The lattice of closed ideals in the Banach algebra of operators on a certain dual Banach space

Niels Jakob Laustsen, Thomas Schlumprecht, and András Zsák

Abstract

We determine the closed operator ideals of the Banach space $\left(\ell_{2}^{1} \oplus \ell_{2}^{2} \oplus \cdots \oplus \ell_{2}^{n} \oplus \cdots\right)_{\ell_{1}}$.

2000 Mathematics Subject Classification: primary 47L10, 46H10; secondary 47L20, 46B45. Key words: Ideal lattice, operator, Banach space, Banach algebra. Appeared in Journal of Operator Theory 56 (2006), 391-402.

1 Introduction

The aim of this note is to classify the closed ideals in the Banach algebra $\mathscr{B}(F)$ of (bounded, linear) operators on the Banach space

$$
\begin{equation*}
F=\left(\bigoplus_{n \in \mathbb{N}} \ell_{2}^{n}\right)_{\ell_{1}} \tag{1.1}
\end{equation*}
$$

More precisely, we shall show that there are exactly four closed ideals in $\mathscr{B}(F)$, namely $\{0\}$, the compact operators $\mathscr{K}(F)$, the closure $\overline{\mathscr{G}}_{\ell_{1}}(F)$ of the set of operators factoring through ℓ_{1}, and $\mathscr{B}(F)$ itself.

The collection of Banach spaces E for which a classification of the closed ideals in $\mathscr{B}(E)$ exists is very sparse. Indeed, the following list appears to be the complete list of such spaces.
(i) For a finite-dimensional Banach space $E, \mathscr{B}(E) \cong M_{n}$, where n is the dimension of E, and so it is ancient folklore that $\mathscr{B}(E)$ is simple in this case.
(ii) In 1941 Calkin [2] classified all the ideals in $\mathscr{B}\left(\ell_{2}\right)$. In particular he proved that there are only three closed ideals in $\mathscr{B}\left(\ell_{2}\right)$, namely $\{0\}, \mathscr{K}\left(\ell_{2}\right)$, and $\mathscr{B}\left(\ell_{2}\right)$.
(iii) In 1960 Gohberg, Markus, and Feldman [5] extended Calkin's theorem to the other classical sequence spaces. More precisely, they showed that $\{0\}, \mathscr{K}(E)$, and $\mathscr{B}(E)$ are the only closed ideals in $\mathscr{B}(E)$ for each of the spaces $E=c_{0}$ and $E=\ell_{p}$, where $1 \leqslant p<\infty$.
(iv) Later in the 1960's Gramsch [6] and Luft [10] independently extended Calkin's theorem in a different direction by classifying all the closed ideals in $\mathscr{B}(H)$ for each Hilbert space H (not necessarily separable). In particular, they showed that these ideals are well-ordered by inclusion.
(v) In 2003 Laustsen, Loy, and Read [8] proved that, for the Banach space

$$
\begin{equation*}
E=\left(\bigoplus_{n \in \mathbb{N}} \ell_{2}^{n}\right)_{c_{0}} \tag{1.2}
\end{equation*}
$$

there are exactly four closed ideals in $\mathscr{B}(E)$, namely $\{0\}$, the compact operators $\mathscr{K}(E)$, the closure $\overline{\mathscr{G}}_{c_{0}}(E)$ of the set of operators factoring through c_{0}, and $\mathscr{B}(E)$ itself.
Note that (1.1) is the dual Banach space of (1.2), and so the result of this note can be seen as a 'dualization' of [8]. In fact, our strategy draws heavily on the methods introduced in [8]. However, the present case is more involved because in [8] it was possible to restrict attention to block-diagonal operators of a special kind. In the Banach space (1.1), however, one cannot even reduce to operators with a 'locally finite matrix' (due to the fact that the unit vector basis of ℓ_{1} is not shrinking), and so a new trick is required (see Remark 2.13 for details).
(vi) In 2004 Daws [4] extended Gramsch and Luft's result to the Gohberg-Markus-Feldman case by classifying the closed ideals in $\mathscr{B}(E)$ for $E=c_{0}(\mathbb{I})$ and $E=\ell_{p}(\mathbb{I})$, where \mathbb{I} is an index set of arbitrary cardinality and $1 \leqslant p<\infty$. Again, these ideals are well-ordered by inclusion.

2 The classification theorem

Throughout, all Banach spaces are assumed to be over the same scalar field \mathbb{K}, where $\mathbb{K}=\mathbb{R}$ or $\mathbb{K}=\mathbb{C}$. We denote by I_{E} the identity operator on the Banach space E.

We begin by recalling various definitions and results concerning ℓ_{1}-direct sums and operators between them.
$2.1 \ell_{1}$-direct sums. Let $\left(E_{n}\right)$ be a sequence of Banach spaces. We denote by $\left(\bigoplus E_{n}\right)_{\ell_{1}}$ or $\left(E_{1} \oplus E_{2} \oplus \cdots\right)_{\ell_{1}}$ the ℓ_{1}-direct sum of E_{1}, E_{2}, \ldots, that is, the collection of sequences $\left(x_{n}\right)$ such that $x_{n} \in E_{n}$ for each $n \in \mathbb{N}$ and

$$
\begin{equation*}
\left\|\left(x_{n}\right)\right\| \stackrel{\text { defn }}{=} \sum_{n=1}^{\infty}\left\|x_{n}\right\|<\infty . \tag{2.1}
\end{equation*}
$$

This is a Banach space for coordinate-wise defined vector space operations and norm given by (2.1).

