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Abstract 

Ensuring adequate food supplies to a large and increasing population continues to be the key 

challenge for China. Given the increasing integration of China within global markets for 

agricultural products, this issue is of considerable significance for global food security. Over 

the last 50 years, China has increased the production of its staple crops mainly by increasing 

yield per unit land area. However, this has largely been achieved through inappropriate 

agricultural practices, which have caused environmental degradation, with deleterious 

consequences for future agricultural productivity. Hence, there is now a pressing need to 

intensify agriculture in China using practices that are environmentally and economically 

sustainable. Given the dynamic nature of crops over space and time, the use of remote sensing 

technology has proven to be a valuable asset providing end-users in many countries with 

information to guide sustainable agricultural practices. Recently, the field has experienced 

considerable technological advancements reflected in the availability of ‘hyper-sensing’ (high 

spectral, spatial and temporal) satellite imagery useful for monitoring, modelling and mapping 

of agricultural crops. However, there still remains a significant challenge in fully exploiting 

such technologies for addressing agricultural problems in China. This review paper evaluates 

the potential contributions of satellite ‘hyper-sensing’ to agriculture in China and identifies the 

opportunities and challenges for future work. We perform a critical evaluation of current 

capabilities in satellite ‘hyper-sensing’ in agriculture with an emphasis on Chinese sensors. Our 

analysis draws on a series of in-depth examples based on recent and on-going projects in China 

that are developing ‘hyper-sensing’ approaches for (i) measuring crop phenology parameters 

and predicting yields; (ii) specifying crop fertiliser requirements; (iii) optimising management 

responses to abiotic and biotic stress in crops; (iv) maximising yields while minimising water 

use in arid regions; (v) large-scale crop/cropland mapping; and (vi) management zone 

delineation. The paper concludes with a synthesis of these application areas in order to define 

the requirements for future research, technological innovation and knowledge exchange in 

order to deliver yield sustainability in China. 
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1. Introduction 

The production of food in China is a fundamental component of the national economy and a 

key driver of agricultural policy. The maintenance of food security in China is a critical issue 

for the country and this has significant ramifications globally. However, China’s ability to 

sustain and increase crop yield is threatened by the effects of climate change, increasing 

population, agricultural land loss and competing demands for water (Fan et al., 2012; He et al., 

2017; Kang et al., 2017; Wei et al., 2009; Zhao et al., 2008). Notably, the Chinese government 

has identified the conversion of farmlands to industrial and residential use, particularly across 

productive agricultural regions of the country, as the major threat to the nation’s already 

inadequate levels of staple cereals production (Lichtenberg and Ding, 2008). According to the 

office of statistics in China, over 14.5 million hectares of arable land in the country was lost 

between 1979 and 1995. Though this loss was counterbalanced by an addition of 10.1 million 

hectares of arable land from reclamation activities, this additional land was of lower quality 

and located in unsuitable areas incapable of promoting agricultural production (Ash and 

Edmonds, 1998). Furthermore, several studies have attributed the loss of farmland across China 

to a combined effect of population growth, rapid economic development, urbanisation, 

agricultural restructuring, government stimulated conversion of marginal croplands to forests 

or pastures, natural hazards and land degradation (Ding, 2003; He et al., 2017; Smil, 1999; Tan 

et al., 2005; Yang and Li, 2000). He et al. (2017) provides background information on the 

impact of urban expansion on food security in China, particularly from decreased cropland net 

primary productivity. 

With regards to food production, the global importance of China is measured by the capacity 

of the country’s agriculture to support staple food supply for most of its population 

(approximately 20% of global population) and the world simultaneously. Based on existing 

statistics, in 2013 China contributed 19, 17, and 22 % of global rice, wheat and maize 

production, respectively (FAO, 2014); providing an indication of the country’s strategic 

position in the global food market. However, Fred et al (2014) observed that though the Chinese 

authorities have policies to encourage domestic production of grain as a means of promoting 

self-sufficiency, grain exports (particularly for rice, wheat and maize) have declined while 

imports have consistently risen between 2009 and 2013 (Figure 1). Irrespective of China’s 

global production ratings, the country’s level of rice imports increased from 0.6 million tonnes 

in 2011 to 2.6 million tonnes in 2012 (China Import Export, 2014; Ewing and Zhang, 2013). 

Ewing and Zhang (2013) attribute this substantive rise in China’s rice importation to a 

combination of factors, namely a rapid rise in consumer demand, over reporting of domestic 

rice production by government officials, poor transportation links between rice-producing and 

consuming regions of the country and concerns over safety of domestically produced rice due 

to high fertiliser contamination levels. 

[Figure 1]  

The accelerated agricultural growth rate experienced in China over the years can be attributed 

to increased yield per unit area rather than expansion of arable or cultivated land (Fan et al., 

2012) (Figure 2A). All of the country’s key grain crops (rice, maize and wheat) have 

experienced a steady rise in production and yield over the last 50 years (Figures 2B and 2C). 

[Figure 2] 

Although China has experienced increasing crop yields, it is commonly acknowledged that this 

has in large part been at the expense of the environment due to inappropriate agricultural 

practices (Fan et al., 2012). Wasteful production methods in China’s agricultural sector have 

aggravated problems of resource shortage; excessive use of pesticides and fertilisers have led 
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to the contamination of soil and water bodies while the unrestricted use of water for crop 

irrigation has severely depleted aquifers (Zheng, 2015). In particular, the excessive use of 

nitrogen (N) fertilisers in intensified agriculture across China has generated environmental 

problems such as atmospheric, soil and water enrichment (Ju et al., 2009b) leading to elevated 

NO3-N concentrations in groundwater and reduced N use efficiency (Wang et al., 2011). The 

challenge of maintaining or increasing crop production in an environmentally sustainable 

manner is further exacerbated by issues such as the effects of climate change (Piao et al., 2010) 

and pressures on agricultural land use from urbanisation. 

For the 12th year in a row, China’s “No. 1 Central Document” focused on agriculture and rural 

issues. The document stresses the importance of agriculture in national socioeconomic 

development stating that ‘a strong agricultural sector is a prerequisite for a strong China’. It 

called for reforms and innovation in agriculture to speed up the modernisation drive, but 

emphasised sustainability: “Instead of mainly pursuing high output and relying on resources 

consumption, China should put equal emphasis on quantity, quality and benefits, and attach 

importance to competitiveness, technological innovation and sustainable growth”  (Xinhua, 

2015). One of the five areas of concern highlighted in the document was “accelerating the shift 

of agricultural development pattern with a focus on agricultural modernisation” (MOA, 2015). 

Over the last decade, China has focused on advancing space-based solutions to addressing 

different agricultural and environmental problems. This is demonstrated in the establishment 

of commissioned agencies charged with space-related research and development, such as: 

China National Space Administration (CNSA), Chinese Academy of Space Technology 

(CAST), China Centre for Resources Satellite Data and Application (CRESDA), National 

Remote Sensing Centre of China (NRSCC) and National Satellite Meteorological 

Centre/Chinese Metrological Administration (NSMC-CMA). These organisations have been 

exploiting the capabilities of satellite remote sensing to provide information to support decision 

making in the agricultural sector at various organisational levels. Such information is unique 

in its capability to provide repeated and complete coverage for different growing seasons and 

across multiple scales, spanning from small fields to landscapes and regions. In addition to 

crop type mapping over large landscapes (Chen et al., 2007b; Esch et al., 2014), satellite remote 

sensing provides critical data on the physiological state of crops (Meng et al., 2009) and its 

biophysical or biochemical properties (Haboudane et al., 2004; Jingfeng and Blackburn, 2011). 

Several studies have demonstrated the potential of utilising remote sensing for monitoring crop 

phenology and provide valuable inputs for crop growth and yield estimation models (Clevers 

and van Leeuwen, 1996; Hu et al., 2014; Hua et al., 1998; Kurosu et al., 1995; Li et al., 2014b; 

Onojeghuo and Blackburn, 2011; Pan et al., 2009; Sankaran et al., 2010; Soria-Ruiz et al., 

2010; Zhang et al., 2003). However, whilst satellite data has become part of existing agriculture 

operation systems, the commonly found mismatch between remote sensing products and the 

information actually required by farmers has led to a slow take-up of this technology within 

agriculture in many countries. 

In China, the deployment of satellite remote sensing in agriculture is particularly challenging 

because of the generally small field sizes, demands for multiple within-year cropping, the range 

of crop species and varieties, high spatial heterogeneity in the environment, extreme climatic 

variability and a wide range of geographic contexts. This means that a wide range of abiotic 

and biotic factors can act simultaneously across different spatial and temporal scales to 

influence crop growth and necessitate agricultural interventions. Satellite ‘hyper-sensing’ 

offers new and emerging technologies that allow effective capture of high spatial, high 

temporal and high spectral resolution data. Hence, it is now timely to undertake an evaluation 

of the potential contributions of satellite ‘hyper-sensing’ to agriculture in China, in order to 

define the requirements for future research, technological innovation and knowledge exchange. 
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This paper begins by reviewing existing and forthcoming satellite ‘hyper-sensing’ missions 

and assesses existing evidence of potential benefits to agriculture of high spatial, spectral and 

temporal optical imagery, together with contemporary RADAR systems. This review is placed 

in the context of current national crop monitoring systems, with emphasis on China. A series 

of in-depth examples demonstrating the potential of ‘hyper-sensing’ to addressing key 

agricultural issues, with emphasis on recent and ongoing research projects, are presented. 

