions one can define mapping spatith
values inHo(sSe) for every model category, even if it is not a simplicial
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model category. IfcB — B is a simplicial resolution in#** and
QA a cofibrant replacement inZ then Map@, B) ~ Hom'(QA B) =~
R(Hom’(-, c-)), where the right-hand side uses the bifunctor Mo °Px
M2" — Set” that is defined levelwise.

Moreover, every homotopy category of a model category isded and
cotensored itHo(sSe). In fact,.# can be turned into a simplicial category
in the sense that there is an enrichment given by the bifurMap and
there is a tensor functor as well as a cotensor or power funatoich
can be constructed from the simplicial and cosimpliciabhesons. The
cotensor is constructed using the simplicial resolutiorfcliews: Let a
simplicial resolutiomA, € .#*”* and a simplicial seK be given. Consider
AK®P, the opposite of the category of simpliceskafwith the natural map
V: AK°P — A° sendingA[n] — K to [n]. We defineAX = lim ko A, tO
be the image oA, under limo v*: €2 — €*K* — &. This can also be
written asA® = lim, ([ Tk, An)-

3.1. The construction. Our construction is directly motivated by Simp-
son’s construction of the globalization of a presheaf ofcdtggories as a
dg-category of Maurer—Cartan elements, cf. section 5.4 @ [

Remark 3.1 In fact, the construction of%, below corresponds to
considering the constant presheaf of dg-categories oneriogvof|A"| by
n+ 1 open sets (corresponding to leaving out one of the faces).

Definition 3.2. Assume?’ is fibrant, replace fibrantly otherwise. Thep
is a dg-category with objects given by paits ) whereE is a collection
Eo,...,En € Ob% andp is a collection ofy, = n(I) € Hom_,(E;,, E;,)
for all multi-indices! = (ig,...,ix) with 1 < k < n. The case&k = 0 is
subsumed by the fierential onE. (We interpret;(i) = 0 where it comes
up in computation.) These pairs must satisfy the Maurerta@arondition:
on +n? = 0, explained below. We also demand thatrglle Hom(E;, E;)
are weak equivalences #i.

Remark 3.3 If we do not fibrantly replace the construction gives a
simplicial framingondgCat, see for example [3]. The simplicial resolution
can then be viewed as composing functorial fibrant replacenvéh the
simplicial framing.

Let us spell out the Maurer—Cartan condition. Intuitivejyprovides
all the comparison maps as well as homotopies between fiieratit
compositions. We define theftirential

k-1
(6n)io -, iK) = dQnCio, - -, 1)) + (=) > (=L nfio, .. Ty, k)
ji=1
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which lives in Hom(E
The product is:

Ei.). We writes = d + A. Here we defingy| = 1.

i»

k
(@ onios- k) = Y (=1)"6(ij,.... i) o mlios 1)
j=0

Both definitions follow section 5.2 of [10], with some cortiens to the
signs. We leave out the termsdn corresponding to leaving ougandiy as
they do not live in the correct hom-spaces.

One can now check thatd = —dA (and henc&? = 0) and we have the
following Leibniz rule:

8¢ on) = (=1)"(6¢) o + ¢ o (6m)
The same equation holds for the summaddmdA. (The unusual sign
appears because of the backward notation for compositions.

example3.4. Forn = 1 we haven +7%)o1 = d(n01) + 0, the expected cycle
condition. Fom = 2 we have for example

(617 + 1%)o12 = d(7012) + 102 — 1712 © Mo1 € Homy (Eg, Eo)
So an element of; is of the form €,n) whereE = (Eo, E;, E;) and
n = (1701, Moz, M12; Mo13) Satisfiesdn + 77 = 0, which comes out tdy;; = 0
anddnoio = —no2 + 112 © Mo1. This agrees with our intuition thag,, is a
homotopy fromy, o rg1 10 7>.

Morphisms from E, n) to (F, ¢) are given as follows.

Hom " ((E, ). (F. ¢)) = {a&(io, - . ., i)}

wherea(io, . .., ix) € Hom_  (Ei,, Fi,). We writem = |a| for the degree of a
morphism. We have a fierentiald, ;, defined by

(d,6(@)(ios - -,ik) =6(@) + poa—(-1)¥aop
where composition and fierential are defined as above. The Maurer—

Cartan condition oy and ¢ together with the Leibniz rule ensures
(d,4)? = 0.

example3.5. For example%, agrees with the path object idgCat as
constructed in section 3 of [15]. Indeed, objects are hopytovertible
morphismsp: A — B and morphisms frony to ¢ are given by triples
(ao, a1, ag1) With differential

§: (8o, &y, 301) F> (da, day, dagy + ¢ 0 a9 — (~1)*'ay o )

Note that there are induced face and degeneracy maps. Theimée
simplex category induce restriction funct@s %, — %,_1 and inclusions
O 6y — %n1 that add an extra copy d&;, connected by the identity
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map toE;. We then define the mapgsby pullback, with the extra rule that

The replacement map ¢4 — %, is given by ()" in degreen.

