
Geometric representations of random hypergraphs

Abstract

We introduce a novel parametrization of distributions on hypergraphs based on the geom-

etry of points in Rd. The idea is to induce distributions on hypergraphs by placing priors on

point configurations via spatial processes. This prior specification is then used to infer condi-

tional independence models or Markov structure for multivariate distributions. This approach

supports inference of factorizations that cannot be retrieved by a graph alone, leads to new

Metropolis-Hastings Markov chain Monte Carlo algorithms with both local and global moves

in graph space, and generally offers greater control on the distribution of graph features than

currently possible. We provide a comparative performance evaluation against state-of-the-art,

and we illustrate the utility of this approach on simulated and real data.

Keywords: Abstract simplicial complex, Computational topology, Copulas, Factor models,

Graphical models, Random geometric graphs.
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1 Introduction

Consider the problem of making inference on the dependence structure among random variables
X1, ..., Xp ∈ Rp, fromm replicated observations. The dominant formalism for this problem, is that
of graphical models (Lauritzen, 1996). In this formalism. the focus is on the first two moments
of the observation vector, X = {X1, ..., Xp}, and the dependence structure is specified in terms of
pairwise relations, which define an undirected graph. If such a graph is decomposable, inference is
typically carried out efficiently. Here we detail a new approach for the construction of distributions
on undirected graphs, motivated by the problem of Bayesian inference of the dependence structure
among random variables.

1.1 Related work

It is common to model the joint probability distribution of a family of p random variables
{X1, . . . , Xp} in two stages. First specify the conditional dependence structure of the distribution,
then specify details of the conditional distributions of the variables within that structure (see p. 1274
of Dawid and Lauritzen 1993, or p. 180 of Besag 1975, for example). The structure may be summa-
rized in a variety of ways in the form of a graph G = (V , E) whose vertices V = {1, ..., p} index the
variables {Xi} and whose edges E ⊆ V ×V in some way encode conditional dependence. We fol-
low the Hammersley-Clifford approach (Besag, 1974; Hammersley and Clifford, 1971), in which
(i, j) ∈ E if and only if the conditional distribution of Xi given all other variables {Xk : k 6= i}
depends on Xj , i.e., differs from the conditional distribution of Xi given {Xk : k 6= i, j}. In this
case the distribution is said to be Markov with respect to the graph. One can show that this graph
is symmetric or undirected, i.e., all the elements of E are unordered pairs.

The simultaneous inference of a decomposable graph and marginal distributions in a fully
Bayesian framework was approached in (Green, 1995) using local proposals to sample graph space.
A promising extension of this approach called Shotgun Stochastic Search (SSS) takes advantage
of parallel computing to select from a batch of local moves (Jones et al., 2005). A stochastic
search method that incorporates both local moves and more aggressive global moves in graph
space has been developed by Scott and Carvalho (2008). These stochastic search methods are
intended to identify regions with high posterior probability, but their convergence properties are
still not well understood. Bayesian models for non-decomposable graphs have been proposed by
Roverato (2002) and by Wong, Carter, and Kohn (2003). These two approaches focus on Monte
Carlo sampling of the posterior distribution from specified hyper Markov prior laws. Their em-
phasis is on the computational problem of Monte Carlo simulation, not on that of constructing
interesting informative priors on graphs. We think there is need for methodology that offers both
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efficient exploration of the model space and a simple and flexible family of distributions on graphs
that can reflect meaningful prior information.

Erdös-Rényi random graphs (those in which each of the
(
p
2

)
possible undirected edges (i, j)

is included in E independently with some specified probability α ∈ [0, 1]), and variations where
the edge inclusion probabilities αij are allowed to be edge-specific, have been used to place in-
formative priors on decomposable graphs (Heckerman et al., 1995; Mansinghka et al., 2006). The
number of parameters in this prior specification can be enormous if the inclusion probabilities
are allowed to vary, and some interesting features of graphs (such as decomposability) cannot be
expressed solely through edge probabilities. Mukherjee and Speed (2008) developed methods for
placing informative distributions on directed graphs by using concordance functions (functions that
increase as the graph agrees more with a specified feature) as potentials in a Markov model. This
approach is tractable, but it is still not clear how to encode certain common assumptions within
such a framework.

For the special case of jointly Gaussian variables {Xj}, or those with arbitrary marginal dis-
tributions Fj(·) whose dependence is adequately represented in Gaussian copula form Xj =

F−1
j

(
Φ(Zj)

)
for jointly Gaussian {Zj} with zero mean and unit-diagonal covariance matrix C,

the problem of studying conditional independence reduces to a search for zeros in the precision
matrix C−1. This approach (see Hoff, 2007, for example) is faster and easier to implement than
ours in cases where both are applicable, but is far more limited in the range of dependencies it
allows. For example, a three-dimensional model in which each pair of variables is conditionally
independent given the third cannot be distinguished from a model with complete joint dependence
of the three variables (we return to this example in Section 4.2.3).

1.2 Contributions

In this article we establish a novel approach to parametrize spaces of graphs. For any inte-
gers p, d ∈ N, we show in Section 2.2 how to use the geometrical configuration of a set {vi}
of p points in Euclidean space Rd to determine a graph G = (V , E) on V = {v1, ..., vp}. Any
prior distribution on point sets {vi} induces a prior distribution on graphs, and sampling from the
posterior distribution of graphs is reduced to sampling from spatial configurations of point sets—
a standard problem in spatial modeling. Relations between graphs and finite sets of points have
arisen earlier in the fields of computational topology (Edelsbrunner and Harer, 2008) and random
geometric graphs (Penrose, 2003). From the former we borrow the idea of nerves, i.e., simplicial
complexes computed from intersection patterns of convex subsets of Rd; the 1-skeletons (collection
of 1-dimensional simplices) of nerves are geometric graphs.
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As a side benefit our approach also yields estimates of the conditional distributions given the
graph. The model space of undirected graphs grows quickly with the dimension of {X1, . . . , Xp}
(there are 2p(p−1)/2 undirected graphs on p vertices) and is difficult to parametrize. We propose
a novel parametrization and a simple, flexible family of prior distributions on G and on Markov
probability distributions with respect to G (Dawid and Lauritzen, 1993); this parametrization is
based on computing the intersection pattern of a system of convex sets in Rd. The novelty and main
contribution of this paper is structural inference for graphical models, specifically, the proposed
representation of graph spaces allows for flexible prior distributions and new Markov chain Monte
Carlo (MCMC) algorithms.

From the random geometric graph approach we gain understanding about the induced distribu-
tion on graph features when making certain features of a geometric graph (or hypergraph) stochas-
tic.

2 Background and preliminaries

2.1 Graphical models

The graphical models framework is concerned with the representation of conditional dependen-
cies for a multivariate distribution in the form of a graph or hypergraph. We first review relevant
graph theoretical concepts and then relate these concepts to factorizing distributions.

A graph G is an ordered pair (V , E) of a set V of vertices and a set E ⊆ V × V of edges. If all
edges are unordered (resp., ordered), the graph is said to be undirected (resp., directed). All graphs
considered in this paper are undirected, unless stated otherwise. A hypergraph, denotedH, consists
of a vertex set V and a collection K of unordered subsets of V (known as hyperedges); a graph is
the special case where all the subsets are vertex pairs. A graph is complete if E = V × V contains
all possible edges; otherwise it is incomplete. A complete subgraph that is maximal with respect to
inclusion is a clique. Denote by C (G) and Q(G), respectively, the collection of complete sets and
cliques of G. A path between two vertices {vi, vj} ∈ V is a sequence of edges connecting vi to vj .
A graph such that any pair of vertices can be joined by a unique path is a tree. A decomposition

of an incomplete graph G = (V , E) is a partition of V into disjoint nonempty sets (A,B, S) such
that S is complete in G and separates A and B, i.e., any path from a vertex in A to a vertex in
B must pass through S. Iterative decomposition of a graph G such that at each step the separator
Si is minimal and the subsets Ai and Bi are nonempty generates the prime components of G, the
collection of subgraphs that cannot be further decomposed. If all prime components of a graph
G are complete, then G is said to be decomposable. Any graph G can be represented as a tree T
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whose vertices are its prime components P(G); this is called its junction tree representation. A
junction tree is a hypergraph.

Let P be a probability distribution on Rp and X = (X1, . . . , Xp) a random vector with dis-
tribution P . Graphical modeling is the representation of the Markov or conditional dependence
structure among the components {Xi} in the form of a graph G = (V , E). Denote by f(x) the joint
density function of {Xi} (or probability mass function for discrete distributions— more generally,
density for an arbitrary reference measure). The distribution P (and hence its density f(x)) may
depend implicitly on a vector θ of parameters, taking values in some set ΘG , which in some cases
will depend on the graph G; write Θ = tΘG for the disjoint union of the parameter spaces for all
graphs on V .

Each vertex vi ∈ V is associated with a variable Xi, and the edges E determine how the distri-
bution factors. The density f(x) for the distribution can be factored in a variety of ways associated
with the graph G (Lauritzen, 1996, p. 35). It may be factored in terms of complete sets a ∈ C (G):

f(x) =
∏

a∈C (G)

φa(xa | θa), (2.1a)

or similarly in terms of cliques a ∈ Q (assuming f is positive, according to the Hammersley-
Clifford theorem); if G is decomposable then f(x) may also be factored in junction-tree form as:

f(x) =

∏
a∈P(G) ψa(xa | θa)∏
b∈S (G) ψb(xb | θb)

, (2.1b)

where P(G) and S (G) denote the prime factors and separators of G, respectively, and where
ψa(xa | θa) denotes the marginal joint density for the components xa for prime factors a ∈P(G)

and ψb(xb | θb) that for separators b ∈ S (G) (Dawid and Lauritzen, 1993, Eqn. (6)). In the
Gaussian case, a similar factorization to (2.1b) holds even for non-decomposable graphs (Roverato,
2002, Prop. 2).

