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Abstract

A subalgebra B of a Lie algebra L is called a c-ideal of L if there
is an ideal C of L such that L = B + C and B ∩ C ≤ BL, where
BL is the largest ideal of L contained in B. This is analogous to the
concept of c-normal subgroup, which has been studied by a number
of authors. We obtain some properties of c-ideals and use them to
give some characterisations of solvable and supersolvable Lie algebras.
We also classify those Lie algebras in which every one-dimensional
subalgebra is a c-ideal.
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1 Introduction

Throughout L will denote a finite-dimensional Lie algebra over a field F .
If B is a subalgebra of L we define BL, the core (with respect to L) of B
to be the largest ideal of L contained in B. We say that a subalgebra B
of L is a c-ideal of L if there is an ideal C of L such that L = B + C and
B ∩ C ≤ BL. This is analogous to the concept of c-normal subgroup as
introduced by Wang in [10]; this concept has since been further studied by
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a number of authors, including Li and Guo ([5] and [6]), Jehad ([4]), Wang
([11]), Wei ([12]) and Skiba ([7]).

The maximal subalgebras of a Lie algebra L and their relationship to the
structure of L have been studied extensively. It is known that L is nilpotent
if and only if every maximal subalgebra of L is an ideal of L. A further result
is that every maximal subalgebra of L has codimension one in L if and only
if L is supersolvable. In this paper we obtain some similar characterisations
of solvable and supersolvable Lie algebras in terms of c-ideals.

A subalgebra B of L is a retract of L if there is an endomorphism θ : L →
L such that θ(b) = b for all b ∈ B and θ(x) ∈ B for all x ∈ L. Such a map
θ is called a retraction. Then it is easy to see that ideals of L and retracts
of L are c-ideals of L; in the case of retracts the kernel of the retraction is
an ideal that complements B. If F has characteristic zero then every Levi
factor of L is a c-ideal of L.

In section one we give some basic properties of c-ideals; in particular,
it is shown that c-ideals inside the Frattini subalgebra of a Lie algebra L
are necessarily ideals of L. In section two we first show that all maximal
subalgebras of L are c-ideals of L if and only if L is solvable. It is further
shown that, over a field of characteristic zero or over an algebraically closed
field of characteristic p > 5, L has a solvable maximal subalgebra that is
a c-ideal if and only if L is solvable. Finally we have that if all maximal
nilpotent subalgebras of L are c-ideals, or if all Cartan subalgebras of L are
c-ideals and F has characteristic zero, then L is solvable.

In section three we show that if every maximal subalgebra of each max-
imal nilpotent subalgebra of L is a c-ideal of L then L is supersolvable. If
each of the maximal nilpotent subalgebras of L has dimension at least two
then the assumption of solvability can be removed. Similarly if the field has
characteristic zero and L is not three-dimensional simple then this restric-
tion can be removed. In the final section we classify those Lie algebras in
which every one-dimensional subalgebra is a c-ideal.

If A and B are subalgebras of L for which L = A + B and A ∩ B = 0
we will write L = A ⊕ B. The ideals L(k) and Lk are defined inductively
by L(1) = L1 = L, L(k+1) = [L(k), L(k)], Lk+1 = [L,Lk] for k ≥ 1. If A is a
subalgebra of L, the centralizer of A in L is CL(A) = {x ∈ L : [x,A] = 0}.

2 Preliminary results

First we give some basic properties of c-ideals.
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Lemma 2.1 (i) If B is a c-ideal of L and B ≤ K ≤ L then B is a c-ideal
of K.

(ii) If I is an ideal of L and I ≤ B then B is a c-ideal of L if and only if
B/I is a c-ideal of L/I.

Proof.

(i) Suppose that B is a c-ideal of L and B ≤ K ≤ L. Then there is
an ideal C of L with L = B + C and B ∩ C ≤ BL. It follows that
K = (B + C) ∩K = B + C ∩K, where C ∩K is an ideal of K and
B ∩ C ∩K ≤ BL ∩K ≤ BK , and so B is a c-ideal K.

