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Abstract 22 

Biomagnetic monitoring of atmospheric pollution is a growing application in the field of 23 

environmental magnetism. Particulate matter (PM) in atmospheric pollution contains readily-24 

measurable concentrations of magnetic minerals. Biological surfaces, exposed to atmospheric 25 

pollution, accumulate magnetic particles over time, providing a record of location-specific,  26 

time-integrated air quality information. This review summarizes current knowledge of  27 

biological material (‘sensors’) used for biomagnetic monitoring purposes. Our work 28 

addresses: the range of magnetic properties reported for lichens, mosses, leaves, bark, trunk 29 

wood, insects, crustaceans, mammal and human tissues; their associations with atmospheric 30 

pollutant species (PM, NOx, trace elements, PAHs); the pros and cons of biomagnetic 31 

monitoring of atmospheric pollution; current challenges for large-scale implementation of 32 

biomagnetic monitoring; and future perspectives. A summary table is presented, with the aim 33 

of aiding researchers and policy makers in selecting the most suitable biological sensor for 34 

their intended biomagnetic monitoring purpose. 35 

 36 

1. Introduction 37 

 38 

Since 1950, the world population more than doubled, the number of cars increased tenfold 39 

and the proportion of people living in urban areas increased by a factor of four1. This growing 40 

urbanization has had detrimental consequences for urban air quality. The urban air quality 41 

database of the World Health Organisation (WHO, 2014), covering 1600 cities over 91 42 

countries, reveals that only 12% of the urban population resides in cities that meet their air 43 

quality guidelines; about half of the urban population is exposed to levels >2.5 times those 44 

guidelines.  45 
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 46 

Urban atmospheric pollution levels vary both spatially and temporally2–4. The spatial 47 

variation is mainly linked to distance to contributing pollutant sources, differences in traffic 48 

intensity, and urban topology. Temporal variations reflect day-to-day (meteorological and 49 

urban background fluctuations), within-day (traffic dynamics) and microscale variability 50 

(single short-lived events)5. Air quality assessments are inherently challenging since high 51 

monitoring resolution needs, ideally, to be achieved in both space and time. 52 

 53 

Current telemetric monitoring networks comprise accurate physicochemical monitoring 54 

instrumentation to trace atmospheric concentrations of, among others, particulate matter 55 

(PM), nitrogen oxides (NOx), sulfur dioxide (SO2) and ozone (O3) at high temporal resolution. 56 

However, high investment and maintenance costs spatially limit this type of monitoring 57 

coverage in urban environments. Moreover, with regard to PM pollution, it is generally 58 

recognized that morphological and chemical aerosol properties are more relevant to human 59 

health than the total PM mass, yet so far the latter is the only parameter routinely monitored6–60 

9. The morphological and chemical properties of PM are usually determined through  time-61 

consuming laboratory analysis, such as single-particle chemical or microscopic analysis, or 62 

bulk analysis of trace elements or isotope ratios10. Such studies indicate the need to monitor 63 

additional pollutant species, e.g., PM2.5, PM1, black carbon (BC), polycyclic aromatic 64 

hydrocarbons (PAHs), volatile organic compounds (VOCs), ultrafine particles (UFPs, <0.1 65 

μm)9,11–16. 66 

 67 

In addition to  telemetric monitoring networks, higher spatial resolution in air quality data is 68 

typically obtained using: (1) mobile and/or “low-cost” sensors7,17–21; (2) specific short-term 69 

monitoring campaigns22,23; and (3) air quality modelling24–27. However, these approaches have 70 
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their limitations: (1) mobile-sensor platforms need repeated measurements to untwine spatial 71 

from temporal variability5, (2) the representativeness of short-term campaigns is uncertain, 72 

and (3) air quality models require adequate validation data25. These limitations are particularly 73 

important for short-lived and/or highly-variable pollutant species, e.g., UFPs, BC and heavy 74 

metals, which are known to exert adverse health effects11,15,16,28. Current and future air quality 75 

monitoring strategies, therefore, face the dual need for greater spatial coverage and 76 

information on health-related pollutant species, at feasible levels of cost. One might, however, 77 

question the future feasibility of monitoring a growing number of pollutants at both high 78 

temporal and spatial resolution. Biomagnetic monitoring - evaluating magnetic properties of 79 

biological material - may potentially serve both purposes, acting as a widely-applicable, low-80 

cost method for assessing health-relevant pollutant species. 81 

 82 

Biomagnetic monitoring is a growing application in the field of environmental magnetism, 83 

i.e., the use of magnetic measurements to study environmental systems29,30. The ubiquitous 84 

presence of remanence-capable magnetic particles (including anthropogenic particles) in the 85 

air, soil, sediments, rocks and organisms provides the opportunity to identify and quantify the 86 

formation, sources, transport and deposition of these particles. Atmospheric pollution, in 87 

particular urban PM, often contains levels of magnetic minerals, e.g., iron oxides like 88 

magnetite, hematite and maghemite30–32, that are easily measurable magnetically. For more 89 

information on the different properties of magnetic minerals, domain states and grain sizes, 90 

and their responses to induced magnetic fields, please refer to SI 1. 91 

Exposed biological surfaces, e.g. lichens, mosses and leaves, accumulate atmospheric 92 

particles, providing a record of location-specific and time-integrated information of local air 93 

quality. Magnetic monitoring of these biological sensors can add valuable spatial data to 94 

existing air quality monitoring networks and has  been successfully applied to evaluate local 95 
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air quality model performances33–36. Trace metals, such as zinc (Zn), cadmium (Cd), lead (Pb) 96 

and chromium (Cr), are often directly associated with magnetic PM, e.g.  due to their 97 

incorporation in the mineral structure during combustion processes37,38. Therefore, the 98 

magnetic signal may act not only as a PM proxy but be of direct, often health-related, interest 99 

in itself. 100 

 101 

The aim of this work is to summarise the different biological sensors so far used in 102 

biomagnetic monitoring studies, their pros and cons, and reported associations with 103 

atmospheric pollutant species (PM, NOx, heavy metals and PAHs). Our review encompasses 104 

worldwide, active (introduced) and passive (extant) biomagnetic monitoring studies; 105 

including lichens, mosses, plant leaves, tree bark and trunk wood, insects, crustaceans, and 106 

mammal and human tissue. Current challenges and future perspectives regarding the 107 

application of biomagnetic monitoring in air quality assessments are discussed. Finally, an 108 

overview table is presented to assist researchers and policy makers in selecting suitable 109 

biological sensors for their envisaged biomagnetic monitoring purpose. 110 

 111 

2. Sources of magnetic particles 112 

 113 

Sources of magnetic minerals in the atmosphere include natural, crustal PM sources, 114 

including volcanic eruptions and wind erosion of soil and dust, and anthropogenic sources, 115 

including industrial and vehicular combustion, heating and abrasion processes29. Higher 116 

magnetic concentration values (SIRM, susceptibility) are typically measured with increasing 117 

proximity to PM sources, and with increasing source strength (e.g. traffic volume). Examples 118 

of such magnetic distance-decay abound, whether for PM emitted from volcanoes39, 119 

industry37,40,41, road dust42–44 or traffic31,38,45. 120 
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 121 

In urban environments, traffic-related PM results from both exhaust (fossil fuel 122 

combustion) and non-exhaust (brake heating and abrasion, and tyre and road abrasion) 123 

processes46–49. Ubiquitous and often abundant in urban PM, iron-rich particles (frequently 124 

spherical) exhibit strongly magnetic (ferrimagnetic) behaviour43,44,50–52. Magnetic and electron 125 

microscopic analyses of roadside dust identify contributions of anthropogenic PM both from 126 

fuel combustion processes53, with higher magnetic emissions reported from petrol- rather than 127 

diesel-fuel vehicles54, and from frictional heating and abrasion of brake pads55.  Large 128 

magnetic contributions from railway traffic have been documented56–58, as Mn-, Cu-, Cr- and 129 

Ba-containing ferruginous particles are emitted by wear of railway tracks, brakes, wheels and 130 

electric overhead lines59–61. The electrified tram/train fleets generate magnetic PM mainly 131 

through wear/abrasion rather than  exhaust emissions62.  132 

 133 

Different types of industry (e.g. lignite/coal plants, cement production, coke production, 134 

Fe/Cu smelters, slag processing, steelworks) also emit distinctive magnetic PM37,40,41,44,63,64, 135 

probably due to differences in fuel source, combustion temperature and/or redox conditions63. 136 

For example, higher magnetite contents are observed near power, cement and ore dressing 137 

plants, compared to steel or coal processing plants, probably reflecting different hematite 138 

concentrations between the sites. Traffic- and industry-derived magnetic PM have also shown 139 

to differ44,63,65.  140 

In terms of natural PM sources, aeolian dust plumes can contribute to high ambient PM 141 

concentrations, such as occur in areas of China, downwind of desert and loess crustal sources, 142 

where the PM toxicity is estimated to be much less (0.22 % increase in premature mortality 143 

with every 10 μg m-3 PM2.5), compared with cities in Europe dominated by anthropogenic PM 144 

(6% increase)66. Biomagnetic monitoring of sweet chestnut leaves (Castanea sativa) has been 145 
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used to map volcanic ash deposition from Mt. Etna, Sicily (Italy). The ash contains coarse-146 

grained (� 5 to 15 µm) magnetite-like particles contributing  > 90% of the leaf SIRM39. 147 

 148 

 149 

3. Health effects of magnetic particles 150 

 151 

Nano- and micrometer-sized magnetic PM may itself comprise a source of toxicological 152 

hazard to human health. Additionally, magnetic PM can be used as a proxy for atmospheric 153 

pollution if co-associations with other pollutant species are displayed.  154 

 155 

3.1 Inherent toxicological properties 156 

Magnetic iron oxide particles can exert adverse health effects, by inducing oxidative stress 157 

pathways, free radical formation and DNA damage67–69. Free radical formation results from 158 

the Fenton reaction, where iron(II) is stoichiometrically oxidized by H2O2 to iron(III), 159 

producing a hydroxyl radical (OH·)70. In vitro experiments examining the oxidative stress 160 

pathway of size-fractionated (0.2-10; 0.2-3; 0.5-1 µm;	20-60 nm) magnetite on human lung 161 

cells indicated acute cytotoxicity (within 24 hours), due to endocytosis, followed by reactive 162 

oxygen species (ROS) formation for all size fractions71. Smaller grains (<100 nm) were more 163 

cytotoxic than larger grains (∼5 µm)72. 164 

Links have been reported between increased brain concentrations of magnetic iron 165 

compounds and brain tumors73,74, and neurodegenerative diseases like Alzheimer's, 166 

Parkinson's and Huntington's75–79, the latter possibly through the damaging action of 167 

magnetite-amyloid-ß complexes on neuronal circuits80.  168 

 169 
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3.2 Biomagnetism as a proxy metric for atmospheric pollution 170 

Notwithstanding the possible direct health impacts of airborne magnetic iron oxides, most 171 

studies have so far focused on measuring the concentration of magnetic particles (through 172 

SIRM and χ), as a proxy metric for more conventionally-monitored pollutant species, e.g. 173 

PM, NOx, heavy metals and PAHs, co-emitted with, and/or adsorbed onto, the magnetic 174 

particles. Biomagnetic techniques, measuring the passive accumulation of airborne magnetic 175 

PM on biological surfaces, enable sensitive, rapid, and relatively cheap environmental 176 

monitoring,  providing a valuable addition to conventional monitoring networks81.  177 

 178 

3.2.1 Particulate matter (PM) 179 

 180 

The link between magnetic properties and PM has been investigated both directly (on filter-181 

collected PM) and by using biological accumulation surfaces (e.g. leaves).  182 

 183 

3.2.1.1 Filter-collected PM 184 

The magnetisable fraction of PM10 often comprises a mixture of low-coercivity, magnetite-185 

like, ferrimagnetic particles with a wide spectrum of grain sizes, related to a variety of natural 186 

and anthropogenic sources82. Several studies have reported the magnetic properties of 187 

atmospheric PM, collected on high-volume, pumped-air filters (SI 2). Magnetic and chemical 188 

analyses of automated urban pumped-air PM10, PM2.5 and PM1 filters could distinguish 189 

between  vehicular and crustal (local and North African wind-blown dust) particle sources50,82. 190 

As magnetic particles occur mainly in the fine (PM2.5) and ultrafine (PM0.1) particle size range, 191 

magnetic properties provide information on the most health-relevant particle size fractions83,84. 192 

In absence of natural inputs (e.g. sea salt, aeolian dust), strong associations are reported 193 
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between the PM10 concentrations of pumped air samples and their  susceptibility (R2 > 0.88) 194 

and SIRM (R2 = 0.90, n = 54, p = 0.01)36,81,82. For air samples from Munich, the magnetic PM 195 

concentration in  PM10, collected on pumped-air filters, was  between 0.3 and 0.6% by mass, 196 

mainly consisting of magnetite in the size range  0.2-5 µm85,86. 197 

Only a few studies exist on self-designed PM collectors, based on passive particle 198 

deposition (fallout). Such artificial collectors are comparable to biological exposure surfaces 199 

as particles are collected passively and non-selectively in terms of particle size. For example, 200 

circular fallout collectors covered with plastic sheets were exposed for about 3-4 weeks in 201 

Munich (Germany) and subsequently washed with isoproponal and analysed by Mössbauer 202 

spectroscopy and magnetic techniques, yielded primarily maghemite and metallic iron 203 

particles with mean magnetic grain sizes in the range 0.1–0.7 μm56. Another study using small 204 

filter bags with natural wool sorbents, collected mainly 2-25 μm-sized particles and yielded 205 

consistent magnetic susceptibility and coercivity results, when compared to co-located leaf 206 

samples87. 207 

 208 

3.2.1.2 Leaf-deposited PM 209 

Biological materials, such as plant leaves, accumulate airborne PM passively (but 210 

efficiently), often displaying associations between their magnetic PM and the ambient 211 

airborne PM concentrations. Depending on location (and especially climatic conditions), this 212 

accumulation process is cumulative.  213 

 214 

A couple of studies in the U.K. reported short-term associations between magnetic 215 

properties and daily or even instantaneous PM measurements have been reported. After an 216 

initial build-up period of ~ 6 days, strong correlations (R2 = 0.8–0.9, n = 10, p = 0.01) were 217 

obtained between the daily-averaged atmospheric PM10 concentration (collected by a high-218 
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volume sampler at 1133 l min-1) and daily repeated measurements of leaf SIRM of birch 219 

(Betula pendula) and lime (Tilia platyphyllos) trees81. Another study around at 37 locations 220 

around a coal-fired power station40, reported a correlation (R2 = 0.71, n = 37, p = 0.01) 221 

between leaf SIRM values and co-located handheld PM10 measurements (TSI SidePak 222 

AM510).  223 

 224 

 Conversely, in mainland Europe, many studies suggest that leaf magnetic concentration 225 

properties reflect a time-integrated pollution exposure. A study on monthly-sampled Nerium 226 

oleander leaves88 obtained no correlation between the leaf susceptibility and daily PM10 227 

concentrations. Another study84 found magnetic concentration  increased with Pinus nigra 228 

needle exposure time (up to 55 months) and reflected exposure to environmental pollutant 229 

load at 6 locations with different emission backgrounds. For deciduous leaves, with a shorter 230 

lifespan of only several months, increases in magnetic PM content  with time have been 231 

observed45,89. Associations have also been documented between two-weekly90 or monthly91 232 

leaf SIRM and cumulative atmospheric PM2.5 and PM10 concentrations throughout an entire 233 

in-leaf season. Moreover, significant correlations were also obtained between the gravimetric 234 

leaf-deposited dust load (mg m-2) and the resulting SIRM (A m2 kg-1), within the 0.2 – 3, 3 – 235 

10 and >10 µm particle size fractions92. 236 

 237 

3.2.2 Relationship with NOx 238 

As magnetic particles in urban environments are frequently associated with vehicular 239 

emissions 38,42,43,50,93, associations have been evaluated as well between magnetic concentration 240 

parameters and traffic-related gaseous pollutants (mainly NOx: NO + NO2). The latter namely  241 

exhibits greater spatial variation than  PM94. 242 

 243 
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In Madrid (Spain), associations were observed between Platanus x hispanica leaf magnetic 244 

content (SIRM and χ) and cumulative daily NOx concentrations45; the relationship was weaker 245 

for PM10 concentrations. Similarly, stronger association between SIRM of ivy leaves and 246 

modelled atmospheric NO2 concentrations was observed, compared to modelled PM10 247 

concentrations, in a city-scale biomonitoring and modelling study in Antwerp, Belgium58.  A 248 

significant correlation (n = 29, r = 0.92, p < 0.001) was found between SIRM of Carpinus 249 

betulus leaves at 6 monitoring locations along a vehicular traffic-gradient, and modelled NO2 250 

concentrations in Antwerp, Belgium95. In Bulgaria, a linear association (n=10) between the 251 

average magnetic susceptibility from multiple street dust samples collected in 10 different 252 

cities and the average annual atmospheric NO2 concentrations, derived from telemetric air 253 

monitoring stations52. Stronger correlations with NOx rather than PM concentrations are likely 254 

in locations where PM is not only traffic-related but has contributions from secondary 255 

aerosols, sea spray and crustal matter45. 256 

 257 

3.2.3 Particle-bound trace elements and PAHs 258 

Numerous studies have reported associations between different magnetic parameters and 259 

particle-bound trace elements42,93,96–101. Trace elements, e.g. heavy metals, can be incorporated 260 

into the crystalline structure of magnetic particles during formation (e.g. combustion), and/or 261 

by subsequent surface  adsorption97,100,102. Magnetic properties and magnetic-metal 262 

correlations may be valuable in PM source attribution. As, Cu, Mn, Ni, Pb, and Zn are linked 263 

to combustion particulates99, while traffic-related heavy metals include emissions from the 264 

abrasion of tyres (Zn, Cd and Cu), brake pads and linings (Sb, Cu, Zn, Fe, Ba and Cr), 265 

corrosion (Fe, Cd, Zn, Cu, V and Ni), lubricating oils (V, Cd, Cu, Zn and Mo) or fuel 266 

additives (V, Cd, Zn and Pb)46,103,104. Although Fe and Mn are common in the natural 267 
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environment, their co-occurrence with Ni, Cu, Zn, Cr, Cd, and Pb is typically associated with 268 

road traffic 49. 269 

 270 

Relations between trace elements and magnetic parameters have been evaluated statistically 271 

by means of fuzzy models105,106, fuzzy clustering107,108 and principal component analysis109. 272 