The prior distributions required for Bayesian inference about models of the form (2.1) may
be specified by giving a marginal distribution on the set of all graphs G ∈ Gp on p vertices and
conditional distributions on each ΘG , the space of parameters for that graph:

p(G, θ) = p(G) p(θ | G), G ∈ Gp, θ ∈ ΘG (2.2)

where θ ∈ ΘG determines the parameters {θa : a ∈ C (G)} or {θa : a ∈P(G)} and {θb : b ∈ S (G)}.
Giudici and Green (1999) pursue this approach in the Gaussian case, while Dawid and Lauritzen
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(1993) offer a rigorous framework for specifying more general prior distributions on ΘG . Such pri-
ors, called hyper Markov laws, inherit the conditional independence structure from the sampling
distribution, now at the parameter level. The hyper Inverse Wishart, useful when the factors are
multivariate normal, is by far the most studied hyper Markov law. Most previously studied mod-
els of the form (2.2) specify very little structure on p(G) (Giudici and Green, 1999; Heckerman
et al., 1995; Roverato, 2002)— typically p(G) is taken to be a uniform distribution on the space
of decomposable (or unrestricted) graphs, or perhaps an Erdös-Rényi prior to encourage sparsity
(Mansinghka et al., 2006), with no additional structure or constraints and hence no opportunity to
express prior knowledge or belief.

Two inference problems arise for the model specified in (2.2): inference of the entire joint
posterior distribution of the graph and factor parameters, (θ,G), or inference of only the conditional

independence structure, which entails comparing different graphs via the marginal likelihood

Pr {G | x} ∝
∫

ΘG

f(x | θ,G) p(G) p(θ | G) dθ.

Inference about G may now be viewed as a Bayesian model selection procedure (see Robert, 2001,
p. 348).

2.2 Geometric graphs

Most methodology for structural inference in graphical models either assumes little prior struc-
ture on graph space, or else represents graphs using high dimensional discrete spaces with no obvi-
ous geometry or metric. In either case prior elicitation and posterior sampling can be challenging.
In this section we propose parametrizations of graph space that will be used in Section 2.3 to
specify flexible prior distributions and to construct new Metropolis/Hastings MCMC algorithms
with local and global moves. The key idea for this parametrization is to construct graphs and
hypergraphs from intersections of convex sets in Rd.

We illustrate the approach with an example. Fix a convex region A ⊂ Rd and let V ⊂ A be
a finite set of p points. For each number r ≥ 0, the proximity graph Prox(V , r) (see Figure 1)
is formed by joining every pair of (unordered) elements in V whose distance is 2r or less, i.e.,
whose closed balls of radius r intersect. As r ranges from 0 to half the diameter of A, the graph
Prox(V , r) ranges from the totally disconnected graph to the complete graph. This example is a
particular case of a more general construction illustrated in Figure 2; hypergraphs can be computed
from properties of intersections of classes of convex subsets in Euclidean space. The convex sets
we consider are subsets of Rd that are simple to parametrize and compute. The key concept in our
construction is the nerve:
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Figure 1: Proximity graph for 100 vertices and radius r = 0.05.

Definition 2.1 (Nerve). Let F = {Aj, j ∈ I} be a finite collection of distinct nonempty convex

sets. The nerve of F is given by

Nrv(F ) =

{
σ ⊆ I :

⋂
j∈σ

Aj 6= ∅

}
.

The nerve of a family of sets uniquely determines a hypergraph. We use the following three nerves
in this paper to construct hypergraphs (for more details, see Edelsbrunner and Harer, 2008).

Definition 2.2 (Čech Complex). Let V be a finite set of points in Rd and r > 0. Denote by Bd

the closed unit ball in Rd. The Čech complex corresponding to V and r is the nerve of the sets

Bv,r = v + rBd, v ∈ V . This is denoted by Nrv(V , r, Čech).

Definition 2.3 (Delaunay Triangulation). Let V be a finite set of points in Rd. The Delaunay trian-
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gulation corresponding to V is the nerve of the sets Cv =
{
x ∈ Rd : ‖x− v‖ ≤ ‖x− u‖, u ∈ V

}
for v ∈ V . This is denoted by Nrv(V ,Delaunay), and the sets Cv are called Voronoi cells.

Definition 2.4 (Alpha Complex). Let V be a finite set of points in Rd and r > 0. The Alpha
complex corresponding to V and r is the nerve of the sets Bv,r ∩ Cv, v ∈ V . This is denoted by

Nrv(V , r,Alpha).
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Figure 2: (a) A set of vertices in R2 are used to construct a family of disks of radius r = 0.5. (b)
The nerve of this convex set. This is an example of a Čech complex. (c) For the same vertex set the
Voronoi diagram is computed. (d) The nerve of the Voronoi cells is obtained. This is an example
of the Delaunay triangulation. Note that the maximum clique size of the Delaunay is bounded by
the dimension of the space of the vertex set plus one; such a restriction does not apply to the Čech
complex.

Here we illustrate the idea of nerve and specifically, the idea of alpha complex. Consider the
vertex set displayed in Table 1 and r = 0.5. The sets Bv,r ∩Cv and the corresponding nerve (alpha
complex) are illustrated in Figure 3. Since the set indexed by V4 does not intersect with any other
Bv,r ∩ Cv, it will produce an isolated vertex in the nerve. The set indexed by V1 only intersects
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Figure 3: (a) Intersection of balls and Voronoi cells computed using r = 0.5 and the vertex set
listed in Table 1. (b) The corresponding Alpha complex.

Coordinate V1 V2 V3 V4 V5

x 0.2065 0.6383 0.9225 −0.8863 0.3043
y 0.3149 −0.1193 −0.2544 0.0816 −0.9310

Table 1: Vertex set used for generating a family of sets and the corresponding nerve.

with the set indexed by V2, therefore there will be an edge joining V1 and V2 in the nerve. V2, V3

and V5 intersect as pairs, therefore, the edges of the triangle with vertices V2, V3 and V5 will be in
the nerve. Since the sets indexed by V2, V3 and V5 also intersect as a triad, the facet or face of the
triangle is also included in the nerve.

The nerve of a family of sets is a particular class of hypergraphs known as (abstract) simplicial
complexes.

Definition 2.5 (Abstract simplicial complex). Let V be a finite set. A simplicial complex with base

set V is a family K of subsets of V such that τ ∈ K and σ ⊆ τ implies σ ∈ K. The elements of K
are called simplices, and the number of connected components of K is denoted ](K).

The nerve of a collection of sets is always a hypergraph; in simple cases, only vertex pairs arise
so the 1-skeleton determines a unique graph.

Definition 2.6 (p-skeleton). Let K be a simplicial complex, and denote by |τ | the cardinality of a
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simplex τ ∈ K. The p-skeleton of K is the collection of all τ ∈ K such that |τ | ≤ p + 1. The

elements of the p-skeleton are called p-simplices and the 1-skeleton is just a graph (more precisely,

it is V ∪ E for a uniquely determined graph G = (V , E)).

The 1-skeleton of a nerve is the graph obtained by considering only nonempty pairwise inter-
sections. The process of obtaining the nerve and the 1-skeleton from a family of sets is illustrated
in Figure 4. Different families of convex sets in Rd induce different restrictions in graph space: for
the Delaunay triangulation and the Alpha complex, for example, clique sizes cannot exceed d+ 1.
Although no such blanket restriction applies to the Čech complex, for this complex some graphs
are still unattainable— for example, no Čech complex can include a star graph whose central node
has degree higher than the “kissing number,” i.e., maximal number of disjoint unit hyperspheres
touching a given hypersphere, 6 for d = 2, 12 for d = 3, etc.

The Čech and Alpha complexes are hypergraphs indexed by a finite set V = {V1, . . . , Vp} ⊂
Rd and a size parameter r ≥ 0. Each induces a parametrization on the space of hypergraphs
(V , r) 7→ H(V , r). The class A of convex sets used to compute the nerve determines the space
of hypergraphs. To keep the notation simple, A will be implicit whenever obvious by the context.
We will use A(V , r) to denote a generic element of A for either the Čech or the Alpha complex.
Similarly, 1-skeletons of nerves induce a parametrization of the spaces of graphs (V , r) 7→ G(V , r).

Two principal advantages of this approach are:

1. For each family of convex sets {A}, the number of parameters needed to specify the graph
G or hypergraphH grows only linearly with the number of vertices;

2. The hypergraph parameter space will be a subset of Rd, a very convenient parameter space
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Figure 4: (a) Given a set of vertices and a radius (r = 0.5) one can compute Ai = Ci ∩ Bi, where
Ci is the Voronoi cell for vertex i and Bi is the ball of radius r centered at vertex i. (b) The Alpha
complex is the nerve of the Ai’s. (c) Often the main interest will be the 1-skeleton of the complex,
which is the subset of the nerve that corresponds to (nonempty) pairwise intersections.
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for MCMC sampling.

2.3 Random geometric graphs

In Section 2.2 we demonstrated how the geometry of a set V of p points in Rd can be used to
induce a graph G. In this section we explore the relation between prior distributions on random sets
V of points in Rd and features of the induced distribution on graphs G, with the goal of learning
how to tailor a point process model to obtain graph distributions with desired features.

