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Abstract

Supply chain risk management has drawn the attention of practitioners and
academics alike. One source of risk is demand uncertainty. Demand fore-
casting and safety stock levels are employed to address this risk. Most pre-
vious work has focused on point demand forecasting, given that the forecast
errors satisfy the typical normal i.i.d. assumption. However, the real de-
mand for products is difficult to forecast accurately, which means that—at
minimum—the i.i.d. assumption should be questioned. This work analyzes
the effects of possible deviations from the i.i.d. assumption and proposes
empirical methods based on kernel density estimation (non-parametric) and
GARCH(1,1) models (parametric), among others, for computing the safety
stock levels. The results suggest that for shorter lead times, the normality
deviation is more important, and kernel density estimation is most suitable.
By contrast, for longer lead times, GARCH models are more appropriate
because the autocorrelation of the variance of the forecast errors is the most
important deviation. In fact, even when no autocorrelation is present in
the original demand, such autocorrelation can be present as a consequence
of the overlapping process used to compute the lead time forecasts and the
uncertainties arising in the estimation of the parameters of the forecasting
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model. Improvements are shown in terms of cycle service level, inventory
investment and backorder volume. Simulations and real demand data from
a manufacturer are used to illustrate our methodology.

Keywords: Forecasting, safety stock, risk, supply chain, prediction
intervals, volatility, kernel density estimation, GARCH.

1. Introduction

Supply chain risk management (SCRM) is becoming an area of interest
for researchers and practitioners, and the number of related publications is
growing [1]. A critical review of SCRM was presented in [2]. An important
source of risk is the uncertainty of future demand. When demand is un-
usually large, a stockout may occur, with associated negative consequences.
When demand is below expectations, the company is saddled with higher
holding costs due to excess inventory. To mitigate such risks, companies use
safety stocks, which are additional units beyond the stock required to meet a
lead time forecasted demand. Different approaches can be utilized to calcu-
late safety stock [3]. Although the most appropriate method depends on an
organization’s circumstances, calculating the safety stock based on customer
service is widely used, because it does not require knowledge of the stockout
cost, which can be very difficult to estimate.

Demand uncertainty has been estimated by using both demand variabil-
ity [4] and demand forecast error variability ([3], [5]). In this work, we follow
the latter approach, given that future demand is unknown and must be fore-
casted. Therefore, safety stocks are intended to prevent issues due to such
demand forecast errors.

Demand forecast errors are typically assumed to be independent and iden-
tically distributed (i.i.d.), following a Gaussian distribution with zero mean
and constant variance. However, the forecast errors often do not satisfy these
assumptions, which can cause the achieved service levels to deviate from the
target levels, with increased inventory costs [6, 7, 8, 9]. Even when the dis-
tribution assumptions are met, the uncertainties that arise when estimating
the forecasting models are usually not considered [10, 11].

Two approaches can be used to address the problem of forecast errors
that do not satisfy i.i.d. assumption. First, a theoretical approach, in which
the demand forecasting model should be improved by modeling, for example,
the mean demand autocorrelation [12, 13]; including exogenous variables such
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as promotional variables [14, 9, 15] or weather variables [9] via regression-
type models; as well as considering temporal heteroscedastic processes [16,
17, 18, 9, 19]. Under the assumption that the improved forecasting model
captures the underlying data process, a theoretical formula for the cumulative
variance of the forecast error can be determined [20]. Then, the safety stock
can be computed using that theoretical formula and assuming a statistical
distribution.

Nonetheless, it would be unrealistic to assume that we could find the
“true” demand model for each SKU, and even if such models did exist, it
would not always be possible for companies to implement them in prac-
tice. For instance, many companies judgmentally adjust statistical forecasts,
which may induce forecast error biases [21, 22]. Furthermore, as pointed out
by Fildes [23], companies often do not implement the latest research in fore-
casting, relying instead on software vendors who have been shown to be very
conservative. Moreover, the choice of demand forecasting model may not be
under the control of the operations/inventory planning department [6].

For the aforementioned reasons, an alternative to the theoretical approach
is an empirical, data-driven counterpart. In a univariate framework, the
empirical approach involves collecting the observed lead time forecast errors
of whatever forecasting model a company has available and, subsequently
calculating the quantiles of interest to determine the safety stock. Note that
in this empirical approach, we need to know neither the point forecasting
model nor its parameters. This is potentially advantageous in the case of
forecasting support systems, which often do not provide such information to
users. For the case in which exogenous variables are available, Beutel and
Minner [9], working within a multivariate framework, proposed a data-driven
linear programming approach in which the inventory level could be optimized
by minimizing a cost objective or subject to a service level constraint.

Depending on which i.i.d. assumptions are violated, different options can
be applied to improve the empirical safety stock calculation. For a mul-
tivariate case, Beutel and Minner [9] showed that the linear programming
approach was robust to both unconditional bias (where demand is assumed
to be independent of time) and unconditional heteroscedasticity as well as
non-normal residuals. In the same reference, it was reported that in the case
of heteroscedasticity due to independent variables, a multiple linear regres-
sion optimized via the ordinary least squares approach could be improved
by relating standard deviations to the levels of explanatory variables (for
example, price) in a parametric functional form.
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Several methodologies have been proposed to correct the problem that
arises in a univariate framework in the case that the lead time forecast errors
are biased. The authors of [6] adjusted the standard deviation of the forecast
errors and reference [24] proposed a kernel-smoothing technique to cope with
such unconditional bias. If the mean demand is autocorrelated and is not
properly modeled, then the forecast error bias (if any) may be autocorrelated
as well. Lee [8] developed a semi-parametric approach to estimate the critical
fractiles for autocorrelated demand, where the conditional lead time demand
forecast bias is a parametric linear function of the recent demand history and
the quantile is obtained non-parametrically from the empirical distribution
of the regression errors.