Associations between magnetic parameters and elemental Fe, As, Cu, Mn, Ni, Pb and Zn 273 

content or the Tomlinson pollution load index (PLI) confirm that much urban heavy metal 274 

contamination is linked to combustion-derived particulate emissions52,65,102. High magnetic 275 

susceptibility was found to correlate with mutagenicity of atmospheric PM collected on air-276 

pumped filters110. Co-association between traffic-derived Pb and resulting leaf SIRMs were 277 

found51, despite the introduction of unleaded petrol (since 1986 in the UK). Possible non-fuel 278 

sources of Pb include lead plating of fuel tanks and lead in vulcanized fuel hoses, piston 279 

coatings, valve seats and spark plugs51. A recent study111, combining SEM/EDX with leaf 280 

magnetic concentrations from different land use classes, obtained significant correlations 281 

between leaf SIRM and Fe, Zn, Pb, Mn and Cd content of deposited particles. This is in line 282 

with observed correlations between leaf susceptibility and Fe, Zn, Pb and Cu 112;  and between 283 

Cu and Fe and leaf SIRM and susceptibility88. Significant correlations were reported between 284 

the magnetic susceptibility of leaf and topsoil samples and  Fe, Cr, Ni, Pb, Cu levels in 285 

Linfen, China113–115. Conversly, another study89 related leaf susceptibility and IRM to Al and 286 

Cu in the leaf-wash solution, suggesting that in arid regions with high lithogenic PM 287 

contribution, the relationships between metal concentrations and magnetic susceptibility could 288 

be obscured. 289 

 290 

Association was found between the PAH content of lichens and poplar leaves in Bulgaria 291 

and their SIRM116. Likewise, in Cologne (Germany)117, covariance between pine needle SIRM 292 
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and pyrene content was observed, the latter a proxy for urban PAH load. This covariance 293 

broke down for railway-proximal locations where PM originated mostly from wear and not 294 

combustion. Similarly, consistency was reported between modelled pollutant distribution 295 

(ADMS-Road model), instrumental PM10 monitoring and biomonitoring  of 11 metals and 14 296 

PAHs from tree (Quercus ilex) leaves and moss bag samples in a street canyon in Naples, 297 

Italy35. Washing of Quercus ilex leaves118 indicates that most particle-bound trace elements 298 

(Cr, Cu, Fe, Pb, V and Zn) are deposited on the leaf surface (and therefore removed by 299 

washing), while PAHs seem to migrate more easily into epicuticular waxes. 300 

 301 

4. Application as biological sensors 302 

 303 

Magnetic characterization of atmospheric pollution by a few pioneering studies31,98,119–121 304 

was followed by magnetic studies of pumped-air filters50,55,82,85,86,122 and subsequently a host of 305 

environmental substrates. The latter include soils; river and marine sediments; indoor and 306 

outdoor settled dust; roadside snow123 and biological material (SI 2) including mosses and 307 

lichens; plant leaves; tree bark and trunk wood; insects; crustaceans; mammal (of which 308 

human) tissues. 309 

 310 

The inventory table (SI 2) provides an overview of different reported biological sensors. 311 

The magnetic properties, influencing processes, identified associations with atmospheric 312 

pollutants, and applied monitoring protocols are described below for each biological sensor. 313 

 314 

4.1 Mosses and lichens 315 

 316 
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Mosses and lichens have been used as environmental biomonitors for over 40 years;  they 317 

are efficient accumulators and sensitive to multiple atmospheric pollutants124. They lack a 318 

rooting system, so nutrients are sourced from the atmosphere through wet and dry deposition, 319 

similar to atmospheric pollution pathways. They have a high capacity to retain metals due to 320 

the absence of a cuticle. Strong associations are usually reported between elemental levels in 321 

moss or lichen samples and bulk atmospheric deposition samples125.  322 

 323 

4.1.1 Trace elements, PAHs, PCBs, dioxins, furans and PBDEs 324 

 325 

Since the 1970s, mosses and lichens have been used to monitor levels of, amongst others, 326 

metals or metalloids (Pb, Zn, Cu, Cd, Fe, Ni), NOx and persistent organic pollutants (POPs), 327 

such as PAHs, polychlorinated biphenyls (PCBs), dioxins and furans (PCDD/Fs) and 328 

polybrominated diphenyl ethers (PBDEs)124,126–131. As mosses and lichens are not ubiquitous in 329 

urban environments and their identification and age difficult to determine, transplant 330 

techniques are often applied to monitor urban atmospheric pollution levels. Most frequently, 331 

pioneered by Goodman and Roberts129, exposure bags containing lichens or mosses are hung 332 

in the urban environment to evaluate ambient pollutant levels (Figure 1). 333 

 334 

Page 14 of 66

ACS Paragon Plus Environment

Environmental Science & Technology



 15 

 335 

Figure 1. Sphagnum girgensohnii moss bag exposure in different urban microenvironments 336 

(from 128). 337 

 338 

Spatial variation in moss and lichen elemental content ranges in scale from within single 339 

street canyons34,132,133 to different land use classes127,134. Bulk chemical analysis (e.g. by ICP-340 

MS) dominates but particle-based characterization (e.g. by SEM/EDX) has also been 341 

reported. For Hypnum cupressiforme moss bags, exposed in different roadside, industrial and 342 

green area sites in Trieste, Italy, the majority of entrapped particles (up to 98.2%) were <10 343 

µm, dominated by Al, Ca, Fe and Si- containing particles134. Similarly, enrichments of Al, Cr, 344 

Fe, Na, Ni and Pb, and magnetic content were obtained in moss bag samples after snowmelt 345 

with increased road dust resuspension, and near heavily-trafficked sites in Turku, Finland135. 346 

Coarser particles (0.1 - 5 μm) are often observed in roadside- or industry-exposed moss 347 

samples (Figure 2), compared to less-polluted samples (particles <0.1 μm)134,136. 348 

 349 
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 350 

Figure 2. SEM pictures of moss leaflets before (a) and after exposure (b, c) in the green (b) 351 

and roadside (c) site with enlargement of particulate matter (d, e) and a pollen grain (f). Scale 352 

bar = 10 μm for a–d, and f and 3 μm for e (From 134). 353 

 354 

4.1.2 Magnetic signatures of mosses and lichens 355 

 356 

Magnetic properties have been reported recently of terrestrial mosses and lichens116,136,137 357 

and moss bags41,127,135,138–141. Because of their high accumulation capacity and high 358 

surface:volume ratio, mosses and lichens are suitable for magnetic evaluation of 359 

environmental pollution116. Reported moss and lichen SIRMs range from 0.1 to 855 x 10-3 A 360 

m2 kg-1, while magnetic susceptibility ranges from -1.5 to 1161 x 10-8 m3 kg-1 (SI 2).  361 

 362 
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Like tree leaves, moss and lichen magnetic properties appear species-dependent139. They 363 

show seasonal variations, due to changes in emissions and meteorology124,142, and spatial 364 

variations, influenced by land use and pollutant sources’ strength and proximity.  365 

 366 

Magnetic measurements on moss samples collected along a 120 km transect through Oslo, 367 

Norway, showed higher magnetic susceptibility and IRM near the city, up to a distance of 20 368 

km from the city center137. SEM analyses revealed differences in morphology, grain size 369 

(Figure 2) and chemical composition between urban and rural moss-collected dust137,143. 370 

Magnetic and chemical composition differences between both native and transplanted lichen 371 

samples and neighboring soil and rock samples141, indicating an alternative source of lichen-372 

accumulated magnetic particles, identified as the nearby cement production industry. They 373 

confirmed the cumulative nature of the magnetic PM content as the native lichen samples 374 

exhibited higher concentration-dependent magnetic properties, compared to transplanted 375 

lichens which experienced a shorter exposure period141.  376 

 377 

Regarding spatial variability of moss and lichen magnetism, distinct enrichment factors 378 

have been found near metallurgic factories and road traffic, with evidence of source-distance 379 

and source strength (e.g. traffic intensity) effects41,135,136. Associations were reported between 380 

magnetic properties of mosses and their heavy metal138 and PAH content116. Magnetic content 381 

decreased with distance from the contributing anthropogenic sources (Cu-Ni smelter and road 382 

traffic) in Finland. Directional wind effects on the Cu-Ni smelter plume were observed in the 383 

moss susceptibility values and heavy metal levels138. 384 

 385 

4.1.3 Selection criteria and protocol 386 

 387 
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Selection of biomonitoring species appears governed by its presence/abundance in the 388 

considered study region124, or by its availability from reference backgrounds or commercial 389 

sources. The most frequently used moss bag species belong to the Sphagnum genus (SI 2). 390 

Mosses and lichens display similar spatiotemporal variation in element accumulation and 391 

magnetic properties138,142. Mosses tend to have a higher accumulation capacity, but are more 392 

sensitive to environmental stressors (e.g. drought) than lichens124,140. Lichens appear more 393 

sensitive to gaseous pollutants (specifically SO2)144,145 and potentially lose more surface-394 

deposited particles due to rain or wind resuspension146. 395 

 396 

Reviewing112 scientific studies, a standardized protocol has been presented for the 397 

preparation, exposure and post-exposure treatment of moss bags in environmental 398 

biomonitoring studies124. The use of a Sphagnum palustre clone for trace element analysis is  399 

recommended for its low and constant background element composition, and homogenous 400 

morphological characteristics147. 401 

 402 

4.2 Plant leaves 403 

 404 

4.2.1 Studies and reported magnetic properties 405 

 406 

Due to its large specific surface area (leaf area density; LAD), urban vegetation is an 407 

efficient collector of PM, and thus valued as an additional ecosystem service in terms of 408 

phytoremediation148–155. Plant leaves (mostly from trees) have been used in a variety of 409 

biomagnetic monitoring studies (SI 2). Needle-deposited fly ash, from power plants, has 410 

shown to result in  enhanced magnetic susceptibility of the needle samples156. When compared 411 
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with artificial PM collectors in an industrial area in Linfen, China, co-located tree leaves 412 

showed similar magnetic properties87. 413 

Published leaf SIRM results range widely from 0.002 to 27.50 x 10-3 A m2 kg-1 (mass-414 

normalised) or 4.17 x 10-10 to 777 x 10-6 A (area-normalised), whereas mass specific 415 

susceptibility ranges from -0.9 to 846 x 10-8 m3 kg-1 (SI 2, 46 studies). Although these ranges 416 

are large (depending on the applied plant species, sampling location and exposure time), leaf 417 

surface particle accumulation capacity appears lower than moss and lichen tissues. This might 418 

be explained by the absence of a cuticle in mosses and lichens, since particle deposition 419 

processes (dry and wet deposition, impaction and interception) and accumulation periods are 420 

similar or at least comparable. 421 

 422 

4.2.2 Influencing factors 423 

 424 

The particle accumulation efficiency of the leafy biomass varies between plant species, 425 

influenced by their phenology (deciduous vs evergreen), leaf area density (LAD) and leaf 426 

characteristics, e.g. wax layer properties, micro-surface roughness and presence of trichomes 427 

(Figure 3), i.e. hair-like features on the leaf surface148,149,157–159.  428 

 429 

 430 
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Figure 3. SEM pictures illustrating the hairiness (trichome) gradient observed between 431 

abaxial leaf surfaces of Hedera hibernica (a), Buddleja davidii (b) and Stachis byzantina (c). 432 

 433 

Comparing particle loadings on leaves of 22 trees and 25 shrub species148, Pinus mugo, 434 

Pinus sylvestris, Taxus media, Taxus baccata, Stephanandra incisa and Betula pendula were 435 

identified as most efficient accumulators of PM10, PM2.5 and PM1, while Acer platanoides, 436 

Prunus avium and Tilia cordata were less efficient collectors. Another comparative study of 437 

11 deciduous tree species, using leaf SIRM as a proxy for particle capture81, identified Betula 438 

pendula as the most efficient particle accumulator. Greater particle accumulation was 439 

observed for leaves with hairy and ridged surfaces, and aphid ‘honeydew’ contributing to leaf 440 

stickiness81. Compared to deciduous  species, longer accumulation histories can be obtained 441 

from evergreen species, like pine needles or ivy leaves84. Although particle accumulation, and 442 

therefore magnetic properties, are species-specific, inter-calibration of leaf SIRM results 443 

between different co-located species has been successfully applied in urban environments81,91. 444 

Particles typically appear concentrated within hollows and along ridges in the leaf surface, 445 

nerves and stomata, probably due to fluid flow past the leaf36,89. Particles <10 µm in size, 446 

deposited on  the leaf surface, can become encapsulated inside the leaf’s epicuticular wax 447 

layer, preventing any wind or rain resuspension84,149,151,160. This encapsulated fraction was 448 

found to account for 33-38% of the leaf SIRM of London plane (Platanus x acerifolia)90,161. 449 

These magnetic results agree with gravimetric PM measurements153, indicating 36-45% mass 450 

contribution of in-wax PM to the total deposited leaf PM, based on a three-year study on 451 

seven tree and six shrub species. Ultrasonic washing off of surface-deposited particles 452 

resulted in leaf susceptibility/SIRM decreases of 50-89% for Pinus pumila needle samples162, 453 

65-80% for Betula pendula (Matzka & Maher, 1999) and 30-50% for Quercus ilex leaf 454 

samples163. Wax layer thickness varies both in time and space, depending on species and 455 
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abiotic stress factors like temperature, humidity, wind stress and gaseous air pollution164. 456 

Waxes are subject to ongoing degradation, potentially removing wax-incorporated particles, 457 

but are also periodically renewed by the plant. Nevertheless, no effect of the temperature-458 

induced seasonal decline of surface wax concentration was found on the magnetic properties 459 

of Pinus nigra needles62. Continuous increases in SIRM, ARM and magnetic susceptibility 460 

were obtained for Pinus nigra needles over 4 years, while the wax amount reached an 461 

equilibrium after 26 months of exposure84. 462 

 463 

Leaf magnetic concentration is influenced by the exposure time45,84,90, source 464 

distance31,38,51,57,63,64,163, source strength (e.g. traffic volume)57 and leaf sampling height81,165.  465 

 466 

Particle accumulation with leaf/needle exposure time is observed for both surface-deposited 467 

and wax-encapsulated particles; biomagnetic monitoring can thus act as a proxy for the time-468 

integrated particulate pollution exposure. A 2- to 4-fold increase in SIRM, ARM and 469 

magnetic susceptibility of Pinus nigra needles was observed during 55 months at 6 sampling 470 

sites with varying ambient atmospheric pollution in  Cologne, Germany84. Similarly, a 263 % 471 

higher leaf SIRM for unwashed Platanus x acerifolia leaves collected in September versus 472 

May, and a 380 % leaf SIRM increase for washed samples during the same sampling period 473 

in Antwerp, Belgium90. These findings are in line with another study, which obtained a 288% 474 

and 393% increase in leaf SIRM between May and September for (unwashed) Carpinus 475 

betulus and Tilia platyphyllos, respectively91. This seasonal accumulation favours leaf 476 

collection towards the end of the in-leaf season, as it will optimize magnetic differentiation 477 

between contrasting sites91. Nevertheless, controversy remains about the influence of removal 478 

processes of leaf-deposited particles, due to wind, rain or leaf wax degradation. According to 479 

the latter, leaf sampling should be conducted before leaf senescence sets in. Some studies 480 
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found a considerable wash-off effect due to precipitation events, resulting in leaf SIRM 481 

decreases in the order of 5 to 64%31,45,51,81,89,162, while others observed a negligible or 482 

nonexistent effect of rain on the leaf SIRM or susceptibility38,62,90,91,163. The magnitude of these 483 

removal processes is likely determined by weather conditions, and both leaf surface properties 484 

(e.g. micro-surface roughness, presence of trichomes, ridges and hydrophobicity) and PM 485 

properties (e.g. particle size distribution). Meteorological factors which influence the leaf-486 

deposited dust load, and thus the resulting magnetic properties, include number and intensity 487 

of rainfall events, wind velocity and direction89,91,96,165. 488 

 489 

Although the particle trapping efficiency of several species has been investigated in several 490 

experiments148–151,153,157, further work is needed to clarify which leaf anatomical-morphological 491 

(e.g. size, trichomes, surface roughness) and physiological (e.g. wax characteristics, wax 492 

encapsulation and regeneration) characteristics, and which PM properties, drive the 493 

accumulation and/or entrapment processes, and how this is influenced by meteorological 494 

conditions (e.g. rain, wind, drought) and seasonal dynamics (e.g. leaf senescence).  495 

 496 

4.2.3 Applications 497 

 498 

As tree leaves are common across many urban areas, and provide a good interface for 499 

particle deposition, biomagnetic leaf monitoring is well-suited for spatial explorative studies 500 

of atmospheric pollution. The magnetic variability observed between different sampling sites 501 

appears larger than that observed within sampling sites84, individual tree crowns165 and within 502 

a single leaf166. Single leaf-measurements can be, therefore, considered to be representative 503 

for their specific location.  504 

 505 
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Leaf magnetic parameters exhibit high spatial variation throughout cities45,57,58, urban street 506 

canyons165 and even individual tree crowns51,165. In urban environments, lowest magnetic 507 

concentrations are commonly reported in green areas; highest values near congested roads, 508 

industrial sites or railway traffic31,38,51,57,58,101. City-scale maps of leaf magnetic concentration 509 

have been obtained for e.g. Antwerp (Belgium)58, Cologne (Germany)62, Ghent (Belgium)57, 510 

Kathmandu (Nepal)96, Madrid (Spain), Rome (Italy)45, Vigo (Spain)101, Linfen (China)114, and 511 