Definition 2.7 (Random Geometric Graph). Fix integers p, d ∈ N and let V = (V1, . . . , Vp) be

drawn from a probability distributionQ on (Rd)p. For any classA of convex sets in Rd and radius

r > 0, the graph G(V, r,A) is said to be a Random Geometric Graph (RGG).

While Definition 2.7 is more general than that of (Penrose, 2003, p. 2), it still cannot describe
all the random graphs discussed in (Penrose and Yukich, 2001) (for example, those based on k-
neighbors cannot in general be generated by nerves). For A we will use closed balls in Rd or
intersections of balls and Voronoi cells; most often Q will be a product measure under which
the {Vi} will be p independent identically distributed (iid) draws from some marginal distribution
QM on Rd, such as the uniform distribution on the unit cube [0, 1]d or unit ball Bd, but we will
also explore the use of repulsive processes for V under which the points {Vi} are more widely
dispersed than under independence. It is clear that different choices for A, Q and r will have an
impact on the support of the induced RGG distribution. To make this notion precise we define
feasible graphs.

Definition 2.8 (Isomorphic). Write G1
∼= G2 for two graphs Gi = (Vi, Ei) and call the graphs

isomorphic if there is a 1:1 mapping χ : V1 → V2 such that (vi, vj) ∈ E1 ⇔
(
χ(vi), χ(vj)

)
∈ E2

for all vi, vj ∈ V1.

Definition 2.9 (Feasible Graph). Fix numbers d, p ∈ N, a class A of convex sets in Rd, and a

distribution Q on the random vectors V in (Rd)p. A graph Γ is said to be feasible if for some

number r > 0,

Pr {G(V, r,A) ∼= Γ} > 0.

In contrast to Erdös-Rényi models, where the inclusion of graph edges are independent events,
the RGG models exhibit edge dependence that depends on the metric structure of Rd and the class
A of convex sets used to construct the nerves.

There is an extensive literature describing asymptotic distributions for a variety of graph fea-
tures such as: subgraph counts, vertex degree, order of the largest clique, and maximum vertex
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degree (for an encyclopedic account of results for the important case of 1-skeletons of Čech com-
plexes, see Penrose, 2003). Several results for the Delaunay triangulation, some of which gener-
alize to the Alpha complex, are reported in (Penrose and Yukich, 2001). Regarding the support
on the distribution of hypergraphs induced by the complexes, generally, this is an area of open
research (personal communication with H. Edelsbrunner). Recent work by Kalhe (2014) surveys
some of this literature, focusing on random simplicial complexes. The monograph by Penrose
(2003) discusses the relationship between Q and subgraph counts, the degree distribution, and the
percolation threshold, in Chapters 3, 4 and 10, respectively

Penrose (2003, Chap. 3) gives conditions which guarantee the asymptotic normality of the joint
distribution of the numbersQj of j-simplices (edges, triads, etc.), for iid samples V = (V1, . . . , Vp)

from some marginal distributionQM on Rd, as the number p = |V| of vertices grows and the radius
rp shrinks.

Simulation studies suggest that the asymptotic results apply approximately for p ≥ 24–100.
By this we mean that sometimes 24 is sufficient (the distribution of the vertices is approximately
multivariate normal), and sometimes 100 may be required (distribution of the vertices far from
being multivariate normal).

3 Geometric representations of random hypergraphs

We develop a Bayesian approach to the problem of inferring factorizations of distributions of
the forms of (2.1),

f(x) =
∏

a∈C (G)

φa(xa | θa) or

∏
a∈P(G) ψa(xa | θa)∏
b∈S (G) ψb(xb | θb)

.

In each case we specify the prior density function as a product

p(θ,G) = p(θ | G) p(G) (3.1)

of a conditional hyper Markov law for θ ∈ Θ and a marginal RGG law on G. We use conventional
methods to select the specific hyper Markov distribution (hyper Inverse Wishart for multivariate
normal sampling distributions, for example) since our principal focus is on prior distributions
for the graphs, p(G). Every time we refers to hyper Markov laws, it will be in the strong sense
according to Dawid and Lauritzen (1993). We also present MCMC algorithms for sampling from
the posterior distribution on G, for observed data.
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3.1 Prior specifications

All the graphs in our statistical models are built from nerves constructed in Section 2.2 from a
random vertex set V = {Vi}pi=1 ⊂ Rd and radius r > 0. Since the nerve construction is invariant
under rigid transformations (this is, transformations that preserve angles as well as distances) of V
or simultaneous scale changes in V and r, restricting the support of the prior distribution on V to
the unit ball Bd does not reduce the model space:

Proposition 3.1. Every feasible graph in Rd may be represented in the form G(V , r,A) for a

collection V of p points in the unit ball Bd and for r = 1
p
.

Proof. Let G = (V , E) ∼= G(V , r,A) be a feasible graph with |V| = p vertices. Every edge
(vi, vj) ∈ E has length dist (vi, vj) ≤ 2r so, by the triangle inequality, every connected component
Γi of G with pi vertices must have diameter no greater than the longest possible path length, 2r(pi−
1), and so fits in a ball Bi of diameter 2r(pi − 1). The union of these balls, centered on a line
segment and separated by r(2 + 1/p), will have diameter less than r(2p − 1). By translation and
linear rescaling we may take r = 1/p and bound the diameter by 2, completing the proof.

We fix r = 1
p

and simplify the notation by writing G(V ,A) instead of G(V , r,A) for A = Čech
or A = Alpha or, if A is understood, simply G(V). Thus we can induce prior distributions on the
space of feasible graphs from distributions on configurations of p points in the unit ball in Rd.

For iid uniform draws V = (V1, . . . , Vp) from Bd, the expected number of edges of the graph
G(V, r,A) is bounded above by E [#E ] ≤

(
n
2

)
(2r)d; for r = 1

p
in dimension d = 2 this is less than

E [#E ] < 2, leading to relatively sparse graphs. We often take larger values of r (still small enough
for empty graphs to be feasible), to generate richer classes of graphs. A limit to how large r may
be is given by the partial converse to Prop. 3.1,

Proposition 3.2. The empty graph on p vertices cannot be expressed as G(V , r, Čech) for any

V ⊂ Bd with r ≥
(
p1/d − 1

)−1.

Proof. Let V = {V1, . . . , Vp} ⊂ Bd be a set of points and r > 0 a radius such that G(V , r, Čech) is
the empty graph. Then the balls Vi + rBd are disjoint and their union with d-dimensional volume
pωdr

d lies wholly within the ball (1 + r)Bd of volume ωd(1 + r)d (where ωd = πd/2/Γ(1+d/2) is
the volume of the unit ball), so p < (1 + 1

r
)d.

Slightly stronger, the empty graph may not be attained as G(V , r, Čech) for any r ≥ 1/[(p/pd)
1/d−

1] where pd is the maximum spherical packing density in Rd. For d = 2, this gives the asymptoti-

cally sharp bound r < 1
/[√

p
√

12/π − 1
]
.
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3.2 Sampling from prior and posterior distributions

Let Q be a probability distribution on p-tuples in Rd, p(G) the induced prior distribution on
graphs G(V, Čech) for V ∼ Q with r = 1

p
, and let p(θ | G) be a conventional hyper Markov

law (see below). We wish to draw samples from the prior distribution p(θ,G) of (3.1) and from the
posterior distribution p(θ,G | x), given a vector x = (x1, ..., xm) of iid observations xj

iid∼ f(x | θ),
using the Metropolis/Hastings approach to MCMC (Hastings, 1970; Robert and Casella, 2004,
Ch. 7).

We begin with a random walk proposal distribution in Bd starting at an arbitrary point v ∈ Bd,
that approximates the steps

{
V (0), V (1), V (2), ...

}
of a diffusion V (t) on Bd with uniform stationary

distribution and reflecting boundary conditions at the unit sphere ∂Bd.

The random walk is conveniently parametrized in spherical coordinates with radius ρ(t) =‖
V (t) ‖ and Euler angles— in d=2 dimensions, angle ϕ(t)— at step t. Informally, we take indepen-
dent radial random walk steps such that (ρ(t))d is reflecting Brownian motion on the unit interval
(this ensures that the stationary distribution will be Un(Bd)) and, conditional on the radius, angular
steps from Brownian motion on the d-sphere of radius ρ(t).

Fix some η > 0. In d = 2 dimensions the reflecting random walk proposal (ρ∗, ϕ∗) we used for
step (t+ 1), beginning at (ρ(t), ϕ(t)), is:

ρ∗ = R
(

[ρ(t)]2 + ζ(t)
ρ η

)1/2

, ϕ∗ = ϕ(t) + ζ
(t)
φ η/ρ(t)

for iid standard normal random variables
{
ζ

(t)
ρ , ζ

(t)
φ

}
, where

R(x) =
∣∣x− 2

⌊
1
2
(x+ 1)

⌋∣∣
is x reflected (as many times as necessary) to the unit interval. Similar expressions work in any

dimension d, with ρ∗ = R
(

[ρ(t)]d + ζ
(t)
ρ η

)1/d

and appropriate step sizes for the (d − 1) Euler
angles.

For small η > 0 this diffusion-inspired random walk generates local moves under which the
proposed new point (ρ∗, ϕ∗) is quite close to (ρ(t), ϕ(t)) with high probability. To help escape
local modes, and to simplify the proof of ergodicity below, we add the option of more dramatic
“global” moves by introducing at each time step a small probability of replacing (ρ(t), ϕ(t)) with
a random draw (ρ∗, ϕ∗) from the uniform distribution on Bd (see Figure 5). Let q(V∗ | V) denote
the Lebesgue density at V∗ ∈ (Bd)p of one step of this hybrid random walk for V = (V1, . . . , Vp),
starting at V ∈ (Bd)p.
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Figure 5: This figure illustrates a global move. (a) The current configuration of the points. (b) The
graph implied by this configuration. (c) The proposal configuration which is obtained by randomly
moving one vertex. (d) The graph implied by the proposed move.

