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In the world-famous sediments of the Chinese Loess Plateau, fossil
soils alternate with windblown dust layers to record monsoonal
variations over the last ∼3My. The less-weathered, weakly magnetic
dust layers reflect drier, colder glaciations. The fossil soils (paleosols)
contain variable concentrations of nanoscale, strongly magnetic iron
oxides, formed in situ during the wetter, warmer interglaciations.
Mineralogical identification of the magnetic soil oxides is essential
for deciphering these key paleoclimatic records. Formation of mag-
netite, a mixed Fe2+/Fe3+ ferrimagnet, has been linked to soil redox
oscillations, and thence to paleorainfall. An opposite hypothesis
states that magnetite can only form if the soil is water saturated
for significant periods in order for Fe3+ to be reduced to Fe2+, and sug-
gests instead the temperature-dependent formation of maghemite,
an Fe3+-oxide, much of which ages subsequently into hematite,
typically aluminum substituted. This latter, oxidizing pathway
would have been temperature, but not rainfall dependent. Here,
through structural fingerprinting and scanning transmission elec-
tron microscopy and electron energy loss spectroscopy analysis,
we prove that magnetite is the dominant soil-formed ferrite.
Maghemite is present in lower concentrations, and shows no evidence
of aluminum substitution, negating its proposed precursor role for the
aluminum-substituted hematite prevalent in the paleosols. Magnetite
dominance demonstrates that magnetite formation occurs in well-
drained, generally oxidizing soils, and that soil wetting/drying oscil-
lations drive the degree of soil magnetic enhancement. The magnetic
variations of the Chinese Loess Plateau paleosols thus record changes
in monsoonal rainfall, over timescales of millions of years.

soil magnetite | Quaternary paleoclimate | monsoon rainfall |
magnetic susceptibility | structural fingerprinting

The windblown sediments of the famous Chinese Loess Pla-
teau (CLP), spanning hundreds of meters in thickness and

>600,000 km2 in extent, potentially contain the longest, most
detailed terrestrial records of East Asian monsoonal evolution.
Interleaved layers of glacial-stage windblown dust (loess) and
interglacial/interstadial-stage fossil soils (paleosols) span the late
Pliocene and Quaternary geological periods; i.e., the last ∼3 My.
Compared with the less-weathered loess layers, the interglacial
paleosols contain varying but higher concentrations of nanoscale,
strongly magnetic (ferrimagnetic) iron oxides, formed in situ during
soil development. These variations in ferrimagnetic concentration are
readily apparent even from simple room-temperature measurements
of magnetic susceptibility (Fig. 1A and SI Appendix, Fig. S1). A climatic
cause for the varying soil nanomagnet concentrations is evidenced
by their strong correlation with the deep-sea oxygen isotope record,
principally a record of continental ice volume (Fig. 1B).
Modern loessic soils across the Chinese Loess Plateau, and

similar regions (e.g., the Russian steppe, the North American Great
Plains), display a direct, strongly significant correlation of their soil-
formed (pedogenic) magnetic concentrations with mean annual
rainfall (1–4). This correlation, used to obtain quantified estimates
of paleorainfall (5) for the Chinese monsoon region, has been
linked causally to pedogenic formation of the mixed Fe2+/Fe3+ iron
oxide, magnetite, through redox changes in soil microsites following
rainfall events (6–9). Electron microscopy of magnetic concentrates

from the Chinese loess/paleosol sediments indicates that abiotic (ex-
tracellular) precipitation of the paleosol ferrimagnets (Fig. 1C andD)
is dominant, rather than intracellular formation of magnetosomes,
of controlled size and shape, by magnetotactic bacteria (Fig. 1E).
Both the mineralogy of the soil ferrimagnets and their pathways

of formation have been hotly debated. Opposite hypotheses link
soil magnetic enhancement not with redox-related formation of the
Fe2+-bearing magnetite but with the formation from ferrihydrite of
an oxidized, maghemite-like phase (hydromaghemite), which itself
transforms to hematite upon ripening and aging (11–13). This latter
pathway would thus be temperature dependent rather than mois-
ture and redox dependent. Indeed, the transformation of ferrihy-
drite to maghemite has been identified in vitro (14), albeit under
hydrothermal experimental conditions (150 °C for 120 d), which
are environmentally unrealistic. More recently, it has been sug-
gested that a magnetically ordered ferrihydrite, before its oxidation
to hematite, might contribute to soil magnetic enhancement (15).
Magnetite has an inverse spinel structure that contains tetrahedral

(Td) and octahedral [Oh] sites accommodating Fe2+ and Fe3+

cations with a spin arrangement of ½Fe3+ ↓�Td
½Fe3+ ↑Fe2+ ↑�Oh

.
Magnetite and maghemite are end members of a solid solution
series. Although maghemite (γ-Fe2O3) has the same composition as
hematite (α-Fe2O3), it has the structure of a spinel (a cation-deficient
spinel, lacking sufficient Fe3+ ions to fill the available Fe sites; SI
Appendix). Maghemite is thus ferrimagnetic, with very similar
magnetic properties to magnetite. It is metastable with respect to
hematite (it inverts to hematite upon heating), but can be stabilized
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by the presence of aluminum, one of the most commonly available
metal cations in soils, substituting within some of the vacant sites.
The particle size of soil-formed ferrimagnets is magnetically

distinctive, characteristically spanning the superparamagnetic (SP)
to stable single domain (SSD) size range (i.e., up to ∼50 nm). Curie
temperature (Tc) measurements on soil and paleosol magnetic
concentrates (SI Appendix, Fig. S3) indicate the presence in the
CLP paleosols of both magnetite (Tc = 580 °C) and maghemite.
However, nanoscale magnetite oxidizes at its surface to maghe-
mite, rendering ferrite identification and quantification, whether by
magnetic, X-ray diffraction, or chemical dissolution techniques, a
challenging task, until now. Torrent and coauthors argue that the
coexistence in soils of (trace concentrations of) ferrimagnets with
(minor concentrations, up to ∼5 wt%) of the highly oxidized he-
matite can only be explained if the ferrimagnetic phase is
Fe3+-bearing maghemite, not Fe2+-bearing magnetite (13). They fur-
ther claim that magnetite could only form if the soil is water saturated
for significant periods, in order for Fe3+ to be reduced to Fe2+ (15).
Establishing the causal links between climate and soil magne-