Isfahan (Iran)112. At the street scale, for two adjacent birch (Betula pendula) trees at a dual 512 

carriageway, a study51 observed consistently higher leaf SIRMs results next to the uphill 513 

lanes, while the tree near the downhill lanes exhibited lower SIRM results, indicating the 514 

traffic exhaust-based origin of magnetic particles in this location. Temporal variation can be 515 

studied by combining soil magnetic measurements (recording longer-term PM accumulation 516 

history) with leaf samples (reflecting current PM levels), enabling the retrieval of pollution 517 

histories113.  518 

 519 

4.2.4 Biogenic vs anthropogenic sources 520 

 521 

Without deposited PM, leaves exhibit a diamagnetic signal (i.e. low, negative magnetic 522 

susceptibility). Biological magnetite can be found associated with ferritin (also present in 523 

animals), an intracellular iron storage protein occurring in plants as plastids (e.g. chloroplasts 524 

in leaves, amyloplasts in tubers and seeds)167,168. Such magnetite typically occurs as 525 

micrometer-sized agglomerates of nanocrystalline grains169,170. To separate biogenic from 526 

anthropogenic contributions, various authors have calculated elemental or magnetic 527 

enrichment factors (EFs) for leaf samples51,89,171,172.  528 

 529 

4.3 Trunk wood and bark 530 
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 531 

In contrast to leafy material, woody biomass encompasses plant tissues exposed to 532 

atmospheric pollution year-round and for multiple years, although the exact duration of 533 

exposure is difficult to assess for some species. Using moist tissue wipes, branch and trunk 534 

bark was found to exhibit higher magnetisation (respectively, 50 and 200 times) compared to 535 

leaf samples of the same trees119.  536 

 537 

4.3.1 Influencing factors 538 

 539 

Chemical and SEM/EDX studies have identified the superficial deposition of atmospheric 540 

particles and internal accumulation of heavy metals in bark, in association with land use class, 541 

traffic intensity, source type, direction and distance for Fraxinus pennsylvanica, Fraxinus 542 

excelsior, Cupressus sempervirens, Pinus sylvestris, Populus nigra and Quercus ilex173–176.  543 

 544 

Decreasing magnetite concentrations in Acer rubrum tree and co-located topsoil samples 545 

(upper 1 cm) were observed with increasing distance from a major highway between 546 

Washington and Baltimore (US)177. Apparently, atmospheric particles are not only intercepted 547 

and collected by tree bark, but enter the xylem  during the growing season to become lignified 548 

into the tree ring178. Because little or no lateral redistribution of magnetic particles has been 549 

observed between adjacent tree rings, magnetic properties of tree ring cores could act as 550 

annual recordings of atmospheric pollution. Indeed, the authors178 found a good correlation (n 551 

=19, r=0.91, p=0.01) between the temporal variation of SIRM in Salix matsudana tree ring 552 

cores and annual iron production of an iron-smelting plant in Xinglong (China). Although 553 

root-absorption might be an alternative pathway for magnetic particle uptake, the reported 554 

iron oxides are found to be insoluble in soil-solutions176. Moreover, the  SIRM directionality 555 
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of tree ring cores towards atmospheric particle sources confirms that magnetic particles enter 556 

the tree trunk through encapsulation of bark-accumulated particles178. The adhesiveness of 557 

trunk bark may be influenced by moisture177, in turn influenced by ambient airflows (e.g. 558 

traffic turbulence). 559 

 560 

4.3.2 Bark vs trunk wood 561 

 562 

Bark tissue displays magnetic values many times higher than wood tissue. Up to 28-fold 563 

higher SIRM results were obtained when comparing Platanus x acerifolia bark (188-2048 564 

x10-6 A m2 kg-1, n=9) to its trunk wood (45-128 x 10-6 A m2 kg-1, n=9) at three sites with 565 

differing pollution levels in Antwerp, Belgium179. For the same species, another study180 566 

demonstrated that SIRM of entire branch internodes was mainly confined to the bark tissue 567 

(by 78-93%). The branch internode SIRM of Platanus x acerifolia, normalised by the branch 568 

area, ranged from 18 to 650 x 10-6 A and increased with each year of exposure, even after 5 569 

years. A study181 however states that superficial particle loading on bark cannot represent a 570 

full several-year-accumulation of atmospheric contaminants and suggests that meteorological 571 

conditions such as rain play an important role.  572 

  573 

Both weight-normalised SIRM (0.43 to 298 x 10-5 A m2 kg-1) and susceptibility (-3.5 to -574 

2.5) are ~2 orders of magnitude lower for bark than the results obtained from leaf, moss and 575 

lichen samples. Nevertheless, when normalising for the projected surface area180, a similar 576 

range (18-650 x 10-6 A) and 2 x higher results were obtained compared to neighbouring and 577 

simultaneously exposed leaf samples. Although absolute values can differ, similar spatial 578 

variation in SIRM is observed between tree bark and trunk samples and co-located soil177 and 579 
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leaf180 samples. Moreover, correlations were obtained for trace element concentrations 580 

between bark tissue and lichens182,183.  581 

 582 

4.4 Insects 583 

 584 

Since 1962, bees (Hymenoptera, Apoidea) have been increasingly employed for monitoring 585 

of e.g. heavy metals in territorial and urban surveys, pesticides in rural areas and  586 

radionuclides184–187. However, biogenic magnetite has  been reported in the abdomen of 587 

bees188, as well as the thorax of butterflies189,190, abdomen and thorax of termites191 and 588 

cockroaches192. A study190 tested five migratory (moths and butterflies) and four non-589 

migratory (crickets) insect species and found evidence for biogenic magnetism in only one 590 

migrant, the monarch butterfly (Danaus plexippus).  Biogenic magnetic particles are thought 591 

to be used for navigation purposes, or so-called magnetoreception – the ability to perceive the 592 

Earth’s magnetic field190,193.  593 

Although an atmospheric pathway for exogenous magnetic minerals (through plant and 594 

pollen) is suggested194 and remanent magnetisation is measurable in insects, no evidence yet 595 

exists that insect magnetism can be applied as a proxy for atmospheric pollution. Another 596 

research gap concerns potential  uptake of atmospheric particles through insect food intake or 597 

inhalation (through spiracles in cuticle and underlying tracheal system).  598 

 599 

Reported SIRMs of insect tissues (Appendix 2) range from 0.09 – 13.98 A m2 (volume-600 

normalised) or 46 – 320 x 10-6 A m2 kg-1 (mass-normalised). These values are much lower 601 

than plant accumulation surfaces; unsurprising as the particle uptake pathway (through plant 602 

and pollen) is indirect and less efficient. 603 

 604 
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4.5 Crustaceans: Isopods 605 

 606 

Isopods are considered good bioindicators of metal contamination in the terrestrial 607 

environment due to their widespread occurrence in Europe (both in rural and urban areas), 608 

their size, conspicuousness, easy collection and high tolerance to heavy metals195–198. Analysis 609 

of bioavailable metals (Cd, Cr, Cu, Fe, Pb and Zn) from different isopod species (Oniscus 610 

asellus and Porcellio scaber), collected at urban and rural locations in Renfrewshire, UK, 611 

showed varying concentrations of natural and anthropogenic metal concentrations, in the 612 

order Cu > Cd > Pb > Cr > Zn > Fe for Oniscus asellus and Cu > Zn > Cd > Cr > Fe for 613 

Porcellio scaber197. Seasonal fluctuations in isopod metal bioaccumulation are observed195, 614 

ascribed to temperature fluctuations. An isopod study198 quantified Cd, Cr, Cu and Ni levels in 615 

cultivated Porcellio scaber and Porcellio dilatatus and suggested moulting as a way of 616 

detoxification for Cr and Ni (but not for Cd and Cu). Detoxification by excretion of 617 

accumulated Cd and Pb  has been reported as well199. Use of isopod samples as biomonitors 618 

for atmospheric pollution requires understanding of these detoxification pathways, which  will 619 

weaken any association between sample content and atmospheric pollution. 620 

 621 

Two exploratory studies (Appendix 2) on biomagnetic monitoring of isopods report  mass-622 

normalised SIRMs ranging from 19 x 10-6 to 28 390 x 10-6 A m2 kg-1 200,201; higher than the 623 

reported bee SIRM results. A study200 collecting 5315 isopods, belonging to Porcellio scaber 624 

(1804), Oniscus asellus (1758), Trachelipus rathkki (1833) and Philoscia muscorum (1763) 625 

species, at 33 locations situated at varying wind directions and distances from a metallurgical 626 

plant in Antwerp, Belgium, observed a decrease in mass-normalized isopod SIRM with 627 

increasing distance from the plant and significant directional effects. Another study201 628 

collected two isopod species (Porcellio scaber and Oniscus asellus) and soil samples at 17 629 
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locations along an urbanization gradient in Antwerp, Belgium. Combining  biomagnetic with 630 

elemental analysis (ICP-MS), the authors found a higher accumulation capacity of Oniscus 631 

asellus, significant variation between the sampled locations (depending on traffic volume, 632 

green areas and railway traffic) and significant associations between SIRM and Al, Ti, V, Mn, 633 

Fe, Ni, Ga, As, Sb, Bi and U201. Both studies report significantly higher SIRM results for 634 

Oniscus asellus (higher accumulation capacity) compared to co-located Porcellio scaber. 635 

 636 

 The magnetic content of isopods is thus species-specific, exhibits spatial variation along 637 

urbanisation gradients and shows associations with trace elemental content. Nevertheless, as 638 

with insects, questions remain regarding both detoxification and  potential uptake pathways of 639 

atmospheric particles through food intake or inhalation.  640 

 641 

4.6 Mammal tissues 642 

 643 

An exploratory study using mammal tissues202 reported  SIRMs (at 77 K) for lung tissue 644 

obtained from four deceased mammals (three cats and a dog) near Munich, Germany. SIRMs 645 

ranged from 2 - 44 x 10-6 A m2 kg-1, attributed to <100 nm, magnetite-like minerals at ~100 646 

ppb concentrations. A difference was observed between the rural (~2.9 ´ 10-6 A m2 kg-1) and 647 

urban (~4.4 and 4.9 ´ 10-6 A m2 kg-1) SIRMs in cats, but possibly reflecting a shorter exposure 648 

period for the younger rural cat. 649 

 650 

Although based on only four individuals, these results demonstrate that biomagnetic 651 

monitoring can obtain information about PM in mammal lung tissue. As with the insects and 652 

isopods, atmospheric pollution dose might be obscured through non-stationarity of the animal, 653 

detoxification (lung clearance) or other metabolic pathways. 654 
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 655 

4.7 Human tissues 656 

 657 

Biogenic magnetite has been reported inside human brain tissues68,203,204 and the heart, liver 658 

and spleen205. Identification of magnetite was achieved through histological preparations, 659 

transmission electron microscopy, magnetic resonance and SQUID magnetometry73.  660 

 661 

4.7.1 Range of reported magnetic results and applications 662 

SIRM and susceptibility values from human tissues (Appendix 2) range  from 1.1 to 170 x 663 

10-6 A m2 kg-1 (mostly obtained at 77 K) and 0.2 to 5.2 x 10-8 m3 kg-1, respectively. Low 664 

temperature remanence is frequently measured in order to capture the SP magnetic 665 

component.  666 

 667 

In terms of pollution exposure, most research has focused on exogenous pneumotoxic 668 

constituents, particularly trace metals206 and magnetic particles, inhaled in lung tissues. The 669 

ferromagnetic remanence of in vivo and post mortem lung tissues can be measured externally 670 

by magnetometers, as an indicator of the inhaled dust load. Such magnetopneumography 671 

(MPG) identifies influences of exposure to welding, asbestos and coal mining, steel industry 672 

and smoking habits on the lung magnetic remanence207–212. Lung magnetite concentrations 673 

between 10 and 800 µg g-1 have been reported in 20 ashed post-mortem lung samples from 674 

asbestos miners208, substantially higher  than the  concentrations reported for heart, spleen and 675 

liver tissues205. In vivo particle migration and lung clearance were also investigated212. An 676 

investigation on lung clearance211 compared lung clearance in smokers and nonsmokers, 677 
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through magnetite dust inhalation experiments. After 11 months, smokers still retained 50% 678 

of the inhaled magnetite, while non-smokers retained  10%.  679 

 680 

5.7.2 Associated health effects 681 

Recently, IRM and susceptibility measurements on different human post mortem brain, 682 

liver, spleen, pancreas, heart and lung tissues213 showed highest susceptibility values, while 683 

lowest values were obtained for the pancreas. These results are in line with a previous 684 

study205, reporting highest magnetite concentrations (SIRM, at 77K) for human heart tissue 685 

samples (13-343 ng g-1; 5-16 x 10-6 A m2 kg-1),  compared to spleen (14-308 ng g-1; 0.6-14 x 686 

10-6 A m2 kg-1) or liver (34-158 ng g-1; 1.5-7.3 x 10-6 A m2 kg-1) samples. Higher SIRM and 687 

susceptibility results are typically obtained for lungs of smokers or certain professions (e.g. 688 

car painters), confirming the presence of exogeneous magnetic particles. While susceptibility 689 

can be influenced by the amount of blood and water (para-/diamagnetic behaviour), magnetic 690 

remanence (IRM) will only quantify magnetite- or hematite-like minerals.  691 

 692 

Besides their presence in human lung tissues, exogenous magnetite nanoparticles have 693 

recently been identified in human brain tissues78. Magnetite can have potentially large impacts 694 

on the brain due to its unique combination of redox activity, surface charge and strongly 695 

magnetic behaviour. Previous work has shown a correlation between the amount of brain 696 

magnetite (up to ~ 7 μg g -1) and the incidence of Alzheimer’s disease (AD), albeit for small 697 

sample sizes76,79. Magnetite nanoparticles, ascribed to biogenic formation, have been found 698 

directly associated with AD plaques214. However, new evidence identifies the presence of 699 

magnetite nanoparticles in the human brain consistent with an external, not internal, source. 700 

Magnetometry, high-resolution transmission electron microscopy (HRTEM), electron energy 701 

loss spectroscopy (EELS) and energy dispersive x ray analysis (EDX) were used to examine 702 
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the mineralogy, morphology, and composition of magnetic nanoparticles in and from the 703 

frontal cortex of 37 human brain samples, from subjects who lived in Mexico City and in 704 

Manchester, U.K. These analyses identified the abundant presence (up to ~10 μg g -1)  of 705 

magnetite nanoparticles that are consistent with high-temperature formation, suggesting 706 

therefore an external, not internal, source. This brain magnetite, often found with other 707 

transition metal nanoparticles, display a range of sizes (~ 10 – 150 nm), and rounded 708 

morphologies, some with fused surface textures, likely reflecting condensation from an 709 

initially heated, iron-bearing source material. Such high-temperature magnetite ‘nanospheres’ 710 

are ubiquitous and abundant in airborne PM.  Because of their combination of ultrafine size, 711 

specific brain toxicity, and ubiquity within airborne PM, pollution-derived magnetite 712 

nanoparticles might be a possible AD risk factor.  In addition to occupational settings 713 

(including, for example, exposure to printer toner powders), higher concentrations of 714 

magnetite pollution nanoparticles may arise in the indoor environment from open fires or 715 

poorly-sealed stoves used for cooking and/or heating, and in the outdoor environment from 716 

vehicle (especially diesel) and/or industrial PM sources. Epidemiological studies have 717 

identified associations between exposure to vehicle-derived PM and cognitive decline215, and 718 

between residence in proximity to major roads and the incidence of dementia216. The latter 719 

study, based on a large population-cohort in Ontario, Canada, estimates that between 7 and 720 

11% of dementia cases in patients who live < 50 m from heavily-trafficked roads were 721 

attributable to traffic exposure. Further work is needed in order to examine if there are causal 722 

links between vehicle-derived magnetite nanoparticles and the widespread incidence of later-723 

age neurological damage 724 

 725 

5. Challenges and future perspectives 726 

 727 
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Although, since 1973, a variety of environmental magnetic studies has been reported, the 728 

application of biomagnetic monitoring for atmospheric pollution assessment has only been 729 

explored during recent decades. This review, based on 83 biomagnetic studies and 230+ 730 

references, demonstrates the potential of this approach for fast qualitative or semi-quantitative 731 

atmospheric pollution monitoring. Table 1 presents a summary table on currently available 732 

biological sensors, encompassing uptake pathways, influencing factors, advantages, 733 

limitations, applications and major challenges, to assist researchers and policy makers in 734 

selecting the most suitable biological material for their specific monitoring application. As 735 

various and complex influencing factors need to be considered when setting up biomagnetic 736 

monitoring campaigns, more elaboration is provided within the following paragraphs. 737 

 738 

5.1 Experimental design 739 

 740 

So far, most biomagnetic research has focused on plant leaves (46 of 84 studies). As these 741 

biological accumulation surfaces are stationary and often cumulative, they are used in 742 

spatiotemporal campaigns in environments with large atmospheric pollution gradients (e.g. 743 

urban areas; near industrial sites). Depending on the envisaged monitoring period, deciduous 744 

leaves (in-leaf season), evergreen needles (year-round) or bark (year-round or multiple years) 745 

can be sampled. Leaves and bark are frequently available across urban environments 746 

(allowing both active and passive biomonitoring), in contrast to mosses/ lichens which require 747 

active installation. 748 

 749 

Besides the stationary sensors, mobile biological sensors can be distinguished as well; 750 

small-radius (insects and crustaceans) and large-radius (mammals, including humans) sensors. 751 

Small-radius sensors can still be applied for spatial monitoring of pollution gradients, 752 
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investigating possible relations with pollination or evaluate the persistence of contaminants 753 

within ecosystems or food chain. Nevertheless, limited data are currently available (only on 754 

isopods and bees) and questions remain about metabolic pathways of atmospheric pollution 755 

(e.g. food intake, inhalation, internal transport and detoxification through excretion or 756 

moulting). Compared to stationary biological sensors, small-radius sensors show much lower 757 

magnetic concentrations, with less resulting magnetic sensitivity to pollution gradients. 758 

Nevertheless, reported associations between isopod biomagnetic properties and urbanization 759 

gradients or trace elemental content, make it an interesting area for future research. 760 

 761 

Finally, large-radius sensors generally exhibit lowest magnetic concentrations (and 762 

therefore, lowest sensitivity) as atmospheric pollutants need to be inhaled and transported 763 

through the body. On the one hand, this allows for personalized air pollution monitoring, 764 

quantifying the exhibited pollution exposure, having important considerations for human 765 

health studies. This is similar to traditional atmospheric pollution monitoring which is not 766 

restricted to fixed-site monitoring, but evolves into portable or mobile instrumentation as well 767 

21,e.g. 217–222, enabling quantificatuon of personal air pollution exposure. On the other hand, 768 

internal body transport, detoxification pathways (e.g. lung clearance) and metabolism 769 

(between and within individuals and individual organs) will need additional consideration 770 

when interpreting the magnetic results. Size selection of atmospheric particles will, for 771 

example, occur during inhalation (<10 μm), deposition in the alveoli (<2.5 μm) and uptake in 772 

the bloodstream (<0.1 μm), while leaf-deposited magnetic particle sizes are reported up to 50 773 

μm (SI 2)). Tracking of research subjects will be required to obtain information on their 774 

pollution exposure routes, while ethical issues might hinder some types of experimental 775 

design. 776 
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Table 1. Summary of considerations (e.g. sensitivity, influencing factors, limitations) on the use of current available biological sensors for 

biomagnetic monitoring of atmospheric pollution. The sensitivity of the considered sensors was judged quantitatively, based on the reported 

SIRM and susceptibility ranges. See text for additional elaboration. 