3.2.1 Prior sampling

To draw sample graphs from the prior distribution begin with V(0) ∼ Q(dV) and, after each
time step t ≥ 0, propose a new move to V∗ ∼ q(V∗ | V(t)). The proposed move from V(t)

(with induced graph G(t) = G(V(t))) to V∗ (and G∗) is accepted (whereupon V(t+1) = V∗) with
probability 1 ∧H(t), the minimum of one and the Metropolis/Hastings ratio

H(t) =
p(V∗) q(V(t) | V∗)
p(V(t)) q(V∗ | V(t))

.

Otherwise V(t+1) = V(t); in either case set t ← t+1 and repeat. Note the proposal distribution
q(· | ·) leaves the uniform distribution invariant, so H(t) ≡ 1 for Q(dV) ∝ dV and in that case
every proposal is accepted.
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3.2.2 Posterior sampling

After observing a random sample X = x = (x1, . . . , xm) from the distribution xj ∼ f(x |
θ,G), let

f(x | θ,G) =
m∏
i=1

f(xi | θ,G)

denote the likelihood function and

M(G) =

∫
ΘG

f(x | θ,G) p(θ | G)dθ (3.2)

the marginal likelihood for G. For posterior sampling of graphs, a proposed move from V(t) to V∗

is accepted with probability 1 ∧H(t) for

H(t) =
M(G∗) p(V∗) q(V(t) | V∗)
M(G(t)) p(V(t)) q(V∗ | V(t))

. (3.3)

For multivariate normal data X and hyper inverse Wishart hyper Markov law p(θ | G), M(G)

from (3.2) can be expressed in closed form for decomposable graphs G(V). efficient algorithms
for evaluating (3.2) are still available even if this condition fails.

The model will typically be of variable dimension, since the parameter space ΘG for the factors
may depend on the graph G = G(V). Not all proposed moves of the point configuration V(t)  V∗

will lead to a change in G(V); for those that do we implement reversible-jump MCMC (Green,
1995; Sisson, 2005) using the auxiliary variable approach of Brooks et al. (2003) to simplify the
book-keeping needed for non-nested moves ΘG  ΘG∗ .

3.3 Convergence of the Markov chain

Denote by Ġ(p, d,A) the finite set of feasible graphs with p vertices in Rd, i.e., those generated
from 1-skeletons of A-complexes. For each G ∈ Ġ(p, d,A) let VG ⊂ (Bd)p denote the set of all
points V = {V1, . . . , Vp} ∈ (Bd)p for which G ∼= G(V, 1

p
,A), and set µ(G) = Q

(
VG
)
. Then

Proposition 3.3. The sequence G(t) = G(V(t), 1
p
,A) induced by the prior MCMC procedure de-

scribed in Section 3.2.1 samples each feasible graph G ∈ Ġ(p, d,A) with asymptotic frequency

µ(G). The posterior procedure described in Section 3.2.2 samples each feasible graph with asymp-

totic frequency µ(G | x), the posterior distribution of G given the data x and hyper Markov prior

p(θ | G).
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Proof. Both statements follow from the Harris recurrence of the Markov chain V(t) constructed
in Section 3.2. For this it is enough to find a strictly positive lower bound for the probability of
transitioning from an arbitrary point V ∈ (Bd)p to any open neighborhood of another arbitrary
point V ∗ ∈ (Bd)p (Robert and Casella, 2004, Theorem 6.38, pg. 225). This follows immediately
from our inclusion of the global move in which all p points {Vi} are replaced with uniform draws
from (Bd)p.

It is interesting to note that while the sequence G(t) = G(V(t), 1
p
,A) is a hidden Markov process,

it is not itself Markovian on the finite state space Ġ(p, d,A); nevertheless it is ergodic, by Prop. 3.3.

4 Results

Here we illustrate the use of the proposed parametrization using simulations and real data.
These numerical examples provide us with an opportunity to test priors that encourage sparsity,
and MCMC algorithms that allow for local as well as global moves by design.

4.1 Illustration of modeling advantages

4.1.1 The nerve determines the junction tree factorization

Here we use a junction tree factorization with each univariate marginal Xi associated to a point
Vi ∈ Rd (the standard graphical models approach). In this case, specifying the class of sets to com-
pute the nerve and the value for r determines a factorization for the joint density of {X1, . . . , Xp}.
We illustrate with p = 5 points in Euclidean space of dimension d = 2.

Let (X1, X2, X3, X4, X5) ∈ R2 be a random vector with density f(x) and consider the vertex
set displayed in Table 1 (also shown as solid dots in Figures 3 and 6).

For an Alpha complex with r = 0.5 the junction tree factorization (2.1b) corresponding to the
graph in Figure 3 is

f(x) =
ψ12(x1, x2)ψ235(x2, x3, x5)ψ4(x4)

ψ2(x2)
,

we will denote the factorization as [1, 2][2, 3, 5][4]. In the case where the factors are potential
functions rather than marginals we will use {·} instead of [·]. Similarly, for the Čech complex and
r = 0.7 the factorization corresponding to the graph in Figure 6 is

f(x) =
ψ1235(x1, x2, x3, x5)ψ14(x1, x4)

ψ1(x1)
.
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Figure 6: (a) Čech complex computed using r = 0.7 and the vertex set listed in Table 1. (b) The
1-Skeleton of the Čech complex.

4.1.2 Subgraph counts in RGGs are a function of Q

In this subsection we illustrate how the distribution of particular graph features changes as a
function of the sampling distribution of the random point set V and contrast this with Erdös-Rényi
models. Specifically we will focus on the number of edges (2-cliques) Q2 and the number of
3-cliques Q3.

The two spatial processes we study for Q are iid uniform draws from the unit square [0, 1]2 in
the plane, and dependent draws from the Matérn type III hard-core repulsive process (Huber and
Wolpert, 2009), using Čech complexes with radius r = 1/

√
150 ≈ 0.082 in both cases to ensure

asymptotic normality (Penrose, 2003, Thm. 3.13). In our simulations we vary both the number
of variables (graph size) p and the Matérn III hard core radius ρ. Comparisons are made with an
Erdös-Rényi model with a common edge inclusion parameter. Table 2 displays the quartiles for
Q2 and Q3 as a function of the graph size p, hard core radius ρ, and Erdös-Rényi edge inclusion
probability p. Figures 7, 8, and 9 show the joint distribution of (Q2, Q3) for {Vi}

iid∼ Un([0, 1]2),
for a Matérn III process with hard core radius ρ = 0.35, and for draws from an Erdös-Rényi model
with inclusion probability α = 0.065, respectively.
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Figure 7: Edge counts and 3-Clique counts from 2, 500 simulated samples of
G(V, 1/

√
2 · 75, Čech) where |V| = 75 and Vi

iid∼ Un([0, 1]2), 1 ≤ i ≤ 75. The multivari-
ate normal appears as a reasonable approximation for the joint distribution, as suggested by
(Penrose, 2003, Thm. 3.13). Čech radius is rn = 1/

√
2n.
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Figure 8: Edge counts and 3-Clique counts from 2, 500 simulated samples of
G(V, 1/

√
2 · 75, Čech) where |V| = 75 and V sampled from a Mattérn III with hard-core

radius r = 0.35.
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Figure 9: Edge counts and 3-Clique counts from 1 000 simulated samples of an Erdös-Rényi graph
with edge inclusion probability of p = 0.065.

Graph |V| Edges 3-Cliques
25% 50% 75% 25% 50% 75%

Uniform 75 161 171 182 134 160 190
Matérn (0.035) 75 154 161 170 110 124 144

ER (0.050) 75 130 138 146 6 8 11
ER (0.065) 75 172 181 189 14 18 22

Uniform 50 69 75 81 34 43 57
Matérn (0.035) 50 66 71 76 27 35 43
Matérn (0.050) 50 62 67 71 22 27 33

ER (0.050) 50 56 61 67 1 2 4
ER (0.065) 50 74 79 85 3 5 7

Uniform 20 9 12 14 1 2 4
Matérn (0.035) 20 9 11 13 1 1 3
Matérn (0.050) 20 8 10 12 0 1 2

ER (0.050) 20 8 9 11 0 0 0
ER (0.065) 20 10 12 15 0 0 1

Table 2: Summaries of the empirical distribution of edge and 3-clique counts for Čech complex
random geometric graphs with radius r = 0.082, for vertex sets sampled from iid draws from the
unit square from: a uniform distribution, a hard core process with radius ρ = 0.035, and from
Erdös-Rényi (ER) with common edge inclusion probabilities of α = 0.050 and α = 0.065.

These simulations illustrate that by varying the distribution Q we can control the joint distri-
bution of graph features. The repulsive and iid uniform distribution have very similar edge distri-
butions, for example (see Figures 7 and 8), while (as anticipated) the repulsive process penalizes
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large cliques. Joint control of these features is not possible with an Erdös-Rényi model with a
common edge inclusion probability and it is not obvious how to encode this type of information in
the concordance function approach of Mukherjee and Speed (2008).

In Section A we proposed a procedure for generating decomposable graphs, and noted that
the graphs induced by this algorithm are similar to those constructed without the decomposability
restriction. In Figure 22 we display a simulation study of the distribution of edge counts for a RGG
and the restriction to decomposable graphs. These distributions are very similar.