(ii) Suppose first that B/I is a c-ideal of L/I. Then there is an ideal C/I
of L/I such that L/I = B/I + C/I and (B/I) ∩ (C/I) ≤ (B/I)L/I =
BL/I. It follows that L = B + C, where C is an ideal of L and
B ∩ C ≤ BL, whence B is a c-ideal of L.

Suppose conversely that I is an ideal of L with I ≤ B such that B is
a c-ideal of L. Then there is an ideal C of L such that L = B +C and
B∩C ≤ BL. Now L/I = B/I +(C +I)/I, where (C +I)/I is an ideal
of L/I and (B/I) ∩ (C + I)/I = (B ∩ (C + I))/I = (I + B ∩ C)/I ≤
BL/I = (B/I)L/I , so B/I is a c-ideal of L/I.

The Frattini subalgebra of L, F (L), is the intersection of all of the max-
imal subalgebras of L. The Frattini ideal, φ(L), of L is F (L)L. The next
result shows, in particular, that c-ideals inside the Frattini subalgebra of a
Lie algebra L are necessarily ideals of L.

Proposition 2.2 Let B,C be subalgebras of L with B ≤ F (C). If B is a
c-ideal of L then B is an ideal of L and B ≤ φ(L).

Proof. Suppose that L = B + K and B ∩ K ≤ BL. Then C = C ∩ L =
C ∩ (B + K) = B + C ∩K = C ∩K since B ≤ F (C). Hence B ≤ C ≤ K,
giving B = B ∩ K ≤ BL and B is an ideal of L. It then follows from [8,
Lemma 4.1] that B ≤ φ(L).
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3 Some characterisations of solvable algebras

Theorem 3.1 Let L be a Lie algebra over any field F . Then all maximal
subalgebras of L are c-ideals of L if and only if L is solvable.

Proof. Let L be a non-solvable Lie algebra of smallest dimension in which
maximal subalgebras are c-ideals of L. Then all proper factor algebras of L
are solvable, by Lemma 2.1 (ii). Suppose first that L is simple. Let M be a
maximal subalgebra of L. Then M is a c-ideal so there is an ideal C of L
such that L = M +C and M ∩C ≤ ML = 0, as L is simple. This yields that
C is a non-trivial proper ideal of L, a contradiction. If L has two minimal
ideals B1 and B2, then L/B1 and L/B2 are solvable and B1 ∩B2 = 0, so L
is solvable. Hence L has a unique minimal ideal B and L/B is solvable.

Suppose there is an element b ∈ B such that adLb is not nilpotent. Let
L = L0 ⊕ L1 be the Fitting decomposition of L relative to adLb. Then
L 6= L0 so let M be a maximal subalgebra of L containing L0. As M is a
c-ideal there is an ideal C of L such that L = M + C and M ∩ C ≤ ML.
Now L1 ≤ B so B 6≤ ML. It follows that ML = 0 whence M = L0 and
B = C = L1. But b ∈ M ∩B = 0. Hence every element of B is ad-nilpotent,
yielding that B is nilpotent and so L is solvable, a contradiction.

Now suppose that L is solvable and let M be a maximal subalgebra of
L. Then there is a k ≥ 2 such that L(k) ≤ M , but L(k−1) 6≤ M . We have
that L(k−1) is an ideal of L, L = M + L(k−1) and M ∩ L(k−1) ≤ ML, so M
is a c-ideal of L.

Theorem 3.2 Let L be a Lie algebra over a field F of characteristic zero.
Then L has a solvable maximal subalgebra that is a c-ideal of L if and only
if L is solvable.

Proof. Suppose first that L has a solvable maximal subalgebra M that is a c-
ideal of L. We show that L is solvable. Let L be a minimal counter-example.
Then there is an ideal K of L such that L = M + K and M ∩ K ≤ ML.
Now ML = 0, since otherwise, L/ML is solvable and ML is solvable, whence
L is solvable, a contradiction. It follows that L = M ⊕ K. If R is the
solvable radical of L then R ≤ ML = 0, so L is semisimple and L2 = L. But
L2 ≤ M2 + K 6= L, a contradiction. The result follows.

The converse follows from Theorem 3.1.