Likewise, the forecast errors for a given lead time may be heteroscedastic
and deviate from normality [24, 8]. Non-normal residuals have been ad-
dressed by means of kernel smoothing [24] and the empirical lead time error
distribution quantile approach [8]. However, the case in which the lead time
forecast errors exhibit conditional heteroscedasticity remains understudied.

In this work, the goal is to compute the safety stock for a given lead time
using empirical methods based on the measured lead time forecast errors.
Generalised AutoRegressive Conditional Heteroscedastic (GARCH) models
[25] and exponential smoothing models [26] are investigated to overcome the
assumption of the independence of the standard deviation of the lead time
forecast errors and to exploit potential correlations.

To the best of the authors’ knowledge, this is the first time that GARCH
models have been applied empirically to forecast lead time error standard
deviations and compute safety stocks. Furthermore, we explore the use of
empirical non-parametric approaches such as kernel density estimation [27],
which is commonly utilized in prediction interval studies [28], although its
use in supply chain applications has been less frequent [24, 29]. The pro-
posed empirical approaches are also compared with the traditional supply
chain theoretical approaches, which are based on i.i.d. assumptions, using
both simulated data and real data from a manufacturing company. The
performance of the different approaches are measured using inventory invest-
ment, service level and backorder metrics. First, a newsvendor-type model
is assumed, and subsequently, the results are compared with those of an
order-up-to-level stock control policy.

The remainder of this paper is organized as follows: Section 2 formulates
the safety stock problem. Section 3 reviews the theoretical approach for
computing the safety stock. Section 4 describes the empirical approximation
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proposed in this work. Section 5 explains the performance metrics used
to assess the different methods. This section also provides implementation
details for the alternative approaches. Simulation experiments are reported
in Section 6. A case study based on shipment data from a real manufacturer
is presented in Section 7. Finally, Section 8 presents concluding remarks.

2. Problem formulation

When the demand forecasting error is Gaussian i.i.d. with zero mean and
constant variance, the safety stock (SS) for a target cycle service level (CSL),
expressed as the target probability of no stockout during the lead time, can
be computed as follows:

SS = kσL, (1)

where k = Φ−1(CSL) is the safety factor, Φ(·) is the standard normal cumu-
lative distribution function, and σL is the standard deviation of the forecast
errors for a certain lead time L, which is assumed to be constant and known.

The main challenge associated with (1) is how to estimate σL. To do this,
we consider two approaches: a theoretical approach based on a forecasting
model, in which an estimate of σ1 (one-step-ahead standard deviation of the
forecast error) is provided and an analytical expression that relates σL to
the forecasting model parameters, the lead time and σ1 is employed. The
estimation of σ1 is possible because the forecast updating step is usually
smaller than the lead time. Alternatively, an empirical parametric approach
can also be employed in which σL is estimated directly from the lead time
forecast error. Here, the term parametric indicates that a known statistical
distribution is assumed; normality is traditionally chosen for this purpose.

If the statistical distribution of the error is unknown, empirical non-
parametric methods can be used instead. In that case, the safety stock
calculation should be reformulated as follows:

SS = QL(CSL), (2)

where QL(CSL) is the forecast error quantile at the probability defined by
CSL. We discuss the theoretical approach in detail below and the empirical
parametric and non-parametric approaches in the subsequent section.
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3. Theoretical approach

3.1. Estimation of σ1
Traditional textbooks suggest computing σ1 based on forecast error met-

rics. For instance, the mean squared error (MSE) is used in [3], and the
mean absolute deviation (MAD) is used in [5]. However, the conversion fac-
tor from the MAD to σ1 depends on the assumed statistical distribution, and
an inappropriate choice can result in a safety stock level that is inadequate
to satisfy the required service level [3]. Therefore, hereafter, we use the MSE
to estimate σ1, i.e. σ1 =

√
MSE . Moreover, the MSE estimation can be

updated as new observations become available, as follows:

MSEt+1 = α′(yt − Ft)
2 + (1− α′)MSEt, (3)

where yt is the actual value at time t, Ft is the forecast value for the same time
period, MSEt+1 is the MSE forecast for period t + 1 and α′ is a smoothing
constant that varies between 0 and 1. In this work, α′ and the initial value are
optimized by minimizing the in-sample squared error following the suggestion
by [30]. Note that (3) is the well-known single exponential smoothing (SES)
method.

3.2. Estimation of σL
A theoretical formula for σL can be obtained given the following: σ1; the

forecast updating procedure; the value of the lead time (L), which is assumed
to be constant and known; and the values of the smoothing constants used.
According to [3], the exact relationship can be complicated. If we disregard
the fact that the errors usually increase for longer forecast horizons and also
assume that the forecast errors are independent over time [31], then

σL =
√
Lσ1. (4)

It should be noted that expression (4) has been strongly criticized in [20]
because there is no theoretical justification for its use and it can produce
very inadequate results.

The authors of [32, 33, 34, 35] showed that when the demand can be
modeled using a local level model (i.e., the model that underlies SES) with
the parameter α, the conditional variance for the lead time demand is

σL = σ1
√
L

√
1 + α(L− 1) +

1

6
α2(L− 1)(2L− 1). (5)
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Interestingly, although (5) provides an exact relationship, the literature often
relies on the approximation in (4) (see, for example, [6, 7]).