                     Sensor 

Considerations 
Mosses and lichens Plant leaves Bark and wood Insects Crustaceans Mammal 

tissue Human tissues 

Monitoring technique Mostly active Passive/active Mostly passive Mostly passive Mostly passive Mostly passive Mostly passive 

Uptake pathway Deposition, impaction, 
interception 

Deposition, impaction, interception 

Root uptake negligible? 

Deposition, impaction, interception 

Root uptake negligible? 

Food intake? 

Inhalation? 

Food intake? 

Inhalation? 

Inhalation 

Internal transport 

Inhalation 

Internal transport 

Sensitivity ++++ +++ +++ ++ ++ + + 

Accumulation period Period of exposure 
Period of exposure (min: 6 days, 

max: in-leaf season) 
Period of exposure Lifetime Lifetime Lifetime Lifetime 

Influencing factors 

Exposure time 

Environmental conditions 

Species characteristics 

Moss bags/transplants 

 

Exposure time 

Environmental conditions 

Plant species 

Leaf-surface properties 

Sampling height 

Leaf morphology 

Cuticular wax encapuslation 

Exposure time 

Environmental conditions 

Tree characteristics 

Bark characteristics 

Exposure time 

Way of feeding 

Metabolism 

Exposure time 

Way of feeding 

Metabolism 

Exposure time 

Life/work habits 

Metabolism 

Tissue selection 

Exposure time 

Life/work habits 

Metabolism 

Tissue selection 

Advantages 

Stationary 

Absence of cuticle 

No rooting system 

High surface to volume ratio 

Stationary 

High availability 

High surface to volume ratio 

Standardized protocol 

Stationary 

High availability 

Root-adsorption negligible 

Surface accumulation 

High availability High availability 
Personal monitoring 

Link with exposure 

High availability 

Personal monitoring 

Link with exposure 
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Standardized protocol 

Surface accumulation 

Surface accumulation Multiannual accumulation 

Limitations 
Not omnipresent in urban 
areas 

Resuspension? 

Wash off? 

Resuspension? 

Wash off? 

Resuspension? 
Mobility  

Mobility 

Detoxification 
pathways? 

Mobility 

Ethics 

Tissue selection 

Mobility 

Ethics 

Tissue selection 

Application Spatiotemporal campaigns Spatiotemporal campaigns 

 

Spatiotemporal studies 

Long-term studies (multiannual) 

Spatial campaigns 

Relation with 
pollination? 

Spatial campaigns 
Personal monitoring 

Exposure 

Human health 

Personal monitoring 

Exposure 

Challenges Transplant techniques 
Spatial distribution 

Active: maintenance, vandalism 
Spatial distribution Metabolism Metabolism 

Ethics 

Mobility 

Metabolism 

Activities 

Ethics 

Mobility 

Metabolism 

Activities 
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5.2 Sampling strategy 1124 

Sampling strategies must always consider how atmospheric pollutants accumulate in biological 1125 

sensors. All biomagnetic results covered here have shown species-specific accumulation 1126 

capacities, reflecting PM collection through differing sets of morphological and/or physiological 1127 

properties. Monitoring campaigns should thus use a single monitoring species or seek inter-1128 

calibration between multiple monitoring species. Based on this review, we can recommend 1129 

efficient accumulator species as biological sensors, e.g. Sphagnum palustre when aiming for 1130 

moss biomagnetic monitoring or e.g. Betula pendula or evergreen species (e.g. Hedera sp.) for 1131 

leaf biomagnetic monitoring81,148. However, the species selection will depend on the envisaged 1132 

research objective; e.g. winter campaigns will require evergreen species; short-term campaigns 1133 

(e.g. 1 month) demand for high accumulators (e.g. hairy leaf species) in order to obtain 1134 

quantifiable magnetic signals; and spatial monitoring campaigns will require a widespread 1135 

occurrence (e.g. Platanus acerifolia). 1136 

 1137 

Biological sensors can record exposure periods from ~ 6 days (leaves) to an in-leaf season 1138 

(leaves) or multiple years (bark) and up to individual lifetimes (mammal and human tissues). By 1139 

combining leaf, bark, wood and soil samples, a pollution history can be retrieved (current vs 1140 

historical). For surface-accumulating sensors (e.g. mosses, lichens, leaves and bark), samples can 1141 

be obtained from existing species (passive biomonitoring) or actively-introduced monitor species 1142 

(active biomonitoring). Active biomonitoring guarantees similar exposure periods, provides for 1143 

spatially-ordered sampling and allows for better standardization of the applied biomonitoring 1144 

materials (similar background conditions before pollution exposure), ultimately leading to more 1145 

Page 36 of 66

ACS Paragon Plus Environment

Environmental Science & Technology



 37 

reliable data. Active biomonitoring can further reduce biological variations by working with 1146 

clonal material. 1147 

 1148 

For magnetically weak samples (e.g. leaves, human/insect tissues), where magnetic 1149 

susceptibility is below the detection limit of existing instrumentation, concentration-dependent 1150 

magnetic information can be obtained from SIRM, at room or low temperature. At low 1151 

temperatures (often 77 K), magnetic particles small enough to be superparamagnetic at room 1152 

temperature block in, and contribute to higher induced magnetization values.  1153 

 1154 

5.3 Associations with atmospheric pollutant species 1155 

 1156 

A challenge in biomagnetic monitoring arises from the determination of the association 1157 

between concentration-dependent magnetic properties (χ, SIRM, ARM) and ambient PM or 1158 

gaseous pollutant concentrations. Reported associations may not be generalized but are often 1159 

specific for each considered environment or contributing sources. This can be observed when 1160 

looking at the differences in associated elements from the table in SI 2. Due to a spatiotemporal 1161 

variation and source-specific physicochemical composition of atmospheric dusts, and the fact 1162 

that magnetic particles only make up part of the dust emissions, the magnetic response will vary 1163 

accordingly. This implies that spatial maps of magnetic concentration parameters are only 1164 

reliable in environments with similar (or at least comparable) source contributions. Within such 1165 

“single source” environments (e.g. highway transects, street canyon studies), quantification of 1166 

magnetic concentration parameters will be sufficient to obtain an idea about the bulk 1167 

particle/elemental deposition. When considering larger monitoring scales (e.g. urban/regional 1168 
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mapping), inclusion of multiple sources with heterogeneous chemical and magnetic particle 1169 

characteristics will complicate the associations with atmospheric pollutants, which increases the 1170 

need for an extended magnetic characterisation (e.g. using different magnetic parameters, ratios 1171 

or coercivity spectra to obtain information on the magnetic mineralogy, domain state and grain 1172 

size). 1173 

 1174 

Combining analytical techniques (e.g. SEM/EDX, EELS, ICP-MS, X-ray diffraction, 1175 

Mössbauer spectroscopy) with magnetic parameters can provide valuable supplementary 1176 

information on PM composition and contributing sources111,171,223. Magnetic differentiation 1177 

between industrial and  traffic PM sources, based on the magnetite:hematite ratio, has already 1178 

proven feasible40,63. Interesting work was also performed by magnetically and chemically 1179 

analyzing filter-collected PM10 at different monitoring sites in Switzerland224, calculating two 1180 

magnetic components from the magnetic coercivity distributions using skewed generalized 1181 

Gaussian (SGG) functions developed earlier225. Based on these magnetic components, together 1182 

with elemental information, anthropogenic and natural PM10 contributions could be identified. 1183 

The magnetic contribution of the anthropogenic component was shown to be proportional to the 1184 

chemically-estimated PM10 mass contribution of traffic exhaust emissions, while the other 1185 

component was attributed to a mix of natural dust and resuspended anthropogenic street dust. 1186 

Moreover, the anthropogenic magnetic components were significantly associated with traffic-1187 

related elements; Ba, Cu, Mo, Br and elemental carbon224.  1188 

 1189 

We encourage further development of magnetic fingerprints from different atmospheric 1190 

pollution sources. Such source-specific magnetic information will be essential for the holistic 1191 
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interpretation of biomagnetic results, it will increase the magnetic power for source attribution in 1192 

mixed-source environments and for measuring impacts of PM mitigation policies.  1193 

 1194 

6. Outlook 1195 

 1196 

Biomagnetic monitoring provides substantial worldwide potential to address the growing need 1197 

for cost-effective methodologies to capture high spatial resolution variation and compositional 1198 

changes of atmospheric pollution across urban environments. It comprises a rapid, cost-effective 1199 

and non-destructive tool, providing qualitative or semi-quantitative information on magnetic 1200 

concentration, mineralogy, domain state and grain size of airborne PM. In most cases, 1201 

biomagnetic monitoring should not be regarded as a stand-alone methodology, but might serves 1202 

as a valuable addition to existing monitoring networks, analytical techniques or modelling 1203 

frameworks. So far magnetic techniques have been applied to: spatial mapping of atmospheric 1204 

pollution; validation of air quality models; tracing of historical vs current pollutant levels (e.g. 1205 

soil vs leaf samples); mapping of emission plumes from point sources; and personal (exposure) 1206 

monitoring. Magnetic properties often display strong linkages with PM, NOx, PAHs and heavy 1207 

metals, and can thus act as an effective proxy. Source-related chemical and magnetic 1208 

heterogeneity can be regarded as the major challenge of biomagnetic monitoring and should be 1209 

targeted in further research. Additional direct significance may be attributed to magnetic PM if 1210 

exogenous magnetite nanoparticles, present in human brain tissue, are causally linked with 1211 

neurodegenerative diseases.  1212 

 1213 

 1214 

Page 39 of 66

ACS Paragon Plus Environment

Environmental Science & Technology



 40 

Acknowledgements 1215 

The corresponding author (JH) acknowledges the Research Foundation Flanders (FWO) for his 1216 

postdoctoral fellowship (12I4816N). AC receives a FWO doctoral fellowship grant (SB, 1217 

1S15122716N). 1218 

 1219 

Supporting Information 1220 

A theoretical background on environmental magnetism and an inventory table of reported 1221 

magnetic studies on pumped-air filters and biological sensors is available free of charge on the 1222 

ACS Publications website. 1223 

 1224 

 1225 

 1226 

 1227 

 1228 

 1229 

 1230 

 1231 

 1232 

Page 40 of 66

ACS Paragon Plus Environment

Environmental Science & Technology



 41 

References 1233 

 1234 

(1)  Gurjar, B. Air quality in megacities 1235 
http://www.eoearth.org/view/article/51cbece17896bb431f68e326 (accessed Apr 12, 1236 
2016). 1237 
 1238 

(2)  Jerrett, M.; Arain, A.; Kanaroglou, P.; Beckerman, B.; Potoglou, D.; Sahsuvaroglu, T.; 1239 
Morrison, J.; Giovis, C. A review and evaluation of intraurban air pollution exposure 1240 
models. J Expo Anal Environ Epidemiol 2005, 15, 185–204 DOI: 1241 
10.1038/sj.jea.7500388. 1242 
 1243 

(3)  Wilson, J. G.; Kingham, S.; Pearce, J.; Sturman, A. P. A review of intraurban variations 1244 
in particulate air pollution: Implications for epidemiological research. Atmos Environ 1245 
2005, 39, 6444–6462 DOI: 10.1016/j.atmosenv.2005.07.030. 1246 
 1247 

(4)  Hofman, J.; Staelens, J.; Cordell, R.; Stroobants, C.; Zikova, N.; Hama, S. M. L.; 1248 
Wyche, K. P.; Kos, G. P. A.; Van Der Zee, S.; Smallbone, K. L.; et al. Ultrafine particles 1249 
in four European urban environments: Results from a new continuous long-term 1250 
monitoring network. Atmospheric Environment 2016, 136, 68–81. 1251 
 1252 

(5)  Van den Bossche, J.; Peters, J.; Verwaeren, J.; Botteldooren, D.; Theunis, J.; De Baets, 1253 
B. Mobile monitoring for mapping spatial variation in urban air quality: Development 1254 
and validation of a methodology based on an extensive dataset. Atmos Environ 2015, 1255 
105, 148–161 DOI: 10.1016/j.atmosenv.2015.01.017. 1256 
 1257 

(6)  Petrovský, E.; Zbořil, R.; Grygar, T. M.; Kotlík, B.; Novák, J.; Kapička, A.; Grison, H. 1258 
Magnetic particles in atmospheric particulate matter collected at sites with different level 1259 
of air pollution. Stud Geophys Geod 2013, 57, 755–770 DOI: 10.1007/s11200-013-0814-1260 
x. 1261 
 1262 

(7)  Gozzi, F.; Ventura, G. Della; Marcelli, A. Mobile monitoring of particulate matter: State 1263 
of art and perspectives. Atmos Pollut Res 2016, 7, 228–234 DOI: 1264 
10.1016/j.apr.2015.09.007. 1265 
 1266 

(8)  Pope, C. A.; Dockery, D. W. Health effects of fine particulate air pollution: lines that 1267 
connect. J Air Waste Manag Assoc 2006, 56, 709–742. 1268 
 1269 

(9)  Kampa, M.; Castanas, E. Human health effects of air pollution. Environ Pollut 2008, 1270 

Page 41 of 66

ACS Paragon Plus Environment

Environmental Science & Technology



 42 

151, 362–367 DOI: 10.1016/j.envpol.2007.06.012. 1271 
 1272 

(10)  Grobety, B.; Giere, R.; Dietze, V.; Stille, P. Airborne Particles in the Urban 1273 
Environment. Elements 2010, 6, 229–234 DOI: 10.2113/gselements.6.4.229. 1274 
 1275 

(11)  Janssen, N.; Gerlofs-Nijland, M.; Lanki, T.; Salonen, R.; Cassee, F.; Hoek, G.; Fischer, 1276 
P.; Brunekreef, B.; Kryzanowski, M. Health effects of black carbon. WHO Technical 1277 
report 2012. 1278 
 1279 

(12)  Janssen, N. A. H.; Hoek, G.; Simic-Lawson, M.; Fischer, P.; van Bree, L.; Brink, H. ten; 1280 
Keuken, M.; Atkinson, R. W.; Anderson, H. R.; Brunekreef, B.; et al. Black carbon as an 1281 
additional indicator of the adverse health effects of airborne particles compared with 1282 
PM10 and PM2.5. Environ Health Perspect 2011, 119, 1691–1699 DOI: 1283 
10.1289/ehp.1003369. 1284 
 1285 

(13)  Steenhof, M.; Gosens, I.; Strak, M.; Godri, K. J.; Hoek, G.; Cassee, F. R.; Mudway, I. 1286 
S.; Kelly, F. J.; Harrison, R. M.; Lebret, E.; et al. In vitro toxicity of particulate matter 1287 
(PM) collected at different sites in the Netherlands is associated with PM composition, 1288 
size fraction and oxidative potential--the RAPTES project. Part Fibre Toxicol 2011, 8, 1289 
26 DOI: 10.1186/1743-8977-8-26. 1290 
 1291 

(14)  Janssen, N. A. H.; Yang, A.; Strak, M.; Steenhof, M.; Hellack, B.; Gerlofs-Nijland, M. 1292 
E.; Kuhlbusch, T.; Kelly, F.; Harrison, R.; Brunekreef, B.; et al. Oxidative potential of 1293 
particulate matter collected at sites with different source characteristics. Sci Total 1294 
Environ 2014, 472, 572–581 DOI: 10.1016/j.scitotenv.2013.11.099. 1295 
 1296 

(15)  Baldauf, R.; Devlin, R.; Gehr, P.; Giannelli, R.; Hassett-Sipple, B.; Jung, H.; Martini, 1297 
G.; McDonald, J.; Sacks, J.; Walker, K. Ultrafine Particle Metrics and Research 1298 
Considerations: Review of the 2015 UFP Workshop. Int J Environ Res Public Health 1299 
2016, 13, 1054 DOI: 10.3390/ijerph13111054. 1300 
 1301 

(16)  Kim, K.-H.; Jahan, S. A.; Kabir, E.; Brown, R. J. C. A review of airborne polycyclic 1302 
aromatic hydrocarbons (PAHs) and their human health effects. Environ Int 2013, 60, 1303 
71–80 DOI: 10.1016/j.envint.2013.07.019. 1304 
 1305 

(17)  Castellini, S.; Moroni, B.; Cappelletti, D. PMetro: Measurement of urban aerosols on a 1306 
mobile platform. Measurement 2014, 49, 99–106 DOI: 1307 
10.1016/j.measurement.2013.11.045. 1308 
 1309 

(18)  Hasenfratz, D.; Saukh, O.; Walser, C.; Hueglin, C.; Fierz, M.; Arn, T.; Beutel, J.; Thiele, 1310 

Page 42 of 66

ACS Paragon Plus Environment

Environmental Science & Technology



 43 

L. Deriving high-resolution urban air pollution maps using mobile sensor nodes. 1311 
Pervasive Mob Comput 2015, 16, 268–285 DOI: 10.1016/j.pmcj.2014.11.008. 1312 
 1313 

(19)  Mueller, M. D.; Hasenfratz, D.; Saukh, O.; Fierz, M.; Hueglin, C. Statistical modelling 1314 
of particle number concentration in Zurich at high spatio-temporal resolution utilizing 1315 
data from a mobile sensor network. Atmos Environ 2016, 126, 171–181 DOI: 1316 
10.1016/j.atmosenv.2015.11.033. 1317 
 1318 

(20)  Elen, B.; Peters, J.; Poppel, M. V.; Bleux, N.; Theunis, J.; Reggente, M.; Standaert, A. 1319 
The Aeroflex: a bicycle for mobile air quality measurements. Sensors Basel Sensors 1320 
2013, 13, 221–240 DOI: 10.3390/s130100221. 1321 
 1322 

