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Abstract

Very few Banach spaces E are known for which the lattice of closed ideals in the

Banach algebra B(E) of all (bounded, linear) operators on E is fully understood.

Indeed, up to now the only such Banach spaces are, up to isomorphism, Hilbert

spaces and the sequence spaces c0 and `p for 1 6 p < ∞. We add a new member

to this family by showing that there are exactly four closed ideals in B(E) for the

Banach space E :=
(⊕

`n
2

)
c0
, that is, E is the c0-direct sum of the �nite-dimensional

Hilbert spaces `1
2, `

2
2, . . . , `

n
2 , . . .
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1 Introduction

The aim of this paper is to study the lattice of closed ideals in the Banach algebra B(E)
of all (bounded, linear) operators on a Banach space E, and in this way gain new insights
into the interrelationship between the geometry of a Banach space E and the structure of
its associated Banach algebra B(E).

The �rst result of this type is due to Calkin who in [4] classi�ed all the ideals in
B(`2). In particular he proved that the ideal of compact operators is the only non-trivial,
closed ideal in B(`2). For each non-separable Hilbert space H, Gramsch and Luft have
independently described all the closed ideals in B(H) and shown that they are well-ordered
by inclusion (see [16] and [25], respectively � or [28, �5.4] for a short account).

Another famous extension of Calkin's result is as follows.

1.1 Theorem. (Gohberg, Markus, and Feldman [12]) For E = `p, where 1 6 p < ∞, and
E = c0, the ideal of compact operators is the only non-trivial, closed ideal in B(E). 2

A surprising fact that testi�es to our limited understanding of Banach algebras of the
form B(E) for a Banach space E is that, to our knowledge, the above-mentioned examples
are hitherto the only in�nite-dimensional Banach spaces E for which the lattice of closed
ideals in B(E) is completely understood. The main purpose of this paper is to add a new
member to this family. More precisely, we shall prove that, for the Banach space

E :=
(⊕

`n
2

)
c0

(1.1)

(that is, E is the c0-direct sum of the �nite-dimensional Hilbert spaces `1
2, `

2
2, . . . , `

n
2 , . . .),

there are precisely two non-trivial, closed ideals in B(E), namely the ideal of compact
operators and the closure of the ideal of operators that factor through c0. This theorem is
established through `salami tactics' � we begin with some fairly general results and then
gradually specialize until in Section 5 we consider the particular space E given by (1.1).

Even though Banach spaces E for which the lattice of closed ideals in B(E) is com-
pletely understood are rare, quite a few partial results are known. We shall now brie�y
review some of these.

First, Volkmann has proved that, whenever p, q ∈ [1,∞[ are distinct, there are exactly
two maximal ideals in B(`p⊕ `q), they are generated by the operators that factor through
`p and `q, respectively, and their intersection is the ideal of strictly singular operators
(see [30] or [28, Theorem 5.3.2]). A similar result holds if either `p or `q is replaced with c0.

Second, building on work of Rosenthal and Schechtman, Pietsch has demonstrated that
there are in�nitely many closed ideals in B

(
Lp[0, 1]

)
for each p ∈ ]1,∞[ \ {2}. Moreover,

Pietsch has shown that there are uncountably many closed ideals in B
(
C[0, 1]

)
(see [28,

Theorems 5.3.9 and 5.3.11]).
Third, Edelstein and Mityagin observed in [11, p. 225] that the ideal of weakly compact

operators is a maximal ideal of codimension one in B(J), where J denotes James's quasi-
re�exive Banach space introduced in [18]. Laustsen has proved that this maximal ideal is
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the only maximal ideal in B(J), and applied this result to construct Banach spaces E such
that B(E) has any speci�ed �nite number of maximal ideals of any speci�ed codimensions
(see [23]).

Fourth, while solving the unconditional basic sequence problem, Gowers and Maurey
constructed the �rst example of a hereditarily indecomposable Banach space, and showed
that the ideal S (E) of strictly singular operators is a maximal ideal of codimension one in
B(E) for each such space E (see [14]); once again this maximal ideal is unique (see [23]).
Androulakis and Schlumprecht have proved that non-compact, strictly singular operators
exist on the particular hereditarily indecomposable Banach space E that Gowers and Mau-
rey constructed (see [1]), and so in this case S (E) is not the only non-trivial, closed ideal
in B(E). It is a major open problem whether or not there exists a Banach space E such
that the ideal of compact operators is a maximal ideal of codimension one in B(E). The
reader is referred to Schlumprecht's paper [29] for the current state of this di�cult problem
together with an impressive new method of attack.

Fifth, Mankiewicz on the one hand and Dales, Loy, and Willis on the other have found
Banach spaces E such that `∞ is a quotient of B(E) (see [26] and [8], respectively).
It follows that, for each of these spaces E, B(E) has at least 22ℵ0 maximal ideals of
codimension one. Later, when solving Banach's hyperplane problem, Gowers constructed
a Banach space G such that `∞/c0 is a quotient of B(G) (see [13] and [15]). Laustsen has
classi�ed the maximal ideals in B(G) by observing that each such ideal is the preimage of
a maximal ideal in `∞/c0 (see [23]).

We shall next explain how this paper is organized.
Section 2 contains the formal de�nitions of the direct sums of Banach spaces that we

shall be concerned with, together with those of their basic properties that we require.
In Section 3 we modify the techniques known from the proof of Theorem 1.1 to show

that, for certain Banach spaces E, the ideals of approximable, compact, strictly singular,
and inessential operators in B(E) coincide, and that there is a unique minimal closed ideal
in B(E) properly containing these ideals. This result applies in particular to each Banach
space E that is a c0- or `p-direct sum of a sequence of �nite-dimensional spaces.

In Section 4 we consider the case where E is the c0-direct sum of some sequence of
Banach spaces, and determine conditions that ensure that the closed ideal G c0(E) generated
by the operators on E that factor through c0 is a maximal ideal in B(E).

Section 5 contains our main result: for the Banach space E de�ned in (1.1), above, the
ideal of compact operators K (E) and the ideal G c0(E) just de�ned are the only non-trivial,
closed ideals in B(E).

In our �nal section, Section 6, we apply this result to give a new proof of the theo-
rem, due to Bourgain, Casazza, Lindenstrauss, and Tzafriri, that each in�nite-dimensional,
complemented subspace of the Banach space E given by (1.1) is either isomorphic to c0 or
to E.

Before ending this introduction, let us describe some notation and conventions that we
rely on throughout the paper.

All Banach spaces are supposed to be over the same scalar �eld K, where K = R
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or K = C. For a Banach space E, we denote by E ′ the dual Banach space of E, we
write 〈· , ·〉 for the duality between E and E ′, and we denote by κE the canonical embedding
of E into its bidual Banach space E ′′.

A bounded, linear map between Banach spaces is termed an operator. The collection
of all operators from a Banach space E to a Banach space F is denoted by B(E, F ), or
just B(E) in the case where E = F . We write IE for the identity operator on E.

An operator ideal is an assignment J which associates to each pair (E, F ) of Banach
spaces a linear subspace J (E, F ) of B(E, F ) satisfying:

(i) J (E, F ) is non-zero for some Banach spaces E and F ;

(ii) for any Banach spaces D, E, F , and G, the composite operator TSR belongs to
J (D, G) whenever R belongs to B(D, E), S to J (E, F ), and T to B(F, G).

We usually write J (E) instead of J (E, E).
For an operator ideal J and Banach spaces E and F , we write J (E, F ) for the closure

(in the operator norm) of J (E, F ) in B(E, F ). The assignment J thus de�ned is an
operator ideal, called the closure of J . We say that the operator ideal J is closed if
J = J .

