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ABSTRACT 

The Chinese government has introduced a range of policies with the aim to improve 

freshwater quality to safe levels for both humans and ecosystem function. These policies 

form an important part of sustainable economic development. An important component of 

the improvement in surface water quality is to assess and reduce the risk from organic 

chemicals. The development of reliable predictive tools is therefore required which can be 

used for the purpose of chemical risk assessment and catchment management. The 

catchment scale Geo-referenced Regional Exposure Assessment Tool for European Rivers 

(GREAT-ER) model was developed for this purpose. Its application in China would represent a 

valuable water quality management tool. However, the data requirements for the 

parameterization of GREAT-ER are difficult to meet, especially in countries with limited data 

accessibility such as China. 

A methodology has been developed to facilitate the use of the GREAT-ER model in any 

catchment in China. Key methodological contributions include an approach to locate sewage 

treatment works (STW), estimate population served and to estimate the distribution and 

magnitude of untreated emissions. Low-flow statistics were estimated by means of regional 

regression. The GREAT-ER model was applied to the East river catchment for the chemicals 

Triclosan (TCS), Triclocarban (TCC), Estrone (E1) and 17β-estradiol (E2). As part of the study, 

a sampling campaign was conducted in January 2016 to collect water samples from sites 

within the East river catchment; samples were subsequently analysed to determine the 

concentration of target chemicals. These data, along with data obtained from collaborators 

collected in December 2008, were used to estimate the accuracy of the model. Overall, the 

model performed well for E1 and E2. However, there were some significant errors in the 

model’s estimation for the concentration of TCC and TCS. This included a number of remote 

rural subcatchments, which may be a reflection of the affordability of personal care products 
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to the rural population. These, and other factors, were explored during validation of the 

model. A risk assessment was performed for the four chemicals for the years 2016 and 2020. 

In 2016, the model estimated that TCC would not exceed the predicted no effect 

concentration (PNEC) anywhere in the catchment, however, in 2020 the PNEC was exceeded 

for 3 stretches, each downstream of major STWs. The model estimated that the 

concentrations of E1 and E2  in 2016 would exceed PNEC values in stretches largely confined 

to the heavily urbanised Shenzhen catchment, but also isolated minor stretches located 

downstream of population centres. In 2020, the number of stretches exceeding the PNEC 

threshold reduced for areas with improved wastewater treatment infrastructure, but overall, 

the area that exceeded the PNEC for E1 and E2 was estimated to expand. TCS posed a high 

risk to the catchment in 2016, with the model predicting the PNEC to be exceeded 

throughout much of the catchment. In 2020, it was estimated that the same stretches would 

exceed the PNEC for TCS, but concentrations would be considerably higher overall. A series 

of catchment management scenarios were then utilised, such as increasing STW removal 

efficiency and the expansion of STW connectivity. These infrastructure developments were 

found to be effective for E1 and E2, but not so for TCS. 
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Chapter 1 - Introduction 
1.1. Threats to water quality in China 

The effects of industrialisation and population growth within China have been poorly 

constrained by its environmental policy. Economic growth has led to the increased 

availability of chemicals within China. China’s share of the global chemical market has 

increased from 11.6% in 2005 to 39.9% in 2015 (CEFIC, 2016). In 2015, the sale of chemicals 

in China was greater than the total sales in the European Union (EU) and the North America 

Trade Agreement (NAFTA) countries combined (CEFIC, 2016). 

 

This has led to concerns regarding the environmental impact of chemicals, particularly the 

release of so called “down-the-drain chemicals” to the environment in China.                  

Down-the-drain chemicals are those which are primarily released with domestic wastewater. 

Examples of down-the-drain chemicals include ingredients within personal care products 

(PCPs), pharmaceuticals, caffeine and estrogens.  

Within the EU and other developed regions, these chemicals will likely pass through a 

sewage treatment works (STW). Chemicals are treated by physical, chemical and biological 

processes. Physical processes primarily involve the use of grids and meshes to filter out 

solids from wastewater (Stuetz and Stephenson, 2009). Chemical processes include 

flocculation, which aggregates fine particulars, enabling removal via settlement. Chemical 

removal may also include disinfection processes, such as ultraviolet disinfection, which aims 

to significantly reduce the population of micro-organisms (Stuetz and Stephenson, 2009). 

Biological processes involve the use of micro-organisms to degrade organic matter under 

aerobic and anaerobic conditions (Stuetz and Stephenson, 2009). Furthermore, chemical 

residues will be released to the river network or the ocean. These chemicals may have a 

detrimental effect upon the wildlife within the stream.  

China’s wastewater system is far less effective than the system just described. Many of its 
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settlements lack a STW or are only partially served by a STW. In the case of rural settlements, 

collection of wastewater is difficult; rural population density is low and population within 

villages are scattered (Yu et al., 2015). Due to a lack of sewer piping, toilets often discharge 

directly to water bodies without treatment (Bei et al., 2009). The release of untreated 

wastewater has significant implications for the environment and human health. However, 

diffuse sources may be most significant for some rivers as a result of the release of pesticide 

and fertiliser to water bodies via runoff (Yu et al., 2015).  

In China, drinking water may be taken directly from water bodies in rural areas, and in 

general, drinking water quality is provided significantly greater protection in urban areas in 

comparison to rural areas (Zhang et al., 2015c). During the 11th Five-Year Plan (2006–2010), it 

was estimated that ~34% of the rural population drank from unsafe drinking water (National 

Development and Reform Commission et al., 2007).  

Poor water quality also has significant implications for biodiversity. For example, severe 

algae blooms occurred in 2007 at Taihu Lake in Jiangsu Province, likely as a result of fertiliser, 

pesticides and detergents (Yu et al., 2015); in which~25% Total Nitrogen and ~60% of Total 

Phosphorous detected within Taihu Lake were estimated to be a result of domestic sewage 

(Su et al., 2005). 

The Chinese government has attempted to ease the pressure on China’s water quality with 

significant investment towards upgrading sewage treatment facilities. The initial focus has 

been placed upon sewage treatment within large urban areas, although increasing priority 

has been given to towns. In the “12th Five Year plan”, the Chinese government announced 

that sewage treatment rates reached 77.5% in cities but less than 30% in towns in 2010 (The 

State Council, 2012). In the “13th Five Year plan” it was announced that sewage treatment 

rates in 2020 must reach 95% in cities, >85% in counties, 50% in central and western towns 

and 70% for all other towns (National Development and Reform Commission, 2016). 
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1.2. Environmental management 

There are two approaches used in tandem which may reduce the environmental impact from 

down-the-drain chemicals in China. Firstly, chemical substances that are used within 

products that may enter the environment can be managed. The risk of many of these 

substances to the Chinese environment is unknown. Chemical risk assessment is required in 

order to determine how best to manage chemicals that are manufactured or used in China. 

Secondly, catchments can be better managed by deploying mitigation mechanisms (e.g. STW 

construction)  and stakeholder engagement.  

 

1.2.1.  Chemical management 

Examples of such legislation include the EU’s Registration, Evaluation, and Authorization of 

Chemicals (REACH) regulation which was introduced with the aim to protect human and 

environmental health whilst maintaining the integrity of the chemical industry within the EU 

(European Commission, 2006b). REACH requires manufacturers and importers to register 

information about a relevant substance. This includes a tiered risk assessment which first 

identifies if the substance is potentially persistent, has a high potential to bioaccumulate or 

is toxic (denoted PBT/vPvB substances) (European Commission, 2006b). If the substance is 

identified as PBT/vPvB, an exposure scenario is required which describes how the substance 

is manufactured and/or used during its life cycle and how this substance is or should be 

controlled to ensure that the risk to humans and the environment are minimised (European 

Commission, 2006b). In the case of down-the-drain chemicals this may include the amount 

of substance used, removal by a sewage treatment plant and the capacity of the 

environment (e.g. river or lake volume). The scenario is used to generate a predicted 

environmental concentration (PEC). This is compared to the predicted no effect 

concentration (PNEC), the concentration deemed to be most likely to not lead to adverse 

effects in organisms living in the receiving environment. This is derived based upon the 
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toxicity of the chemical of interest to organisms that may inhabit the aquatic ecosystem 

(European Chemical Agency, 2011). The aquatic toxicity of the substance of interest is 

determined through laboratory based tests. Either the acute or the chronic toxicity may be 

estimated (European Chemical Agency, 2011). Acute toxicity is estimated based upon 

relatively short duration testing, for which toxicity is expressed as the median lethal or effect 

concentrations (L/EC50), which is the concentration at which 50% of organisms are affected 

or when a 50% effect level is measured for a specified endpoint (European Chemical Agency, 

2011). Chronic toxicity is measured using tests that are relatively long in comparison to the 

lifespan of the target organism. Chronic toxicity is expressed as the highest tested 

concentration at which no effect was observed, the No Observed Effect Concentration 

(NOEC) (European Chemical Agency, 2011). Typically toxicity data will be available for a 

relatively small number of species in comparison to the biodiversity of the target ecosystem, 

and therefore the toxicity data is conservatively adjusted to determine a value for PNEC 

(European Chemical Agency, 2011). This can be achieved by one of two approaches. Firstly, 

aquatic toxicity data may be adjusted to environmental conditions using a conservative 

assessment factor. The assessment factor depends upon the type, quantity and quality of 

effect based data provided, which accounts for the level of confidence of the protecting 

capabilities of the derived PNEC (European Chemical Agency, 2011). Alternatively, when 

sufficient chronic toxicity data is available, it may be possible to estimate the lowest 

protective environmental concentration based upon the distribution of the sensitivities of 

species observed (European Chemical Agency, 2011); a species sensitivity distribution (SSD) 

(Posthuma et al., 2001; Kooijman, 1987). This is achieved by describing this distribution 

mathematically, using a minimum of 10 tests on a minimum of 8 different taxonomic groups 

(European Chemical Agency, 2011). 

 

 For cases when the PEC/PNEC ratio is >1, further assessment is required (European Chemical 
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Agency, 2011). Initially, a highly conservative but simplistic model may be used to create and 

simulate an exposure scenario, such as the European Union System for the Evaluation of 

Substances (EUSES) model. If the substance fails this assessment, it can be repeated using a 

higher-tier, more complex but more environmentally realistic model. Alternatively, more 

data can be acquired to provide a new PNEC (European Chemical Agency, 2011). 

 

In 2010, MEP Order 7 was implemented in China, which many consider to be the Chinese 

equivalent of REACH. This legislation requires the registration of chemicals by manufacturers 

and importers with the purpose of controlling environmental pollution. Chemicals are 

classified by risk and  hazardous chemicals which are persistent, bioaccumulative or toxic are 

identified (Wang et al., 2012). Exposure needs to be assessed, in the context of risk control 

measures. However, chemical risk assessment has been regarded as somewhat lacking in 

China, with particular reference to a lack of chemical hazard and exposure assessment tools 

(Wang et al., 2012). 

 

1.2.2. Catchment management and wastewater treatment 

An example of legislation aiming to improve catchment management is the EU’s water 

framework directive (WFD). The WFD focuses upon the wider picture, aiming to ensure good 

ecological and chemical status for all water within the EU. ‘Good ecological status’ is defined 

by individual EU member states based upon the biological community, hydromorphological 

characteristics and physio-chemical characteristics (European Commission, 2000). An 

acceptable biological community should be that which would be expected from conditions of 

minimal anthropogenic impact (European Commission, 2000). Hydromorphological elements 

do not directly contribute to the ecological status of the water body other than to qualify for 

‘high ecological status’. However, hydromorphological elements should be improved or 

preserved to sustain a habitat suitable for a ‘good’ biological community; where 



6 
 

hydromorphological elements include: variation in river depth and width, structure and 

substrate of the river bed and structure of the riparian zone (European Commission, 2000). 

Physio-chemical characteristics include temperature, dissolved oxygen concentration, pH, 

acid neutralising capacity, salinity and nutrients; which must be within a range that may 

sustain a good biological community (European Commission, 2000). Many of these 

parameters are likely to be more or less important for different water bodies with different 

biological communities, which is why the WFD allows member states to define what is ‘good’ 

for the native biological community (European Commission, 2000). Annex VIII of the WFD 

lists types of pollutants that may be of concern (European Commission, 2000):  

1. Organohalogen compounds and substances which may form such compounds in the 

aquatic environment. 

2. Organophosphorus compounds. 

3. Organotin compounds. 

4. Substances and preparations, or the breakdown products of such, which have been 

proved to possess carcinogenic or mutagenic properties or properties which may affect 

steroidogenic, thyroid, reproduction or other endocrine-related functions in or via the 

aquatic environment. 

5. Persistent hydrocarbons and persistent and bioaccumulable organic toxic substances. 

6. Cyanides. 

7. Metals and their compounds. 

8. Arsenic and its compounds. 

9. Biocides and plant protection products. 

10. Materials in suspension. 

11. Substances which contribute to eutrophication (in particular, nitrate and phosphate). 

12. Substances which have an unfavourable influence on the oxygen balance (and can be 

measured using parameters such as biological oxygen demand (BOD), chemical oxygen 
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demand (COD), etc.). 

The WFD requires member states to identify pollutants from this list that are discharged in 

significant quantities and derive environmental quality standards (EQS) for these substances 

for the purpose of achieving good ecological status (European Commission, 2000). EQS are 

similar to PNEC values. They are thresholds at which when exceeded, may harm the 

biological community of the water body. Potential substances of concern are first identified 

then ranked in a prioritisation process. Substances are prioritised based upon the potential 

exposure and their hazardous nature (European Commission, 2000). Substances that are 

prioritised are then assessed to determine the EQS for each substance. Results from effect 

tests are adjusted by a correction factor, which provides an initial EQS value. This is then 

compared to field data and is subject to peer review and public consultation (European 

Commission, 2000). 

‘Good chemical status’, however, is more specific, with European Union wide quality 

standards to meet, based upon a list of priority substances (European Commission, 2000). 

The WFD is also complimented by other directives such as the bathing waters directive 

(European Commission, 2006a), the drinking water directive (European Commission, 1998), 

the nitrates directive (European Commission, 1991a) and the urban waste water treatment 

directive (UWWT) (European Commission, 1991b); all of which require either EU wide or 

member state defined water quality standards. 

 

To achieve ‘good chemical status’, priority substances were initially identified using a similar 

approach to REACH. The WFD also requires that these standards are updated when required. 

In addition, a subset of priority substances were identified as priority hazardous substances 

which are those substances of particular concern (European Commission, 2000). Priority 

substances must be controlled to within acceptable levels, whilst priority hazardous 

substances must not be discharged at all after 2020. 
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Priority chemicals were initially determined using a combined monitoring-based and 

modelling-based priority setting (COMMPS) approach (European Commission, 1999). A set of 

820,000 monitoring data samples were used alongside modelling approaches for substances 

with insufficient monitoring data. In summary the process can be described in 5 steps 

(European Commission, 1999):- 

• Selection of candidate substances based upon various official lists and monitoring 

data. 

• Estimation of exposure based upon monitoring data and the Mackay level I fugacity 

box model(Mackay et al., 1992). This is a simple model that estimates the 

equilibrium partitioning of chemicals between homogenous media; the model 

operates within a closed system, and does not consider degradation of chemical 

substances. 

• Calculation of effects scores based upon laboratory tests. 

• Computation of risk based upon exposure and effects. 

• Determination of priority substances based upon risk-ranking and expert judgement. 

Substances determined by modelling means are only selected if additional data is 

provided such as monitoring data. 

These priority substances must be controlled to levels below the substance’s EQS, which are 

defined for the whole of the EU (European Commission, 2000). 

Many pollutants identified as a result of the WFD are somewhat challenging to manage at 

source. These include naturally occurring estrogens, which may interfere with the hormonal 

systems of organisms (Green et al., 2013). Other substances such as metals, sediment and 

organophosphates are also included as substances that must be controlled. The directive 

requires all relevant substances to be reduced to levels considered manageable by the 

ecosystem (European Commission, 2000). To assess whether progress is being made, 

monitoring is required. 
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The WFD requires river basins, including those that cross international borders, to be 

managed by a designated authority. Each authority must produce river basin management 

plans with the aim of moving toward “good” status (European Commission, 2000). 

In addition, the EU enforces the UWWT, which requires EU member states to collect and 

treat all wastewater from all agglomerations of >2000 population equivalents (pe) (European 

Commission, 1991b). For populations less than 1000 pe, secondary treatment is required 

(e.g. activated sludge or trickling filter treatment), whereas more advanced treatment is 

required for populations above 10000 pe and for areas that are designated to be sensitive. In 

addition the directive enforces member states to pre-authorise all discharges of urban 

wastewater, discharges from the food processing industry and industrial discharges into 

urban wastewater collection systems (European Commission, 1991b). Sewage treatment 

plants and receiving waters must be monitored for compliance to water quality standards, 

with reports of compliance released to the public. 

 

In 2015, China announced the 10-point water pollution action plan (TPWP). This plan 

describes the steps it will take in order to significantly improve the quality of water by 2050 

(State council, 2015). The 10 action points are as follows: 

“1) The discharge of pollutants will be controlled and emission reduction measures will aim 

to tackle pollution caused by industries, urban living, agriculture and the rural sector, and 

ships and ports. 

2) Economic restructuring and upgrading will be further boosted. Industrial water and 

reclaimed water and seawater will be used to promote cyclic development. 

3) Measures will aim to continue saving and protecting water resources. A strict 

management system of water resources will be implemented so as to control the overall use 

of water, improve water-use efficiency, and protect the ecological flows of key rivers. 

4) Scientific and technological support will be further improved. Advanced technologies will 
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be promoted and fundamental research is set to be strengthened. The environmental 

protection industry will be regulated and the authorities will accelerate the development of 

the environmental protection service industry. 

5) Market will play a bigger role. The authorities will make efforts to step up water price 

reform, improve taxation policies, facilitate diversified investment and establish an incentive 

mechanism that promotes water environment treatment. 

6) Relevant law enforcement and supervision will be more strict, and environmental 

violations and illegal construction projects will be severely punished. 

7) The management of water environment will be further strengthened. The authorities will 

strictly control the amount of pollutants and various environmental risks, and give 

authorization, whenever appropriate, to discharge pollutants. 

8) The authorities will also make efforts to ensure the safety of aquatic ecosystem, including 

ensuring the safety of drinking water sources, treating underground water pollution and 

pollution in major river basins, and strengthening the protection of water bodies and the 

ocean environment. By the end of 2017, foul water in urban built-up areas will be basically 

eliminated. 

9) The duties of all parties will be clarified and implemented. Local governments should be 

more responsible for the protection of the water environment and pollutant discharge units 

should be made accountable. The central government will check the implementation of the 

action plan in different basins, regions and sea areas every year. 

10) Public participation and community supervision will be improved, and the government 

will regularly publish a list of cities and provinces that have the best and worst water 

environment. ” (State council, 2015). 

The plan institutes water quality targets for 2020 and 2030. By 2020, 70% of water within 

China’s 7 major catchments should reach an acceptable standard (water classes I-III) and this 

figure reaches 75% in 2030 (Han et al., 2016). 
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 Measures to achieve the goals of the TPWP include requirements for regions that fail to 

meet water quality standards to produce specific catchment plans including deadlines for 

improvement. This must be subsequently published and made available to the public (Li, 

2015). This can be considered to be analogous to the WFD river basin catchment plans. 

 

1.3. Holistic approach 

With reliable monitoring and modelling, effective decisions are enabled with the intention of 

improving the ecological status of water. With regards to China, tailored solutions are 

required to meet the challenges of China’s complex, dynamic and uncertain nature. Chemical 

substances may be released from both treated and untreated sources. Most untreated 

sources are of an unknown location, and therefore could be considered diffuse rather than 

point sources. There is therefore uncertainty surrounding the relative contribution of 

untreated sources to chemical exposure. There is also a need to determine how exposure 

may change in the future. Sewage treatment capabilities are improving rapidly in China, 

increasing the removal of chemical substances before release to the environment. This is a 

counter to continued population change in China and increasing availability of products 

containing chemicals of potential concern. 

A holistic solution is required to effectively address this issue which has the capability to 

assess and manage risk at the river catchment scale. Water quality is likely to vary 

significantly within each catchment; factors such as the locations of point sources and the 

spatial variation of dilution strongly influence the spatial distribution of water quality 

(Fewtrell and Bartram, 2001). An appreciation of the locations and possible causes of water 

quality “hotspots” open up opportunities for improved catchment management. Therefore, 

an approach which is able to provide a spatially explicit account of chemical risk within river 

catchments will be used.  In addition, environmental conditions such as river discharge and 
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sewage treatment are likely to vary significantly over time. In order to fully appreciate 

chemical risk within a catchment, it is important to take into account this variability. 

 

1.4. Monitoring to quantify chemical exposure 

The use of monitoring data is essential, since it provides a snapshot of a chemical’s exposure 

within a river. However, there are limitations to sampling. Each sample will only represent a 

single point in space and time (Johnson et al., 2008b). Chemical concentrations could 

fluctuate significantly within space and time due to factors such as the variation of flow or 

wastewater discharge. Careful planning regarding where to take a sample is necessary. For 

example, wastewater that enters a river will not become well mixed immediately 

downstream of a discharge point (Johnson et al., 2008b), and therefore sampling should be 

considered further downstream. It is also important to consider when to sample. For 

example, there is significant diurnal variation in domestic water demand, and hence 

variation in the release of wastewater (Almeida et al., 1999). Seasonal variation must also be 

considered, particularly in lake systems. Seasonality has a significant influence upon water 

mixing and thermal stratification in lake systems, which in turn, influences the vertical 

distribution of water quality (Martin and McCutcheon, 1998). For instance, the concentration 

of a range of pharmaceuticals was reported fora vertical concentration profile in Lake 

Greifensee, Switzerland (Tixier et al., 2003). The measurements suggested significant 

variation between the concentration and variability within the hypolimnion (the lower layer 

of a stratified lake), and the epilimnion (the upper layer of a stratified lake). 

There are also limitations related to the chemical analysis. Firstly, it is important to note that 

these measurements aren’t necessarily accurate, since errors in sampling, extraction and 

analysis are not uncommon (Johnson et al., 2008b). Sub-samples, analysed by different 

laboratories have, in some cases, reported significantly different concentrations. For 
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example, in an interlaboratory comparison reported by van Leeuwen et al. (2006), a sample 

containing canal water was assigned 19.4 ng/l and further, was divided and sent to 38 

different laboratories for analysis. Measurements varied between 3.4-190 ng/l, a significant 

deviation. Most samples were quantified using liquid chromatography−mass spectrometry 

(LC−MS). 

 

Secondly, chemicals may be present within waters at levels below the method detection 

limit, which may be critical if the relevant chemical’s PNEC/EQS is low (Johnson et al., 

2008b). 

 

1.5. Modelling as a complimentary tool 

When using an appropriate model structure many of the issues addressed above can be 

avoided. Models can make predictions in time and space, and detection limits are non-

existent (Johnson et al., 2008b). In addition, one of the greatest strengths of a model is its 

ability to perform ‘What if?’ scenarios. This may include an assessment of the benefits of 

upgrading a STW or to estimate the effect of population change upon future emissions. 

However modelling also has its limitations. It may be impractical to model certain systems, 

perhaps due to a lack of data or when the system is poorly understood or too complicated to 

represent (Wainwright and Mulligan, 2013; Johnson et al., 2008b). In addition, detailed 

information regarding the sources of the modelled chemical and how it may act within the 

environment must be made available (Johnson et al., 2008b). Modelling emerging 

contaminants, chemicals that have recently appeared (Sauvé and Desrosiers, 2014), may be 

extremely challenging, as there may be little information available to describe the properties 

of these chemicals and how they act within the environment. 

   

1.6. Combining both techniques 
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Both modelling and monitoring have limitations. However they often can be used to 

complement the other. Whereas modelling requires a sound understanding of the system 

(Johnson et al., 2008b), successful monitoring does not normally require detailed 

information about the system. Whilst sampling’s limitations can be acknowledged, it is 

effectively a “ground truth”. If modelling and monitoring are used side-by-side it is possible 

to gain a better understanding of the current state of the system. 

 

Traditionally, monitoring data can be used to “validate” a model. It is important to 

appreciate this is not the true definition of validation (Oreskes et al., 1994), but instead the 

validation process is used to provide some indication of the model’s reliability. A model is a 

simplified representation of the modeller’s knowledge of the system. Attempting to emulate 

monitoring results with a model is, therefore, an attempt to try and assess his/her 

knowledge of the system and/or the quality of the data used.  

 

In addition to validation, monitoring data can be used to provide additional data to either 

input directly into the model or to provide information that may allow the modeller to better 

understand the system or other datasets. For example the presence of caffeine may be an 

indicator of wastewater input (Buerge et al., 2003), this information may aid the modeller to 

improve his/her model or as an aid during the validation process. 

Furthermore, a combined approach will be used. A model can be used to generate exposure 

scenarios, and provide an estimation of the chemical concentration within a given 

catchment. This may be supported by measured concentrations from a catchment wide 

sampling campaign. 

 

1.7. Model scenarios 

Once a model has been calibrated and validated using monitoring data, scenarios can be 
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designed which represent future conditions or to simulate the effect of different 

management strategies. An evaluation of future conditions is useful, as it enables an 

assessment of potential risks in the future. This may be used for the purpose of decision 

making, for example, for a chemical which is deemed to be of no significant risk in the 

present, may pose a risk in the future (e.g. as a result of increased usage), it may be 

reasonable to consider restrictions upon that chemical. Also, for specific regions/catchments 

that are at risk from an array of different chemicals, mitigation options such as improved 

sewage treatment may be suggested as potential solutions. These may be tested by 

including these conditions as model scenarios, with the aim of reducing chemical risk to 

acceptable levels. 

 

1.8. Modelling challenges 

A model capable of simulating a realistic chemical exposure scenario for chemicals released 

to water will require a considerable amount of data. This may include: chemical emission 

rates, physio-chemical properties, population data and river topology. This requirement for 

data is inversely related to scale, with more detail required about elements and processes 

within the catchment at the small-scale such as hydrological data and STW locations and 

properties. However, in comparison to the EU, data availability is relatively poor in China. 

Despite development, China lacks the same level of resources to acquire and store data. 

Data availability is also partially hindered by the nature of data administration in China (Shen 

et al., 2015; Hsu et al., 2012; Chen et al., 2015; Mackay et al., 1992). Data is often held by 

many different organisations, all with different data policies and there are many who are 

unwilling to share data.  

China hosts some of the largest rivers in the world and has very large, dense and 

heterogeneous urban areas. This presents the difficulty of environmental complexity. 
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Modelling these environments requires additional information about the environments in 

question, which compounds the issue with data availability. The primary concern is that of 

untreated discharges.. As previously discussed, a significant fraction of the Chinese 

population is not served by a STW, and of this untreated wastewater, an unknown fraction 

will be released to the waterways. There is uncertainty regarding the location of untreated 

discharge points, and the quantity of wastewater that is released from each point. It is 

therefore important that a model structure is selected that can address the challenge of 

poor data availability yet can also represent the complexity of a Chinese catchment.  

Furthermore, there are two main elements that need to be addressed: 1) accounting for 

untreated discharges and 2) addressing lack of data availability. There is also the need for 

some degree of efficiency in model development and operation. A methodology that is 

overly time consuming presents barriers to transferability and adoption. A degree of 

pragmatism is required to move towards an approach where it is possible to parametrise a 

catchment model for any catchment in China without great difficulty. Otherwise, the use of 

higher-tier risk assessment models are likely to be of limited use within China. 