For fields of characteristic p > 0 we have the following result.
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Theorem 3.3 Let L be a Lie algebra over an algebraically closed field F
of characteristic greater than 5. Then L has a solvable maximal subalgebra
that is a c-ideal of L if and only if L is solvable.

Proof. Suppose first that L has a solvable maximal subalgebra M that is
a c-ideal of L. We show that L is solvable. Let L be a minimal counter-
example. Then, as above, L = M ⊕ K and K is a minimal ideal of L.
We follow the contents of [13]: M defines a filtration in which L0 = M ,
Li+1 = {x ∈ Li : [x, L] = Li}. When L1 = 0 this filtration is called short;
otherwise it is long. Suppose first that it is short. Then, as in the first two
paragraphs of the proof of [13, Theorem 2.2], L =

⊕
i∈Zp

Li, M = L0 and Li

is an irreducible M -submodule of L for each i 6= 0. Moreover, since K is an
ideal of L, K =

⊕
0 6=i∈Zp

Li. Let S be the subalgebra generated by L1. Then
S is spanned by commutators c(x1, . . . , xn) = [x1, [x2, . . . [xn−1, xn]] with
xi ∈ L1 and n ≥ 1. Now c(x1, . . . , xp) ∈ M ∩K = 0 for all x1, . . . , xp ∈ L1,
so S is nilpotent. Also M idealizes S, so M +S is a subalgebra of L, whence
L = M + S and S is an ideal of L. It follows that K = S is nilpotent and
L is solvable, a contradiction.

Now suppose that the filtration is long. Then the nilradical, N , of M
acts nilpotently on K, by [13, Proposition 2.5]. Let C = CK(N). Then
C 6= 0 and M + C is a subalgebra of L. It follows that L = M + C, whence
K = C.. But this means that N is an ideal of L, so that N ⊆ ML = 0. We
conclude that M = 0, a contradiction.

The converse follows from Theorem 3.1 as before.

Theorem 3.4 Let L be a Lie algebra over any field F , such that all maximal
nilpotent subalgebras of L are c-ideals of L. Then L is solvable.

Proof. Let N be the nilradical of L and let x /∈ N . Then x ∈ B for some
maximal nilpotent subalgebra B of L, and there is an ideal C of L such that
L = B + C and B ∩ C ≤ BL. Clearly x /∈ BL ≤ N , so x /∈ C. Moreover,
L/C ∼= B/(B ∩ C) is nilpotent. So if x /∈ N , there is an ideal C of L such
that x /∈ C and L/C is nilpotent.

So let x1 /∈ N and let C1 be such an ideal with x1 /∈ C1 and L/C1

nilpotent. If C1 ≤ N we have finished. If not, then choose x2 ∈ C1 \ N
and let C2 be such an ideal with x2 /∈ C2 and L/C2 nilpotent. Clearly dim
(C1∩C2) < dim C1. If C1∩C2 6≤ N , choose x3 ∈ (C1∩C2)\N . Continuing
in this way we find ideals C1, . . . , Cn of L such that C1 ∩ . . . ∩ Cn ≤ N and
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L/Ci is nilpotent for each 1 ≤ i ≤ n. Since L/(C1 ∩ . . . ∩ Cn) is solvable,
the result follows.

Theorem 3.5 Let L be a Lie algebra, over a field F of characteristic zero,
in which every Cartan subalgebra of L is a c-ideal of L. Then L is solvable.

Proof. Suppose that every Cartan subalgebra of L is a c-ideal of L, and
that L has a non-zero Levi factor S. Let H be a Cartan subalgebra of S
and let B be a Cartan subalgebra of its centralizer in the solvable radical of
L. Then C = H + B is a Cartan subalgebra of L (see [3]) and there is an
ideal K of L such that L = C + K and C ∩K ≤ CL. Now there is an r ≥ 2
such that L(r) ≤ K. But S ≤ L(r) ≤ K, so C ∩ S ≤ C ∩ K ≤ CL giving
C ∩ S ≤ CL ∩ S = 0, a contradiction. It follows that S = 0 and hence that
L is solvable.

Note: If L∞ = ∩∞i=1L
i is abelian then the converse to the above theorem

holds, by Theorem 4.4.1.1 of [14].