Finally, the paper synthesises evidence needed to build a system that utilises valuable 

information from satellite ‘hyper-sensing’ to support management decisions by Chinese 

producers as a means of maximising crop yield whilst minimising resource inputs and 

environmental impacts. 

2. Existing and forthcoming satellite ‘hyper-sensing’ systems for potential agricultural 

applications 

2.1. Spaceborne hyperspectral remote sensing for agriculture 

Advances in hyperspectral remote sensing in agriculture have generated significant 

enhancements over conventional remote sensing techniques, resulting in improved and targeted 

modelling of specific agricultural characteristics (Thenkabail et al., 2014). The benefits of 

spaceborne hyperspectral imagery generated by the Earth Observation (EO)-1 and Proba-1 

missions. In a review article, Middleton et al. (2013) comprehensively reviewed the EO-1 

mission and discussed the characteristics of the two onboard sensors, Hyperion and the 

Advanced Land Imager (ALI). Essentially, the paper serves as an introduction to instruments, 

their capabilities and contributions to science and technology (Middleton et al., 2013) and 

provides an update on the original review of Hyperion presented by Pearlman et al. (2001). In 

a review of hyperspectral remote sensing of vegetation, Ortenberg (2011) identified the 

opportunities of developing spaceborne hyperspectral systems for observations in optical 

region with higher informational and operational performance thereby greatly enhancing 

vegetation monitoring capabilities in comparison to the conventional spaceborne multispectral 

sensors. The paper identifies spaceborne hyperspectral missions that are operational and those 

planned for future commissioning Ortenberg (2011). Summarised in Table 1 below are 

characteristics of the key existing and planned spaceborne hyperspectral satellite missions that 

could be used for agricultural applications in China.  

[Table 1] 

Several studies have demonstrated the potential of hyperspectral remote sensing in improved 

and targeted assessment of crop characteristics such as in measuring biophysical and 

biochemical parameters (Clark and Roberts, 2012; Immitzer et al., 2012), mapping of crop 

species (Sanchez et al., 2014; Thenkabail et al., 2013), quantifying crop phenology and 

predicting yield (Pan et al., 2015), evaluating crop requirements for fertiliser applications 

(Jingfeng and Blackburn, 2011; Yi et al., 2010), detecting crop stress (Liu et al., 2010) and 

determining crop water requirements (Kang et al., 2003; Lewis et al., (submitted)). While the 

use of hyperspectral imagery is advantageous in these situations, the challenges of effectively 

managing the dimensionality of the data and data redundancy are key issues to take into 

consideration. Considering that hyperspectral images are characterised by numerous spectral 

bands, their use requires rigorous quantitative analysis and intense image pre-processing 

processes such as atmospheric and radiometric corrections and data normalisation. Tsai et al. 

(2007) noted that hyperspectral imagery presents the challenge of effectively managing the 

large volume and dimensionality of data, which typically requires long processing times and 

extensive computational resources. A number of feature extraction methods (such as principal 
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component analysis (PCA), derivative analysis and wavelet analysis) have been used to reduce 

data volumes in hyperspectral datasets in advance of further image analysis (Onojeghuo and 

Blackburn, 2011; Pu and Bell, 2013). Thenkabail et al. (2014) noted that approximately 3 to 8 

hyperspectral narrow bands are usually sufficient for building predictive models of crop 

biophysical variables, and further bands are unnecessary and can contribute signal noise, 

highlighting the importance of initial feature extraction stages. A number of studies have used 

hyperspectral vegetation indices to determine and better understand key characteristics of 

vegetation and agricultural crops (Gitelson, 2013; Haboudane et al., 2004; Pan et al., 2015; Pu 

and Gong, 2011). Indeed, the potential for using hyperspectral data for specifying crop fertiliser 

requirements is examined later in section 3.2. 

Owing to the detailed spectral information contained in hyperspectral imagery, subtle objects 

and materials can be recognised and quantified. However, the process of detection, 

discrimination, classification and quantification with hundreds of very narrow spectral bands 

comes with its associated challenges such as handling large data volumes, the presence of noise 

and other complexities associated with data handling, processing and analysis. Unlike the case 

of multispectral imagery characterised by low spectral resolution, hyperspectral imagery is 

usually faced with the issue of mixed pixels and sub-pixels generated by subtle spatial changes 

in the reflectance properties of land surfaces which are detected due to the sensitivity of the 

hyperspectral sensor. In the case of multispectral imagery, land cover types are easily 

distinguishable using pattern recognition and classification techniques. However, for 

hyperspectral imagery objects of interest appear either as a form mixed by a number of material 

substances or at sub-pixel levels with targets embedded in a single pixel. Hence, a major 

challenge while working with hyperspectral imagery is that objects of interest can only 

typically be identified, discriminated, classified, identified, recognised and quantified using 

target-detection based approaches as opposed to pattern-based multispectral imaging 

techniques (Dey et al., 2010; Liu et al., 2006; Schürmann, 1996). 

Numerous algorithms have been developed for detection and classification in hyperspectral 

imaging. Two types of information, a priori and a posteriori, representing knowledge provided 

before processing and obtained during data processing, respectively, can serve as inputs during 

the classification process. Chang (2007) reviewed two hyperspectral target detection and 

classification algorithms using sequential filters: an information processed filter (a priori) and 

a posteriori target information to suppress unwanted interference and noise effects. Three well-

known filter techniques representing algorithms that process different levels of information to 

enhance performance were analysed. These included Orthogonal Subspace Projection (OSP) 

(Chang, 2005; Harsanyi and Chang, 1994; Ren and Chang, 2000), Constrained Energy 

Minimisation (CEM) (Chang, 2003; Farrand and Harsanyi, 1997), and RX-anomaly detection 

(Kwon and Nasrabadi, 2005; Reed and Yu, 1990; Yu et al., 1993). Chang (2007) noted the 

following: (1) the OSP requires a complete a priori knowledge, (2) RX-anomaly detection 

relies only the a posteriori information provided by data samples and (3) CEM requires a priori 

information on the desired targets used in the matched filter with a posteriori information 

obtained from data samples to suppress interfering effects while performing target extraction. 

Hence, the performance of the aforementioned filter algorithms is affected by the information 

used in their matched signal. 

Examples of popular hyperspectral image exploitation methodologies that rely on a mixture of 

statistically and physically based methodologies are the Optical Real-Time Adaptive Spectral 

Identification System (ORASIS) (Bowles and Gillis, 2007) and N-FINDR (Winter, 1999; 

Winter, 2004). Both methodologies are comprised of a number of algorithms designed to 

perform various tasks in sequence. The first-stage of ORASIS develops a pre-screener that 

finds an exemplar set and uses such as a code book to encode all image spectral signatures. The 
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second-stage projects the exemplar set into a low-dimensional space spanned by an appropriate 

set of bases. The second-stage low dimensionality reduction operates similarly to PCA (Byrne 

et al., 1980; Jolliffe, 2002; Singh, 1989). The third-stage process performs a simplex-based 

endmember extraction to select the desired set of endmembers that are used to form a linear 

mixing model for least-squares error-based spectral unmixing (Bowles and Gillis, 2007). This 

is carried out in the fourth and final state process to exploit three applications: automatic target 

recognition, terrain categorisation, and compression (Bowles and Gillis, 2007). The N-

FINDER algorithm FINDR (Winter, 1999, 2004) was designed to work on data after 

dimensionality reduction via subspace projection (Winter, 2007). For this process, the input is 

the full spectral image cube without dimensionality reduction or data thinning process. The full 

dataset is examined to find the set of pixels with the largest possible volume. The final output 

of N-FINDER produces a set of images, each of which shows the fractional abundance of an 

endmember in each pixel (Winter, 1999, 2004; Winter, 2007).  

While not all possible analytical techniques are covered here, this section highlights some of 

the key challenges associated with analysing hyperspectral imagery and outlines the major 

solutions that have been developed. This demonstrates the importance of having a good 

understanding and clear justification for all stages of the analysis and proper management of 

hyperspectral data in order that such data can be fully exploited. Such approaches are widely 

applicable but the precise series of pre-processing and processing stages need to be fully 

validated for each application area within agriculture and this issue requires extensive research 

before the use of hyperspectral imagery becomes fully operational in any particular application. 

2.2. High temporal optical satellite sensors for agriculture 

Belward and Skøien (2015) noted that at the end of 2013, 197 earth observing polar orbiter 

were successfully launched and approximately 50% of these are still operational. Over time, 

most of these space-borne optical sensors have improved capabilities in acquiring earth 

observation data with better spatial, spectral, radiometric and temporal resolutions. These 

advancements have revolutionised the use of multi-temporal remote sensing for time-series 

analysis and applications (Ban, 2016). In terms of applying high temporal optical satellite 

sensors to agriculture, research communities are faced with the challenge of balancing out the 

right temporal resolution of earth observation data with spatial and spectral resolutions for 

varied applications across different scales. To this end, we aim identify and discuss a number 

of optical sensors in order of their revisit times in orbit. Table 2 summarises key characteristics 

of existing, planned and recent decommissioned high temporal optical satellite sensors 

commonly used for agricultural applications. Based on the repeat cycle, the optical satellite 

sensors presented in Table 2 are categorised into five broad ranges – daily, 1-4 days, 5-10 days, 

11-16 days, and 21-29 days respectively. 