 

1.9. Model selection 

The primary goal for model selection here is to choose a model that is capable of  realistic 

estimation of the PEC for down-the-drain-chemicals at the catchment scale. This requires the 

removal of a chemical within a STW and in-stream, which is important for all but the most 

persistent chemicals (Keller, 2006). The model should also be able to account for spatial and 

temporal variation. Chemical input, chemical load and dilution varies significantly, spatially 

and temporally, within a catchment and therefore should be considered in order to provide a 

realistic estimate (Keller, 2006). Finally, model selection must also consider the data 
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requirements of the model, which should be balanced against the ability to preserve realism 

and to provide reliable outputs.  

There are a variety of different model structures that could be used. For chemical risk assessment, multimedia 

models are most commonly used. These models consider the fate and partitioning of chemicals between 

different media such as soil, water, air, sediment and biota. Simple multimedia models are available with basic 

data requirements, with the capability to model chemicals up to the global extent. Many multimedia models are 

based upon the Mackay fugacity models (Mackay et al., 1992; Mackay et al., 1996). These models increase in 

complexity between model levels I to IV. Level I is a closed system at steady state. The system is assumed to be at 

equilibrium and does not consider chemical losses. Fugacity and fugacity capacity govern chemical partitioning 

(Mackay et al., 1992). Fugacity describes the potential of a chemical to escape from one media and move to 

another, whilst fugacity capacity describes the ability of a phase to receive the chemical. Fugacity is determined 

below by (Mackay et al., 1992; Mackay et al., 1996): 

𝐅 =
𝐌

∑𝐕(𝐢) ∗ 𝐙(𝐈)
 

(1) 

where: 

F – fugacity (Pa) 

M – total amount of chemical (mol) 

V(i) – volume of medium i (m3) 

Z(i) – fugacity capacity for the chemical in medium i (mol/m3 Pa). 

This can also be rewritten to describe the molar concentration, C (mol/m3) as shown by 

Equation 2:       

𝐂 = 𝐙 ∗ 𝐅 (2) 
    

At level II, there is consideration of losses as a result of advection and degradation reactions. 

The system is considered to be an open system at steady state. Degradation is determined 

based upon experimental studies, whilst default values are available for advection. At level 

III, the system is considered not to be at equilibrium. Fugacity rates may differ between 

media and further, intermedia transportation rates are calculated (Mackay et al., 1996; 

Mackay et al., 1992). Finally, at level IV the model assumes the same conditions as a level III 



18 
 

model, but differs in that it is at an unsteady state (Mackay et al., 1996). The Mackay models 

form the basis of North American models: Chem-CAN (Webster et al., 2004; Woodfine et al., 

2002) and BETR North America (MacLeod et al., 2008).  

The most commonly used model for EU risk assessment is EUSES,  a framework consisting of 

multiple models for the purpose of assessing chemical exposure in multiple medias 

(European Commission, 2003). Within EUSES, estimation of the environmental distribution of 

a chemical takes into consideration: chemical partitioning, chemical degradation, removal in 

STWs, regional/continental distribution and local environmental distribution. The local scale 

considers the risk of one large point source (European Commission, 2003).  

However, these multimedia models are generic tools, with no consideration for site specific 

information. These tools are viable as a screening tool, but cannot be used for site-specific 

assessment, with limited use as a catchment management tool (Keller, 2006).  

 

A more appropriate choice would be a catchment scale, water quality model which may be 

used to provide an estimate of flow and to route the relevant chemical through the river 

network. The designed use and complexity of these models varies significantly. Models were 

reviewed below, with regards to the modelling selection aims. 

 

1.10. Catchment scale water quality models 

1.10.1. The SWAT model 

The Soil and Water Assessment Tool (SWAT) is a semi-distributed rainfall-runoff model 

(Neitsch et al., 2011), designed as a complete water management tool with the capabilities 

of simulating a wide scope of different management scenarios. This includes agricultural 

practices such as crop rotation, different tillage and rearing farm animals. SWAT may also be 

used to simulate the effect of best management practices upon flow and water quality. The 
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model can also account for point sources such as STWs, for which the user must provide the 

daily loadings. Watershed processes are described in detail, requiring a large number of 

input parameters (Arnold et al., 2012). The model may require hundreds if not thousands of 

parameters, depending upon the functions used. The model can potentially be used in 

ungauged catchments due it being “Physically-based”, and databases with default 

parameters are available to provide an initial estimate (Beven, 2012b). However, these 

values may not be appropriate for the place or working scale. Therefore, most SWAT 

applications require some degree of calibration, usually calibrating against observed flow 

data. Automatic calibration is possible but there is a danger of overparameterisation and 

overfitting of the hydrograph due to the great number of parameters available to calibrate 

(Beven, 2012b). Over-parameterisation, from a hydrological perspective, concerns situations 

when the amount of information available from observations (e.g. a hydrograph) is 

insufficient in order to calibrate the required number of parameters (Jakeman and 

Hornberger, 1993). Overfitting relates to models which include more parameters than are 

necessary and/or use a more complicated approach than necessary (Hawkins, 2004). This 

added complexity may lead to a similar or worse performance in comparison to a more 

simplistic model; the use of unnecessary predictors may add random noise to the predicted 

values. In addition, measurement of unnecessary parameters is inefficient and increases the 

risk of additional errors (Hawkins, 2004). Manual calibration can take place by changing a 

few sensitive variables (Beven, 2012b). However, again this may be challenging when faced 

with hundreds of parameters. Furthermore, it is uncertain whether a calibrated model will 

have any meaningful predictions (Beven, 2012b). 

 

1.10.2. The GWAVA model 
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The Global Water Availability Assessment (GWAVA) model is primarily used to determine the 

availability of water resources at the regional to continental scale. The model is grid based 

which can be scaled depending upon the spatial extent and data availability. Flow is 

calculated based upon the Probability Distributed Moisture (PDM) model (Moore, 1985). 

Each model defines the distribution of different storage capacities. These storage elements 

fill during storm events and are released as runoff when the storage capacity is breached. 

Between storms the stores will slowly release, representing the recession period and 

baseflow. This model type is simple and is designed to be easily calibrated using automatic 

routines (Beven, 2012b). The PDM model has shown to provide realistic estimates of flows in 

a variety of different regions (Meigh et al., 1999).  

The GWAVA model contains a PDM model in every grid cell. It uses physical characteristics 

such as soil type and land cover, which correlate well with the limited set of parameters 

required by PDM (Meigh et al., 1999). Each cell generates runoff which routes to the next 

downstream cell. This is then refined to incorporate artificial influences such as water 

abstraction and reservoirs (Meigh et al., 1999). The model has been extended to include a 

water quality module capable of modelling standard water quality indicators such as 

biological oxygen demand (BOD) (Dumont et al., 2012), but also organic chemicals such as 

estrogens (Liu et al., 2015). Point sources such as wastewater inputs can be included, but the 

emissions must be pre-determined and assigned to a grid square. Therefore if multiple 

emissions are within one grid square, they must be lumped (Liu et al., 2015). Removal may 

occur both in-stream and via abstraction. The model is significantly less complex than SWAT 

and most of the input parameters are readily available. The model has been used to simulate 

estrone (E1) and 17β-estradiol (E2) within the Yellow River catchment (Liu et al., 2015). The 

modelled annual hydrograph was comparable with observed data and estimated E1 

concentrations were similar to monitoring data (The simulation of E2 was not discussed). 
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However, it was not possible to simulate monthly flow as there was insufficient information 

regarding the seasonal effects of reservoirs on flow. 

 

1.10.3. SIMCAT 

The SIMulation of CATchments model (SIMCAT) was originally developed by the UK water 

company, Anglian water (Warn, 1986). The model was developed for the purpose of 

determining costed, appropriate measures in order to improve water quality to acceptable 

standards within English catchments (Warn, 2010; Warn, 1986). The model has since been 

adopted by the Environment Agency (Cox, 2003) and has received numerous updates. The 

model has now been developed for all river basin districts in England and Wales (Crabtree et 

al., 2009), and is now primarily used for the purpose of complying with the WFD (Hankin et 

al., 2016).  

SIMCAT is a one-dimensional, steady-state stochastic-deterministic model (Cox, 2003). The 

model is composed of river reaches (maximum of 600) and features such as STWs and 

abstraction points (maximum of 1400). A mass balance Monte-Carlo approach (Warn and 

Brew, 1980) is used to model flow and contaminants, and outputs are provided as 

distributions (Cox, 2003); with a maximum of 2400 “shots”. The model may be defined as a 

Continually Stirred Tank Reactors In Series (CSTRS) model, which assumes perfect and 

instantaneous mixing of contaminants (Cox, 2003). Contaminants are transported at the 

same velocity as the water. Flow and contaminant mass balances are described below:  

Q0 = Qi + Qt + Qe − Qa (3) 

 

Co =
(QiCi + QtCt + QeCe)

Qr + Qt + Qe
 

 

(4) 

where: 
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Q – flow (m3/s) 

C – contaminant concentration (mg/L) 

Subscripts – o, i, t, e and a refer to: input, tributary, effluent discharge and abstraction 

respectively. 

Contaminants may be degraded by first-order decay, which is described by Equation 5 and 6: 

dC

dt
=  −kC, dt =

dx

v
 

(5) 

Cx = Co ∗ e−k∗
x
v (6) 

where: 

Cx – contaminant concentration at the end of the stretch (mg/l) 

k – decay constant (h-1) 

x – distance (m) 

v – velocity (m/s). 

Velocity is calculated based upon an empirical relationship between velocity and discharge 

described by Equation 7 below (Cox, 2003): 

v = aQb 

where: 

Q – flow (m3/s) 

a and b – Constants determined by calibration. 

(7) 

 

Flow and water quality data must be provided for the reaches of the main river, tributaries, 

wastewater discharges and abstraction points (Cox, 2003). These may be input as 
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distributions, and data regarding the seasonal distribution of flow may also be included 

(monthly means and standard deviations). Flow and quality observations may be used to 

calibrate the model manually, or the data may be used to auto-calibrate flow and water 

quality (Cox, 2003). Auto-calibration of river discharge is achieved by applying additional 

flows as a function of river length until simulated flows match observations. During water 

quality auto-calibration, required adjustments are made to water quality parameters and 

velocity in order to result in an agreement between measured and modelled data (Cox, 

2003; Kannel et al., 2011).  

As a case study, the SIMCAT model created for the river Ribble catchment (UK) is discussed 

here (Crabtree et al., 2009). The purpose of the study was to try to estimate the proportion 

of pollutant loads from point and diffuse sources within the catchment, with a focus on 

phosphate, BOD and ammonia. To achieve this, the following data were estimated: 

agricultural diffuse loads, urban runoff loads, wastewater intermittent discharge data and 

STW data. However, no agricultural diffuse load estimates were available for BOD and 

ammonia (Crabtree et al., 2009). Following calibration it was estimated that STWs 

contributed 88%, 29% and 67% of the phosphate, BOD and ammonia load respectively. For 

phosphate, management scenarios targeting improved wastewater infrastructure were 

applied to the model (Crabtree et al., 2009). Results from these scenarios suggested that 

157.1 km of the river would still fail to comply with the WFD when all STWs operate under 

the UK Environment Agency’s best available technology (BAT) policy, with consents limited 

to 1mg/l for STWs with PE > 1000 and 2mg/l for STWs with PE < 1000 (Crabtree et al., 2009). 

However, the model did not undergo validation and therefore it is difficult to determine how 

viable the model’s estimates were. 

1.10.4. TOMCAT 
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The model Temporal/Overall Model for CATchment (TOMCAT), was developed by the UK 

water company, Thames Water for the purpose of reviewing effluent quality standards at 

Thames Water sites in order to meet water quality objectives for receiving rivers (Bowden 

and Brown, 1984). TOMCAT is conceptually similar to SIMCAT (Cox, 2003), with a few 

significant differences. TOMCAT is temporally more complex than SIMCAT. A number of 

seasons may be defined, each with a user-defined number of months (Keller, 2006). Data 

may also be input to TOMCAT for each season (Cox, 2003), whilst SIMCAT only allows for 

monthly data to be input. 

TOMCAT defines two temporal indices: a monthly index and an hour-of-day index (Cox, 

2003). This defines the seasonal and diurnal effects for inclusion in each Monte Carlo shot. 

During the simulation, temporal indices are allocated in turn until all 12 months – 24 hour 

combinations have been simulated.  

This allow model outputs to be provided for user defined “time windows” (Cox, 2003). 

However, TOMCAT does not include a post-processor to visualise results (Keller, 2006); 

instead results are presented as text files. 

Flow in the main river is defined to accumulate downstream as a function of river length 

(Cox, 2003). Velocity is calculated based upon the mean cross-sectional area for the stretch. 

Data relating to flow and water quality are defined in the first reach of the main river. 

Excluding the main river, data described in Table 1 must be defined for every stretch (Keller, 

2006), although flow in these stretches may also be correlated with flow in the main river or 

other elements with the catchment (e.g. a STW discharge). 

Data required Unit 

Reach length km 

Reach mean cross-sectional area m2 

Reach mean depth m 

BOD decay parameter day-1 

Ultimate BOD concentration (minimum) mg/l 
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Ammonia decay parameter day-1 

Ultimate ammonia concentration (minimum) mg/l 

Oxygen exchange parameter day-1 

Catchment ID (used for estimating the diffuse catchment runoff) - 

Scale factor for runoff (proportion of the total runoff for the catchment which is 
received by the reach, per km) 

- 

Table 1 - Parameters required for all river stretches in TOMCAT, excluding the main river 

Point sources may be assigned to reaches, however there is no consideration for STW 

removal (Keller, 2006), and therefore the concentration within effluent must be pre-

calculated. TOMCAT may also be able to simulate the effects of storm water overflow 

events. When flow exceeds a given threshold, effluent is diverted to an alternative outlet 

(Cox, 2003).  

TOMCAT is incorporated into WaterWare (Fedra and Jamieson, 1996; Jamieson and Fedra, 

1996a; Jamieson and Fedra, 1996b). WaterWare is a decision support system for integrated 

river catchment management. The model utilises TOMCAT for its surface-water quality 

element (Fedra and Jamieson, 1996). WaterWare has been utilised in catchments such as the 

river Thames (UK), and the Rio Lerma catchment (Mexico) (Jamieson and Fedra, 1996b). 

 

1.10.5. The GREAT-ER model 

The Geo-referenced Regional Exposure Assessment Tool for European Rivers (GREAT-ER) 

model is a catchment-scale GIS model, initially published by Feijtel et al. (1997). The model 

estimates the exposure to a chosen chemical within the vector river network.  

The model was originally designed as a higher-tier chemical risk assessment tool for EU risk 

assessments, prior to REACH (Feijtel et al., 1997). Higher-tier risk assessment tools were 

required to provide more realistic exposure scenarios. Without such, chemical risk 

assessment relied upon highly conservative generic models. 
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Figure 1 - GREAT-ER v3 GUI.  

 

The model is designed to be used by those with a less technical background. GREAT-ER v3 is 

operated using a graphical user interface (GUI) within the GIS framework, Thuban (Figure 1). 

Catchments are generated outside of the model, and are then imported. Once imported, the 

task of running a simulation is simple and minimum data requirements are relatively low. 

GREAT-ER therefore provides value for catchment managers and chemical risk assessors.  

Chemical emissions may be from point or diffuse sources (using the GREAT-ER v3 sediment 

extension) and are calculated on a per capita emission basis (Wagner and Koormann, 2011). 

Removal of the contaminant can take place prior to emission and in-stream. The complexity 

of the method used to calculate removal may be adjusted depending upon data availability. 

The lowest tier methodology applies a simple 1st-order removal rate  for in-stream removal 

and a static or distributed removal ratio for sewage treatment removal. When applying 

simple removal options to an existing catchment model, in the absence of diffuse pollution, 

data required is limited to per capita consumption of the substance of interest and an 

estimation of the sewage treatment and in-stream removal rates. Removal rates can be 

calculated using data from the literature. In the absence of data within the literature, 
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chemical consumption may need to be estimated based upon market sales data (e.g. Zhu et 

al., 2016), or by back-calculation based upon measured concentrations within STW 

influent/effluent (e.g. Liu et al., 2015). 

The GREAT-ER model determines concentrations using a stochastic-deterministic approach, 

and uses a Monte-Carlo method during simulation (Wagner and Koormann, 2011), which 

uses a method of combining distributions (Warn and Brew, 1980). All outputs and a 

significant number of inputs are distributions rather than single values (Wagner and 

Koormann, 2011). This can be used to account for uncertainty and natural variation in the 

data. This may also enable the worse-case scenario to be determined in addition to the 

concentration under average conditions. 

To model a catchment not currently available for GREAT-ER, this must be first developed 

outside of the software. Riverlines are required, or when not available may be generated 

from a digital elevation model (DEM) or digitised from satellite imagery. Riverlines should be 

composed of multiple lines, known as stretches. Each stretch must contain information 

regarding the mean flow and the flow exceeded 95% of the time. Flow statistics may be 

achieved by various means (see section 2.5). The model also requires the location of all STWs 

within the catchment, with details of the population served and the type of sewage 

treatment.  

Examples of previous usage 

The GREAT-ER model has been used for a number of different substances and purposes. The 

model’s use has been largely restricted to European catchments. However, the conceptual 

nature of GREAT-ER does not limit its use to Europe and there is considerable potential to 

use it elsewhere. The model has been used in many different catchments of varying size and 

nature. 
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The model is not limited to the boundaries of a single catchment. The LF2000-WQ model 

employs the lower-tier GREAT-ER model structure with additional functionality, most 

crucially the utilisation of UK low flow and STW data. This has allowed for the creation of a 

UK-wide model which was used to estimate the concentration of estrogens (Williams et al., 

2009). 

The initial iterations of the model estimated the exposure of household cleaning product 

ingredients such as Boron and Linear Alkylbenzenesulfonate (LAS) (Schröder et al., 2002; 

Schulze and Matthies, 2001; Price et al., 2009). GREAT-ER (and its iterative products) has also 

been used to investigate the fate of pharmaceuticals (Johnson et al., 2008a; Schowanek and 

Webb, 2002), personal care products ingredients (Wind et al., 2004; Price et al., 2010) and 

estrogens (Sumpter et al., 2006; Williams et al., 2012). 

The model can also be used outside of its original scope. For instance, in a study described by 

Hüffmeyer et al. (2009) who successfully modelled the concentration of Zinc from both point 

and urban non-point sources, with similarity between observed and modelled 

concentrations. Removal in STWs was determined based upon influent and effluent data 

from all STWs within the catchment (Ruhrverband, 2005). In-stream removal was assumed to 

be entirely due to sedimentation, using a soil-water partition coefficient (Kd) of 84000 L kg-1.  

The GREAT-ER model is also viable to model any standard water quality parameters which 

can be reasonably removed by 1st-order processes such as BOD. 

The GREAT-ER model has been successfully parameterised to simulate nonylphenol and 

nonylphenol ethoxylates within the Wenyu catchment, an urban catchment in North-East 

Beijing (Zhang et al., 2015a). The catchment was well developed, with an effective sewage 

collection system. The authors assumed that the majority of wastewater was treated by the 

11 STWs within the catchment and, therefore, did not consider untreated discharge. Data 

availability for the catchment was reasonable; including results of a SWAT model, providing 
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estimates of flow for the catchment. The study suggested that the GREAT-ER model may be 

used in China. However, the authors stated that the catchment was chosen due to the 

relatively high data availability and the near complete STW service for the catchment. It is 

important to be able to model catchments that are more complex and with limited data 

availability in order to provide a more realistic representation of the average Chinese river 

environment.  

 

1.10.6. Conclusion 

The SWAT model is far too complicated for the application required and the number of 

parameters is of some concern. The data required would likely be accessible. However, 

parameterisation and calibration is likely to be complex, with dangers of over-

parameterisation. 

The GWAVA model is a more appropriate model structure, with significantly less complexity. 

The model has already been demonstrated to be capable of modelling large Chinese 

catchments, such as the Yellow River. 

SIMCAT is a simple but functional model. However, the model’s simplicity is relatively 

restrictive. The model allows for chemical removal by first-order reaction rate only, and 

there is no consideration for more complex processes or sediment partitioning. Furthermore, 

the model is limited in the number of stretches and features, which may be restrictive for 

large catchments. 

TOMCAT, as described earlier, is conceptually similar to SIMCAT. One significant advantage 

over SIMCAT is its temporal complexity, which allows the model to account for seasonality 

within the catchment. However, its approach to estimating velocity is overly simplistic, which 

is based upon the cross-sectional area of the river. In addition, it has a significant 



30 
 

disadvantage in that the model does not take into account removal within STWs, which must 

be pre-calculated. 

The GREAT-ER model has the key advantages of flexibility regarding: 1) data requirements, 

allowing for more complexity when data allows and 2) the methodology, with the freedom 

to utilise the best method to determine removal rates and flow statistics. This flexibility is 

important. For example, it is possible to simulate flow in a model such as GWAVA and SWAT, 

for use in GREAT-ER (Zhang et al., 2015a); whereas the water quality modules of SWAT and 

GWAVA are inseparable from their flow modules. It also provides a stochastic shell that takes 

into account the uncertainty and variability that surrounds many of the datasets. Finally, it 

has been shown to provide reliable results in comparison to monitoring data, with success 

within Europe and China. As a result, the GREAT-ER model was selected for this project. 

 

1.11. Barriers to overcome for Chinese catchments 

GREAT-ER is designed for use in European catchments. Furthermore, there are a number of 

problems that must be overcome in order to model Chinese catchments. Largely, this is an 

issue of the construction of the catchment prior to upload to GREAT-ER. Data availability for 

riverlines, flow, STW location and attributes, and diffuse emissions is limited and/or of poor 

quality. 

Riverlines may be generated from a DEM which is readily available. However, at the small 

scale, the positional accuracy of the riverlines is critical as this will affect all other elements 

of catchment construction. 

Flow may be calculated based upon a flow duration curve, which may be determined for 

individual flow gauging stations with long-term flow records. This may be estimated for the 

entire catchment by using spatially explicit environmental data that may describe the natural 
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variability of flow (e.g. geological data, topography, land cover data etc.) and relate this to 

relevant flow indices using an appropriate model. This is discussed in more detail in section 

2.5. Long-term flow data is difficult to obtain and/or may only be available at the monthly or 

annual resolution. Data on artificial influences is desirable, although this is challenging to 

obtain. Most critical is the availability of data that may describe the influence of medium and 

large reservoirs, which may have a large impact upon flow. However, the exact method used 

for flow calculation is up to the user’s discretion. 

STW data is perhaps the most challenging to obtain. A list of STWs in China up to 2014 is 

available from the Chinese Ministry of Environmental Protection, although this may not 

explicitly define the locations of each STW and is not completely exhaustive. This does not 

include data on population served and this therefore must be obtained by other means. 

Finally, untreated wastewater emissions must be calculated. These data must be estimated, 

based largely upon population density distribution. 

1.12. Chemicals selected for study 

Chemicals were selected based primarily upon data availability. Two chemicals found in 

personal care products were selected: Triclosan (TCS) and Triclocarban (TCC). In addition, 

two natural estrogens were selected: Estrone (E1) and 17β-estradiol (E2). Chemical 

properties are displayed in Table 2, whilst chemical structures are presented below in Figure 

2. 
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A 

 

B 

 

C 

 

D 

 

Figure 2 - Chemical structures for studied chemicals, where: A- triclosan, B - triclocarban, C - estrone,                       

D - 17β-estradiol. 

All chemicals studied are primarily from domestic use or human excretion, and are released 

down-the-drain. However, these two groups are likely to have significantly different spatial 

release patterns. Natural estrogens will be released wherever there is population. However, 

personal care products may not be used in rural areas to the same extent as in urban areas. 

There is a large socio-economic gap between rural and urban areas, with implications for 

chemical emissions (Hodges et al., 2012; Xie and Zhou, 2014). 
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  TCS TCC E1 E2 

CAS number 3380-34-5 101-20-2 53-16-7 50-28-2 

Chemical formula C12H7Cl3O2 C13H9Cl3N2O C18H22O2 C18H24O2 

Molar mass (g mol-

1) 
289.536 315.578 270.372 272.388 

Boiling point (°C) 373.62 c 434.57 c 391.87 c 395.47 c 

Melting point (°C) 136.79 c 182.04 c 153.08 c 152.43 c 

Vapor pressure (Pa) 1.15 × 10-3 c 1.57 × 10-4 c  253 c 3.35X10-5 c 

Henry’s law 
constant 
(Pa m3 mol-1) 

2.1 × 10-8 d 4.5 × 10-11 d 3.8 × 10-10 e 3.6 × 10-11 e 

Koc (L kg-1) 3467-15892 f 12022-71687 f 212-13183 h 457-7244 g 

Kow*  57544 c 79433 c 1349 c 10233 c 

Water solubility 
(mg L-1 at 25°C) 

12 b 2.37X10-3
 
c 1.30 a 1.51 a 

Table 2 - Physio-chemical properties for studied chemicals 

* octanol/water partition coefficient 

a - Shareef et al. (2006) 

b - Pointurier and Volz (1990) 

c - US EPA (2011) 

d - Meylan and Howard (1991) 

e - Mansell and Drewes (2004) 

f- Wu et al. (2009); Barron et al. (2009) 

g - Khanal et al. (2006); Yu et al. (2004) 

h - Holthaus et al. (2002); Yu et al. (2004) 

 

1.12.1. Triclosan and Triclocarban 

Uses 

TCS and TCC have similar uses and physiochemical properties. They are primarily used to kill 

or hinder the growth of microorganisms (Halden, 2014; Bhargava and Leonard, 1996). Both 

are most commonly found in personal care products such as cosmetics, soaps, hand gels and 

shampoo; with TCC most commonly used within bar soap (Halden, 2014). TCS is also used in 

a number of other applications including clinical applications (Jones et al., 2000; Bhargava 
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and Leonard, 1996), plastics and textiles (Angle et al., 2008; Halden, 2014). A detailed list of 

applications for Triclosan can be found within Angle et al. (2008). 

Detection in environment and chemical fate 

Both TCS (Kolpin et al., 2002; von der Ohe et al., 2012; Halden, 2014; Halden and Paull, 2005; 

Guerra et al., 2014; Sabaliunas et al., 2003; Schatowitz, 1999; Ying and Kookana, 2007) and 

TCC (Halden, 2014; Halden and Paull, 2005; Heidler et al., 2006; Lozano et al., 2013; Ryu et 

al., 2014; Yu et al., 2011; Lv et al., 2014; Zhao et al., 2010) are widely detected in water and 

wastewater. TCS and TCC both have the tendency to sorb to organic carbon with organic 

carbon/water partition coefficients (Koc) between 3467-15892 and 12022-71687 L kg-1 

measured for TCS and TCC respectively (Wu et al., 2009; Barron et al., 2009). Volatilisation is 

not expected to be significant with a Henry’s law constant of 2.1 × 10-8 Pa m3 mol-1 and       

4.5 × 10-11 Pa m3 mol-1 for TCS and TCC respectively (Meylan and Howard, 1991). Both TCS (Lv 

et al., 2014; Yu et al., 2006; McAvoy et al., 2002; Lozano et al., 2013; Latch et al., 2005) and 

TCC (Lv et al., 2014; Lozano et al., 2013; Ding et al., 2013; Guerard et al., 2009; TCC 

Consortium, 2002) have been shown to degrade by means of photodegradation and 

biodegradation. 

 

Effects in the water environment 

As biocides, the primary threat from TCS and TCC is toxicity. However, there have also been 

observations that indicate bioaccumulation and bio-concentration of TCS and TCC is possible 

(Halden, 2014) with implications for species higher in the food web. Chronic ecotoxicology 

studies suggest that invertebrates may be the most sensitive taxa to TCC (Ceriodaphnia 

dubia - survival and reproduction endpoints (US EPA, 2002)), with chronic PNECs varying 

from 146-190 ng/l (Tamura et al., 2013; TCC Consortium, 2002).  For TCS, toxicology studies 
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suggest that algae are the most sensitive taxa, for which chronic PNECs range from 4.7-1550 

ng/l (Capdevielle et al., 2008; von der Ohe et al., 2012). Calculation of PNEC values varied 

significantly between studies. The highest PNEC value (1550 ng/l) was estimated from a SSD, 

generated using effects data (chronic NOEC and EC10–25 values) for 14 species including 

aquatic plants, invertebrates and fish (Capdevielle et al., 2008). The 5th percentile of the SSD 

(50% confidence interval - HC5,50) was selected for calculation of the chronic PNEC. 