tism is critically important. Past changes in the East Asian mon-
soon system preceded subsequent intensification of northern
hemisphere glaciations (∼2.8 Ma), indicating a possible leading
role of monsoonal changes through switches in the poleward
distribution of heat and moisture (16). The robustness of paleo-
climatic reconstructions from the CLP, and their possible tele-
connections, depends on identifying the composition of the abiotic
ferrites in these paleosols, and hence their causal links with climatic
factors. Although our understanding remains uncertain, arguably
the longest and most highly resolved paleoclimate record on the
continents remains underused.
To achieve unequivocal identification of the composition of soil

nanomagnets, we applied structural fingerprinting from high-
resolution transmission electron microscopy (HRTEM), together
with energy dispersive X-ray analysis (EDXA), to soil magnetic
concentrates. The structural fingerprinting approach utilizes
crystallographic processing of HRTEM images in which crystal
structure factors are obtained using Fourier analysis. The most

probable projected crystallographic symmetries for a candidate
phase are then obtained, together with geometric information
(i.e., reciprocal lattice spacings and interfringe angles). The com-
bination of geometric information on the reciprocal lattice, plane
symmetry, and elemental composition (from EDXA) within a crystal
leads to unambiguous identification of the nanoferrite structure.
The soil ferrites were extracted from: a modern, magnetically

enhanced soil (a cambisol, from Exmoor, United Kingdom; Fig.
1B and ref. 17); paleosol S1 (of last interglacial age, ∼125,000 y
before present [BP]) from the central region of the CLP
(Luochuan; Fig. 1A and SI Appendix, Fig. S2); and a paleosol (∼5
My BP) from the Mio/Pliocene red clay sequence (at Lingtai; ref.
18), which underlies the Quaternary-age loess and paleosols. To
examine any possible oxidation effects related to postsampling
laboratory storage, we compared recently collected (2011) and
“old” (collected in 1990) samples from the Luochuan S1 paleosol.
For independent verification of our structural fingerprinting ap-
proach, we additionally used coupled scanning transmission electron
microscopy and electron energy loss spectroscopy (STEM/EELS) to
quantify the Fe3+=ΣFe ratios and to identify the dominant ferrites in
the “new” and long-stored Luochuan S1 paleosol samples.

Results
Magnetic concentrates were obtained from the soil and paleosol
samples; the extraction efficiency (SI Appendix, Table S1) quan-
tified by before- and after-extraction measurements of magnetic
susceptibility, and anhysteretic and saturation remanences (Ma-
terials and Methods). For each of the samples, HRTEM imaging
(Fig. 2; SI Appendix, Fig. S10) shows agglomerated magnetic
nanoparticles with dimensions ranging from ≥10 to ∼50 nm and
mean diameters of 19.9 × 16.2 nm (measured using a simplified
elliptical geometry; SI Appendix, Fig. S7). Some of the larger
crystals (Fig. 2C; SI Appendix, Fig. S12A) display euhedral, cubo-
octahedral morphologies.
Critically, because reciprocal lattice geometry and plane symme-

try information are diagnostic of the dominant crystal structure in
the analyzed particles, it is possible to discriminate between nano-
crystals of magnetite and maghemite using HRTEM (e.g., refs. 19
and 20). The hkl reflections (110), (210), and (321), for example, are
expected for maghemite in zone axis 〈211〉; whereas, these reflec-
tions are forbidden in magnetite due to its crystal symmetry and
F-centering (21, 22) (see SI Appendix, Figs. S9 and S10 for addi-
tional examples). Automated matching of the observed spacings and
reflections against crystal standards enables analysis of statistically
robust numbers (>1,000) of ferrite grains, incurring neither electron
beam damage nor possible reduction artifacts, thus providing a
practical, structure-sensitive probe for these pedogenic ferrites.
Applying structural fingerprinting to both the modern and fossil

soil magnetic concentrates (in total to 210 HRTEM micrographs),
demonstrates unequivocally that magnetite is the dominant
(>75%) nanocrystalline phase in all but one sample (Fig. 3). In-
deed, maghemite was found to be the dominant soil nanomagnet
only in the old S1 paleosol sample (Fig. 4 D–F), which had been
collected and stored in the laboratory for >25 y.
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Fig. 1. (A) The magnetic susceptibility of the loess/paleosol sequence at
Luochuan, central Chinese Loess Plateau (5); (B) the deep-sea oxygen isotope
record from site 677 (10) (glacial stages numbered); (C–E) TEM micrographs
of nanoscale, low-temperature ferrimagnets formed in the environment, (C)
CLP paleosol, (D) United Kingdom modern cambisol (Exmoor), and (E) the
unique crystal forms produced intracellularly by magnetotactic bacteria,
Cretaceous chalk, United Kingdom.
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Fig. 2. (A–C) Magnetic concentrates from Chinese paleosols showing ag-
glomerates of magnetic nanoparticles. The SAED of the euhedral nanoparticle
in C identifies a magnetite structure (Inset) along the zone axis h1�41i.
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The HRTEM images analyzed show a mixture of aggregated/
overlain ferrite grains and 3,226 recognizable single crystals.
Magnetite and maghemite were the only ferrites identified by
structural fingerprinting; a few (<5) two-line ferrihydrite crystals
[based on the Michel et al. (23) model] were additionally iden-
tified, occurring in association with magnetite crystals in the
modern Exmoor and the Pliocene red clay samples.
The possible presence of Al3+ ion substitution could also be

examined using structural fingerprinting. Incorporation of the
smaller Al3+ ions within the magnetite or maghemite unit cell
results in modified unit cell dimensions, and accompanying al-
terations in lattice reflections. None of the samples displayed such
modified unit cells; hence, the presence of Al3+ substitutions in
the soil nanomagnets appears negligible. We additionally checked
for Al3+ substitutions by elemental analysis using EDXA. The soil
ferrimagnets comprise only Fe and O; they display no evidence of
substitution by foreign cations (SI Appendix, Fig. S11).
Autocorrelation function analysis was applied to examine pe-