The KOMPSAT-2 imagery, with repeat cycles of less than a day, has been used in a number 

of agricultural-related applications some of which include estimating carbon sequestration in 

forests (Kim et al., 2009), crop yield prediction (Lee et al., 2011), estimating levels of 

deforestation (Achard et al., 2010), and agricultural land cover mapping (Lavender, 2016; 

Lewinski et al., 2010). Lee et al. (2011) generated crop yield prediction models using field 

spectral reflectance obtained during the growing season of six crops (rice, potato, red pepper, 

garlic, and bean plants) integrated with multi-temporal KOMPSAT-2 derived vegetation index 

for small farm locations across part of South Korea. The value of using high temporal optical 

satellite imagery is further demonstrated in Huang et al. (2017). In this study, the authors 

investigated the potential of using 1-4 days revisit RapidEye and WorldView-2 optical satellite 

data combined with field measurements to monitor rice nitrogen status over agricultural fields 

in Jiansanjiang province, Northeast China. Owing to additional red edge spectral information 
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provided by both RapidEye and WorldView-2, as against other conventional four-band 

multispectral imagery, the authors were able to monitor site-specific nitrogen levels accurately 

and generate vital information for effective management practices. Another example of optical 

satellite sensors within the 1-4 days revisit category is the Chinese developed HJ-1 satellite 

constellation. To better understand the environment and promote environmental protection and 

disaster reduction, the Chinese government in 2005 approved the project “Environmental and 

disaster monitoring and forecasting with small satellite constellation (HJ-1)”. The key 

characteristics of the HJ-1 satellites are presented in Table 2. Past studies have discussed in 

detail the characteristics and use of the HJ-1 satellites. Examples of such pertain to 

environmental applications (Chen et al., 2011a; Wang et al., 2009; Wang, 2012; Wang et al., 

2010b; Wang et al., 2005; Xue et al., 2008) and understanding the image quality of acquire 

satellite imagery (Li et al., 2012b; Wang et al., 2010b; Zhang et al., 2009a; Zhang et al., 2010). 

For example, the multispectral data from the HJ-CCD sensor has demonstrated potential in 

monitoring water quality of inland waters (Li et al., 2012b). Since the spectral ranges of the 

HJ-CDD bands are similar to Landsat bands 1-4 these could be used for diverse agricultural 

applications such in Zhang et al. (2010) in which the authors used multi-temporal HJ-1 satellite 

images for wheat planting area estimation. The results of this study demonstrated capabilities 

of HJ-1 data for regional and parcel scale mapping of wheat crops across the whole of Hebei 

Province, China. Similarly, Chen et al. (2011a) investigated the use of HJ-1A/B satellite data 

for monitoring rice cultivation areas in Guangdong province in southern China. Also, Wang et 

al. (2015a) estimated single-cropped rice planting area under generally fragmented and 

irregular land cover composition in the south-east plain region using multi-temporal HJ-1A/B 

satellite data and employing two-band enhanced vegetation index (EVI2) temporal signatures. 

Overall, data from the HJ-1 satellite constellation has shown to possess great potential for 

monitoring and mapping crop growth in China. However, the challenge of using HJ-1 satellite 

data is the constrained access to the scientific community outside China. To this end, the use 

of commercial (such as IKONOS-2, WorldView-2/3, Rapid Eye etc.) or ‘open access’ data 

(such as Landsat, MODIS etc.) is more realistic and sustainable approach to obtaining regular 

multi-temporal optical satellite data for agricultural applications. The Landsat mission, first 

launched on July 23, 1972, has been followed up with seven additional successfully launches 

making it one of the most popular sources of multi-temporal optical satellite imagery in the 

scientific community. With over 44-year achieve of freely available earth observation data, 

Landsat missions provide to end-users one of the largest depository of historic earth 

observation data necessary for reconstructing historic changes due to natural or anthropogenic 

causes at regional and global scales. Dong et al (2016) recently mapped paddy rice planting 

areas in northeastern Asia with Landsat 8 images, phenology-based algorithm and Google 

Earth Engine. The phenology and pixel-based paddy rice mapping algorithm used in the study 

was able to identify paddy rice planting areas with spatial resolution of 30 m over parts of 

Japan, North Korea, South Korea, and Northeast China. Similarly, Zhou et al (2016) mapped 

paddy rice planting area in rice-wetland areas of the Panjin Plain in China through analysis of 

Landsat 8 OLI and MODIS images. The results of the study demonstrate the potential of the 

phenology-based paddy rice-mapping algorithm, through integrating MODIS and Landsat 8 

OLI images, to map paddy rice fields in complex landscapes of paddy rice and natural wetland 

in the study area. The sole use of only Landsat time-series imagery (Dong et al., 2015; Mei et 

al., 2016; Xu et al., 2016; Zhu et al., 2016) or in combination with similar optical satellite 

sensors such as MODIS or Sentinel-2 has become common practice in agricultural applications 

in recent times (Novelli et al., 2016; Sibanda et al., 2016). Zhang et al. (2017) recently mapped 

the annual paddy rice planting areas for China and India from 2000 to 2015 using time series 

MODIS data and a phenology-based rice algorithm. The authors also investigated the 

spatiotemporal changes in paddy rice fields in both countries from the perspective of location, 
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climate and elevation. Based on the changes observed, the authors were able to provide 

valuable information on how these observed changes could affect national food security, 

climate change, environmental issues, and biodiversity. In another study, Clauss et al. (2016) 

used MODIS time-series data and a one support vector machine learning algorithm to map 

paddy rice field areas in continental China for the years 2002, 2005, 2010 and 2014 at 250-m 

resolution. Another viable option for sourcing high temporal optical satellite data is the ESA 

Sentinel-2 mission (Aschbacher and Milagro-Pérez, 2012; Berger and Aschbacher, 2012; 

Delegido et al., 2011; Drusch et al., 2012). Delegido et al (2011) evaluated the potential use of 

Sentinel-2 data (particularly the red edge bands) for empirical estimation of green LAI and 

chlorophyll content (two key vegetation biophysical parameters) and successfully 

demonstrated the possibility of estimating valuable plant biophysical parameters based on 

generic vegetation indices. 

Following the availability of high temporal optical satellite data, several techniques and 

processing algorithms have been developed for change detection (Islam et al., (in press); 

Leichtle et al., 2017; Lu et al., 2004; Yuan et al., 2005) and time-series analysis (Galford et al., 

2008; Jönsson and Eklundh, 2004; Pinzon and Tucker, 2014). The application of such image 

analysis techniques is demonstrated in a range of applications such as crop monitoring (Delbart 

et al., 2017), vegetation dynamics analysis (Park et al., 2017) and land cover mapping (Fieuzal 

et al., 2017). Apart from most commercial optical satellite sensors, most frequent open access 

satellite images with reasonable revisit times (as shown in Table 2) have rather coarse spatial 

resolutions (such as MODIS – 250 to 1,000 m and AVHRR – 1.09 km at nadir). This makes 

such coarse satellite sensors incapable of detecting variability at fine scales owing to mixed 

pixel effects. In such cases, a single pixel in the image may cover two or more fields or 

management units (Peng et al., 2011). Hence, there is limited capacity to use such coarse data 

to provide crop growth information at the localised scale that is appropriate to farmers. Recent 

studies have suggested the use of spatio-temporal fusion techniques to provide more regular 

finer spatial and temporal resolution by fusing MODIS with other sensors like Landsat and 

Sentinel-2 which have revisit times of 16 and 12 days respectively (Gao et al., 2006; Wang et 

al., 2017). Gao et al. (2006) proposed a Spatial and Temporal Adaptive Reflectance Fusion 

Model (STARFM) to fuse Landsat and MODIS data. This technique has been successfully used 

in several studies (Gao et al., 2017; Song and Huang, 2013; Zhu et al., 2017). Zhu et al. (2017) 

evaluated the applied STARFM algorithm to fusing Landsat images with MODIS Nadir 

Bidirectional Reflectance Distribution Function Adjusted Reflectance data for crop-type 

classification. Using available Landsat and MODIS images over the study area from 2010 to 

2014, downscaled Landsat-like images at 8-day interval were used as inputs in the mapping 

process. In a similar approach Gao et al., (2017) assesed the use of Landsat-MODIS data fusion 

results over cropland to map crop phenology at 30m resolution with fused surface reflectance 

data. A major limitations of optical satellite sensor imagery is the frequent occurrence of scenes 

contaminated by cloud cover, snow, and shadow overcasts (Asner, 2001; Costa and Foley, 

1998). Radar imagery, which is unobstructed by clouds, has been successfully employed in 

numerous agricultural studies. Additional details of radar satellite data in agricultural 

applications are presented in section 2.4 of this paper.  