The lowest PNEC value (4.7 ng/l) was estimated by taking the NOEC of 4.7 μg/l derived from 

a Selenastrum capricornutum growth inhibition test, and applying a 1000 assessment factor 

(von der Ohe et al., 2012). 

TCS is ionisable with a pKa of 7.9 to 8.1. However, it will largely exist in its neutral form at pH 

7 and in its ionised form at pH 8.5 and therefore is likely to be at least partially ionised within 

river water (Orvos et al., 2002). It is believed that molecules in an ionised state may be less 

likely to cross lipid membranes (Lipnick, 1995). This is reflected by experiments by Orvos et 

al. (2002), which suggest a significant reduction in toxicity as a result of increasing pH from 7 

to 8.5.  

Endocrine disruption has been noted for TCC (Chen et al., 2008) and TCS (Crofton et al., 

2007; Veldhoen et al., 2006). There is also concern regarding the possibility of TCS (Levy, 

2001; Yazdankhah et al., 2006; Veldhoen et al., 2006) and TCC provoking antibiotic drug 

resistance due to their antimicrobial nature (Halden, 2014).  

 

1.12.2. Natural estrogens 

Emissions and detection in the environment 
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Natural estrogens, E1 and E2 are excreted from both the male and female population. 

Approximately half as much naturally occurring estrogen is excreted by males compared with 

menstruating females (Johnson et al., 2000). However, estrogens may also be excreted from 

other animals especially from farm animals (Liu et al., 2015). The presence of estrogens is 

widespread; E1 and E2 have been detected in the influent and effluent of a wide selection of 

STWs in China (Liu et al., 2015; Zhou et al., 2012a; Zhang et al., 2011; Ye et al., 2012), North 

America (Ternes et al., 1999; Lee and Peart, 1998; Snyder et al., 1999) the EU (Williams et al., 

2012; Desbrow et al., 1998; Körner et al., 2000; Ternes et al., 1999) and Japan (Matsui et al., 

2000; Komori et al., 2004). 

Chemical fate 

Laboratory experiments by Lin and Reinhard (2005) and Jürgens et al. (2002) observed 

significantly different biodegradation and photodegradation half-lives for E2 in river water 

under laboratory conditions. The photodegradation half-life of E2 within river water varied 

between 1.98 hours and 10 days (Jürgens et al., 2002; Lin and Reinhard, 2005). Laboratory 

biodegradation experiments reported by Lin and Reinhard (2005) resulted in 80% of E2 

converted to E1 within 20 minutes. In contrast, Jürgens et al. (2002) noted a mean 

biodegradation half-life for E2 of approximately 28 hours.  

E1 has been shown to degrade rapidly under controlled photolysis experiments which may 

be an effective degradation mechanism for E1; controlled experiments using solar simulators 

reported photolysis half-lives of 7.9 hours (under a simulated sunlight intensity of 

250 W m−2) (Caupos et al., 2011) and 0.875 hours (under a simulated sunlight intensity of 

1000 W m-2) (Chowdhury et al., 2010) in purified water. Biodegradation is also likely to be an 

effective mechanism, with a mean half-life of 23.4 hours observed in river water (Jürgens et 

al., 2002). 



37 
 

Henry’s law constant of 1.33x10-12 Pa m3 mol-1 and 3.64x10-11 Pa m3 mol-1 were measured for 

E1 and E2 respectively (Mansell and Drewes, 2004), suggesting volatilisation is not significant 

for these two substances. Measurements for Koc ranges between 457 – 7244 (Khanal et al., 

2006; Yu et al., 2004) and 212 – 13183 L kg-1 (Holthaus et al., 2002; Yu et al., 2004) for E2 and 

E1 respectively, suggesting some affinity towards solids. 

Effects 

Steroidal estrogens are significantly more potent than other endocrine disruptors (Desbrow 

et al., 1998; Sumpter and Jobling, 1995) and E1 and E2 are amongst the most potent (Liu et 

al., 2015). In China, male fish have been observed to have undergone some degree of 

feminisation, likely as a result of exposure to estrogenic compounds (Lu et al., 2010; Yan et 

al., 2012). In addition, there are suggestions that chronic exposure may cause greater effects 

in fish than other organisms (Tyler and Jobling, 2008). Therefore, an indication of potential 

exposure is important. For E2, a PNEC of 2 ng/l was suggested by Caldwell et al. (2012), who 

utilised consolidated NOEC data from  ecotoxicology studies using a SSD methodology, 

generated from NOEC data for 9 fish species; the 5th percentile of the SSD (50% confidence 

interval - HC5,50) was selected for calculation of the chronic PNEC. In addition to E2, EE2 was 

also estimated by Caldwell et al. (2012), using the same methodology as E2. However, for E1, 

there was insufficient data to estimate a PNEC using the same methodology as E2 and 

therefore a different approach was required. It was noted by Caldwell et al. (2012) that the 

ratio of PNECs of E2 to EE2 was similar to the relative potency for vivo vitellogenin induction 

of E2 to EE2, as determined from literature gathered by the authors. It was thus suggested 

that the relative potency for vivo vitellogenin induction of E1 to E2 should equal that of the 

ratio of the PNECs of E1 to E2. This approach was used to derive a PNEC of 6 ng/l for E1. 

 

1.13. Primary thesis aim 
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The aim of this thesis was to develop a methodology to set up the GREAT-ER model in China. 

To be deemed successful, it was proposed that this methodology should provide reliable 

results whilst minimising the requirements for data and model complexity. This included a 

methodology to locate sewage treatment plants, to estimate the population served by 

sewage treatment plants and to estimate untreated discharge. 

 

1.13.1. Thesis objectives 

1. To develop a complete methodology that allows one to reasonably setup a catchment 

model in China using the GREAT-ER model. This requires: 

a. A methodology to locate STWs and further, to predict STW population served. 

b. To account for untreated discharge 

2. To be able to predict reliably the in-stream concentration of down-the-drain chemicals 

Triclosan, Triclocarban, Estrone and 17β-estradiol 

3. To demonstrate the potential of GREAT-ER for both risk assessment and catchment 

management purposes, based upon the present and year 2020 scenario. 

 

1.14 Thesis structure 

Chapter 2 is a methodological chapter which focuses on the first thesis objective and 

contains  a description of a methodology to setup the GREAT-ER model in any catchment in 

China. Firstly, data required and the operation of the model is outlined. Further, different 

options are provided for watershed delineation and low-flow estimation. Finally, a flexible 

approach to address the problem of chemical emission estimation is described. 
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Chapter 3 describes the application of the methodology discussed in Chapter 2 to the East 

river catchment. Whilst Chapter 2 describes a more generic methodology, Chapter 3 

describes specific measures taken to model the East river catchment. This includes low-flow 

estimation, parameterisation, chemical usage estimation, sampling methodology, estimation 

of chemical emissions and modelled scenarios. 

Chapter 4 describes the outputs of the East river study. Sampling and simulation results are 

described and compared, in an attempt to estimate the accuracy of the model. Further, each 

element of the model is evaluated, in the context of the simulation results. Finally, 

simulation results for a number of risk assessment and catchment management scenarios 

are described. 

Chapter 5 is a discussion regarding the potential for the GREAT-ER model to be used within 

China. Limitations are described, with possible strategies to overcome these limitations in 

future studies. Future studies are proposed for use of the GREAT-ER model, or others when 

appropriate, with a focus on catchments that are both interesting and important to study. 

Finally, a modelling focused approach is discussed to address the challenge of water 

pollution in China. 

Chapter 6 concludes the thesis, including a summary of the findings of this thesis and 

suggested future research 
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Chapter 2 – The GREAT-ER model in China                                                                                                                                   

This section outlines the proposed methodology used to setup the GREAT-ER model in any 

catchment within China. The model was designed for catchments within Europe and the 

challenges presented by such environments. Utilising the model in China provides unique 

challenges that must be overcome. Each element will be discussed in turn, with mention of 

possible data sources for each. An overview of the GREAT-ER model is shown in Figure 3. 

 

2.1. Data to request 

When  setting up the GREAT-ER model for a new catchment, it is useful to assess the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             

overall data requirements for the model and to make requests for data from the appropriate 

authorities. Data may take a significant amount of time to acquire, and therefore it is 

suggested that data should be requested as soon as possible. However, the methodology 

described in this section will provide different approaches depending upon the data available 

to the user. 

Data requirements are listed below with comments about general availability and possible 

data sources. The data is listed in the order of importance, based upon the experience 

gained during this research project. Items of higher importance should be prioritised, as they 

often take longer to obtain. If the researcher is not native to the study area, locating a 3rd 

party contact may significantly increase the chances of receiving high quality data in a timely 

manner. 

• Flow data – This is the highest priority for data request. Daily or sub-daily data (in 

units of m3/s) is highly preferable, however often only monthly or annual data are 

available. Flow data may be difficult to obtain from authorities, especially if the user 

is not a Chinese national. The official route is to request data from the Ministry of 
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Water Resources. However, the most plausible option available is to request this 

data from a 3rdparty. This may be available electronically, or it may be only available 

in hard copy. If the latter, this must be carefully copied into a spreadsheet. 

Alternatively, flow data is available from the Global Runoff Data Centre 

(http://www.bafg.de/GRDC) which provides hydrological data for stations around 

the globe. However, much of the data is relatively old and only a limited selection of 

gauging stations is available. It may still be possible to use old hydrological data, 

however if the catchment has changed significantly as a result of anthropogenic 

activity (e.g. deforestation or construction of reservoirs), the old data may not be 

representative of current hydrological conditions (Rees, 2009). 

• Artificial influences upon hydrology – Data that describes the artificial influences 

upon flow may be critical to calculating flow throughout the catchment. This 

includes elements that may reduce flow such as abstraction, those that may increase 

flow such as STW discharges or elements with more complex influences such as 

reservoirs (Gustard and Young, 2009). It is particularly important to obtain data for 

large reservoirs, ideally at a similar temporal resolution to the available flow data. In 

addition, data on the level of abstraction and return flows in the area is useful, with 

actual locations of abstraction points being especially useful yet challenging to 

obtain. 

• STW data – The location of all STWs and other relevant emission points within the 

area is required. A later section describes a procedure for when this not available, 

however it is best to request this early. The required data includes: geographic co-

ordinates, population served and treatment type. It is also useful to obtain mean 

effluent discharge, which may be useful to further describe artificial influences to 

flow. 

http://www.bafg.de/GRDC
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• Riverlines – The river network is required in a vector (polyline) format. Global and 

continental datasets are available, although these are often poor quality or at an 

inappropriate scale. Therefore locally derived datasets are more appropriate, 

although difficult to obtain. 

• Digital elevation model (DEM) – A DEM is a representation of the elevation surface, 

and may be used for applications such as defining the river catchment area and the 

river topology. A DEM is readily available from global datasets (e.g. the Shuttle Radar 

Topography (SRTM) dataset (Farr et al., 2007)). However if locally derived, high 

resolution datasets are available, they should be obtained when possible. This is 

discussed in more detail in section 2.4. 

 

Figure 3 - Schematic overview of GREAT-ER: assumes only basic in-stream removal and no untreated 

wastewater sources. 
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2.2. Physio-chemical and environmental properties 

The model allows the user to simulate in-stream removal at three levels of complexity: 1) a 

basic combined first-order rate, 2) basic removal by biodegradation, volatilization and 

sedimentation, 3) advanced removal by up to five different processes. All three levels of 

complexity are based upon first-order kinetics. 

Basic removal is calculated based upon combined removal rate  and travel time. This is 

described by Equation 8, whilst travel time is described by Equation 9 for lakes and Equation 

10 for river stretches (Boeije, 1999): 

 Rend(i) = Rstart(i) ∗ −e−HRT∗k (8) 

For Lakes: HRT =
v

Q ∗ 3600
  

(9) 

For rivers: 
HRT =

L

v ∗ 3600
 

 
(10) 

where: 

Rend(i) – chemical mass at the downstream end of stretch i (kg) 

Rstart(i) – chemical mass at the upstream end of stretch i (kg) 

HRT – travel time (h)  

k – combined in-stream removal rate (h-1) 

v – river velocity (m/s) 

L – river stretch length (m) 

Q – river discharge (m3/s). 
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In addition to removal in stream, the removal rate in primary, trickling filter and activated 

sludge treatment plants is required. This can be provided as a single value, a normal, log-

normal or uniform distribution. If the removal rate for individual sewage treatment plants is 

known it can be applied to each, although only as a single value. Finally the per capita 

emission rate is required for each chemical. This is the mass of chemical used and released to 

the environment each year on a per capita basis. The calculation of emissions is described 

later in this chapter. 

The two advanced removal modes are explained below including the data requirements for 

each. 

2.2.1.  Basic removal by biodegradation, volatilization and sedimentation 

First-order removal rates are required for biodegradation, volatilization and sedimentation; 

where sedimentation represents the net suspended sediment settling rate. There is also an 

element to estimate the fraction chemical partitioned to suspended solids, described below. 

The fraction of organic carbon in suspended solids within the catchment is defined, along 

with the concentration of suspended solids and the correlation between flow and suspended 

solids concentration. The concentration of suspended solids may be defined as a single 

value, or a normal/log-normal/uniform distribution. The fraction sorbed to suspended solids 

may then be estimated; the fraction dissolved (Fd) and fraction sorbed (Fs) are estimated by 

Equation 11, 12, and 13 (Wagner and Koormann, 2011): 

𝐅𝐝 =
𝟏

𝟏 + 𝟏𝟎−𝟔 ∗ 𝐊𝐝 ∗ 𝐒𝐒𝐂
 

 
 

 
(11) 

𝐊𝐝 = 𝐊𝐨𝐜 ∗ 𝐅𝐨𝐜 
 
 

𝐅𝐬 = 𝟏 − 𝐅𝐝 
 

(12) 
 
 
(13) 
 

where:  
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Kd - solids/liquids partitioning coefficient in the river (L/kg) 

SSC - suspended solids concentration (mg/L) 

Koc - organic carbon/water partition coefficient (L/kg) 

Foc - fraction organic carbon in suspended solids (kg/kg) 

In-stream removal is calculated using Equation 8, and the in-stream removal rate, k (h-1), is 

calculated using Equation 14: 

k = kdeg + Fsksed + Fdkvol (14) 

where: 

kdeg – chemical degradation rate (h-1) 

ksed – net suspended sediment setling rate (h-1) 

kvol – chemical volatilisation rate (h-1). 

 

2.2.2.  Extended five process removal 

The five processes considered by the model are: hydrolysis, photodegradation, volatilization, 

sedimentation and biodegradation. If this mode is selected, the user may then select which 

processes they wish to include. The number of parameters required is quite extensive and is 

summarised in Table 3. The approach used by the GREAT-ER model for individual processes 

are described here (Boeije, 1999). Firstly, the model corrects for solubility as described by 

Equation 15 and 16: 
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C0(i) < Sw ∗ MM ⇒ Cstart(i) = C0(i) 

 

 

(15) 

 

C0(i) > Sw ∗ MM ⇒ Cstart(i) = Sw ∗ MM 
 
(16) 

where: 

C0(i) – estimated concentration at the start of the stretch i (g/m3) 

Cstart(i) – actual concentration at the start of stretch i (g/m3) 

Sw – chemical water solubility (mol/m3) 

MM – chemical molecular mass (g/mol). 

The concentration at the end of stretch i, Cend(i), is then estimated using Equation 17 below: 

Cend(i) = Cstart(i) ∗ e−k∗HRT (17) 

the in-stream removal rate (k) is calculated by using Equation 14, but kdeg is estimated by 

Equation 18 below:  

𝐤𝐝𝐞𝐠 = 𝐤𝐡𝐲𝐝𝐫𝐨𝐥𝐲𝐬𝐢𝐬 + 𝐤𝐩𝐡𝐨𝐭𝐨𝐥𝐲𝐬𝐢𝐬 + 𝐤𝐛𝐢𝐨𝐝𝐞𝐠     (18) 

where: 

khydrolysis – 1st order chemical hydrolysis rate (h-1) 

kphotolysis – 1st order chemical photolysis rate (h-1) 

kbiodeg – 1st order chemical biodegradation rate (h-1) 

HRT – hydraulic residence time (h). 
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The representation of hydrolysis is taken from the SMPTOX4 model (US EPA, 1995), mode 3. 

The model differentiates between neutral, acid and basic hydrolysis as described by Equation 

19 below: 

                          khydrolysis  = Kb ∗ 10pH−14 + Kn + Ka ∗ 10−pH (19) 

where: 

Ka – acid hydrolysis rate (h-1) 

Kb – base hydrolysis rate (h-1) 

Kn – neutral hydrolysis rate (h-1) 

pH – acidity- potential of hydrogen. 

The model for photolysis was taken from SMPTOX4 mode 3 (US EPA, 1995). The model takes 

into account light extinction in water, based upon water depth and a 1st order extinction 

rate. This is described by Equation 20: 

kphotolysis = kph,0 ∗
1 − e−kz∗d

kz ∗ d
 

 
(20) 

where: 

kph,0 - near-surface photolysis rate (h-1) 

kz - light extinction coefficient (m-1) 

d – river depth (m). 

For biodegradation, the model requires several specific parameters that describe how the 

properties of the river modify the biodegradation rate (Boeije, 1999). The model’s 
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representation of biodegradation considers degradation rates to differ for the chemical 

fraction within the sorbed and dissolved phase, using the approach used by the ROUT model 

(Cowan et al., 1993). Chemical and biomass concentrations are assumed to degrade by first-

order kinetics (Boeije, 1999). A pseudo-first-order rate is derived by multiplying the biomass 

level by the double first-order degradation rate, which represents the combined biological 

and non-biological degradation in the dissolved phase (Boeije, 1999). The model’s 

representation of biodegradation is described by Equations 21, 22 and 23: 

kbiodeg = kstdbiodeg ∗ B ∗ (Fd + Fs ∗  αs) ∗ αDO ∗ αtemp (21) 

 

αDO =
DO

kDO + DO
+

kDO

kDO + DO
∗ αanaerobic 

(22) 

 

αtemp = Q10

twater − 20

10
 

(23) 

 

where:  

kstdbiodeg – double 1st order biodegradation rate under standard conditions (L mg-1 h-1) 

B – lumped river biomass level, suspended and in biofilms (mg/l) 

αDO – biodegradation rate correction for dissolved oxygen 

αtemp – biodegradation rate correction for temperature 

αanaerobic – rate correction for anaerobic biodegradation 

kDO – oxygen saturation constant for aerobic biodegradation (mg/l) 

DO – dissolved oxygen concentration (mg/l) 
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Q10 – biodegradation Q10 factor (rate change factor per 10°C) 

twater – water temperature (°C). 

Sedimentation describes the settling of chemical sorbed to suspended sediment. This is 

described by Equation 24 and 25 (Boeije, 1999): 

ksed =
vsed

d
 (24) 

 

vsed =
(vsedgrowth ∗ 3.171 ∗ 10−11) ∗ (106 ∗ ρss) ∗ (1 − Ɛsed)

SSC
 

(25) 

 

where: 

ksed – 1st order net suspended sediment settling rate (h-1) 

vsed – suspended sediment settling velocity (m/s) 

vsedgrowth – sediment growth velocity (mm/year) 

ρSS – sediment particle density (kg/m3) 

SSC - suspended solids concentration (mg/L) 

Ɛsed
 – sediment porosity. 

Finally, volatilization is modelled based on the two film theory (Whitman, 1923). Complete 

mixing of both the water and atmospheric compartments is assumed, and that the boundary 

layers of the gas-liquid interface are laminar. The exchange rate between these two 

compartments is calculated using Henry’s law constant, the conductance of the gaseous and 



50 
 

liquid films, and water depth (Boeije, 1999). This approach is described by Equation 26 and 

27: 

kvol =
1

d
∗

1

(
1
kL

+
1

KH ∗ kg
 )

 
(26) 

 

KH =
H

R ∗ (tair + 273)
 

(27) 

 

where: 

kvol – 1st order chemical volatilisation rate (h-1) 

kL – conductance of liquid film (m/s) 

kg – conductance of gaseous film (m/s) 

KH – air-water exchange coefficient (dimensionless Henry coefficient) 

H – Henry’s law constant (Pa m3 mol-1) 

tair – air temperature (°C). 

Conductance is calculated using the approach of Southworth (1979) for rivers, as described 

by Equation 28 - 31: 

kg = 3.16 ∗ 10−3 ∗ (v + vfr) ∗ √
18

MM
 

(28) 

 

kl = 65.31 ∗ 10−6 ∗ F ∗
v0.969

d0.673
∗ √

32

MM
 

 
(29) 
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F = {
vfr < 1.9 m/s : F = 1                                          

5 > vfr ≥ r = 1.9 m/s : F = e0.526∗(vwind−1.9) 
(30) 

 

vfr = vwind ∗ (
log

0.1

z0

log
10

z0

)             
(31) 

where: 

vfr – friction velocity - wind speed at 10 cm height (m/s) 

F – correction factor for high wind speeds 

vwind – wind speed at 10m height (m/s) 

z0 – roughness height (m) – describes the height of which wind is theoretically zero; this is 

assumed to be 10-3 above rivers. 

Conductance is estimated for lakes using the approach of Mackay and Yeun (1983) for lakes, 

as described in Equation 32 - 36: 

kl = 10−6 + α ∗ vshear
          β

∗
β

√SCl

 {
vshear < 0.3 m/s ⇒ α = 14.4 ∗ 10−3, β = 2.2

0.3 m/s ≤ vshear ≤ 1 m/s ⇒  α = 3.4 ∗ 10−3, β = 1
 

(32) 

 

vshear = 0.0359 ∗ vwind
          0.93 (33) 

kg = 10−3 + 46.2 ∗ 10−3 ∗ vshear ∗
1

√SCg
  23

 
(34) 
 

SCg =
ηg

Dg
= 1.4 ∗

10−6

2.22 ∗ √ 18
MM

 
 
(35) 
 
 

SCl =
ηl

Dl
= 1 ∗

10−6

172.8 ∗ 10−6 ∗ √ 32
MM

 
 
(36) 
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where: 

vshear – shear wind velocity (m/s) 

SCg – Schmidt number in air 

SCl – Schmidt number in liquid 

ηg - kinematic viscosity coefficient for air (m2/s) 

ηl - kinematic viscosity coefficient for water (m2/s) 

Dg - diffusion coefficient in air (m2/s) 

Dl - diffusion coefficient in water (m2/s) 

α and β are constants. 

 

2.2.3.  Sediment exposure module 

The GREAT-ER sediment extension allows the user to increase the complexity of the 

sediment component within the model. Without the extension, the concentration in the 

dissolved and sorbed phase may be estimated using the two more advanced removal modes, 

modes 2 and 3, however this information is used solely for the calculation of removal, and is 

not made available to the user. The primary feature of the sediment module is, following 

simulation, to allow the user to display estimates for the concentration of the chemical of 

interest within the sorbed and dissolved fractions, but also provides estimates for the 

concentration within the sediment phase. The user may also specify the concentration of 

suspended solids and diffuse chemical emissions for each stretch. 
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2.3. Simulation procedure 

The procedure to start a simulation is simple. Firstly, select a catchment and the chemical of 

interest. Next, specify the environmental and physio-chemical properties, removal mode and 

sediment exposure settings, which are described above. Finally, provide the number of 

iterations to be performed by the Monte Carlo simulation. 

Hydrolysis Photodegradation Volatilization Sedimentation Biodegradation 

Correlation 

coefficient 

between 

suspended solids 

and flow 

Correlation 

coefficient 

between 

suspended solids 

and flow Air temperature (°C) 

Correlation 

coefficient between 

suspended solids and 

flow 

Temperature 

(River) (°C) 

Molar mass 

(g/mol) 

Molar mass 

(g/mol) 

Wind speed (River) 

(m/s) Molar mass (g/mol) 

Correlation 

coefficient 

between 

temperature 

and flow 

Koc (L/kg) Koc (L/kg) 

Correlation coefficient 

between temperature 

and flow Koc (L/kg) 

Correlation 

coefficient 

between 

suspended 

solids and flow 

Water solubility 

(mol/m3) 

Water solubility 

(mol/m3) 

Correlation coefficient 

between wind speed 

and flow 

Water solubility 

(mol/m3) 

Correlation 

coefficient 

between 

dissolved 

oxygen and flow 

Solids/liquid 

partioning 

coefficient in river 

(L/kg) 

Solids/liquid 

partioning 

coefficient in river 

(L/kg) 

Correlation coefficient 

betweem suspended 

solids and flow 

Solids/liquid 

partioning coefficient 

in river (L/kg) 

Molar mass 

(g/mol) 

Default hydrolysis 

rate - acid (h-1) 

Photolysis rate - 

near surface (h-1) Molar mass (g/mol)   Koc (L/kg) 

Default hydrolysis 

rate - base (h-1)   Koc (L/kg)   

Water solubility 

(mol/m3) 

Default hydrolysis 

rate - neutral (h-1)   Vapour pressure (Pa)   

Solids/liquid 

partioning 

coefficient in 

river (L/kg) 

    

Water solubility 

(mol/m3)   

Standard 

aerobic 

biodegradation 

rate (double 
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first-order)      (L 

mg-1 h-1) 

    

pKa - chemical acid / 

base dissociation 

constant   

Affinity 

constant for 

transition from 

aerobic to 

anaerobic 

processes 

    

Solids/liquid partioning 

coefficient in river 

(L/kg)   

Temperature 

correction for 

biodegradation 

    

Henry's law coefficient 

(Pa m3 mol-1)   

Reducation of 

biodegradation 

rate under 

anaerobic 

conditions 

       

Reduction of 

biodegradation 

rate under 

adsorbed 

conditions 

        

Increase or 

reduction of 

biodegradation 

rate under river 

conditions 

  

Table 3 - Physio-chemical properties required for advanced removal mode. 

 

 

2.4. Watershed delineation 

2.4.1.  DEM availability  

A DEM) provides the basis of the river network, subcatchments and catchment area. These 

elements are subsequently required to calculate flow and to provide an estimation of 

chemical emission. Consequently, a poor representation of the underlying topography may 

impact upon the accuracy of the model output. Selection of a suitable DEM and the 

methodology used to process the DEM are important. 
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Figure 4 - Stream delineation procedure. A DEM is required (A) however before use, topographic lows, known as 

pits within the DEM may need to be corrected. These are often filled to the level of the lowest surrounding cell. 

To determine flow direction, flow is directed from high to low elevation based upon the lowest value within 8 

surrounding cells (B). Further, the number of accumulated cells can be calculated, which is the number of cells 

that flow into the target cell (C). Finally once the number of accumulated cell reaches a threshold, it can be 

identified as a stream (D). 

 

 A DEM is most commonly obtained from satellite imagery, however for more precise 

applications aerial or ground surveys may be used, albeit at significant expense.            

Satellite-derived DEMs are available with a global coverage. Resolutions of global datasets 

are often relatively low, however the public release of the SRTM 1 arc-second DEM (~30m at 

the equator) in 2015 provides a reasonable horizontal resolution for modelling applications 

(Buis and Cole, 2014). Superior alternative datasets should be obtained if possible, however 

the availability of elevation data in China is limited. Within the selection of global datasets, 
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SRTM is a favourable choice, although the SRTM dataset size and processing time may 

become unacceptably high for very large catchments. 