4.2 Simulation studies

We develop four examples. The first example illustrates that our method works when the graph
encoding the Markov structure of underlying density is contained in the space of graphs spanned
by the nerve used to fit the model. In the second example we apply our method to Gaussian
Graphical Models. The third example shows that the nerve hypergraph (not just the 1-skeleton)
can be used to induce different groupings in the terms of a factorization, and therefore a way
to encode dependence features that go beyond pairwise relationships. In the fourth example we
compare results obtained by using different filtrations to induce priors over different spaces of
graphs.

4.2.1 G is in the Space Generated by A

Let (X1, . . . , X10) be a random vector whose distribution has factorization:

fθ(x) =
ψθ(x1, x4, x10)ψθ(x1, x8, x10)ψθ(x4, x5)ψθ(x8, x9)ψθ(x2, x3, x9)ψθ(x6)ψθ(x7)

ψθ(x4)ψθ(x8)ψθ(x9)ψθ(x1, x10)
(4.1a)

The Markov structure of (4.1a) can be encoded by the geometric graph displayed in Figure 10.
We transform variables if necessary to achieve standard Un(0, 1) marginal distributions for each
Xi, and model clique joint marginals with a Clayton copula (Clayton, 1978, or Nelsen, 1999, §4.6),
the exchangeable multivariate model with joint distribution function

Ψθ(xI) =

(
1− pI +

∑
i∈I

x−θi

)−1/θ
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Figure 10: Geometric graph representing the model given in (4.1a). For this example graphs are
constructed to be decomposable and the clique marginals are specified as Clayton copulas.

and density function

ψθ(xI) = θpI
Γ(pI + 1/θ)

Γ(1/θ)

(
1− pI +

∑
i∈I

x−θi

)−pI−1/θ (∏
i∈I

xi

)−1−θ

(4.1b)

on [0, 1]pI for some θ ∈ Θ = (0,∞), for each clique [vi : i ∈ I] of size pI .

We drew 250 samples from model (4.1) with θ = 4. For inference about G we set A = Alpha
and r = 0.30, with independent uniform prior distributions for the vertices Vi

iid∼ Un(B2) on the unit
ball in the plane. We used the random walk described in Section 3.2 to draw posterior samples with
Algorithm 1 applied to enforce decomposability. To estimate θ we take a unit Exponential prior
distribution θ ∼ Ex(1) and employ a Metropolis/Hastings approach using a symmetric random
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walk proposal distribution with reflecting boundary conditions at θ = 0,

θ∗ =
∣∣θ(t) + ε

∣∣,
with εt ∼ Un(−β, β) for fixed β > 0. We drew 1 000 samples after a burn-in period of 25 000

draws. The three models with the highest posterior probabilities are displayed in Table 3. The geo-
metric graphs computed from six posterior samples (one every 100 draws) are shown in Figure 11;
note that the computed nerves appear to stabilize after a few hundred iterations while the actual
position of the vertex set continues to vary.

Graph Topology Posterior Probability
[1,4,10][1,8,10][4,5][8,9][2,3,9][6][7] 0.963
[1, 4, 10][1, 8, 10][4, 5][8, 9][2, 3, 9][6][5, 7] 0.021
[1, 4, 10][1, 8][4, 5][8, 9][2, 3, 9][6][7] 0.010

Table 3: The three models with highest estimated posterior probability. The true model is shown
in bold (see Figure 10). Here θ = 4.

4.2.2 Gaussian graphical model

We use our procedure to perform model selection for the Gaussian graphical model X ∼
No(0,ΣG), where G encodes the zeros in Σ−1. We adopt a Hyper Inverse Wishart (HIW) prior
distribution for Σ | G. The marginal likelihood (in the parametrization of Atay-Kayis and Massam,
2005, Eqn (12)) is given by

M(V) = (2π)−pN/2
IG(V)(δ +N,D +XTX)

IG(V)(δ,D)
, (4.2)

where

IG(δ,D) =

∫
M+(G)

|Σ|(δ−2)/2e−
1
2
<Σ,D> dΣ

denotes the HIW normalizing constant. This quantity is available in closed form for weakly decom-
posable graphs G(V), but for our unrestricted graphs (4.2) must be approximated via simulation.
For our low-dimensional examples the method of (Atay-Kayis and Massam, 2005) suffices; for
larger numbers of variables we recommend that of (Carvalho et al., 2007). We set δ = 3 and
D = 0.4I6 + 0.6J6 (I6 and J6 denote the identity matrix and the matrix of all ones, respectively).
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Figure 11: Geometric graphs corresponding to snapshots of posterior samples (one every 100
iterations) from model of (4.1a). For this example graphs are constructed to be decomposable and
the clique marginals are specified as Clayton copulas.

We sampled 300 observations from a Multivariate Normal with mean zero and precision matrix

18.18 −6.55 0 2.26 −6.27 0

−6.55 14.21 0 −4.90 0 0

0 0 10.47 0 0 −3.65

2.26 −4.90 0 10.69 0 0

−6.27 0 0 0 27.26 0

0 0 −3.65 0 0 7.41


(4.3)
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Figure 12: Graph encoding the Markov structure of the model given by precision matrix (4.3).

whose conditional independence structure is given by the graph in Figure 12. We fit the model
described in Section 3 using a uniform prior for each Vi ∈ B2 and r = 0.25. We employed
hybrid random walk proposals in which we move all five vertices {Vi} independently according
to the diffusion-inspired random walk described in Section 3.2 with probability 0.85; replace one
uniformly selected vertex Vi with a uniform draw from Un(B2) with probability 0.05; and replace
all five vertices with independent unoform draws from Un(B2) with probability 0.10. We sampled
1 000 observations from the posterior after a burn in of 750 000. Results are summarized in Table 4

Graph Topology Posterior Probability
[1,2,4][1,5][3,6] 0.152
[1, 5][2, 3, 4][2, 3, 6] 0.072
[1, 2, 3, 4, 6][1, 5] 0.069
[1, 4][2, 4][2, 3, 6] 0.055
[1, 2, 4][2, 3, 4][1, 5][3, 6] 0.052

Table 4: The five models with highest estimated posterior probability. The true model is shown in
bold.

4.2.3 Factorization Based on Nerves

While Gaussian joint distributions are determined entirely by the bivariate marginals, and so
only edges appear in their complete-set factorizations (see (2.1a)); more complex dependencies are
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possible for other distributions. The familiar example of the joint distribution of three Bernoulli
variables X1, X2, X3 each with mean 1/2, with X1 and X2 independent but X3 = (X1 −X2)2 (so
that {Xi} are only pairwise independent) has only the complete set {1, 2, 3} in its factorization.

Consider now a model with the graphical structure illustrated in Figure 13 whose density func-
tion, if it is continuous and strictly positive ((see Lauritzen, 1996, Prop. 3.1)), admits the complete-
set factorization:

f(x | G, θ) = cG φ(x1, x2)φ(x1, x6)φ(x2, x6) · φ(x3, x4, x5). (4.4a)

For illustration we will take each φ(·) to be a Clayton copula density (see (4.1b)). For simplicity
we specify the same value θ = 4 for each association parameter, so f(x | G, θ) is given by (4.4a)
with

φ(x, y) = 5 (x−4 + y−4 − 1)−9/4 (x y)−5 (4.4b)

φ(x, y, z) = 30(x−4 + y−4 + z−4 − 2)−13/4(x y z)−5. (4.4c)

In earlier examples we associated graphical structures (i.e., edge sets) with 1-skeletons of
nerves. We now associate hypergraphical structures (i.e., abstract simplicial complexes that may
include higher-order simplexes) with the entire nerves, with maximal simplices associated with
complete-set factors. For example: the Alpha complex computed from the vertex set displayed in
Table 5 with r = 0.40 has {3, 4, 5}{1, 2}{1, 6}{2, 6} as its maximal simplices (Figure 14). By
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Figure 13: Graph encoding the Markov structure of the model given in (4.4).
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Figure 14: Alpha complex corresponding to the vertex set in Table 5 and r =
√

0.075.

Coordinate V1 V2 V3 V4 V5 V6

x −0.0936 −0.4817 0.0019 0.0930 0.2605 −0.5028
y 0.6340 0.7876 0.0055 0.0351 −0.0702 0.2839

Table 5: Vertex set used for generating a factorization based on nerves.

associating a Clayton copula to each of these hyperedges we recover the model shown in (4.4).

We use the same prior and proposal distributions constructed in Section 3.2 from point distribu-
tions in Rd; what has changed is the way the nerve is being used: as a hypergraph whose maximal
hyperedges represent factors. One complicating factor is the need to evaluate the normalizing fac-
tor cG for each graph G we encounter during the simulation; unavailable in closed form, we use
Monte Carlo importance sampling to evaluate cG for each new graph, and store the result to be
reused when G recurs.

We anticipate that uniform draws Vi
iid∼ Un(B2) will give high probability to clusters of three

or more points within a ball of radius r, favoring higher-dimensional features (triangles and tetra-
hedra) in the induced hypergraph encoding the Markov structure of {Xi}. To explore this phe-
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nomenon, we compare results for uniform draws with those from a repulsive process under which
clusters of three or more points are unlikely to lie within a ball of radius r, hence favoring hyper-
graphs with only edges.

We began by sampling 650 observations from model (4.4) with A = Alpha and r = 0.40, with
independent uniform prior distributions for the vertices Vi

iid∼ Un(B2) on the unit ball in the plane.
The Metropolis/Hastings proposals for the vertex set are given by a mixture scheme:

• A random walk for each Vi as described in Section 3.2, with step size η = 0.020. This
proposal is picked with probability 0.94

• An integer 1 ≤ k ≤ 6 is chosen uniformly and, given k, a subset of size k from {1, 2, 3, 4, 5, 6}
is sampled uniformly; the vertices corresponding to those indices are replaced with random
independent draws from Un(B2). This proposal is picked with probability 0.06, 0.01 for
each k.