[Table 2] 

2.3. High spatial optical satellite sensors for agriculture 

Agricultural production systems have benefited greatly from the integration of technological 

advancements such as mechanisation, synthesised fertiliser applications, and genetic 

engineering. All these are integral components of precision agriculture, a re-organised system 

of agriculture that performs at high-efficiency, low input, and adopts a sustainable approach to 
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agricultural practice. Precision agriculture benefits from the convergence of several 

technologies such as geographic information system, global positioning system, remote 

sensing, mobile computing, telecommunication, and advanced information system (Gibbons, 

2000). Harmon et al (2005) stated that precision agriculture utilises large amount of data 

processed in time and space in order to make more effective use of farm inputs which in turn 

results in improved crop production and environmental quality. Over time the emphasis of 

precision agriculture is the use of spatiotemporal data analysis and effective management 

practices rather than the use of only spatial data analysis and management (Li et al., 2005; 

Varvel et al., 1997; Xiang et al., 2007). The advancements in technology, especially in remote 

sensing, has facilitated the availability of high spatial optical sensors capable of providing 

satellite imagery with sufficient spectral information for use in a wide range of agricultural 

applications. The agricultural industry is now capable of acquiring more comprehensive 

information on production variability in both space and time at finer resolutions in comparison 

to past practices (Zhang et al., 2002). In a comprehensive review study on the role of remote 

sensing application in precision agriculture, Mulla (2013) noted that as spectral resolution of 

satellite imagery has improved over time so has the suitability of using reflectance data from 

platforms increased for precision agriculture applications (optical sensors in particular). Listed 

in Table 3 are characteristics of commonly used high spatial optical satellite sensors used in 

agricultural applications. The selection of optical satellite imagery with appropriate spatial and 

spectral resolutions for precision agriculture applications is usually dependent on a number of 

factors such as crop management objectives, spatial extent of farm unit area, and capacity of 

farm equipment to vary farm inputs (such as fertiliser application, insecticide administration 

etc.). The estimation of spatial patterns in crop biomass monitoring or yield estimation usually 

require high spatial (1-3 metres) and spectral resolution data as demonstrated in previous 

studies (Coltri et al., 2012a; Li et al., 2012a; Ramoelo et al., 2015). 

The advent of optical satellite imaging systems, such as IKONOS and QuickBird, both with 

high spatial resolution and quick revisit times has contributed immensely to precision 

agriculture. Using spectral information contained in the visible and near infrared bands of 

IKONOS imagery, Seelan et al. (2003) identified nitrogen (N) deficiencies in sugar beet and 

determined the fungicide performance efficiency in wheat and field sites that had inadequate 

artificial drainage in wheat. Similarly, Bausch and Khosla (2010a) used QuickBird imagery 

derived estimates of normalised green normalised difference vegetation index (NGNDVI) to 

establish the existence of strong correlation with spatial patterns in nitrogen sufficiency in 

irrigated maize. The introduction of additional spectral information such as the red edge 

spectral wavelength contained in WorldView-2 has further enhanced the processing capability 

and application to precision agriculture. Li et al (2014a) evaluated the performance of 

simulated WorldView-2 red-edge based spectral indices for estimating plant N concentration 

and uptake of summer maize (Zea mays L). The authors also analysed the influence of 

bandwidth and crop growth stage changes on the performance of four red edge-based indices 

namely, canopy chlorophyll content index (CCCI), MERIS terrestrial chlorophyll index 

(MTCI), normalized difference red edge (NDRE) and red edge chlorophyll index (CIred edge). 

All four red-edge indices performed better than the conventional normalized difference 

vegetation index (NDVI) and ratio vegetation index (RVI) for estimating plant N uptake. In 

addition to the afore mentioned application of commercial high resolution optical satellite data 

there are new opportunities for crop mapping and assessment (Drusch et al., 2012; Esch et al., 

2014; Hornacek et al., 2012; Li et al., 2013; Pan et al., 2009; Qiu et al., 2014; Turker and 

Ozdarici, 2011; Yang et al., 2006; Yang et al., 2011), identifying and better understanding 

biophysical characteristics of plant species (Coltri et al., 2012b; Delegido et al., 2011; 

Gonsamo, 2010; Hornacek et al., 2012; Kerr and Ostrovsky, 2003; Ramirez and Zullo Jr, 2010) 

and monitoring agricultural activities (El Hajj et al., 2009; Sawaya et al., 2003). Other 
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application of high spatial resolution optical satellite data to agriculture in China include crop 

classification for estimating crop acreage or production (Jia et al., 2012; Jia et al., 2013; Wang 

et al., 2010a; Wu and Li, 2012), delineation of agricultural management zones (Guo et al., 

2013; Li et al., 2005; Li et al., 2007; Song et al., 2009; Xiang et al., 2007; Xin-Zhong et al., 

2009) and mapping of crop patterns (Cai and Cui, 2009; Liping et al., 2007; Wu et al., 2004). 

Given that the average holding of land across is approximately 0.5 hectares, the availability of 

optical satellite data high spatial detail and sufficient spectral information for vegetation 

analysis is critical for agricultural applications. 

In addition to the commercial optical high spatial resolution satellite data, the Chinese have 

developed several sensors that could be used in agriculture applications. The Chinese high-

spatial-resolution satellite, Ziyuan-3 (ZY-3), developed to perform land resource surveys and 

monitoring particularly for agriculture (Lin et al., 2013) is equipped with a 2.1m resolution 

panchromatic sensor and a 5.8m resolution multispectral sensor (Table 3). A comprehensive 

review (Tang and Xie, 2012) and assessments (Li et al., 2014c; Lin et al., 2013; Tang and Xie, 

2012) of the ZY-3 satellite images are available, but there has been insufficient literature 

verifying the quality of ZY-3 satellite imagery. Tang and Xie (2012) noted that development 

of satellite surveying and mapping technology in China is still limited compared to advanced 

global standards. They further added that China lacks a large-scale, reliable and accurate data 

processing system capable of effectively managing satellite applications. Tang and Xie (2012) 

recommend that research of key techniques, such as high-resolution sensor manufacture and 

testing, precise attitude determination, precise orbit determination, and in-flight geometric and 

radiometric calibration be strengthened by the Chinese. Other Chinese satellites with high 

spatial resolution sensors are Gaofen-1 and 2 (GF-1 and 2) of the China National Space 

Administration (CNSA). These are part of the civilian High Definition Earth Observation 

Satellite programme, which was proposed in 2006 and approved by government in 2010. The 

GF-1 satellite was launched on 26 March 2013 and has three CCD cameras that generate a 2m 

resolution panchromatic band, 3 visible and near infrared bands of 8m resolution and 3 visible 

and near-infrared bands at 16m (Wei et al., 2009; Zhao et al., 2008). Wang et al. (2014) mapped 

the extent of cotton area in Xinjiang, China using multi-sensor (MODIS, Landsat 8, HJ-1, and 

GF-1) satellite data. In this study, the GF-1 high spatial resolution satellite data was used to 

validate the cotton maps derived using multi-temporal NDVI image from Landsat 8 and HJ-1. 

The validation procedure produced an overall accuracy of 83.8%. The GF-2 spacecraft was 

launched on August 19, 2014 on a CZ-4B (Long March 4B) vehicle from the Taiyuan Satellite 

Launch Centre in China. Shen et al. (2017) successfully monitored grasslands using the 

Chinese GF-2 HD satellite across Jiuquan city, Gansu province, China.  

[Table 3] 

2.4.   RADAR based satellite sensors for agriculture 

Synthetic Aperture Radar (SAR) satellite systems transmit at frequencies of around 1GHz to 

10 GHz and measure the backscatter signals to generate microwave images of the earth’s 

surface at high spatial resolutions (ranging from 10 to 100 metres) (CEOS, 2015). Since SAR 

systems have ability to penetrate through clouds and can operate day or night, they are a 

valuable resource for agricultural monitoring. In particular, SAR data have been applied for 

agricultural mapping and monitoring (CEH, 2016; Yonezawa et al., 2012) and measurement of 

crop biophysical properties (Harrell et al., 1997; McNairn and Brisco, 2004; Vyas et al., 2003). 

Krieger and Moreira (2006) highlight the potential and challenges of space-borne bi- and 

multistatic SAR sensors and evaluated their potential for applications such as frequent 

monitoring, wide-swath imaging, scene classification, single pass cross-track interferometry 

and resolution enhancement. A detailed review of the spaceborne imaging radar C/X-Band 
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synthetic aperture radar (SIR-C/X –SAR) missions and its applications was provided by Evans 

et al. (1997). Subsequently, Evans (2006) reviewed the changes in SIR-C/X-SAR 

instrumentation and applications from 1996 to 2006. The article suggests that the multi-

frequency, multi-polarisation capability provided by SIR-C/X-SAR was unsurpassed by any 

spaceborne system, making the data set valuable for algorithm development and assessment of 

optimal imaging parameters (Evans, 2006). A similar review on the applications and challenges 

of using radar data for earth observation was also provided by Palmann et al. (2008). Table 4 

summarises characteristics of suitable SAR satellite systems for agricultural applications. 