 

2.4.2.  The HydroSHEDS DEM 

For medium to large-scale applications, the HydroSHEDS dataset may be suitable 

(http://hydrosheds.cr.usgs.gov/), which is based upon the SRTM dataset. HydroSHEDS offers 

hydrologically optimised datasets at resolutions between 3 arc-seconds (~90m at the 

equator) to 5 minutes (~10km at the equator). The methodology used to derive this dataset 

is described here. The dataset is based upon the SRTM 3-arc second (~90m at the equator) 

and the Digital Terrain Elevation Data (DTED) 3 arc-second DEMs (Lehner et al., 2006). The 

DTED dataset is derived from SRTM data, but generated using the data standards required by 

the National Geospatial-intelligence Agency of the US Department of Defence (NASA, 2003). 

DTED was upscaled from the 1 arc-second SRTM dataset by selecting the value of the centre 

pixel within a 3x3 kernel. The 3-arc second SRTM dataset was upscaled from the 1 arc-

second SRTM dataset to 3 arc-seconds by taking the mean value of a 3x3 kernel. As a result 

of upscaling the DTED dataset, on occasion, elevation values on river stretches were assigned 

an elevation greater than the surrounding floodplain. This has significant implications for 

hydrological applications, as water may be predicted to spill from a river channel into the 

floodplain (Lehner et al., 2006). However, the DTED dataset represents shorelines and open-

water better than the SRTM 3 arc-second dataset due to corrections made to the DTED 

dataset; for example, lakes of ≥ 600m length were flattened to a constant height, and the 

ocean was set to a constant elevation of 0m (NASA, 2003; Lehner et al., 2006). Therefore, the 

two datasets were combined by taking the minimum value found in either dataset to provide 

an initial surface (Lehner et al., 2006). A number of corrections were made to this surface in 

http://hydrosheds.cr.usgs.gov/


57 
 

order to reduce the number of errors within the surface and to improve the performance for 

hydrological applications. Firstly, the original SRTM data included large areas of “nodata” 

(voids). These voids were filled using a combination of two void-filled datasets. The first 

dataset was that of CIAT (2004), which was generated using the interpolation methodology 

of TOPOGRID (Hutchinson, 1989; Hutchinson, 1988) available in the GIS, Arc/Info and ArcGIS. 

This approach uses contours at an interval of 10m, derived from the elevation surface, to 

interpolate. This approach produces a smooth elevation surface that has been demonstrated 

to represent macro scale topography well, in comparison to cartographic data  (Jarvis et al., 

2004). The second dataset was produced using an algorithm designed especially for 

HydroSHEDS, for the purpose of better representing low-level and flat water surfaces within 

voids (Lehner et al., 2006). This was achieved through an iterative process. The first step fills 

the outermost pixel-rim of a no-data void using a combination of a 3x3 minimum and a 5x5 

mean filter (the minimum filter dominates the mean filter by a factor of 3:1). Then, the next 

pixel-rim is filled until the entire no-data void is processed. This is then repeated until the 

entire void is filled. Finally, the void area is smoothed using a 9x9 filter, selecting the mean 

value (Lehner et al., 2006). The two datasets were combined by selecting the minimum value 

of either dataset. However, if the HydroSHEDS algorithm derived cell value was >30m lower 

than the CIAT algorithm, the CIAT value was used, subtracted by 30m (Lehner et al., 2006). In 

addition, in cases where mountains were “lost” following interpolation, data from GTOPO30, 

a global 30 arc-seconds DEM (Gesch et al., 1999), was inserted. 

Sinks, defined as depressions within the elevation surface, present a problem for 

hydrological applications because they interrupt runoff as it moves from high to low 

elevations (e.g. Figure 4B). These sinks may be naturally occurring but many may be a result 

of anomalies during the production of the DEM, or as a result of the generalisation of the 

surface (Lyon, 2003; Mark, 1988). HydroSHEDS used a manual approach to identify sinks that 

may be natural, and to reject those that were not (Jenson and Domingue, 1988). Sinks that 
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were deeper than 10m and larger than 10km2 were marked as being potential natural sinks, 

all others were rejected and filled to the elevation of its lowest neighbour (Lehner et al., 

2006). All potential sinks were examined manually along with auxiliary data such as paper 

based maps and atlases. 

Improvements were made to ocean, lake and river boundaries. The SRTM Water Body Data 

(SWBD) (NASA, 2003), a dataset defining ocean, lake and river boundaries from the original 

SRTM 1 arc-second dataset, was used to assign all cells in the ocean to “no data” (Lehner et 

al., 2006). In addition, within a 0.02 decimal degree wide buffer along the coastline, every 

random third cell was reduced by 5m. This action was taken because in areas along the 

coastline with heavy vegetation growth, radar derived DEMs may erroneously detect the 

elevation to be that of the vegetation height rather than the surface, creating a barrier to 

flow along the coastline (Lehner et al., 2006).  

To conclude, the HydroSHEDS offers an elevation surface which is readily available for 

hydrological applications, with little or no modifications. However, for applications that may 

require a DEM with a smaller cell size, other datasets would have to be considered. 

 

2.4.3.  Correcting DEMs to enforce flow direction in flat areas 

One limitation of the SRTM dataset is the vertical resolution of 1 metre. The vertical 

resolution defines the precision of elevation data. This has implications for flat areas, such as 

flood plains. A vital application of a DEM is to estimate the direction of flow. With the flow 

path known, it is also possible to determine the catchment boundary for any cell in the 

catchment and to determine the number of cells that contribute to this cell; the latter is 

determined using a flow accumulation algorithm. The number of contributing cells can then 
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be used to determine catchment area, and when a threshold is provided, the location of a 

stream may be estimated. This is shown in Figure 4D. The most commonly used algorithm to 

calculate flow direction is the D8 method (O'Callaghan and Mark, 1984; Jenson and 

Domingue, 1988) (see Figure 4B), which estimates flow direction based upon the lowest 

elevation value from 8 neighbouring cells. However, within a flat region, due to a low vertical 

resolution, there may be no unique lowest neighbour and thus the assignment of flow 

direction would be set arbitrarily (Garbrecht and Martz, 1997). As a result, the flow direction 

may be assigned erroneously. There are two procedures that can be used to mitigate this 

problem. An alternative flow direction algorithm can be used such as that of Garbrecht and 

Martz (1997), which assigns direction in flat areas  by modifying the surface, based upon the 

area surrounding the flat area, in order to force flow away from higher elevation and 

towards lower elevation. The network generated may be significantly more realistic than the 

output from the default D8 algorithm, as shown by the example in Figure 5. As shown, the 

default algorithm generates erroneous straight riverlines, which are located in flat areas. This 

is resolved by using the algorithm of Garbrecht and Martz (1997). 
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Figure 5 - (A) River network delineation using the D8 algorithm of Jenson and Domingue (1988) and (B) 

delineation using the flow direction algorithm developed by Garbrecht and Martz (1997). 

 

The second procedure involves a process called “burning in”, such as the AGREE method 

developed by Hellweger (1997), which is described here. A polyline is required which 

represents the true position of the river. The algorithm drops elevation within a buffer 

incrementally to create a smooth path to the vector line from the buffer boundary. Next, the 

algorithm excavates a deep, sharp trench for cells intersecting the vector line. This algorithm 
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modifies the DEM in a way that forces the model to propagate runoff towards the river 

channel and to contain flow within. The buffer smoothing attempts to avoid the occurence 

of “parallel streams”, which are usually erroneous low points in the elevation grid. Without 

correction, riverlines parallel to those produced could be generated (Hellweger, 1997). 

Calibration may be required to determine the optimum buffer width and smooth/sharp drop 

distance. Caution is required as there is the potential for boundary (Maidment and Djokic, 

2000), stream line (Baker et al., 2006) and other undesirable terrain errors as a result of the 

riverline buffer.  

This process requires accurate polyline data at the desired resolution and detail. This may be 

already available, either from local or global datasets. However, the accuracy and resolution 

of the riverline data must be inspected to determine whether it is suitable for use. Global 

datasets often lack detail and are created at a large-scale, therefore lacking accuracy. 

Therefore it may be necessary to manually digitise the river channels from satellite imagery. 

Google Earth is a useful application for this task, which provides high resolution satellite 

imagery from multiple time points. This is a time consuming task and therefore should only 

be completed if necessary. Critically, this depends upon the scale of the modelling study, 

including the extent and the raster resolution. 

 

2.5. Low-flow estimation 

The GREAT-ER model represents flow as a log-normal distribution defined by the mean and 

the 95% exceedance flow (Q95). A UK study investigating the performance of GREAT-ER and 

the sensitivity of its input parameters concluded that the variability of flow was significant in 

explaining the difference between modelled and observed concentrations. In contrast, they 

noted that the form of probability distribution of treatment efficiency and emissions had 
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little effect upon chemical exposure (Price et al., 2009). An estimate of flow is used to 

determine dilution and the transportation of the chemical of interest. Transportation is 

assumed to occur at the same rate of velocity, which is estimated from river discharge using 

the approach of Round et al. (1998), described in Equation 37: 

v = 10−0.583Qmean
0.283 (

Q

Qmean
)
0.495

 
(37) 

 

where: 

v – river velocity (m/s) 

Q – river discharge (m3/s) 

Qmean – mean river discharge (m3/s). 

Flow estimation is important and every effort should be taken towards providing a realistic 

and reliable estimate of flow. Firstly, an overview of low-flow hydrology is provided, with a 

discussion regarding the various natural elements and processes that dominate flows in the 

absence of rainfall. There are three main approaches for calculating low-flow statistics: 1) 

regional regression, 2) regional mapping and 3) rainfall-runoff modelling. These are discussed 

within this section, followed by examples of flow estimation approaches used for previous 

applications of the GREAT-ER model. 

 

2.5.1.  Low-flow hydrology 

After a storm event, water reaches a stream by both fast and slow processes. Fast processes 

contribute to storm flow, whereas slow processes primarily contribute to baseflow (Holden, 

2012). Baseflow may be defined as the flow that occurs in the absence of precipitation, 

instead reliant upon storage elements throughout the catchment. The potential and actual 

storage of these elements is important, as is residence time, which will vary significantly 
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between different elements (Table 4). Water may be stored on the surface (e.g. in lakes), in 

the soil and within groundwater; the fraction that reaches each storage element may vary 

significantly in space and time as a result of surface and sub-surface properties (e.g. Table 5) 

and conditions (e.g. soil saturation).  

Water source Residence time 

Atmospheric waters 10 days 

Terrestrial waters  

Rivers 2 weeks 

Lakes 10 years 

Soil moisture 2-50 weeks 

Biological waters A few weeks 

Groundwaters Up to 10,000 years 

Polar ice 15,000 years 

Oceanic waters 3600 years 

Table 4 - Average residence time of water. From Holden (2012). 

 

Precipitation and the East Asian Monsoon 

The input to any catchment is through precipitation, with the exception of artificial water 

transfers. For mid-latitudes, at the catchment scale, the dominant factor influencing 

precipitation is elevation, with greater precipitation at higher altitudes (Holden, 2012). At 

larger scales precipitation is controlled by global and continental moisture circulation. 

Precipitation patterns across China are heavily influenced by the East Asian Monsoon (Wang, 

2006; Sui et al., 2013). The summer is usually characterised as being the wettest period of 

the year, during which the majority of the annual rainfall occurs, whereas, the winter is 
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characterised as being a significantly drier and cooler period (Sui et al., 2013; Chang, 2004; 

Wang, 2006). 

The summer monsoon is primarily a result of the contrast in air pressure above the tropical 

oceans (high pressure) and the Chinese land mass (low pressure) which results in a change in 

the prevailing wind direction, away from the ocean and towards the land. As the air mass 

rises and crosses the land, it cools, resulting in precipitation (Rohli and Vega, 2011), which 

decreases from South-East to North-East, as water is lost by condensation (Figure 6). In the 

winter, this pattern is reversed as the land loses heat more rapidly than the ocean, forming a 

zone of a high pressure above the land mass, and a zone of relatively low pressure above the 

ocean (Rohli and Vega, 2011). As a result, the wind direction reverses and is directed away 

from the land and towards the ocean. From October to January a cold air mass expands 

south from the Northern regions of Siberia and Western Mongolia, as shown in Figure 8 

(Chang, 2004). This lowers temperatures (Figure 7) and raises air pressure, which leads to 

strong north-easterlies extending to the South China Sea. This air mass is relatively dry (in 

comparison to an air mass from the oceans to the South) and results in significantly reduced 

precipitation during the winter period (Chang, 2004). 

The Tibetan Plateau in North West China (Figure 6) also has a significant influence over the 

monsoon (Ge et al., 2017). The Plateau is an extensive, high altitude landform (mean altitude 

of 4000m). The Plateau is a significant atmospheric heat source in the summer, especially in 

May and June (Chang, 2004). Temperature rises in the Plateau region at a greater rate in 

comparison to the surrounding atmosphere, forming an area of low pressure over the 

Plateau (Ding, 2013; Keshavamurthy and Rao, 1992); this contrast is greater than the 

contrast between the land mass and the ocean. It has been suggested by Wu and Zhang 

(1998) that the Plateau acts as an “air pump” that sucks in air towards it, which may play an 

important part in the onset of the East Asian Monsoon. Observations suggest that the 



65 
 

formation of an enhanced atmospheric heat source over the Plateau coincides with reduced 

precipitation over Southeast China and enhanced precipitation in the Yangtze and Huaihe 

river basins (Wang et al., 2014; Ping and Longxun, 2001). Many of the effects of the Plateau 

are still not understood (Ding, 2013), but it is likely that the effect of the landform is critical 

to the East Asian monsoon. 

Figure 6 - South Asia summer monsoonal pattern – from Wang (2006). For China, the summer monsoon 

originates from: 1) across the equator, from the Australian region, 2) from the tropical West Pacific ocean and 3) 

from the Bay of Bengal and the Arabian sea (Wang, 2006). Air above the low temperature of the Australia land 

mass (experiencing winter), Saudi Arabia and the relatively cool oceans, are driven towards the warm Asian land 

mass, especially the Tibetan Plateau (Wang, 2006; Wu and Zhang, 1998). 

 

Water pathways and storage 

Factors that control the movement of water are of great significance. The main water 

pathways are described by Table 5. 

As water falls as precipitation, a fraction will be intercepted by vegetation, which will either 

be lost via evaporation or travel to the ground by stemflow (Holden, 2012). Water that 
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reaches the ground will infiltrate into the soil or runoff as overland flow. Overland flow may 

enter waterways and contribute directly to stormflow, or enter lakes. In winter, water may 

freeze and be stored as snow and ice, this is especially important in cold climates (see 

section 5.4.1). 

Soil and groundwater storage is likely to be the most important water source for rivers 

outside of storm events (Holden, 2012). The rate of infiltration depends upon soil moisture 

content, the soil grain size (soil texture), the soil condition (crusting, cracks, compaction), 

vegetation cover and topography. Soil texture is of particular importance, which relates to 

various properties that are useful when attempting to interpret flow and water quality 

within a catchment (e.g. Table 5). 
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Figure 7 - Mean monthly surface temperature (°C) over Asia for 1948-2000 in: (a) October, (b) November, (c) 

December, (d) January, (e) February, and (f) March. In October, a mass of cold air lies above the Tibean Plateau, 

which expands to the East and North-West in subsequent months, merging with the expanding cold air mass 

above Siberia and Mongolia to the North. From (Chang, 2004). 
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Figure 8 - Mean sea level pressure (mb) over Asia for 1948-2000 in: (a) October, (b) November, (c) December, (d) 

January, (e) February, and (f) March. The region of high pressure expands from Northern regions: Siberia and 

Western Mongolia to the South and to the East. From (Chang, 2004). 
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Property/behaviour Sand Silt Clay 

Water holding capacity Low Medium High 

Aeration Good Medium Poor 

Drainage rate High Slow to medium Slow 

Organic matter decomposition Rapid Medium Slow 

Compaction Resists Easily compacted Easily compacted 

Susceptibility to water erosion Low High Low 

Ability to hold nutrients Poor Medium to high High 

Leaching of pollutants Allows Moderately 

retards 

Retards 

Table 5 - Effects of soil texture on soil properties. Presented by Holden (2012), adapted from Brady (1999). 

 

Water that infiltrates may continue to move deeper into the soil until it reaches a confining 

layer that is resistant to percolation, such as impermeable bedrock (Price, 2011). A fraction 

of water may continue to infiltrate, which largely depends upon the permeability of the 

confining layer, whilst the other fraction will move parallel to the confining layer via the 

process of throughflow. Throughflow is heavily influenced by the sub-surface topography of 

the confining layer, however this is very difficult to determine (Price, 2011). The rate of 

throughflow influences residence time within shallow groundwater storage, which is of 

importance for more extended periods of low-flow (Holden, 2012). Throughflow varies 

depending upon the porosity of the soil and the structure of the soil pores. Water may travel 

through the smaller pores via matrix flow, by larger pores called macropores or through 

large holes called soil pipes (Holden, 2012). Water passes quickly through the larger voids, 

which are often connected, allowing for relatively rapid travel. Therefore, the structure of 
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soil significantly influences residence time. Soil pipes are more common in arid and semi-arid 

areas, which form as a result of soil shrinkage and crusting (Holden, 2012).  

Groundwater within bedrock (deep groundwater) may have long residence times (Table 5), 

as water usually travels very slowly through the rock. Like soil, rock may have small pores, 

but also larger voids such as cracks and fissures which water may travel rapidly (Holden, 

2012).  

 

Figure 9 –Conceptual model of water pathways to stormflow or baseflow (low-flows), including storage and 

losses. Data is suggested for each element that may be used to estimate low flows, with explanations in Table 6. 

Adapted from Price (2011) and Holden (2012). 

 

2.5.2.  Regional regression 
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Regional regression is an approach that attempts to establish a relationship between 

catchment characteristics and low-flow indices using a regression model (Smakhtin, 2001). It 

is perhaps the most commonly used methodology for low-flow estimation.  

For large catchments or regions, hydrologically homogenous regions must be delineated. 

Regional regression assumes that the region has similar streamflow responses in similar sized 

catchments. For example, flood peak magnitudes and timing. These catchments may be 

defined as hydrologically homogenous. Therefore, by delineating the homogenous regions 

within a large catchment, a separate regression model should be produced for each if 

possible. However, this is not necessary for anything other than large catchments or 

catchments with significant physiographic variation. Possible ways of achieving this are 

outlined in Smakhtin (2001). 

Sufficient flow data should be acquired to represent the spatial and temporal variability of 

the catchment (Rees, 2009). Gauged data should represent catchments with little or no 

artificial influences upon flow; initially, low flow indices should be estimated for natural 

conditions . 

The regional regression model construction process initially depends upon the selection of 

the type of regression model and the selection of potential catchment characteristics to 

describe the spatial variation of low flow indices. Selection of catchment characteristics 

should be aided by prior knowledge of the catchment. This is often dominated by catchment 

area, with larger catchments generally experiencing higher flows than smaller catchments 

(Young et al., 2009). Larger catchments are able to receive more rainfall, which drains to the 

catchment outlet, but in addition, larger catchments also have longer response times and 

larger channel storage which contributes to low-flows (Cassie and El-Jabi, 1995).  The 

challenge is therefore to identify the characteristics that differentiate catchments of similar 

size. To reduce the effects of scale, flow may be normalised by area to better assess the 
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relationships between flow and other catchment characteristics (Young et al., 2009). 

Alternatively, flow may be normalised by other flow indices (e.g. mean flow) (Holmes et al., 

2002b). This is important, as the effects of scale are usually dominant and therefore the 

effects of other important characteristics are difficult to identify; once the effects of scale are 

minimised, other relevant relationships are easier to identify (Young et al., 2009). Common 

catchment characteristics used to describe low flows are described in Table 6. It may be 

difficult to identify catchment characteristics that may describe low-flows within a 

catchment (Smakhtin, 2001), and therefore it is important to gain an understanding of the 

type of characteristics that are likely to describe low-flows.  

Cervione et al. (1993) used regional regression to estimate the 7-day, 10-year flow (7Q10) for 

a selection of streams in Rhode Island, US. The 7Q10 is the lowest average flow within 7 

consecutive days, with an average recurrence interval of 10 years. The 7Q10 was estimated 

based on the percentage of stratified drift (unconsolidated, stratified sediment) and till 

(unconsolidated, non-stratified sediment) within a river basin. Schreiber and Demuth (1997) 

attempted to relate the mean annual 10-day minimum flow (MAM10) to geology, 

petrography, groundwater capacity and land use, by means of regional regression in 

Southwest Germany. Rather than calculating the entire catchment area of each gauging 

station, the area within a 1km buffer of five river stretches directly upstream of each gauging 

station were sampled, each stretch had a length of 1km (Schreiber and Demuth, 1997). It 

was noted that geology was the strongest variable, but groundwater capacity and land use 

were useful for accounting for some of the variance of MAM10. Schreiber and Demuth 

(1997)  suggested this approach would be useful in situations where catchment properties 

would be difficult to estimate.  

 To determine the “best” regression model including its form and parameters, both manual 

and automatic techniques can be used. Automatic techniques such as stepwise-regression 
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may be used, (Derksen and Keselman, 1992; Babyak, 2004; Altman and Andersen, 1989) 

and/or a more visual approach such as analysing a correlation matrix and scatter graphs.  

 

Catchment 
Descriptor 

Relation to low-flows 

Climate 
descriptors 

Precipitation and evapotranspiration define total streamflow within a 
catchment, in absence of artificial water transfers. In cold climates, 
temperature is significant as it relates to snowfall and snowmelt. Storage of 
precipitation as snow significantly reduces runoff and may therefore lead to 
a period of low-flow. In contrast, the snow melts, there is likely to be a 
significant increase in runoff. 

Elevation Catchments at higher altitudes are often exposed to more frequent and 
heavier precipitation. Elevation is also negatively correlated with 
temperature and therefore potential evaporation is reduced and 
precipitation is more likely to fall as snow.  

Slope On steep slopes, rainfall is more likely to travel via overland flow or 
throughflow processes rather than infiltrate into deep groundwater 
storage. 

Soil type Soil type influences soil water storage, hydraulic conductivity (ease of 
travel) and the rate and capacity of infiltration. Soil properties may also 
relate to the proportion of water that will infiltrate into deep groundwater 
storage, which is important during low-flow periods. 

Geology Geology primarily relates to deep groundwater storage. Sedimentary rock 
types are more porous and may have greater storage capabilities than the 
harder igneous and metamorphic rock type.  

Drainage 
density 

Drainage density is defined as the length of all streams per unit area; which 
relates to the permeability of the basin. Steep and/or impermeable slopes 
are associated with higher drainage densities and therefore reduced flow 
during dry periods. 

Land-use Land-use influences runoff processes and interception. Forests intercept 
rainfall, but provide greater soil stability and infiltration capacity. Urban 
areas are most associated with impermeability, but may also have other 
significant influences upon flow, which is discussed in section 2.5.5. Arable 
land may lead to preferential flow in plough lines. Pasture may be 
hydrologically similar to grassland, although poaching (destruction of the 
top soil layer by the movement of large animals) and soil compaction may 
occur. Lakes and reservoirs are a form of surface storage that may be 
significant for sustaining flow outside of storm events. 

Catchment 
area 

Catchment area is a scaling factor describing the accumulation of runoff to 
a single point. It therefore has a strong, positive correlation with flow. 

Table 6 - Examples of catchment descriptors that may relate to low-flows (Holden, 2012; Rees, 2009). 
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The number of parameters that may be used depends upon the number of gauges available, 

otherwise there is danger of overfitting (Babyak, 2004). To illustrate this, consider a 

regression model that includes 5 predictors but only has 10 observations, in this case this is 

the equivalent of estimating 5 separate regression models with 1 predictor and 2 

observations, which is indicative of a very poor model (Babyak, 2004). The inclusion of a 

predictor in a regression model reduces the amount of information available (observations) 

to estimate regression weights for each predictor, and will result in regression weights 

varying considerably between different samples. 

Care must be taken to understand the observed relationships between catchment 

characteristics and flow indices, as characteristics may be cross-correlated with other 

characteristics. This is a common problem when interpreting the relative strength of 

influence for topography and soils, which are often cross-correlated. Soils on steep slopes 

are generally coarser and thinner than soils on shallow slopes, and the combined effects 

encourage rapid water runoff and throughflow processes (Price, 2011). 

Once the form of a regression model has been determined the parameters must be 

estimated using the procedure of least squares minimisation. Traditionally, the ordinary least 

squares (OLS) approach is used, which assumes that the observations of the independent 

variable (i.e. flow) are equally reliable throughout the dataset. However this assumption is 

often not the case. Cross-correlation between concurrent flows and different record lengths 

between flow gauges is commonplace, violating the key assumption of OLS. An alternative 

procedure should be considered when this is the case. Generalized least squares (GLS) 

(Stedinger and Tasker, 1986) was developed for this purpose. Studies by Moss and Tasker 

(1991) and Kroll and Stedinger (1998) discuss the situations where OLS is satisfactory and 

where GLS should preferably be used. 
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2.5.3.  Regional mapping 

Various spatial mapping techniques may be used to estimate low-flow indices. The most 

commonly used methodology is the flow contour map. A flow index can be plotted onto the 

centroid of its catchment and flow contour lines may be drawn using manual or automatic 

procedures. This technique is simple, however it relies upon factors such as the quality and 

spatial density of gauged flow data, catchment variability and contour intervals (Smakhtin, 

2001). 

Physiographic space based interpolation (PSBI) is a spatial interpolation method, although 

within a two dimensional space of physiographic and climatic descriptors; described as the 

physiographic space (Chokmani and Ouarda, 2004). Any subcatchment can be represented as 

a set of X and Y co-ordinates within this physiographic space. These co-ordinates may be 

derived using techniques such as principle component analysis (PCA). The index of interest 

may be represented as the 3rd dimension and thus, may be interpolated, using kriging 

techniques (Chokmani and Ouarda, 2004). PSBI has been used successfully to estimate low-

flow indices (Castiglioni et al., 2009; Castiglioni et al., 2011); and to regionalise flow duration 

curves (Castellarin, 2014), using a PSBI methodology that was determined to be more 

representative of low-flows (in terms of relative error) than a regional regression approach. 

 

2.5.4.  Rainfall-runoff modelling 

A rainfall-runoff model can be used to create a synthetic time series using rainfall data, from 

which low-flow statistics can be extracted. Rainfall-runoff models may be categorised in 

many different ways. But, generally, they may vary in complexity, time-step and spatial 

distribution. 

Temporal and spatial resolution 
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Rainfall-runoff models operate at different temporal and spatial resolutions. The temporal 

resolution largely depends upon the resolution of available data, but commonly varies 

between the sub-hourly to annual time step. 

Spatial resolution can generally be categorised as lumped, semi-distributed and distributed 

models. Lumped models do not account for spatial variation and, therefore, attempt to 

describe the modelled region as one unit. These are generally quite simple models that focus 

upon the relationship between rainfall and runoff response, often with little or no attempt to 

explain this relationship (Beven, 2012d). 

One different approach is to attempt to group elements within the catchment based upon 

the similarity of characteristics. This may be accomplished by grouping sub-regions of the 

catchment by similar properties such as soil, geology and land use. A common approach is 

based upon the idea of hydrological response units (HRUs), popularised by the SWAT model 

(Arnold et al., 1993). HRUs attempt to classify areas of the catchment by a combination of 

different properties by overlaying maps of these different properties in order to identify 

areas which can be described as similar (Beven, 2012b). These models are spatially 

distributed to some extent, although they involve some degree of spatial lumping too. These 

are therefore known as semi-distributed models. 