4 Some characterisations of supersolvable algebras

First we need some preliminary results concerning maximal nilpotent sub-
algebras of Lie algebras.

Lemma 4.1 Let L be a Lie algebra over any field F , let A be an ideal of L
and let U/A be a maximal nilpotent subalgebra of L/A. Then U = C + A,
where C is a maximal nilpotent subalgebra of L.

Proof. If A ≤ φ(U) then U/φ(U) is nilpotent, whence U is nilpotent, by
Theorem 6.1 of [8] and the result is clear. So suppose that A 6≤ φ(U). Then
U = A + M for some maximal subalgebra M of U . If we choose B to be
minimal with respect to U = A + B, then A ∩B ≤ φ(B), by Lemma 7.1 of
[8]. Also U/A ∼= B/(A ∩ B) is nilpotent, which yields that B is nilpotent.
If we now choose C to be the biggest nilpotent subalgebra of U such that
U = A+C, it is easy to see that C is a maximal nilpotent subalgebra of L.
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Lemma 4.2 Let L be a Lie algebra, over any field F , in which every max-
imal subalgebra of each maximal nilpotent subalgebra of L is a c-ideal of L,
and let A be a minimal abelian ideal of L. Then every maximal subalgebra
of each maximal nilpotent subalgebra of L/A is a c-ideal of L/A.

Proof. Suppose that U/A is a maximal nilpotent subalgebra of L/A. Then
U = C + A where C is a maximal nilpotent subalgebra of L by Lemma
4.1. Let B/A be a maximal subalgebra of U/A. Then B = B ∩ (C + A) =
B∩C +A = D +A where D is a maximal subalgebra of C with B∩C ≤ D.
Now D is a c-ideal of L so there is an ideal K of L with L = D + K and
D ∩K ≤ DL.

If A ≤ K we have L/A = (D + K)/A = ((D + A)/A) + (K/A) =
(B/A) + (K/A), and (B/A) ∩ (K/A) = (B ∩K)/A = ((D + A) ∩K)/A =
(D ∩K + A)/A ≤ (DL + A)/A ≤ (B/A)L/A.

If A 6≤ K, we have A ∩K = 0. Then (A + K)/K is a minimal ideal of
L/K, which is nilpotent, so dimA = 1 and LA ≤ A ∩ K = 0. It follows
that A ≤ C and B = D. We have L = B + K and B ∩ K ≤ BL, so
L/A = (B/A)+((K+A)/A) and (B/A)∩((K+A)/A) = (B∩(K+A))/A =
(B ∩K + A)/A ≤ (BL + A)/A ≤ (B/A)L/A.

Lemma 4.3 Let L be a Lie algebra, over any field F , in which every max-
imal subalgebra of each maximal nilpotent subalgebra of L is a c-ideal of L,
and suppose that A is a minimal abelian ideal of L and M is a core-free
maximal subalgebra of L. Then A is one dimensional.

Proof. We have that L = A ⊕M and A is the unique minimal ideal of L,
by Lemma 1.4 of [9]. Let C be a maximal nilpotent subalgebra of L with
A ≤ C. If C = A, choose B to be a maximal subalgebra of A, so that
A = B + Fa and BL = 0. Then B is a c-ideal of L so there is an ideal K of
L with L = B + K and B ∩K ≤ BL = 0. But now L = A + K = K, giving
B = 0 and dimA = 1.

So suppose that C 6= A. Then C = A + M ∩ C. Let B be a maximal
subalgebra of C containing M ∩ C. Then B is a c-ideal of L, so there is an
ideal K of L with L = B + K and B ∩K ≤ BL. If A ≤ BL ≤ B we have
C = A + M ∩C ≤ B, a contradiction. Hence BL = 0 and L = B ⊕K. Now
C = B + C ∩K and B ∩C ∩K = B ∩K = 0. As C is nilpotent this means
that dim(C ∩K) = 1. But A ≤ C ∩K, so dimA = 1, as required.

We can now prove our main result.
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Theorem 4.4 Let L be a solvable Lie algebra, over any field F , in which
every maximal subalgebra of each maximal nilpotent subalgebra of L is a
c-ideal of L. Then L is supersolvable.