Various research performed with synthetic aperture radar (SAR) satellite systems such as 

European Remote Sensing Satellites Sentinel-1 series, Canadian Space Agency RADARSAT-

2, and Chinese HJ-1C are demonstrated to have varied and useful applications in agricultural 

monitoring. These C band RADAR based spaceborne satellites varied combinations of single 

and dual polarisation channels has shown to be of immense value in agricultural developments 

such as  crop-type mapping and condition assessment, soil tillage and crop residue mapping, 

and soil moisture estimation (McNairn and Brisco, 2004). The RADARSAT-2 satellite system 

is capable of simultaneously acquiring two polarizations in the selective dual polarisation 

mode. These include the one like-polarization and one cross-polarization (HH and HV; or VV 

and VH) and quad polarisation mode in which both the amplitude and phase of the four linear 

polarisations (HH, VV, HV, and VH) are measured (McNairn and Brisco, 2004). Jiao et al. 

(2014) mapped and monitored crops with 19 RADARSAT-2 fine beam polarimetric images of 

an agricultural area in North-eastern Ontario, Canada using object-oriented classification 

approach. In comparison to a single-date SAR object-classification approach, the multi-date 

RADARSAT-2 approach outperformed the latter and accurately identified the five key 

agricultural crops in the region which included wheat, oat, soybean, canola, and forage. 

Similarly, Liu et al. (2013) assessed the feasibility of monitoring crop growth based on a trend 

analysis of three elementary radar scattering mechanisms using three consecutive years (2008–

2010) of RADARSAT-2 Fine Quad Mode data for a test located in Eastern Ontario, Canada.  

The temporal evaluation of the intensity of the scattering mechanisms obtained from the multi-

temporal RADARSAT-2 data tracked the measured leaf area index and phenological plant 

development of the crops investigated. The changes in growth stage were crop type specific, 

thus demonstrating the versatility of this approach for effective crop monitoring using radar 

based information. In this study, it was noted that when harvest occurs, the backscatter 

intensities change significantly, and these changes aid in identifying crops. A crop map was 

produced by applying the maximum likelihood classification to the multi-temporal 

RADASAT-2 images, achieving an overall accuracy of 85%. In addition to crop mapping, 

RADARSAT-2 data has demonstrated to be of immense value in soil moisture mapping 

(McNairn et al., 2012; Merzouki et al., 2011). Chai et al. (2015) estimated volumetric soil 

moisture of plateau pasture using fully polarimetric C-band RADARSAT-2 SAR images. A 

similar spaceborne radar system capable of soil moisture measurement is onboard the first 

satellite of the Sentinel constellation, Sentinel-1. The C-band SAR sensor on Sentinel-1 has 

demonstrated immense potential for global mapping of surface soil moisture (Hornacek et al., 

2012). Son et al. (2017) assessed the performance of two machine learning algorithms (support 

vector machine and random forests) for rice crop classification using multi-temporal Sentinel-

1A data. The results indicated that the smooth VH backscatter profiles reflected the temporal 

characteristics of rice-cropping patterns in the study region. The authors concluded that though 

both machine learning algorithms were effective in paddy rice field mapping, the random 

forests classification approach outperformed the support vector machine algorithm. The results 

reaffirmed the government’s rice area statistics with the relative error in area values of 0.2% 

(random forests) and 2.2% (support vector machine) respectively. Nguyen et al. (2016) used 

Sentinel 1A time series acquired in the dual-polarized (VV/VH) interferometric wide swath 
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mode during the spring growing season (October 2015 to March 2016) in the Mekong Delta to 

analyse the relationship between the growing cycle of rice plants and the temporal variation of 

SAR backscatter at different polarizations. The results indicated that the VH polarisation 

channels were more sensitive to detecting changes in the rice crop growth cycle and would 

prove most beneficial to mapping paddy rice fields on a regional scale. 

Another spaceborne SAR system of interest is KOMPSAT-5 developed by the Korean 

Aerospace Research Institute, technical details and specifications of which are presented by 

Sang-Ryool (2010), Shin et al. (2010), Yoon et al. (2011) and Byoung-Sun et al. (2011). Data 

from the KOMPSAT-5 SAR system have been used in several applications such as soil 

moisture detection (Singh et al., 2011; Yisok et al., 2010, 2011), crop identification across 

complex landscapes (Hoang et al., 2011), land cover classification (Kressler et al., 2003) and 

disaster monitoring (Duk-jin, 2011; Wu et al., 2005). Similarly, the study by Hoang et al. 

(2011) demonstrates the potential of using RADARSAT-2 C-band polarimetric images to 

identify rice fields precisely. Tian et al. (2010) investigated the performance of four spaceborne 

multi-parameter SAR systems (namely Envisat ASAR, TerraSAR-X, ALOS PALSAR, and 

RADARSAT-2) for crop mapping in part of South China. The results showed L-band SAR can 

uniquely discriminate mulberry from other crops (such as maize and vegetable) while C-band 

SAR could effectively map rice crops with mapping accuracy of 75 – 80%. In a similar study, 

TerraSAR-X and RADARSAT-2 were successfully used for crop classification and acreage 

estimation using the X-band data in part of Canada (McNairn et al., 2009b). The X-band data 

was able to identify pasture-forage, soybeans, corn and wheat with accuracies of 95% after 

post-processing. Bargiel and Herrmann (2011) also demonstrated the potential of utilising 

multi-temporal high resolution TerraSAR-X Spotlight data for mapping a variety of mixed 

crops across diverse study areas. Furthermore, the results of Anguel et al. (2010) showed that 

by using TerraSAR-X data to study bare agricultural fields, local variations in soil moisture 

can be retrieved effectively. A detailed review of the Italian funded COnstellation of small 

Satellites for Mediterranean basin Observation (COSMO-SkyMed) mission by Covello et al. 

(2010) illustrates the benefits of this system in providing commercial products and services for 

agricultural applications alongside environmental risk management. COSMO-SkyMed 

imagery have been successfully used in the retrieval and monitoring of vegetation parameters 

over agricultural land (Santi et al., 2012), land use discrimination and land change detection 

analysis (Shu-cheng et al., 2011), risk management applications (Battazza et al., 2012), and 

rice crop growth monitoring (Corcione et al., 2016). 

Kramer and Cracknell  (2008) discussed the potential use of different spaceborne small satellite 

sensors, such as the Chinese Environment and Disaster Monitoring Satellites constellation (HJ-

1), for remote sensing applications. As part of this constellation, the HJ-1C satellite has a four-

look S-band SAR onboard and is designed for frequent monitoring of soil moisture dynamics 

and other environmental variables (Du et al., 2010b; Guo, 2012). Chen et al. (2005) developed 

an algorithm for soil moisture change estimation by using HJ-1C S-band VV polarization 

simulated backscattering-data based on integral equation model. Similarly, Du et al. (2010a) 

developed a soil moisture retrieval algorithm for the HJ-1C S-band SAR data. Zhang et al. 

(2009b) demonstrated the feasibility of mapping paddy rice planting areas in Zhejiang 

Province, southeast China using high-resolution ALOS/PALSAR images acquired at three rice 

growing stages (transplanting, tillering, and heading). By applying the Support Vector Machine 

learning algorithm as a classifier, paddy rice fields were accurately mapped across the study 

area by utilising backscatter polarisation data contained in the multi-date ALOS/PALSAR SAR 

imagery. The high overall accuracy (kappa value of 0.87) demonstrated the value of utilising 

ALSO/PALSAR data in rice crop mapping. In a similar study, Yusoff et al. (2017) investigated 

the use of ALOS-1 and 2 (Advanced Land Observing Satellite-1 and 2) PALSAR (Phased 
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Array L-band Synthetic Aperture Radar) images for the identification and classification of 

abandoned agricultural crop areas in parts of Malaysia. The findings of the study showed that 

PALSAR offers vast possibilities in understanding in detail phenology of agricultural land in 

tropical vegetation. 

Given the increasing availability of optical and radar remote sensing data, research focused on 

exploiting the complementarity of the information they provide to study land properties is fast 

gaining considerable pace (Joshi et al., 2016). Studies that have explored the use of radar and 

optical fused data as against the use of single data sources report improved mapping 

performance (Kussul et al., 2012; Mansaray et al., 2017; McNairn et al., 2009a; Torbick et al., 

2017a). In particular, the fusion of radar and optical satellite data has shown to significantly 

improve the discrimination and classification of agricultural crops (Blaes et al., 2005; CEH, 

2016; Hua et al., 1998; Sandholt, 2001; Soria-Ruiz et al., 2010). The Centre for Ecology and 

Hydrology (CEH) in collaboration with Remote Sensing Application Consultants Limited have 

developed methods for wide area crop mapping using Sentinel-1 C-band SAR and Sentinel-2 

optical data (CEH, 2016). Using a time-series of Sentinel-1 data (more than 350 individual 

images over the entire crop-growing season) the 2015 crop map of the entire UK was generated 

and plans are in place to incorporate Sentinel-2 optical data for national crop mapping in 

subsequent years. Additional information on the physiological state of crop canopies, such as 

provided by Sentinel-1 backscatter intensities, has shown to be of valuable contribution to 

optical spaceborne satellite images such as Landsat, MODIS, and SPOT. Torbick et al. (2017a) 

produced an updated land use land cover map with fused radar and optical information 

contained in Sentinel-1A, Landsat-8 OLI, and PALSAR-2 data; all of which were classified 

with a random forest classifier algorithm. The classification accuracy results were considerably 

high and demonstrated the effectiveness of such an approach. In addition to rice crop mapping, 

time series phenological analyses of the dense Sentinel-1 data were executed to assess rice 

information across all of study area. Singh et al. (2011) also demonstrates potential of fusing 

information from SAR and optical satellite data for retrieving soil moisture data for vegetated 

areas with minimum a priori information. 