4. Empirical approach

The theoretical approach represented in (5) assumes that forecast errors
are i.i.d., which means that we know the “true” model of the SKU’s demand.
However, if there are doubts about the validity of the “true” model, then em-
pirical approaches can be a useful alternative [20]. Given the complex nature
of markets, clients, promotions, economic situation and so forth, assuming
that we know the true demand model for each SKU would be unrealistic;
consequently, empirical approaches must at least be tested.

Note that although empirical approaches have been shown to yield good
results in other applications, such as the calculation of prediction intervals
[20], they have rarely been used in SCRM [8].

4.1. Parametric approach

In these empirical parametric approaches, we retain the assumption that
lead time forecast errors are normally distributed, but we relax the indepen-
dent variance assumption by allowing σL to vary over time. An empirical
estimate of σL can be calculated as follows:

σL =

√∑n
t=1(et(L)− ē(L))2

n
, (6)

where et(L) = yL − FL =
∑L

h=1 yt+h −
∑L

h=1 Ft+h is the lead time forecast
error and ē(L) is the average error for the L under consideration.

4.1.1. Single exponential smoothing (SES)

Instead of using (6) to update σL each time a new observation is available,
we can use SES to directly update the cumulative MSE over the lead time
[36, 26]. Likewise, we can update σL on the basis of the lead time forecast
error instead of the one-step-ahead forecasting error:

MSEL,t+1 = α′′(yL − FL)2 + (1− α′′)MSEL,t, (7)

where
√
MSEL,t+1 is the forecast for σL at time t+ 1. Unlike in Eq. (3), the

update step size does not match the lead time forecast error. The expression
is updated after every period t. The process followed to calculate yL and
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FL is known as the overlapping temporal demand aggregation process [37],
which the authors recommend when a sufficient demand history is available
(at least 24 observations). Similar to Eq. (3), both α′′ and the initial value
for Eq. (7) are optimized by minimizing the squared errors.

4.1.2. ARCH/GARCH models

Although exponential smoothing is the conventional approach in supply
chain forecasting, when we are dealing with volatility forecasting other mod-
els have been developed that may be good candidates for enhancing risk
estimation and, therefore, safety stock determination.

In particular, the AutoRegressive Conditional Heteroscedasticity (ARCH)
model introduced in [38] is one of the most important developments in risk
modeling, and it may be well suited for our application. In ARCH models,
the forecast error is expressed as εt = σt · vt, where

σ2
t+1 = ω +

p∑
i=1

aiε
2
t−i+1, (8)

where ω is a constant, and ai are the respective coefficients of the p lags of
vt that form an i.i.d. process. ARCH models express the conditional vari-
ance as a linear function of the p lagged squared error terms. Bollerslev
in [25] proposed the generalized autoregressive conditional heteroscedasticity
(GARCH) models that represent a more parsimonious and less restrictive ver-
sion of the ARCH(p) models. GARCH(p,q) models express the conditional
variance of the forecast error (or return) (εt) at time t as a linear function of
both q lagged squared error terms and p lagged conditional variance terms.
For example, a GARCH(1,1) model is given by:

σ2
t+1 = ω + a1ε

2
t + β1σ

2
t . (9)

It should be noted that exponential smoothing has the same formulation
as the integrated GARCH model (IGARCH) [39], with β1 = 1−a1 and ω = 0.
If we apply the GARCH(1,1) model to lead time forecasting error instead of
to the one-step ahead forecasting error, Eq. (9) can be rewritten as follows:

σ2
L,t+1 = ω′ + a′1ε

2
L,t + β′1σ

2
L,t. (10)

In this work, we focus our analysis on the GARCH(1,1) model using an
overlapping approach to compare it with the SES model shown in Eq. (7).
Note that GARCH(1,1) also includes GARCH(0,1).
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4.2. Non-parametric approach

Some demand distributions exhibit important asymmetries, particularly
when they are subject to promotional periods or special events. In these
cases, the typical normality assumption for forecasting errors does not hold.
Non-parametric approaches, in which the safety stock is calculated in accor-
dance with (2), are well suited for overcoming this problem. Here, we use
two well-known non-parametric methods: (i) kernel density estimation and
(ii) empirical percentile.

4.2.1. Kernel density estimation

This technique represents the probability density function f(x) of the
lead time forecast errors without requiring assumptions concerning the data
distribution. The kernel density formula for a series X at a point x is given
by

f(x) =
1

Nh

N∑
j=1

K

(
x−Xj

h

)
, (11)

where N is the sample size, K(·) is the kernel smoothing function, which in-
tegrates to one and h is the bandwidth [27]. In the cited reference (on p. 43),
it is shown that the optimal kernel function, often called the Epanechnikov
kernel, is:

Ke(t) =

{
3

4
√
5

(
1− 1

5
t2
)
−
√

5 ≤ t ≤
√

5

0 otherwise
(12)

Although the choice of h is still a topic of debate in the statistics literature,
the following optimal bandwidth for a Gaussian kernel is typically chosen
[27, 28]:

hopt = 0.9AN−1/5, (13)

where A is an adaptive estimate of the spread given by

A = min(standard deviation, interquantile range/1.34) (14)

The CSL quantile, denoted byQL(CSL), can be estimated non-parametrically
using the empirical distribution fitted by the kernel approach on the lead time
forecast errors.
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4.2.2. Empirical percentile

The well known percentile indicates the value below which a given per-
centage of observations fall. When calculating empirical percentiles the re-
quested value is typically linearly interpolated from the available values.