Set $E=\left(\bigoplus E_{n}\right)_{\ell_{1}}$. For each $m \in \mathbb{N}$, we write J_{m}^{E} for the canonical embedding of E_{m} into E and Q_{m}^{E} for the canonical projection of E onto E_{m}. Both J_{m}^{E} and Q_{m}^{E} are operators of norm one; in fact, the former is an isometry, and the latter is a quotient map.

We use similar notation for finite direct sums.
2.2 Diagonal operators. For each $n \in \mathbb{N}$, let $T_{n}: E_{n} \rightarrow F_{n}$ be an operator, where E_{n} and F_{n} are Banach spaces. Suppose that sup $\left\|T_{n}\right\|<\infty$. Then we can define the diagonal operator

$$
\operatorname{diag}\left(T_{n}\right):\left(\bigoplus E_{n}\right)_{\ell_{1}} \rightarrow\left(\bigoplus F_{n}\right)_{\ell_{1}}, \quad\left(x_{n}\right) \mapsto\left(T_{n} x_{n}\right)
$$

Clearly, we have $\left\|\operatorname{diag}\left(T_{n}\right)\right\|=\sup \left\|T_{n}\right\|$. In the finite case, we also use the notation $T_{1} \oplus \cdots \oplus T_{n}$ for the diagonal operator from $\left(E_{1} \oplus \cdots \oplus E_{n}\right)_{\ell_{1}}$ to $\left(F_{1} \oplus \cdots \oplus F_{n}\right)_{\ell_{1}}$.
2.3 Definition. Let $T:\left(\bigoplus E_{n}\right)_{\ell_{1}} \rightarrow\left(\bigoplus F_{n}\right)_{\ell_{1}}$ be an operator, where $\left(E_{n}\right)$ and $\left(F_{n}\right)$ are sequences of Banach spaces. We associate with T the infinite matrix ($T_{m, n}$), where

$$
T_{m, n}=Q_{m}^{F} T J_{n}^{E}: \quad E_{n} \rightarrow F_{m} \quad(m, n \in \mathbb{N})
$$

The support of the $n^{\text {th }}$ column of T is

$$
\operatorname{colsupp}_{n}(T)=\left\{m \in \mathbb{N}: T_{m, n} \neq 0\right\} \quad(n \in \mathbb{N})
$$

We say that T has finite columns if each column has finite support.
The significance of operators with finite columns lies in the fact that, in the case where each of the spaces $E_{n}(n \in \mathbb{N})$ is finite-dimensional, given an operator $T:\left(\bigoplus E_{n}\right)_{\ell_{1}} \rightarrow$ $\left(\bigoplus F_{n}\right)_{\ell_{1}}$, there is a compact operator $K:\left(\bigoplus E_{n}\right)_{\ell_{1}} \rightarrow\left(\bigoplus F_{n}\right)_{\ell_{1}}$ such that $T+K$ has finite columns; in fact K can be picked with arbitrarily small norm (see [8, Lemma 2.7(i)]).

We next introduce a parameter n_{ε} that is at the heart of our main result (Theorem 2.12). It is the dual version of the parameter m_{ε} that was introduced in [8].
2.4 Definition. Let G be a closed subspace of a Hilbert space H. We denote by G^{\perp} the orthogonal complement of G in H, and write proj_{G} for the orthogonal projection of H onto G (so that proj_{G} is the idempotent operator on H with image G and kernel G^{\perp}).

Let $k \in \mathbb{N}$, let E be a Banach space, let H_{1}, \ldots, H_{k} be Hilbert spaces, and denote by \mathbb{N}_{0} the set of non-negative integers. For each operator $T: E \rightarrow\left(H_{1} \oplus \cdots \oplus H_{k}\right)_{\ell_{1}}$ and each $\varepsilon>0$, set

$$
n_{\varepsilon}(T)=\sup \left\{\begin{array}{ll}
\left\|\left(\operatorname{proj}_{G_{1}^{\perp}} \oplus \cdots \oplus \operatorname{proj}_{G_{k}^{\perp}}\right) T\right\|>\varepsilon \\
n \in \mathbb{N}_{0}: \quad \text { whenever } G_{j} \subset H_{j} \text { are subspaces } \\
\text { with } \operatorname{dim} G_{j} \leqslant n \text { for } j=1, \ldots, k
\end{array}\right\} \in \mathbb{N}_{0} \cup\{ \pm \infty\} .
$$

The parameter n_{ε} gives quantitative information on certain factorizations. This is the content of parts (i) and (ii) of Lemma 2.5, which are dual to the corresponding statements about the parameter m_{ε} in [8, Lemma 5.3]. We shall indeed prove parts (i) and (ii) via [8, Lemma 5.3], but would like to emphasize that their proofs are fairly elementary (and indeed we could have easily translated them into direct proofs here). The important point in [8] is the definition of m_{ε} itself. Part (iii) of Lemma 2.5 has no counterpart in [8]; it will be used to deal with the extra difficulty that on ℓ_{1}-direct sums one has to consider operators whose matrices may have infinite rows.
2.5 Lemma. Let $k \in \mathbb{N}$, let H, K_{1}, \ldots, K_{k} be Hilbert spaces, let $T: H \rightarrow\left(K_{1} \oplus \cdots \oplus K_{k}\right)_{\ell_{1}}$ be an operator, and let $0<\varepsilon<\|T\|$.
(i) Suppose that $n_{\varepsilon}(T)$ is finite. Then there exist a number $d \in \mathbb{N}$ and operators $R: H \rightarrow$ ℓ_{1}^{d} and $S: \ell_{1}^{d} \rightarrow\left(K_{1} \oplus \cdots \oplus K_{k}\right)_{\ell_{1}}$ such that $\|T-S R\| \leqslant \varepsilon,\|R\| \leqslant\|T\| \sqrt{n_{\varepsilon}(T)+1}$, and $\|S\| \leqslant 1$.
(ii) For each natural number $n \leqslant \frac{1}{2} n_{\varepsilon}(T)+1$, there exist operators $U: \ell_{2}^{n} \rightarrow H$ and $V:\left(K_{1} \oplus \cdots \oplus K_{k}\right)_{\ell_{1}} \rightarrow \ell_{2}^{n}$ such that $I_{\ell_{2}^{n}}=V T U,\|U\| \leqslant 1 / \varepsilon$, and $\|V\| \leqslant 1$.
(iii) Let $g \in \mathbb{N}$, let H_{0} be a closed subspace of finite codimension in H, and suppose that $n_{\varepsilon}(T) \geqslant \operatorname{dim} H_{0}^{\perp}+g$. Then $n_{\varepsilon}\left(\left.T\right|_{H_{0}}\right) \geqslant g$.