Proof. Let L be a minimal counter-example and let A be a minimal abelian
ideal of L. Then L/A satisfies the same hypotheses, by Lemma 4.2. We thus
have that L/A is supersolvable, and it remains to show that dimA = 1.

If there is another minimal ideal I of L, then A ∼= (A+I)/I ≤ L/I, which
is supersolvable and so dimA = 1. So we can assume that A is the unique
minimal ideal of L. Also, if A ≤ φ(L) we have that L/φ(L) is supersolvable,
whence L is supersolvable, by Theorem 7 of [2]. We therefore further assume
that A 6≤ φ(L). It follows that L = A⊕M , where M is a core-free maximal
subalgebra of L.The result now follows from Lemma 4.3.

If L has no one-dimensional maximal nilpotent subalgebras, we can re-
move the solvability assumption from the above result.

Corollary 4.5 Let L be a Lie algebra, over any field F , in which every
maximal nilpotent subalgebra has dimension at least two. If every maximal
subalgebra of each maximal nilpotent subalgebra of L is a c-ideal of L, then
L is supersolvable.

Proof. Let N be the nilradical of L and let x /∈ N . Then x ∈ C for some
maximal nilpotent subalgebra C of L. Since dimC > 1, there is a maximal
subalgebra B of C with x ∈ B. Now there is an ideal K of L with L = B+K
and B∩K ≤ BL ≤ CL ≤ N . Clearly x /∈ K, since otherwise x ∈ B∩K ≤ N .
Moreover, L/K is nilpotent. We have shown that if x /∈ N there is an ideal
K of L with x /∈ K and L/K nilpotent. Proceeding as in Theorem 3.4 we
see that L is solvable. The result then follows from Theorem 4.4.

If L has a one-dimensional maximal nilpotent subalgebra then we can
also remove the solvability assumption from Theorem 4.4 provided that the
underlying field F has characteristic zero and L is not three-dimensional
simple.

Corollary 4.6 Let L be a Lie algebra over a field F of characteristic zero.
If every maximal subalgebra of each maximal nilpotent subalgebra of L is a
c-ideal of L, then L is supersolvable or three-dimensional simple.
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Proof. If every maximal nilpotent subalgebra of L has dimension at least
two then L is supersolvable, by Corollary 4.5. So we need only consider the
case where L has a one-dimensional maximal nilpotent subalgebra, Fx say.

Suppose first that L is semisimple, so L = S1 ⊕ . . . ⊕ Sn, where Si is a
simple ideal of L for 1 ≤ i ≤ n. Let n > 1. If x ∈ Si then choosing s ∈ Sj

with j 6= i we have that Fx + Fs is a two-dimensional abelian subalgebra,
which contradicts the maximality of Fx. If x /∈ Si for every 1 ≤ i ≤ n, then
x has non-zero projections in at least two of the Sk’s, say si ∈ Si and sj ∈ Sj .
But then Fx+Fsi is a two-dimensional abelian subalgebra, a contradiction
again. It follows that L is simple. But then Fx is a Cartan subalgebra of
L, which yields that L has rank one and thus is three dimensional.

So now let L be a minimal counter-example. We have seen that L is
not semisimple, so it has a minimal abelian ideal A. By Lemma 4.2, L/A is
supersolvable or three-dimensional simple. In the former case, L is solvable
and so supersolvable, by Theorem 4.4. In the latter case, L = A⊕ S where
S is three-dimensional simple, and so a core-free maximal subalgebra of L.
It follows from Lemma 4.3 that dimA = 1. But now CL(A) = A or L. In
the former case S ∼= L/A = L/CL(A) ∼= Inn(A), a subalgebra of Der(A),
which is impossible. Hence L = A⊕S, where A and S are both ideals of L,
and again L has no one-dimensional maximal nilpotent subalgebras.

5 One-dimensional c-ideals

First we note that one-dimensional c-ideals are easy to classify.

Proposition 5.1 Let L be a Lie algebra over any field F . Then the one-
dimensional subalgebra Fx of L is a c-ideal of L if and only if

(i) Fx is an ideal of L; or

(ii) x /∈ L2.