5. Evaluation of the alternative approaches

5.1. Point forecasting

Before evaluating various approaches for measuring forecast error volatil-
ity, we must first define the point forecasting function. The point forecasting
algorithm yields a measure of the central tendency of the forecast density
function. This value and the resulting forecast errors are used as the inputs
to the variability forecasting methods described in Sections 3 and 4. Note
that the same point forecast is used in all cases, regardless of the variability
forecasting approach considered.

In this work, SES is used to produce point forecasts for two reasons. First,
SES is widely used in business applications [40, 41], and it is consistent with
common practice, in which a company may not be using the optimal forecast-
ing model due to either a lack of expertise or the availability of only a limited
set of forecasting models in the software to which it has access. Second, we
use SES as a benchmark because an analytical expression is available to com-
pute the lead time forecasting error variance (see Eq. (5)), which requires
an estimate of the value of α used in SES-based point forecasting. Such a
forecasting method can be formulated as

Ft+h = αyt + (1− α)Ft, (15)

where 0 ≤ α ≤ 1 and h is the forecasting horizon. Given the recursive
nature of exponential smoothing, it is necessary to initialize the algorithm.
We determine both the initial value and the α value by minimizing the in-
sample mean squared error. Note that the lead time demand forecast is
FL =

∑L
h=1 Ft+h = L · Ft+1.

5.2. Inventory performance metrics

In the supply chain context, as described in [42], [43] and [44], trade-
off curves are employed to measure the forecasting performance of different
techniques. These trade-off curves represent the pairs formed by the CSL and
inventory investment plus backorders and inventory investment. Kourentzes
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[43] transformed the inventory investment and backorder metrics into scale-
independent measures that can easily summarize metrics across products by
dividing them by the average in-sample demand, we follow the same approach
here.

The way in which such inventory metrics are parameterized depends on
the stock control policy. Here, we follow a newsvendor-type policy as in [9, 8],
where the critical fractile minimizes the expected cost by balancing the costs
of understocking and overstocking [31]. We also study the critical fractile
estimation problem with a fixed replenishment lead time, in which such a
critical fractile solution is repeatedly applied for a multi-period inventory
model [8]. The inventory metrics are the achieved CSL, which is estimated
as the percentage of iterations where the lead time demand realizations fall
below the estimated lead time demand quantile for determined target CSL
values (critical fractiles). Backorders, by which we mean the amount of
unsatisfied demand, are calculated in two steps. First, we calculate the sum
of the demand realizations that exceed the estimated target CSL for each
SKU, and second, we calculate the average of that sum across SKUs. Since
we are interested in the safety stock, the average inventory investment is
calculated as the average value of the so-called scaled safety stock, which is
the safety stock divided by the in-sample average demand. All three metrics
are calculated on the hold-out sample. In Section 6.4, the implementation
of a periodic-review order-up-to-level stock control policy is also considered,
and its results are compared with those of the newsvendor policy. Note that
an order-up-to-level stock control policy is more appropriate when products
are sold over a long time horizon with numerous replenishment opportunities
and, thus, there is no need to dispose of excess inventory [45].

In this work, the target CSL values are set to 85%, 90%, 95% and 99%
for both simulations and real data.

5.3. Implementation of the approaches

The analysis was conducted using MATLAB. Here, we briefly present the
implementation details of the approaches discussed above. We employed the
econometric toolbox in MATLAB to implement the GARCH(1,1) model, se-
lecting an interior-point optimization algorithm. We used the kernel density
estimators in MATLAB with the default options selected for the bandwidth
and the Epanechnikov kernel. The empirical percentiles were computed using
the MATLAB function prctile.
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6. Simulation results

In this section, we describe four simulation experiments conducted to ex-
plore the performance of the aforementioned empirical parametric and non-
parametric approaches when there are deviations from the Gaussian i.i.d.
assumptions. We study what happens when (i) the normality assumption
does not hold for different sample sizes, (ii) the homoscedasticity and inde-
pendent variance assumptions do not hold, and (iii) the lead time varies.

The simulations are assessed in terms of newsvendor inventory perfor-
mance metrics (achieved CSL, scaled safety stock and backorders). To extend
these simulation results to another well-known stock control policy, the last
simulation study (iv) investigates the relationship between the newsvendor
and order-up-to-level inventory performance metrics.

In these experiments, we divided the total sample into three parts. We
used the first 20% of the data to estimate the parameters (initial value and
smoothing parameter) for the point forecasting method and the next 50% to
estimate the parameters for the volatility forecasting methods: SES, kernel
density estimation, empirical percentile and GARCH(1,1). Note that em-
pirical methods are estimated using data which have not been employed to
produce the point forecasts, [46, 47, 48]. The remainder of the data was
reserved as a hold-out sample for evaluation purposes.

6.1. Effects of sample size and demand distribution

To explore the influence of the demand distribution on the safety stock
calculation, we employed three distributions: (i) normal, (ii) log-normal and
(iii) gamma. Using this approach, we could observe any issues when the
demand does not follow a normal distribution. Note that the log-normal
distribution is reasonable when products are subject to promotional periods,
during which the observed demand is higher than the baseline demand. The
gamma distribution has previously been used in the literature [9, 29, 49] to
assess violations of the normality assumption.

We conducted simulations for the following sample sizes: 50, 100 and 500.
Studying the sample size is important because products often have short life
cycles, and consequently, few historical observations are available. For each
sample size and each distribution, we conducted Monte Carlo simulations
with 100 repetitions. The simulated population values for the mean (µ) and
standard deviation (σ) of the normal distribution were µ = 150 and σ = 25.
The parameters for the log-normal and gamma distributions were chosen to
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provide a mean of 150 and a skewness of 9.6, with the latter being used as
a non-normality measure. The resulting parameter values for the log-normal
distribution were µ = 4.7 and σ = 0.7, while for the gamma distribution they
were a = 0.04 (shape parameter) and b = 3, 449 (scale parameter).