riodicity along a single ferrite crystal (e.g., as shown in Fig. 4) and
to reveal composite (i.e., overlain) crystals. This approach can also
be used to study the crystallinity of the surface layer of the mag-
netite particles. Areas in the HRTEM images that are dominated
by amorphous carbon (from the TEM grid) or poorly crystalline
clays associated with the nanoparticles give featureless autocor-
relation signals (Fig. 4 C, 1 and 2 and I, 4); whereas, crystalline
regions give bright continuous lines matching the orientation of
the crystal. A key feature of most of the magnetite particles ana-
lyzed is the presence of an amorphous layer near their surface
(e.g., compare Fig. 4 C, 1 with C, 2 and Fig. 4 I, 3 with I, 4). EDXA
of this 1–4 nm thick amorphous surface layer shows no evidence of
elements other than Fe, O, C, or Cu (the latter two associated with
the support film and TEM grid, respectively). The autocorrelation
function analysis near the magnetite surface provides no evidence

of dislocations nor discontinuous coverage. These data suggest
that the thin surface layer consists of maghemite, rather than clays
or any sort of carbonaceous materials.
To make independent verification of our structural finger-

printing approach, we used STEM/EELS analysis to identify the
ferrite mineralogy in the newer and long-stored S1 paleosols, from
Luochuan, CLP. The EELS data show distinct Fe L2 and L3 peaks
arising from excitations of 2p1/2 and 2p3/2 core electrons to un-
occupied d-states (3d3/2 and 3d3/2;3d5/2, respectively) with a con-
sistent Fe L3–L2 energy difference of 13.5 ± 0.2 eV (SI Appendix,
Fig. S12A). Sample spectra also show weak splitting in the Fe L2
peaks, indicating a weak crystal field around the Fe atom (24). The
spectra of the new S1 paleosol samples show slightly wider Fe L2
peaks (3.1–3.9 eV) compared with the old S1 samples (3.0–
3.7 eV). Weak preedge peaks at about 708 eV are visible mostly in
the old S1 samples. The calculated L3/L2 and the d-sub band oc-
cupancy H ratios (Materials and Methods) are 4.59–4.74 (H =
1.78–2.22) and 5.14–5.86 (H = 2.43–2.8) for the new and old
paleosol samples, respectively. Assuming that the magnetic ex-
tracts contain only inverse spinel iron ferrites, a larger L3/L2 ratio
is indicative of a higher proportion of maghemite compared with
magnetite. Also, the large H ratio reflects a shift in d-band oc-
cupancy from the low spin (i.e., Fe2+) toward the high-spin state
(i.e., Fe3+) as a result of magnetite oxidation. In support of these
observations, the O K-edge data (SI Appendix, Fig. S12B) show
characteristic intense prepeaks at 531 eV in the old S1 paleosol
samples, due most likely to increased Fe3+ concentrations. The
energy difference between this prepeak and the more dominant
peak at 540 eV, defined by the center of a Gaussian or a Lorentzian
function fitted to the two peaks, is 9–10 eV (SI Appendix, Fig.
S12B). The presence of the relatively strong peak at inten-
sity maximum of ∼547 eV in the old S1 paleosol samples is also
characteristic of a maghemite structure (25). These EELS
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Fig. 3. Correlation plots of measured vs. theoretical interplanar distances (dhkl) of (A) magnetite and (B) maghemite. The shaded areas represent the 95%
prediction interval of the measured d-spacing and the solid line is a linear regression for the whole dataset. C and D are histogram plots of the residuals of the
fits in A and B showing significant correlation for magnetite (SE estimate, SE = 0.111, R2 = 0.988). (E) Magnetite and maghemite abundances in magnetic
concentrates from the modern Exmoor cambisol and paleosols from the Chinese Loess Plateau, as identified by structural fingerprinting.
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observations are thus in agreement with our structural finger-
printing analysis and provide evidence of much greater maghe-
mitization in the old compared with the new S1 paleosol sample.

Discussion
Our new results show that soil-formed, nanoscale ferrimagnets,
extracted from magnetically enhanced soils (both modern and
paleosol), are dominantly composed of discrete crystals of the

mixed Fe2+/Fe3+ iron oxide, magnetite. This definitive mineral-
ogical identification thus demonstrates that magnetite formation
occurs in well-drained, generally oxidizing soils, and substanti-
ates the proposed causal links between the pedogenic formation
of magnetite and rainfall-induced changes in soil wetness and
microsite redox conditions (7, 18, 26). Conversely, the relatively
small proportion of discrete maghemite nanocrystals (with the
one exception of the long-stored S1 paleosol sample) negates the

A B C

D E F

G H I

Fig. 4. HRTEM micrographs (Left), FFT power spectra and lattice indexing (Middle), and autocorrelation function analysis (Right). (A–C) New paleosol S1,
CLP sample, dominated by magnetite crystals (SG. Fd�3m): Zone axis = h1�10i; lattice vectors indicated by centered arrows of half lengths of A = 2.095, B =
2.422, C = 2.069, D = 3.388 nm−1; d-spacing SD, σd, = 0.0028; (D–F ) Old paleosol S1, CLP sample, dominated by maghemite crystals (SG. P43212) with two
overlying lattices: lattice 1 (lattice vectors shown): zone axis = h0�10i; A = 2.614, B = 3.518, C = 2.551, D = 3.783 nm−1; σd = 0.0075; lattice 2 (lattice vectors
removed for clarity; green labels): zone axis = h�211i; A = 3.869, B = 6.425, C = 3.668, D = 3.938 nm−1; σd = 0.0107; (G–I) Modern Exmoor sample, dominated
by magnetite crystals (SG. Fd�3m): zone axis = h�101i; A = 1.991, B = 3.203, C = 1.968, D = 2.327 nm−1; σd = 0.0042. All Fourier transforms of the HRTEM
images were indexed to satisfy the right-handed coordination system. The TEM’s point resolution (kinematic diffraction ∼0.625 Å−1) is marked by the
dotted circle on the FFT images in B, E, and H.
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opposing hypothesis that maghemite is the major soil-formed
ferrite phase. Further, there is no evidence of any substitution
by Al3+ within these soil nanomagnets (SI Appendix, Fig. S11). If
the proposed precursor ferrite (15) contains no Al3+ then it is
difficult to envisage its suggested ripening and aging into an Al-
substituted hematite. Finally, we find no evidence of any signif-
icant presence of magnetically ordered ferrihydrite (15).
The persistence of nanoscale magnetite particles in the paleo-