(21)  van den Bossche, J.; Theunis, J.; Elen, B.; Peters, J.; Botteldooren, D.; de Baets, B. 1323 
Opportunistic mobile air pollution monitoring: A case study with city wardens in 1324 
Antwerp. Atmos Environ 2016, 141, 408–421 DOI: 10.1016/j.atmosenv.2016.06.063. 1325 
 1326 

(22)  Mishra, V. K.; Kumar, P.; Van Poppel, M.; Bleux, N.; Frijns, E.; Reggente, M.; 1327 
Berghmans, P.; Int Panis, L.; Samson, R. Wintertime spatio-temporal variation of 1328 
ultrafine particles in a Belgian city. Sci Total Environ 2012, 431, 307–313 DOI: 1329 
10.1016/j.scitotenv.2012.05.054. 1330 
 1331 

(23)  Frijns, E.; Van Laer, J.; Berghmans, P. Short-term intra-urban variability of UFP number 1332 
concentration and size distribution. 2013. 1333 
 1334 

(24)  Thunis, P.; Miranda, A.; Baldasano, J. M.; Blond, N.; Douros, J.; Graff, A.; Janssen, S.; 1335 
Juda-Rezler, K.; Karvosenoja, N.; Maffeis, G.; et al. Overview of current regional and 1336 
local scale air quality modelling practices: Assessment and planning tools in the EU. 1337 
Environmental Science & Policy 2016, 65, 13–21 DOI: 10.1016/j.envsci.2016.03.013. 1338 
 1339 

(25)  Kumar, P.; Ketzel, M.; Vardoulakis, S.; Pirjola, L.; Britter, R. Dynamics and dispersion 1340 
modelling of nanoparticles from road traffic in the urban atmospheric environment—A 1341 
review. J Aerosol Sci 2011, 42, 580–603 DOI: 10.1016/j.jaerosci.2011.06.001. 1342 
 1343 

(26)  Lefebvre, W.; Van Poppel, M.; Maiheu, B.; Janssen, S.; Dons, E. Evaluation of the RIO-1344 
IFDM-street canyon model chain. Atmos Environ 2013, 77, 325–337 DOI: 1345 
10.1016/j.atmosenv.2013.05.026. 1346 
 1347 

(27)  Vardoulakis, S.; Fisher, B. E. .; Pericleous, K.; Gonzalez-Flesca, N. Modelling air 1348 
quality in street canyons: a review. Atmos Environ 2003, 37, 155–182 DOI: 1349 
10.1016/S1352-2310(02)00857-9. 1350 

Page 43 of 66

ACS Paragon Plus Environment

Environmental Science & Technology



 44 

 1351 

(28)  Jarup, L. Hazards of heavy metal contamination. Br Med Bull 2003, 68, 167–182 DOI: 1352 
10.1093/bmb/ldg032. 1353 
 1354 

(29)  Thompson, R.; Oldfield, F. Environmental Magnetism; Springer Netherlands: Dordrecht, 1355 
1986. 1356 
 1357 

(30)  Maher, B. A.; Thompson, R.; Hounslow, M. W. Introduction. In Quaternary Climates, 1358 
Environments and Magnetism; Maher, B. A.; Thompson, R., Eds.; Cambridge 1359 
University Press: Cambridge, 1999; pp. 1–48. 1360 
 1361 

(31)  Matzka, J.; Maher, B. A. Magnetic biomonitoring of roadside tree leaves: identification 1362 
of spatial and temporal variations in vehicle-derived particulates. Atmos Environ 1999, 1363 
33, 4565–4569 DOI: 10.1016/S1352-2310(99)00229-0. 1364 
 1365 

(32)  Hunt, C. P.; Moskowitz, B. M.; Banerjee, S. K. Magnetic properties of rocks and 1366 
minerals. In Rock physics & phase relations: A handbook of physical constants; Ahrens, 1367 
T. J., Ed.; AGU Reference Shelf; American Geophysical Union: Washington, D. C., 1368 
1995; Vol. 3, pp. 189–204. 1369 
 1370 

(33)  Hofman, J.; Samson, R. Biomagnetic monitoring as a validation tool for local air quality 1371 
models: a case study for an urban street canyon. Environ Int 2014, 70, 50–61 DOI: 1372 
10.1016/j.envint.2014.05.007. 1373 
 1374 

(34)  Lazić, L.; Urošević, M. A.; Mijić, Z.; Vuković, G.; Ilić, L. Traffic contribution to air 1375 
pollution in urban street canyons: Integrated application of the OSPM, moss 1376 
biomonitoring and spectral analysis. Atmos Environ 2016, 141, 347–360 DOI: 1377 
10.1016/j.atmosenv.2016.07.008. 1378 
 1379 

(35)  De Nicola, F.; Murena, F.; Costagliola, M. A.; Alfani, A.; Baldantoni, D.; Prati, M. V.; 1380 
Sessa, L.; Spagnuolo, V.; Giordano, S. A multi-approach monitoring of particulate 1381 
matter, metals and PAHs in an urban street canyon. Environ Sci Pollut Res Int 2013, 20, 1382 
4969–4979 DOI: 10.1007/s11356-012-1456-1. 1383 
 1384 

(36)  Mitchell, R.; Maher, B. A. Evaluation and application of biomagnetic monitoring of 1385 
traffic-derived particulate pollution. Atmos Environ 2009, 43, 2095–2103 DOI: 1386 
10.1016/j.atmosenv.2009.01.042. 1387 
 1388 

(37)  Magiera, T.; Jabłońska, M.; Strzyszcz, Z.; Rachwal, M. Morphological and 1389 

Page 44 of 66

ACS Paragon Plus Environment

Environmental Science & Technology



 45 

mineralogical forms of technogenic magnetic particles in industrial dusts. Atmos Environ 1390 
2011, 45, 4281–4290 DOI: 10.1016/j.atmosenv.2011.04.076. 1391 
 1392 

(38)  Moreno, E.; Sagnotti, L.; Dinarès-Turell, J.; Winkler, A.; Cascella, A. Biomonitoring of 1393 
traffic air pollution in Rome using magnetic properties of tree leaves. Atmos Environ 1394 
2003, 37, 2967–2977 DOI: 10.1016/S1352-2310(03)00244-9. 1395 
 1396 

(39)  Quayle, B. M.; Mather, T. A.; Witt, M. L. I.; Maher, B. A.; Mitchell, R.; Martin, R. S.; 1397 
Calabrese, S. Application and evaluation of biomagnetic and biochemical monitoring of 1398 
the dispersion and deposition of volcanically-derived particles at Mt. Etna, Italy. Journal 1399 
of Volcanology and Geothermal Research 2010, 191, 107–116 DOI: 1400 
10.1016/j.jvolgeores.2010.01.004. 1401 
 1402 

(40)  Hansard, R.; Maher, B. A.; Kinnersley, R. Biomagnetic monitoring of industry-derived 1403 
particulate pollution. Environ Pollut 2011, 159, 1673–1681 DOI: 1404 
10.1016/j.envpol.2011.02.039. 1405 
 1406 

(41)  Salo, H.; Mäkinen, J. Magnetic biomonitoring by moss bags for industry-derived air 1407 
pollution in SW Finland. Atmos Environ 2014, 97, 19–27 DOI: 1408 
10.1016/j.atmosenv.2014.08.003. 1409 
 1410 

(42)  Yang, T.; Liu, Q.; Li, H.; Zeng, Q.; Chan, L. Anthropogenic magnetic particles and 1411 
heavy metals in the road dust: Magnetic identification and its implications. Atmos 1412 
Environ 2010, 44, 1175–1185 DOI: 10.1016/j.atmosenv.2009.12.028. 1413 
 1414 

(43)  Bućko, M. S.; Magiera, T.; Pesonen, L. J.; Janus, B. Magnetic, Geochemical, and 1415 
Microstructural Characteristics of Road Dust on Roadsides with Different Traffic 1416 
Volumes—Case Study from Finland. Water Air Soil Pollut 2010, 209, 295–306 DOI: 1417 
10.1007/s11270-009-0198-2. 1418 
 1419 

(44)  Goddu, S. R.; Appel, E.; Jordanova, D.; Wehland, F. Magnetic properties of road dust 1420 
from Visakhapatnam (India)––relationship to industrial pollution and road traffic. 1421 
Physics and Chemistry of the Earth, Parts A/B/C 2004, 29, 985–995 DOI: 1422 
10.1016/j.pce.2004.02.002. 1423 
 1424 

(45)  McIntosh, G.; Gómez-Paccard, M.; Osete, M. L. The magnetic properties of particles 1425 
deposited on Platanus x hispanica leaves in Madrid, Spain, and their temporal and spatial 1426 
variations. Sci Total Environ 2007, 382, 135–146 DOI: 10.1016/j.scitotenv.2007.03.020. 1427 
 1428 

(46)  Thorpe, A.; Harrison, R. M. Sources and properties of non-exhaust particulate matter 1429 

Page 45 of 66

ACS Paragon Plus Environment

Environmental Science & Technology



 46 

from road traffic: a review. Sci Total Environ 2008, 400, 270–282 DOI: 1430 
10.1016/j.scitotenv.2008.06.007. 1431 
 1432 

(47)  Amato, F.; Pandolfi, M.; Moreno, T.; Furger, M.; Pey, J.; Alastuey, A.; Bukowiecki, N.; 1433 
Prevot, A. S. H.; Baltensperger, U.; Querol, X. Sources and variability of inhalable road 1434 
dust particles in three European cities. Atmos Environ 2011, 45, 6777–6787 DOI: 1435 
10.1016/j.atmosenv.2011.06.003. 1436 
 1437 

(48)  Kukutschová, J.; Moravec, P.; Tomášek, V.; Matějka, V.; Smolík, J.; Schwarz, J.; 1438 
Seidlerová, J.; Safářová, K.; Filip, P. On airborne nano/micro-sized wear particles 1439 
released from low-metallic automotive brakes. Environ Pollut 2011, 159, 998–1006 1440 
DOI: 10.1016/j.envpol.2010.11.036. 1441 
 1442 

(49)  Adachi, K.; Tainosho, Y. Characterization of heavy metal particles embedded in tire 1443 
dust. Environ Int 2004, 30, 1009–1017 DOI: 10.1016/j.envint.2004.04.004. 1444 
 1445 

(50)  Revuelta, M. A.; McIntosh, G.; Pey, J.; Pérez, N.; Querol, X.; Alastuey, A. Partitioning 1446 
of magnetic particles in PM10, PM2.5 and PM1 aerosols in the urban atmosphere of 1447 
Barcelona (Spain). Environ Pollut 2014, 188, 109–117 DOI: 1448 
10.1016/j.envpol.2014.01.025. 1449 
 1450 

(51)  Maher, B. A.; Moore, C.; Matzka, J. Spatial variation in vehicle-derived metal pollution 1451 
identified by magnetic and elemental analysis of roadside tree leaves. Atmos Environ 1452 
2008, 42, 364–373 DOI: 10.1016/j.atmosenv.2007.09.013. 1453 
 1454 

(52)  Jordanova, D.; Jordanova, N.; Petrov, P. Magnetic susceptibility of road deposited 1455 
sediments at a national scale--relation to population size and urban pollution. Environ 1456 
Pollut 2014, 189, 239–251 DOI: 10.1016/j.envpol.2014.02.030. 1457 
 1458 

(53)  Kim, W.; Doh, S.-J.; Yu, Y. Anthropogenic contribution of magnetic particulates in 1459 
urban roadside dust. Atmos Environ 2009, 43, 3137–3144 DOI: 1460 
10.1016/j.atmosenv.2009.02.056. 1461 
 1462 

(54)  Chaparro, M. A. E.; Marié, D. C.; Gogorza, C. S. G.; Navas, A.; Sinito, A. M. Magnetic 1463 
studies and scanning electron microscopy — X-ray energy dispersive spectroscopy 1464 
analyses of road sediments, soils and vehicle-derived emissions. Stud Geophys Geod 1465 
2010, 54, 633–650 DOI: 10.1007/s11200-010-0038-2. 1466 
 1467 

(55)  Sagnotti, L.; Taddeucci, J.; Winkler, A.; Cavallo, A. Compositional, morphological, and 1468 
hysteresis characterization of magnetic airborne particulate matter in Rome, Italy. 1469 

Page 46 of 66

ACS Paragon Plus Environment

Environmental Science & Technology



 47 

Geochem. Geophys. Geosyst. 2009, 10, Q08Z06 DOI: 10.1029/2009GC002563. 1470 
 1471 

(56)  Muxworthy, A. R.; Schmidbauer, E.; Petersen, N. Magnetic properties and Mössbauer 1472 
spectra of urban atmospheric particulate matter: a case study from Munich, Germany. 1473 
Geophys. J. Int. 2002, 150, 558–570 DOI: 10.1046/j.1365-246X.2002.01725.x. 1474 
 1475 

(57)  Kardel, F.; Wuyts, K.; Maher, B. A.; Samson, R. Intra-urban spatial variation of 1476 
magnetic particles: Monitoring via leaf saturation isothermal remanent magnetisation 1477 
(SIRM). Atmos Environ 2012, 55, 111–120 DOI: 10.1016/j.atmosenv.2012.03.025. 1478 
 1479 

(58)  Hofman, J.; Lefebvre, W.; Janssen, S.; Nackaerts, R.; Nuyts, S.; Mattheyses, L.; 1480 
Samson, R. Increasing the spatial resolution of air quality assessments in urban areas: A 1481 
comparison of biomagnetic monitoring and urban scale modelling. Atmos Environ 2014, 1482 
92, 130–140 DOI: 10.1016/j.atmosenv.2014.04.013. 1483 
 1484 

(59)  Gehrig, R.; Hill, M.; Lienemann, P.; Zwicky, C. N.; Bukowiecki, N.; Weingartner, E.; 1485 
Baltensperger, U.; Buchmann, B. Contribution of railway traffic to local PM10 1486 
concentrations in Switzerland. Atmos Environ 2007, 41, 923–933 DOI: 1487 
10.1016/j.atmosenv.2006.09.021. 1488 
 1489 

(60)  Bukowiecki, N.; Gehrig, R.; Hill, M.; Lienemann, P.; Zwicky, C. N.; Buchmann, B.; 1490 
Weingartner, E.; Baltensperger, U. Iron, manganese and copper emitted by cargo and 1491 
passenger trains in Zürich (Switzerland): Size-segregated mass concentrations in 1492 
ambient air. Atmos Environ 2007, 41, 878–889 DOI: 10.1016/j.atmosenv.2006.07.045. 1493 
 1494 

(61)  Moreno, T.; Martins, V.; Querol, X.; Jones, T.; BéruBé, K.; Minguillón, M. C.; Amato, 1495 
F.; Capdevila, M.; de Miguel, E.; Centelles, S.; et al. A new look at inhalable 1496 
metalliferous airborne particles on rail subway platforms. Sci Total Environ 2015, 505, 1497 
367–375 DOI: 10.1016/j.scitotenv.2014.10.013. 1498 
 1499 

(62)  Urbat, M.; Lehndorff, E.; Schwark, L. Biomonitoring of air quality in the Cologne 1500 
conurbation using pine needles as a passive sampler—Part I: magnetic properties. Atmos 1501 
Environ 2004, 38, 3781–3792 DOI: 10.1016/j.atmosenv.2004.03.061. 1502 
 1503 

(63)  Hansard, R.; Maher, B. A.; Kinnersley, R. P. Rapid magnetic biomonitoring and 1504 
differentiation of atmospheric particulate pollutants at the roadside and around two 1505 
major industrial sites in the U.K. Environ Sci Technol 2012, 46, 4403–4410 DOI: 1506 
10.1021/es203275r. 1507 
 1508 

(64)  Hanesch, M.; Scholger, R.; Rey, D. Mapping dust distribution around an industrial site 1509 

Page 47 of 66

ACS Paragon Plus Environment

Environmental Science & Technology



 48 

by measuring magnetic parameters of tree leaves. Atmos Environ 2003, 37, 5125–5133 1510 
DOI: 10.1016/j.atmosenv.2003.07.013. 1511 
 1512 

(65)  Wang, B.; Xia, D.; Yu, Y.; Jia, J.; Nie, Y.; Wang, X. Detecting the sensitivity of 1513 
magnetic response on different pollution sources - A case study from typical mining 1514 
cities in northwestern China. Environ Pollut 2015, 207, 288–298 DOI: 1515 
10.1016/j.envpol.2015.08.041. 1516 
 1517 

(66)  Chen, R.; Yin, P.; Meng, X.; Liu, C.; Wang, L.; Xu, X.; Ross, J. A.; Tse, L. A.; Zhao, Z.; 1518 
Kan, H.; et al. Fine particulate air pollution and daily mortality: A nationwide analysis in 1519 
272 chinese cities. Am J Respir Crit Care Med 2017, In press DOI: 1520 
10.1164/rccm.201609-1862OC. 1521 
 1522 

(67)  Lieu, P. T.; Heiskala, M.; Peterson, P. A.; Yang, Y. The roles of iron in health and 1523 
disease. Mol Aspects Med 2001, 22, 1–87. 1524 
 1525 

(68)  Beard, J. L.; Connor, J. R.; Jones, B. C. Iron in the brain. Nutr Rev 1993, 51, 157–170. 1526 
 1527 

(69)  Gurzau, E. S.; Neagu, C.; Gurzau, A. E. Essential metals--case study on iron. Ecotoxicol 1528 
Environ Saf 2003, 56, 190–200 DOI: 10.1016/S0147-6513(03)00062-9. 1529 
 1530 

(70)  Smith, M. A.; Harris, P. L.; Sayre, L. M.; Perry, G. Iron accumulation in Alzheimer 1531 
disease is a source of redox-generated free radicals. Proc Natl Acad Sci U S A 1997, 94, 1532 
9866–9868. 1533 
 1534 

(71)  Könczöl, M.; Ebeling, S.; Goldenberg, E.; Treude, F.; Gminski, R.; Gieré, R.; Grobéty, 1535 
B.; Rothen-Rutishauser, B.; Merfort, I.; Mersch-Sundermann, V. Cytotoxicity and 1536 
genotoxicity of size-fractionated iron oxide (magnetite) in A549 human lung epithelial 1537 
cells: role of ROS, JNK, and NF-κB. Chem Res Toxicol 2011, 24, 1460–1475 DOI: 1538 
10.1021/tx200051s. 1539 
 1540 