Proof. Let Fx be a c-ideal of L. Then there is an ideal K of L such that
L = Fx + K and Fx ∩K ≤ (Fx)L. But Fx ∩K = Fx or 0. The former
implies that Fx is an ideal of L, and the latter implies that x /∈ L2 ≤ K.

Conversely, suppose that x /∈ L2. Then there is a subspace K of L of
codimension one in L such that L2 ≤ K and x /∈ K. Clearly L = Fx ⊕K
and K is an ideal of L, whence Fx is a c-ideal of L.
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We shall denote by Z(L) the centre of L; that is Z(L) = {x ∈ L : [x, y] =
0 for all y ∈ L}. The abelian socle of L, AsocL, is the sum of the minimal
abelian ideals of L. We say that L is almost abelian if L = L2 ⊕ Fx, where
L2 is abelian and [x, y] = y for all y ∈ L2.

Theorem 5.2 Let L be a Lie algebra over any field F . Then all one-
dimensional subalgebras of L are c-ideals of L if and only if

(i) L3 = 0; or

(ii) L = A⊕B, where A is an abelian ideal of L and B is an almost abelian
ideal of L.

Proof. Suppose that all one-dimensional subalgebras of L are c-ideals of L.
First note that the one-dimensional ideals are inside AsocL. If Fx is not
an ideal of L then there is an ideal M of L such that L = Fx + M and
Fx ∩M ≤ (Fx)L = 0, so Fx is complemented by an ideal of codimension
one in L.

Now let A be a minimal ideal of L and let a ∈ A. If A 6= Fa then there
is an ideal M of codimension one in L which complements Fa. But this
implies that M ∩A = 0, whence A = Fa, a contradiction. It follows that all
minimal ideals are one dimensional. Put AsocL = Fa1⊕ . . .⊕Far. Suppose
that [x, ai] = λai, [x, aj ] = µaj and λ 6= µ. Then F (ai + aj) is not an ideal
of L, and so there is an ideal M of L with L = F (ai + aj)⊕M . Clearly one
of ai, aj does not belong to M : suppose ai /∈ M . Then L = Fai ⊕M and
ai ∈ Z(L). Hence AsocL = Z ⊕D, where Z = Z(L) and [x, a] = λxa for all
a ∈ D and λx 6= 0.

Let Λ : L → F be given by Λ(x) = λx. This is a one-dimensional
representation of L. Hence, either Im Λ = 0, in which case D = 0, or else
L = Ker Λ⊕ Fx and λx = 1. Put L = Z ⊕D⊕C ⊕ Fx, where C ⊆ Ker Λ.

If y /∈ AsocL then Fy is complemented by an ideal M and L2 ≤ M , so
y /∈ L2. This yields that L2 ≤ AsocL. Clearly D ≤ L2. If L2 ≤ Z then
L3 = 0 and we have case (i). So suppose that D 6= 0 and let a ∈ D. If
there is an element z ∈ Z ∩ L2, then F (z + a) is not an ideal of L and so
z + a /∈ L2, a contradiction. Hence L2 = D.

Let c ∈ C. If [x, c] = 0 then Fc is an ideal of L and c ∈ C ∩AsocL = 0.
So suppose [x, c] 6= 0. Then [x, c] ∈ D so [x, c − [x, c]] = 0. This implies
that F (c − [x, c]) is an ideal of L, whence c − [x, c] ∈ AsocL. But now
c ∈ C ∩AsocL = 0. Hence C = 0 and L is as described in (ii).
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Now suppose that L3 = 0. If x ∈ L2 then Fx is an ideal of L. If x /∈ L2

there is a subspace M of codimension one in L containing L2 such that
x /∈ M . This implies that Fx is a c-ideal of L.

Finally suppose that L is as in (ii): say L = Z⊕A⊕Fx where Z = Z(L),
A is abelian and [x, a] = a for all a ∈ A. Let z + a + αx ∈ L. If z 6= 0 then
choosing M = Z1 ⊕ A⊕ Fx where Z = Z1 ⊕ Fz shows that F (z + a + αx)
is a c-ideal of L. So suppose z = 0. If α = 0 then Fa is an ideal of L. If
α 6= 0 then choosing M = Z ⊕A shows that F (a + αx) is a c-ideal of L.
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