sols, over time periods exceeding 5 My, is noteworthy. Our data
indicate the presence of thin rims (1–4 nm thick) of amorphous
Fe-bearing oxide material around the magnetite nanoparticles,
likely an oxidized shell of maghemite. In contrast to bare synthetic
magnetites, soil magnetites are always found aggregated and as-
sociated with clay minerals. Not only confined within soil micro-
pores, the clay-coated soil magnetites thus typically encounter
strong barriers to oxygen transport to their surface. Slow oxidation
of the magnetite surface forms a thin maghemite rim. Mass
transport through this additional protective layer becomes the
rate-limiting step with increasing time. The topochemical oxida-
tion of magnetite [Eq. 1, after White (27)] involves the migration
of Fe2+ ions from the core to the surface (or to the magnetite–
maghemite interface) and electron exchange with dissolved oxy-
gen at the water–mineral interface. The slow rates of solid-state
outward diffusion of Fe2+ ions [10−12 – 10−20 cm2/s (28–30)] and
inward diffusion of protons through the magnetite–maghemite
core shell is likely to be self-limiting at low soil temperature and
circumneutral pH. Further liberation of core Fe2+ ions is expected
to be hindered with increasing time as the oxidized shell becomes
thicker (31). We developed an inverse shrinking-core model,
based on the early work of Wen and others (32–34), to simulate
the topotactic oxidation of the soil nanomagnetites. The model,
which couples solid-state diffusion of Fe2+ (outward) and H+

(inward) ions with oxygen gas film and chemical reaction rate-
limiting controls, indicates the survival of a >20 nm magnetite
core for of the order of 1–4 My (Fig. 5). This model simulation

also highlights the retardation effect on magnetite oxidation as a
result of increasing soil pH, with H+ solid-state diffusion being the
rate-limiting step. Dominant rainfall during the summer monsoon
season (wet and warm) results in a reduction of soil pH, but this is
accompanied by a sharp depletion of dissolved oxygen, thus
retarding the oxidation of soil nanomagnetite. During the mon-
soon winter season (cold and dry), the oxygen diffusion rate in-
creases but soil pH tends to be more alkaline due to reduced
bacterial activity, resulting in at least an order of magnitude de-
cline in the rate of magnetite oxidation.

3Fe2+Fe3+2 O4 +
1
2
O2 + 2H+ → 4γ −Fe3+2 O3 +Fe2+ +H2O [1]

This definitive identification of the Fe2+-bearing mineral, magne-
tite as the dominant soil-formed ferrite phase provides a firm basis
and rationale for kinetic modeling of magnetite formation pro-
cesses in soil microsites under wetting and drying cycles. In turn,
such modeling will enable improved quantification of East Asian
paleoclimate (rainfall, evapotranspiration, temperature) over
Quaternary and Mio/Pliocene timescales. Such paleoclimatic data
are essential for testing and ground-truthing of general circulation
models, whether for hindcasting studies or for robust prediction of
future monsoon changes in the populous East Asian region.

Materials and Methods
Magnetic Extraction. Magnetic concentrates were obtained from the finer
fractions (<40 μm) of the soil and paleosol samples using the extraction ap-
paratus described in SI Appendix, Fig. S5. Samples were first dispersed ultra-
sonically and then exposed to a high-gradient magnetic extraction procedure,
using a neodymium magnet (NdFeB, max. field at its tip ∼40 milliTesla, mT),
and under an inert (Ar) atmosphere, to preclude any oxidation of ferrites
during the 14-d duration of the extraction procedure. The ferrite extraction
efficiency was quantified by before- and after-extraction measurements of
magnetic susceptibility, anhysteretic (peak alternating current, ac, field of
80 mT, steady direct current, dc, field 0.1 mT), and saturation remanence (peak
dc field 1 T). A full description of the magnetic extraction procedure is given in
the SI Appendix.

Structure Determination by HRTEM. High-resolution transmission electron mi-
croscopy was used for analysis of the soil magnetic extracts using a JEOL-3000F
FEGTEM instrument operating at 300 keV. This instrument is characterized by
spherical aberration coefficient of 0.57 mm and a Scherze point resolution of
∼1.6 Å exceeding the (111) growth plane (d111 = 0.206 Å−1) and the major
characteristic lattice plane distances of the maghemite and magnetite struc-
tures. Standard synthetic Ag nanoparticles (∼15 nm in diameter) and synthetic
magnetite (∼15–20 nm) were used for routine quality assurance and control
procedures including magnification calibration for fringe spacing measure-
ments. The lattice fringes measured for Ag (001) and magnetite (220), (311),
and (440) during three different TEM sessions showed negligible drift of <0.040 Å
accounting for an error of <1.5% in d-spacing measurements of major
magnetite/maghemite reflections.

Each image was analyzed using Digital Micrograph (Gatan) and autocor-
relation function analysis performed to examine periodicity information. The
Fourier transform of the autocorrelation image, calculated using the fast
Fourier transform (FFT) algorithm, and a structural fingerprinting approach
were employed, in which lattice geometry information (i.e., the spacing of the
lattice fringes and the interfringe angles) was determined. The phase of the
nanocrystals in the sample was compared directly to the calculated structure
factors of maghemite [SG. enantiomorphous pairs P41212=P43212 (35) or
P4132=P4332 (35, 36)], magnetite [SG. Fd�3m (37)] and 2L-ferrihydrite [SG.
P63mc (23)] phases (SI Appendix, Fig. S9) using SingleCrystal (CrystalMaker
Software), with manual examination of all possible lattice orientations until a
best fit is obtained. Where necessary, HRTEM images were denoised using the
iterative Wiener filter (38). The same structure solution procedure was re-
peated using an iterative Matlab-based CrysTBox diffractGUI software (39). In
the CrystBox diffractGUI approach, an FFT power spectrum is calculated from
the input HRTEM image and Bragg reflections are detected using a Hessian or
difference of Gaussian technique. The regular lattice is then extracted from
thousands of possible reflections using the RANSAC (random sample consensus)
algorithm; the candidate lattice with the highest score is returned defined by
two vectors. The quality of the structure fingerprinting analysis was evaluated
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Fig. 5. Shrinking-core model simulation of the soil magnetite oxidation re-
action. (A) Schematic representation of a reacting soil ferrite particle (initial
particle radius R0) with unreacted magnetite core (rc), maghemite oxidation rim
and an associated clay film (at t0, R0 = rc). (B) Shrinking-core model simulation
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between 5 and 20 nm. (C) Shrinking-core model simulation using R0 = 10 nm,
T = 15 °C, PO2 = 0.001 atm, θ = 0.5, and variable pH between 3.0 and 9.0.
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using four output parameters: lattice check; total angular distribution;
d-spacing STDEV (σd); and structure factor deviation. Each lattice candidate
was also cross-checked using SingleCrystal. The fingerprinting approach
was validated using three single-phase materials: Ag nanoparticles, GaN and
freshly synthesized magnetite (SI Appendix, Fig. S8). Simulated FFT and se-
lected area electron diffraction (SAED) of single crystal areas (e.g., Fig. 2C,
Inset) were compared and found identical. This suggests that the signals from
the surface and bulk structure of the analyzed samples are identical because
the SAED includes information about both surface and bulk structure whereas the
FFT reflects the material’s surface structure.