Before we embark on the somewhat technical proof tHatis a
simplicial resolution, we note the following applicationVe can extend
the definitions of the dierentials and composition to functions defined on
general simplices. (That is, we replace “leaving outitiie term” by the
map induced by; etc.)

Proposition 3.6. Given a simplicial set K we can construét as the dg-
category with object§E, n) where Ec (Ob%)Xe andn assigns to every k-
simplex in K; a map in_ Hom_, (E(6c), E(6% o)) satisfying the Maurer—
Cartan equations. Hom-spaces are defined similarly to hpatss irfs,.

Proof. This follows from the construction o = limke%,. All
the copies ofé, corresponding to degenerate simplices are themselves
degenerate. |

Remark 3.7. Note that this shows that the construction of Morita
cohomology inl[4] aK — ¢ corresponds too-local systems as defined
in [4].

Notation 3.8. Given an object or morphisma and a positive integédt we
write oy for the collection of alky;,_j,.

Proposition 3.9. The inclusion from the constant simplicial dg-categc#y ¢
to %. is a levelwise weak equivalence.

Proof. We have to check that the inclusion mapcé — %, is a quasi-
equivalence.

Let us first show that induces weak equivalences on hom-complexes.
We have to show that Hopn((E, ), (F, ¢)) ~ Hom,_(E, F) when bothy
andg are of the form £, 0), i.e. the constituent morphisms in degree 0 are
the identity and all others are 0.

Write (H,dy) := Hom(E, F) and note that from the definitions we can
write

Hom((E, 0), (F,0)) = (H[1] ® /\(ey,..., &), D)
Here thee all have degree 1 and we identify.e, A --- A &, with the
a(ip, . ..,ix). The diferentialD is dy + ¢y ¢ Where the second term denotes
contraction. This complex is a resolution &f,dy).

Next we show is quasi-essentially surjective, i.e. show that any object
(E,n) is equivalent to an objectF(, (1,0)) where F, is of the form
(Fo, ..., Fo).

We can deduce this if we can show that evelyr) is equivalent to
some E,¢) such that all compositions which agree up to homotopy by
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5¢ + ¢* = 0 agree strictly, i.e¢ = (¢}, 0), and that any such=((¢, 0))

is equivalent to £, (1,0)). The second part of this is immediate: We
define a map fromK,, (1,0)) to (F, (40, 0)) by sendingF, to F; via
#(0,1) = ¢(i — 1,i)---¢(0,1). Since allp(j, j + 1) are homotopy invertible
there is a homotopy inverse.

We will now show that anyK, n) is equivalent to [, ¢) where¢ has no
higher homotopies. Lét = E and letg(i, j) =n(j =1, ) ---n(i,i + 1). We
may assume by induction onthat all(io, . . .ix) with iy < nare 0. Let us
now factor the map fromH, ) to (E, ¢) as €, n) — (E,0) — (E, ¢) where
0 is defined likep on indices not including n and like otherwise. We first
show the first map is a homotopy equivalence. By inductiommagsion
we know this holds fom — 1. So there is a homotopy equivalenidé
between the restrictions oE(n) and E, ) to the index set0--,n— 1.
We now extend this to homotopy equivalertddoy definingH(n) = 1 and
H(io,...,ix, N) = 0. This still has a homotopy inverse, defined in the same
way but starting with the homotopy inversetdf. MoreoverdH = dH’ = 0.

Now we show the second map is an equivalence as well. We dégne t
homotopy equivalencH : (E,n) — (E, ¢) as follows:

H({i) =1
H(io, ..., = (1) (io,....ik,n—=1,n) ifix=nandi_; #n—-1
H(ig,...,ix) =0 otherwise

And defineH™ to be equal tdH in degree 0 and-H in degree> 0.

Then it is clear thaH andH~ are inverses. SincE(ig,...,I,) is zero
unlessi, = n there are no nontrivial compositions and the compositions
loH(...)andH(...) o 1 cancel in degrees greater than 0.

So it remains to show thatH = dH~ = 0 to show we have a genuine
homotopy equivalence.

We consideH first.