Figure 1 shows the trade-off curves for a sample size of 50 observations
and a lead time of 1 period. The upper plots show the deviations from the
target CSL in percentage vs. the scaled safety stock. For example, with a
normal distribution and a target CSL of 85%, denoted by the smallest marker,
the CSL deviation for SES is approximately -1% (i.e., undercoverage with an
achieved CSL of 84%). The closer the lines are to zero deviation, the better
the performance is considered to be. The lower panels plot the relationship
between backorders and scaled safety stocks. Note that the different target
CSLs are organized from the smallest-size marker (85%) to the largest-size
marker (99%).

The left column of Figure 1 (both upper and lower panels) shows the
trade-off curves for the normally distributed demand. As expected, SES and
GARCH perform reasonably well and produce a slight systematic undercov-
erage, whereas the kernel method produces a systematic overcoverage that
is reduced for the highest target CSL. When the target is 99%, the empiri-
cal percentile method achieves a remarkable lower CSL, which also implies a
higher volume of backorders.

The middle column of Figure 1 presents the corresponding trade-off curves
for the log-normal demand distribution. The non-parametric approaches
(kernel and percentile) successfully achieve the highest and lowest target
CSLs (99% and 85%, respectively), whereas the parametric approaches (SES
and GARCH) do not. Therefore, when the forecast errors are skewed, the
typical assumption of normality results in CSL values that deviates from
their targets, and the non-parametric approaches seem more robust in this
case.

The right column of Figure 1 shows the results for the gamma-distributed
simulated demands. The conclusions here are similar to those for the log-
normal demands, although they are exacerbated. In general terms, the para-
metric approaches result in overcoverage for lower CSL targets (85%-90%);
in fact, the lower the target is, the higher the overcoverage is. Similarly, for
high CSL targets, the higher the target is (95%–99%), the higher the under-
coverage is. By contrast, the empirical non-parametric approaches achieve
CSL values that are closer to the targets. This difference among the target
CSLs is also reflected in the lower plot, where the non-parametric approaches
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Figure 1: Trade-off curves for a sample size of 50 observations. Left column: normal
distribution; middle column: log-normal distribution; right column: gamma distribution.

yield high backorder values for low CSL values and vice versa. By contrast,
the parametric approaches yield backorder values that vary less strongly with
the CSL value.

Figure 2 shows the corresponding trade-off curves when the sample size
is increased to 100 observations. Again, the non-parametric approaches are
better able to capture the asymmetry of the forecast errors at the highest
and lowest CSLs (99% and 85%) for both the log-normal and gamma simu-
lated demands. When the distribution is normal, all methods show similar
performance in achieving values close to the target CSLs, although the kernel
method results in systematically higher CSLs than expected.

The same conclusions are drawn when the sample size is further increased
from 100 to 500 observations.

To summarize, non-parametric methods such as the kernel and percentile
methods produce better trade-off curves for the log-normal and gamma dis-
tributions since the parametric methods assume that the forecast errors are
normal. However, the performance of the non-parametric methods deterio-
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Figure 2: Trade-off curves for a sample size of 100 observations. Left column: normal
distribution; middle column: log-normal distribution; right column: gamma distribution.
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rates when the sample size is small since they are data-driven approaches.
When the distribution is normal, the parametric approaches work well, as
expected, although there is undercoverage when the sample size is small be-
cause the parameters are not known and must be estimated [10]. The kernel
method results in overcoverage, and the percentile method is more sensi-
tive to small sample sizes. The overcoverage of the kernel method is due
to the bandwidth selection, which establishes a compromise between bias
and variance [27]. Because correlations of the forecast error variance are not
considered in these simulations, the GARCH model does not exhibit any
significant advantage over the SES model.

6.2. Demand with time-varying volatility

In this experiment, we performed two sets of simulations with time-
varying volatility. In the first case, the demand followed a normal distri-
bution with a constant mean (µ = 150) and two different standard devia-
tions (σ1 = 25 and σ2 = 50); the sample size was 500 observations, and the
lead time was 1 period. σ1 was used for the time periods corresponding to
1:50, 101:226 and 351:425, with the purpose of ensuring the occurrence of
volatility changes in both the in-sample periods and the hold-out sample. In
the second case, the demand was simulated with a constant mean of 50 and
a stochastic term that followed a GARCH(1,1) model, with the parameters
ω = 0.01, a1 = 0.4 and β1 = 0.5. In both cases, 100 simulations were run.

Figure 3 depicts the average trade-off curves obtained by each consid-
ered technique for both experiments. The right column shows the trade-
off curves for the first experiment with volatile abrupt changes. Regarding
backorders, the SES and GARCH methods yield slightly lower backorders
for similar scaled safety stocks. With respect to CSL deviations, the SES
and GARCH methods provide overcoverage for lower targets and undercov-
erage for the highest target. The kernel method produces overcoverage for
each target, which is reduced for larger target CSLs, whereas the Percentile
method achieves a CSL deviation close to zero.

The left column of Figure 3 shows the trade-off curves for the second
simulation case based on a GARCH model. In general, the GARCH method
produces low CSL deviations with low scaled safety stocks. Although SES
achieves backorder values similar to those of GARCH, its CSL performance
is much worse than that of either GARCH or the non-parametric approaches.
Additionally, the backorder volumes produced by the parametric approaches
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are lower than those of their non-parametric counterparts, even for lower
scaled safety stocks.