Finally, models may be fully-distributed, applying a grid based system. Each grid cell stores 

parameters for the model, which are used to determine the distributed runoff response from 

rainfall (Beven, 2012c). For example, the Penn State Integrated Hydrologic Model (Qu and 

Duffy, 2007), the Systeme Hydrologique Europeen (Abbott et al., 1986), the KINEROS model 

(Smith et al., 1995), and the Institute of Hydrology Distributed Model (Calver and Wood, 

1995). 

 

Complexity 
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Complexity varies significantly between different rainfall-runoff models. This often relates to 

the spatial resolution, but also upon the extent the model can be considered to be empirical 

or process based. These could be categorised as: 

• Simplistic mathematical models, with little or no consideration of processes within the 

catchment. These are generally lumped models, with only a few select parameters 

often determined through calibration (Beven, 2012d). 

• Conceptual models, which try and consider the different storage elements and the 

fluxes between them. They are often catchment specific, attempting to determine the 

runoff response to rainfall which is specific to the catchment in question. Model 

parameters representing hydrological processes at the spatial and temporal scale are 

chosen for modelling the specific catchment (Young et al., 2009). 

• Physical models, which utilise parameters which are measurable and are generally 

spatially distributed in nature. Relationships between these parameters are commonly 

generated from sets of laboratory or field experiments (Young et al., 2009). For these 

physically based models it is especially important to have an appropriate model 

structure and parameter set for the catchment and operating scale. These models 

have the advantage of theoretically being able to model flows without the need for 

calibration and to be able to utilise scenarios; for example, simulating the effects of 

land use change within the catchment (Smakhtin, 2001).  

 

Parameterisation 

When attempting to estimate flows in an ungauged basin, some degree of parameter 

estimation is required, for which there is often a great deal of uncertainty. For simple and 

conceptual models this is often achieved by relating measurable properties to parameters,  



78 
 

(e.g. Midgley et al., 1995). This requires a sufficient number of representative gauged sites to 

quantify this relationship. 

Relationships between parameters and measurable watershed properties may be 

determined using techniques such as regional regression. However, for conceptual models, 

care must be taken when constructing such relationships, as there is often interaction 

between parameters. Techniques are available to alleviate this problem such as sequential 

regression (Lamb et al., 2000) and region of influence (Young, 2006).  

In contrast, physical models often require high detail, high resolution data (Young et al., 

2009). Success using this model type depends upon the availability and quality of data within 

the catchment. 

Calibration 

Most rainfall-runoff models require calibration to some degree in order to compensate for 

model structure and parameter errors. Mathematical models with few parameters are 

relatively simple to calibrate using automatic techniques. However, as the model complexity 

and number of parameters increases, automatic calibration becomes more difficult. This is a 

result of a greater number of possible parameter set combinations and interrelationships 

between parameters (Young et al., 2009). Therefore, these are often calibrated manually 

when possible. In such cases a sensitivity analysis may be used to determine which 

parameters are most important to adjust (Beven, 2012b).  

Calibrating a large number of parameters exposes the model to the threat of equifinality. 

First described by von Bertalanffy (1968), but with its roots in the work of Driesch (1908), 

equifinality describes the phenomenon of which different starting conditions may reach the 

same result. In the modelling context, this suggests that for a group of observations, there 

may be multiple feasible parameter sets (Beven, 2006). Following calibration, a set of 
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parameters may be chosen to be “optimum”; however, there may be a huge number of 

alternative parameter sets that will also provide an adequate solution. This is therefore a 

problem, as it is difficult to determine whether the parameter set chosen is representative.  

As parameters have a physical basis and are inherently measurable, physical models may 

theoretically be modelled without calibration. However, there is uncertainty as to how well a 

physical model describes the catchment it means to represent. All forms of distributed 

models involve some sort of lumping of data. In the case of grid based models, data is 

lumped within each grid cell at a scale greater than the scale of variation (Beven, 2012a). 

There is uncertainty as to how well data is measured and then approximated at the element 

level (grid or semi-distributed unit) (Young et al., 2009). Secondly, physically based equations 

are often derived from laboratory studies and there is uncertainty as to what extent these 

equations can be used at the working scale of the model. Therefore to compensate for these 

sources of uncertainty and error within the model structure, calibration is needed in the 

majority of cases (Beven, 2012a). 

For all model types, a low-flow calibration and validation approach is needed, such as 

measures proposed by Smakhtin et al. (1998). Models calibrated with the objective of 

simulating the timing and/or magnitude of flood peaks may not be appropriate to generate 

reliable low-flow statistics. 

 

2.5.5.  Artificial influences 

Human activity has a profound effect upon water within river catchments. It is impounded by 

reservoirs, it is abstracted, weirs and levees are built, and water is released from sewage 

treatment plants (Smakhtin, 2001; Gustard and Young, 2009). With only a consideration of 

flow under natural conditions, flow estimation lacks realism. The challenge is to obtain 
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information about artificial influences in the catchment, to quantify their effect and thus 

apply this to the estimate of natural low-flow (Gustard and Young, 2009). 

 

2.5.6.  Approaches taken to flow estimation by previous GREAT-ER studies 

For the majority of GREAT-ER applications outside of the UK, the estimation of low-flows has 

been simplistic, with the stream network approach most favoured. For example, the study of 

the river Glatt utilised simple interpolation between gauges for the mean and Q95 low-flow 

statistics (Alder et al., 2010). This approach assumes that flow is entirely dependent on the 

accumulated length from the upstream gauge, and lumps elements that may increase (e.g. 

tributaries, STW outflow) or reduce flow (e.g. water abstraction), this lacks realism.  

Low-flow statistics were estimated for the river Rur and the river Lambro using non-linear 

regression, with the accumulated river length as the predictor variable (Schulze and 

Matthies, 2001; Schowanek and Webb, 2002). This was then corrected using adjustment 

factors based upon the differences between gauged and estimated flow at gauging stations. 

In addition, further adjustments were made if the level of dilution within the receiving 

waters for large sewage treatment plants was too low. Dummy gauging stations were 

created in both the receiving stretch and the upstream stretch, applying the mean effluent 

flow as the difference in flow between these two gauges. Finally, in a study by Zhang et al. 

(2015a), a SWAT model was used to estimate low flows for a catchment within the Beijing 

region. However, the model was originally validated with the purpose of simulating monthly 

mean flow and loadings of sediment and nutrients, for which correctly estimating low-flows 

was of less importance. As described in section 2.5.4, rainfall-runoff models should be 

calibrated for the purpose of low-flow estimation and therefore it is unlikely to perform 

optimally for the task of low flow estimation. It is also uncertain as to whether artificial 

influences were included within this model. Although there are limitations with the approach 
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used by Zhang et al. (2015a), the ease of estimating low-flow statistics from a pre-existing 

model is advantageous, and therefore this form of approach, in general, may be considered 

to be pragmatic. 

The approaches described above provided little consideration of artificial influences to flow, 

which may be significant. One exception is a study by Aldekoa et al. (2013), when a more 

detailed approach was applied that took artificial influences into account  (i.e. reservoirs, 

abstractions and STW discharges). Their model also considered chemical removal from the 

main stream via water abstractions, accomplished by creating artificial bifurcations at 

abstraction points.  

Studies within the UK have taken perhaps the most complex approach towards the 

calculation of low flows for the GREAT-ER model. The methodology used by Young et al. 

(2000a) and Young et al. (2000b) is summarised here. Mean flow was calculated using a 

simple water balance model based upon gridded annual precipitation, potential evaporation 

and catchment area. The Q95 statistic was determined by relating Q95 normalised by mean 

flow (to reduce climatic control over the statistic) to soil and geology type. A UK soil 

classification system, the hydrology of soil types (HOST), relates soils and geology to their 

hydrological properties. A regional regression model was derived based upon the normalised 

Q95 statistic and the fractional extent of each HOST class (Young et al., 2000b).  

 

2.6. Chemical emission 

This section outlines the approach developed to provide a spatially explicit estimate of 

chemical emission throughout a catchment, from both treated and untreated wastewater 

discharge. 

 



82 
 

 

 

2.6.1.  Estimating chemical usage 

Chemical emissions are calculated based upon two factors: population and the mass of 

chemical released to wastewater per capita (hence denoted as chemical usage). Chemical 

usage may be calculated based upon: 1) sales data for the chemical of interest or 2) by back-

calculating based upon STW influent or effluent data. 

Sales data for products containing the chemical of interest may be available (Hodges et al., 

2014). If then the mass of the chemical of interest can be determined for each product, the 

total mass per annum can be calculated. The chemical usage can therefore be determined by 

dividing the total mass of chemical sold per annum by the population of the given year. 

However wealth generated from China’s economic development is not uniformly distributed. 

The South-East is the wealthiest region of China. At the provincial scale, per capita wealth is 

significantly higher in urban areas. It is, therefore, likely that the affordability and general 

availability of products containing the chemical of interest is not uniformly distributed in 

China. By estimating the affordability of each product based upon GDP, it is possible to 

estimate the spatial distribution of chemical usage based upon GDP and population density. 

This is fully explained in Hodges et al. (2014). 

Alternatively, chemical usage may be back-calculated. Samples taken at the influent or 

effluent of a STW within China may be collected with the intention of measuring the 

concentration of the chemical of interest (Liu et al., 2015). If the population served and mean 

discharge for the STW is known, the chemical usage may be estimated. Due to the 

uncertainty and variability surrounding the data (Johnson et al., 2008b), measurements from 

multiple STWs is required for an accurate estimate. 
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2.6.2.  Estimating the spatial distribution of wastewater discharge 

The discharge element of GREAT-ER requires a significant amount of data about STWs and 

untreated discharges. Firstly, STWs must be located and population served by a STW must be 

acquired or estimated in order to estimate the mass of chemicals to be treated (Wagner and 

Koormann, 2011). Once obtained, the treatment type (e.g. activated sludge technology) is 

required to determine how much of that mass is removed by the STW. Removal may vary 

significantly depending upon the treatment type, for example chemical removal occurs as a 

result of biological processes in trickling filter plants , whilst  activated sludge plants rely 

upon both biodegradation and sorption for chemical removal (Stuetz and Stephenson, 2009). 

Therefore, chemicals that are more effectively removed by sorption will likely be removed to 

a greater extent in activated sludge plants than trickling filter plants. Finally, information 

about the spatial distribution and magnitude of untreated discharges is required. 

A list of STWs operational in China is made available annually by the MEP 

(http://www.mep.gov.cn). This provides the STW mean and capacity daily discharge, STW 

treatment type and construction date. However, the population served and the STW 

locations are not provided. STWs constructed in the last or current year will not appear on 

the list. 

Consequently, STWs must be located with the assistance of alternative sources and then 

populated with the necessary attributes of each STW. Finally the distribution of untreated 

discharges throughout the catchment must be estimated using limited data. Figure 10 

provides an overview of the approach used to acquire this information. It is important to 

note the acquisition of each data element is not independent of others. The key is to 
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estimate the STW wastewatershed, where a wastewatershed is the area served by a STW, 

represented as a vector polygon. Gridded population is utilised, each grid cell representing 

the sum of population within each cell. Using the wastewatershed polygon, the population 

sum for the area served by the STW can be determined. The untreated discharge can be 

estimated from the population outside of wastewatersheds. 

  

Figure 10 - Flow chart outlining the procedure of locating a STW. 

 

Each of these elements will be discussed in further detail. 

The contents of this section are as follows: 
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1) Approach used to locate and identify STWs 

2) Methodology used to delineate a STW wastewatershed 

3) Estimation of untreated discharge spatial distribution 

2.7. Locating and identifying STWs 

STWs were located manually using Google Earth. To aid this search a dataset was developed 

to highlight population centres and settlement extents; areas that are likely to contain a 

STW. 

  

Figure 11 - Locating STWs with the aid of population data. Dataset based upon Landscan (Bright et al., 2006). 

 

A gridded population dataset may be used to assist this process. A gridded population 

dataset is an estimation of the population distribution, usually based on census data (e.g. 

Gridded Population of the World, Version 4 (GPWv4) (CIESIN, 2016a)). More detail is 

provided about available population datasets in section 3.6. These datasets are used to 

identify the location of settlements. This is made more efficient by modifying these 

population datasets, by filtering out isolated cells with high population (that we are not 

interested in) and to emphasise the area occupied by a settlement. To accomplish this, the 

population dataset is smoothed using the focal statistics tool within ArcGIS’s toolbox. For 

A B C 
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each cell, the sum of the surrounding cells is calculated. As a result, the relative population 

of low population cells in town centres is increased, as these cells are usually surrounded by 

cells with high population. Moreover, the population of isolated high population cells are 

reduced significantly, as they are usually surrounded by cells with very low population. The 

resulting dataset is categorised and the category representing the lowest population density 

is made invisible, filtering out areas with low population. The lowest population density 

category is determined by means of calibration. This result can be achieved without the first 

step that smooths the dataset, however, isolated cells would still be displayed, and there 

would be “holes” within the settlements’ extent (Figure 12B). By smoothing the population 

dataset using focal statistics, the location and extent of settlements is clearer (A). Figure 11 

shows the result of this visual modification and further how this may aid the identification of 

a STW. Figure 11-B displays a satellite image, if compared to Figure 11-A the areas of interest 

are immediately apparent and thus can be examined for STWs such as those identified in 

Figure 11-C. Alternatively, the population dataset could be aggregated into a larger cell size 

and/or simply use an effective categorisation system for visualisation. However, whilst 

reducing the cell size has a similar effect, it sacrifices some of the shape of the population 

centres. A categorisation system alone will lack clarity provided by the smoothing effect of 

focal statistics. Figure 12 provides an example of these alternative approaches. This process 

is not essential, but it may significantly increase the efficiency of locating STWs, and assists 

with a more systematic search. In addition, if riverlines are digitised as discussed in section 

2.4.3, many STWs may be noted alongside the river during the digitisation process, although, 

this is not sufficient alone. 
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Figure 12 - Population visualisation options; for all three approaches, cells with a low population density are filtered out. The value for “low population density” was determined by means of 

manual calibration. What was considered to be “low population density” varied between the original and modified population datasets, as the population density in the modified datasets 

increased as a result of the modifications. (A) Population density data smoothed using focal statistics; (B) resampled population density; and (C) original population dataset. Where the original 

population density has a cell size of 1km2 and the aggregated population density has a cell size of 2km2. 

A B C 



88 
 

2.8. Wastewatershed delineation 

As discussed earlier, the wastewatershed is the boundary for the area served by a STW. This 

allows the population served to be estimated by using the boundary to extract the sum of 

population from a population grid. The area outside the wastewatersheds is assumed to be 

untreated. 

It is difficult to know the exact boundary for a STW’s wastewatershed. However, the 

principle factor that is considered when constructing a sewer network is cost (Federation, 

2009). The maximum possible volume of sewage is collected per meter of pipe. Therefore, 

densely populated areas and/or areas with industry are likely to be prioritised. Pipes are 

usually built so that wastewater flows to the STW by gravity (Brière, 2007). If an area is 

topographically situated so that water must travel uphill, a pumping station is required. This 

is a significantly more expensive approach than gravity based sewers, and will therefore be 

avoided unless it is considered to be worth the expense.  

Delineation of STW wastewatersheds relies upon an underlying population grid and the 

DEM. The principle assumptions when delineating a wastewatershed are that: 

1) Areas of high population are more likely to be served than areas of low population 

density. 

2) Wastewatersheds do not cross the STW’s topographic watershed. Primarily sewers 

will be gravity based and not pumped unless absolutely necessary. STW’s may serve 

an area a short distance upstream, within the stream’s topographic boundary. 

a. However, if a population centre is served by a single STW it may be 

acceptable to serve areas of high population that are slightly outside of the 

boundary. 
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In order to achieve this, subcatchments are generated for each river stretch (described 

hereafter as river stretch catchments). The catchment area for each river stretch excludes 

the area drained by upstream river stretch catchments (e.g. Figure 14). This was achieved by 

using the stream reach and watershed tool within the TauDEM GIS toolbox 

(http://hydrology.usu.edu/taudem/taudem5) for ArcGIS. Using the DEM, flow direction grid, 

flow accumulation grid and the river stretch grid (see Figure 4) as inputs, polyline river 

stretches and polygon river stretch catchments are generated. Each river stretch and 

associated river stretch catchment is assigned a stretch ID (shared by the river stretch and 

the river stretch catchment). The mean and total population for each river stretch catchment 

are then calculated using the “zonal statistics as table” tool within ArcGIS’s Spatial Analysis 

toolbox (http://desktop.arcgis.com/en/arcmap/10.3/tools/spatial-analyst-toolbox/zonal-

statistics-as-table.htm) using data from the underlying population dataset. This is then 

stored as a table (e.g. Figure 14), with each river stretch catchment identified by its stretch 

ID. The river stretch catchments are then linked to the table output using the stretch ID as 

the key/foreign field. This enables the population within each river stretch catchment to be 

displayed on a map (e.g. Figure 14). 

The population density of each river stretch catchment is displayed visually, which aids the 

delineation of the wastewatersheds. The delineation procedure varies depending upon the 

size of the settlement; initially the focus will be on towns and small cities. 

http://hydrology.usu.edu/taudem/taudem5
http://desktop.arcgis.com/en/arcmap/10.3/tools/spatial-analyst-toolbox/zonal-statistics-as-table.htm
http://desktop.arcgis.com/en/arcmap/10.3/tools/spatial-analyst-toolbox/zonal-statistics-as-table.htm
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Figure 13 - Calculation of population (mean and sum) for river stretch catchments using the zonal statistics tool in 

ArcGIS spatial analysis toolbox. The river stretch catchments drain only to their respective river stretch, and then 

subsequently, to other downstream stretches. Using the tool “zonal statistics as table”, the population sum and 

mean are calculated for each river stretch catchment, using a gridded population dataset for this purpose. 
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Figure 14 - Map displaying the sum of population contained within each river stretch catchment. Location: 

Longchuan county, Heyuan city, Guangdong province. 

 

The main concern with this methodology is its inconsistency. A methodology that multiple 

users could use to produce similar results is desirable. This proves to be difficult due to the 

somewhat arbitrary nature of digitisation decisions. Furthermore, a procedure was produced 

which provided greater consistency, this is described below. 

The symbology is redefined for the delineation of every STW, as it is important to display the 

relative population for the region. Defining a symbology that represents the variability of 

population within the area makes it significantly easier to determine which areas are more 

likely to be served by a STW. This is achieved using a manual but relatively consistent 

approach. In most GIS platforms, the symbology classes (e.g. Figure 15) may be generated                     
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semi-automatically based on the statistical distribution of the dataset. The approach found 

to be most effective was to classify the data based on the standard deviation from the mean 

of the dataset (e.g. Figure 15 and Figure 16). This approach is most effective when generated 

from a subset of the dataset; where the symbology is generated from population data within 

the same region as the STW only. River stretch catchments were selected from the region, at 

a scale of approximately 1:250,000. 

In Google Earth, the outline of the nearby/adjacent settlement is digitised and imported to 

the GIS. In the next step, the population symbology is defined, using standard deviations 

from the mean as symbology categories. Using the digitised settlement outline, river stretch 

catchments with a population > 0.5 standard deviations above the mean are selected, which 

includes the main areas of the settlement and excludes the sparsely populated areas, as 

shown by Figure 16. In addition, river stretch catchments for river stretches that connect the 

STW with the town or city should be selected. Wastewatershed digitisation, in the majority 

of cases, is similar to the situation illustrated by Figure 16, where the outline of the 

settlement can be clearly seen. In the example given, digitisation follows the outline polygon 

created in Google Earth, selecting subcatchments along the river from the STW to the 

settlement and all river stretch catchments with a population density above and including 

0.5 standard deviations above the mean. This category was selected as a result of calibration. 

Wastewatershed delineation within large cities may require more precision and additional 

data. For example, Figure 17 illustrates a scenario where multiple STWs share a catchment; it 

is challenging to determine where the limit of one wastewatershed ends and another starts. 

In addition, large sections of these cities may be untreated. In order to tackle this problem it 

is crucial to acquire additional data regarding population served or the service area of STWs 

within the area. 
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Figure 15 - Customising the symbology of the river stretch catchments in order to display standard deviations 

from the mean (for population density, pop/25m2). As shown, the symbology is automatically generated based 

upon the mean and standard deviations of the population dataset. ArcGIS is used in this example, however other 

GIS platforms may be used. 
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Figure 16 - Final delineation example – Zjin town, Zjin county, Guangdong Province, South-East China. Population 

density within river stretch catchments are displayed as standard deviations from the mean. The catchments 

highlighted in blue are those selected to be delineated for the STW wastewatershed. The river stretch catchments 

between the STW and the main settlement are selected, as are all river stretch catchments that are within the 

settlement outline that contain a population >0.5 standard deviations above the mean (8 persons/25m2). The cell 

size of the original population dataset is 25m2. 
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Figure 17 - Map displays multiple STWs clustered within a single settlement – Shenzhen city, China. This 

complicates wastewatershed delineation. 

 

2.9. Identifying STWs 

STWs that are located require identification in order to acquire required attributes. Firstly, 

the STWs may be checked against the list of STWs in China provided by the MEP. The list 

provides a construction date and an approximate indicator of location from its name and 

given city-region. A range of construction dates for located STWs can be determined using 

Google Earth’s historic imagery by identifying which images contain or identify the presence 

of the STW, and those that do not. Therefore with an idea of construction date and location, 

some, but not all STWs can be identified. For those remaining, other data sources can be 
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used. The website www.Ipe.org.cn provides a web-based map displaying and naming a 

significant number of STWs. However, a small number of errors were noted and, therefore, it 

is important to be critical of this data source. Utilising both above methods provides 

improved confidence. 

Additional information such as population served may be identified using reports and articles 

on the web. Unidentified STWs may also be identified by reports about any STWs in that 

given area, although this is a somewhat time consuming step. Owing to the Chinese 

government’s eagerness to display progress towards tacking water pollution, a large number 

of news outlets often announce the construction of a STW in great detail. This may include 

treatment type, population, service area and discharge rate. Therefore, reports were located 

online using either the name or location of the STW as a search term. This approach required 

an acceptance that many of these sources are likely to be biased, which is unfortunately 

unavoidable. As this is particularly time consuming, this task should be restricted to STWs in 

highly populated areas. 

For identified STWs, subcatchments should be selected with the intent of reaching the 

population and service area specified, if available. Several wastewatershed delineation 

iterations may be required for areas with multiple STWs, to avoid an overlap of boundaries. 

Once STWs within an urban area are delineated, those without population or service area 

data may potentially be delineated using the space that remains between already delineated 

wastewatersheds and the topographic boundary, such as that shown by Figure 18. 

http://www.ipe.org.cn/
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Figure 18 - Example of wastewatershed delineation for an unidentified STW within an area of Shenzhen city 

served by multiple STWs. Wastewatersheds were delineated for nearby identified STWs and surround the 

topographic area upstream of the unidentified STW. Therefore, in this example the entire available area 

upstream was delineated. The area to the East is outside of the topographic area. 
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2.10. Emissions from untreated wastewater sources 

It is assumed that a fraction of a given chemical substance will not be released to the river 

network. The diffuse emission rate (DER) describes the fraction of a chemical substance that 

is retained and released to the waterways. Reducing the DER therefore increases the rate of 

removal for a given chemical substance in subcatchments not served by a STW. Emissions 

are determined for every untreated subcatchment, where: 

Untreated chemical emission = Population ∗ Per capita chemical usage ∗ DER (38) 
 

 

It is assumed that a fraction of untreated wastewater will not reach the waterways as a 

result of poor drainage; chemical substances within the wastewater that does not reach the 

waterways are assumed to be lost. 

Rural areas are less likely to be treated in comparison to urban areas, and therefore the 

majority of untreated subcatchments will likely be rural (National Development and Reform 

Commission, 2016).  

Subcatchments that are assumed to be untreated were identified by the method outlined in 

this section. DER is calculated using a stochastic approach; as DER is unknown, it is assumed 

to vary from 0-1 in a uniform distribution. This is incorporated into GREAT-ER by assigning a 

“dummy” STW to every stretch which may receive untreated wastewater; these dummy 

STWs were assigned a separate distribution to real STWs. 
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Chapter 3  - The East river catchment 
 

3.1. An introduction to the East river catchment 

The East river is a major tributary of the Pearl river, South China (Figure 19). The catchment 

area is 25,325 km2 (above Bolou gauging station), of which approximately 90% resides in 

Guangdong Province. The source of the East river is in the North-East of the catchment, in 

Xunwu county of Jiangxi province; the river then flows south-westerly to the Pearl river 

delta, where it discharges into the South China sea. The East river’s mean annual discharge is 

763 m3/s, which peaks in July with a mean monthly discharge of 1758 m3/s and drops to an 

annual low in January with a mean monthly flow of 377 m3/s. More details regarding the 

seasonality of the catchment is provided in section 3.1.4. 

 

3.1.1.  Socio-economic history of the Pearl river delta 

The East river’s downstream region is well developed and relatively prosperous; home to 

cities such as Guangzhou, Dongguan and Shenzhen. The region has attracted wealth and 

migrants from other regions and is now home to ~24 million people. Wealth generated 

within the region is largely a result of trade; the Pearl river delta itself an important region 

for international trade. Historically, international trade was disproportionately focused upon 

the Pearl river delta region within China. In the 17th Century, trade between China and the 

rest of the world was largely restricted to Canton City, now known as Guangzhou, 

Guangdong province’s capital. Initially, the majority of trade came from Britain, with the 

trade of tea, silk and porcelain in exchange for cotton, wool and opium (Nield, 2015). 

From 1979, four special economic zones were established within China, allowing some 

degree of autonomy to establish policies which were attractive to foreign and domestic 
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trade. Three of these zones were established in Guangdong province: Shenzhen, Zhuhai and 

Shantou. This greatly opened up the area to foreign investment. The number of special 

economic zones later expanded to other coastal regions (Zheng, 2014). 

 

Figure 19 - The East river catchment a tributary of the Pearl river, South-East China. The study catchment’s outlet 

is the Bolou river gauge, which marks the tidal limit. 
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China’s economic reforms led to strong growth, initially focused upon the special economic 

zones and later extending along China’s coastline. The Shenzhen special economic zone 

attracted large internal migration from other regions; its population increasing from 60,000 

in 1980 to 6.07 million in 2000 (Oizumi, 2011). In 1985 the Pearl river delta open economic 

zone was established (Zheng, 2014). This includes the prefecture-level cities: Guangzhou, 

Shenzhen, Zhuhai, Foshan, Jiangmen, Zhaoqing, Huizhou, Dongguang and Zhongshan (Figure 

19). The zone has demonstrated significant development, however the three peripheral 

cities: Huizhou, Jiangmen and Zhaoqing have performed less favourably with income levels 

below the mean for Guangdong province in 2009. This illustrates that although as a whole 

the region is of great importance, there is great disparity in wealth in China, even at the sub-

provincial scale. 

 

3.1.2.  Water supply 

The catchment is politically significant, as the source of the majority of the region’s water 

supply, including perhaps most significantly, Hong Kong. Between 2004-2014, Hong Kong 

sourced ~64-89% of its water from the East river as a result of the Guangdong-Hong Kong 

Water Supply Agreement, which in 2015 was extended, guaranteeing 820- 1100 million 

m3/year (Hong Kong Legislative council research office, 2015). 

The estimated total water resources (surface water and groundwater) of the East river in 

2008 were 32.7 billion m3. From this, 10.7 billion m3 was allocated to 8 different 

cities/regions. The cities: Hong Kong, Dongguan, Shenzhen, Heyuan and Huizhou heavily rely 

upon (~>70% reliance) the East river for water resources and are therefore vulnerable to 

further changes that may threaten water availability. In 2010 allocations for Heyuan, 

Dongguan and Shenzhen were exceeded; and forecasts for 2020 estimate that Huizhou, 
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Dongguan and Heyuan will exceed their allocations by 32%, 41% and 58% respectively (Su et 

al., 2011). 