Proof. In [8, Definition 5.2(ii)] the quantity

$$
m_{\varepsilon}(W)=\sup \left\{\begin{array}{l}
\left\|W\left(\operatorname{proj}_{G_{1}^{\perp}} \oplus \cdots \oplus \operatorname{proj}_{G_{k}^{\perp}}\right)\right\|>\varepsilon \tag{2.2}\\
m \in \mathbb{N}_{0}: \quad \text { whenever } G_{j} \subset K_{j} \text { are subspaces } \\
\text { with } \operatorname{dim} G_{j} \leqslant m \text { for } j=1, \ldots, k
\end{array}\right\} \in \mathbb{N}_{0} \cup\{ \pm \infty\}
$$

is introduced for each operator $W:\left(K_{1} \oplus \cdots \oplus K_{k}\right)_{\ell_{\infty}} \rightarrow H$. Making standard identifications of dual spaces, we may regard the adjoint operator of $T: H \rightarrow\left(K_{1} \oplus \cdots \oplus K_{k}\right)_{\ell_{1}}$ as an operator $T^{*}:\left(K_{1} \oplus \cdots \oplus K_{k}\right)_{\ell_{\infty}} \rightarrow H$, where the subscript ℓ_{∞} indicates that we equip the direct sum with the norm

$$
\left\|\left(x_{1}, \ldots, x_{k}\right)\right\|=\max \left\{\left\|x_{1}\right\|, \ldots,\left\|x_{k}\right\|\right\} \quad\left(x_{1} \in K_{1}, \ldots, x_{k} \in K_{k}\right)
$$

It follows that we may insert $W=T^{*}$ in (2.2). Standard properties of adjoint operators show that

$$
\begin{equation*}
m_{\varepsilon}\left(T^{*}\right)=n_{\varepsilon}(T) . \tag{2.3}
\end{equation*}
$$

We use this identity and [8, Lemma 5.3] to prove (i) and (ii).
(i). Suppose that $n_{\varepsilon}(T)<\infty$. By (2.3) and [8, Lemma 5.3(i)], we can find a number $d \in \mathbb{N}$ and operators $A:\left(K_{1} \oplus \cdots \oplus K_{k}\right)_{\ell_{\infty}} \rightarrow \ell_{\infty}^{d}$ and $B: \ell_{\infty}^{d} \rightarrow H$ such that $\|A\| \leqslant 1$, $\|B\| \leqslant\|T\| \sqrt{n_{\varepsilon}(T)+1}$, and $\left\|T^{*}-B A\right\| \leqslant \varepsilon$. Dualizing this gives us operators $R=$ $B^{*}: H \rightarrow \ell_{1}^{d}$ and $S=A^{*}: \ell_{1}^{d} \rightarrow\left(K_{1} \oplus \cdots \oplus K_{k}\right)_{\ell_{1}}$ such that (i) holds because the adjoint operation is antimultiplicative and an operator has the same norm as its adjoint.
(ii). Suppose that $n \leqslant \frac{1}{2} n_{\varepsilon}(T)+1$. Then it follows from (2.3) and [8, Lemma 5.3(ii)] that there are operators $C: \ell_{2}^{n} \rightarrow\left(K_{1} \oplus \cdots \oplus K_{k}\right)_{\ell_{\infty}}$ and $D: H \rightarrow \ell_{2}^{n}$ such that $\|C\| \leqslant 1$, $\|D\| \leqslant 1 / \varepsilon$, and $I_{\ell_{2}^{n}}=D T^{*} C$. As before, we dualize this to obtain operators $U=D^{*}: \ell_{2}^{n} \rightarrow$ H and $V=C^{*}:\left(K_{1} \oplus \cdots \oplus K_{k}\right)_{\ell_{1}} \rightarrow \ell_{2}^{n}$ such that (ii) is satisfied.
(iii). For each $j=1, \ldots, k$, let G_{j} be a subspace of K_{j} with $\operatorname{dim} G_{j} \leqslant g$. Set $F_{j}=$ $G_{j}+Q_{j} T\left(H_{0}^{\perp}\right) \subset K_{j}$. Then F_{j} is finite-dimensional with $\operatorname{dim} F_{j} \leqslant n_{\varepsilon}(T)$, and so we can find a unit vector $x \in H$ such that $\left\|\left(\operatorname{proj}_{F_{1}^{\perp}} \oplus \cdots \oplus \operatorname{proj}_{F_{k}^{\perp}}\right) T x\right\|>\varepsilon$. It follows that