(72)  Könczöl, M.; Weiss, A.; Stangenberg, E.; Gminski, R.; Garcia-Käufer, M.; Gieré, R.; 1541 
Merfort, I.; Mersch-Sundermann, V. Cell-cycle changes and oxidative stress response to 1542 
magnetite in A549 human lung cells. Chem Res Toxicol 2013, 26, 693–702 DOI: 1543 
10.1021/tx300503q. 1544 
 1545 

(73)  Kobayashi, A.; Yamamoto, N.; Kirschvink, J. Studies of Inorganic Crystals in Biological 1546 
Tissue: Magnetic in Human Tumor. J. Jpn. Soc. Powder Powder Metallurgy 1997, 44, 1547 
294–300 DOI: 10.2497/jjspm.44.294. 1548 
 1549 

Page 48 of 66

ACS Paragon Plus Environment

Environmental Science & Technology



 49 

(74)  Brem, F.; Hirt, A. M.; Winklhofer, M.; Frei, K.; Yonekawa, Y.; Wieser, H.-G.; Dobson, 1550 
J. Magnetic iron compounds in the human brain: a comparison of tumour and 1551 
hippocampal tissue. J R Soc Interface 2006, 3, 833–841 DOI: 10.1098/rsif.2006.0133. 1552 
 1553 

(75)  Dobson, J. Magnetic iron compounds in neurological disorders. Ann N Y Acad Sci 2004, 1554 
1012, 183–192 DOI: 10.1196/annals.1306.016. 1555 
 1556 

(76)  Hautot, D.; Pankhurst, Q. A.; Khan, N.; Dobson, J. Preliminary evaluation of nanoscale 1557 
biogenic magnetite in Alzheimer’s disease brain tissue. Proc Biol Sci 2003, 270 Suppl 1, 1558 
S62–S64 DOI: 10.1098/rsbl.2003.0012. 1559 
 1560 

(77)  Castellani, R. J.; Moreira, P. I.; Liu, G.; Dobson, J.; Perry, G.; Smith, M. A.; Zhu, X. 1561 
Iron: the Redox-active center of oxidative stress in Alzheimer disease. Neurochem Res 1562 
2007, 32, 1640–1645 DOI: 10.1007/s11064-007-9360-7. 1563 
 1564 

(78)  Maher, B. A.; Ahmed, I. A. M.; Karloukovski, V.; MacLaren, D. A.; Foulds, P. G.; 1565 
Allsop, D.; Mann, D. M. A.; Torres-Jardón, R.; Calderon-Garciduenas, L. Magnetite 1566 
pollution nanoparticles in the human brain. Proc Natl Acad Sci U S A 2016, 113, 10797–1567 
10801 DOI: 10.1073/pnas.1605941113. 1568 
 1569 

(79)  Pankhurst, Q.; Hautot, D.; Khan, N.; Dobson, J. Increased Levels of Magnetic Iron 1570 
Compounds in Alzheimer’s Disease. J Alzheimers Dis 2008, 13, 49–52. 1571 
 1572 

(80)  Teller, S.; Tahirbegi, I. B.; Mir, M.; Samitier, J.; Soriano, J. Magnetite-Amyloid-β 1573 
deteriorates activity and functional organization in an in vitro model for Alzheimer’s 1574 
disease. Sci Rep 2015, 5, 17261 DOI: 10.1038/srep17261. 1575 
 1576 

(81)  Mitchell, R.; Maher, B. A.; Kinnersley, R. Rates of particulate pollution deposition onto 1577 
leaf surfaces: temporal and inter-species magnetic analyses. Environ Pollut 2010, 158, 1578 
1472–1478 DOI: 10.1016/j.envpol.2009.12.029. 1579 
 1580 

(82)  Sagnotti, L.; Macrì, P.; Egli, R.; Mondino, M. Magnetic properties of atmospheric 1581 
particulate matter from automatic air sampler stations in Latium (Italy): Toward a 1582 
definition of magnetic fingerprints for natural and anthropogenic PM10 sources. J. 1583 
Geophys. Res. 2006, 111 DOI: 10.1029/2006JB004508. 1584 
 1585 

(83)  Wichmann, H. E.; Peters, A. Epidemiological evidence of the effects of ultrafine particle 1586 
exposure. Philosophical Transactions of the Royal Society A: Mathematical, Physical 1587 
and Engineering Sciences 2000, 358, 2751–2769 DOI: 10.1098/rsta.2000.0682. 1588 
 1589 

Page 49 of 66

ACS Paragon Plus Environment

Environmental Science & Technology



 50 

(84)  Lehndorff, E.; Urbat, M.; Schwark, L. Accumulation histories of magnetic particles on 1590 
pine needles as function of air quality. Atmos Environ 2006, 40, 7082–7096 DOI: 1591 
10.1016/j.atmosenv.2006.06.008. 1592 
 1593 

(85)  Muxworthy, A. R.; Matzka, J.; Davila, A. F.; Petersen, N. Magnetic signature of daily 1594 
sampled urban atmospheric particles. Atmos Environ 2003, 37, 4163–4169 DOI: 1595 
10.1016/S1352-2310(03)00500-4. 1596 
 1597 

(86)  Muxworthy, A. R.; Matzka, J.; Petersen, N. Comparison of magnetic parameters of 1598 
urban atmospheric particulate matter with pollution and meteorological data. Atmos 1599 
Environ 2001, 35, 4379–4386 DOI: 10.1016/S1352-2310(01)00250-3. 1600 
 1601 

(87)  Cao, L.; Appel, E.; Hu, S.; Ma, M. An economic passive sampling method to detect 1602 
particulate pollutants using magnetic measurements. Environ Pollut 2015, 205, 97–102 1603 
DOI: 10.1016/j.envpol.2015.05.019. 1604 
 1605 

(88)  Sant’Ovaia, H.; Lacerda, M. J.; Gomes, C. Particle pollution – An environmental 1606 
magnetism study using biocollectors located in northern Portugal. Atmos Environ 2012, 1607 
61, 340–349 DOI: 10.1016/j.atmosenv.2012.07.059. 1608 
 1609 

(89)  Rodríguez-Germade, I.; Mohamed, K. J.; Rey, D.; Rubio, B.; García, A. The influence 1610 
of weather and climate on the reliability of magnetic properties of tree leaves as proxies 1611 
for air pollution monitoring. Sci Total Environ 2014, 468-469, 892–902 DOI: 1612 
10.1016/j.scitotenv.2013.09.009. 1613 
 1614 

(90)  Hofman, J.; Wuyts, K.; Van Wittenberghe, S.; Samson, R. On the temporal variation of 1615 
leaf magnetic parameters: seasonal accumulation of leaf-deposited and leaf-encapsulated 1616 
particles of a roadside tree crown. Sci Total Environ 2014, 493, 766–772 DOI: 1617 
10.1016/j.scitotenv.2014.06.074. 1618 
 1619 

(91)  Kardel, F.; Wuyts, K.; Maher, B. A.; Hansard, R.; Samson, R. Leaf saturation isothermal 1620 
remanent magnetization (SIRM) as a proxy for particulate matter monitoring: Inter-1621 
species differences and in-season variation. Atmos Environ 2011, 45, 5164–5171 DOI: 1622 
10.1016/j.atmosenv.2011.06.025. 1623 
 1624 

(92)  Hofman, J.; Wuyts, K.; Van Wittenberghe, S.; Brackx, M.; Samson, R. On the link 1625 
between biomagnetic monitoring and leaf-deposited dust load of urban trees: 1626 
relationships and spatial variability of different particle size fractions. Environ Pollut 1627 
2014, 189, 63–72 DOI: 10.1016/j.envpol.2014.02.020. 1628 
 1629 

Page 50 of 66

ACS Paragon Plus Environment

Environmental Science & Technology



 51 

(93)  Zhang, C.; Qiao, Q.; Appel, E.; Huang, B. Discriminating sources of anthropogenic 1630 
heavy metals in urban street dusts using magnetic and chemical methods. J Geochem 1631 
Explor 2012, 119-120, 60–75 DOI: 10.1016/j.gexplo.2012.06.014. 1632 
 1633 

(94)  Lewné, M.; Cyrys, J.; Meliefste, K.; Hoek, G.; Brauer, M.; Fischer, P.; Gehring, U.; 1634 
Heinrich, J.; Brunekreef, B.; Bellander, T. Spatial variation in nitrogen dioxide in three 1635 
European areas. Sci Total Environ 2004, 332, 217–230 DOI: 1636 
10.1016/j.scitotenv.2004.04.014. 1637 
 1638 

(95)  Brackx, M.; Van Wittenberghe, S.; Verhelst, J.; Scheunders, P.; Samson, R. 1639 
Hyperspectral leaf reflectance of Carpinus betulus L. saplings for urban air quality 1640 
estimation. Environ Pollut 2017, 220, 159–167 DOI: 10.1016/j.envpol.2016.09.035. 1641 
 1642 

(96)  Gautam, P.; Blaha, U.; Appel, E. Magnetic susceptibility of dust-loaded leaves as a 1643 
proxy of traffic-related heavy metal pollution in Kathmandu city, Nepal. Atmos Environ 1644 
2005, 39, 2201–2211 DOI: 10.1016/j.atmosenv.2005.01.006. 1645 
 1646 

(97)  Qian, P.; Zheng, X.; Zhou, L.; Jiang, Q.; Zhang, G.; Yang, J. Magnetic Properties as 1647 
Indicator of Heavy Metal Contaminations in Roadside Soil and Dust Along G312 1648 
Highways. Procedia Environmental Sciences 2011, 10, 1370–1375 DOI: 1649 
10.1016/j.proenv.2011.09.219. 1650 
 1651 

(98)  Georgeaud, V. M.; Rochette, P.; Ambrosi, J. P.; Vandamme, D.; Williamson, D. 1652 
Relationship between heavy metals and magnetic properties in a large polluted 1653 
catchment: The Etang de Berre (south of France). Physics and Chemistry of the Earth 1654 
1997, 22, 211–214 DOI: 10.1016/S0079-1946(97)00105-5. 1655 
 1656 

(99)  Wang, G.; Oldfield, F.; Xia, D.; Chen, F.; Liu, X.; Zhang, W. Magnetic properties and 1657 
correlation with heavy metals in urban street dust: A case study from the city of 1658 
Lanzhou, China. Atmos Environ 2012, 46, 289–298 DOI: 1659 
10.1016/j.atmosenv.2011.09.059. 1660 
 1661 

(100)  Chaparro, M. A. E.; Gogorza, C. S. G.; Chaparro, M. A. E.; Irurzun, M. A.; Sinito, A. 1662 
M. Review of magnetism and heavy metal pollution studies of various environments in 1663 
Argentina. Earth Planet Sp 2006, 58, 1411–1422 DOI: 10.1186/BF03352637. 1664 
 1665 

(101)  Davila, A. F.; Rey, D.; Mohamed, K.; Rubio, B.; Guerra, A. P. Mapping the sources of 1666 
urban dust in a coastal environment by measuring magnetic parameters of Platanus 1667 
hispanica leaves. Environ Sci Technol 2006, 40, 3922–3928. 1668 
 1669 

Page 51 of 66

ACS Paragon Plus Environment

Environmental Science & Technology



 52 

(102)  Lu, S.; Yu, X.; Chen, Y. Magnetic properties, microstructure and mineralogical phases 1670 
of technogenic magnetic particles (TMPs) in urban soils: Their source identification and 1671 
environmental implications. Sci Total Environ 2016, 543, 239–247 DOI: 1672 
10.1016/j.scitotenv.2015.11.046. 1673 
 1674 

(103)  Adamiec, E.; Jarosz-Krzemińska, E.; Wieszała, R. Heavy metals from non-exhaust 1675 
vehicle emissions in urban and motorway road dusts. Environ Monit Assess 2016, 188, 1676 
369 DOI: 10.1007/s10661-016-5377-1. 1677 
 1678 

(104)  Alam, M. S.; Zeraati-Rezaei, S.; Stark, C.; Liang, Z.; Xu, H.; Harrison, R. M. The 1679 
characterisation of diesel exhaust particles – composition, size distribution and 1680 
partitioning. Faraday Discuss. 2016, 189, 69–84 DOI: 10.1039/C5FD00185D. 1681 
 1682 

(105)  Chaparro A.E., M. A. E.; Chaparro, M. A. E.; Castañeda Miranda, A. G.; Böhnel, H. N.; 1683 
Sinito, A. M. An interval fuzzy model for magnetic biomonitoring using the specie 1684 
Tillandsia recurvata L. Ecological Indicators 2015, 54, 238–245 DOI: 1685 
10.1016/j.ecolind.2015.02.018. 1686 
 1687 

(106)  Chaparro, M. A. E.; Chaparro, M. A. E.; Sinito, A. M. An interval fuzzy model for 1688 
magnetic monitoring: estimation of a pollution index. Environ Earth Sci 2012, 66, 1477–1689 
1485 DOI: 10.1007/s12665-011-1387-z. 1690 
 1691 

(107)  Xia, D.; Wang, B.; Yu, Y.; Jia, J.; Nie, Y.; Wang, X.; Xu, S. Combination of magnetic 1692 
parameters and heavy metals to discriminate soil-contamination sources in Yinchuan--a 1693 
typical oasis city of Northwestern China. Sci Total Environ 2014, 485-486, 83–92 DOI: 1694 
10.1016/j.scitotenv.2014.03.070. 1695 
 1696 

(108)  Hanesch, M.; Scholger, R.; Dekkers, M. J. The application of fuzzy C-means cluster 1697 
analysis and non-linear mapping to a soil data set for the detection of polluted sites. 1698 
Physics and Chemistry of the Earth, Part A: Solid Earth and Geodesy 2001, 26, 885–1699 
891 DOI: 10.1016/S1464-1895(01)00137-5. 1700 
 1701 

(109)  Wang, B.; Xia, D.; Yu, Y.; Jia, J.; Xu, S. Detection and differentiation of pollution in 1702 
urban surface soils using magnetic properties in arid and semi-arid regions of 1703 
northwestern China. Environ Pollut 2014, 184, 335–346 DOI: 1704 
10.1016/j.envpol.2013.08.024. 1705 
 1706 

(110)  Morris, W. A.; Versteeg, J. K.; Bryant, D. W.; Legzdins, A. E.; McCarry, B. E.; Marvin, 1707 
C. H. Preliminary comparisons between mutagenicity and magnetic susceptibility of 1708 
respirable airborne particulate. Atmos Environ 1995, 29, 3441–3450 DOI: 10.1016/1352-1709 
2310(95)00203-B. 1710 

Page 52 of 66

ACS Paragon Plus Environment

Environmental Science & Technology



 53 

 1711 

(111)  Castanheiro, A.; Samson, R.; De Wael, K. Magnetic- and particle-based techniques to 1712 
investigate metal deposition on urban green. Science of The Total Environment 2016, 1713 
571, 594–602 DOI: 10.1016/j.scitotenv.2016.07.026. 1714 
 1715 

(112)  Norouzi, S.; Khademi, H.; Cano, A. F.; Acosta, J. A. Biomagnetic monitoring of heavy 1716 
metals contamination in deposited atmospheric dust, a case study from Isfahan, Iran. J 1717 
Environ Manage 2016, 173, 55–64 DOI: 10.1016/j.jenvman.2016.02.035. 1718 
 1719 

(113)  Cao, L.; Appel, E.; Hu, S.; Yin, G.; Lin, H.; Rösler, W. Magnetic response to air 1720 
pollution recorded by soil and dust-loaded leaves in a changing industrial environment. 1721 
Atmos Environ 2015, 119, 304–313 DOI: 10.1016/j.atmosenv.2015.06.017. 1722 
 1723 

(114)  Yin, G.; Hu, S.; Cao, L.; Roesler, W.; Appel, E. Magnetic properties of tree leaves and 1724 
their significance in atmospheric particle pollution in Linfen City, China. Chin. Geogr. 1725 
Sci. 2013, 23, 59–72 DOI: 10.1007/s11769-013-0588-7. 1726 
 1727 

(115)  Ma, M.; Hu, S.; Cao, L.; Appel, E.; Wang, L. Atmospheric pollution history at Linfen 1728 
(China) uncovered by magnetic and chemical parameters of sediments from a water 1729 
reservoir. Environ Pollut 2015, 204, 161–172 DOI: 10.1016/j.envpol.2015.04.028. 1730 
 1731 

(116)  Jordanova, D.; Petrov, P.; Hoffmann, V.; Gocht, T.; Panaiotu, C.; Tsacheva, T.; 1732 
Jordanova, N. Magnetic signature of different vegetation species in polluted 1733 
environment. Stud Geophys Geod 2010, 54, 417–442 DOI: 10.1007/s11200-010-0025-7. 1734 
 1735 

(117)  Lehndorff, E.; Schwark, L. Biomonitoring of air quality in the Cologne Conurbation 1736 
using pine needles as a passive sampler—Part II: polycyclic aromatic hydrocarbons 1737 
(PAH). Atmos Environ 2004, 38, 3793–3808 DOI: 10.1016/j.atmosenv.2004.03.065. 1738 
 1739 

(118)  De Nicola, F.; Maisto, G.; Prati, M. V.; Alfani, A. Leaf accumulation of trace elements 1740 
and polycyclic aromatic hydrocarbons (PAHs) in Quercus ilex L. Environ Pollut 2008, 1741 
153, 376–383 DOI: 10.1016/j.envpol.2007.08.008. 1742 
 1743 

(119)  Flanders, P. J. Collection, measurement, and analysis of airborne magnetic particulates 1744 
from pollution in the environment (invited). J Appl Phys 1994, 75, 5931 DOI: 1745 
10.1063/1.355518. 1746 
 1747 

(120)  Oldfield, F.; Scoullos, M. Particulate pollution monitoring in the Elefsis Gulf: The role 1748 
of mineral magnetic studies. Mar Pollut Bull 1984, 15, 229–231 DOI: 10.1016/0025-1749 

Page 53 of 66

ACS Paragon Plus Environment

Environmental Science & Technology



 54 

326X(84)90294-7. 1750 
 1751 

(121)  Scoullos, M.; Oldfield, F.; Thompson, R. Magnetic monitoring of marine particulate 1752 
pollution in the Elefsis Gulf, Greece. Mar Pollut Bull 1979, 10, 287–291 DOI: 1753 
10.1016/0025-326X(79)90198-X. 1754 
 1755 