One of the key challenges of spaceborne scatterometer observations is the coarse resolution of 

the images (Steele-Dunne et al., 2017). However, through the use of spatial resolution 

enhancement (Long and Hardin, 1994; Long et al., 1993), data assimilation (Mahfouf, 2010), 

and downscaling approaches (Wagner et al., 2008) new opportunities now exist to perform 

agricultural applications at field-scale levels. This would be most beneficial in countries like 

China where numerous farms are held by individual owners. In the past one of the key 

challenges of spaceborne SAR imagery for agricultural application is limited availability of 

satellites with reasonably high spatial and temporal resolutions. However, the recent launches 

of HJ-1C (daily revisit time), Cosmo Sky-Med (4-day revisit time), and Sentinel 1A and 1B 

(6-day revisit time) has greatly improved temporal coverage. Irrespective of advances in more 

frequent spaceborne SAR imagery, satellite with sufficiently high spatial and temporal 

resolutions is limited. Though the Chinese HJ-1C C-band SAR sensor has a daily revisit time 

and spatial resolution of 5 metres, the access to such HJ-1C data is highly constrained and not 

open the public. Hence, most monitoring systems utilise the fusion of spaceborne radar and 

optical imagery approach for varied agricultural applications. The complexity of SAR 

scattering makes analysis radar imagery for agricultural monitoring a more difficult process 

compared to popular optical image processing. To facilitate the use of SAR imagery for 

agricultural applications user community participation and capacity-building activities are 

recommended to ensure radar products are provided to end-users in a useable format. 

[Table 4] 
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2.5.   Remote sensing based national/global crop monitoring systems 

A number of individual countries, including China, and trans-national organisations, such the 

European Commission and the Food and Agriculture Organisation of the United Nations, have 

crop systems established to monitor regional, national or global crop production. Table 5 gives 

a summary of national agricultural monitoring systems in Argentina (Fontana et al., 2006), 

Brazil (http://www.conab.gov.br/), Canada (Korporal et al., 1989; Reichert and Caissy, 2002), 

United States (Becker-Reshef et al., 2010; Zakzeski et al., 2013), India (Dadhwal et al., 2002; 

Panigrahy et al., 1997; SAC, 1995) and China (Chen et al., 2011a; Huang et al., 2010; Teng et 

al., 2012; Wu et al., 2013; Wu et al., 2010). As indicated in Table 5, a common factor amongst 

these national monitoring systems is the use of satellite remote sensing data and conventional 

data processing techniques for extracting key information on agricultural crops (such as crop 

acreage, crop yield estimation, drought estimates and crop phenology). 

In this paper, emphasis on discussion of monitoring systems shall be centred on the Chinese 

monitoring system. China has a number of crop monitoring systems such as the China 

Agriculture Remote Sensing Monitoring System (CHARMS) and CropWatch. CHARMS was 

initiated in 1998 and became operational in 1999. It carries out monitoring of crop acreage, 

drought dynamics and crop growth pattern across agricultural regions of China through use of 

remote sensing data and soil moisture data (Chen et al., 2011a; Chen et al., 2011b; Huang et 

al., 2010; Teng et al., 2012). The CropWatch system was designed to assess national and global 

crop production by mainly using remotely sensed data (from Chinese and other systems) and 

with little reliance on ground assessments or field monitoring data (Wu et al., 2013; Wu et al., 

2010).  Examples of satellite data used include HJ-1 CCD (30 metres), Landsat TM / ETM+ 

(30m), IRS P6 AWIFS (1000m), TERRA / AQUA MODIS (1 km), NOAA AVHRR (1km) 

and RADARSAT-1 (30 metres), demonstrating the capacity and need to incorporate data from 

a wide range of different systems.  

In addition to the CropWatch global crop monitoring system, the CropWatch agroclimatic 

indicators (CWAIs) was recently designed to assess the impact of rainfall, temperature and 

photosynthetically active radiation (referred to as RAIN, TEMP and PAR, respectively) on 

agriculture at different scales, in combination with other remote-sensing based indicators 

(Gommes et al., 2017). Gommes et al. (2015) noted that these CWAIs are usually estimated 

over sub-national administrative units, countries, major food producing zones and large and 

relatively homogeneous global monitoring and reporting units. The CropWatch agroclimatic 

indicators (CWAISs) constitute a coherent set of variables that can be used synchronically and 

diachronically to assess the impact of rainfall, temperature and photosynthetically active 

radiation on agriculture. Gommes et al. (2017) stated that though CWAISs act as actual climatic 

variables they constitute at the same time value-added variables designed to focus on areas 

with the highest agricultural production potential. Hence, they can be computed for any area 

and for any time period making such information suitable for cross-sector analyses involving 

socio-economic data and environmental data, including applications in food security, crop 

monitoring, index-based crop insurance and risk assessments. Asides from the context of global 

crop monitoring for early warning, the CWAIs could be adapted for other applications such as 

disaster risk mitigation, index-based crop and livestock insurance, rangeland monitoring, and 

area-yield index insurance. 

Though the afore-mentioned Chinese monitoring systems utilise remote sensing data combined 

with conventional methods to monitor crop production across different regions of the country, 

these existing systems largely fail to address issues of farm management practices at localised 

levels. This is a particular problem because in many regions of China there are very large 

numbers of small land holdings where agricultural management practices are extremely diverse 
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spatially and temporally, meaning that national-scale monitoring programmes have relatively 

little value for informing sustainable intensification practices locally.  

[Table 5] 

3. Agricultural applications of ‘hyper-sensing’ in China 

3.1. Measuring crop phenology parameters and predicting yield 

In the context of monitoring agricultural practices, the quantification of crop phenology allows 

for improved and accurate classification of crops and estimation of crop yields (Meng et al., 

2009). Specific dates associated with the crop life cycle are essential to understanding key 

activities like irrigation scheduling, fertiliser management, crop productivity evaluation and 

analysis of carbon dioxide exchanges across different ecosystem (Sakamoto et al., 2005). Crop 

phenology information such as the Start of Season and End of Season parameters can be 

extracted using temporal profiles of remotely-sensed vegetation indices as demonstrated by 

Sakamoto et al. (2005). In the study, the authors developed a method to define thresholds for 

identifying SoS and EoS for 43 different agricultural zones in China by using AVHRR derived 

NDVI data at 15 days temporal resolution (Sakamoto et al., 2005). After data pre-processing, 

the NDVI time-series was used to generate a series of parameters such as the slope of the NDVI 

curve and difference between the NDVI value and a base NDVI value for bare land without 

snow (Sakamoto et al., 2005). Results of the study demonstrated that using the NDV difference 

and slope threshold method produced significantly more accurate outputs for the phenology 

parameters compared to other methods. However, the method is limited given that the precise 

threshold values need to be re-established periodically.  

Using highly frequent satellite data time-series permits accurate mapping of crop phenology. 

Such information can be used to guide the agricultural community on optimal planting or 

harvesting times, and develop efficient systems for monitoring crop annual / seasonal 

variability or drought monitoring (Boschetti et al., 2009; Li et al., 2014b; Meng et al., 2009; 

Pan et al., 2015; Ren et al., 2008). The study conducted by Pan et al. (2015) utilised multi-

temporal Chinese HJ-1 A/B CCD satellite images (all year round images of 2011 – 2013) to 

construct NDVI time-series datasets for cropland area analysis. Given the high temporal 

capability of the HJ-1 A/B CCD satellite imagery, it was possible to capture the growth 

trajectories of the summer corn and winter wheat crops grown within each year. Information 

on phenology parameters for croplands were extracted from satellite data derived NDVI time-

series using the TIMESAT method of (Jonsson and Eklundh, 2004). The results showed that 

crop season start / end derived from the NDVI time-series are comparable with local agro-

metrological observations (Pan et al., 2015). Wang et al. (2015b) extracted the phenological 

parameters of single-cropped rice by integrating HJ-1 CCD and Landsat-8 operational land 

imager (OLI) data to construct higher temporal resolution vegetation indices (VIs) time-series. 

When validated against field-observed phenological parameters, the VI time-series had a 

relative lower root mean square error, and EVI2 showed higher accuracy compared with NDVI. 

Constructing time-series remote sensing data has been shown to be an effective means of 

mapping and monitoring crop phenology for farmlands on large scales across China. For 

example, Boschetti et al. (2009) conducted a study on the use of a time series of 5 years of 

MODIS NDVI 16-day composites (over 2001–2005) to provide phenological information on 

rice cropping systems. These data were analysed with TIMESAT system to retrieve key 

phenological information such as the start of season (emergence), peak (heading) and end of 

season (maturity). Such studies demonstrate the potential of using high temporal resolution 

satellite imagery for monitoring crop status and phenology over large scales with minimal field 
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verification. Such an approach would prove most beneficial where large surface areas need to 

be assessed, as is the case with China. 

Based on the reviewed case studies, the application of hyper-sensing to measuring yield and 

crop phenology parameters shows the varied use of multi-temporal medium to coarse spatial 

resolution and high temporal resolution satellite data to effectively monitor crop growth over 

specific periods of time. In terms of methodological approaches, a common image processing 

technique used for crop phenology extraction and interpretation using remote sensing outputs 

is the Savitzky-Golay (S-G) filter (Chen et al., 2004; Savitzky and Golay, 1964; Schafer, 2011). 