For θ we used the same standard exponential prior distribution and reflecting uniform random walk
proposals described in Example 4.2.1.

Using 5 000 posterior samples after a burn-in period of 95 000 iterations, the models with high-
est posterior probability are summarized in Table 6.

To penalize higher-order simplexes we used a Strauss repulsive process (Strauss, 1975) condi-
tioned to have p points in Bd as prior distribution for the vertex set, with Lebesgue density

g(v) ∝ γ#{(i,j): dist(vi,vj)<2R}

for some 0 < γ ≤ 1, penalizing each pair of points closer than 2R. Simulation results for this prior
(with R = 0.7r and γ = 0.75) are summarized in Table 7. The posterior mode is far more distinct
for this prior than for the uniform prior shown in Table 6.

Maximal Simplices Posterior Probability
{3,4,5}{1,2}{2,6}{1,6} 0.609
{1, 2, 6}{3, 4}{4, 5}{3, 5} 0.161
{3, 5}{1, 6}{3, 4}{1, 2}{2, 6} 0.137

Table 6: Highest posterior factorizations with uniform prior for model of (4.4) and Figure 13 (true
model is shown in bold).
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Maximal Simplices Posterior Probability
{3,4,5}{1,2}{2,6}{1,6} 0.824
{1, 2, 6}{3, 4, 5} 0.111
{1, 2, 6}{3, 4}{3, 5}{4, 5} 0.002

Table 7: Highest posterior factorizations with Strauss prior (true model is shown in bold).

In a further experiment with γ = 0.35, the posterior was concentrated on factorizations without
any triads.

4.2.4 G Outside the Space Generated by A

In the simulation studies of Sections 4.2.1–4.2.3 the class of sets A used to compute the nerve
was known. In this example we investigate the behavior of our methodology when the class of
convex sets used to fit the model differs from that used to generate the true graph. We consider
three possibilities: A = Alpha in R2, A = Alpha in R3 and A = Čech in R2. We performed two
experiments: one when the graph is feasible for each the three classes, and another example where
the graph could be generated by only two of the classes.

First consider a model with junction tree factorization:

fθ(x) =
ψθ(x1, x3)ψθ(x2, x3, x4)ψθ(x5)

ψθ(x3)
, (4.5)

whose conditional independence structure given by the graph of Figure 15. Again, the clique
marginals are specified as a Clayton copula with θ = 4. We simulated 300 samples from this
distribution.

We fitted the model with each of the three classes of convex sets using the Metropolis Hastings
algorithm of Section 3.2 with random walk proposals on Bd (where d = 2 or 3, depending on
A). Algorithm 1 was used to enforce decomposability, using r = 0.40 and η = 0.020. The same
exponential prior and uniform reflecting random-walk proposals for θ were used as in Example
4.2.1. Results of 1 000 samples after a burn-in period of 50 000 draws are summarized in Table 8.
Not surprisingly, the posterior mode coincided with the true model in all three cases.

The second model we considered has junction tree factorization:

fθ(x) =
ψθ(x1, x2, x4)ψθ(x1, x3, x4)ψθ(x1, x4, x5)

(ψθ(x1, x4))2 . (4.6)
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Figure 15: Graph encoding the Markov structure of the model given in (4.5).

Nerve HPP Models Posterior
Alpha in R2 [1,3][2,3,4][5] 0.964

[1, 3][2, 3, 4][1, 5] 0.012
[1, 3, 4][2, 3, 4][5] 0.012

Alpha in R3 [1,3][2,3,4][5] 0.982
[1, 3][2, 3][3, 4][5] 0.011
[1][2, 3, 4][5] 0.003

Čech in R2 [1,3][2,3,4][5] 0.595
[1, 2, 3, 4][5] 0.179
[1, 2, 3, 4, 5] 0.168

Table 8: Models with highest posterior probability. The table is divided according to the class of
convex sets used when fitting the model. The true model is shown in bold.

The corresponding graph cannot be obtained from an Alpha complex in R2, but it is feasible for
an Alpha complex in R3 (Figure 16) or a Čech complex in R2. Using the same Clayton clique
marginals before, we sampled 300 observations from this distribution and fitted the model using
the three classes of convex sets. Results from 1 000 samples after a burn-in period of 75 000

are summarized in Table 9. Observe that for Alpha complexes in R2, there is no clear posterior
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Figure 16: Graph encoding the Markov structure of the model given in (4.6).

Nerve HPP Models Posterior
Alpha in R2 [1,2][1,3,4][1,4,5] 0.214

[1,2,4][1,3,4][1,3,5] 0.115
[1,2,4][1,3,4][3,4,5] 0.112

Alpha in R3 [1,2,4][1,3,4][1,4,5] 0.976
[1,2,3,4][1,4,5] 0.016
[1,2,4][1,3][1,4,5] 0.009

Čech in R2 [1,2,4][1,3,4][1,4,5] 0.758
[1,2,4][1,3,4][1,3,5] 0.177
[1,2,4][1,3,4][4,5] 0.148

Table 9: Models with highest posterior probability, for each class of convex sets. The true model
(shown in bold) is unattainable for Alpha complexes in R2.

mode (unlike the previous example, or Sections 4.2.1 and 4.2.3). The posterior mode for the Čech
complex in R2 and the Alpha complex in R3 both match the true model.

4.3 Comparative performance analysis with state-of-the-art

We compared the performance of our method to Feature Inclusion Stochastic Search (FINCS),
proposed by Scott and Carvalho (2008), and the adaptive LASSO as described in the paper by Fan
et al. (2009). The criterium for the comparison was given by estimating the counts of specific sub-
graphs of a set of graphs of size 50. This is, we generated 100 graphs of size 50, and we computed
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the absolute counts for the following subgraphs: triangles, 4-cycles, 5-cycles, 3-stars, 4-stars, and
5-stars, for the true graph and for the estimated network by our method and its competitors, then
we computed the absolute difference between the counts for the true and estimated graph and then
divided by the count for the true graph. We denote by an ∗ the counts of induced subgraphs; this
measures the performance of the methods under decomposability. We generated the set of true
networks from an Erdös-Rényi random graph model with α = 0.05, so we are in a regime that can
be called sparse.

To fit our method, we assumed an uniform distribution on the unit ball in R3 for the vertex
set and for the radius of each vertex an Ex(0.1) as priors. For the positions of the vertices we
used the same proposals as in Examples 4.2.1 - 4.2.4. For each radius we implemented a mix-
ture of random walks reflecting at 0 as proposal. We used the nerve corresponding to the Cech
complex. We set up FINCS with a probability of 0.1 for resampling moves and a probability
of 0.1 for global moves. For the adaptive LASSO we set up γ = 0.5 and Ω was initialized as
the inverse of the sampled covariance matrix. Subgraphs were counted using the igraph com-
mand graph.subisomorphic.lad. When computing the normalized error, we adopted the convention
0/0 = 0. For the induced subgraphs, we only compute the error of the Bayesian procedure and
Lasso over the set of non-decomposable graphs. For the simulation displayed in Table 10 all 100

graphs were non-decomposable.

Results are summarized in Table 10. Our method incurred into less errors on average compared
to our competitors for almost all subgraphs. The exception was the 5−star. We also observed that
FINCS outperformed the LASSO for almost all regimes, with exception of the 5−star.

We performed another simulation, now assuming an exponential random graph model for the
true graph. The simulation of the true graphs was implemented using the R package statnet. We

Subgraph Bayes FINCS Lasso
triangles 0.083± 0.07 0.125± 0.17 0.208± 0.12
4- cycles 0.062± 0.10 0.123± 0.16 0.166± 0.10
5- cycles 0.086± 0.07 0.112± 0.14 0.124± 0.08
3- stars 0.103± 0.08 0.139± 0.12 0.211± 0.08
4- stars 0.087± 0.08 0.096± 0.16 0.115± 0.11
5- stars 0.201± 0.10 0.183± 0.14 0.174± 0.06
4- cycles∗ 0.146± 0.12 0.930± 0.07 0.229± 0.12
5- cycles∗ 0.128± 0.13 1± 0 0.174± 0.08

Table 10: Estimated normalized errors for counts of specific subgraphs for our method, FINCS
and adaptive LASSO.
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Figure 17: Here we compare the true model, which was sampled from the ERGM used in Table
11, and the fitted model, using our method (again, as in Table 11). The edges that were added by
our method (with respect to the true graph) are highlighted in red. The edges that were deleted by
our method are highlighted in green.

used the formula edges+triangles+kstar(3), with coef=c(-3.2,0.95,0.005); this specification encour-
ages the presence of triangles and 3-stars. These choices produce graphs with twice the 3-stars and
3 times more triangles than an Erdös-Rényi with α = 0.05, while having approximately the same
density. The objective of this experiment is to investigate the behavior of our method when the
true graph has more structure than the typical realization of an Erdös-Rényi model. Results are
summarized in Table 11; they are similar to what was observed in the previous experiment. We
observed an improvement regarding the counts of triangles, this is not surprising since geometric
random graphs tend to have more triangles than realizations from an Erdös-Rényi model. In Figure
17 we compare the true model (as generated from the ERGM just described) and the fitted model
for a single realization. In this regime, graphs tend to be non-decomposable. We estimated the
proportion of decomposable graphs from a sample of 1,000 networks sampled from the ERGM
used to obtain the simulation in Table 11, and obtained 0.302 as the result. For the simulation
displayed in Table 11, 72 out of the 100 graphs were non-decomposable.
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Subgraph Bayes FINCS Lasso
triangles 0.071± 0.04 0.134± 0.14 0.217± 0.09
4- cycles 0.067± 0.06 0.121± 0.12 0.154± 0.04
5- cycles 0.075± 0.09 0.118± 0.11 0.131± 0.13
3- stars 0.092± 0.07 0.144± 0.14 0.236± 0.12
4- stars 0.086± 0.09 0.115± 0.15 0.117± 0.10
5- stars 0.214± 0.09 0.122± 0.13 0.121± 0.06
4- cycles∗ 0.152± 0.12 0.720± 0.07 0.214± 0.10
5- cycles∗ 0.133± 0.10 0.720± 0.13 0.163± 0.08

Table 11: Estimated normalized errors for counts of specific subgraphs for our method, FINCS
and adaptive LASSO. The true graphs were sampled from an ERGM that encouraged the presence
of triangles and 3-stars.