Electron Energy Loss Spectroscopy Analysis (EELS). Samples from the new and
the long-stored S1 paleosol, from Luochuan, CLP, were additionally analyzed
using EELS, with a JEOL ARM 200F TEM/STEM operating at 200 kV, equipped
with a field emission gun and electron energy loss spectroscopy. STEM-EELS
was acquired using a Gatan GIF Quantum ER spectrometer model 965 with a
2.5-mm spectrometer entrance aperture. The camera length was chosen so
that Quantum gives a collection half-angle of 38.19 mrad, resulting in high
collection efficiency and initial energy resolution of ∼1.0 eV (0.1 eV/channel
dispersion) determined by measuring the full width at half maximum of the
zero-loss peak (ZLP). The exposure time of each EELS spectrum was set
to ≤10 s to avoid radiation damage. All datasets were energy calibrated
by aligning the maximum of the ZLP of each EELS spectrum to the same

channel. The core-loss EELS spectra were constructed using a curve fitting
approach described by ref. 40. The model consisted of a power-law back-
ground, Fe L2,3 and O K-edges and their fine structures, multiple scattering,
and Hartree–Slater cross-section components. The model was fitted using
the Levenberg–Marquardt method and used to determine the d-band oc-
cupancy the relative intensity of the white lines (L3/L2) (or the branching
ratio Q = I(L3)/[I(L2) + I(L3)]), which was shown to characterize iron oxides (40,
41). A ratio, termed here as H-ratio, developed by Colliex et al. (40)
and Morrison et al. (42) is also used here to characterize the occupancy
of the d-states. The H ratio is sensitive to increases in populations of
higher oxidation states of an ion in the 3d orbital and is defined as:
H=hd5=2

=hd3=2
= 1=6½5=2IL3=IL2EL2=EL3 − 1�, where EL2 and EL3 are the energies of

the L2 and L3 peaks determined by fitting Gaussian or Lorentzian function
and the determination of the center of the L2 and L3 peaks.
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Supplementary Text 

Soil and paleosol samples 

Fig. S1 illustrates the interleaved stratigraphy of the less-weathered loess layers and variably-

developed paleosols across the Chinese Loess Plateau (CLP), together with their magnetic 

susceptibility variations, from the more arid, high sedimentation rate sites in the west to the 

increasingly humid, lower sedimentation rate sites in the east and south. For this study, we 

analysed samples from one modern soil, a magnetically-enhanced cambisol developed on a non-

magnetic parent material (slate), from Exmoor, U.K., and from paleosols from the Chinese Loess 

Plateau (CLP). The latter comprised: samples from the last-interglacial paleosol, S1 (~125 kyrs 

age), from Luochuan, in the central region of the CLP; and a sample ~ 5 million years in age 

(from Lingtai), from the Red Clay, the Mio/Pliocene paleosol sequence which underlies the 

Quaternary-age loess/paleosol sediments. The locations of the Lingtai (35.0°N, 107.5°E) and 

classic Luochuan (35.8°N, 109.4°E) sections in the central Loess Plateau are shown in Fig. S2. 

The Luochuan section is ~135 m thick, and comprises more than 30 loess–paleosol alternations, 

spanning all of the Quaternary period. The Lingtai sequence consists of ~130 m of Red Clay, of 

late Miocene/Pliocene age, overlain by ~170 m of interbedded Quaternary loess and paleosols. 

We analysed both recently-collected (2011) S1 samples from Luochuan (kindly provided by Tom 

Stevens), and samples collected in 1990 (by B. Maher), and subsequently stored in the laboratory. 

Magnetic and XRD data have previously been reported for the Exmoor modern soil and the 

Luochuan paleosols (1), and Fig. S3 and Fig. S4. Thermomagnetic analysis of CLP paleosols 

typically indicates the presence of both magnetite and maghemite (Fig. S3). The majority of the 

sample magnetisation is lost at ~ 580 °C, the Curie point of magnetite. The inflections in the 

heating curve at ~300 - 500 °C occur as maghemite (especially the finest-grained particles) 



oxidises to hematite. This maghemite-hematite conversion is reflected in the loss of 

magnetisation (marked by the thick arrow on the y-axis) seen in the cooling curve. 

 

In terms of mineralogy, the bulk soil samples are dominated (~89 wt%) by quartz, clay minerals 

(including chlorite and illite), and trace (~0.42 wt%) indications of the presence of magnetite 

and/or maghemite (Fig. S4). Magnetite and maghemite are ferrimagnetic; they have strong 

positive exchange interactions between their neighbouring atomic magnetic moments, and 

unequal Fe occupancy in the octahedral and tetrahedral sites, resulting in spontaneous 

magnetisations and large induced magnetisations, which resist thermal disturbance. Even though 

these minerals occur in soils typically in trace concentrations (e.g., up to 0.3 % in the CLP 

paleosols), they account for > 90% of the measured magnetic remanence. In contrast, the weakly-

magnetic iron minerals, hematite and goethite, typically occur in minor concentrations (up to 

~5%) but contribute very little to soil magnetic susceptibility, anhysteretic remanence (ARM) or 

saturation isothermal remanent magnetisation (SIRM). 