The S-G filter, usually applied to VI outputs (such as NDVI, EVI or EVI2), allows for the 

removal of noise introduced by cloud or snow contamination contained in the satellite data. 

The S-G filter algorithm allows data smoothing without forcing a given mathematical function 

to fit the data time series thereby reducing the creation of artefacts (Boschetti et al., 2009; Chen 

et al., 2004; White and Nemani, 2006). Following the filtering, key phenological information 

can be extracted from VI temporal profiles using automated methods. In most of the case 

studies reviewed (Boschetti et al., 2009; Pan et al., 2015; Wang et al., 2015b) the open source 

TIMESAT program (Jonsson and Eklundh, 2004) was employed. Hence, alongside a common 

pattern of use of data from particular satellite systems, there are a series of analytical procedures 

that are becoming widely adopted in order to monitor crop phenology.   

3.2. Specifying crop fertiliser requirements 

Monitoring leaf nitrogen status (or leaf nitrogen accumulation) for crops like rice and wheat, 

both staple crops in China, can assist in providing precise diagnosis and efficient management 

of plant N nutrition alongside ensuring accurate prediction of yield formation and N flow for 

double cropping systems (such as rice-wheat rotation system) (Feng et al., 2008; Zhu et al., 

2008). The use of hyperspectral data to estimate nitrogen concentration (Stroppiana et al., 

2009) and monitor leaf nitrogen status (Feng et al., 2008) holds considerable potential for 

evaluating crop fertilizer requirements. The excessive use of N fertilisation in intensive 

agricultural areas across China has resulted in serious environmental problems such as 

groundwater pollution that originates from atmospheric, soil and water enrichment with 

reactive N of agricultural origin (Ju et al., 2009a; Yi et al., 2010). Studies indicate that the 

annual application of synthetic N for conventional agricultural practice in east and southeast 

China as well as the North China plain now ranges from 550 to 600 kg of N per hectare for 

typical double-cropping systems (Zhao et al., 2006; Zhu and Chen, 2002). The combined 

effects of large synthetic N fertilisers, rapid development of livestock production systems and 

rapidly increasing consumption of biofuels have severely disturbed regional biogeochemical N 

cycling across China, consequently resulting in environmental problems like eutrophication of 

surface waters, nitrate pollution of groundwater, acid rain and soil acidification, greenhouse 

gas emissions and diverse forms of air pollution (Guo et al., 2010; Ju et al., 2009b; Zhang et 

al., 2013). With this backdrop, excessive nitrate contamination of agricultural areas across 

China is a critical problem needing attention. Remote sensing has been shown to be an effective 

and cost-effective method of obtaining both spatial and temporal information required for 

fertiliser management (Moran et al., 1997; Yi et al., 2007). In particular, hyperspectral remote 

sensing can have a major contribution in understanding plant physiology (Jingfeng and 

Blackburn, 2011) and crop biochemical composition (Yi et al., 2007; Yi et al., 2010). For 

effective fertiliser management, tools capable of rapidly quantifying the nitrogen status of crops 

over large areas is essential (Yi et al., 2010). Though the use of satellite based hyperspectral 

instruments is limited for this application, results of studies performed using leaf, plant or 

canopy hyperspectral reflectance data can assist in the design of hyperspectral satellite sensors 

that can be utilised for this purpose.  
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In the study by Yi et al. (2010), nitrogen concentration of rice on a canopy scale was estimated 

using hyperspectral reflectance data acquired over the wavelength range of 350 to 2500 nm. 

Linear regression and artificial neural network (ANN) methods were applied for constructing 

predictive models and the results showed good agreement between observed and predicted N 

using both methods. However, the most effective method for estimating the rice nitrogen 

concentration was the PC-ANN (Principal Component – Artificial Neural Network). While the 

PC-ANN approach is most effective, it should be noted that this approach could be computing 

intensive the optimal number of hyperspectral PCs would be dependent on the nature of data 

used for analysis. Huang and Blackburn (2011) investigated the use of reflectance spectra 

(ranging from 400 to 2500 nm) subjected to continuous wavelet analysis for estimating leaf 

chlorophyll (chl) concentration, a parameter that is frequently used to determine crop fertiliser 

requirement. Using the PROSPECT model, leaf reflectance spectra were simulated based on 

randomly selected values for input parameters. From the reflectance and first derivative 

spectra, different spectral wavelength domains were extracted and analysed using 53 different 

wavelets. The resulting wavelet coefficients, ranging from scales 1 to 128 were used as 

independent factors to construct predictive models for leaf chl concentrations.  

The results showed lower scale wavelet coefficients (scales 1-32) contained little information 

on chl concentration while the higher scale wavelet coefficients (64-128) captured more 

information on chl concentration. The results also showed that the predictive capability 

increased rapidly when the spectral domains vary from 400-700 to 400-900 nm and fluctuated 

for broader domains. Hence, overall there is good evidence that hyperspectral remote sensing 

data combined with appropriate analytical techniques hold considerable potential for assessing 

crop fertiliser requirements.  

3.3. Optimising management responses to abiotic and biotic stress in crops 

A range of factors can induce physiological stress in crops which in turn results in reducing 

yield levels and agricultural productivity. The timely detection of stress in plants can be 

actualised by developing the capabilities of ‘hyper-sensing’ as demonstrated in the study by 

Liu et al. (2010). The authors utilised hyperspectral reflectance data to discriminate and classify 

different fungal infection levels in rice panicles using neural network and PCA techniques 

respectively. The reflectance spectra (400–2400nm) were smoothed with a five-step moving 

average to suppress instrumental and environmental noise. The spectra represented the domains 

of 400–2400nm for the raw and log 1/R spectra. The effective spectral regions of first and 

second derivative reflectance were ranges from 450nm to 850nm and from 500nm to 800nm 

respectively. The missing segments corresponding to strong instrument and environment noise 

were not considered for our analysis. Using a learning vector quantisation neural network, it 

was possible to classify healthy, light, moderate and serious infection levels. Results of the 

study showed potential for effectively discriminating different fungal infection levels of rice 

panicles under laboratory conditions while using hyperspectral data. Spectroscopic and 

imaging techniques are powerful disease monitoring methods that have been used to detect 

diseases caused by pests (Mahlein et al., 2012; Nansen et al., 2009) and nutrient stress in plants 

(Baret et al., 2007). The use of high spatial resolution satellite data can be also used for the 

accurate and timely detection of crop stress and determine the causal factors. A study conducted 

by She et al. (in prep)) used Chinese HJ multispectral sensors having high revisit times (4 days) 

to monitor freeze injury of winter oilseed rape in parts of China. This was based on the 

variations of NDVI values between post - and pre-disaster periods. In summary, combined or 

singular usage of high spectral or spatial resolution data is vital in providing plant physiological 

information needed for quantifying in optimising agricultural management responses.  
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3.4. Maximising yields while minimising water use in arid regions 

A major challenge of agriculture in North West (NW) China is the occurrence of desertification 

(Yang et al., 2005) which has negatively affected the crop yield in the region. In this context, 

there is potential for using remote sensing to improve the assessment of drought vulnerability 

in order to spatially and temporally optimise water-use efficiency in China (Kang et al., 2003). 

The utilisation of satellite derived vegetation indices to monitor crop conditions under natural 

disasters such as drought and frost (Kogan, 1995; Renhua et al., 2008; Xiaodong et al., 2012) 

is one of the ways forward in mitigating the threats of drought to high crop yields. Fang et al. 

(2010) stated that modelling and remote sensing could be used to evaluate and improve current 

agronomic management practices for increasing water use efficiency at field and regional 

scales. Do and Kang (2014) assessed drought vulnerability using soil moisture based water 

efficiency measures obtained from a variety of remote sensing satellite data in dryland regions 

across North East Asia. The study utilised AVHRR derived NDVI and soil moisture data from 

the Special Sensor Microwave Imager (SSM/I) to generate Soil Moisture Use Efficiency 

(SMUE).  A MODIS derived land-cover map at 1km spatial resolution was used to identify 

barren and grassland dominated pixels during analysis.  The SMUE was used as a proxy in 

place of Water Use Efficiency (WUE) (DeLucia and Heckathorn, 1989; Reichstein et al., 2002) 

to evaluate drought vulnerability in North East Asia drylands from 1987 – 2006. Using the 

SMUE ratio and two additional SMUE derived indices (i.e. Drought Stress – DSI and 

Sensitivity – DVI) drought vulnerable regions were detected. This study demonstrates the 

applicability of the SMUE-based vulnerability indices for identifying drought vulnerability 

across wide geographic regions. The results showed both DSI and DVI flagged parts of mid-

north China as areas of high drought vulnerability. The results further revealed that the 

vulnerable regions had experienced increased sand storm occurrence or land-degradation as 

reported in previous studies. 