We shall consider the following operator ideals (and their closures):

� F, the �nite-rank operators (the operators in F are termed approximable);

� K , the compact operators;

� S, the strictly singular operators;

� E, the inessential operators;

� I∞, the ∞-integral operators;

� GC (where C is a subset of B(E, F ) for some Banach spaces E and F ), the operator
ideal generated by the set C.

We regard the �rst two of these operator ideals as so well-known that no de�nitions are
required. We shall de�ne the �nal four when they �rst appear in the text.

2 Preliminaries on direct sums

2.1 Finite direct sums. Let n ∈ N, and let E1, . . . , En be Banach spaces. We denote by
E1 ⊕ · · · ⊕ En the direct sum of E1, . . . , En equipped with the `n

∞-norm given by∥∥(x1, . . . , xn)
∥∥ := max

{
‖x1‖, . . . , ‖xn‖

}
(x1 ∈ E1, . . . , xn ∈ En). (2.1)

(This particular choice of norm on the direct sum will be important in Section 5.) In the
case where E1 = · · · = En, we write E⊕n

1 instead of E1 ⊕ · · · ⊕ En.
Set E := E1 ⊕ · · · ⊕ En. For each m ∈ {1, . . . , n}, we write JE

m for the canonical
embedding of Em into E and QE

m for the canonical projection of E onto Em. When no
ambiguity may arise, we omit the superscript E from these operators.

4



Suppose that T1 : E1 → F1, . . . , Tn : En → Fn are operators into some Banach spaces
F1, . . . , Fn. Then we write T1 ⊕ · · · ⊕ Tn for the diagonal operator induced by T1, . . . , Tn,
that is,

T1 ⊕ · · · ⊕ Tn : (x1, . . . , xn) 7→ (T1x1, . . . , Tnxn), E1 ⊕ · · · ⊕ En → F1 ⊕ · · · ⊕ Fn.

2.2 The D-direct sum of an in�nite sequence of Banach spaces. Let D be a
Banach space with a normalized, 1-unconditional basis (dn). The (D, (dn))-direct sum of
a sequence (En) of Banach spaces is given by(⊕

n∈N

En

)
D, (dn)

:=

{
(xn)

∣∣∣∣ xn ∈ En (n ∈ N) and the series
∞∑

n=1

‖xn‖ dn converges

}
.

This is a Banach space for coordinatewise de�ned addition and scalar multiplication and
norm given by∥∥(xn)

∥∥ :=

∥∥∥∥ ∞∑
n=1

‖xn‖ dn

∥∥∥∥ ∈ [0,∞[

(
(xn) ∈

(⊕
n∈N

En

)
D, (dn)

)
.

We shall usually suppress the index set N in this notation. Moreover, in most cases D
comes with a `canonical' basis (dn), and so we may without ambiguity omit (dn), thus
writing

(⊕
En

)
D
instead of

(⊕
n∈N En

)
D, (dn)

.

Set E :=
(⊕

En

)
D
. As in the �nite case (see �2.1), we denote by JE

m the canonical

embedding of Em into E and by QE
m the canonical projection of E onto Em for each m ∈ N.

Both JE
m and QE

m are operators of norm one; in fact, the former is an isometry, and the
latter is a quotient map. Let ν be a non-empty subset of N. Since the basis (dn) is
1-unconditional, there is an idempotent operator PE

ν of norm one given by

PE
ν : x 7→

∑
m∈ν

JE
mQE

mx, E → E.

2.3 Duality. Let D be a Banach space with a normalized, 1-unconditional basis (dn),
let (En) be a sequence of Banach spaces, and set E :=

(⊕
En

)
D
. Suppose that the

basis (dn) is shrinking, so that the coordinate functionals (d′n) are a normalized, 1-uncon-
ditional basis of the dual space D′. Then we can form the D′-direct sum E† :=

(⊕
E ′

n

)
D′ ,

and it can be shown that the map ΥE : E† → E ′ given by〈
(xn), ΥE(ϕn)

〉
:=

∞∑
n=1

〈xn, ϕn〉
(
(xn) ∈ E, (ϕn) ∈ E†)

is an isometric isomorphism making the diagrams

E ′
n

(QE
n )′

//

JE†

n ��9
99

99
99

99
E ′ E ′

(JE
n )′

// E ′
n

and

E†

ΥE

BB���������
E†

ΥE

\\888888888 QE†

n

BB���������

commutative (e.g., see [22, �4]).
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2.4 Example. Let D = c0 or D = `p for some p ∈ [1,∞[. We shall always equip D with
its standard basis (dn) given by dn = (δm,n)∞m=1 for each n ∈ N, where δm,n is Kronecker's
delta symbol. It is well known that (dn) is a normalized, 1-unconditional basis of D and,
moreover, that (dn) is a shrinking basis for D = c0 and D = `p with p ∈ ]1,∞[, but not
for D = `1.

Now let (En) be a sequence of Banach spaces. Then we have(⊕
En

)
c0

=
{
(xn)

∣∣ xn ∈ En (n ∈ N) and ‖xn‖ → 0 as n →∞
}
,

and
∥∥(xn)

∥∥ = sup
{
‖xn‖

∣∣ n ∈ N
}
for each (xn) ∈

(⊕
En

)
c0
. Similarly, for each p ∈ [1,∞[,

we have (⊕
En

)
`p

=

{
(xn)

∣∣∣∣ xn ∈ En (n ∈ N) and
∞∑

n=1

‖xn‖p < ∞
}

,

and
∥∥(xn)

∥∥ =
(∑∞

n=1 ‖xn‖p
)1/p

for each (xn) ∈
(⊕

En

)
`p
.

2.5 Diagonal operators. Let D be a Banach space with a normalized, 1-unconditional
basis (dn), and, for each n ∈ N, let Tn : En → Fn be an operator between Banach spaces En

and Fn. Suppose that sup ‖Tn‖ < ∞. Then, as in the �nite case, we can de�ne the diagonal
operator

diag(Tn) : (xn) 7→ (Tnxn),
(⊕

En

)
D
→
(⊕

Fn

)
D
.

Clearly, we have
∥∥diag(Tn)

∥∥ = sup ‖Tn‖.

2.6 De�nition. Let D be a Banach space with a normalized, 1-unconditional basis, let
(En) and (Fn) be sequences of Banach spaces, and let T :

(⊕
En

)
D
→
(⊕

Fn

)
D
be an

operator. We associate with T the in�nite matrix (Tm,n), where

Tm,n := QF
mTJE

n : En → Fm (m, n ∈ N).

The support of the mth row of T is

rowsuppm(T ) :=
{
n ∈ N

∣∣ Tm,n 6= 0
}

(m ∈ N).

We say that T has �nite rows if each row has �nite support, and we say that T has
consecutively supported rows if sup

(
rowsuppm(T )

)
< inf

(
rowsuppn(T )

)
whenever m, n ∈ N

with m < n (where we rely on the conventions that sup ∅ = −∞ and inf ∅ = +∞).
Similarly, the support of the nth column of T is

colsuppn(T ) :=
{
m ∈ N

∣∣ Tm,n 6= 0
}

(n ∈ N),

T has �nite columns if each column has �nite support, and T has consecutively supported
columns if sup

(
colsuppm(T )

)
< inf

(
colsuppn(T )

)
whenever m, n ∈ N with m < n.

If T has both �nite rows and �nite columns, then we say that T has locally �nite matrix.
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2.7 Lemma. Let D be a Banach space with a normalized, 1-unconditional basis (dn),
let (En) and (Fn) be sequences of Banach spaces, set E :=

(⊕
En

)
D
and F :=

(⊕
Fn

)
D
,

let T : E → F be an operator, and let ε > 0.