 

Magnetic Extraction  

The soil and paleosol samples were subjected to a magnetic extraction procedure using a 

modified approach based on Petersen et al. (2) and Hounslow et al. (3, 4). The new modification 

aimed to protect the ultrafine ferrite particles from oxidation or structural alterations during the 

magnetic extraction. Briefly, ~1.0 g of dry soil sample was moved to an Ar glovebox and ground 

gently with an agate pestle and mortar; excessive or forceful grinding that may lead to breaking 

detrital magnetite particles was avoided. The sample was then dispersed in 50 ml oxygen-free 

MilliQ water (O2 < 0.1 ppm) containing 0.20 g sodium hexametaphosphate inside the Ar 

glovebox. The sample was mixed by shaking for 5 min and subjected to ultrasonication for 2 min. 



The >40 µm fraction was separated from the fine fraction by centrifugation (2000 rpm for 1.5 

min). The above procedure was repeated 10-15 times.  

 

The separated < 40 µm soil fraction was then circulated around a magnetic extraction apparatus 

(Fig. S5) using a peristaltic pump. In this apparatus, an NdFeB (560 milliTesla, mT) magnet is 

placed on top of a PTFE-coated stainless-steel needle, generating a high-gradient magnetic field 

(max ~40 mT) around its tip. The magnetic extraction was carried out for 14 days under 

continuous flow of Ar gas. The magnetic extracts accumulated near the tip of the needle were 

collected once a day by closing the flushing gate and rinsing the needle with deoxygenated 

MilliQ water through the rinsing port (Fig. S5). The collected magnetic extracts were transferred 

immediately to the Ar-glovebox and stored until analysed.  

 

In order to quantify the efficiency of the magnetic extraction procedures, we made before- and 

after-extraction measurements of magnetic susceptibility, and room-temperature anhysteretic 

(peak alternating current, ac, field of 80 mT, steady direct current, dc, field 0.1 mT) and 

saturation remanence (peak dc field 1 T). The magnetic measurements were made at the Centre 

for Environmental Magnetism and Paleomagnetism, Lancaster University. Room-temperature 

remanent magnetisations (IRMs) were measured with a Molspin minispin magnetometer (mean 

background noise level 0.1 x 10-8 A m2). To identify magnetic grain sizes and/or magnetic 

interactions (5, 6), anhysteretic remanence (ARM) was induced in a decaying (80 mT, peak) 

alternating magnetic field (AF), with a small superimposed direct current (DC) field (0.01 mT), 

and subsequently AF-demagnetized. Stepwise remanence acquisition was measured with 

incremental application of DC fields of 10, 20, 30, 50, 75, 100, and 300 mT and 1 T. The 

extraction efficiency data for each of the three measured magnetic parameters (Table S1) show 



that the extraction process removed significant proportions of the susceptibility and remanence 

carriers in each of the analysed soil and paleosol samples.  

 

Crystal structure of magnetite and maghemite  

Magnetite (Fe3O4) and maghemite (γ-Fe2O3) are ferrimagnetic at room temperature. Both 

materials crystallise in a similar close-packed cubic lattice rendering them indistinguishable by 

standard resolution x-ray diffraction. The key structural differences between magnetite and 

maghemite lie in the properties of the tetrahedral and octahedral sites.  

 

Magnetite is a mixed Fe2+/Fe3+ inverse spinel phase with a typical cubic lattice system in which 

A-sites (tetrahedral with spin down) are occupied by only Fe3+ cations whereas B-sites 

(octahedral with spin up) contain equal numbers of Fe2+ and Fe3+ cations (Fig. S6). The inverse 

spinel structure of magnetite can be described as 𝐹𝑒#$ %
&'&() 𝐹𝑒*

+

#$𝐹𝑒*
+

,$
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and octa denote the tetrahedrally and octahedrally coordinated sites, respectively, of the 

𝐹𝑑3𝑚; (𝑎 = 8.394	Å) space group. Mössbauer studies of cubic-phase magnetite have shown that 

at room temperature iron atoms on the B-site behave like Fe2.5+ due to electron hopping between 

the Fe2+ and Fe3+ sites of the mixed valance octahedral site giving rise to electrical conductivity 

and a magnetic moment of 4 Bohr magneton (𝜇A) per Fe3O4 formula unit (7-10).  

 

Magnetite is stoichiometric (i.e., B'C
B'D

= 0.5) when the moles of vacancies δ = 0 and non-

stoichiometric when 0 < 𝛿 < -
#
. When the extreme condition 𝛿 = -

#
 is reached, the structure 

becomes depleted in Fe2+ and maghemite is formed. The general maghemite cubic-phase 



structure can be derived from magnetite by introducing %
#
 vacancies in the B-site; oxidation of 

magnetite into maghemite can be schematised as follows: 
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Early studies (e.g., (11, 12)) suggested randomly distributed cation vacancies over the octahedral 

sites in maghemite, with an assumed cubic space group of Fd3m. However, there is increasing 

evidence that ageing of soil maghemite leads to ordering of the vacancies, giving rise to 

superstructure lines (similar to LiFe5O8 (13)) in the x-ray diffraction pattern, and reduces the 

maghemite cell symmetry to tetragonal space group (P43212/ P41212; a = 8.322 Å, c = 24.996-

25.113 Å) by tripling its basic cubic unit cell along the c-axis (14-16). The tetragonal spinel 

structures of maghemite are most common in synthetic and natural samples although some 

limited reports have identified primitive cubic maghemite (i.e., P4332/P4132) in some rock 

specimens (17, 18). This departure of maghemite from the cubic Fd3m symmetry towards the 

more ordered tetragonal or primitive cubic symmetry in soils allows the elucidation of the ferrite 

structure using the integrative structural fingerprinting approach described here.   

 

Ferrite particle size distribution 

The diameters of the ferrite particles were derived by image analysis of >200 HRTEM 

micrographs (N = 3090 individual ferrite crystals) using ImageJ (19) assuming (for measurement 

purposes) an elliptical geometry for each single grain (Fig. S7). For the major axis distribution, 

Q1x = 12.61 nm, Q2x = 22.4 nm, µx= 19.9 nm and for the minor axis distribution Q1y = 10.7 nm, 

Q2y = 17.9 nm, µy= 16.2 nm, where Q1 and Q2 are the first and second quartiles and µ is the 



mean. The particle size distribution indicates that ~25% of the ferrimagnetic particles fall within 

the superparmagnetic (SP) size range whereas the remaining 75% of the population fall within 

the stable single domain fraction (SSD) size range. Viscous superparamagnetic particles (VSP) 

that would saturate in relatively low magnetic fields, and show time- and frequency-dependent 

magnetic behaviour, are located at the SP-SSD interface (Fig. S7).  