4.3.1 Scalability

Here we discuss scalability of the proposed method and of the competing methods ( Fan et al.
(2009), Scott and Carvalho (2008)) to better appreciate the cost incurred in producing the errors in
Tables 10 and 11. Since the implementation of the proposed and competing methods available to
us are in different programming languages, which influence greatly the actual runtime, we outline
such a discussion in theory, in terms of key quantities that influence scalability, including number
of nodes n, number of edges m, and number of cliques k. We also distinguish two tasks: the task
of estimating the parameter of a model-based representation of a (hyper)graph, and the task of
generating b (hyper)graphs from an estimated model-based representation.

Regarding the task of estimating parameters from an observed (hyper)graph, the proposed meth-
ods requires estimating parameters {V } , r, and the estimation complexity scales as O(S(n) +k3),
where S(n) denotes the complexity of matrix multiplication.1 The method by Scott and Carvalho
(2008) requires estimating parameters G, and the estimation complexity scales as O(S(n) + k).
The lasso requires estimating parameters Σ−1, and the estimation complexity scales as O(n3).

Regarding the task of generating b (hyper)graphs from an estimated model-based representa-
tion, the proposed methods scales as O(bn2). This is because the complexity of computing the
2-skeleton of the Cech complex scales as O(n2). Alternative representations lead to different scal-
ing: computing the Delaunay triangulation scales as O(n log n), and computing the the Alpha
complex scales as O(n2). The method by Scott and Carvalho (2008) scales as O(bnm), where
typically m is much larger than n. For the lasso, this statement does not apply.

1The parameter k in this case is actually the number of prime components, but this quantity is typically in the same
order of magnitude as the number of cliques.
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To illustrate how our method scales up with respect to the number of variables, we ran the ex-
periment summarized in Table 12. We obtained the graphs from the nerves of Čech complexes and
employed the method proposed by (Atay-Kayis and Massam, 2005) to compute the normalizing
constants of non-decomposable graphs. The MCMC was performed on a 2.5GHz desk computer
with 4GB of RAM. Our method was implemented using Matlab (MathWorks).

N Variables Burn-in N Iterations Time
4 50, 000 10, 000 7m
40 50, 000 10, 000 2h 11m
400 50, 000 10, 000 3d 2h 17m

Table 12: This experiment illustrates how our method scales up with respect to the number of
variables.

4.4 Real data analysis

4.4.1 Fisher’s Iris data

We applied our method to Fisher’s Iris data set. Variables include: sepal length (1), sepal width
(2), petal length (3), and petal width (4). The objective is to find the conditional independence
structure given a family of distributions for the likelihood (e.g. Gaussian, Clayton copula). A
summary of the distribution of this data set is given in Table 13

We first describe the specification we used for the random geometric graph, then we will make
our choices for the Hyper-Markov law and the likelihood explicit. For the RGG we assumed an
uniform distribution of the vertices on the unit ball in R3 and for the radius of each vertex an
Ex(0.1), distribution was assumed. For the positions of the vertices we used the same proposals
as in Examples 4.2.1 - 4.2.4. For each radius we used a mixture of random walks reflecting at 0 as
proposal. For the likelihood function and Hyper-Markov law we used the following specifications:

Variable SL SW PL PW
Sepal length 0.4043
Sepal width 0.0938 0.1040
Petal length 0.3033 0.0714 0.3046
Petal width 0.0491 0.0476 0.0488 0.0754

Table 13: Estimated variances and covariances for the Iris data.
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A multivariate normal distribution for the likelihood with an HIW as Hyper-Markov law.

For our choice for the likelihood and Hyper-Markov law, we adopted the same values for the
hyperparameters as (Roverato, 2002) did, this is, the prior for the precision matrix centered at I
and δ = 3. We used the method proposed by (Atay-Kayis and Massam, 2005) to deal with the
normalizing constants of non-decomposable graphs. We ran the MCMC with 300 000 iterations as
burn-in and kept the last 10 000 for analysis.

Results for the first choice are summarized in Table 14. Here we display the 9 models with
highest posterior probability. All the posterior probability was concentrated in this models. Our
posterior mode coincides with the one reported by (Roverato, 2002), but we obtained different
results for the rest of the models. We attribute this difference to the fact that we used different
priors for graph space; ours being non-uniform.

We conducted another simulation, where we assessed the robustness of the inference for the

Maximal Simplices Posterior Probability
{1, 2}{1, 3}{2, 4}{3, 4} 0.3465
{2}{1, 3}{3, 4} 0.2835
{1, 3}{2, 3}{4} 0.1999
{1, 2}{1, 3}{4} 0.1540
{1, 2}{1, 4}{2} 0.0116
{1, 4}{2}{3, 4} 0.0026
{1, 2}{1, 3}{3, 4} 0.0016
{1, 3}{2, 3}{3, 4} 0.0002
{1, 4}{1, 3}{2, 3}{3, 4} 0.0001

Table 14: Highest posterior factorizations with uniform prior and Gaussian distribution for Fisher’s
Iris data set.

Maximal Simplices Frequency as posterior mode
{1, 2}{1, 3}{2, 4}{3, 4} 0.68
{1, 3}{2, 3}{4} 0.16
{1, 2}{2, 3}{2, 4} 0.08
{1, 4}{2, 4}{3, 4} 0.04
{1, 4}{1, 3}{2} 0.04

Table 15: Results from missing data simulation: We fit our model the same way as in Table 14, but
leaving one row out each time and imputing it as missing data. In this table we report the frequency
by which each factorization appeared as posterior mode.
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Gaussian graphical model via tools from missing data. We fit our model deleting one row of
the data at a time (this is, we fit our model 50 times over incomplete data sets) and imputed the
missing data using the conditional distribution of the observed data. Results are summarized in 15.
For each of this simulations we computed the average distance between the predicted vector and
the observed one. For FINCS, the average distance between the predicted and observed vectors
(across the 50 simulations) was 3.69 ± 1.28, while for our method it was 3.22 ± 1.15. This is not
surprising, since, in contrast to FINCS, we consider non-decomposable models.

4.4.2 Daily exchange rates data

Following Hernandez-Lobato et al. (2013), we considered daily exchange rates of eight cur-
rencies (Swiss franc, Australian dollar, Canadian dollar, Norwegian krone, Swedish krona, Euro,
New Zealand dollar and British pound) with respect to the U.S. dollar. The data set consists of
717 observations, from 1 Dec., 2011, to 29 Aug., 2014. Clearly these observations are not iid, but
we will not take this into account in the modeling. What makes this application interesting is the
presence of a non-trivial missing data pattern. The data was downloaded from yahoo.finance.com
via the R library tseries.

We applied our method to these data. We assumed a uniform distribution for the vertices in the
unit ball in R3, and that the nerve was computed from the intersection pattern of balls of different
sizes. We assumed a HIW as the hyper-Markov law and a multivariate normal as the likelihood.
We kept the simulated values from 5,000 iterations after 25,000 iterations of burn-in. Missing data
were assumed missing at random and imputed from the model. The posterior mode is illustrated
in Figure 18; it has 0.87 posterior probability. This model is non-decomposable.

5 Discussion

In this article we present a new parametrization of graphs by associating them with finite sets
of points in Rd. This perspective supports the design of informative prior distributions on graphs
using familiar probability distributions of point sets in Rd. It also induces new and useful Metropo-
lis/Hastings proposal distributions in graph space that include both local and global moves. As
suggested by Helly’s Theorem (Edelsbrunner and Harer, 2009) characterizing the sparsity of in-
tersections of convex sets in Rd, this methodology is particularly well suited for sparse graphs.
The simple strategies presented here generalize easily to more detailed and subtle models for both
priors and M/H proposals.

Our construction leads to MCMC that naturally instantiate local and global moves in graph (and
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Figure 18: Posterior mode of our method when applied to daily exchange rates (with respect to
US Dollar) from 1 Dec., 2011 to 29 Aug., 2014. Here CHF denotes the Swiss franc, AUD, the
Australian dollar, CAD, the Canadian dollar, NOK, the Norwegian krone, SEK, the Swedish krona,
EUR, the Euro, NZD, the New Zealand dollar, and GBP, the British pound.

hypergraph) space. The proposals that produce small perturbations on the vertex set will produce
local moves with high probability, while proposals that consist in resampling a subset of the vertex
set will produce, with high probability, a global move (See Figure 5).

An interesting feature of our approach is that the distribution on the space of graphs is modeled
directly before the application of any specific hyper Markov law, in contrast to standard approaches
in which it is the hyper Markov law that is used to encourage sparsity or other features on the
graph. We think that working with the space of graphs explicitly opens a lot of possibilities for
prior specification in graphical models, therefore, it is a perspective worth further study.