(i) Suppose that each of the spaces En (n ∈ N) is �nite-dimensional. Then there is an
approximable operator S : E → F with ‖S‖ 6 ε such that T − S has �nite columns,
and Sm,n = Tm,n whenever Sm,n 6= 0 (m, n ∈ N).

(ii) Suppose that the basis (dn) is shrinking and that each of the spaces Fn (n ∈ N) is
�nite-dimensional. Then there is an approximable operator S : E → F with ‖S‖ 6 ε
such that T − S has �nite rows, and Sm,n = Tm,n whenever Sm,n 6= 0 (m, n ∈ N).

(iii) Suppose that the basis (dn) is shrinking and that each of the spaces En and Fn (n ∈ N)
is �nite-dimensional. Then there is an approximable operator S : E → F with ‖S‖ 6 ε
such that T − S has locally �nite matrix, and Sm,n = Tm,n whenever Sm,n 6= 0
(m, n ∈ N).

Proof. For each M ∈ N, set P̃E
M := PE

{1,...,M} and P̃ F
M := P F

{1,...,M}.

(i) Using the compactness of the unit ball of En (n ∈ N), we can construct a strictly
increasing sequence (Mn) in N such that∥∥(IF − P̃ F

Mn
)TJE

n

∥∥ 6 ε/2n (n ∈ N). (2.2)

Set

S :=
∞∑

n=1

(IF − P̃ F
Mn

)TJE
n QE

n : E → F.

Then S is an approximable operator with ‖S‖ 6 ε, and we have

Sm,n =

{
0 for m 6 Mn

Tm,n for m > Mn

(m, n ∈ N).

This proves (i).
(ii) Dualizing (2.2) (cf. �2.3), we obtain a strictly increasing sequence (Mn) in N such

that ∥∥QF
n T (IE − P̃E

Mn
)
∥∥ 6 ε/2n (n ∈ N).

Set

S :=
∞∑

n=1

JF
n QF

n T (IE − P̃E
Mn

) : E → F.

As before, it is easy to see that S has the properties listed in (ii).
(iii) This is immediate from (i) and (ii). 2
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3 The `small' ideals in BBB(E)

In this section we shall show that, for certain Banach spaces E, the ideals of approximable,
compact, strictly singular, and inessential operators on E coincide, and that there is a
unique minimal closed ideal in B(E) properly containing these ideals. We refer to the
above-mentioned ideals as `small' because they are proper ideals in B(E) whenever E is
in�nite-dimensional.

We proceed by modifying the techniques developed by Herman in his simpli�ed proof
of Theorem 1.1 (see [17] or [5, �5.4]). Part of our argument is similar to that outlined
in [20, p. 8].

3.1 De�nition. (i) A sequence (xn) in a Banach space is seminormalized if inf ‖xn‖ > 0
and sup ‖xn‖ < ∞.

(ii) A sequence (xn) in a Banach space E is complemented in E if there is an idempotent
operator P on E with im P = span{xn |n ∈ N}.

(iii) A basis (dn) of a Banach space D is semispreading if, for each strictly increasing
sequence (mn) in N, there is an operator T on D with Tdn = dmn for each n ∈ N.

(iv) Let D and E be Banach spaces with bases (dn) and (en), respectively. We say
that seminormalized blocks of (en) contain complemented copies of (dn) if each semi-
normalized block basic sequence of (en) has a subsequence which is equivalent to (dn)
and complemented in E.

3.2 Theorem. Let D be a Banach space with a semispreading basis (dn), and let E
be a Banach space with a basis (en) such that seminormalized blocks of (en) contain
complemented copies of (dn). Then, for each non-compact operator T on E, there are
operators R : D → E and S : E → D such that ID = STR.

The proof of Theorem 3.2 requires some preliminary work. Our �rst lemma is proved
using a standard Cantor-style diagonal argument which we omit.

3.3 Lemma. Let (Tn) be a sequence of compact operators from a Banach space E to a
Banach space F . Then each bounded sequence (xm) in E has a subsequence (xmk

) such
that, for each n ∈ N, the sequence (Tnxmk

)∞k=1 is convergent. 2

Second, we shall improve a classical stability result of Krein, Milman, and Rutman [21]
and, independently, Bessaga and Peªczy«ski [2]; alternatively, see [24, Proposition 1.a.9].
Our proof is inspired by the proof of [27, Proposition 4.3.4].

3.4 Lemma. Let (xn) be a basic sequence with basis constant K in a Banach space E,
and let (yn) be a sequence in E such that

∞∑
n=1

‖xn − yn‖
‖xn‖

<
1

2K
.

Then (yn) is a basic sequence equivalent to (xn).
Suppose that (xn) is complemented in E. Then (yn) is also complemented in E.
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Proof. For each m ∈ N, let ϕm ∈ E ′ with ‖ϕm‖ 6 2K/‖xm‖ be a Hahn�Banach extension
of the mth coordinate functional associated with (xn). Then we can de�ne an operator

T : x 7→
∞∑

m=1

〈x, ϕm〉(xm − ym), E → E,

and ‖T‖ < 1, so that the operator U := IE − T is invertible. It follows that (yn) is a basic
sequence equivalent to (xn) because Uxn = yn for each n ∈ N.

Now suppose that P is an idempotent operator on E with im P = span{xn |n ∈ N}.
Then Q := UPU−1 is an idempotent operator on E with im Q = span{yn |n ∈ N}. 2

Lemma 3.4 improves its predecessors by asserting that (yn) is complemented in E
whenever (xn) is, no matter what the norm is of the idempotent operator P with image
span{xn |n ∈ N}. This enables us to establish the following version of the Bessaga�
Peªczy«ski selection principle, specially tailored to match the set-up in Theorem 3.2.

3.5 Lemma. Let D and E be Banach spaces with bases (dn) and (en), respectively, such
that seminormalized blocks of (en) contain complemented copies of (dn). Let (ym) be a
seminormalized sequence in E such that 〈ym, e′k〉 → 0 as m → ∞ for each (�xed) k ∈ N,
where e′k denotes the kth coordinate functional associated with the basis (en). Then (ym)
has a subsequence which is equivalent to (dn) and complemented in E.

Proof. Let K be the basis constant of (en). As in the proof of the Bessaga�Peªczy«ski
selection principle (see [2, Theorem 3]), we construct inductively a seminormalized block
basic sequence (xm) of (en) and a subsequence (ȳm) of (ym) such that

∞∑
m=1

‖xm − ȳm‖
‖xm‖

<
1

2K
.

By assumption, (xm) has a subsequence (xmn) which is equivalent to (dn) and comple-
mented in E. Now Lemma 3.4 implies that (ȳmn) has the required properties. 2

Proof of Theorem 3.2. Let (e′n) denote the coordinate functionals associated with (en).
Take a bounded sequence (xm) in E such that no subsequence of (Txm) is convergent.
By Lemma 3.3 (applied with Tn = e′n and the bounded sequence (Txm)), (xm) has a
subsequence (x̄m) such that

(
〈T x̄m, e′n〉

)∞
m=1

is convergent for each n ∈ N. Since (T x̄m) is
divergent, (x̄m) has a subsequence (¯̄xm) such that inf ‖T ¯̄xm+1 − T ¯̄xm‖ > 0.

Set zm := ¯̄xm+1 − ¯̄xm ∈ E. Then (zm) is bounded, inf ‖Tzm‖ > 0, and 〈Tzm, e′n〉 → 0
as m → ∞ for each n ∈ N. It follows that no subsequence of (Tzm) can be convergent.
Another application of Lemma 3.3 yields a subsequence (z̄m) of (zm) such that

(
〈z̄m, e′n〉

)∞
m=1

is convergent for each n ∈ N. Since (T z̄m) is divergent, we can �nd a subsequence (¯̄zm)
of (z̄m) such that inf ‖T ¯̄zm+1 − T ¯̄zm‖ > 0.