 

Examples of structural ‘fingerprinting’ analysis applied to pedogenic ferrites. 

Idealised electron diffraction reflections presented in Fig. S9 of tetragonal maghemite (𝑃4#2-2; 

c=25.113Å (14) and c =8.322Å (20)), primitive cubic maghemite (𝑃4-32; c=8.330Å(21)), 

magnetite (𝐹𝑑3𝑚; c=8.394Å (22) and 2L-ferrihydrite (P63mc (23)) demonstrate structural 

differences between these candidate phases in soil magnetic extracts. The data presented in Fig. 

S10 provide four examples of structural ‘fingerprinting’ analysis, as applied to the soil and 

paleosol samples analysed here. In the first example (‘old’ S1, Luochuan, CLP paleosol, (a) – (e)), 

primitive cubic maghemite (𝑃4-32; c = 8.330Å) is found to provide the best fit of the regular 

lattice of multiple grains (b) along zone-axis ⟨251⟩ (A = 3.834, B = 5.635, C =3.797, D = 5.146 

nm-1; d-spacing STDEV = 0.0013, total angular distribution = 3.61). Together with the good fit 

statistics to the maghemite structure, these data (620 particles analysed) demonstrate that the 

dominant ferrite phase in this long-stored CLP S1 sample is cubic maghemite. In the second 

example, from the ‘new’ S1, Luochuan paleosol (Fig. S9 (f) – (j)), magnetite provides the best fit 

to the magnetic lattice along the zone axis ⟨111⟩ with (A = 3.410, B = 3.450, C =3.408, D = 

5.881 nm-1; σd = 0.0020, total angular distribution = 3.19. If maghemite is the dominant phase 

then it would be expected to find any of the strong reflections (110), (101), (112) or their 

symmetry equivalent reflections but all these reflections were absent. In addition, the maghemite 



fits (𝑃4#2-2 or 𝑃4-32) produced large d-spacing STDEV (0.0089 - 0.0193) and total angular 

distribution (30.8 -113.11), hence identifying that these crystals are magnetites. In the third 

example, from the modern Exmoor cambisol (Fig. S10 (k) – (l)), both magnetite and maghemite 

provided reasonable fit to the structure but the optimal zone axes found allow the differentiation 

between the two phases based on missing or forbidden reflections. In this case, magnetite 

provided the best goodness of fit (STDEV and total angular distribution) and hence these crystals 

are magnetites. Magnetite zone-axis ⟨112⟩: A = 3.447, B = 3.941, C = 2.074, D = 4.103 nm-1, d-

spacing STDEV = 0.0039, total angular distribution = 12.83. Maghemite (𝑃4#2-2) zone-axis  

⟨101⟩: A = 3.941, B = 4.480, C = 2.112, D = 4.462 nm-1, d-spacing STDEV = 0.00116, total 

angular distribution = 224.30. In the fourth example, from the Lingtai Red clay (Fig. S10 (m) – 

(n)), magnetite provides the best fit to the structure of a single crystallite along the zone-axes 

⟨101⟩ (A = 3.645, B = 3.801, C =3.148, D = 5.651 nm-1; σd = 0.0042). The absence of the 0.170 

Å-1 reflections (forbidden in magnetite) from the (110), (101) and mirror planes and the presence 

of strong reflection of the (202) (see Fig. S9) suggests that magnetite is the correct ferrite phase 

and not any of the maghemite structures or the 2L-ferrihydrite.  

 

 

 

 

 

 

 

 



Table S1. Magnetic properties of the soil and paleosol samples (< 40 µm), pre- and post-

magnetic extraction.  

Sample χpre χpost 
χ % 

ext. eff. ARMpre ARMpost 
ARM % 
ext. eff. SIRMpre SIRMpost 

SIRM 
% ext. 

eff. 

PSBE, Exmoor cambisol, 
Pinkery Farm (20 cm) 26.4 9.9 62 2.0 1.5 21 1.0 0.6 44 

‘OLD’ CLP1 Luochuan 
paleosol, (collected 1990) 231.5 112.75 52 106.2 55.9 48 12.25 7.8 37 

‘NEW’ CLP1 
S1, Luochuan paleosol, 9.1 
m depth (collected in 2011) 

326.8 125 62 126.1 59.25 53 14.95 8.75 42 

RED CLAY 
Tertiary Red Clay, Lingtai, 
260.94 m, 5.36 Myrs BP 

140.0 96.3 31 100.2 70.4 30 9.0 7.0 23 

 χ = mass-specific magnetic susceptibility (10-8 m3 kg-1); ARM = mass-specific anhysteretic remanent magnetisation (10-5 

Am2 kg-1); SIRM = mass-specific saturation isothermal remanent magnetisation (10-3 Am2 kg-1).  

 

 

 

 

 

 

 

 



 

Fig. S1. (a) The sediment sequence in the central Chinese Loess Plateau, showing the reddened 

paleosols (S) interbedded with the lighter-coloured parent loess (L, windblown dust), and (b – d) 

the varying degrees of magnetic enhancement in the paleosols, lowest in the driest and highest-

sedimentation rate sites in the west (b), and increasingly high in the wetter and lower-

sedimentation sites to the east (c) and south (d). S0 = present interglacial soil; L1 = last-glacial 

windblown loess; S1 = last interglacial soil. Sample locations are shown in SI Appendix Fig. S2. 

Reprinted from ref. 25, with permission from Elsevier. 

 



 

Fig. S2. Map of the Chinese Loess Plateau, showing the location of the Luochuan and Lingtai 

sequences. Adapted from Spassov (2002) (24) and reprinted from ref. 25, with permission from 

Elsevier. 

 

 

 

 



 

Fig. S3. Magnetisation versus temperature for paleosol S5 from Luochuan, CLP (magnetic 

susceptibility = 256 × 10-8 m3 kg-1). Reprinted from ref. 25, with permission from Elsevier. 

 

 

Fig. S4. X-ray (Co-Kα) diffractograms for the bulk soil and paleosol samples. The samples are 

dominated by quartz, illite, Fe-chlorite, hematite, goethite, calcite and magnetite/maghemite with 

average compositions (based on semi-quantitative XRD analysis) of 51.25%, 26.08%, 11.8%, 

2.78%, 6.86%, 0.81% and 0.42%, respectively. 