Overall, satellite data are useful means of evaluating the spatial and temporal dynamics of 

vegetation and biophysical variables. When combined from multiple sources, satellite data can 

be used to produce new information on relationships between different biophysical variables 

that a single satellite sensor is unable to capture (Do and Kang, 2014; Lewis et al., (submitted); 

Mo et al., 2005; Renhua et al., 2008). Satellite ‘hyper-sensing’ offers the potential of 

substantially increasing the range of biophysical variables related to drought vulnerability and 

the accuracy of retrievals, which can in turn improve the effectiveness of mitigation 

approaches. However, compared to the other application areas discussed previously, the use of 

‘hyper-sensing’ in this area requires considerably further research. 

3.5.  Large-scale crop/cropland mapping 

The availability of accurate and timely information regarding agricultural production is crucial 

in ensuring world food security. Hence, access to freely available medium-resolution satellite 

data (such as Sentinel and Landsat) offers possibility of improved global agricultural mapping 

and monitoring. The unique advantage of satellite observations is their synoptic and repetitive 

nature which in turn provides spatially contiguous information on crop growth at regional to 

global scales in a timely manner. Studies that have sucessful implemented global cropland 

mapping are usually dependent on a variety of available high spatial and temporal resolution 

satellite data (Fritz et al., 2015; Song et al., 2017). Fritz et al. (2015) produced a coarse 1km 

global IIASA-IFPRI cropland percentage map by intergrating a number of individual cropland 

maps at global to regional to national scales. The individual map products include existing 

global land cover maps (such as GlobCover 2005 and MODIS v.5), regional maps (such as 

AFRICOVER) and national maps from mapping agencies and other organisations. In another 

study demonstrating the value of medium-resolution optical satellite data, Song et al. (2017) 
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developed and tested a method for estimating in-season crop acreage using a probability sample 

of field visits and producing wall-to-wall soya crop type maps at national scales. This was 

performed using a stratified, two-stage cluster sampling design used to collect field data needed 

for estimating national soybean area. The soyabean cover maps were generated from Landsat 

image archive for the 2015 growing season using an active learning approach. The soyabean 

cover map overall accuracy was 84%. The method developed in this study provided reliable 

and timely information on soybean area in a cost effective manner rather than ground based 

mapping. Shelestov et al. (2017) explored the efficiency of using the Google Earth Engine 

platform when classifying multi-temporal satellite imagery with potential to apply the platform 

for a larger scale (e.g., country level) and multiple sensors (e.g., Landsat-8 and Sentinel-2).  

In a similar manner, the use of fine resolution SAR observations has become common practice 

as they are better suited to field-scale crop classification. The key advantage of intergrating 

SARs with optical data in crop classification is that microwave sensors are usually unaffected 

by cloud cover, thus making SARs a more reliable source of data for scientific and operational 

needs. The sucess of utilising SAR data for crop mapping is the avilability of high temporal 

coverage of microwave satellite imagery over crop growing season. The classification process 

is performed based on changes or variations in backscatter over time. Whilst selecting or 

determining the suitable number of images required for crop classification, a number of 

considertions need to be considered, namely the planting pratice, number of cropping system 

per year, and presence or absence of intercropping. Le Toan et al. (1997) used two ERS-1 SAR 

images acquired during the rice growth cycle, distict changes in the backscatter were 

sucessfully used to identify rice fields across the study area. By relating the backscatter 

responses to canopy height and biomass, the authors were able to map rice fields over different 

growth stages. In a similar study, it was discovered that the dynamic range of RADARSAT 

images, though lower than ERS-1 images exhibited potential potential for rice-mapping 

(Ribbes, 1999). The value of the Cosmo SkyMed spaceborne SAR satellites for rice field 

mapping using series of X-band images has been demonstrated in a number of studies  (Bouvet 

et al., 2009; Chen et al., 2007a). Torbick et al. (2017b) mapped the spatial extent and 

established rice greenhouse gas emissions in the Red River Delta, Vietnam, using multiscale 

satellite imagery and a processed-based biogeochemical model. Multiscale SAR (Sentinel-1) 

and optical imagery (Landsat 8 OLI) were fed into a random forest classifier using field 

observations and surveys as training data to map rice extent.  

3.6.   Management zone delineation 

The use of high spatial resolution spaceorne imagery has shown to provide valuable 

background detail for zonal management delination in precision agriculture application. Song 

et al. (2009) developed and compared different approaches of delinating management zones in 

a field of winter wheat. The soil and yield samples were collected and five main crop nutrients 

analysed (namely, total nitrogen, nitrate nitrogen, available phosphorus, extractable potassium 

and organic matter). Using QuickBird imagery acquired during the heading stage the optimised 

soil-adjusted vegetation index (OSAVI) was determined. With a fuzzy k-means clustering 

algorithm management zones were sucessfully classified. A total of three managment zones 

were identified in the study area. The management zones were delineated in three ways; based 

on soil and yield data, crop remote sensing information and the combination of soil, yield and 

remote sensing information. The results of this study suggest that management zone delineation 

using remote sensing data was reliable and feasible. Similarly, López‐Granados (2011) recently 

reviewed the value of remote sensing to weed detection for site-specific weed management in 

real time. In the paper, the authors itemised some multispectral spaceborne sensors (such as 

IKONOS, QuickBird, and GeoEye-1) with the appropriate spatial resolution to detect and map 
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weeds for site specific weed management. The authors emphasise the importance of remote 

sensing in generating accurate and timely weed maps of large scale weed infestations. 

For effective management of agriculture fields, it is neceassary to map or ‘zone’ existing 

variations such as soil type, nutrient levels, soil-water, and topography. These zones can then 

be considered as management units in which profitability can be maximised based on variable 

rate applications guided by differential GPS and remote sensing products. Owing to nitrogen 

carry-over, nitrogen credits from previous crops need to be accounted for in determining the 

appropriate rate of fertiliser application for current crops (Hapka et al., 2000). Seelan et al. 

(2003) demonstrate the value of satellite imagery for zoning based on green tops derived from 

normalised difference vegetation index (NDVI) products derived from IKONOS imagery for 

fields with approximate area of 30 hectares. Using high spatial NDVI images fields where 

sugar beets were grown in the year 2000 were zoned for variable-rate application of nitrogen 

for the 2001 wheat crop. In comparison to conventional zoning methods of gridbased soil 

samples, the use of high-resolution spaceborne satellite imagery saved a total of US$810 for 

the 30 ha field. In addition, the average fertriliser cost reduced by US$466 per year while 

revenue from sale of sugar content increased by US$6050 per year. Also, the variable-rate 

application resulted in an application of 35% (i.e. 2900 kg) less nitrogen which in turn reduced 

the effect of environmnetal pollution that would have occured if zononing was not performed. 

Bausch and Khosla (2010b) compared the nitrogen status of maize plants from QuickBird 

multispectral satellite data and a ground-based mobile radiometric system. In this study, several 

green waveband vegetation indices (such as green normalized difference vegetation index, N 

reflectance index, and chlorophyll index) for plant N status assessment between the two 

systems were compared. In conclusion, the study demonstrated QuickBird satellite multi-

spectral data can adequately assess the N status of maize and its spatial variability within a field 

for in-season N management. 

4. Conclusions and future perspectives  

The utility of satellite ‘hyper-sensing’ for Chinese agriculture has been explored in this paper. 

It has demonstrated that the high temporal, spectral and spatial data have the potential to 

provide valuable inputs required for more effective agricultural monitoring which can be 

translated into effective management decision. However, for this potential to be realised it will 

be necessary to develop an effective system which integrates research, technological 

innovation and knowledge transfer together with existing operational systems. Figure 3 

presents the potential structure of such a system and shows the three key stages in which the 

system could be developed. The basis of the approach (Fig.3 (1)) would be existing monitoring 

systems (such as CHARM (Chen et al., 2011c)) or CropWatch (Wu et al., 2013; Wu et al., 

2010) that already have effective processing and information dissemination schemes. These 

established systems utilise existing satellite data (such as Landsat and MODIS), conventional 

data analysis techniques, conventional retrieval of crop parameters and interpretation 

techniques and dissemination of results through established governmental networks capable of 

transmitting information to farmers and stakeholders at all levels. Alongside this would be a 

system operating on novel approaches (Fig.3 (2), building on advances in science and 

technology (e.g. new sensors), innovation in data analysis techniques, advanced approaches to 

retrieving crop parameters and improvements in data dissemination methods. The key 

advantage of this parallel approach is that it allows for the integration into existing operational 

systems of new science and technology, as it emerges.   

However, a step-change in yield sustainability in China can only be achieved if the proposed 

agricultural monitoring by remote sensing system can make a significant contribution to 
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improved decision making and daily operations of local farmers and government. Therefore, 

forging a link between monitoring systems, science and regular agricultural activities is 

essential and this could be provided through agricultural extension programmes. By 

establishing experimental stations aimed at developing technologies to increase crop 

production across China, it would be possible to re-enforce the technical capacity of local 

farmers (Fig.3 (3). Consequently, the adoption of such technology would build a bridge 

between the local farmers and scientists. Programmes such as China’s Science and Technology 

Backyard (Shen et al., 2013), which provides information and support to local farmers is 

valuable model that is worthy of adoption in this context. By integrating ‘hyper-sensing’ to 

China’s agricultural sector in this way, there exists a strong opportunity to connect reliable 

remotely sensed products or proxies to farmers in order to support management decisions. This 

approach holds potential as a means of maximising crop yield whilst minimising resource 

inputs and environmental impacts and thereby achieving yield sustainability in China.  

[Figure 3] 
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