Set ym := ¯̄zm+1 − ¯̄zm ∈ E. Then (ym) is bounded and inf ‖Tym‖ > 0. This implies
that (ym) and (Tym) are seminormalized. Moreover, for each n ∈ N, we have 〈ym, e′n〉 → 0
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and 〈Tym, e′n〉 → 0 as m →∞. By Lemma 3.5, (ym) has a subsequence (ȳm) which is equiv-
alent to (dm). Take an operator U : D → E with Udm = ȳm (m ∈ N). Applying Lemma 3.5
once more shows that (T ȳm) has a subsequence (T ȳmn) which is equivalent to (dn) and com-
plemented in E. It follows that there is an operator S : E → D with S(T ȳmn) = dn (n ∈ N).
Since (dn) is semispreading, we can take an operator V on D with V dn = dmn (n ∈ N).
Set R := UV : D → E. Then we have

STRdn = STUdmn = ST ȳmn = dn (n ∈ N),

and the result follows. 2

3.6 De�nition. Let D, E, F , and G be Banach spaces. For each subset C of B(E, F ),
set

GC (D, G) := span
{
STR

∣∣ R ∈ B(D, E), T ∈ C, S ∈ B(F, G)
}
⊆ B(D, G). (3.1)

Suppose that that C contains a non-zero operator. Then the assignment GC thus de�ned
is an operator ideal, called the operator ideal generated by C. It is clearly the smallest
operator ideal such that C ⊆ GC (E, F ).

In the case where E = F and C = {IE}, we write GE instead of GC .

Suppose that the set C satis�es: for each T1, T2 ∈ C , there are operators U : E⊕E → E,
V ∈ C, and W : F → F ⊕ F such that T1 ⊕ T2 = WV U . Then the set{

STR
∣∣ R ∈ B(D, E), T ∈ C, S ∈ B(F, G)

}
is already a linear subspace of B(D, G), and so the `span' appearing in (3.1) is super�uous.

In particular, in the case where E is a Banach space containing a complemented sub-
space isomorphic to E ⊕ E, then

GE(D, G) =
{
SR

∣∣ R ∈ B(D, E), S ∈ B(E, G)
}

for each pair (D, G) of Banach spaces.

3.7 De�nition. Let E and F be Banach spaces, and let T : E → F be an operator.
We say that T is strictly singular if T is not bounded below on any in�nite-dimensional
subspace of E, and we say that T is inessential if IE −ST is a Fredholm operator for each
operator S : F → E. We write S (E, F ) and E (E, F ) for the sets of strictly singular and
inessential operators from E to F , respectively. The assignments S and E thus de�ned
are closed operator ideals (e.g., see [28, �1.9 and �4.3]).

In general, the inclusions

F (E, F ) ⊆ K (E, F ) ⊆ S (E, F ) ⊆ E (E, F ) ⊆ B(E, F ) (3.2)

hold; the �rst inclusion can be replaced with equality if F has the approximation property.
However, in the case where E = F and this is a Banach space of the form considered in
Theorem 3.2, much more is true.
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3.8 Corollary. Let D be a Banach space with a semispreading basis (dn), and let E
be a Banach space with a basis (en) such that seminormalized blocks of (en) contain
complemented copies of (dn). Suppose that J is an ideal in B(E) not contained in F (E).
Then J contains the ideal GD(E).

It follows that
F (E) = K (E) = S (E) = E (E) ( G D(E),

and there are no closed ideals J in B(E) such that F (E) ( J ( G D(E).

Proof. This is immediate from Theorem 3.2 and (3.2). 2

3.9 Example. Let D = c0 or D = `p, where 1 6 p < ∞, and, for each n ∈ N, let
En be a non-zero, �nite-dimensional Banach space with a normalized, monotone basis
(e

(n)
1 , . . . , e

(n)
Nn

). Then

(en)∞n=1 :=
(
JE

1 (e
(1)
1 ), JE

1 (e
(1)
2 ), . . . , JE

1 (e
(1)
N1

), JE
2 (e

(2)
1 ), JE

2 (e
(2)
2 ), . . . , JE

2 (e
(2)
N2

), . . .

. . . , JE
n (e

(n)
1 ), JE

n (e
(n)
2 ), . . . , JE

n (e
(n)
Nn

), . . .
)

is a normalized, monotone basis of E :=
(⊕

En

)
D
. We claim that seminormalized blocks

of (en) contain complemented copies of the standard basis (dn) of D. (We note in passing
that, in the case where En = `n

q for each n ∈ N and some q ∈ [1,∞], this is an easy conse-
quence of a theorem of Casazza and Lin (see [7, Theorem 38] or [24, Proposition 2.a.12]).)

To prove the claim, let (xn) be a seminormalized block basic sequence of (en). For
each x ∈ E, set

supp x :=
{
m ∈ N

∣∣ QE
m(x) 6= 0

}
.

Inductively we choose a subsequence (xnk
) of (xn) such that

max(supp xnk
) < min(supp xnk+1

) (k ∈ N).

For each k ∈ N, take ϕk ∈ E ′ such that ‖ϕk‖ = 1/‖xnk
‖, 〈xnk

, ϕk〉 = 1, and 〈x, ϕk〉 = 0
whenever x ∈ E with supp x ∩ supp xnk

= ∅. Since the sequence (xnk
) is seminormalized,

we can de�ne operators

S : x 7→
(
〈x, ϕk〉

)∞
k=1

, E → D, and T : (αk) 7→
∞∑

k=1

αkxnk
, D → E.

Clearly, we have Sxnk
= dk and Tdk = xnk

for each k ∈ N. This implies that (xnk
) is a

complemented basic sequence equivalent to (dk), and the claim follows.
The basis (dn) is obviously semispreading, and so we conclude from Corollary 3.8 that

F (E) = K (E) = S (E) = E (E) ( G D(E),

and for each non-zero, closed ideal J in B(E), either J = F (E) or G D(E) ⊆ J . 2
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4 Operators on c0-direct sums

In this section we shall concentrate on the special situation where E =
(⊕

En

)
c0
for certain

sequences (En) of Banach spaces. In particular we shall determine conditions which are
su�cient for G c0(E) to be a maximal ideal in B(E).

Our �rst lemma characterizes those matrices with �nite columns that induce operators
between c0-direct sums. The proof is straightforward and thus omitted.

4.1 Lemma. Let (En) and (Fn) be sequences of Banach spaces, and let (Vm,n) be a matrix
with Vm,n ∈ B(En, Fm) for each m, n ∈ N and at most �nitely many non-zero entries in
each column. Then there is an operator V :

(⊕
En

)
c0
→
(⊕

Fn

)
c0

with matrix (Vm,n)

(that is, Vm,n = QF
mV JE

n for each m, n ∈ N) if and only if there is a constant c > 0 such
that ∥∥∥∥ N∑

n=1

Vm,nxn

∥∥∥∥ 6 c max
16n6N

‖xn‖ (m, N ∈ N, x1 ∈ E1, . . . , xN ∈ EN). (4.1)

In this case, ‖V ‖ = inf c, where the in�mum is taken over the set of all c > 0 such that
(4.1) holds. 2

The following construction will be important in the proof of the main result (Theo-
rem 4.4) of this section.

4.2 Construction. Let (En) and (Fn) be sequences of Banach spaces, and set

E :=
(⊕

En

)
c0

and F :=
(⊕

Fn

)
c0

.