 

 

 

Fig. S5. Schematic drawing (not to scale) of the experimental set-up used for the magnetic 

extraction procedure from soil and paleosol samples. 

 



 
 

 Fig. S6. Crystal structure and spin configuration of magnetite (𝐹𝑑3𝑚; 𝑎 = 8.394	Å) and 

maghemite (𝑃4#2-2; 𝑎 = 8.322	Å; 𝑐 = 25.113	Å). 

  

 

 



 

 

 Fig. S7. Particle size distribution of magnetic nanoparticles from the soil and paleosol samples 

listed in Table S1.  

 



 

Fig. S8. Lattice fringe ‘fingerprinting’ of: (a) – (c) single phase GaN crystal; (d) - (e) Ag 

nanoparticles; and (g) – (i) synthetic magnetite. The images (b) and (c), (f) and (i) are power 

spectra calculated from the HRTEM micrographs (a), (d) and (g), respectively. GaN crystal: Zone 

axis = ⟨010⟩; A = 3.4947, B = 4.007, C = 1.8804, D = 3.9289 nm-1; Quality of fit: d-spacing 

STDEV from GaN crystal (space group P63mc) = 0.0018. Ag-nanoparticles: Zone axis = ⟨101⟩; A 

= B = 4.240, C = 4.895 nm-1; d-spacing STDEV from Ag crystal (space group 𝐹𝑚3𝑚) = 0.0035. 

Magnetite-nanoparticles: Zone axis = ⟨131⟩; A = 3.248, B = 3.801, C =3.090, D = 5.075 nm-1; d-

spacing STDEV from magnetite crystal (space group 𝐹𝑑3𝑚) = 0.0107. 

 



 

Fig. S9. Comparison between electron diffraction from ideal structures of tetragonal maghemite  

(𝑃4#2-2; c=25.113Å (14) and c=8.322Å (20)), cubic maghemite (𝑃4-32; c=8.330Å(21)), 

magnetite (𝐹𝑑3𝑚; c=8.394Å (22)) and 2L-ferrihydrite (P63mc (23)). Calculations assume TEM 

beam voltage of 300 keV, Pseudo-Voigt peak profile and a particle size of 50 nm.  
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Fig. S10. Examples demonstrating the application of the structural ‘fingerprinting’ approach. (a) 

HRTEM of ‘old’ S1, Luochuan, CLP paleosol (collected 1990, stored in air for 27 years) and the 

corresponding FFT power spectra and lattice indexing of (b) a multi-grain area along the 

tetragonal maghemite (𝑃4#2-2; c = 25.113 Å) along zone-axis ⟨111⟩ (A = 3.775, B = 5.057, C 

=3.333, D = 5.013 nm-1; σd = 0.0026); (c) tetragonal maghemite (𝑃4#2-2; c = 8.322 Å) along 

zone-axis ⟨141⟩ (A = 3.775, B = 5.057, C =3.333, D = 5.013 nm-1; σd = 0.0065); (d) primitive 

cubic maghemite (𝑃4-32; c = 8.33Å) along zone-axis ⟨251⟩ (A = 3.834, B = 5.635, C =3.797, D 

= 5.146 nm-1; σd = 0.0013) and (e) magnetite (𝐹𝑑3𝑚) ⟨332⟩ (A = 3.775, B = 5.057, C =3.333, D 

= 5.013 nm-1; σd = 0.0032). (f) HRTEM of ‘New’ paleosol S1, CLP sample, (g) the corresponding 

FFT spectrum and lattice indexing of single grain crystal along the magnetite (best fit) zone-axis 

⟨111⟩ (A = 3.410, B = 3.450, C =3.408, D = 5.881 nm-1; σd = 0.0020) and (h) simulated HRTEM 

diffraction along zone-axis ⟨111⟩ of (h) magnetite (𝐹𝑑3𝑚), (i) tetragonal maghemite (𝑃4#2-2; c 
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= 8.322Å) and (j) cubic maghemite (𝑃4-32; c = 8.33Å). Note the absence of the (110) and 

related reflections in experimental FFT that are expected for maghemite but not magnetite. (k) 

HRTEM of modern Exmoor cambisol and (l) the corresponding FFT spectrum and lattice 

indexing of multi-grain crystals along the magnetite zone-axis ⟨112⟩ (A = 3.447, B = 3.941, C 

=2.074, D = 4.103 nm-1; σd = 0.0039). (m) HRTEM of Lingtai Red Clay sample and (n) the 

corresponding FFT spectrum and lattice indexing of a single grain crystal along the magnetite 

zone-axis ⟨101⟩ (A = 3.645, B = 3.801, C =3.148, D = 5.651 nm-1; σd = 0.0042). The black ‘×’ 

symbols represent overlain lattices that have been fitted to the same candidate phase but details 

removed for clarity. Note that the modulus of the lattice vectors A, B, C and D are represented by 

half the lengths of the centred arrows in the FFT images. 

 

 

 

 

 



 

Fig. S11. Energy-dispersive X-ray spectroscopy analysis (EDXA) data and HRTEM from 

magnetic extracts of (a) and (b): S1, Luochuan paleosol (‘old’ CLP sample); (c) – (e): S1, 

Luochuan paleosol (‘new’ CLP sample); (f) and (g): modern Exmoor cambisol; and (h) and (i): 

Tertiary Red Clay. All the magnetic particles display vanishingly low Al content. Where, in some 

extracts, the magnetic particles are associated with clay minerals, Si and Al co-occur; in contrast, 

the Fe-rich particles are notably deficient in Al and Si (e.g., compare (c) with (d)).  



 

Fig. S12. EELS spectra of paleosol magnetic nanoparticles (a) Scanning TEM micrographs from 

‘old’ (1-4) and ‘new’ (5-8) paleosol S1, CLP samples with selected areas corresponding to the 

resulting EELS spectra. (b) Oxygen-K edge and (c) and Fe-L2,3 edge after background subtraction 

of nanoparticles identified in the selected areas in (a). The solid lines in (b) and (c) represent first 

model fits of experimental data for O-K or Fe-L2,3. (d) Deconvolution of EELS spectra b1 and c1 

showing Gaussian or Lorentzian functions fitted to dominant peaks for determination of their 

centre, area and FWHM.  
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