$$
\begin{aligned}
\left\|\left.\left(\operatorname{proj}_{G_{1}^{\perp}} \oplus \cdots \oplus \operatorname{proj}_{G_{k}^{\perp}}\right) T\right|_{H_{0}}\right\| & \geqslant\left\|\left(\operatorname{proj}_{G_{1}^{\perp}} \oplus \cdots \oplus \operatorname{proj}_{G_{k}^{\perp}}\right) T\left(\operatorname{proj}_{H_{0}} x\right)\right\| \\
& \geqslant\left\|\left(\operatorname{proj}_{F_{1}^{\perp}} \oplus \cdots \oplus \operatorname{proj}_{F_{k}^{\perp}}\right) T\left(\operatorname{proj}_{H_{0}} x\right)\right\| \\
& =\left\|\left(\operatorname{proj}_{F_{1}^{\perp}} \oplus \cdots \oplus \operatorname{proj}_{F_{k}^{\perp}}\right) T x\right\|>\varepsilon,
\end{aligned}
$$

and so $n_{\varepsilon}\left(\left.T\right|_{H_{0}}\right) \geqslant g$.
2.6 Remark. Let T be an operator on $\left(\bigoplus K_{n}\right)_{\ell_{1}}$ with finite columns, where $\left(K_{n}\right)$ is an (infinite) sequence of Hilbert spaces. As in [8, Remark 5.4], there is a natural way to define $n_{\varepsilon}\left(T J_{m}\right)$ for each $\varepsilon \geqslant 0$ and each $m \in \mathbb{N}$, namely by ignoring the cofinite number of Hilbert spaces K_{k} such that $Q_{k} T J_{m}=0$.

The proof of our classification result (Theorem 2.12) has two non-trivial parts. The first part is done in Proposition 2.8 relying on older results. The second part is dealt with in Proposition 2.10 using the parameter n_{ε} and a small trick to take care of matrices with infinite rows. Before proceeding we prove a little lemma which will be useful at a number of places.
2.7 Lemma. Let \mathscr{J} be an ideal in a Banach algebra \mathscr{A}. If $P \in \overline{\mathscr{J}}$ is idempotent, then in fact $P \in \mathscr{J}$.

Proof. Let $\left(T_{n}\right)$ be a sequence in \mathscr{J} converging to P. Replacing T_{n} with $P T_{n} P$, we may assume that $T_{n} \in P \mathscr{A} P$ for each $n \in \mathbb{N}$. Note that $P \mathscr{A} P$ is a Banach algebra with identity P, and so there exists $n \in \mathbb{N}$ such that T_{n} is invertible in $P \mathscr{A} P$. Thus there is $S \in \mathscr{A}$ with $P=(P S P) T_{n}$, which implies that $P \in \mathscr{J}$.

For each pair (E, F) of Banach spaces, set

$$
\mathscr{G}_{\ell_{1}}(E, F)=\left\{T S: S \in \mathscr{B}\left(E, \ell_{1}\right), T \in \mathscr{B}\left(\ell_{1}, F\right)\right\} .
$$

The fact that ℓ_{1} is isomorphic to $\ell_{1} \oplus \ell_{1}$ implies that $\mathscr{G}_{\ell_{1}}$ is an operator ideal, and so its closure $\overline{\mathscr{G}}_{\ell_{1}}$ is a closed operator ideal. As usual, we write $\overline{\mathscr{G}}_{\ell_{1}}(E)$ instead of $\overline{\mathscr{G}}_{\ell_{1}}(E, E)$.
2.8 Proposition. Set $F=\left(\bigoplus \ell_{2}^{n}\right)_{\ell_{1}}$. Then $\overline{\mathscr{G}}_{\ell_{1}}(F)$ is a proper ideal in $\mathscr{B}(F)$.

Proof. Assume towards a contradiction that $I_{F} \in \overline{\mathscr{G}}_{\ell_{1}}(F)$. Then $I_{F} \in \mathscr{G}_{\ell_{1}}(F)$ by Lemma 2.7, and so F is isomorphic to ℓ_{1}, which is false. (It is well-known that F is not isomorphic to ℓ_{1}, but this is by no means obvious. One may for example use the fact that ℓ_{1} has a unique unconditional basis up to equivalence (see [9, §2.b], or [7, §5] for a simpler proof relying only on Khintchine's inequality), whereas it is easy to see that F does not have this property.)

The following construction is a dual version of [8, Construction 4.2].
2.9 Construction. Let $E_{1}, E_{2}, E_{3}, \ldots$ and F be Banach spaces. Set $E=\left(\bigoplus E_{n}\right)_{\ell_{1}}$ and $\widetilde{F}=(F \oplus F \oplus \cdots)_{\ell_{1}}$, and let $T: E \rightarrow F$ be an operator. Since $\left\|T J_{n}^{E}\right\| \leqslant\|T\|$ for each $n \in \mathbb{N}$, we have a diagonal operator $\operatorname{diag}\left(T J_{n}^{E}\right): E \rightarrow \widetilde{F}$. For each $y \in \widetilde{F}$ the series $\sum_{n=1}^{\infty} Q_{n}^{\widetilde{F}} y$ converges absolutely in F, and it is easy to check that

$$
W: \widetilde{F} \rightarrow F, \quad y \mapsto \sum_{n=1}^{\infty} Q_{n}^{\widetilde{F}} y,
$$

defines an operator of norm 1 satisfying

$$
\begin{equation*}
T=W \operatorname{diag}\left(T J_{n}^{E}\right) \tag{2.4}
\end{equation*}
$$

2.10 Proposition. Set $F=\left(\bigoplus \ell_{2}^{n}\right)_{\ell_{1}}$. For each operator T on F with finite columns, the following three conditions are equivalent:
(i) $T \notin \overline{\mathscr{G}}_{\ell_{1}}(F)$,
(ii) $\sup \left\{n_{\varepsilon}\left(T J_{k}^{F}\right): k \in \mathbb{N}\right\}=\infty$ for some $\varepsilon>0$,
(iii) there are operators U and V on F such that $V T U=I_{F}$.