Let T : E → F be an operator with �nite columns. De�ne

νm := rowsuppm(T ), Bm :=

{
{0} if νm = ∅(⊕

n∈νm
En

)
c0

otherwise
(m ∈ N),

B :=

(⊕
m∈N

Bm

)
c0

, Vm,n :=

{
JBm

n if n ∈ νm

0 otherwise
∈ B(En, Bm) (m, n ∈ N),

where
(⊕

n∈νm
En

)
c0
is the obvious generalization of

(⊕
n∈N En

)
c0
to index sets νm ( N,

and JBm
n denotes the natural embedding of En into Bm for each n ∈ νm.

Observe that, for each m, n ∈ N, Tm,n = 0 if and only if Vm,n = 0, and so (Vm,n)
has at most �nitely many non-zero entries in each column. Since (Vm,n) clearly satis�es
condition (4.1) in Lemma 4.1 with c = 1, we conclude that there is an operator V : E → B
with matrix (Vm,n), and ‖V ‖ 6 1.

For each m ∈ N, let Lm be the canonical embedding of Bm into E. This is an isometry,
and so T̃m := QF

mTLm : Bm → Fm is an operator of norm at most ‖T‖. It follows that

there is a diagonal operator diag(T̃m) : B → F , as de�ned in �2.5. We claim that

T = diag(T̃m)V. (4.2)

12



Indeed, for each m, n ∈ N and x ∈ En, we have

QF
m diag(T̃k)V JE

n x = T̃mQB
m(Vk,nx)∞k=1 = QF

mTLmVm,nx

=

{
QF

mTLmJBm
n x = QF

mTJE
n x if n ∈ νm

0 otherwise

}
= Tm,nx,

and (4.2) follows. 2

4.3 De�nition. Let E and F be Banach spaces, and let T : E → F be an operator.

(i) Let ε > 0. To measure the ε-approximate factorization of the operator T through the
�nite-dimensional spaces `M

∞ (M ∈ N), we de�ne

facε
∞(T ) :=

inf
{
‖S‖ ‖R‖

∣∣M ∈ N, R ∈ B(E, `M
∞), S ∈ B(`M

∞ , F ), ‖T − SR‖ 6 ε
}
∈ [0,∞].

(ii) The operator T is ∞-integral if there is a compact Hausdor� space Ω, and two oper-
ators R : E → C(Ω) and S : C(Ω) → F ′′ such that the diagram

E
T //

R
��>

>>
>>

>>
>>

> F
κF // F ′′

C(Ω)

S

??����������

is commutative. We write I∞(E, F ) for the set of all ∞-integral operators from E
to F . The assignment I∞ thus de�ned is an operator ideal.

Before stating our next theorem, we recall that, for an operator ideal J, J denotes
the closure of J.

4.4 Theorem. Let (En) be a sequence of �nite-dimensional Banach spaces, (Fn) a se-
quence of dual Banach spaces, and set E :=

(⊕
En

)
c0

and F :=
(⊕

Fn

)
c0
. For each

operator T : E → F with locally �nite matrix, the following three assertions are equiva-
lent:

(a) T ∈ G c0(E, F );

(b) T ∈ I∞(E, F );

(c) sup
{
facε

∞(QF
mT )

∣∣ m ∈ N
}

< ∞ for each ε > 0.

Proof. (a)⇒(b). This is clear because the Banach spaces c0, c, and C(N∞) are isomorphic,
where N∞ denotes the one-point compacti�cation of N.

(b)⇒(c). Suppose that T ∈ I∞(E, F ). Given ε > 0, take a compact Hausdor� space Ω
and operators R : E → C(Ω) and S : C(Ω) → F ′′ such that ‖κF T − SR‖ 6 ε. We claim
that facε

∞(QF
mT ) 6 2 ‖S‖ ‖R‖ for each m ∈ N.

If rowsuppm(T ) = ∅, then QF
mT = 0, and so the claim trivially holds in this case.
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Now suppose that ν := rowsuppm(T ) is non-empty. By assumption, ν is a �nite set,
and so PE

ν is a �nite-rank operator which clearly satis�es QF
mT = QF

mTPE
ν . In particular,

im(RPE
ν ) is a �nite-dimensional subspace of C(Ω). Since C(Ω) is an L∞,2-space (e.g.,

see [10, Theorem 3.2(II)]), we can take M ∈ N and an M -dimensional subspace C of C(Ω)
such that there is an isomorphism U : C → `M

∞ with ‖U‖ ‖U−1‖ 6 2 and im(RPE
ν ) ⊆ C.

Let Gm be a predual Banach space of Fm, so that G′
m = Fm, and de�ne operators R̃

and S̃ by

E
R̃ //_________

RPE
ν

��7
77

77
77

77
77

77
`M
∞ `M

∞
S̃ //_______________

U−1 ∼=
��

Fm

and

C

U
∼=

BB�������������
C ⊆ C(Ω) S // F ′′

(QF
m)′′

// F ′′
m.

κ′Gm

OO

Then, using the facts that κ′Gm
κFm = IFm and κFmQF

m = (QF
m)′′κF , we obtain

‖QF
mT − S̃R̃‖ =

∥∥κ′Gm
κFmQF

mTPE
ν − S̃R̃

∥∥
=
∥∥κ′Gm

(QF
m)′′κF TPE

ν − κ′Gm
(QF

m)′′SRPE
ν

∥∥
6 ‖κ′Gm

‖ ‖(QF
m)′′‖ ‖κF T − SR‖ ‖PE

ν ‖ 6 ε.

This implies that

facε
∞(QF

mT ) 6 ‖S̃‖ ‖R̃‖ 6 ‖κ′Gm
‖ ‖(QF

m)′′‖ ‖S‖ ‖U−1‖ ‖U‖ ‖R‖ ‖PE
ν ‖ 6 2 ‖S‖ ‖R‖,

as claimed, and consequently (c) is satis�ed.
(c)⇒(a). Let ε > 0 be given, and suppose that sup

{
facε

∞(QF
mT )

∣∣ m ∈ N
}

< ∞. Then,
for each m ∈ N, we can take Mm ∈ N and operators Rm : E → `Mm

∞ and Sm : `Mm
∞ → Fm

such that sup ‖Rm‖ < ∞, sup ‖Sm‖ < ∞, and ‖QF
mT − SmRm‖ 6 ε. Set D :=

(⊕
`Mm
∞
)

c0
.

We shall use the notation and results of Construction 4.2. Since sup ‖Rm‖ < ∞ and
sup ‖Sm‖ < ∞, there are diagonal operators diag(RmLm) : B → D and diag(Sm) : D → F ,
and we have∥∥diag(T̃m)− diag(Sm) diag(RmLm)

∥∥ = sup ‖T̃m − SmRmLm‖
6 sup ‖QF

mT − SmRm‖ ‖Lm‖ 6 ε.

It follows that diag(T̃m) ∈ G c0(B, F ) because D is isomorphic to c0 and ε is arbitrary, and

so we conclude that T = diag(T̃m)V ∈ G c0(E, F ). 2

Combining Lemma 2.7(iii) and Theorem 4.4 yields the following result.

4.5 Corollary. Let (En) and (Fn) be sequences of �nite-dimensional Banach spaces. Then

G c0

((⊕
En

)
c0

,
(⊕

Fn

)
c0

)
= I∞

((⊕
En

)
c0

,
(⊕

Fn

)
c0

)
. 2
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4.6 Corollary. Let (En) be a sequence of �nite-dimensional Banach spaces, (Fn) a se-
quence of dual Banach spaces, set E :=

(⊕
En

)
c0

and F :=
(⊕

Fn

)
c0
, and let T : E → F

be an operator with locally �nite matrix. Then T /∈ G c0(E, F ) if and only if there is a
non-empty subset ν of N such that the operator P F

ν T has consecutively supported rows
and P F

ν T /∈ G c0(E, F ).