 

3.1.3.  Water quality 

Monitoring data between 2008-2010 shows a steady reduction in the area of the river basin 

which meets national water quality standards (Su et al., 2011). With increasing wastewater 

discharge, there are suggestions that by 2020, even with 100% of wastewater treated in the 

catchment to national wastewater treatment standards, water would still fail to reach 

national quality standards (Su et al., 2011). 

As part of Guangdong socio-economic policy, industry has been encouraged to relocate from 

the more prosperous delta region to cities upstream such as Huizhou and Heyuan. Rapid 

development of industrial parks has been observed in these regions, which is likely to have 

environmental implications. But there are also concerns that this may expand further 

upstream into more ecologically sensitive regions (Su and Dao, 2012). 

Various measures have been taken to ensure that clean water is provided for Hong Kong. 

Firstly, the water abstraction point on the East river was moved upstream in 1999, to a 

position with superior water quality (Hong Kong Water Supplies Department, 2015). The 

water is then stored within multiple reservoirs, with water within Shenzhen reservoir treated 

by a bio-nitrification plant and finally pumped to Hong Kong for final water treatment before 

consumption (Hong Kong Water Supplies Department, 2009). 

Measures have also been taken to improve the water quality within the East river, including 

significant expansion of wastewater treatment facilities (Figure 24) and increased 

compensation flows from all major reservoirs in the dry season (Dongjiang River Basin 
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Authority, 2010; Dongjiang River Basin Authority, 2014). This has led to reports of improved 

water quality (Hong Kong Information Services Department, 2013; Kao, 2013). Further 

improvements are planned for the catchment which is likely to improve pre-emission 

contaminant removal throughout the catchment. 

Effective management of the catchment is critical to avoid or mitigate these current and 

future threats. The East river catchment is therefore an ideal study area which will test the 

GREAT-ER model’s capabilities as a management tool. 

  

3.1.4.  East river seasonality 

The catchment is subject to a sub-tropical climate which is dominated by a highly seasonal 

pattern of rainfall and flows (Figure 20 and Figure 21).  Approximately 78% of rainfall falls 

between April-September, with frontal rainfall during April-June and monsoonal rainfall 

June-September (Chen et al., 2007). A long flow recession period follows the wet season, 

which ends with the dry season between December and February. 

  

The GREAT-ER model accounts for the variability of flow based on the flow duration curve, 

which plots discharge against the percentage of time that flow will be equalled or exceeded. 

The flow duration curve may be considered a frequency curve if it is assumed that each data 

point within a time series for a catchment is independent of one another (Vogel and 

Fennessey, 1994; Tallaksen and van Lanen, 2004; Telis, 1991). This is an approximation, as 

the time series from one year will, to some extent, affect the next due to its serial nature and 

adjacent data points within a time series will also show strong correlation. The 

approximation of assuming elements within a time series are independent is less appropriate 

in both groundwater dominated catchments and catchments which experience a strong 
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seasonal variation in rainfall, for example monsoonal catchments. A catchment with a strong 

seasonality that is significant when compared with inter year variability will also show a 

strong trend and hence serial correlation within a year that will tend to repeat itself every 

year. Calculating low-flow statistics for each month separately, it can be argued, is more 

appropriate than calculating annual statistics as the influence of within year correlation is 

reduced within the analysis.  

  

Figure 20 - Monthly discharge at Boluo gauging station for 2006-2008. There is strong seasonality, with much 

greater discharge in the summer, particularly June, in comparsion to the rest of the year. 

 

The difference in flow between the dry and wet season is approximately a factor of between 

2 and 4 (Figure 21). However sampling campaigns within the region have presented 

conflicting data that suggests that the wet season may possibly produce conditions that lead 

to: higher concentrations (e.g. Figure 22), no significant difference in concentrations (e.g. 

Figure 23) or lower concentrations (e.g. Table 7) in comparison to the dry season for 

pharmaceuticals and personal care product (PPCP) ingredients such as TCS, TCC and 
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ibuprofen. This has also been noted in a semi-arid subcatchment of the Yellow river for 

estrogens and bisphenol A (Table 8), which was attributed to runoff driven diffuse sources 

(Liu et al., 2017). 

 

Figure 21 - Mean monthly flow (as a percentage of mean flow) at a selection of gauges in the East river 

catchment. 

 

Figure 22 – Data from a sampling campaign in a rural subcatchment of the East River (downstream of our study 

site) (Zhang et al., 2015b). S1-S15 denote the sample site ID, for which S1-S12 are rural sites located downstream 

of a settlement that is known to discharge wastewater directly into the river. S13 is at the outlet to the East river, 

and S14 and S15 are sites on the East river. D, N and W denote samples taken in the dry (December, 2012), 

intermediate (March, 2013) and wet season (June, 2013) respectively. BT (columns shaded black on graph) 

denotes Benzotriazoles, which are chemicals commonly used in dishwasher detergents and anti-icing fluids (Giger 

et al., 2006). Biocides studied may be used as ingredients within personal care products (Zhang et al., 2015b). 
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Figure 23 – Data from sampling campaign in the Zhujiang, Liuxi and Shijing rivers, tributaries of the Pearl river 

(Zhao et al., 2010). Sampling sites S1-S3 were taken from the Liuxi river sites, S4-S10 were taken from the 

Zhujiang river, and sites S11-S14 were taken from the Shijing river. Samples were collected in the dry season 

(December, 2007) and the wet season (September, 2008). Overall Zhao et al. (2010) determined that there was 

no statistically significant difference between the concentration of chemicals from samples collected in the wet 

and dry season. 

 

The difference in emissions and chemical removal between seasons is likely to be relatively 

small in comparison to dilution. Regarding emissions, certain products are likely to be used 

more often in the wet season, for example it is possible that residents may take more 

frequent showers in the hot and humid summer, therefore the use of soaps will likely to be 

greater. Although it is not likely this increase in usage will be large.  

In regards to degradation, greater solar radiation will likely increase photodegradation, and 

increased water temperatures may increase biodegradation. It is generally accepted that 

increased temperatures enhance biological activity and processes. This will lead to lower 

exposure levels for chemicals for which these processes are significant. 
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Compound 

Low-flow season High-flow season 

Concentration Concentration 

Range Median Range Median 

Estrone 8–65 34 ND-32 9 

17α-Estradiol ND-2 1 ND-1 0 

17β-Estradiol ND-2 1 NQ NQ 

Estriol ND-1 0 ND ND 

17α-ethynylestradiol ND-1 0 ND ND 

Mestranol ND ND ND ND 

Diethylstilbestrol ND-1 0 ND ND 

Methylparaben NQ-1062 82 NQ-213 12 

Propylparaben 8–2142 631 NQ-480 34 

Butylparaben ND ND ND ND 

Nonylphenol 36–33,231 2516 484–30,548 1284 

Bisphenol A 6–481 106 13–881 36 

Triclosan 48–1023 405 35–217 77 

2-Phenylphenol 8–2506 112 NQ-400 30 

Salicylic acid 9–2098 132 18–1440 52 

Clofibric acid NQ-248 46 22–59 35 

Ibuprofen ND-1417 360 ND-535 59 

Naproxen ND-328 181 ND-22 11 

Gemfibrozil ND ND ND ND 

5β-Coprostanol 10–2717 99 11–345 66 

Table 7- Concentrations of PPCPs measured in samples collected from urban streams in the Pearl river delta (Peng 

et al., 2008). As shown, concentrations in the dry season are significantly higher than those in the wet season. ND 

denotes: not detected; and NQ denotes: detected, but not quantified. 
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Compounds Wet season (ng/l) Dry season (ng/l) 

 Range Mean Range Mean 

Estrone ND-16 2.51 ND-4.46 0.85 

17β-estradiol ND-5.79 0.32 ND-2.52 0.24 

Estriol ND-10.5 0.86 ND-8.3 1.59 

17α-ethinylestradiol ND - ND-0.86 0.03 

E1-3S 0.06-14 1.48 0.05-1.7 0.51 

E2-3S ND-26.3 2.69 ND-5.8 0.98 

Bisphenol A 1.06-1036 86.3 0.63-348 37.7 

Table 8 – Data determined from samples collected from a semi-arid sub catchment of the Yellow river (Liu et al., 

2017). Where ND denotes: not detected. The target compounds are known endocrine disrupting chemicals, apart 

from E1-3S and E2-3S, which are conjugates of E1 and E2 respectively. The concentration of the majority of 

compounds is greater in the wet season than the dry season. 

 

It was noted by Zhao et al. (2010), that concentrations of PPCP ingredients were similar in 

the dry and wet season in samples taken in Guangzhou, South China (Figure 23). They 

suggested that there may be untreated water released from the >200 small urban dammed 

streams in Guangzhou during rainfall events in the wet season, which are normally pumped 

to STWs in the dry season. It is also possible that the volume of stormwater exceeded the 

capacity of the sewers, leading to wastewater spilling through combined sewer overflows 

(CSOs) (Field et al., 2003).  

Greater concentrations of PCP ingredients in the wet season was also noted in the study by 

Zhang et al. (2015b), for which the focus was upon several small rural towns and villages. As 

shown in Figure 22. It is possible that the nature of rural wastewater treatment (e.g. 

wastewater storage ponds) in the area leads to the flushing of wastewater during large 

rainfall events in the wet season. However, there is no substantial evidence in either case.  
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Figure 24 - Expansion of STWs in the East river catchment between 2008-2016. 

 

A model is a representation of the modeller’s understanding of system, therefore as this wet 

season mechanism is not yet understood, it is not possible to create a model for this season. 

A model representing the dry season is possible, and in terms of dilution the dry season 

theoretically poses a greater risk. 

 

3.1.5.  Objective 

The GREAT-ER model was used to simulate the concentration of two personal care product 

ingredients: TCS and TCC, and two natural estrogens: Estrone and Estradiol in the East river 
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catchment, South China. The model was used to generate exposure scenarios for the past, 

present and future. The past scenario was based upon the dry season of 2008/09, and 

attempts were made to validate the model using sampling data obtained in December 2008 

by collaborators from the Guangzhou Institute of Geochemistry. The present scenario was 

based upon the 2015/16 dry season, with samples taken in January 2016 as part of this 

current study.  

Finally, the model was used to simulate conditions in the dry season of January 2020, for 

which two scenarios were modelled. The first future scenario examined the effect of 

increased chemical emissions as a result of population change, mitigated by the 

development of sewage treatment infrastructure within the catchment.  

The second scenario built upon the first, but focused upon catchment management. A 

hotspot analysis was performed to determine the areas of greatest concern and the main 

pollution sources. As a result, possible mitigation measures were designed and then 

incorporated into a catchment management scenario to estimate the effectiveness of each 

approach. This is described in more detail in section 3.10. 

 

3.1.6.  Study region 

A sub-catchment within the East river was selected. The outlet to the chosen sub-catchment 

is the Boluo river gauge (Figure 19), which marks the tidal limit. A simulation of the influence 

of the tide is unfeasible due to the complexities involved. The upper limit is marked by the 

three main reservoirs of the catchment, shown in Figure 24. The catchment upstream of 

these reservoirs is sparsely populated and unlikely to be of great risk from organic 

contaminants, outside of a few hotspots. It is challenging to sample the entire catchment 

with limited resources and it is more desirable to have a more focused campaign in a more 
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restricted area. As a result, the focus of this study was placed upon the catchment 

downstream of these reservoirs. 

 

3.2. Subcatchment delineation 

Sub-catchments and the overall catchment for the East river were generated from the 1   

arc-second SRTM DEM. The SRTM DEM was projected to an North Asia Albers equal area 

conic projection with a cell size of 25m. The Garbrecht and Martz (1997) D8 algorithm was 

utilised along with the AGREE burning in procedure (Hellweger, 1997). Riverlines were 

digitised using Google Earth for use of the “burning in” process. Riverline digitisation focused 

upon major stretches, major urban areas, river stretches that were sampled (see section 3.8) 

and those riverlines that connect to STWs. All digitised riverlines were connected to the 

outlet. The algorithm requires the following parameters:  

1) Smooth drop - the depth that the cells intercepting the river line will drop (or raise), 

the cells within the buffer zone will then be interpolated in order to create a straight 

line between the river line and the elevation just outside of the buffer zone. 

Therefore, a greater value for smooth drop will lead to a steeper slope within the 

buffer zone 

2) Sharp drop - the depth of which the DEM that intersects the river line will drop (or 

raise), which is performed after the smooth drop 

3) The buffer width - defines the area that will be modified, adjacent to the river line 

(Hellweger, 1997). 

After calibration, the optimum parameters for the AGREE algorithm were 50m sharp drop, 

5m smooth drop with a 100m buffer. Riverlines were then generated from the DEM as 
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described in section 2.4  using a threshold of 1000 accumulating cells. Subcatchments were 

then generated as described in section 2.8, using the TauDEM GIS toolbox. 

Evaluation 

Digitisation was focused on the main network and major urban areas. Streams that were not 

digitised were generated using the DEM alone, and therefore are subject to uncertainty 

regarding their flow path and catchment area. However, even digitised streams, may be 

affected by imperfect flow routing. Major urban areas are particularly vulnerable to this 

problem, for which the main tributaries are digitised and therefore are routed correctly. 

However, the minor flow paths that route runoff and wastewater from untreated 

subcatchments may be routed incorrectly. It is important to appreciate that the topographic 

flow paths and the wastewater flow paths may be significantly different on flat terrain; the 

similarity of topographic and wastewater flow paths becomes more likely as slope increases. 

These routing errors may result in the underestimation of chemical load locally on the main 

stream; this is due to the model routing wastewater to discharge at an outlet downstream of 

the actual outlet location.  

Finally, there are a number of bifurcations and man-made diversions such as canals which 

are not represented within the model. It was not possible to determine and represent these 

features using the network generation methodology used. 

 

3.3. Flow calculation 

The objective was to calculate the mean and the 95% exceedance flow (Q95) for each stretch 

in the river network for the months of December and January.  
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Three large reservoirs are located in the upper reaches of the catchment, all of which have a 

considerable influence upon flow. The Xinfengjiang (XFJ) reservoir is the largest reservoir at a 

capacity of 13.98 billion m3 (Zhou et al., 2012b). This influence is shown within the flow 

duration curves for gauges downstream (Figure 26) and upstream (Figure 27) of the three 

reservoirs. In comparison to catchments upstream of the three reservoirs, high flows in 

catchments downstream of the three reservoirs are reduced, and low flows are enhanced. It 

is also probable that the river that flows through Heyuan, Huizhou, and Shenzhen city, in the 

downstream area of the catchment (Figure 19), is significantly influenced due to abstraction 

and wastewater release. However, these artificial influences, and others present within the 

catchment, are unquantifiable due to poor data availability. Therefore, the focus was upon 

the three major reservoirs. 

To estimate natural flow, a regional regression approach was used. The principles behind this 

are described in Chapter 2. As the catchment is moderate in size and with only six gauges 

available with little or no artificial influences (see Table 9 and Figure 25), delineation of 

hydrologically homogenous areas was not considered. 

Firstly, catchment descriptors that may possibly describe the spatial distribution of low flow 

were explored. The final selection of descriptors was based upon the correlation coefficient, 

the coefficient of determination, scatter graphs, and the validity of the conceptual basis 

between the descriptor and low-flow. Following this, the form of the regression model was 

chosen and further, parameters were estimated by ordinary least squares. 

Further refinement of the natural flow estimate was required to take into account the 

influence of the three reservoirs. The overall approach chosen was largely dictated by data 

availability and the expertise of the modeller. 
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Daily flow data were extracted from physical copies of hydrological yearbooks for 2006-2013 

for 11 gauges, 5 of which are downstream of a major reservoir and 6 which are considered to 

have limited artificial influence. In addition, outflow data for XFJ and Fengshuba reservoir 

were obtained for this period (Table 9). Additional outflow data for the three major 

reservoirs were provided by the Dongjiang river basin authority (www.djriver.cn) for 2011-

2016. 

 

http://www.djriver.cn/
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Figure 25 - Location of all river gauges within the East river catchment. Where, Jiuzhou, Lantang, Shuntian, 

Yuecheng, Shuibei and Shengqian are upstream of the three major reservoirs and are not affected by significant 

artificial influences. 
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Name Catchment 

area (km2) 

Flow data 

period 

January flow (m3/s) December flow (m3/s) Upstream of 

reservoirs? 

Longitude Latitude 

Mean flow Q95 Mean flow Q95 

Longchuan 7699 2006-2013 125.4 82.2 114.4 55.6 No 115° 15′ 24° 07′ 

Jiuzhou 385 2006-2013 3.1 1.8 4.9 1.9 Yes 114° 59’ 23° 07’ 

Heyuan 15750 2007-2013 321.7 249 306 214 No 114° 42′ 23° 44′ 

Lingxia 20557 2007-2013 364 296 362 261 No 114° 34′ 23° 15′ 

Boluo 25325 2006-2013 377 287 437 290 No 114° 18′ 23° 10′ 

Shengqian 751 2006-2013 6.9 3.2 8.2 2.7 Yes 115° 12′ 24° 52′ 

Yuecheng 531 2006-2013 8.1 4.3 8.9 5.2 Yes 114° 16′ 24° 06′ 

Shuntian 1357 2006-2013 12 3.2 15.8 5 Yes 114° 46′ 24° 07′ 

Lantang 1080 2006-2013 7.8 4.9 10.5 4.9 Yes 114° 56′ 23° 26′ 

Pingshan 2091 2006-2013 32.7 15.8 37 23 No 114° 43′ 22° 59′ 

Shuibei 987 2009-2013 12 7.1 14.5 7.87 Yes 115° 41′ 24° 48′ 

 Table 9- River gauges, used within the East River catchment.  
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Figure 26 – Dry season (December – February) flow duration curves for the East river, where flow is normalised 

by mean flow (m3/s) - for gauges with little or no artificial influences. 

 

Figure 27 - Dry season (December – February) flow duration curves, where flow is normalised by mean flow 

(m3/s)- for gauges with artificial influences. The curve is relatively shallow, as a result of reservoir containing flood 

waters and enhancing the flow in low-flow conditions (Su et al., 2011). 
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This was a shorter period than desired for the estimation of low-flow (Rees, 2009) and 

therefore the natural variability of natural flow may not be contained within the dataset. In 

addition, the inflow-outflow data for the major reservoirs in the catchment was from a 

slightly different period; the reservoir inflow-outflow data was for 2011-2016, whereas the 

river gauge data covered the period 2006-2013. This limitation relates to the difficulty of 

obtaining hydrological data in China; initial attempts to obtain flow data were met with some 

resistance. The data was located by a 3rd party in print format at a university library in 

Beijing, which had to be digitised manually. As a result, there was an implied limit to the 

amount of data that could be obtained. 

 

3.3.1. Estimation of catchment descriptors 

To estimate the mean value for each descriptor, the descriptor was used as a weight for the 

flow accumulation algorithm in a GIS. As shown in Figure 10, a flow accumulation algorithm 

involves calculating the number of cells that are upslope of each cell. The algorithm identifies 

all cells upslope to have a value of “1”. However when applying this algorithm, a weight may 

be applied (e.g. slope), which changes the value of every cell from 1 to a parameter of 

interest (e.g. slope). Therefore, rather than estimating the number of cells that drain to a 

given cell, the sum of a given attribute can be generated, which may be divided by the 

number of accumulated cells to provide the mean. 

The initial selection of catchment descriptors was determined based upon data availability 

and the nature of the catchment. 

Low-flow is often driven by catchment storage which is characterised by the release of water 

stored in lakes, soil, groundwater and other catchment stores. The size of catchment stores 
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is likely to be important for the East river during the dry season. Therefore, catchment 

characteristics were chosen that may characterise the storage of water. 

Spatial variation of precipitation may also be important. During the monsoonal period, 

precipitation is higher in the coastal Southern region and decreases to the North-West (Chen 

et al., 2007). However, other mechanisms are likely to be significant in the dry season. 

Precipitation data and various other characteristics that may further describe precipitation in 

the area were also explored. 

Prior to analysis, flow was normalised by catchment area, which minimises the effect of 

scale.  Low flow indices were calculated from gauged data for the respective month only. 

Catchment characteristics were estimated as the mean for the catchment area for each 

gauge. Relationships between flow indices and catchment characteristics were examined 

using correlation matrices and scatterplots
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3.3.2. Catchment descriptors 

1)  Geology 

Geology is an important descriptor of catchment storage, which is relatively complex within 

the East river catchment. However, the availability of geology data was limited. Data was 

available from Onegeology (www.onegeology.org) at a scale of 1:2 million, with data on rock 

type and age. The percentage rock type was explored as a candidate descriptor. 

2) Soil 

The harmonised water soil database (HWSD) (FAO et al., 2009) was used, which is a global 

dataset at the 30 arc-second resolution (~1km at the equator). The HWSD provides 

standardised parameters for soil data based upon multiple datasets across the globe. Various 

parameters are provided, some of which are estimated based upon other measured 

parameters. Bulk density, soil texture and soil drainage class were explored. Bulk density was 

estimated from soil texture using equations developed by Saxton et al. (1986) and soil 

drainage class  represents drainage conditions based upon soil type, soil texture and soil 

phase. 

3) Land cover 

Land cover data was obtained at a resolution of 0.5km, based upon moderate resolution 

spectroradiometer imagery (MODIS) (Broxton et al., 2014). The dataset was used to examine 

the effect of different land use types upon flow. 

 

 

http://www.onegeology.org/
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4) Topography 

The unmodified SRTM 1 arc-second DEM was used to generate various topographic 

characteristics for the catchment. Catchment area, mean elevation, slope, stream order and 

the mean distance to stream were generated. 

5) Precipitation data 

A gridded global long-term mean monthly precipitation dataset, created by Hijmans et al. 

(2005), was obtained. This consists of a set of 12 grids each representing the mean monthly 

precipitation depth between 1950-2000. This was calculated using measured precipitation 

point data, interpolated using a spline algorithm based upon latitude, longitude, and 

elevation data. 

6) Direction and distance from an arbitrary datum. 

A datum was arbitrarily placed in the North-East region of the catchment to explore the 

possible use of direction and distance from this datum to represent the effect of decreasing 

precipitation to the North-East. This was similar to the approach taken by Rees et al. (2004).  

 

3.3.3. Candidate catchment characteristics 

Conceptually, geology has a strong influence upon low-flows. Rock type is a potential 

descriptor of water storage within aquifers, which is released in times of low-flow. A strong, 

positive relationship between low-flow and plutonic rock (% of catchment area) was found 

(Table 10), which was unexpected. Plutonic rock is formed when molten rock cools and 

hardens beneath the surface, forming large crystals. Plutonic rock is neither permeable nor 

porous, with a lower water storage capacity than sedimentary and volcanic rock. 
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Sedimentary rock is associated with greater water storage capacities, lower runoff, but 

greater low-flows (Jowett and Duncan, 1990; Holmes et al., 2002a). However in contrast, in 

the United States, a  low-flow study  noted that much of the variation in low-flows may 

relate to overlaying regolith, which may have been of greater importance than the 

underlying bedrock (Smith, 1981). It is possible that this may be of relevance to the East river 

catchment. Less porous, crystalline bedrock in many areas may be overlain by significant, 

thick regolith which provides significant storage potential (Price, 2011). 

Mean elevation displayed a relatively strong relationship with normalised mean flow               

(Table 10). Elevation is likely to be an indicator of precipitation, which tends to be high in 

upland regions.  

Topsoil bulk density is a parameter provided by the HWSD, and represents dry bulk density 

(measured bulk density following being dried in an oven). The parameter may reflect the 

permeability of the soil and potential for soil water storage, porosity and hydraulic 

conductivity.  

 
January 

Q95 

January 

Mean 

December 

Q95 

December 

Mean 

Plutonic rock 

(% area) 

Top soil bulk 

density 

(kg/dm3) 

Mean 

elevation 

(m) 

Plutonic rock 

(% area) 
0.83 0.743 0.89 0.74 1.00   

Top soil bulk 

density 

(kg/dm3) 

-0.88 -0.80 -0.87 -0.87 0.57 1.00  

Mean 

elevation (m) 
0.60 0.84 0.54 0.71 0.33 -0.64 1.00 

 

Table 10 - Correlation coefficients of significant characteristics and normalised low-flow indices. 

 

As shown by scatter graphs in Figure 28 and correlation coefficients in Table 10, top soil bulk 

density appears to be the strongest predictor for both Q95 and mean flow. Only one 
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parameter was used for regression due to strong inter-correlation and a small sample set 

(Babyak, 2004). With additional gauges, it would perhaps be possible to improve the model 

whilst avoiding overfitting. 

Bulk density was selected to describe normalised flow for December. This was also the case 

for January normalised Q95; however, January normalised mean flow was more strongly 

related to mean elevation than bulk density. However, to model two low flow indices with 

different spatial parameters is likely to result in, for some subcatchments, mean flow < Q95, 

which would not be a good prediction. Therefore, Q95/mean flow was calculated, which is 

described as the low-flow index. However, no relationship of sufficient strength was found 

for the low-flow index.  To simplify, only bulk density was used for all low-flow indices. The 

disadvantage of this approach is that Q95/mean flow is relatively similar for all gauges, which 

does not reflect measured ratios. This approach is similar to a previous GREAT-ER study by 

Schulze and Matthies (2001), who estimated mean flow and Q95 flow using a separate 

regression model for each, using accumulated river length as the predictor; although the 

approach here is more complex. 

The form of the regression model was explored. Other than performance, the form of 

regression must not produce a regression line which may result in negative flow.
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Figure 28 - Scatterplots displaying the relationship between flow indices and bulk density 

 

The curve estimation function within the statistical software, IBM SPSS v22 was used to 

generate fitted regression lines and associated coefficient of determination for 11 different 

curve estimation models (Table 11). The exponential form was chosen, based upon 

performance for both Q95 and mean flow. The coefficients of performance are shown by 

Table 11. Equations generated (Equations 39-42) are shown below: 
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MeanDec = (2x10−5e−5.306∗BulkDensity) (39) 

 

MeanJan = (2x10−4e−7.201∗Bulk Density) (40) 

 

Q95Dec = (0.0194e−11.24xBulkDensity) (41) 

 

Q95Jan = (0.0262e−11.55xBulkDensity) (42) 

 

 

January Mean flow vs Bulk density January Q95 flow vs Bulk density 

Equation R2 Equation R2 

Compound 0.66 Compound 0.68 

Power 0.66 Power 0.67 

S 0.66 S 0.67 

Growth 0.66 Growth 0.68 

Exponential 0.66 Exponential 0.68 

December Mean flow vs Bulk density December Q95 flow vs Bulk density 

Equation R2 Equation R2 

Compound 0.76 Compound 0.79 

Power 0.76 Power 0.79 

S 0.75 S 0.79 

Growth 0.76 Growth 0.79 

Exponential 0.76 Exponential 0.79 

Table 11 - Coefficients of performance for different regression model types, generated using IBM SPSS v22. Bold 

indicates the selected regression form. Some regression types were not included here as they were deemed 

unsuitable. 

 

3.3.4.  Artificial influences to flow 

Artificial influences to flow are significant within the East river catchment. Reservoirs may 

augment flow during low-flow periods and reduce flow during high-flow. Water abstractions 
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reduce flow, but vary significantly between seasons. Unfortunately insufficient data are 

available to account for abstractions. STWs discharge water from their outlets, which will 

augment flow. It is possible to obtain the average and maximum discharge rate for STWs that 

have been identified, which may be used to estimate the individual influence of a STW to 

flow. 

Reservoir influence 

Three large reservoirs are located in the upper reaches of the catchment, all of which have a 

considerable influence upon flow, particularly low flows. The Xinfengjiang (XFJ) reservoir is 

the largest reservoir with a capacity of 13.98 billion m3 (Zhou et al., 2012b). Therefore their 

influence must be accounted for within the model. 