These results can be interpreted as follows: (i) When the forecast errors
are subject to variance autocorrelation, GARCH models are a promising al-
ternative for computing safety stocks that deserves further exploration. The
best option that has been commonly applied thus far is SES [50, 3], which can
be seen as a particular case of GARCH models [39]. (ii) These results are also
important because they suggest that the level of backorders can provide an
indication of potential autocorrelation in the forecast error variance. In other
words, when parametric approaches provide a level of backorders lower than
non-parametric methods do, this may indicate a potential variance autocor-
relation. To support this argument, Figure 4 shows the actual values and
point forecasts for one Monte Carlo simulation on the hold-out sample for a
CSL target of 95%. The same plot also depicts the safety stocks computed
using the kernel and GARCH methods. We can see that the GARCH method
is able to adapt to periods of high/low volatility, whereas the kernel method
is not. Interestingly, although the kernel and GARCH methods result in
similar numbers of stockouts during high-volatility periods and consequently
produce similar achieved CSLs, the level of backorders is much higher when
the kernel approach is used. Similarly, during periods of low volatility, the
average safety stock yielded by the kernel method is greater than that of the
GARCH method, and thus, the inventory investment is also higher with the
kernel approach.

6.3. Influence of the lead time

In the simulations reported above, the lead time was set to 1 period.
In this section, we investigate the influence of the lead time on the safety
stock computation. For this experiment, we set the lead time to 4 periods,
the sample size to 500 observations and each simulation was repeated 100
times. We used a demand process that followed an ARIMA(0,1,1) model
with additional Gaussian innovations of zero mean and a standard deviation
of σ = 2, where θ = −0.75. We used that ARIMA model because SES is
optimal for such a model; thus, all differences among the evaluated methods
are independent of the point forecasting model. The value of θ = −0.75
corresponds to a theoretical exponential smoothing constant of α = (1 +
θ) = 0.25. To ensure positive demand values, a constant value of 50 units
was added to the signal. Because the lead time was greater than 1 period,
in addition to the previously considered empirically based approaches, we
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could also apply the theoretical approaches represented in Eqs. (4) and (5),
hereafter denoted by σL(4) and σL(5), respectively. Recall that the SES,
kernel, GARCH and percentile methods are based on empirical lead time
forecast errors.

Figure 5 shows that σL(4) produces a lower CSL and a higher number of
backorders than σL(5) does because of the simplifications assumed in the case
of σL(4); thus, our findings agree with those of [20] regarding the inadequacy
of σL(4). The percentile, kernel and GARCH methods, along with σL(5),
achieve CSLs very close to the targets, although the kernel method does so
with a higher scaled safety stock. Interestingly, in terms of the CSL, SES per-
forms worse than the non-parametric approaches, although GARCH performs
well. Regarding backorders, GARCH achieves very good performance—even
better than that of σL(5). In the discussion of the time-varying simulations
in the previous section, we concluded that when a parametric model such
as GARCH provided lower backorder levels than the rest of the methods,
this could indicate possible autocorrelation. Figure 5 shows that GARCH
achieves superior performance, which could indicate that there is some au-
tocorrelation that is not considered in the theoretical Eq. (5) that GARCH
can capture empirically. We conjecture that such a potential autocorrelation
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Figure 5: Trade-off curves for a demand that follows an ARIMA(0,1,1) model and a lead
time of 4 periods

may originate from two sources: (i) The first possible source is overlapping
temporal demand aggregation, as suggested by the fact that our results agree
with those reported by [37], which indicate that the overlapping approach
reduces inventory backorder volumes while maintaining the same volumes of
held inventory. Note that such a variance autocorrelation due to overlapping
may be present even when the original demand is independent; (ii) Similarly,
the authors of [10] showed that when the parameters of the forecasting model
are unknown and must be estimated, the forecast errors are correlated even
when the demand is independent.

6.4. Stock control policies

In the previous simulation experiments, we analyzed the results from
the perspective of a newsvendor inventory policy. Then, the question is
whether the previous simulations results still hold for different stock control
policies. In this section, we answer this question by simulating a periodic-
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review, order-up-to stock control policy following the work of [51], as shown
in Figure 6.

As in the previous experiment, the demand was described by a constant
component (50 units) plus an ARIMA(0,1,1) component with θ = −0.75, a
standard deviation of σ = 2 and a sample size of 500 observations. Each
simulation was repeated 100 times. The ordering decision for an order-up-
to-level policy is expressed as follows:

Ot = St − IPt, (16)

where Ot, St and IPt denote the ordering decision, order-up-to level and
inventory position, respectively, at time t. Note that the review interval is 1.
The inventory position can be defined in terms of the net stock (NSt) and
outstanding orders (OOt):

IPt = NSt +OOt, (17)

where NSt is

NSt =
1

1− z−1
(Rt − yt), (18)

where Z−1 is a Z-transform such as Z−1yt = yt−1 and Rt represents the
received orders. We use the variable NSt to compute the typical stock control
metrics. In other words, the achieved CSL is calculated as the proportion
of the time periods in which NSt is greater than zero given that a new
replenishment order is sent every time period, meaning that the cycle is
unity. Backorders are calculated by summing the negative values of NSt

across time and subsequently averaging across SKUs. Finally, the inventory
investment is estimated as the average of the positive NSt values across time
periods and SKUs.