(122)  Gómez-Paccard, M.; McIntosh, G.; Villasante, V.; Osete, M. L.; Rodriguez-Fernández, 1756 
J.; Gómez-Sal, J. C. Low-temperature and high magnetic field measurements of 1757 
atmospheric particulate matter. J Magn Magn Mater 2004, 272-276, 2420–2421 DOI: 1758 
10.1016/j.jmmm.2003.12.845. 1759 
 1760 

(123)  Bućko, M. S.; Magiera, T.; Johanson, B.; Petrovský, E.; Pesonen, L. J. Identification of 1761 
magnetic particulates in road dust accumulated on roadside snow using magnetic, 1762 
geochemical and micro-morphological analyses. Environ Pollut 2011, 159, 1266–1276 1763 
DOI: 10.1016/j.envpol.2011.01.030. 1764 
 1765 

(124)  Ares, A.; Aboal, J. R.; Carballeira, A.; Giordano, S.; Adamo, P.; Fernández, J. A. Moss 1766 
bag biomonitoring: a methodological review. Sci Total Environ 2012, 432, 143–158 1767 
DOI: 10.1016/j.scitotenv.2012.05.087. 1768 
 1769 

(125)  Aničić, M.; Tasić, M.; Frontasyeva, M. V.; Tomašević, M.; Rajšić, S.; Mijić, Z.; 1770 
Popović, A. Active moss biomonitoring of trace elements with Sphagnum girgensohnii 1771 
moss bags in relation to atmospheric bulk deposition in Belgrade, Serbia. Environ Pollut 1772 
2009, 157, 673–679 DOI: 10.1016/j.envpol.2008.08.003. 1773 
 1774 

(126)  Harmens, H.; Foan, L.; Simon, V.; Mills, G. Terrestrial mosses as biomonitors of 1775 
atmospheric POPs pollution: a review. Environ Pollut 2013, 173, 245–254 DOI: 1776 
10.1016/j.envpol.2012.10.005. 1777 
 1778 

(127)  Capozzi, F.; Giordano, S.; Di Palma, A.; Spagnuolo, V.; De Nicola, F.; Adamo, P. 1779 
Biomonitoring of atmospheric pollution by moss bags: Discriminating urban-rural 1780 
structure in a fragmented landscape. Chemosphere 2016, 149, 211–218 DOI: 1781 
10.1016/j.chemosphere.2016.01.065. 1782 
 1783 

(128)  Vuković, G.; Urošević, M. A.; Tomašević, M.; Samson, R.; Popović, A. Biomagnetic 1784 
monitoring of urban air pollution using moss bags (Sphagnum girgensohnii). Ecological 1785 
Indicators 2015, 52, 40–47 DOI: 10.1016/j.ecolind.2014.11.018. 1786 
 1787 

(129)  Goodman, G. T.; Roberts, T. M. Plants and soils as indicators of metals in the air. 1788 
Nature 1971, 231, 287–292 DOI: 10.1038/231287a0. 1789 

Page 54 of 66

ACS Paragon Plus Environment

Environmental Science & Technology



 55 

 1790 

(130)  Schaug, J.; Rambæk, J. P.; Steinnes, E.; Henry, R. C. Multivariate analysis of trace 1791 
element data from moss samples used to monitor atmospheric deposition. Atmospheric 1792 
Environment. Part A. General Topics 1990, 24, 2625–2631 DOI: 10.1016/0960-1793 
1686(90)90141-9. 1794 
 1795 

(131)  Steinnes, E.; Rambæk, J. P.; Hanssen, J. E. Large scale multi-element survey of 1796 
atmospheric deposition using naturally growing moss as biomonitor. Chemosphere 1797 
1992, 25, 735–752 DOI: 10.1016/0045-6535(92)90435-T. 1798 
 1799 

(132)  Adamo, P.; Giordano, S.; Sforza, A.; Bargagli, R. Implementation of airborne trace 1800 
element monitoring with devitalised transplants of Hypnum cupressiforme Hedw.: 1801 
assessment of temporal trends and element contribution by vehicular traffic in Naples 1802 
city. Environ Pollut 2011, 159, 1620–1628 DOI: 10.1016/j.envpol.2011.02.047. 1803 
 1804 

(133)  Goryainova, Z.; Vuković, G.; Urošević, M. A.; Vergel, K.; Ostrovnaya, T.; Frontasyeva, 1805 
M.; Zechmeister, H. Assessment of vertical element distribution in street canyons using 1806 
the moss Sphagnum girgensohnii: A case study in Belgrade and Moscow cities. Atmos 1807 
Pollut Res 2016, 7, 690–697 DOI: 10.1016/j.apr.2016.02.013. 1808 
 1809 

(134)  Tretiach, M.; Pittao, E.; Crisafulli, P.; Adamo, P. Influence of exposure sites on trace 1810 
element enrichment in moss-bags and characterization of particles deposited on the 1811 
biomonitor surface. Sci Total Environ 2011, 409, 822–830 DOI: 1812 
10.1016/j.scitotenv.2010.10.026. 1813 
 1814 

(135)  Salo, H.; Paturi, P.; Mäkinen, J. Moss bag (Sphagnum papillosum) magnetic and 1815 
elemental properties for characterising seasonal and spatial variation in urban pollution. 1816 
Int. J. Environ. Sci. Technol. 2016, 13, 1515–1524 DOI: 10.1007/s13762-016-0998-z. 1817 
 1818 

(136)  Marié, D. C.; Chaparro, M. A. E.; Irurzun, M. A.; Lavornia, J. M.; Marinelli, C.; 1819 
Cepeda, R.; Böhnel, H. N.; Castañeda Miranda, A. G.; Sinito, A. M. Magnetic mapping 1820 
of air pollution in Tandil city (Argentina) using the lichen Parmotrema pilosum as 1821 
biomonitor. Atmos Pollut Res 2016, 7, 513–520 DOI: 10.1016/j.apr.2015.12.005. 1822 
 1823 

(137)  Fabian, K.; Reimann, C.; McEnroe, S. A.; Willemoes-Wissing, B. Magnetic properties 1824 
of terrestrial moss (Hylocomium splendens) along a north-south profile crossing the city 1825 
of Oslo, Norway. Sci Total Environ 2011, 409, 2252–2260 DOI: 1826 
10.1016/j.scitotenv.2011.02.018. 1827 
 1828 

(138)  Salo, H.; Bućko, M. S.; Vaahtovuo, E.; Limo, J.; Mäkinen, J.; Pesonen, L. J. 1829 

Page 55 of 66

ACS Paragon Plus Environment

Environmental Science & Technology



 56 

Biomonitoring of air pollution in SW Finland by magnetic and chemical measurements 1830 
of moss bags and lichens. J Geochem Explor 2012, 115, 69–81 DOI: 1831 
10.1016/j.gexplo.2012.02.009. 1832 
 1833 

(139)  Vuković, G.; Urošević, M. A.; Goryainova, Z.; Pergal, M.; Škrivanj, S.; Samson, R.; 1834 
Popović, A. Active moss biomonitoring for extensive screening of urban air pollution: 1835 
Magnetic and chemical analyses. Sci Total Environ 2015, 521-522, 200–210 DOI: 1836 
10.1016/j.scitotenv.2015.03.085. 1837 
 1838 

(140)  Adamo, P.; Crisafulli, P.; Giordano, S.; Minganti, V.; Modenesi, P.; Monaci, F.; Pittao, 1839 
E.; Tretiach, M.; Bargagli, R. Lichen and moss bags as monitoring devices in urban 1840 
areas. Part II: trace element content in living and dead biomonitors and comparison with 1841 
synthetic materials. Environ Pollut 2007, 146, 392–399 DOI: 1842 
10.1016/j.envpol.2006.03.047. 1843 
 1844 

(141)  Paoli, L.; Winkler, A.; Guttová, A.; Sagnotti, L.; Grassi, A.; Lackovičová, A.; Senko, D.; 1845 
Loppi, S. Magnetic properties and element concentrations in lichens exposed to airborne 1846 
pollutants released during cement production. Environ Sci Pollut Res Int 2016, 13, 1847 
12063–12080 DOI: 10.1007/s11356-016-6203-6. 1848 
 1849 

(142)  Culicov, O. A.; Yurukova, L. Comparison of element accumulation of different moss- 1850 
and lichen-bags, exposed in the city of Sofia (Bulgaria). J Atmos Chem 2006, 55, 1–12 1851 
DOI: 10.1007/s10874-005-9002-x. 1852 
 1853 

(143)  Chaparro, M. A. E.; Lavornia, J. M.; Chaparro, M. A. E.; Sinito, A. M. Biomonitors of 1854 
urban air pollution: Magnetic studies and SEM observations of corticolous foliose and 1855 
microfoliose lichens and their suitability for magnetic monitoring. Environ Pollut 2013, 1856 
172, 61–69 DOI: 10.1016/j.envpol.2012.08.006. 1857 
 1858 

(144)  Häffner, E.; Lomský, B.; Hynek, V.; Hällgren, J. E.; Batič, F.; Pfanz, H. Air Pollution 1859 
and Lichen Physiology. Physiological Responses of Different Lichens in a Transplant 1860 
Experiment Following an SO2-Gradient. Water, Air, and Soil Pollution 2001, 131, 185–1861 
201. 1862 
 1863 

(145)  Coskun, M.; Steinnes, E.; Coskun, M.; Cayir, A. Comparison of epigeic moss (Hypnum 1864 
cupressiforme) and lichen (Cladonia rangiformis) as biomonitor species of atmospheric 1865 
metal deposition. Bull Environ Contam Toxicol 2009, 82, 1–5 DOI: 10.1007/s00128-1866 
008-9491-9. 1867 
 1868 

(146)  Bačkor, M.; Loppi, S. Interactions of lichens with heavy metals. Biol. Plant. 2009, 53, 1869 
214–222 DOI: 10.1007/s10535-009-0042-y. 1870 

Page 56 of 66

ACS Paragon Plus Environment

Environmental Science & Technology



 57 

 1871 

(147)  Di Palma, A.; Crespo Pardo, D.; Spagnuolo, V.; Adamo, P.; Bargagli, R.; Cafasso, D.; 1872 
Capozzi, F.; Aboal, J. R.; González, A. G.; Pokrovsky, O.; et al. Molecular and chemical 1873 
characterization of a Sphagnum palustre clone: Key steps towards a standardized and 1874 
sustainable moss bag technique. Ecological Indicators 2016, 71, 388–397 DOI: 1875 
10.1016/j.ecolind.2016.06.044. 1876 
 1877 

(148)  Sæbø, A.; Popek, R.; Nawrot, B.; Hanslin, H. M.; Gawronska, H.; Gawronski, S. W. 1878 
Plant species differences in particulate matter accumulation on leaf surfaces. Sci Total 1879 
Environ 2012, 427-428, 347–354 DOI: 10.1016/j.scitotenv.2012.03.084. 1880 
 1881 

(149)  Dzierzanowski, K.; Popek, R.; Gawrońska, H.; Saebø, A.; Gawroński, S. W. Deposition 1882 
of particulate matter of different size fractions on leaf surfaces and in waxes of urban 1883 
forest species. Int J Phytoremediation 2011, 13, 1037–1046 DOI: 1884 
10.1080/15226514.2011.552929. 1885 
 1886 

(150)  Weber, F.; Kowarik, I.; Säumel, I. Herbaceous plants as filters: immobilization of 1887 
particulates along urban street corridors. Environ Pollut 2014, 186, 234–240 DOI: 1888 
10.1016/j.envpol.2013.12.011. 1889 
 1890 

(151)  Terzaghi, E.; Wild, E.; Zacchello, G.; Cerabolini, B. E. L.; Jones, K. C.; Di Guardo, A. 1891 
Forest Filter Effect: Role of leaves in capturing/releasing air particulate matter and its 1892 
associated PAHs. Atmos Environ 2013, 74, 378–384 DOI: 1893 
10.1016/j.atmosenv.2013.04.013. 1894 
 1895 

(152)  Nowak, D. J.; Crane, D. E.; Stevens, J. C. Air pollution removal by urban trees and 1896 
shrubs in the United States. Urban Forestry & Urban Greening 2006, 4, 115–123 DOI: 1897 
10.1016/j.ufug.2006.01.007. 1898 
 1899 

(153)  Popek, R.; Gawrońska, H.; Wrochna, M.; Gawroński, S. W.; Saebø, A. Particulate 1900 
matter on foliage of 13 woody species: deposition on surfaces and phytostabilisation in 1901 
waxes--a 3-year study. Int J Phytoremediation 2013, 15, 245–256 DOI: 1902 
10.1080/15226514.2012.694498. 1903 
 1904 

(154)  Janhäll, S. Review on urban vegetation and particle air pollution – Deposition and 1905 
dispersion. Atmos Environ 2015, 105, 130–137 DOI: 10.1016/j.atmosenv.2015.01.052. 1906 
 1907 

(155)  Schaubroeck, T.; Deckmyn, G.; Neirynck, J.; Staelens, J.; Adriaenssens, S.; Dewulf, J.; 1908 
Muys, B.; Verheyen, K. Multilayered modeling of particulate matter removal by a 1909 
growing forest over time, from plant surface deposition to washoff via rainfall. Environ 1910 

Page 57 of 66

ACS Paragon Plus Environment

Environmental Science & Technology



 58 

Sci Technol 2014, 48, 10785–10794 DOI: 10.1021/es5019724. 1911 
 1912 

(156)  Schaedlich, G. Magnetic susceptibility in conifer needles as indicator of fly ash 1913 
deposition. Fuel and Energy Abstracts 1995, 36, 463. 1914 
 1915 

(157)  Wang, L.; Gong, H.; Liao, W.; Wang, Z. Accumulation of particles on the surface of 1916 
leaves during leaf expansion. Sci Total Environ 2015, 532, 420–434 DOI: 1917 
10.1016/j.scitotenv.2015.06.014. 1918 
 1919 

(158)  Beckett, K. P.; Freer-Smith, P. H.; Taylor, G. Urban woodlands: their role in reducing 1920 
the effects of particulate pollution. Environ Pollut 1998, 99, 347–360. 1921 
 1922 

(159)  Grote, R.; Samson, R.; Alonso, R.; Amorim, J. H.; Cariñanos, P.; Churkina, G.; Fares, 1923 
S.; Thiec, D. L.; Niinemets, Ü.; Mikkelsen, T. N.; et al. Functional traits of urban trees: 1924 
air pollution mitigation potential. Front Ecol Environ 2016, 14, 543–550 DOI: 1925 
10.1002/fee.1426. 1926 
 1927 

(160)  Przybysz, A.; Sæbø, A.; Hanslin, H. M.; Gawroński, S. W. Accumulation of particulate 1928 
matter and trace elements on vegetation as affected by pollution level, rainfall and the 1929 
passage of time. Sci Total Environ 2014, 481, 360–369 DOI: 1930 
10.1016/j.scitotenv.2014.02.072. 1931 
 1932 

(161)  Hofman, J.; Bartholomeus, H.; Janssen, S.; Calders, K.; Wuyts, K.; Van Wittenberghe, 1933 
S.; Samson, R. Influence of tree crown characteristics on the local PM10 distribution 1934 
inside an urban street canyon in Antwerp (Belgium): a model and experimental 1935 
approach. Urban Forestry & Urban Greening 2016. 1936 
 1937 

(162)  Zhang, C.; Huang, B.; Li, Z.; Liu, H. Magnetic properties of high-road-side pine tree 1938 
leaves in Beijing and their environmental significance. Chinese Sci Bull 2006, 51, 3041–1939 
3052 DOI: 10.1007/s11434-006-2189-7. 1940 
 1941 

(163)  Szönyi, M.; Sagnotti, L.; Hirt, A. M. A refined biomonitoring study of airborne 1942 
particulate matter pollution in Rome, with magnetic measurements onQuercus Ilex tree 1943 
leaves. Geophys. J. Int. 2008, 173, 127–141 DOI: 10.1111/j.1365-246X.2008.03715.x. 1944 
 1945 

(164)  Shepherd, T.; Wynne Griffiths, D. The effects of stress on plant cuticular waxes. New 1946 
Phytol 2006, 171, 469–499 DOI: 10.1111/j.1469-8137.2006.01826.x. 1947 
 1948 

(165)  Hofman, J.; Stokkaer, I.; Snauwaert, L.; Samson, R. Spatial distribution assessment of 1949 

Page 58 of 66

ACS Paragon Plus Environment

Environmental Science & Technology



 59 

particulate matter in an urban street canyon using biomagnetic leaf monitoring of tree 1950 
crown deposited particles. Environ Pollut 2013, 183, 123–132 DOI: 1951 
10.1016/j.envpol.2012.09.015. 1952 
 1953 

(166)  Szönyi, M.; Sagnotti, L.; Hirt, A. M. On leaf magnetic homogeneity in particulate matter 1954 
biomonitoring studies. Geophys. Res. Lett. 2007, 34, 1944–8007 DOI: 1955 
10.1029/2006GL029076. 1956 
 1957 

(167)  Harrison, P. M.; Arosio, P. The ferritins: molecular properties, iron storage function and 1958 
cellular regulation. Biochimica et Biophysica Acta (BBA) - Bioenergetics 1996, 1275, 1959 
161–203 DOI: 10.1016/0005-2728(96)00022-9. 1960 
 1961 

(168)  Liao, X.; Yun, S.; Zhao, G. Structure, function, and nutrition of phytoferritin: a newly 1962 
functional factor for iron supplement. Crit Rev Food Sci Nutr 2014, 54, 1342–1352 DOI: 1963 
10.1080/10408398.2011.635914. 1964 
 1965 

(169)  Størmer, F. C.; Wielgolaski, F. E. Are magnetite and ferritin involved in plant memory? 1966 
Rev Environ Sci Biotechnol 2010, 9, 105–107 DOI: 10.1007/s11157-010-9203-x. 1967 
 1968 

(170)  Gajdardziska-Josifovska, M.; McClean, R. G.; Schofield, M. A.; Sommer, C. V.; Kean, 1969 
W. F. Discovery of nanocrystalline botanical magnetite. Eur.J.Mineral. 2001, 13, 863–1970 
870 DOI: 10.1127/0935-1221/2001/0013/0863. 1971 
 1972 

(171)  Gillooly, S. E.; Shmool, J. L. C.; Michanowicz, D. R.; Bain, D. J.; Cambal, L. K.; 1973 
Shields, K. N.; Clougherty, J. E. Framework for using deciduous tree leaves as 1974 
biomonitors for intraurban particulate air pollution in exposure assessment. Environ 1975 
Monit Assess 2016, 188, 479 DOI: 10.1007/s10661-016-5482-1. 1976 
 1977 