Proof. We begin by proving the implication "not (ii) \Rightarrow not (i)". We may suppose that $T \neq 0$. Let $0<\varepsilon<\|T\|$, and suppose that $n^{\prime}=\sup \left\{n_{\varepsilon}\left(T J_{k}^{F}\right): k \in \mathbb{N}\right\}<\infty$. Then Lemma 2.5(i) implies that, for each $k \in \mathbb{N}$, we can find a number $d_{k} \in \mathbb{N}$ and operators $R_{k}: \ell_{2}^{k} \rightarrow \ell_{1}^{d_{k}}$ and $S_{k}: \ell_{1}^{d_{k}} \rightarrow F$ such that $\left\|T J_{k}^{F}-S_{k} R_{k}\right\| \leqslant \varepsilon,\left\|R_{k}\right\| \leqslant\|T\| \sqrt{n^{\prime}+1}$, and $\left\|S_{k}\right\| \leqslant 1$. Put $\widetilde{F}=(F \oplus F \oplus \cdots)_{\ell_{1}}$ as in Construction 2.9. Then the diagonal operators $\operatorname{diag}\left(R_{k}\right): F \rightarrow\left(\bigoplus \ell_{1}^{d_{k}}\right)_{\ell_{1}}=\ell_{1}$ and $\operatorname{diag}\left(S_{k}\right): \ell_{1}=\left(\bigoplus \ell_{1}^{d_{k}}\right)_{\ell_{1}} \rightarrow \widetilde{F}$ exist and satisfy

$$
\left\|\operatorname{diag}\left(T J_{k}^{F}\right)-\operatorname{diag}\left(S_{k}\right) \operatorname{diag}\left(R_{k}\right)\right\|=\sup \left\|T J_{k}^{F}-S_{k} R_{k}\right\| \leqslant \varepsilon .
$$

It follows that $\operatorname{diag}\left(T J_{k}^{F}\right) \in \overline{\mathscr{G}}_{\ell_{1}}(F, \widetilde{F})$, and so $T \in \overline{\mathscr{G}}_{\ell_{1}}(F)$ by (2.4), as required.
To show "(ii) \Rightarrow (iii)", suppose that $\sup \left\{n_{\varepsilon}\left(T J_{k}^{F}\right): k \in \mathbb{N}\right\}=\infty$ for some $\varepsilon>0$. We construct inductively a strictly increasing sequence $\left(k_{j}\right)$ in \mathbb{N} such that the following three conditions are satisfied:
(a) $\operatorname{colsupp}_{k_{j}}(T) \neq \emptyset$ for each $j \in \mathbb{N}$.
(b) Set $m_{j}=\max \left(\operatorname{colsupp}_{k_{j}}(T)\right) \in \mathbb{N}$. Then $m_{j+1}>m_{j}$ for each $j \in \mathbb{N}$.
(c) Set $E_{j}=\left(\bigoplus_{i=m_{j-1}+1}^{m_{j}} \ell_{2}^{i}\right)_{\ell_{1}}$, where $m_{0}=0$ and m_{j} is defined as in (b) for $j \in \mathbb{N}$, and let $P_{j}=\sum_{i=m_{j-1}+1}^{m_{j}} J_{i}^{E_{j}} Q_{i}^{F}: F \rightarrow E_{j}$ be the canonical projection. Then there are operators $U_{j}: \ell_{2}^{j} \rightarrow \ell_{2}^{k_{j}}$ and $V_{j}: E_{j} \rightarrow \ell_{2}^{j}$ with $\left\|U_{j}\right\| \leqslant 1 / \varepsilon$ and $\left\|V_{j}\right\| \leqslant 1$ such that the diagram

is commutative, and $U_{j}\left(\ell_{2}^{j}\right) \subset \bigcap_{i=1}^{m_{j-1}}$ ker $T_{i, k_{j}}$ for each $j \in \mathbb{N}$.
We start the induction by choosing $k_{1} \in \mathbb{N}$ such that $n_{\varepsilon}\left(T J_{k_{1}}^{F}\right) \geqslant 1$. Then $\operatorname{colsupp}_{k_{1}}(T)$ is non-empty and $\left\|T J_{k_{1}}^{F}\right\|>\varepsilon$. Take a unit vector $x \in \ell_{2}^{k_{1}}$ such that $\left\|T J_{k_{1}}^{F} x\right\|>\varepsilon$, and define

$$
U_{1}: \quad \ell_{2}^{1}=\mathbb{K} \rightarrow \ell_{2}^{k_{1}}, \quad \alpha \mapsto \frac{\alpha}{\left\|T J_{k_{1}}^{F} x\right\|} x .
$$

Further, take a functional $V_{1}: E_{1} \rightarrow \mathbb{K}=\ell_{2}^{1}$ of norm 1 such that

$$
V_{1}\left(P_{1} T J_{k_{1}}^{F} x\right)=\left\|P_{1} T J_{k_{1}}^{F}(x)\right\| .
$$

Then the diagram (2.5) is commutative because $\left\|P_{1} T J_{k_{1}}^{F}(x)\right\|=\left\|T J_{k_{1}}^{F}(x)\right\|$, and the inclusion $U_{1}\left(\ell_{2}^{1}\right) \subset \bigcap_{i=1}^{m_{0}} \operatorname{ker} T_{i, k_{1}}$ is trivially satisfied because $\bigcap_{i \in \emptyset} \operatorname{ker} T_{i, k_{1}}=\ell_{2}^{k_{1}}$ by convention.