The order-up-to level is updated every period:

St = FL + kσL, (19)

where FL is the lead time forecast over L periods. Thus, in every period, the
retailer updates the order-up-to level with the current estimates of FL and
σL. Note that St requires the estimation of the safety stock kσL.

The main difference between the block diagram model presented in [51]
and the one shown in Figure 6 lies in σL. In [51], σL is not computed, and
the uncertainty is considered as the forecasting demand in one period (i.e.,
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Figure 6: Order-up-to-level stock control policy plus a forecasting system based on Eq.
(5)

increasing the lead time by one period). In our work, we focus on different
ways to compute σL and how those affect the safety stock performance. For
this simulation, we use Eq. (5) to compute σL, although any of the methods
presented could be used because we are analyzing the relations between the
newsvendor and order-up-to stock control metrics. The described simulation
is implemented in SIMULINK. Recall that L already includes a nominal one-
period order delay (Z−1) because of the sequence of events [51]; therefore,
we now have L = d + 1, where Z−d is the physical lead time delay. To be
coherent with the previous section, the lead time is set to L = 4; therefore
d = 3. The sequence of events is the following [51]: 1. receive, 2. satisfy
demand, 3. count inventory, 4. place order.

Figure 7 shows the relations between the newsvendor performance metrics
and the order-up-to stock control metrics. In the three plots, the x and y axes
represent the order-up-to metrics and the newsvendor metrics, respectively,
for target CSLs of 85%, 90%, 95% and 99%, as in the previous simulations.
We observe a high level of correlation between the metrics, as shown by the
linear fits in all plots. In other words, the achieved CSL and backorder metrics
achieved by the two stock control policies are approximately equal for every
target CSL. The main difference lies in the inventory investment of the two
techniques; the inventory investment of the newsvendor policy, as measured
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Figure 7: Relationships between the newsvendor and order-up-to-level stock control policy
metrics for target CSL values of 85%, 90%, 95% and 99%

by the scaled safety stock, is greater than the inventory investment of the
order-up-to policy measured by the average net stock. Nevertheless, as in the
case of the other metrics, the correlation between the scaled safety stock and
the average net stock for different target CSLs is very high. Therefore, the
simulation results reported in the previous sections for the newsvendor stock
policy can be easily extrapolated to another well-known policy, namely, the
order-up-to-level stock control policy.

7. Case study data

The data employed in this paper were previously used by [48]. These
data come from a major UK fast-moving consumer goods manufacturer that
specializes in the production of household and personal care products. In
total, 229 products with 173 weekly observations per product are available.
According to [48] the SKUs did not present seasonality, and approximately
21% of them presented trend. We employed SES to produce point forecasts,
although that may not always be the best possible forecasting method. This
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can be used to assess the robustness of the proposed methods to point fore-
casts obtained using a method that does not perfectly match the unknown
underlying data-generating process. This is a common situation both in re-
search and in practice because identifying the true process is not trivial, as
discussed before. To verify that SES is a reasonable method to provide point
forecasts for this dataset, we compared the forecasting accuracy of the SES
with that of ARIMA(p, d, q) models automatically identified by minimizing
the Bayesian information criterion (BIC) [52] for p = (1, 2, 3), q = (1, 2, 3),
and d = (0, 1). For the point forecasting exercise, we designated 70% of
the data as the hold-in sample and the rest as the hold-out sample. We
normalized the sales for each SKU with respect to the corresponding mean
in the hold-in sample to aggregate the results for all SKUS. The results are
summarized in Table 1.

Table 1: Comparison of forecasting accuracy between SES and ARIMA models

Error metric SES Automatic ARIMA
Mean(RMSE) 0.64 0.72

Median(RMSE) 0.60 0.65

In Table 1, Mean(RMSE) denotes the result of computing the root mean
square error for each SKU on the hold-out sample and then averaging across
all SKUs. By computing the median instead of the mean of the per-SKU
RMSEs, we obtain the Median(RMSE) results reported in the second row.
Overall, the SES method achieves a lower forecasting error than the auto-
matic ARIMA models. This is not surprising since, as mentioned previously,
the data do not exhibit any evident trends and/or seasonality.

Regarding the volatility forecasting exercise, as in the simulations, the
data were split into three subsets. Again, SKU sales were normalized with
respect to the hold-in sample means to aggregate the results for all SKUS in
the trade-off curves.

To test the normality and variance independence of the forecasting errors,
Table 2 shows two statistical metrics that test the residuals normality (the
Jarque-Bera test) and the conditional heteroscedasticity (the Engle test),
both at the 5% significance level. These tests were applied for different
lead times ranging from 1 to 4 weeks. The values in each column represent
the percentages of SKUs that do not pass the null hypotheses of normality
and no conditional heteroscedasticity. These values were computed using the
forecast errors obtained after the removal of the training data used to produce
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the point forecasts. For the shortest lead time of 1 week, the null hypothesis
of normality is rejected for 88.2% of the SKUs, and the null hypothesis of no
conditional heteroscedasticity is rejected for 28.2%. Note the influence of the
lead time on the statistical tests. As the lead time increases, the percentage
of SKUs that do not pass the normality test decreases, as a consequence
of the central limit theorem. By contrast, the percentage of SKUs that
exhibit heteroscedasticity increases with the lead time. This may be due to
the overlapping aggregation process and the estimation of the parameters,
as explained in Section 6.3, where the influence of different lead times was
analyzed.