Flow was calculated for the outlets of all three reservoirs. The difference between reservoir 

outflows for January and December and the calculated mean and Q95 flow was observed 

(Table 12). 

 Mean flow (m3/s) Q95 (m3/s) 

 January December January December 

Baipenzhu reservoir 18.6 16.0 14.0 9.0 

Fengshuba reservoir 45.3 -2.5 13.7 -12.6 

Xinfengjiang reservoir 115.7 107.0 21.1 93.1 

Table 12 - Difference between estimated and observed flow at the outlets of the three major reservoirs within 

the East river catchment. 

STW influence 

In addition the influence of STW discharge was taken into account (Equation 43). The mean 

annual discharge (outflow) was available for STWs that were identified, which included all 



127 
 

STWs in the Huizhou/Shenzhen area and Heyuan city. Other STWs were not identified and 

therefore not accounted for. 

Artificial influence application 

 The difference was applied to all stretches downstream: 

Adjustedstretch(s) = ∑(Resdiff(i)) + ∑(STWdisch(j))

m

j=1

 + Calcstretch(s)

n

i=1

 
(43) 

where: 

Adjustedstretch(s) - flow index for stretch(s), adjusted for artificial influences (m3/s) 

Calcstretch(s) – natural flow index calculated for stretch(s) (m3/s) 

Resdiff(i) - arithmetic difference between the measured and calculated flow for the outlet of 

reservoir(i) upstream of stretch(s) (m3/s)  

STWdisch(j) - discharge from STW(j) (m3/s).  

This is illustrated by Figure 29. 
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Figure 29 – The calculation of artificial influences to flow in a river network. Circles indicate nodes in the network. 

Where: Adjustedstretch(s) – estimated flow, taking into account influence from STW and reservoir outflows (m3/s); 

Calcstretch(s) - flow calculated for stretch(s) (m3/s); Resdiff(i) - arithmetic difference between the measured and 

calculated flow for the outlet of reservoir(i) upstream of stretch(s) (m3/s); STWdisch(j) - discharge from STW(j) 

(m3/s). 
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Figure 30 - Measured and calculated flow at river gauges; flow is calculated using Equations 39-42 and is 

subsequently adjusted for the influence of reservoir and STW outflow. 

 

Application of adjustment factors 

The flow estimated at the five gauges downstream of the three reservoirs, against measured 

flow, is displayed by Figure 30.The difference between estimated and actual mean flow is 

low, however this is not the case for the Q95 flow. Gauges downstream of XFJ reservoir 

displayed the greatest deviation, especially at Heyuan and Lingxia gauges. This is likely to be 

largely the result of artificial influences that are not accounted for. During low flow, the 

proportion of flow from artificial sources is much greater (Young et al., 2000a) and the 

magnitude of these influences is likely to be quite high for these gauges. Characterising these 

artificial influences is unrealistic, and therefore a more pragmatic approach is to adjust the 

estimated flow by these downstream gauges. 

This approach has been utilised in previous GREAT-ER studies (e.g. Young et al., 2000a; 

Schulze and Matthies, 2001; Schowanek and Webb, 2002). The approach here was modified 
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from Young et al. (2000a). The basis is that flow is adjusted by the proportion of measured 

and estimated flow at a gauged reach. It is assumed that estimated flow already accounts for 

the influence of the reservoirs. Each stretch is adjusted by up to two gauges upstream and 

the next downstream gauge. To determine the influence at each gauge (j), an adjustment 

factor (AF) is estimated as shown below: 

AF(j) =
Gaugemeas(j)

Gaugeest(j)
− 1 

(44) 

where: 

Gaugemeas(j) - measured low-flow index at gauge j (m3/s) 

Gaugeest(j) - estimated low-flow index at gauge j (m3/s). 

The reservoirs were also utilised as gauges, however the AF will always be 0 as the estimated 

flow was already adjusted to meet the low flow indices calculated at the reservoir outlet. 

Flow is adjusted by at least one upstream gauge, and one downstream gauge. The flow is 

adjusted by taking into account of the relative (estimated) flow of the stretch and each 

gauge. Gauges with an estimated flow similar to the stretch have a greater influence. 

Stretches that are closer to a gauge will generally have a similar estimate for flow and 

therefore the AF for this gauge is more influential than other gauges. However, using 

distance to determine similarity would not be appropriate as this does not account for other 

important factors such as catchment area and artificial influences. Therefore, for each 

stretch, weight factors (WF) were applied to each gauge (j) upstream or downstream of the 

stretch. WF defines the similarity of estimated flow at the stretch and the gauge (Equation 

45 and Equation 46). This is calculated differently for gauges upstream and gauges 

downstream of the stretch. This is explained below: 
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WF(j) =
Gaugeest(j)

Reachest(i)
 

- Gauge upstream of stretch (45) 

WF(j) =
Reachest(i)

Gaugeest(j)
 

- Gauge downstream of stretch (46) 

where:  

Reachest(i) - estimated low-flow index at reach (i). 

The adjusted flow, Reachadjust (m3/s), at each reach (i), is calculated differently for reaches 

with two upstream gauges and reaches with only one upstream gauge. The equations to 

calculate both are: 

Two gauges upstream: 

Reachadjust(i) = Reachest(i)  × [1 + (
∑ WF(j) × AF(j)n

i=1

∑ WF(j)n
i=1

)] 
(47) 

One gauge upstream: 

Gaugeest(up) - estimated low-flow index at upstream gauge (m3/s) 

Gaugeest(down) - estimated low-flow index at downstream gauge (m3/s). 

This is described using a hypothetical example as shown in Figure 31. 

 

Reachadjust(i) = Reachest(i)  ×

[
 
 
 
 

1 +

(

 
 

∑ ((WF(j) −
Gaugeest(up)

Gaugeest(down)
)  × AF(j))n

i=1

∑ ( WF(j) −
Gaugeest(up)

Gaugeest(down)
)n

i=1

)

 
 

]
 
 
 
 

 

(48) 
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Figure 31 - Example of final adjustments to flow based upon flow gauges and reservoirs for ungauged sites in a 

hypothetical river network. 

 

Evaluation 

The Shenzhen catchment, within the Huizhou sampling zone (Figure 38), is subject to 

numerous artificial influences. The outflow from STWs is accounted for by cumulatively 

applying the mean flow from STWs downstream. With many large STWs within a relatively 

small catchment, the flow increasingly becomes dominated by wastewater as the river 

passes through the main urban area. However, many of the artificial influences remain 

unaccounted for. Table 13 suggests that a large number of abstraction points could be 

located within the Huizhou zone. In addition, other than the three large reservoirs, a large 

number of smaller reservoirs are unaccounted for, including four small reservoirs in the 

Shenzhen subcatchment. As this catchment is ungauged, it is uncertain as to how accurate 

our estimate of flow was for this subcatchment. 
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The main stream within the Heyuan area required a relatively large correction to flow at 

Heyuan and Lingxia gauges. This suggests that a substantial number of artificial influences 

are unaccounted for, which may affect the accuracy of estimated flow in tributaries in areas 

that are downstream of urban area and are not corrected by a river gauge. 

The rural area of Longchuan is mostly free of artificial influences to flow, other than the 

Fengshuba reservoir upon the main stream. Therefore, this region is primarily reliant upon 

the natural flow estimation. 

 Guangzhou Dongguan Shenzhen Huizhou Heyuan Shaoguan Total 

Class 1 
tributaries 

1 1 0 10 14 0 26 

Large 
reservoirs 

0 0 0 3 2 1 5 

Medium 
reservoirs 

6 8 4 19 12 0 49 

Small 
reservoirs 

0 4 0 1 0 0 5 

Dykes 
protecting 

over 10,000 
mu (1mu = 
0.0667 ha) 

4 2 0 17 0 0 23 

Water 
extraction 

points 
11 369 20 235 622 0 1257 

Wastewater 
discharge 

outlets 
0 6 0 13 0 0 19 

Stairstep 
hydropower 

plants 
0 1 0 2 11 0 14 

Extractable 
river 

sediment 
(10,000 m3) 

0 0 0 230.7 0 0 230.7 

 Table 13 - Table detailing the different artificial influences within the catchment in 2008, from Su et al. (2011). 

 

3.4 E2 to E1 conversion 

E2 biodegrades to E1 in the environment, and so this process was represented in the model. 

The assumption that one mole of E2 degrades to one mole of E1 was adapted from the 

approach by Williams et al. (2009). The model was first used to estimate E2 using a 
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combined first-order removal rate. Following this, E2 was simulated again, but with only 

biodegradation as a degradation mechanism. E2 losses via biodegradation were calculated 

for each stretch, noting the mean and standard deviation. This was then used as a diffuse 

input when modelling E1. The GREAT-ER sediment module provides a diffuse function, which 

allows the user to release the chosen chemical steadily along the stretch, using the mean 

and standard deviation as a distributed input from the Monte Carlo simulation. 

 

3.5 Parameterisation 

Parameterisation of the model is described here with full details of the parameters used 

described in Table 14. 

The initial parametrisation of chemical removal required the best available data from 

literature and models. A range of different values were obtained whenever possible. 

Distributions are not supported for in-stream removal rates, and therefore single values 

were used. 

It was important to acquire reliable information regarding the removal of each respective 

chemical in-stream. This includes several tracer studies, process-focused laboratory 

experiments and a microcosm experiment. A tracer study involves the injection of a 

substance into the stream that may be used to track a single parcel of water downstream, in 

doing so water samples may be collected when the parcel passes set positions (Sabaliunas et 

al., 2003; Writer et al., 2012). A comparison of the concentration between set points may be 

used to determine the rate of removal in-stream, but is also important to take into account 

any additional dilution and other hydrological influences between sampling points (Writer et 

al., 2012). Process focused removal experiments tended to focus upon the rate of removal 

for single processes such as biodegradation or photolysis. This is the least preferable form of 
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analysis as removal under natural conditions tends to vary significantly in comparison to 

laboratory experiments (Robinson et al., 2007). 

In the case of TCC and E1, data were available from only a single study each. For E1, it was 

noted that it is difficult to measure the removal under natural conditions due to the 

conversion of E2 to E1, as noted by Writer et al. (2012). Therefore a laboratory based 

experiment was used (Jürgens et al., 2002), which also provided degradation data for E2. For 

this study, water samples were collected from various rivers in the UK; these water samples 

were then spiked with a stock solution of E2. The samples were then regularly sampled to 

observe the biodegradation of E2, and subsequently, the by-product, E1 (Jürgens et al., 

2002). In addition, the study also noted the effects of photolysis on a stock solution of E2, 

using a filtered Xenon lamp, configured to radiate at a spectrum similar to natural sunlight. 

Samples were taken daily to note the change in concentration of E2 as a result of 

photodegradation (Jürgens et al., 2002). 

A single plume study was also available for E2 (Writer et al., 2012), in which the conservative 

tracer bromide was released into a stream in the US, and samples were collected at two sites 

downstream of a STW. In-stream removal was calculated based upon the change in mass, 

relative to bromide. This study produced similar results to the laboratory study mentioned 

above (Jürgens et al., 2002). As such the results from the study by Jürgens et al. (2002) were 

utilised in order to estimate the effects of biodegradation alone, which is used to determine 

the conversion of E2 to E1. 

As GREAT-ER v3 does not allow for in-stream removal distributions, it was deemed necessary 

to run the model for several in-stream removal scenarios for TCS. For E1 and E2, the 

biodegradation rate used was the median of a large number of samples taken for a single 

study within a river in the UK  (Jürgens et al., 2002). It would have been valuable to be able 
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to define a distribution for in-stream removal, or to be able to assign in-stream removal to 

vary in space, and/or time. 

When parameterising STW removal rates, data was obtained for activated sludge (AS), 

trickling filter (TF) and other treatment types. All identified STWs were determined to be AS 

and those not identified were assumed to be AS. This was reflected by the STW list for the 

area, which suggested the majority of STWs were AS. Unfortunately, data for sub-types of 

STWs were limited and therefore disregarded. 

From published literature, 43, 15, 54 and 41 estimates of STW removal were obtained for 

TCS, TCC, E1 and E2 respectively. Literature which focused upon studies of STW removal of 

the target chemicals was used, with no restriction to geographic area. Ideally, it would have 

been best to focus upon Chinese STW literature. However, it was deemed more important to 

acquire a larger sample size. Although a significant amount of data was collected, there is 

still a need for more data on STW removal. It is particularly important for data to be made 

available for different sub-types of STW, which may vary significantly in performance. 

However, it was not always possible to identify the treatment sub-type of the STW within the 

study catchment. 

Usage data for TCS and TCC was estimated and described by Zhu et al. (2016). In summary, 

personal and home care products that are both sold to the Chinese market and include TCS 

and TCC were identified. The tonnage of these products sold to the market and the inclusion 

levels of chemicals within each product were then identified, providing an estimation of 

chemical usage across China. Then, as described by Hodges et al. (2014), the usage was 

distributed across China by linking product affordability to GDP. In China, wealth is not 

distributed evenly and therefore higher value products may not be affordable to all. This is 

especially the case in rural regions, where usage of personal care products is likely to be 
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significantly lower. GDP data was available at the county administrative level and therefore 

usage for each county was estimated. 

An estimate for usage (excretion rate) for E1 and E2 was generated from data acquired by 

back calculation based upon the concentration of Chinese STW influent concentration, flow 

and known STW served data. This is based upon the approach of Liu et al. (2015). This was 

calculated by acquiring data about STW population served, STW discharge rate and 

measured estrogen concentrations within influent. Usage was then calculated using:- 

E =
D

P
∗ C 

(49) 

 

where: 

E - estimated estrogen usage rate per capita per day (kg/cap/year) 

D - STW average discharge rate per year (m3/year) 

P - STW population served estimate 

C - measured estrogen concentration in effluent (kg/L). 

Chinese data was used exclusively as it has been suggested that the excretion of estrogen 

varies significantly between western and Chinese populations (Xu et al., 2012; Adlercreutz et 

al., 1994; Trichopoulos et al., 1984). This is partially related to the proportion of females and 

the proportion of post-menopausal women (Johnson et al., 2000); menstruating women 

excrete significantly more than post-menopausal women, whilst post-menopausal women 

excrete significantly more than men. Within the Chinese population, the proportion of 

females is relatively low (48.5% of population was female in 2016) in comparison with the EU 

and North America (51% and 50.5% respectively) (World Bank, 2017). 

Outliers were identified and removed by means of box-plot analysis. A standard Tukey 

methodology (Tukey, 1977) was used to identify outliers, where suspected outliers were 
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identified as 1.5 - 3 * interquartile range, and outliers are identified as those values >3 * 

interquartile range. Boxplots were examined (Figure 32) and it was determined that 

potential outliers were likely to be true outliers as a result of a visual check and, therefore, 

all outliers and potential outliers were removed. These outliers are likely to be a result of 

errors in chemical analysis, a lower than normal STW discharge (dilution) or errors with 

population served estimates. As a result, 5 and 1 estimates were removed for E1 and E2 

respectively. STW data was not found to be normally or log-normally distributed (established 

via a Shaprio-Wilk test (Shapiro and Wilk, 1965), performed in IBM SPSS v22). However, 

usage data for E1 and E2 were determined to be log-normal, with a significance value on 

0.264 and 0.362 for E1 and E2 respectively. For E1 and E2, 32 estimates of usage were 

calculated for each chemical. 
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Figure 32 - Boxplots for calculated usage of E1 and E2. Open circle represent possible outliers (1.5-3 * 

interquartile range) and asterisks represent extreme ouliers (>3 * interquartile range). 
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 STW removal (%)     

TCS 1 45 - 99     

TCC 2 51 – 97.5     

E1 3 47.3 – 99.9     

E2 3 39.4 – 99.4     

Usage Spatially distributed (by county)    

kg/capita/year Mean Standard deviation Min Max 

TCS 1.67E-4 5.9E-5 1.02E-4 3.12E-4 

TCC 7.4E-5 2.5E-5 4.7E-5 1.3E-4 

Lognormal 
distribution  Spatially uniform   

kg/capita/year Mean 
Standard 
deviation    

E1 3 6.18E-6 7.80E-6   

E2 3 3.21E-6 5.80E-6   

In-stream removal k (h-1)   

TCC TCS E1 E2 
E2 

biodegradation  only 

0.0102 4,a 0.0138 4,a 0.00983 5,b 0.0132 5,b,c 0.0103 5,b 

  0.0610  6      

  0.210   7       

Sorption TCS TCC E1 E2 

KOC e (L kg-1) 15892  8, d 48865  8, d 3709  9 2378.3  10, e 

Fraction organic carbon 0.1 0.1 0.1 0.1 

Mean suspended solids concentration (mg/l) 18 18 18 18 

Table 14 - Parameters used for input into the GREAT-ER model. 
1 - Bendz et al. (2005); Bester (2005); Dotan et al. (2016); Gómez et al. (2007); Guerra et al. (2014); Heidler and 
Halden (2007); Kanda et al. (2003); Kasprzyk-Hordern et al. (2009); Lishman et al. (2006); McAvoy et al. (2002); 
Nakada et al. (2006); Sabaliunas et al. (2003); Schatowitz (1999); Singer et al. (2002); Thompson et al. (2005); 
Waltman et al. (2006); Winkler et al. (2007); Ying and Kookana (2007); Yu et al. (2006) 
2 -Yu et al. (2011); TCC Consortium (2002); Ryu et al. (2014); Lozano et al. (2013); Heidler et al. (2006); Guerra et 
al. (2014) 

3 - Liu et al. (2015); Dotan et al. (2016); Lishman et al. (2006)  

4 - Lv et al. (2014)  

5 - Jürgens et al. (2002) 
6 - Reiss et al. (2002)  
7 - Sabaliunas et al. (2003) 
8 -  Wu et al. (2009) 
9 -  Yu et al. (2004) 
10 -  Holthaus et al. (2002); Yu et al. (2004) 
a - Based upon mean value of an experiment by Lv et al. (2014), whom exposed water samples collected from the 
Jiulong river (South China) to a number of different conditions. For this study, the mean value of removal rates for 
"Light surface" samples was used for Triclosan and Triclocarban, which represents a condition where river water 
is exposed to natural sunlight. This provided a combined estimate for biodegradation and photodegradation 
under climatic conditions similar to that of the East river. 
b - Based upon the median value of biodegradation experiments by Jürgens et al. (2002).  The value estimated  by 
Jürgens et al. (2002) was determined for 20°C.  Furthermore an estimate for the mean temperature observed 
during sample collection in January 2016, 16degrees C. This was calculated using the modified Arrhenius 
equation: KT=K20×θ (T-20). For which KT: K at temperature T; K20: K at temperature 20 degrees C; θ: Arhenius 
temperature coefficient. For E2, θ = 1.075  (Liu et al., 2015). To estimate the conversion of E2 to E1, the 
estimation for biodegradation was used alone. 
c - Also based upon photodegradation experiments by Jürgens et al. (2002). 
d – Estimated KOC values were selected for two soil types: sandy loam and silty clay. The catchment is 
predominately formed of the fine grained red soil, and therefore the KOC value for the silty clay was used. 
e – The mean KOC value was used out of the values estimated by two studies. 
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Figure 33 - Estimated spatial distribution of (A) TCS and (B) TCC usage. 

 

3.4.1 Sensitivity analysis 

In order to determine the relative importance of model parameters, a sensitivity analysis was 

performed. Understanding the relative importance of parameters may be useful to 

determine, for example, which parameter would be most useful to collect further data for, in 

order to better define the parameter. 

The model parameters were adjusted by +/- 20%, one-at-a-time, and the relative change in 

modelled concentration was observed. 

 

 

 

 

A B 



142 
 

3.5 Wastewatershed delineation 

Wastewatershed delineation was performed as discussed in Chapter 2. Delineation within 

Huizhou and Shenzhen city (Figure 38) required additional information regarding population 

served by STWs, which was obtained from internet sources and communicating with STW 

plant operators. However, for many of the STW plants this information was not available and 

therefore it was estimated as described in Chapter 2. 

The accuracy of the STW population served estimates, and the area served by each STW is 

uncertain. Actual population served data was available only for STWs in city areas, and 

without this data it would have been very difficult to estimate the population served, as 

there was no way to determine the extent of the wastewatersheds in a continuous urban 

area (e.g. Figure 17). A similar approach to estimate population served was described by 

Keller et al. (2006) for use in the UK; they found that their methodology produced reliable 

results in comparison to actual data.  

The delineation methodology is subject to arbitrary decisions, although an attempt had been 

made to mitigate this. This is more significant in large urban areas where boundaries are 

difficult to identify. This was acknowledged by Keller et al. (2006). Outside of large cities, the 

effects of the variance caused by arbitrary decisions are likely to be minimal outside of high 

risk areas as the decisions are more constrained. In these areas further investigation should 

be considered. 

 

3.6 Population 

A gridded population dataset is essential to predict spatially explicit emissions across the 

catchment. A population dataset is used to determine the population served and/or the area 

served by each sewage treatment plant. The population served by a STW can be used to 
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determine a site specific chemical emission and to calculate the spatial distribution of diffuse 

emissions. 

 There are a limited number of gridded population datasets available at the appropriate 

resolution. Most notable are Landscan (Bright et al., 2011), Worldpop (Gaughan et al., 2013) 

and the Gridded Population of the World version 4 (GPWv4) (CIESIN, 2016a). GPWv4 utilises 

raw census data and applies that to the respective vector based census boundary. This is 

converted to raster, assuming a uniform distribution throughout the census area. Landscan 

and Worldpop utilise census data similarly, however they also utilise additional datasets such 

as road networks and nightlights to predict the spatial distribution of population within the 

census boundaries. 

  

GPWv4 lacks spatial variability within census boundaries (e.g. Figure 35) and therefore is 

unsuitable for the working scale. This is particularly problematic in rural areas, within which 

boundaries are large. The Landscan dataset, whilst allowing for spatial variation within 

census boundaries, utilises data from the previous census in 2000. GPWv4 and Worldpop 

utilise the latest census in 2010. 

Worldpop distributes population count at a relatively high resolution of approximately 100m 

at the equator. However, the population is distributed in such a way that overestimates the 

population in rural areas and green spaces at the cost of urban areas. As shown by Figure 34, 

the green fields in the North-West of the mapped area have been identified as containing 

little or no population by Landscan, whilst Worldpop identifies the area to contain a low, but 

still significant population; this is clearly incorrect, and will lead to overestimated population 

outside of urban areas, and underestimated population in urban areas. The population 

distribution should be highest in the areas containing housing, as shown by the satellite 

imagery in Figure 34C. Landscan appears to represent the population distribution more 

accurately, but does not utilise the most recent census data. Therefore, a new dataset was 



144 
 

required. GPWv4 can be used to adjust Landscan to better reflect recent high resolution 

census data. This results in a dataset that is far more reliable and trustworthy on the back of 

high quality census data. It was assumed that the census data used by GPWv4 was reliable 

and reflected the true population in 2010. It is also assumed that population had not 

significantly changed between December 2008 and 2010. 

The boundaries used by GPWv4 were not freely available. However, it was possible to 

backwards calculate in order to recreate them. The slice tool within the ArcGIS spatial 

analysis toolbox was used using the "natural breaks" setting. This reclassifies the data into its 

natural groupings (groups similar values) whilst maximising the differences between the 

classes (http://desktop.arcgis.com/en/arcmap/10.3/tools/spatial-analyst-toolbox/slice.htm). 

Cell values within a boundary are identical as they are grouped together by the tool and 

reclassified as such. This allows the resulting raster to be converted to polygons. The flaw in 

this method is that the developers of GPWv4, CIESIN (2016a) assigned cells that lay on the 

boundary to share the value of all intersecting boundaries. And therefore these cells are 

unique and when backcalculating census boundaries, these cells were grouped only with 

themselves. This effect is shown by Figure 36. Furthermore, the eliminate tool in ArcGIS 

spatial analysis toolbox was used to assign the majority of these unique cells to surrounding 

polygons. The eliminate tool merges selected polygons with neighbouring polygons that have 

the largest shared border. 

The polygons are used to determine the sum of population within each boundary for GPWv4 

and Landscan. Furthermore the total population in each boundary area is adjusted to that 

registered by GPWv4 whilst retaining the population within each cell relative to the original 

total population in its census boundary. This was achieved using the ArcGIS toolbox raster 

calculator, using the following equation: 

AdjustedPop = Census polygon sum ∗ (
RasterPopValue

RasterPopPolygon
) 

(50) 
 

 

http://desktop.arcgis.com/en/arcmap/10.3/tools/spatial-analyst-toolbox/slice.htm
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 where: 

AdjustedPop - adjusted population value of a cell within the raster being modified 

Census polygon sum - total census population within a given census boundary 

RasterPopValue- value of a cell within the raster being modified 

RasterPopPolygon - within a given census boundary, the population sum calculated from the 

population raster being modified. 

 

A final adjustment was made to correct against population data for each city region within 

the catchment. Population data for the city regions within the catchment was obtained from 

the 2010 census for Guangdong and Jiangxi provinces. This was achieved using Equation 50 

above. This adjustment was made to solve modest differences between the adjusted dataset 

and the census data, but also to ensure consistency when upgrading the population. 

To create the population dataset for the 2016 model, data were obtained from the 1% 

population survey in 2015. This survey is a stratified sample designed to provide an estimate 

for population within a full census. It is assumed that it is accurate. This upgrade was 

performed using Equation 50. Again, it was assumed that population had not changed 

significantly between 2015 and 2016.  

This approach results in all data cells within a city boundary increasing in proportion to the 

change in population for the containing city region as a whole. As a result, greenfield 

construction sites that were developed between this period are still considered to be 

undeveloped by the 2015 population dataset. As a result, emissions are underestimated for 

subcatchments that contain significant new developments. 

However overall, this adjustment enabled greater confidence in our predictions of point and 

diffuse emissions. 
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Figure 34 - Comparison of population datasets. The Worldpop dataset (A) boasts a higher resolution in 

comparison to Landscan (B). However when compared to satellite imagery (C), it is likely that Landscan is a more 

realistic representation of the underlying population. Sparsely populated areas such as the region to the North-

West are poorly represented by Worldpop. The census data used by Landscan is older than the data used by 

Worldpop, however utilising the GPWv4 dataset, Landscan was adjusted to 2010 population levels (D). 
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Figure 35 – Population density surface generated from the GPWv4 dataset. 
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Figure 36 - Census boundaries derived from GPWv4. As part of the development of GPWv4, the developers 

assigned cells that lay on the boundary to share the value of all intersecting boundaries. And therefore these cells 

are unique and when backcalculating census boundaries, these cells grouped only with themselves. These are 

shown here as boundaries that include only a single cell each. 

 

3.7 Delineating upgraded STWs 

Delineating wastewatersheds for the 2016 model was completed prior to the 2008 model. 

For the 2008 model, wastewatersheds for STWs that were constructed after 2008 were 

removed and STWs that had been upgraded since 2008 were downgraded. In order to 

achieve this, data were obtained for population and service areas of STWs for 2008 if 

available, which was used to assist the process. 
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The methodology used here assumes that areas within an upgraded STW’s wastewatershed 

(in 2016) that had been developed between 2008-2016 were served by the upgraded STW in 

2016, and not by the pre-upgraded 2008 STW. 

It was also assumed that sewer pipes connecting to the STW did not exist within these new 

development sites in 2008. Using Google Earth’s historic imagery, new developments within 

the upgraded STW’s wastewatershed were digitised. Subcatchments within these new 

developments were removed from 2008 wastewatersheds. New developments were treated 

like barriers and therefore subcatchments beyond these new developments were also 

removed in order to maintain a semi-continuous wastewatershed with no significant gaps. 

Figure 37 shows an example of this process. 