Proof. Suppose that T /∈ G c0(E, F ). Then Theorem 4.4 implies that

sup
{
facε

∞(QF
mT )

∣∣ m ∈ N
}

= ∞

for some ε > 0. Inductively we choose a strictly increasing sequence (Mm) in N such that

facε
∞(QF

Mm
T ) > m and sup

(
rowsuppMm

(T )
)

< inf
(
rowsuppMm+1

(T )
)

(m ∈ N).

Set ν := {Mm |m ∈ N}. We observe that the kth row of the matrix of P F
ν T is equal to the

kth row of the matrix of T if k ∈ ν and zero otherwise. It follows that the operator P F
ν T

has consecutively supported rows, and Theorem 4.4 implies that P F
ν T /∈ G c0(E, F ) because

facε
∞(QF

Mm
P F

ν T ) > m for each m ∈ N.
The converse implication is immediate from the fact that G c0 is an operator ideal. 2

4.7 Lemma. Let E and F be Banach spaces, and let P be an idempotent operator on E.
Then P ∈ G F (E) if and only if, for some n ∈ N, there is an idempotent operator Q on F⊕n

with im Q ∼= im P .

Proof. `⇒'. Suppose that P ∈ G F (E). Then in fact P ∈ GF (E) by [23, Proposition 3.4],
and so P =

∑n
j=1 SjRj for some n ∈ N, R1, . . . , Rn ∈ B(E, F ), and S1, . . . , Sn ∈ B(F, E).

Clearly, the operators

R : x 7→ (R1x, . . . , Rnx), E → F⊕n, and S : (x1, . . . , xn) 7→
n∑

j=1

Sjxj, F⊕n → E,

satisfy P = SR. This implies by [23, Lemma 3.6(ii)] that Q := RSRS ∈ B(F⊕n) is
idempotent with im Q ∼= im P .

`⇐'. Suppose that Q is an idempotent operator on F⊕n with im Q ∼= im P . By [23,
Lemma 3.6(i)], there are operators R : E → F⊕n and S : F⊕n → E such that P = SR and
Q = RS. For each j ∈ {1, . . . , n}, set Rj := QjR ∈ B(E, F ) and Sj := SJj ∈ B(F, E),
where Jj : F → F⊕n and Qj : F⊕n → F are the jth coordinate embedding and projection,
respectively. Then we have

n∑
j=1

SjRj = S

( n∑
j=1

JjQj

)
R = P,

and so P ∈ GF (E). 2

4.8 Corollary. Let P be an idempotent operator on a Banach space E. Then P ∈ G c0(E)
if and only if im P is either �nite-dimensional or isomorphic to c0.
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Proof. Suppose that P ∈ G c0(E). Then Lemma 4.7 implies that, for some n ∈ N, there
is an idempotent operator Q on c⊕n

0 with im Q ∼= im P . Since c⊕n
0

∼= c0, Peªczy«ski's
theorem [24, Theorem 2.a.3] shows that either im Q is �nite-dimensional or im Q ∼= c0, and
so the same is true for im P .

The converse implication is clear. 2

Applying this result with P being the identity operator yields the following conclusion.

4.9 Corollary. Let E be a Banach space. Then G c0(E) = B(E) if and only if E is either
�nite-dimensional or isomorphic to c0. 2

4.10 Theorem. Let (En) be a sequence of non-zero, �nite-dimensional Banach spaces,
each having a normalized, monotone basis, and set E :=

(⊕
En

)
c0
. Then the lattice of

closed ideals in B(E) is given by

{0} ( F (E) ( G c0(E) ( B(E) (4.3)

if and only if the following two conditions are satis�ed:

(i) E 6∼= c0;

(ii) for each operator T on E with locally �nite matrix and consecutively supported rows,
either T ∈ G c0(E) or G {T}(E) = B(E).

Proof. Suppose that the lattice of closed ideals in B(E) is given by (4.3). Then E 6∼= c0

because otherwise we would have G c0(E) = B(E), contradicting (4.3). Moreover, if T is
any operator on E such that T /∈ G c0(E), then necessarily G {T}(E) = B(E) by (4.3).

Conversely, suppose that E 6∼= c0 and that the lattice of closed ideals in B(E) is
not given by (4.3). Corollary 4.9 shows that G c0(E) is a proper ideal in B(E), and so
Example 3.9 implies that there is a proper closed ideal J in B(E) such that G c0(E) ( J.
Pick R ∈ J \ G c0(E). By Lemma 2.7(iii), we can �nd an approximable operator S on E
such that R − S has locally �nite matrix. Since R − S /∈ G c0(E), Corollary 4.6 implies
that there is a subset ν of N such that the operator T := PE

ν (R − S) has consecutively
supported rows and T /∈ G c0(E). The ideal G {T}(E) is proper because T ∈ J and J is
proper. 2

Finally in this section we shall characterize the approximable operators between cer-
tain c0-direct sums. The proof is an easy combination of standard methods, but for the
convenience of the reader we have included it.

4.11 Proposition. Let (En) be a sequence of Banach spaces, (Fn) a sequence of �nite-
dimensional Banach spaces, and set E :=

(⊕
En

)
c0

and F :=
(⊕

Fn

)
c0
. Then, for each

operator T : E → F , the following three assertions are equivalent:

(a) T ∈ F (E, F );

(b) ‖T − P F
{1,...,n}T‖ → 0 as n →∞;

(c) ‖QF
n T‖ → 0 as n →∞.
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Proof. (a)⇒(c). Clearly, it su�ces to verify that (c) holds for each non-zero �nite-

rank operator T : E → F . Take a basis (y1, . . . , ym) for im T , and let (y′1, . . . , y
′
m) be the

associated coordinate functionals, so that Tx =
∑m

k=1〈Tx, y′k〉 yk for each x ∈ E. Then we
have

‖QF
n T‖ 6

m∑
k=1

‖QF
n yk‖ ‖T ′y′k‖ → 0 as n →∞,

as required.
(c)⇔(b). For each n ∈ N, we have
‖T − P F

{1,...,n}T‖ = sup
{
‖(T − P F

{1,...,n}T )x‖
∣∣ x ∈ E, ‖x‖ 6 1

}
= sup

{
‖QF

m(T − P F
{1,...,n}T )x‖

∣∣ m ∈ N, x ∈ E, ‖x‖ 6 1
}

= sup
{
‖QF

mTx‖
∣∣ m > n, x ∈ E, ‖x‖ 6 1

}
= sup

{
‖QF

mT‖
∣∣ m > n

}
,

and so (c) and (b) are equivalent.
(b)⇒(a). This is clear because P F

{1,...,n} ∈ F (F ) for each n ∈ N. 2

5 Classi�cation of the closed ideals in BBB
((⊕

`n
2

)
c0

)
In this section we shall join the ends together to prove our main result: the Banach
space E :=

(⊕
`n
2

)
c0

satis�es the two conditions in Theorem 4.10, and so the lattice of

closed ideals in B(E) is given by (4.3).
We begin with the fundamental observation that

(⊕
`n
2

)
c0

is not isomorphic to c0.
This result is well known, but by no means easy, its proof relying either on Grothendieck's
theorem (see [24, p. 73] for details) or on the fact that the second dual of c0 has the
Dunford�Pettis property, whereas the second dual of

(⊕
`n
2

)
c0
does not (see [9, p. 22]).