Now let $j \geqslant 2$, and suppose that $k_{1}<k_{2}<\cdots<k_{j-1}$ have been chosen. Set $h=\sum_{i=1}^{m_{j-1}} i$, take $k_{j}>k_{j-1}$ such that $n_{\varepsilon}\left(T J_{k_{j}}^{F}\right) \geqslant h+2(j-1)$, and set

$$
H_{0}=\bigcap_{i=1}^{m_{j-1}} \operatorname{ker} T_{i, k_{j}}=\operatorname{ker}\left(\left(Q_{1}^{F} \oplus \cdots \oplus Q_{m_{j-1}}^{F}\right) T J_{k_{j}}^{F}\right) \subset \ell_{2}^{k_{j}}
$$

Since $\operatorname{dim} H_{0} \geqslant k_{j}-h$, it follows that $\operatorname{dim} H_{0}^{\perp} \leqslant h$. Hence Lemma 2.5(iii) implies that $n_{\varepsilon}\left(\left.T J_{k_{j}}^{F}\right|_{H_{0}}\right) \geqslant 2(j-1)$. In particular $\left.T J_{k_{j}}^{F}\right|_{H_{0}} \neq 0$, so that $\operatorname{colsupp}_{k_{j}}(T) \neq \emptyset$, and $m_{j}>$ m_{j-1} by the choice of H_{0}. Further, we note that $n_{\varepsilon}\left(\left.P_{j} T J_{k_{j}}^{F}\right|_{H_{0}}\right)=n_{\varepsilon}\left(\left.T J_{k_{j}}^{F}\right|_{H_{0}}\right)$ because $\left.Q_{i}^{F} T J_{k_{j}}^{F}\right|_{H_{0}}=0$ whenever $i \leqslant m_{j-1}$ or $i>m_{j}$. Lemma 2.5(ii) then shows that there are operators $U_{j}: \ell_{2}^{j} \rightarrow H_{0} \subset \ell_{2}^{k_{j}}$ and $V_{j}: E_{j} \rightarrow \ell_{2}^{j}$ with $\left\|U_{j}\right\| \leqslant 1 / \varepsilon$ and $\left\|V_{j}\right\| \leqslant 1$ making the diagram (2.5) commutative, and the induction continues.

Next we 'glue' the sequences of operators $\left(U_{j}\right)$ and $\left(V_{j}\right)$ together to obtain operators U and V on F. Specifically, given $x \in F$, we define $y_{i} \in \ell_{2}^{i}$ by

$$
y_{i}=\left\{\begin{array}{ll}
U_{j} Q_{j}^{F} x & \text { if } i=k_{j} \text { for some } j \in \mathbb{N} \\
0 & \text { otherwise }
\end{array} \quad(i \in \mathbb{N})\right.
$$

Then

$$
\sum_{i=1}^{\infty}\left\|y_{i}\right\|=\sum_{j=1}^{\infty}\left\|U_{j} Q_{j}^{F} x\right\| \leqslant \frac{\|x\|}{\varepsilon}
$$

and so $U x=\left(y_{i}\right)_{i=1}^{\infty}$ defines an operator U on F. Further, since

$$
\sum_{j=1}^{\infty}\left\|V_{j} P_{j} x\right\| \leqslant \sum_{j=1}^{\infty}\left\|P_{j} x\right\|=\|x\|
$$

we can define an operator V on F by $V x=\left(V_{j} P_{j} x\right)_{j=1}^{\infty}$.
It remains to prove that $V T U=I_{F}$. For this, it suffices to check that

$$
Q_{i}^{F} V T U J_{j}^{F}(x)=\left\{\begin{array}{ll}
x & \text { if } i=j \\
0 & \text { otherwise }
\end{array} \quad\left(i, j \in \mathbb{N}, x \in \ell_{2}^{j}\right)\right.
$$

By definition, we have $Q_{i}^{F} V T U J_{j}^{F}(x)=V_{i} P_{i} T J_{k_{j}}^{F} U_{j}(x)$. For $i=j$, the latter equals x by (2.5). For $i<j$, we have

$$
P_{i} T J_{k_{j}}^{F} U_{j}(x)=\sum_{h=m_{i-1}+1}^{m_{i}} J_{h}^{E_{i}} T_{h, k_{j}} U_{j}(x)=0
$$

because $U_{j} x \in \operatorname{ker} T_{h, k_{j}}$ for each $h \leqslant m_{j-1}$. For $i>j$,

$$
P_{i} T J_{k_{j}}^{F}=\sum_{h=m_{i-1}+1}^{m_{i}} J_{h}^{E_{i}} T_{h, k_{j}}=0
$$

because $T_{h, k_{j}}=0$ for each $h>m_{j}$. This completes the proof of the implication "(ii) \Rightarrow (iii)".
Finally, the implication "(iii) \Rightarrow (i)" follows from Proposition 2.8.
In fact conditions (i) and (iii), above, are equivalent also for operators that do not have finite columns.
2.11 Corollary. Let T be an operator on the Banach space $F=\left(\bigoplus \ell_{2}^{n}\right)_{\ell_{1}}$. Then $T \notin$ $\overline{\mathscr{G}}_{\ell_{1}}(F)$ if and only if there exist operators R and S on F such that $I_{F}=S T R$.