(172)  Tomasevic, M.; Anicic, M. Trace element content in urban tree leaves and SEM-EDAX 1978 
characterization of deposited particles. Facta Univ., Phys. Chem. Technol. 2010, 8, 1–13 1979 
DOI: 10.2298/FUPCT1001001T. 1980 
 1981 

(173)  Drava, G.; Brignole, D.; Giordani, P.; Minganti, V. Urban and industrial contribution to 1982 
trace elements in the atmosphere as measured in holm oak bark. Atmos Environ 2016, 1983 
144, 370–375 DOI: 10.1016/j.atmosenv.2016.09.009. 1984 
 1985 

(174)  Faggi, A. M.; Fujiwara, F.; Anido, C.; Perelman, P. E. Use of tree bark for comparing 1986 
environmental pollution in different sites from Buenos Aires and Montevideo. Environ 1987 
Monit Assess 2011, 178, 237–245 DOI: 10.1007/s10661-010-1685-z. 1988 
 1989 

Page 59 of 66

ACS Paragon Plus Environment

Environmental Science & Technology



 60 

(175)  Roganovic, D.; Djurovic, D.; Blagojevic, N.; Vujacic, A. Investigation of the Heavy 1990 
Metals content in Cypress Tree bark (Cupressus sempervirens L. var. pyramidalis) on 1991 
the Territory of the Central and Southern part of Montenegro. Research Journal of 1992 
Chemistry and Environment 2013, 17, 3–7. 1993 
 1994 

(176)  Huhn, G.; Schulz, H.; Stärk, H.-J.; Tölle, R.; Schüürmann, G. Evaluation of regional 1995 
heavy metal deposition by multivariate analysis of element contents in pine tree barks. 1996 
Water Air Soil Pollut 1995, 84, 367–383 DOI: 10.1007/BF00475349. 1997 
 1998 

(177)  Kletetschka, G.; Žila, V.; Wasilewski, P. J. Magnetic Anomalies on the Tree Trunks. 1999 
Studia Geophysica et Geodaetica 2003, 47, 371–379. 2000 
 2001 

(178)  Zhang, C.; Huang, B.; Piper, J. D. A.; Luo, R. Biomonitoring of atmospheric particulate 2002 
matter using magnetic properties of Salix matsudana tree ring cores. Sci Total Environ 2003 
2008, 393, 177–190 DOI: 10.1016/j.scitotenv.2007.12.032. 2004 
 2005 

(179)  Kaye, R.     Assessment  of the distribution of particulate matter in the trunks of Platanus 2006 
x  acerifolia (London plane) in Antwerp, through analyses of the magnetic  properties of 2007 
wood cores  . Master thesis, 2015. 2008 
 2009 

(180)  Wuyts, K.; Hofman, J.; Van Wittenberghe, S.; Samson, R.     A new  opportunity for 2010 
biomagnetic monitoring of particulate pollution in an urban  environment using tree 2011 
branches  . Atmos Environ 2016. 2012 
 2013 

(181)  Catinon, M.; Ayrault, S.; Clocchiatti, R.; Boudouma, O.; Asta, J.; Tissut, M.; Ravanel, P. 2014 
The anthropogenic atmospheric elements fraction: A new interpretation of elemental 2015 
deposits on tree barks. Atmos Environ 2009, 43, 1124–1130 DOI: 2016 
10.1016/j.atmosenv.2008.11.004. 2017 
 2018 

(182)  Berlizov, A. N.; Blum, O. B.; Filby, R. H.; Malyuk, I. A.; Tryshyn, V. V. Testing 2019 
applicability of black poplar (Populus nigra L.) bark to heavy metal air pollution 2020 
monitoring in urban and industrial regions. Sci Total Environ 2007, 372, 693–706 DOI: 2021 
10.1016/j.scitotenv.2006.10.029. 2022 
 2023 

(183)  Pacheco, A. M. G.; Barros, L. I. C.; Freitas, M. C.; Reis, M. A.; Hipólito, C.; Oliveira, 2024 
O. R. An evaluation of olive-tree bark for the biological monitoring of airborne trace-2025 
elements at ground level. Environ Pollut 2002, 120, 79–86 DOI: 10.1016/S0269-2026 
7491(02)00130-6. 2027 
 2028 

(184)  Matin, G.; Kargar, N.; Buyukisik, H. B. Bio-monitoring of cadmium, lead, arsenic and 2029 

Page 60 of 66

ACS Paragon Plus Environment

Environmental Science & Technology



 61 

mercury in industrial districts of Izmir, Turkey by using honey bees, propolis and pine 2030 
tree leaves. Ecol Eng 2016, 90, 331–335 DOI: 10.1016/j.ecoleng.2016.01.035. 2031 
 2032 

(185)  van der Steen, J. J. M.; de Kraker, J.; Grotenhuis, T. Spatial and temporal variation of 2033 
metal concentrations in adult honeybees (Apis mellifera L.). Environ Monit Assess 2012, 2034 
184, 4119–4126 DOI: 10.1007/s10661-011-2248-7. 2035 
 2036 

(186)  Badiou-Bénéteau, A.; Benneveau, A.; Géret, F.; Delatte, H.; Becker, N.; Brunet, J. L.; 2037 
Reynaud, B.; Belzunces, L. P. Honeybee biomarkers as promising tools to monitor 2038 
environmental quality. Environ Int 2013, 60, 31–41 DOI: 10.1016/j.envint.2013.07.002. 2039 
 2040 

(187)  Celli, G.; Maccagnani, B. Honey bees as bioindicators of environmental pollution. 2041 
Bulletin of Insectology 2003, 56, 137–139. 2042 
 2043 

(188)  Kuterbach, D. A.; Walcott, B.; Reeder, R. J.; Frankel, R. B. Iron-Containing Cells in the 2044 
Honey Bee (Apis mellifera). Science 1982, 218, 695–697 DOI: 2045 
10.1126/science.218.4573.695. 2046 
 2047 

(189)  MacFadden, B. J.; Jones, D. S. Magnetic Butterflies A Case Study of the Monarch 2048 
(Lepidoptera, Danaidae). In Magnetite Biomineralization and Magnetoreception in 2049 
Organisms; Kirschvink, J. L.; Jones, D. S.; MacFadden, B. J., Eds.; Topics in 2050 
Geobiology; Springer US: Boston, MA, 1996; Vol. 5, pp. 407–415. 2051 
 2052 

(190)  Jungreis, S. A. Biomagnetism: An Orientation Mechanism in Migrating Insects? Fla. 2053 
Entomol. 1987, 70, 277 DOI: 10.2307/3495160. 2054 
 2055 

(191)  Maher, B. A. Magnetite biomineralization in termites. Proceedings of the Royal Society 2056 
B: Biological Sciences 1998, 265, 733–737 DOI: 10.1098/rspb.1998.0354. 2057 
 2058 

(192)  Vácha, M. Laboratory behavioural assay of insect magnetoreception: magnetosensitivity 2059 
of Periplaneta americana. J Exp Biol 2006, 209, 3882–3886 DOI: 10.1242/jeb.02456. 2060 
 2061 

(193)  Válková, T.; Vácha, M. How do honeybees use their magnetic compass? Can they see 2062 
the North? Bull Entomol Res 2012, 102, 461–467 DOI: 10.1017/S0007485311000824. 2063 
 2064 

(194)  Verhelst, J. Influence of the variation in urban habitat quality on cultivated honey: a 2065 
holistic approach (dutch). Master thesis, 2014. 2066 
 2067 

Page 61 of 66

ACS Paragon Plus Environment

Environmental Science & Technology



 62 

(195)  Hussein, M. A.; Obuid-Allah, A. H.; Mohammad, A. H.; Scott-Fordsmand, J. J.; Abd El-2068 
Wakeil, K. F. Seasonal variation in heavy metal accumulation in subtropical population 2069 
of the terrestrial isopod, Porcellio laevis. Ecotoxicol Environ Saf 2006, 63, 168–174 2070 
DOI: 10.1016/j.ecoenv.2005.01.005. 2071 
 2072 

(196)  Drobne, D. Terrestrial isopods-a good choice for toxicity testing of pollutants in the 2073 
terrestrial environment. Environ Toxicol Chem 1997, 16, 1159–1164 DOI: 2074 
10.1002/etc.5620160610. 2075 
 2076 

(197)  Gál, J.; Markiewicz-Patkowska, J.; Hursthouse, A.; Tatner, P. Metal uptake by woodlice 2077 
in urban soils. Ecotoxicol Environ Saf 2008, 69, 139–149 DOI: 2078 
10.1016/j.ecoenv.2007.01.002. 2079 
 2080 

(198)  Raessler, M.; Rothe, J.; Hilke, I. Accurate determination of Cd, Cr, Cu and Ni in 2081 
woodlice and their skins--is moulting a means of detoxification? Sci Total Environ 2005, 2082 
337, 83–90 DOI: 10.1016/j.scitotenv.2004.07.008. 2083 
 2084 

(199)  Witzel, B. Uptake, Storage and Loss of Cadmium and Lead in the Woodlouse Porcellio 2085 
scaber (Crustacea, Isopoda). Water Air Soil Pollut 1998, 108, 51–68. 2086 
 2087 

(200)  Michiels, F. Biomonitoring of magnetisable particles in particulate matter by means of 2088 
Isopoda samples. Master thesis, University of Antwerp, 2016. 2089 
 2090 

(201)  Goossens, W.; Goovaerts, P.; De Cannière, S.; De Ryck, A. Woodlice as bioindicator for 2091 
atmospheric and soil pollution (dutch). 2016. 2092 
 2093 

(202)  Muxworthy, A. R. Investigation of magnetic particulate matter inside animals’ lung 2094 
tissue: preliminary results. Stud Geophys Geod 2015, 59, 628–634 DOI: 2095 
10.1007/s11200-014-0777-6. 2096 
 2097 

(203)  Kirschvink, J. L.; Kobayashi-Kirschvink, A.; Woodford, B. J. Magnetite 2098 
biomineralization in the human brain. Proc Natl Acad Sci U S A 1992, 89, 7683–7687. 2099 
 2100 

(204)  Dunn, J. R.; Fuller, M.; Zoeger, J.; Dobson, J.; Heller, F.; Hammann, J.; Caine, E.; 2101 
Moskowitz, B. M. Magnetic material in the human hippocampus. Brain Res Bull 1995, 2102 
36, 149–153 DOI: 10.1016/0361-9230(94)00182-Z. 2103 
 2104 

(205)  Grassi-Schultheiss, P. P.; Heller, F.; Dobson, J. Analysis of magnetic material in the 2105 
human heart, spleen and liver. Biometals 1997, 10, 351–355. 2106 

Page 62 of 66

ACS Paragon Plus Environment

Environmental Science & Technology



 63 

 2107 

(206)  Mutti, A.; Corradi, M. Recent developments in human biomonitoring: non-invasive 2108 
assessment of target tissue dose and effects of pneumotoxic metals. Med Lav 2006, 97, 2109 
199–206. 2110 
 2111 

(207)  Cohen, D. Ferromagnetic contamination in the lungs and other organs of the human 2112 
body. Science 1973, 180, 745–748. 2113 
 2114 

(208)  Rassi, D.; Timbrell, V.; Sewaidan, H. Al-; Davies, S.; Taikina-aho, O.; Paakko, P. A 2115 
Study of Magnetic Contaminants in Post Mortem Lung Samples from Asbestos Miners. 2116 
In Advances in Biomagnetism; Williamson, S. J.; Hoke, M.; Stroink, G.; Kotani, M., 2117 
Eds.; Springer US: Boston, MA, 1990; pp. 485–488. 2118 
 2119 

(209)  Forsman, M.; Högstedt, P. Welding Fume Retention in Lungs of Previously Unexposed 2120 
Subjects. In Advances in Biomagnetism; Williamson, S. J.; Hoke, M.; Stroink, G.; 2121 
Kotani, M., Eds.; Springer US: Boston, MA, 1990; pp. 477–480. 2122 
 2123 

(210)  Juntilla, M. L.; Kalliomäki, K.; Kalliomäki, P. L.; Aittoniemi, K. A mobile 2124 
magnetopneumograph with dust quality sensing. In Biomagnetism: Applications and 2125 
Theory; Weinberg, H.; Stroink, G.; Katila, T., Eds.; Pergamon Press: New York, 1985; 2126 
pp. 411–415. 2127 
 2128 

(211)  Cohen, D.; Arai, S. F.; Brain, J. D. Smoking impairs long-term dust clearance from the 2129 
lung. Science 1979, 204, 514–517. 2130 
 2131 

(212)  Le Gros, V.; Lemaigre, D.; Suon, C.; Pozzi, J. P.; Liot, F. Magnetopneumography: a 2132 
general review. Eur Respir J 1989, 2, 149–159. 2133 
 2134 

(213)  Sant’Ovaia, H.; Marques, G.; Santos, A.; Gomes, C.; Rocha, A. Magnetic susceptibility 2135 
and isothermal remanent magnetization in human tissues: a study case. Biometals 2015, 2136 
28, 951–958 DOI: 10.1007/s10534-015-9879-z. 2137 
 2138 

(214)  Plascencia-Villa, G.; Ponce, A.; Collingwood, J. F.; Arellano-Jiménez, M. J.; Zhu, X.; 2139 
Rogers, J. T.; Betancourt, I.; José-Yacamán, M.; Perry, G. High-resolution analytical 2140 
imaging and electron holography of magnetite particles in amyloid cores of Alzheimer’s 2141 
disease. Sci Rep 2016, 6, 24873 DOI: 10.1038/srep24873. 2142 
 2143 

(215)  Ranft, U.; Schikowski, T.; Sugiri, D.; Krutmann, J.; Krämer, U. Long-term exposure to 2144 
traffic-related particulate matter impairs cognitive function in the elderly. Environ Res 2145 

Page 63 of 66

ACS Paragon Plus Environment

Environmental Science & Technology



 64 

2009, 109, 1004–1011 DOI: 10.1016/j.envres.2009.08.003. 2146 
 2147 

(216)  Chen, H.; Kwong, J. C.; Copes, R.; Tu, K.; Villeneuve, P. J.; van Donkelaar, A.; Hystad, 2148 
P.; Martin, R. V.; Murray, B. J.; Jessiman, B.; et al. Living near major roads and the 2149 
incidence of dementia, Parkinson’s disease, and multiple sclerosis: a population-based 2150 
cohort study. The Lancet 2017, 389, 718–726 DOI: 10.1016/S0140-6736(16)32399-6. 2151 
 2152 

(217)  Møller, K. L.; Thygesen, L. C.; Schipperijn, J.; Loft, S.; Bonde, J. P.; Mikkelsen, S.; 2153 
Brauer, C. Occupational exposure to ultrafine particles among airport employees--2154 
combining personal monitoring and global positioning system. PLoS ONE 2014, 9, 2155 
e106671 DOI: 10.1371/journal.pone.0106671. 2156 
 2157 

(218)  Dons, E.; Laeremans, M.; Orjuela, J. P.; Avila-Palencia, I.; Carrasco-Turigas, G.; Cole-2158 
Hunter, T.; Anaya-Boig, E.; Standaert, A.; De Boever, P.; Nawrot, T.; et al. Wearable 2159 
Sensors for Personal Monitoring and Estimation of Inhaled Traffic-Related Air 2160 
Pollution: Evaluation of Methods. Environ Sci Technol 2017, 51, 1859–1867 DOI: 2161 
10.1021/acs.est.6b05782. 2162 
 2163 

(219)  Dons, E.; Temmerman, P.; Van Poppel, M.; Bellemans, T.; Wets, G.; Int Panis, L. Street 2164 
characteristics and traffic factors determining road users’ exposure to black carbon. Sci 2165 
Total Environ 2013, 447, 72–79 DOI: 10.1016/j.scitotenv.2012.12.076. 2166 
 2167 

(220)  Int Panis, L.; de Geus, B.; Vandenbulcke, G.; Willems, H.; Degraeuwe, B.; Bleux, N.; 2168 
Mishra, V.; Thomas, I.; Meeusen, R. Exposure to particulate matter in traffic: A 2169 
comparison of cyclists and car passengers. Atmos Environ 2010, 44, 2263–2270 DOI: 2170 
10.1016/j.atmosenv.2010.04.028. 2171 
 2172 

(221)  Moreno, T.; Reche, C.; Rivas, I.; Cruz Minguillón, M.; Martins, V.; Vargas, C.; 2173 
Buonanno, G.; Parga, J.; Pandolfi, M.; Brines, M.; et al. Urban air quality comparison 2174 
for bus, tram, subway and pedestrian commutes in Barcelona. Environ Res 2015, 142, 2175 
495–510 DOI: 10.1016/j.envres.2015.07.022. 2176 
 2177 

(222)  Jiang, Q.; Kresin, F.; Bregt, A. K.; Kooistra, L.; Pareschi, E.; van Putten, E.; Volten, H.; 2178 
Wesseling, J. Citizen Sensing for Improved Urban Environmental Monitoring. Journal 2179 
of Sensors 2016, 2016, 1–9 DOI: 10.1155/2016/5656245. 2180 
 2181 

(223)  Liu, Q.; Roberts, A. P.; Larrasoaña, J. C.; Banerjee, S. K.; Guyodo, Y.; Tauxe, L.; 2182 
Oldfield, F. Environmental magnetism: Principles and applications. Rev. Geophys. 2012, 2183 
50, 1944–9208 DOI: 10.1029/2012RG000393. 2184 
 2185 

Page 64 of 66

ACS Paragon Plus Environment

Environmental Science & Technology



 65 

(224)  Spassov, S.; Egli, R.; Heller, F.; Nourgaliev, D. K.; Hannam, J. Magnetic quantification 2186 
of urban pollution sources in atmospheric particulate matter. Geophys. J. Int. 2004, 159, 2187 
555–564 DOI: 10.1111/j.1365-246X.2004.02438.x. 2188 
 2189 

(225)  Egli, R. Analysis of the field dependence of remanent magnetization curves. J. Geophys. 2190 
Res. 2003, 108, 2156–2202 DOI: 10.1029/2002JB002023. 2191 
 2192 

 2193 

Page 65 of 66

ACS Paragon Plus Environment

Environmental Science & Technology



x

PM

NOx

PAHs
Page 66 of 66

ACS Paragon Plus Environment

Environmental Science & Technology