5.1 Theorem. The Banach space
(⊕

`n
2

)
c0

is not isomorphic to c0. 2

At this point, we should like to recall our convention from �2.1 that �nite direct sums
are always equipped with the `n

∞-norm, so that even in the case where H1, . . . , Hn are
Hilbert spaces, the norm of an element (x1, . . . , xn) ∈ H1 ⊕ · · · ⊕Hn is given by (2.1).

5.2 De�nition. (i) Suppose that G is a closed subspace of a Hilbert space H. We denote
by G⊥ the orthogonal complement of G, and write projHG for the orthogonal projection
of H onto G (so that projHG is the idempotent operator on H with im projHG = G and
ker projHG = G⊥).

(ii) Let n ∈ N, let H1, . . . , Hn be Hilbert spaces, and let E be a Banach space. For
each ε > 0 and each operator T : H1 ⊕ · · · ⊕Hn → E, we de�ne

mε(T ) := sup
{

m ∈ N0

∣∣∣ ∥∥T((IH1 − projH1
G1

)⊕ · · · ⊕ (IHn − projHn
Gn

)
)∥∥ > ε

whenever Gj is a subspace of Hj

with dim Gj 6 m for each j = 1, . . . , n
}
∈ N0 ∪ {±∞}.

(By convention, we have sup ∅ = −∞.)
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Hence, mε(T ) is the largest number m such that, no matter what subspace Gj of Hj of
dimension at most m that we remove for j = 1, . . . , n, the restriction of the operator T to
the complement has norm greater than ε. We shall now show that this number mε(T ) is
closely related to the ε-approximate factorization number facε

∞(T ) that we introduced in
Section 4.

5.3 Lemma. Let n ∈ N, let H1, . . . , Hn, and K be Hilbert spaces, let T : H1⊕· · ·⊕Hn → K
be an operator, and let 0 < ε < ‖T‖. Then:
(i) facε

∞(T ) 6 ‖T‖
√

mε(T ) + 1;

(ii) for each m ∈ N with m 6 mε(T )/2 + 1, there are operators R : `m
2 → H1 ⊕ · · · ⊕Hn

and S : K → `m
2 such that ‖R‖ 6 1, ‖S‖ 6 1/ε, and I`m

2
= STR.

Proof. (i) The fact that ε < ‖T‖ ensures that mε(T ) > 0. If mε(T ) = ∞, then the
inequality is trivial. Otherwise set m := mε(T ) + 1 ∈ N. By the de�nition of mε(T ), there
are subspaces G1, . . . , Gn of H1, . . . , Hn, respectively, each of dimension at most m, such
that ∥∥T((IH1 − projH1

G1
)⊕ · · · ⊕ (IHn − projHn

Gn
)
)∥∥ 6 ε. (5.1)

Let j = 1, . . . , n. Since the formal identity operators `m
2 → `m

∞ and `m
∞ → `m

2 have norms 1
and

√
m, respectively, we can �nd operators Rj : Hj → `m

∞ and Sj : `m
∞ → Hj such that

‖Rj‖ = 1, ‖Sj‖ 6
√

m, and proj
Hj

Gj
= SjRj. Set

R := R1 ⊕ · · · ⊕Rn : H1 ⊕ · · · ⊕Hn → (`m
∞)⊕n = `mn

∞

and

S := S1 ⊕ · · · ⊕ Sn : `mn
∞ = (`m

∞)⊕n → H1 ⊕ · · · ⊕Hn.

Then ‖R‖ = 1, ‖S‖ 6
√

m, and ‖T − TSR‖ 6 ε by (5.1). It follows that

facε
∞(T ) 6 ‖TS‖ ‖R‖ 6 ‖T‖

√
m,

as required.
(ii) By �nite induction, we choose vectors x1 = (x

(1)
1 , . . . , x

(n)
1 ), . . . , xm = (x

(1)
m , . . . , x

(n)
m )

in H1 ⊕ · · · ⊕Hn such that

(1) ‖xi‖ 6 1 and ‖Txi‖ > ε for each i = 1, . . . , m;

(2) x
(j)
1 , . . . , x

(j)
m are orthogonal in Hj for each j = 1, . . . , n;

(3) Tx1 . . . , Txm are orthogonal in K.

To start the induction, take a unit vector x1 ∈ H1 ⊕ · · · ⊕Hn such that Tx1 ∈ K has
norm at least ε; this is possible because ‖T‖ > ε.

Now suppose that k ∈ {1, . . . , m − 1} and that x1, . . . , xk ∈ H1 ⊕ · · · ⊕Hn have been
chosen in accordance with (1)�(3). For each j = 1, . . . , n, set

Gj := span
{
x

(j)
1 , . . . , x

(j)
k , (TJj)

∗Tx1, . . . , (TJj)
∗Txk

}
⊆ Hj,
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where Jj : Hj → H1 ⊕ · · · ⊕Hn is the jth coordinate embedding, and (TJj)
∗ : K → Hj is

the (Hilbert space) adjoint operator of TJj : Hj → K. Then we have

dim Gj 6 2k 6 2m− 2 6 mε(T ),

and so there is a unit vector w = (w1, . . . , wn) ∈ H1 ⊕ · · · ⊕Hn such that∥∥T((IH1 − projH1
G1

)⊕ · · · ⊕ (IHn − projHn
Gn

)
)
w
∥∥ > ε

by the de�nition of mε(T ). Set

xk+1 :=
(
(IH1 − projH1

G1
)⊕ · · · ⊕ (IHn − projHn

Gn
)
)
w ∈ H1 ⊕ · · · ⊕Hn.

Then clearly (1) is satis�ed. If we write xk+1 = (x
(1)
k+1, . . . , x

(n)
k+1), then we see that

x
(j)
k+1 = (IHj

− proj
Hj

Gj
)wj ∈ G⊥

j (j = 1, . . . , n),

and so (2) is satis�ed. Finally, (3) holds because

(Txk+1 |Txi) =
n∑

j=1

(TJjx
(j)
k+1 |Txi) =

n∑
j=1

(
x

(j)
k+1

∣∣(TJj)
∗Txi

)
= 0 (i = 1, . . . , k),

where (· | ·) denotes the the inner product in the appropriate Hilbert spaces. Hence the
induction continues.

De�ne R : `m
2 → H1 ⊕ · · · ⊕Hn by Rek = xk for each k = 1, . . . , m. Using (1), (2), and

Pythagoras's formula, we deduce that ‖R‖ 6 1. Next, de�ne

S1 : y 7→
m∑

k=1

(y |Txk)

‖Txk‖
ek, K → `m

2 .

By (3) and Bessel's inequality, we obtain ‖S1‖ = 1. Finally, we de�ne S2 : `m
2 → `m

2 by

S2ek :=
1

‖Txk‖
ek (k = 1, . . . , m).

Then (1) implies that ‖S2‖ 6 1/ε, and so S := S2S1 : K → `m
2 satis�es ‖S‖ 6 1/ε. Clearly

we have STRek = ek for each k = 1, . . . , m, and the result follows. 2

5.4 Remark. Let (Hn) be a sequence of Hilbert spaces, set E :=
(⊕

Hn

)
c0
, and let T be

an operator on E with �nite rows. Then, for each ε > 0 and each n ∈ N, there is a natural
way to de�ne mε(Q

E
n T ), namely by `forgetting' the co�nite number of Hilbert spaces on

which QE
n T acts trivially. To be speci�c, if QE

n T = 0, then we set mε(Q
E
n T ) := −∞.