Proof. As before, the implication " \Leftarrow " follows from Proposition 2.8.
Conversely, suppose that $T \notin \overline{\mathscr{G}}_{\ell_{1}}(F)$, and let K be a compact operator on F such that $T-K$ has finite columns (cf. [8, Lemma 2.7(i)]). By the ideal property we have $T-K \notin \overline{\mathscr{G}}_{\ell_{1}}(F)$. Proposition 2.10 implies that there are operators U and V on F such that $I_{F}=V(T-K) U$. Thus $V T U$ is a compact perturbation of the identity, and hence it is a Fredholm operator. It follows that, for some $W \in \mathscr{B}(F)$, the operator $W V T U$ is a cofinite-rank projection. This completes the proof because F is isomorphic to its closed subspaces of finite codimension. (This latter fact is a consequence of the existence of a left and a right shift operator on the basis of F obtained by stringing together the natural bases of $\left.\ell_{2}^{1}, \ell_{2}^{2}, \ldots, \ell_{2}^{n}, \ldots\right)$.

Our main result classifying the closed ideals in $\mathscr{B}(F)$ is now easy to deduce.
2.12 Theorem. The lattice of closed ideals in $\mathscr{B}(F)$, where $F=\left(\bigoplus \ell_{2}^{n}\right)_{\ell_{1}}$, is given by

$$
\begin{equation*}
\{0\} \subsetneq \mathscr{K}(F) \subsetneq \overline{\mathscr{G}}_{\ell_{1}}(F) \subsetneq \mathscr{B}(F) \tag{2.6}
\end{equation*}
$$

Proof. It is clear that $\mathscr{B}(F)$ contains the chain of closed ideals (2.6). The right-hand inclusion is proper by Proposition 2.8. The middle inclusion is proper because F contains ℓ_{1} as a complemented subspace, the projection onto which is an example of a non-compact operator in $\overline{\mathscr{G}}_{\ell_{1}}(F)$.

It remains to show that the ideals in (2.6) are the only closed ideals in $\mathscr{B}(F)$. Standard basis arguments show that the identity on ℓ_{1} factors through any non-compact operator in $\mathscr{B}(F)$ (see $[8, \S 3]$ for details). It follows that, for each non-zero, closed ideal \mathscr{J} in $\mathscr{B}(F)$, either $\mathscr{J}=\mathscr{K}(F)$ or $\overline{\mathscr{G}}_{\ell_{1}}(F) \subset \mathscr{J}$. However, Corollary 2.11 implies that $\overline{\mathscr{G}}_{\ell_{1}}(F)$ is a maximal ideal in $\mathscr{B}(F)$, and so there are no other closed ideals in $\mathscr{B}(F)$ than the four listed in (2.6).
2.13 Remark. We can now explain where the present proof differs in an essential way from the proof for the Banach space $E=\left(\bigoplus \ell_{2}^{n}\right)_{c_{0}}$ given in [8]. Indeed, each operator on E has a compact perturbation which has a 'locally finite matrix' in the sense that its associated matrix (cf. Definition 2.3) has only finitely many non-zero entries in each row and in each column. This is not true for all operators on $F=\left(\bigoplus \ell_{2}^{n}\right)_{\ell_{1}}$ (an example of this is given below). We circumvent this difficulty by arranging that the operators U_{j} map into $\bigcap_{i=1}^{m_{j-1}} \operatorname{ker} T_{i, k_{j}}$ in the proof of Proposition 2.10.

An operator T on F such that no compact perturbation of T has a locally finite matrix can be constructed as follows. Let $\left(N_{m}\right)_{m=1}^{\infty}$ be a partition of \mathbb{N} such that N_{m} is infinite for each $m \in \mathbb{N}$, and define an operator of norm 1 by

$$
T: \quad F \rightarrow F, \quad\left(y_{n}\right) \mapsto\left(\sum_{n \in N_{m}}\left\langle y_{n}, x_{n}\right\rangle x_{m}\right)_{m=1}^{\infty}
$$

where $\langle\cdot, \cdot\rangle$ denotes the inner product in ℓ_{2}^{n} and $x_{n}=(1,0, \ldots, 0) \in \ell_{2}^{n}$ for each $n \in \mathbb{N}$.
Suppose that $S \in \mathscr{B}(F)$ has a locally finite matrix. Inductively we choose a strictly increasing sequence $\left(n_{m}\right)$ in \mathbb{N} such that $n_{m} \in N_{m}$ and $S_{m, j}=0$ for each $j \geqslant n_{m}$ and $m \in \mathbb{N}$. We note that no subsequence of $\left((T-S) J_{n_{m}}^{F} x_{n_{m}}\right)$ is convergent because

$$
\begin{aligned}
\left\|(T-S)\left(J_{n_{k}}^{F} x_{n_{k}}-J_{n_{m}}^{F} x_{n_{m}}\right)\right\| & \geqslant\left\|Q_{m}^{F}(T-S)\left(J_{n_{k}}^{F} x_{n_{k}}-J_{n_{m}}^{F} x_{n_{m}}\right)\right\| \\
& =\left\|T_{m, n_{k}} x_{n_{k}}-S_{m, n_{k}} x_{n_{k}}-T_{m, n_{m}} x_{n_{m}}+S_{m, n_{m}} x_{n_{m}}\right\| \\
& =\left\|0-0-x_{m}+0\right\|=1
\end{aligned}
$$

whenever $k>m$. Since the sequence $\left(J_{n_{m}}^{F} x_{n_{m}}\right)$ is bounded, we conclude that the operator $T-S$ is not compact. In other words, no compact perturbation of T has a locally finite matrix, as claimed.