Putting together our definitions we find the following. Leffinst assume
ik.1 # N —1 andix = n. To obtain the correct signs recall theff = 0 and

nl = ¢l = 1.

k-1
(dH)o, . ik) = d(H(io, ... 1K) + Y (~1)'H(ios ... 1. in)
j=1

k k
+ Z(—l)jqﬁ(ij...in)oH(io,...,ij)—ZH(ij,...,ik)on(io,... i
j=0 j=0
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This simplifies to:
(dH)(io, . ... i) = (1) dn(io, ..., n—1,n)

~

+ (=12 (<DinGio, ... j,...,n=1,n)
j

+0- (_1)k_277(i1, BN L 1’ n) © n(io’ Il) —-1o n(io’ .- "ik)
=0

The last equality holds since the penultimate term is of ¢tnenf
(-1 6n + n)(ios - .., ik-1,n = 1,n)

This becomes clear if we writgio, . . ., ix) = n(io, ..., N — 1, n) and observe
that all the other terms we expectdn + > are 0.
The other cases are easieriilf n all terms in the dterential are 0 and
if ik_; = n—1 andiy = nthere are only two nonzero terms, which cancel.
When we considedH™ the sign of the termy(io, ..., ix) changes, as it
now comes fromy o H and notH o . This cancels theftect of the sign of
H(i) also changing by a factor efl. There are no other occurrences of the
sign of H(i) unlessk = 1 when all but the last two terms are zero and the
last two terms cancel. O

Proposition 3.10. The simplicial dg-categor¥., is Reedy fibrant.

Proof. Write
77<n = (770, ey 77/0\ﬂ) = (n[0]3 ey n[ﬂ—l])

ThenM, (%) is a subcategory ¢, whose objects are of the forrk ().

In particular note that the Maurer—Cartan condition holdsath indexing
sets except on (0..,n). Similarly, morphisms are of the forms., where

s is a morphism in%,. This is easily seen to be the correct limit, see
Propositio 3.6. We write: 4, — M,% for the functor forgettingy.

It is immediate from the definition that there is a surjectmm hom-
spaces. So it remains to check the lifting property for hapyptinvertible
maps. We will first reduce to lifting contractions, as is dam¢éhe case of
path objects in section 3 of [15].

Note that by assumption the dg-categafyis fibrant and hence has
cones, cf. section 2 of [15]. Then to see if a nieip homotopy invertible it
sufices to check thatongh) is contractible.

So assumé: (E,n.,) — (F, ¢-n) is homotopy invertible inM,% with
homotopy inversg and that E, n.,) is in the image of6, undern. First we
need to check thal{ ¢.,) is also in the image o¥,. It is enough to find
ér such thatp + ¢ = 0 while we know thateé., + ¢, = 0. In other words
we are looking fory, such thatg = (Ag + ) .-
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We will first considerg(n) - (A¢ + ¢?)(0...n). Definep o’ o to bep o o
minus the ternp(n) - o(-- - n). Then—o’ o = —o o if oisn or ¢. Note that
d andA are compatible with’ just as with the usual product.

Theng(n) - ¢(i...n) = (-go’ ¢ +nog-69)(i...n) and we can perform
the following computation, where we deduce the Maurer-&acondition
in degreen from the Maurer—Cartan conditions in lower degrees.

g(n) - (A¢ + ¢ o ) = —~A(g o’ ¢) + Al o g) — Adg
+(-go'p+nog-06g)o¢
=—go' (Ap+¢pop)+no(Ag+gog)
—dgo’ ¢+ Anog+dAg
~go' dp—dgo’¢p+nonog—-nodg+Anog
=d(go" ¢)-dnog-nodg
~ —d(n © 9)
~0

Sincedh(n) = 0 we deduce that(n)g(n)(A¢ + ¢?) ~ 0 and it sifices
to show p(n)g(n) — 1) - (A¢ + ¢?) =~ 0. We know there exist& with
dK = h(n)g(n) — 1 so the desired homotopy follows if we can show that
d(A¢ + ¢?) = 0. One may check explicitly thal(Ap) = —A¢ o ¢ + ¢ o Ag,
using the fact thatlp = —A¢ — ¢? in degree less tham Then we can use
Maurer—Cartan in lower degrees again to deduce:

d(A¢ + ¢%) = d(Ag) — (-A¢ — ¢°) 0 ¢ + ¢ o (-Ad — ¢°)
=0

Thus we know the domain and codomainhadre in the image ot and
we can use surjectivity of hom-spaces to wtite 7(H). Now it sufices to
show that the contraction dflifts.

Let us assume we are given a contractgp of conégh) = (G,vy.n),
we have to find a contractios of (G,y). By assumption we can write
d,(s«n) = (1,0,...,0,ty) for somety;. Now consider 0= d,d,(s.n) =
O,...,0,dtyy + 0). This forcessty; = dty = 0. But now we know
thatdsg = 1 and hencea: gty — t and Goj. - - -, Sn-15> Sortny) IS @
contraction of G, y).

We deduce thaH is contractible and the preimages &, ¢.,) and
(F, ¢-n) are indeed homotopy equivalent. m|
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