While coupling the focus on the first two moments and a graph representation of pairwise de-
pendencies among variables are not restrictive modeling choices in the Gaussian graphical model
framework, they become restrictive when working with graphical models in general. However,
likely because of convenience, these assumptions are seldom challenged in the graphical models
literature. Here we develop a geometric construction where dependence relations of higher orders
can be conveniently encoded within a hypergraph. For a state of the art treatment of parametriza-
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tions of decomposable graphs, see (Cron and West, 2012).

Connected to the point above, while decomposability plays an important role in graphical mod-
els in general, it does not play any role in our construction. This is because decomposability is
relevant for computations at the Hyper-Markov law level, while our construction and results are at
the level of the prior on graph space.

About the space of graph where our construction puts positive mass. At this point we have
two results and a conjecture for characterizing the space of feasible graphs (hypergraphs) when we
consider the nerve of a set of balls in R3 with different radii (This is the case that should have the
largest support for the distribution of graphs.)

Theorems: (i) Any graph can be embedded in R3. This is a well known result. One method
that computes such embedding is the Book Algorithm, proposed by (Kainen, 1974) and (Ollmann,
1973). (ii) Any graph can be linearly embedded in R3. By ‘linearly embedded’ it is meant that the
segments joining the vertices are straight lines. This is a particular case of a more general result,
that every k-dimensional simplicial complex can be geometrically realized in 2k + 1 dimensions.
In this case case, k = 1. See Section 3.1 of (Edelsbrunner and Harer, 2008).

Conjecture: (iii) Such a linear embedding can be achieved using a random geometric graphs
construction using balls with different radii.

Interesting questions and extensions of this idea include: (1) achieving a deeper and more
detailed understanding of the subspace of graphs spanned by different specific filtrations; (2) de-
signing priors to control the distributions of specific features of graphs such as clique size or tree
width; (3) modeling directed acyclic graphs (DAGs), and (4) concrete implementation of novel
Markov structures based on nerves.

This methodology generates only graphs that are feasible for the particular filtration chosen.
Although we do have some insight about which graphs can and cannot be generated by a specific
filtrations, a more complete and formal understanding of this aspect of the problem would be
useful.

We used very simple prior distributions for the purpose of illustrating the core idea of the
methodology. It is natural in this approach to incorporate tools from point processes into graphical
models to define new classes of priors for graph space. Future developments in our research will
involve a range of repulsive and cluster processes.

The parametrization we propose can be used to represent Markov structures on DAGs, but
the strategies for obtaining such graphs from nerves will be different and will establish stronger
connections between Graphical Models and computational topology.
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The present work is related to that of Pistone et al. (2009) in which a nerve of convex subsets
in Rd is used to obtain Markov structures for a distribution, an extension of the abstract tube
theory of Naiman and Wynn (1997). This new perspective allows for constructions that generalize
the idea of junction trees. By modifying our methodology according to this framework (personal
communication from H. Wynn suggests that this is feasible) we hope to fit models that factorize
according to those novel Markov structures.

Another possible extension of this work is to discretize the set from which the vertex set is
sampled (e.g., use a grid). Such discretization may improve the behaviour of the MCMC; it would
also allow the use of a nonparametric form for the prior on the vertex set, leading to more flexible
priors on graph space.

While we illustrated the new construction for Bayesian inference, in a situation where we ob-
serve high-dimensional vectors and we want to infer the dependencies among their components,
the proposed construction can be easily used to build a likelihood in situations where we have
direct observations about the facets of hypergraph. Such observations occur naturally in applica-
tions; just think of how one would encode the structure among individuals revealed by pictures on
Facebook. Each picture has one or more people. A picture with three people is naturally encoded
as a 3-facet, rather than as 3 individual edges, as currently done, arguably for lack of likelihood
models for hyper graphs.
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A Filtrations and Decomposability in Random Geometric Graphs

A filtration is a sequence of simplicial complexes that properly include their predecessors:

Definition A.1 (Filtration). A filtration for a simplicial complexK is a sequence L =
{
K0,K1, . . . ,Kk

}
of simplicial complexes such that

∅ = K0 ⊂ K1 ⊂ . . . ⊂ Kk = K,

with all inclusions proper.

Filtrations are commonly used in computational geometry and topology to construct efficient
algorithms for computing specific nerves including the Alpha complex (Edelsbrunner and Mücke,
1994). The simplicial complexes constructed in Section 2.2 from families of convex sets lead to
filtrations as the convex sets are enlarged, by increasing the radius parameter r.

Although much of the graphical models literature focuses on Markov structures derived from
decomposable graphs, those constructed in Section 2.2 from 1-skeletons of Čech and Alpha com-
plexes need not be decomposable (see Figure 19). In Algorithm 1 we present an adaptation of
this construction that generates decomposable graphs, for use in applications that require them. In
Sections 3 and 4 we present methodology and examples for both decomposable and unrestricted
model spaces.
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Figure 19: Filtration of Alpha complexes, (a) r =
√

0.10, (b) r =
√

0.20 and (c) r =
√

0.75.

The central idea for generating decomposable graphs from filtrations is to note that the complex
A(V , 0) for r = 0 is disconnected and hence decomposable; as the radius r increases, if one adds
edges only if the resulting graph is decomposable, then decomposability will hold for all r ≥ 0.
This procedure is formalized in Algorithm 1.

Proposition A.1. The graph G produced by Algorithm 1 is decomposable.

Proof. The algorithm is initialized with the decomposable empty graph, and decomposability is
tested with each proposed addition of an edge (i.e., a 1-simplex in L ). The decomposability test
is taken from (Giudici and Green, 1999, Theorem 2). Since only finitely many edges may possibly
be added, G is decomposable by construction.

A.1 Example

We first illustrate the algorithm on a simple example, based on the five points in R2 shown in
Figure 20 and given in Table 16. The graph induced by a Čech complex with r = 0.5 will not
be decomposable. Table 17 presents the evolution of cliques and separators with increasing r,
as edges are proposed for inclusion in Algorithm 1. The first three proposed edge additions are
accepted, but the proposal to add edge (1, 2) at radius r = 0.474 is rejected, since the intersection
of prime components {1, 3} and {2, 4, 5} is empty, and therefore not a separator.

A.2 Algorithm deletes few edges

It is interesting to note that the number of proposed edge additions that are rejected by the
algorithm is typically quite small. To illustrate this we applied Algorithm 1 to a filtration of Čech
complexes corresponding to 100 points sampled uniformly from the unit square, with radius r =

0.05. In Figure 21 the graph G output by the algorithm is compared to the 1-skeleton of the Čech
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Algorithm 1: The algorithm takes as input a filtration of k abstract complexes and returns a
decomposable graph that is a subset of the 1-skeleton of the k-th complex.

input : a filtration L =
{
K0,K1, . . . ,Kk

}
return: a weakly decomposable graph G
m = 0; i = 0; G0 = ∅;
while i < k and Ki+1 6= ∅ do

τi = {κ ∈ Ki+1 \ Ki such that |κ| = 2}; // the edges in the set
difference and denote τi,s as the sth edge

if τi 6= ∅ then
P = |τi|;
for s = 1 to P do
G ′ = Gm

⋃
τi,s ; // propose adding the edge

if ](G ′) < ](Gm) // fewer connected components?
then
Gm+1 = G ′ ; // accept the proposal
m = m+ 1;

else
[ci] = C (Gm) ; // the cliques
[si] = S (Gm) ; // the separators
[v1, v2] = τi,s ; // the proposed edge
if ∃i 6= j, k with v1 ∈ ci, v2 ∈ cj and ci

⋂
cj = sk then

Gm+1 = G ′ ; // accept the proposal
m = m+ 1;

i = i+ 1;
G = Gm
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Figure 20: (a) Proximity graph computed from the vertex set given in Table 16. (b) The decompos-
able graph computed from the same vertex set using Algorithm 1. The edge (1, 2) is not included
in the decomposable graph.

Coordinate V1 V2 V3 V4 V5

x 0.686 0.214 0.846 0.411 0.089
y 0.151 0.194 0.420 0.567 0.553

Table 16: Vertex set used to illustrate Algorithm 1.

complex (with no decomposability restriction) with the same radius r = 0.05. Few edges appear
in the Čech complex but not in G. This occurs because geometric graphs tend to be triangulated, in
the sense that if edges (v1, v2) and (v2, v3) belong to a geometric graph, then very likely the edge
(v1, v3) will also be in the graph, preserving decomposability.
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Cliques Separators r Update
[1][2][3][4][5] − 0 −
[1, 3][2][4][5] − 0.313 (1, 3)
[1, 3][2][4, 5] − 0.321 (4, 5)
[1, 3][2, 5][4, 5] [5] 0.379 (2, 5)
[1, 3][2, 4, 5] − 0.421 (2, 4)
[1, 3][3, 4][2, 4, 5] [3][4] 0.459 (3, 4)
[1, 3][3, 4][2, 4, 5] [3][4] 0.474 ∼ (1, 2)
[1, 3, 4][2, 4, 5] [4] 0.498 (1, 4)

Table 17: Evolution of cliques and separators in the junction tree representation of G as edges are
added according to Algorithm 1. The proposed addition of edge (1, 2) is rejected.
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Figure 21: (a) The 1-Skeleton of Čech complex given the displayed point set and r = 0.05. (b)
The decomposable graph for the same complex, point set, and radius output by Algorithm 1.
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Figure 22: Distribution of edge counts for both unrestricted and decomposable graphs. Graphs
were computed using Čech complex filtrations with p = 100 and Vi

iid∼ Un([0, 1]2).
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