Otherwise ν := rowsuppn(T ) is a �nite, non-empty set, and so F :=
⊕

j∈ν Hj is a �nite
direct sum of Hilbert spaces. Let L : F → E be the natural inclusion operator, and de�ne

mε(Q
E
n T ) := mε(Q

E
n TL),

where the quantity on the right-hand side is de�ned as in De�nition 5.2(ii). We note in
passing that QE

n T = QE
n TLP , where P : E → F is the natural projection.
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We are now ready to prove the following trichotomy theorem for operators on
(⊕

`n
2

)
c0

with locally �nite matrix.

5.5 Theorem. Set E :=
(⊕

`n
2

)
c0
, and let T be an operator on E with locally �nite

matrix. Then:

(i) T ∈ F (E) if and only if ‖QE
n T‖ → 0 as n →∞;

(ii) T ∈ G c0(E) if and only if sup
{
mε(Q

E
n T )

∣∣ n ∈ N
}

< ∞ for each ε > 0;

(iii) there are operators R and S on E such that STR = IE if and only if

sup
{
mε(Q

E
n T )

∣∣ n ∈ N
}

= ∞
for some ε > 0.

Proof. (i). This is a special case of Proposition 4.11.
(ii), ⇐. Let ε > 0 be given, and suppose that sup

{
mε(Q

E
n T )

∣∣ n ∈ N
}

< ∞. Then it

follows from Lemma 5.3(i) that sup
{
facε

∞(QE
n T )

∣∣ n ∈ N
}

< ∞ as well, and so T ∈ G c0(E)
by Theorem 4.4.

(iii), ⇐. Suppose that sup
{
mε(Q

E
n T )

∣∣ n ∈ N
}

= ∞ for some ε > 0. Inductively
we construct a strictly increasing sequence (nk) in N such that mε(Q

E
nk

T ) > 2k − 2 and
sup(rowsuppnk

T ) < inf(rowsuppnk+1
T ) for each k ∈ N. Set

M0 := 0, Mk := sup(rowsuppnk
T ) ∈ N, and Fk :=

Mk⊕
n=Mk−1+1

`n
2 ,

and let Lk : Fk → E be the natural inclusion map for each k ∈ N. Then
mε(Q

E
nk

TLk) = mε(Q
E
nk

T ) > 2k − 2,

and so Lemma 5.3(ii) implies that there are operators Rk : `k
2 → Fk and Sk : `nk

2 → `k
2 such

that ‖Rk‖ 6 1, ‖Sk‖ 6 1/ε, and I`k
2

= SkQ
E
nk

TLkRk.

Set R := diag(Rk) : E →
(⊕

Fk

)
c0
. By ignoring parentheses, we identify

(⊕
Fk

)
c0

with E, and thus we regard R as an operator mapping into E. De�ne S : (xn) 7→ (Skxnk
),

E → E. Then S is an operator of norm at most 1/ε, and for each j, k ∈ N, we have

QE
j STRJE

k = SjQ
E
nj

TLkRk =

{
I`k

2
if j = k

0 otherwise.

It follows that STR = IE, as desired.
Finally, the implications ⇒ in (ii) and (iii) follow from what we have already shown

together with the fact that G c0(E) 6= B(E) (cf. Corollary 4.9 and Theorem 5.1). 2

In particular, we see that condition (ii) in Theorem 4.10 is satis�ed, and so we obtain
the following result.

5.6 Corollary. For the Banach space E :=
(⊕

`n
2

)
c0
, there are exactly four distinct closed

ideals in B(E), and they are totally ordered by inclusion. More speci�cally, the lattice of
closed ideals in B(E) is given by (4.3). 2
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6 A new proof of a theorem of Bourgain, Casazza,

Lindenstrauss, and Tzafriri

Our �rst clue that the classi�cation of the closed ideals in B(E) for E :=
(⊕

`n
2

)
c0
obtained

in Section 5 might be true came from the following theorem which, roughly speaking, asserts
that E has no `exotic' complemented subspaces.

6.1 Theorem. (Bourgain, Casazza, Lindenstrauss, and Tzafriri [3]) Let F be an in�nite-
dimensional, complemented subspace of the Banach space E :=

(⊕
`n
2

)
c0
. Then F is either

isomorphic to c0 or to E. 2

In this section we shall show how one can apply Corollary 5.6 to give a new and, we
feel, more elementary proof of this theorem. To do so, we require a few preparations.

6.2 De�nition. A Banach space E is primary if, for each idempotent operator P on E,
either im P ∼= E or ker P ∼= E (or both).

6.3 Lemma. Let E and F be Banach spaces. Suppose that E is primary and that E is
isomorphic to F⊕n for some n ∈ N. Then E and F are isomorphic.

Proof. Wemay suppose that n ∈ N is chosen to be the smallest integer such that E ∼= F⊕n.
Since F⊕n = F ⊕F⊕(n−1) and E is primary, this implies that either E ∼= F or E ∼= F⊕(n−1).
The latter case contradicts the minimality of n, and so we conclude that E ∼= F . 2

6.4 Proposition. (Casazza, Kottman, and Lin [6]) Set E :=
(⊕

`n
2

)
c0
. Then:

(i) E is isomorphic to E ⊕ E;

(ii) E is primary.

Proof. This follows immediately from [6, Corollary 7 and Theorem 10]. 2

Proof of Theorem 6.1. Let P be an idempotent operator on E :=
(⊕

`n
2

)
c0

with

in�nite-dimensional image. Proposition 6.4(ii) implies that either im P ∼= E or ker P ∼= E.
If im P ∼= E, then there is nothing to prove, and so we may suppose that ker P ∼= E. Since
P is idempotent and has in�nite-dimensional image, P is non-compact. By Corollary 5.6,
there are two cases to consider:

(i) G {P}(E) = G c0(E);

(ii) G {P}(E) = B(E).

In case (i), Corollary 4.8 shows that im P ∼= c0.
In case (ii), it follows from Lemma 4.7 (applied with the Banach space F := im P

and the idempotent operator IE ∈ G F (E)) that we can take n ∈ N and an idempotent
operator Q on (im P )⊕n such that im Q ∼= E. Then we have

E ∼= E⊕n ∼= (im P )⊕n ⊕ (ker P )⊕n ∼= im Q⊕ ker Q⊕ E⊕n ∼= E ⊕ ker Q ∼= (im P )⊕n
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by repeated use of Proposition 6.4(i). Now Lemma 6.3 and Proposition 6.4(ii) imply that
im P ∼= E. 2

6.5 Remark. In fact, Bourgain, Casazza, Lindenstrauss, and Tzafriri prove analogues of
Theorem 6.1 for other Banach spaces than

(⊕
`n
2

)
c0
. To state their results in a uni�ed

way, set E :=
(⊕

En

)
D
, where D and En are given in one of the following four ways:

(i) D = c0 and En = `n
2 for each n ∈ N;

(ii) D = c0 and En = `n
1 for each n ∈ N;

(iii) D = `1 and En = `n
2 for each n ∈ N;

(iv) D = `1 and En = `n
∞ for each n ∈ N.

Then it is shown in [3, �8] that, for each in�nite-dimensional, complemented subspace F
of E, either F is isomorphic to D or F is isomorphic to E.

In the light of these results and Corollary 5.6, it is natural to ask what the closed ideals
in B(E) are in the cases (ii)�(iv).

Another Banach space for which this question attracts attention is E :=
(⊕

`n
p

)
c0
for

a �xed p > 1. It follows from [24, p. 72f] that E contains a complemented subspace
isomorphic to

(⊕
`n
2

)
c0
, as well as the `trivial' complemented subspaces isomorphic to c0

and of �nite dimension. Consequently, for p 6= 2, B(E) contains at least �ve distinct closed
ideals, but we do not know if there are any others.

We intend to address these questions in future work.
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