3 An application

In $[1, \S 8]$ Bourgain, Casazza, Lindenstrauss, and Tzafriri prove that every infinite-dimensional, complemented subspace of the Banach space $F=\left(\bigoplus \ell_{2}^{n}\right)_{\ell_{1}}$ is isomorphic to either F or ℓ_{1}. Here we present a new proof of this fact using only the ideal structure of $\mathscr{B}(F)$. More precisely, we shall deduce it from Corollary 2.11.
3.1 Theorem. (Bourgain, Casazza, Lindenstrauss, and Tzafriri [1]) Each infinitedimensional, complemented subspace of $F=\left(\bigoplus \ell_{2}^{n}\right)_{\ell_{1}}$ is isomorphic to either F or ℓ_{1}.

Proof. Let G be an infinite-dimensional, complemented subspace of F, and let $P \in \mathscr{B}(F)$ be an idempotent operator with image G. If $P \in \overline{\mathscr{G}}_{\ell_{1}}(F)$, then by Lemma 2.7 we have $P \in \mathscr{G}_{\ell_{1}}(F)$, and hence G is isomorphic to ℓ_{1}. If $P \notin \overline{\mathscr{G}}_{\ell_{1}}(F)$, then by Corollary 2.11 the identity on F factors through P, i.e., F is isomorphic to a complemented subspace of G. We can thus write $F \sim G \oplus X$ and $G \sim F \oplus Y$ for suitable Banach spaces X
and Y. We now use Pełczyński's decomposition method and the fact that F is isomorphic to $(F \oplus F \oplus \cdots)_{\ell_{1}}$ to show that G is isomorphic to F :

$$
\begin{aligned}
F \sim G \oplus X & \sim F \oplus Y \oplus X \sim(F \oplus F \oplus \cdots)_{\ell_{1}} \oplus Y \oplus X \\
& \sim(G \oplus X \oplus G \oplus X \oplus \cdots)_{\ell_{1}} \oplus Y \oplus X \\
& \sim(G \oplus X \oplus G \oplus X \oplus \cdots)_{\ell_{1}} \oplus Y \sim F \oplus Y \sim G
\end{aligned}
$$

3.2 Remark. In $[8, \S 6]$ a new proof is presented for the corresponding result of Bourgain, Casazza, Lindenstrauss, and Tzafriri for the Banach space $E=\left(\bigoplus \ell_{2}^{n}\right)_{c_{0}}$, which says that every infinite-dimensional, complemented subspace of E is isomorphic to either E or c_{0}. The proof in [8] relies on a theorem of Casazza, Kottman, and Lin [3] that implies that E is primary. The results of [3], however, do not show that our space $F=\left(\bigoplus \ell_{2}^{n}\right)_{\ell_{1}}$ is primary, and so the argument in [8] cannot be used here. We note in passing that F is in fact primary - this follows easily from Theorem 3.1. Further, we note that the proof presented above works also for the space $E=\left(\bigoplus \ell_{2}^{n}\right)_{c_{0}}$.

Acknowledgements

The first author was supported by the Danish Natural Science Research Council. The second author was partially supported by NSF.

This paper was initiated during a visit of the first author to Texas A\&M University. He acknowledges with thanks the financial support from the Danish Natural Science Research Council and NSF Grant number DMS-0070456 that made this visit possible. He also wishes to thank his hosts for their very kind hospitality during his stay.

References

[1] J. Bourgain, P. G. Casazza, J. Lindenstrauss, L. Tzafriri, Banach spaces with a unique unconditional basis, up to permutation, Mem. American Math. Soc. 322, 1985.
[2] J. W. Calkin, Two-sided ideals and congruences in the ring of bounded operators in Hilbert space, Annals of Math. 42 (1941), 839-873.
[3] P. G. Casazza, C. A. Kottman, B. L. Lin, On some classes of primary Banach spaces, Canad. J. Math. 29 (1977), no. 4, 856-873.
[4] M. Daws, Closed ideals in the Banach algebra of operators on classical nonseparable spaces, Math. Proc. Camb. Phil. Soc. (to appear).
[5] I. C. Gohberg, A. S. Markus, I. A. Feldman, Normally solvable operators and ideals associated with them, American Math. Soc. Translat. 61 (1967), 63-84, Russian original in Bul. Akad. Štiince RSS Moldoven 10 (76) (1960), 51-70.
[6] B. Gramsch, Eine Idealstruktur Banachscher Operatoralgebren, J. Reine Angew. Math. 225 (1967), 97-115.
[7] W. B. Johnson, J. Lindenstrauss, Basic Concepts in the Geometry of Banach Spaces, Handbook of the Geometry of Banach Spaces, Volume I, edited by W. B. Johnson, J. Lindenstrauss, Elsevier 2001.
[8] N. J. Laustsen, R. J. Loy, C. J. Read, The lattice of closed ideals in the Banach algebra of operators on certain Banach spaces, J. Functional Anal. 214 (2004), 106-131.
[9] J. Lindenstrauss and L. Tzafriri, Classical Banach spaces, Vol. I, Ergeb. Math. Grenzgeb. 92, Springer-Verlag, 1977.
[10] E. Luft, The two-sided closed ideals of the algebra of bounded linear operators of a Hilbert space, Czechoslovak Math. J. 18 (1968), 595-605.
N. J. Laustsen, Department of Mathematics, University of Copenhagen, Universitetsparken 5, DK-2100 Copenhagen \varnothing, Denmark, and
Department of Mathematics and Statistics, Lancaster University, Lancaster LA1 4YF, England; e-mail: n.laustsen@lancaster.ac.uk.
T. Schlumprecht, Department of Mathematics, Texas A\&M University, College Station, TX 77843, USA; e-mail: schlump@math.tamu.edu.
A. Zsák, Department of Mathematics, Texas A\&M University, College Station, TX 77843, USA, and
Fitzwilliam College, Cambridge CB3 0DG, England; e-mail: A.Zsak@dpmms.cam.ac.uk.