Table 2: Percentages of the SKUs that do not pass the Jarque-Bera and Engle tests at the
5% significance level for different lead times

Lead time Jarque-Bera test (%) Engle test (%)
1 88.2 28.4
2 82.1 91.7
3 74.7 98.7
4 69.4 98.7

To test the adequacy of the GARCH(1,1) model on this real dataset,
we computed the BIC for a general GARCH(p,q) model with p=1,2,3 and
q=1,2,3 using the second part of the data devoted to optimizing the volatility
models and a lead time of 4 weeks. The results show that GARCH(1,1) is a
valid model because it minimizes the BIC for 97% of the SKUs.

Figures 8 and 9 show the trade-off curves of the manufacturer data for
lead times of 1 and 4 weeks, respectively. In Figure 8, because the lead time is
1 week, SES, σL(4) and σL(5) methods all produce the same results; thus, for
the sake of clarity, only the SES results are plotted. Because the conditional
heteroscedasticity effect is lower for this lead time, the non-parametric kernel
method produces lower deviations from the target for most CSLs (except
90%). For the highest target CSL (99%), the kernel method achieves the
lowest CSL deviation and the lowest level of backorders, although at the
expense of an increased scaled safety stock. This shows evidence of significant
skewness in the data and is consistent with the results of the simulations, in
which non-parametric approaches such as the kernel method produced better
results for non-normal residuals.

Figure 9 shows the results for a lead time of 4 weeks and also includes
the results for the theoretical approaches (σL(4) and σL(5); σL(5) achieves
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Figure 8: Trade-off curves for the manufacturer data for a lead time of 1 week

a lower CSL deviation and a lower level of backorders than σL(4) does, as
expected. Regarding the empirical non-parametric approaches, the kernel
method results in a lower deviation from the target CSL and a lower level
of backorders with a higher scaled safety stock. Finally, the empirical para-
metric approaches (SES and GARCH) demonstrate very good performances,
especially the GARCH model. Clearly, the GARCH method achieves the
lowest CSL deviation among all methods at a similar level of scaled safety
stock. Additionally, the GARCH method performs very well with respect
to backorders. Note that this superior performance of the GARCH method
indicates that the SKUs in this dataset, in general, are subject to lead time
forecast errors with important variance autocorrelations. This finding is cor-
roborated by the Engle test results reported in Table 2, and is consistent
with the simulation results shown in Figure 3.
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Figure 9: Trade-off curves for the manufacturer data for a lead time of 4 weeks
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8. Conclusions

Despite the attention paid by both academics and practitioners to SCRM,
the links between demand uncertainty and risks are still under-researched.
One tool that supply chains typically employ to prevent further risks is safety
stocks. This work examined empirical approaches, both parametric and non-
parametric, for estimating the variability of the forecast errors and deter-
mining the appropriate levels of safety stocks. In addition, these empirical
methods were compared with the traditional theoretical methods described
in the supply chain literature. Our intent was to provide recommendations
for cases in which the assumption of normal i.i.d. forecast errors does not
hold, which is common in practice.

The results of simulations show that empirical non-parametric approaches
such as the kernel method are suitable when the statistical distribution of
the forecast errors cannot be assumed to be normal. Additionally, if the vari-
ance independence assumption cannot be guaranteed, empirical parametric
approaches such as SES and GARCH offer a promising alternative. More-
over, we found that when the GARCH or SES methods yields improved level
of backorders, this improvement indicates the possibility of temporal het-
eroscedasticity in the forecast errors. Under such circumstances, the GARCH
method captures that heterocedasticity and achieves better performance in
terms of the achieved CSL and backorder volume.

The results of the simulation experiments were evaluated for a newsven-
dor stock policy, and the findings were compared with the outcomes obtained
when the newsvendor policy was replaced with an order-up-to-level policy.
The results showed high correlations between the inventory performance met-
rics for the different stock control policies.

We also conducted experiments on real data and analyzed the influence
of the lead time on the i.i.d. assumptions. For shorter lead times, the results
were predominantly influenced by non-normality, and the kernel method pro-
duced better results, particularly for higher target CSLs. As the lead time
increased, conditional heteroscedasticity became dominant, which caused the
empirical parametric methods (GARCH and SES) to produce better results.
GARCH outperformed SES in terms of the achieved CSL, because SES is
simply a particular case of the more general GARCH framework. These
results on real data validate the conclusions obtained from the simulation
exercises.

The managerial implications of this work are as follows. Although the
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theoretical Eq. (4) is widely used because of its simplicity, if the forecasting
model and parameters are known for a certain lead time, we recommend
employing a more precise expression, such as Eq. (5), which is valid for the
particular case of the SES forecasting model. Nevertheless, Eq. (5) does not
consider the case in which the forecasting model parameters are not known
and must be estimated, nor how the cumulative lead time demand forecasts
are computed (using an overlapping or non-overlapping approach).

If sufficient data are available but the forecasting model and its param-
eters cannot be determined (either because the forecasting support system
does not provide such information, because the forecasts have been obtained
using a combination of forecasting methods, or because there are doubts re-
garding whether the forecast errors satisfy the i.i.d. assumptions), then we
suggest the use of empirical approaches. For shorter lead times, the ker-
nel method can effectively capture deviations from normality; for longer lead
times, GARCH models are highly suitable and are a good alternative to SES,
which has been traditionally utilized since the nineteen-sixties [50]. In this
case, GARCH models can be a good choice even when the demand variance
is uncorrelated.

Future research should address some of the limitations of this work. We
analyzed SES and the GARCH(1,1) model for point and volatility forecasts,
respectively. Future works should extend the applied GARCH models to
incorporate exogenous variables that are available in advance, such as price
discounts due to marketing campaigns. With regard to non-parametric meth-
ods, the optimal selection of the kernel function and/or bandwidth also de-
serves further investigation.
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