  

Figure 37 - Use of digitised development areas to aid the delineation of downgraded STWs. Developed areas, 

those plots of land that were developed between 2008 and 2016 were not included in the 2008 wastewatershed. 
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The assumption behind this strategy was based upon the likelihood that following STW 

upgrade, new developments are more likely to connect to the STW as opposed to retrofitting 

the required infrastructure for existing properties. Sewer pipes and other related 

infrastructure for new builds can be completed prior to construction and are therefore 

relatively cost-efficient. This is as opposed to the costs of laying pipes below existing 

properties (unsewered properties), which would involve considerable work and disruption 

removing the surface to place the new pipes. However, it is possible retrofitting could be 

implicitly accounted for to some extent. The new developments were identified by 

indications of significant construction from the imagery, which could include infrastructure 

retrofit. 

This procedure was only required for two STWs (Figure 37), one of which was well confined 

by a relatively small catchment and the other with information about the size of the service 

area before and after upgrade. 

Population data was available for a single STW prior to and following upgrade which was 

used for evaluation purposes. Using the methodology described, the population served prior 

to upgrade was estimated. The relative difference between predicted and actual 2008 

population deviated by 24%. This is reasonable considering the uncertainties around the 

method and the data. 

 

3.8 Sampling 

In January 2016, water samples were collected throughout the catchment (by the author) 

with the intention of quantifying the concentration of the four target chemicals. Samples 

were required for the purpose of validating the model. The objective of the campaign was 

to:- 
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• Sample all major subcatchments 

• To sample upstream and downstream of a selection of representative STWs 

• Sample subcatchments with no known STWs present 

This was designed to evaluate the model’s capability to simulate emissions from both 

treated and untreated sources. It was also important to test how representative the model 

was for different areas of the catchment. 

With a relatively large catchment to sample, subcatchments with high population were 

preferentially selected for sampling. The transformed population data described in the STW 

identification section was used to highlight populated areas of the catchment. All 

subcatchments containing a STW were sampled and 4 sampling points were placed in 

subcatchments without a STW.  

Sampling sites were divided into three zones as shown by Figure 38. The first zone (A), within 

the city regions of Huizhou and Shenzhen, was the most densely populated, and therefore 

contained the largest number of sampling sites. The second zone (B) was within the Heyuan 

city region, representing the middle section of the East river. Samples were collected from 

around Heyuan city and from the rural surroundings. The final zone (C) represented the 

upper reaches, which contained Longchuan and a number of small towns and villages in the 

largely rural region.  

Samples were collected from bridges where possible to allow for access to the centre of the 

channel, otherwise samples were taken from the river bank or in singular case, a boat was 

hired to collect a sample from the centre of the channel.  

Sampling area A was sampled between the 12th-13th of January, area C was sampled between 

14th-15th of January and area B was sampled on the 15th and 18th of January. Weather 
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conditions for the sampling period are shown by Table 15. Conditions for the first sampling 

campaign, in 2008, were not available. 

Site Date Weather conditions 

A 12th-13th January 

2016 

Cool and dry. 

B 14th January 2016 Dry during sampling, but 9.8mm recorded in nearby 

rain gauge. 

B 15th January 2016 Light rain during sampling, 7.3mm recorded in 

nearby rain gauge. 

C 15th January 2016 Intermittent rainfall during sampling, 19.6mm 

recorded in nearby rain gauge. 

C 18th January 2016 Warm and dry. 

Table 15 - Weather conditions during sampling in 2016. 

The samples were collected using a bucket and stored in duplicate 1L amber glass bottles. 

The bucket and bottles were first rinsed with river water from the sampling site and 50ml 

MeOH. Then, 0.4ml 4M H2SO4 was added to the samples to reduce the pH and stabilise the 

water samples. Water pH and temperature were also measured at each sampling site. The 

campaign involved a total of 36 sampling sites, with duplicate samples taken at each site. 



153 
 

  

Figure 38 - Sampling sites, divided into three zones. Zone A represents Huizhou and Shenzhen, Zone B represents 

Heyuan City region and Zone C represents Longchuan area. 
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3.9 Analytical method 

3.9.1 Extraction 

Bottles were immediately placed in a cooler and then extracted within 60 hours. Samples 

were filtered using 0.7um G/F filter. At this point two laboratory blanks were prepared by 

mixing 1L MQ water with 50ml MeOH and 0.4 H2SO4. The samples were then spiked with 

100ng internal standard (Table 17), and then shaken. Finally, the samples were then 

extracted using solid phase extraction (SPE). SPE cartridges (Sigma HLB 200mg, 6mL) were 

conditioned using 10ml MeOH and 10ml Mili-Q water. Samples were extracted at 

approximately 10ml/minute, and then dried using a vacuum pump. After extraction SPE 

cartridges were wrapped in aluminium foil and stored in a freezer. Following the conclusion 

of the sampling campaign, the SPE cartridges were returned to the UK and placed in a 

freezer within 24 hours. 

 

3.9.2 Elution and reconstitution 

SPE cartridges were dried again using an extraction pump to remove any water that may 

have accumulated during freezing. The samples were eluted with a solvent mixture of 50/50 

Acetonitrile and Ethyl Acetate at a rate of about 1ml/minute. The extracts then were placed 

in 15 mL amber vials for reduction to 0.1 mL under a stream of high purity nitrogen. The 

samples were then filtered using 0.2 µm PTFE syringe filters before storage in 2 mL vials. 

An extract aliquot of 0.2 mL was reduced to just dryness, and reconstituted by a 0.1 mL 

mixture of MQ water and methanol mixture with 5mM NH4OH (50% : 50%, v/v) in micro vials 

just before instrument analysis. 
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3.9.3 Analysis 

Instrument 

The instrument consisted of an Agilent 1100 series high performance liquid chromatography 

(HPLC) system and a Quattro Micro triple-quadrupole mass spectrometer (Waters, Micromass, 

Manchester, UK). The HPLC system comprised of a binary pump, a vacuum micro-degasser, 

auto-sampler and a thermostatic column compartment. The Quattro Micro triple-quadruple 

mass spectrometer was equipped with an electrospray ionisation (ESI) source. High-purity 

nitrogen was used as a nebulising and desolvation gas supplied by a generator (Peak Scientific, 

UK), bottled argon (99.999%) was used as the collision gas. The instrument control and data 

acquisition were controlled by Masslynx 4.1 software. The sample injection volume was 5 μL. 

The instrument was optimised and operated in negative ion mode with a capillary voltage of 

3 kV, a source temperature of 120 ℃ and a desolvation temperature of 300 ℃, no cone gas 

flow and a desolvation gas flow of 600 L h-1. 

Mobile phase composition 

Two mobile phases were prepared:- A: 95% MQ water + 5% ACN with 5mM NH4OH; B: 95% 

ACN + 5% MQ water with 5mM NH4OH. 

Column and column temperature 

A Waters Xbridge BEH C18 column was employed with a pre-column: 100 mm ×21. mm, 2.5 

μm. The column compartment temperature was kept at 25 ℃. 
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Time (minutes) Mobile phase A (%) Mobile phase B (%) Flow (ml min-1) 

0 85 15 0.2 

1 85 15 0.2 

10 20 80 0.2 

15 0 100 0.2 

23 0 100 0.2 

24 85 15 0.2 

37 85 15 0.2 

Table 16 – Gradient program used by the HPLC for analysis. 

 

Quantification 

Quantification of the target PCP ingredients and estrogens were based on the               

precursor ion/product ion transitions or target ions using the MRM scan of the negative ion 

mode. The details of the MS transitions and parameters for the target chemicals are listed in 

Table 17. 
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Chemical RT (minutes) Parent ion Daughter ions CV CE Internal standard 

TCS 11.22 287/ 289 35 15 5 TCS-d3 

TCC 15.47 313/315 160/162 20 15/15 TCS-d3 

E1 12.33 269 145/143 50 35/55 E1-d4 

E2 11.53 271 183/145 55 40/40 E2-d5 

Table 17 - MS transitions and parameters for the target chemicals, including retention time (RT), collision energy 

(CE), cone voltage (CV), parent ion, daughter ions and internal standard used for each target chemical. 

 

Concentrations of analytes were corrected for losses by normalising by the recovery of 

internal standards. The Instrument detection limit (IDL) and method detection limit (MDL) 

for each chemical are contained in Table 18, along with an estimate of each method 

quantification limit (MQL). The IDL were calculated using low concentration standards, whilst 

MDLs were determined based upon the IDL, SPE recovery (%) and the concentration factor 

(1500), this is described by Equation 51: 

MDL =
IDL

RESPE ∗ CF
∗ 100 

(51) 

 

where: 

MDL - method detection limit (ng/L) 

IDL - instrument detection limit (ng/ml) 

RESPE - SPE absolute recoveries (%) 

CF - concentration factor. 
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This produced a set of chromatograms, examples of which are presented in Appendix A. 

Analysis of the chromatograms provided an estimate for the concentration of each target 

compound within each sample. 

Chemical IDL (ng/ml) MDL (ng/L) MQL (ng/L) 

E1 0.40 0.14 0.48 

E2 0.96 0.34 1.12 

TCS 0.40 0.14 0.46 

TCC 0.83 0.30 1.00 

 Table 18 –Detection limits for the target chemicals.  

 

The quality of the data measured from samples taken in 2016 is assessed here. For both 

campaigns, duplicates were taken at each site. For the majority of the samples taken, the 

concentration of each chemical was similar for both duplicate samples. However in some 

cases, particularly in samples taken at Heyuan, significant variation was observed. It is also 

important to note that all four chemicals were detected within the blank control samples 

(Table 19). This may suggest that errors during analysis, contamination during extraction, 

storage or transportation may have occurred. As the number of samples taken is relatively 

low, none of the sampling data has been discarded. As such, the variation of each duplicate 

pair is presented and referred to when the data is referenced, especially when in comparison 

to modelling results. 

E1 E2 TCC TCS 

0.3 0 0.3 3.6 

0.4 0.8 0.2 3.7 

Table 19 - Concentration of target chemicals within blank control samples (ng/l) 
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3.10 Scenario based assessment 

The use of scenarios may be used for the purpose of risk assessment and catchment 

management. Firstly, a simple risk assessment was completed based upon the PEC/PNEC 

ratio for each chemical, based upon the 50th and 90th percentile data. 

Secondly, future scenarios were examined. The first examined the potential effect of 

increased population, mitigated by improved sewage treatment. The near future scenario for 

the year 2020 was selected as a suitable timepoint, with the assumption that all planned 

STWs would be completed. Projected population data for Huizhou and Shenzhen was 

acquired from the two city authorities and used to upgrade the gridded population. For 

Heyuan, no such data was available and therefore it was assumed that the same population 

growth rate for 2010-2015 continued for the period of 2015-2020. 

As discussed in Chapter 2, when attempting to locate STWs for settlements currently without 

a STW, information was sought from internet sources which might suggest plans for 

construction of a STW in the future. Plans for two new STWs were located and a number of 

upgrade plans using this method. A dummy STW was placed just downstream of the planned 

Shiba and Mabei STWs (Figure 39), and the population served was estimated using the 

methodology presented in Chapter 2. It was estimated that Shiba and Mabei STWs will serve 

a population of 36,000 and 19,000 respectively. It was assumed that all existing STWs served 

any additional population within their respective service area. Plans from Shenzhen city 

authority reflected this, with upgrades for the majority of STWs to account for this change in 

population. 

Following this, an updated risk assessment was performed, noting any changes in risk 

between the two models. Finally, solutions for high risk areas were devised, focusing upon 

construction and upgrade of STWs in the area. 
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Figure 39 - Planned STWs within the East River catchment - the Shiba (A) and Mabei (B) STWs. 

  

A      

B 
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Chapter 4 – East river modelling results and discussion 

 

4.1. Introduction 

The objective of this section is to assess whether the thesis aim: “To be able to reliably 

predict the in-stream concentration of down-the-drain chemicals TCS, TCC, E1 and E2” has 

been achieved. 

To assess this, the simulation results for 2008 and 2016 were compared to measured 

concentrations. Attempts have been made to critique the different elements of the 

methodology, assessing the uncertainty around each element and the suitability of the 

approach taken. 

Finally, the model was also parameterised for two future scenarios, which predict the effects 

of increasing population, usage and wastewater treatment capabilities upon chemical 

exposure. An assessment of the appropriateness of these scenarios was made, and the 

potential implications of these scenarios. This was used to assess whether thesis aim 3: “To 

demonstrate the potential of GREAT-ER for both risk assessment and catchment 

management purposes, based upon the present and year 2020 scenario” has been achieved. 

 

4.2. Comparison of measured and modelled concentrations 

The results of the model are presented here in comparison to measurements taken from 

water sampling campaigns in 2008 and 2016. Separate model results are presented for 

different in-stream removal constants, for TCS. These models are described as TCS A 

(removal constant = 0.0138h-1), TCS B (removal constant = 0.061h-1) and TCS C (removal 

constant = 0.21h-1). 
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The root mean square error (RMSE) between the median estimated concentration and the 

mean measured concentration was calculated for samples collected at sampling sites within 

specified spatial units (e.g. all tributary sampling sites, or sites within the Heyuan sampling 

zone). Box plots have been used to illustrate the distribution of the estimated concentrations 

at each sampling site; the legend that applies to all box plots is shown in Figure 40. Maps are 

also provided showing the location of sampling sites and the mean population for each 

subcatchment. Subcatchment population was provided rather than raw data in order to 

provide an indication of the actual input to the model. Finally, scatterplots are presented, 

plotting the mean measured concentration against the median estimated concentration. 

 

Figure 40 - Legend for measured vs modelled concentration box plots (ng/l). 

 

4.2.1. The 2008 model 

2008 modelled and measured chemical concentrations are displayed graphically in boxplots 

(Figure 41 and Figure 42), and scatterplots (Figure 43). The majority of sampling sites are in 

the highly populated lower catchment; a map of the catchment with locations of sample 

sites is shown in Figure 44. Calculated RMSE values are presented in Table 20.  

On the main stream, the RMSE for E1 and E2 is low, and the modelled 10th percentile 

concentration is close to 0 at all sampling sites where E1/E2 was not detected. The RMSE is 
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higher for TCC, but still relatively low, however the model underestimates the concentration 

of TCC at M2, M3, and M4. For TCS, the main stream RMSE varies according to the in-stream 

removal rate constant used. TCS B resulted in the smallest main stream RMSE, although the 

estimated concentrations for M1-M3 are underestimated; whereas the measured 

concentration for M1-M3 is within the 10th-90th percentile concentration range for TCS A. 

TCS C performs relatively poorly, with the model underestimating the measured 

concentration at all main stream sampling sites. 

 E1 E2 TCC TCS A TCS B TCS C 

Catchment 12.56 2.0 43.84 124.21 108.77 63.58 

Main stream 0.7 0.09 3.47 4.63 3.41 5.1 

Tributaries 17.75 2.82 61.9 175.59 153.79 89.77 

Table 20- RMSE (ng/l) between the median estimated concentration and the mean measured concentration for 

samples collected at sampling sites within specified spatial units - for the 2008 model. Triclosan is parameterised 

with different in-stream removal constants, where: (TCS A) – 0.0138h-1, (TCS B) – 0.061h-1, (TCS C) – 0.21h-1. 

 

All tributaries are located within the city regions of Huizhou and Shenzhen. The RMSE for E1 

is significantly higher than E2. The model underestimates the concentration of E1 at T1-T3; 

whilst for E2, the measured concentrations for T1,T2,T4 and T5 are within the estimated 

10th-90th range and the 10th percentile estimated concentration is relatively close to 0 

(0.32ng/l) for the sampling site T3, which was not detected within the samples collected. 

For TCC, the tributary RMSE is much higher than the RMSE for E1/E2, and for the sampling 

sites T1-T3, the model overestimates the concentration of TCC. Finally, for TCS, the tributary 

RMSE varies considerably depending on the in-stream removal scenario. TCS A performs 

worst, with the greatest RMSE, underestimating the concentration of TCS at T1-T5. For TCS 

B, the measured value is within the estimated 10th-90th range, but underestimates the 



164 
 

concentration of samples taken at T3 and T5. The RMSE for TCS C is the lowest of the three 

scenarios and the measured value for samples taken at T1 and T3 is within the 10th-90th 

percentile, but underestimates T2, T4 and T5. 

The scatterplots suggest that overall, the model’s estimates for the concentration of E1 at 

most sampling sites is similar to that measured, although three sampling sites were 

underestimated by the 50th percentile. For E2, the model’s estimated concentration at the 

majority of sampling sites is close to the measured concentration, with the exception of a 

single site, which the model overestimates. For TCC, the model’s estimate for approximately 

half of the sites appear to be relatively close to the concentration measured, however the 

remaining sites are overestimated by the 50th percentile. Finally, scatter graphs for different 

in-stream removal constants for TCS suggest that the TCS B simulation (0.061h-1) produces 

estimates that are the closest to measured concentrations overall, although a few sampling 

sites are still overestimated by the 50th percentile.  

Many of the estimates for chemical concentration deviate, sometimes significantly, from the 

measured concentrations. However overall, the model seems to be able to represent many 

of the elements that are important for chemical emission, dilution and removal. The results 

for 2008 are significant because of the complexity of the catchment and the uncertainty 

regarding the estimation of many of the emission elements. For the majority of STWs, the 

population served was unknown, and for many of these STWs, the population served was 

available only after upgrade. Therefore this may suggest that the estimation methodology 

used may have some merit.  
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Figure 41 – A comparison between the measured and modelled concentrations for Estrone, 17β-estradiol and Triclocarban, for the December 2008 scenario.  
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Figure 42 – A comparison between the measured and modelled concentrations for Triclosan, parameterised with different in-stream removal constants, for the December 2008 

scenario. Where: (A) – 0.0138h-1, (B) – 0.061h-1, (C) – 0.21h-1. 
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Figure 43 – Scatterplots displaying measured concentration against estimated concentration of Estrone, 17β-estradiol, Triclocarban and Triclosan for the 2008 model. Triclosan is 

parameterised with different in-stream removal constants, where: TCS A – removal constant = 0.0138h-1, TCS B – removal constant = 0.061h-1, TCS C – removal constant =   0.21h-1. A 

line is drawn on all graphs, where: measured = modelled.
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Figure 44 – Median simulated concentration of Triclocarban in 2008.  
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4.2.1.1. The 2016 model 

The 2016 modelling results for the three sampling zones are presented in this section. 

Comparisons to measurements at sampling sites in the Longchuan and Heyuan sampling 

zones are displayed within boxplots (Figure 45, Figure 46, Figure 54 and Figure 55), whereas 

the spatial distribution of TCC is presented in each sampling area  as an example (Figure 47,  

and Figure 56). TCS, E1 and E2 are also presented in maps of the Huizhou zone (Figure 57 - 

Figure 62). Maps for TCS, E1 and E2 for the other two zones are shown in Appendix B. The 

calculated RMSE values are presented in Table 21, Table 22, Table 24 and Table 25. 

Longchuan 

The Longchuan sampling zone is the most upstream subcatchment and represents a largely 

rural area, with the only major settlement being the town of Longchuan. 

For E1, the measured concentration is within the estimated 10th - 90th percentile range for all 

main stream sites apart from LM1, which is underestimated. For E2, the modelled 10th 

percentile concentration is close to 0 at all sampling sites where E2 is not detected, and the 

measured concentration for LM2 is within the estimated 10th - 90th percentile range. The 

Longchuan tributary RMSE for E1 is much higher than E2, but neither chemical appears to be 

modelled inadequately. 

For TCC, the measured concentration for samples collected at sites LM2-LM4 are within the 

estimated 10th-90th percentile range, however, the model underestimates the concentration 

for LM1 and overestimates the concentration for LM5. As shown by Table 21, the RMSE is 

relatively low for E1, E2 and TCC at main stream sampling sites in Longchuan. For TCS, the 

RMSE is significantly higher than the other three chemicals, but is still low in absolute terms. 

The measured concentrations at LM1, LM3, and LM4, are underestimated by the TCS A 

model, but LM2 is inside the estimated 10th-90th percentile range, and the measured 
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concentration for LM5 is within the estimated 25th-75th percentile range. For TCS B and TCS 

C, the concentration at all main stream sites are underestimated, more so by TCS C than TCS 

B.  

 E1 E2 TCC TCS A TCS B TCS C 

All sites 4.07 0.61 3.7 4.89 7.58 11.27 

Main stream 0.211 0.13 0.69 3.16 4.73 5.45 

Tributaries 6.11 0.90 5.49 6.43 10.06 15.78 

Table 21- RMSE (ng/l) between the median estimated concentration and the mean measured concentration for 

samples collected at sampling sites within specified spatial units - for the Longchuan sampling zone, 2016 model. 

Triclosan is parameterised with different in-stream removal constants, where: (A) – 0.0138h-1, (B) – 0.061h-1, (C) – 

0.21h-1. 

 

The boxplots in Figure 46 and the calculations of RMSE shown in Table 21 suggest that TCS A 

provides the closest estimate in comparison to the concentrations measured. 

For the Longchuan tributary sites, the RMSE is much higher for E1 than E2, and this is largely 

a result of a significant deviation (7.33ng/l deviation) between the estimated and measured 

concentration at the LT3 sample site. LT3 is in Longchuan town and is therefore the most 

urbanised sampling point within the zone. It is assumed that the majority of the town is 

served by the STW on the main stream; however it is likely that significant untreated 

discharges remain. Measured concentrations of E1 at other tributary sampling sites in 

Longchuan are within the estimated 10th-90th percentile range, as are all measured 

concentrations for E2. The RMSE for TCC is similar to that of E1, but measured 

concentrations for sites LT1-LT3 are underestimated by the model. 

The RMSE for TCS varies considerably for Longchuan tributary sites. As with main stream 

sites, estimates for TCS A are more comparable with measured concentrations, in 
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comparison to the other in-stream scenarios; measured concentrations are within the     

10th-90th range at sampling sites LT2-LT4, although LT1 is underestimated. For TCS B, the 

measured concentration for LT1 is within the 10th-90th percentile range, however the 

concentrations at LT2-LT4 are significantly underestimated. The worst performing scenario is 

TCS C, which underestimates concentrations at all sampling sites.  
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Figure 45 – Simulated and measured results for the 9 sampling sites within the Longchuan sampling zone in 2016 – for Estrone, 17β-estradiol and Triclocarban. 
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Figure 46 – Simulated and measured results for the 9 sampling sites within the Longchuan sampling zone in 2016 – For Triclosan. Triclosan is parameterised with different in-stream 

removal constants, where: (TCS A) – removal constant = 0.0138h-1, (TCS B) – removal constant = 0.061h-1, (TCS C) – removal constant =   0.21h-1. 

  



175 
 

  

Figure 47 – Median simulated concentration of TCC in 2016 in the Longchuan sampling zone (ng/l). 
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Heyuan 

The Heyuan zone represents the mid-catchment. The zone is predominantly rural, however it 

also contains Heyuan city, which the main stream passes through. HT1 is located in Heyuan 

city (Figure 56), and the majority of the upstream catchment is assumed to be treated by the 

largest Heyuan STW. HT5 is on the outlet to a semi-rural catchment, containing a small 

number of towns. HT2-HT4, and HT6-HT8, are located in a relatively remote rural area as 

illustrated by Figures 48-53. In the case of HT6, this is directly downstream of a rural 

discharge pipe, as shown by Figure 48. 

The calculated RMSE for E1 and E2 is relatively low. For E1, the concentration at HM1 is 

overestimated, and is underestimated at HM2 and HM4. For all other sites, measurements 

are within the estimated 10th-90th percentile range. For E2, HM2 and HM4 were 

underestimated by the model, but for all other sites, the measured concentrations were 

within the estimated 10th-90th percentile range. 

For TCC, the concentration at HM1 and HM5 is overestimated, whilst the concentration at 

HM2, HM3 and HM4 are underestimated. The RMSE for TCC is greater than E1 and E2, but 

lower than that of all TCS simulations.  

In the case of TCS, the best performing in-stream removal scenario is TCS A, for which the 

measured concentrations at HM1, HM3 and HM5 are within the estimated 10th-90th 

percentile range. HM2 and HM4 are underestimated by the model. For the other two 

scenarios, the measured concentration is underestimated at all sites, particularly under TCS 

C. 

The deviations between the duplicates of some of the samples on the main stream are 

relatively large, and therefore it is difficult to assess how well the model performs. However, 

the calculated RMSE for E1, E2, TCC and the best estimate for TCS, TCS A, is less than 5ng/l. 
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 E1 E2 TCC TCS A TCS B TCS C 

All sites 3.65 1.06 21.3 46.55 17.89 8.51 

Main stream 0.99 1.57 3.84 4.16 6.13 7.34 

Tributaries 4.59 0.54 26.98 59.25 22.29 9.17 

Table 22- RMSE (ng/l) between the median estimated concentration and the mean measured concentration for 

samples collected at sampling sites within specified spatial units - for the Heyuan sampling zone, 2016 model. 

Triclosan is parameterised with different in-stream removal constants, where: (A) – 0.0138h-1, (B) – 0.061h-1, (C) – 

0.21h-1. 

 

The RMSE for E1 is ~8.5 times higher than E2 at tributary sites, however, the concentration 

at HT2, HT3 and HT5-HT8 are within the estimated 10th-90th percentile range. There is much 

uncertainty in these catchments, as the majority of the catchment is not served by a STW. 

The concentration of E1 is underestimated at HT1 and HT5, although, HT1 is also 

underestimated for all other chemicals. The STW upstream of HT1 is stated to serve 1 million 

people, which according to the gridded population dataset used in this study (see section 

3.6), is estimated to be well in excess of the number of people in the nearby area and, 

therefore, was defined to serve all of the area near the STW, including almost all of the 

catchment area upstream of the sample site. Therefore, the model is defined to release only 

a very small volume of wastewater upstream of the sampling site. This suggests that the area 

may be subject to illegal wastewater discharge or possibly some inefficiency in the sewage 

system. Precipitation records during the sampled month suggest that no sewer overflows are 

likely, although blocked pipes may still lead to overflows of untreated wastewater due to 

backed up flow. Alternatively this area may not be served, although considering the vicinity 

to the STW this would be unlikely. 
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Figure 48 - Rural wastewater discharge at site HT6. 

 

The RMSE for E2 is low, and the measured concentrations at HT2-HT8 are within the 

estimated 10th-90th percentile range. Therefore the model seems to represent E2 well here. 

The model performs quite poorly for TCC, as it overestimates the concentration at every 

tributary site in the Heyuan sampling zone. It is possible that the usage for sampling sites 

located in more remote rural areas may be overestimated. Rural life in these areas appears 
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to be relatively simple (as noted during the field sampling campaign), with more emphasis on 

low-technology (e.g. using animals for transportation), and as such it is plausible that the 

local population may not be able to afford personal care products. 

For TCS, the in-stream removal scenario with the lowest RMSE is TCS C. However, as shown 

by Figure 54, the performance of each in-stream removal scenario varies considerably 

depending upon the sampling site. For HT2, HT3, HT6 and HT7, scenario TCS C has the lowest 

RMSE. For HT4 and HT5, TCS A has the lowest RMSE and for HT8, TCS B provides the closest 

estimate with a deviation of 0.05ng/l. Therefore, it is difficult to determine which scenario 

best represents the area, if any. It is possible that there is a relationship between river 

discharge and removal rates. The mean flow at each tributary site in the Heyuan sampling 

region is shown by Table 24. At HT6 and HT3, the flow is estimated to be very low, and as 

shown by Figure 48, a photo taken at HT6, the cross-sectional area of the stream is small, 

and therefore the estimation of flow is plausible. The concentration of TCS at sites HT3 and 

HT6 is best estimated when using a higher in-stream removal scenario, and at site HT5, 

which is estimated to have a much greater discharge, is best estimated when using a low in-

stream removal scenario.  

Site Flow (m3/s) 

HT1 163.97 

HT2 3.37 

HT3 0.68 

HT4 3.75 

HT5 13.83 

HT6 0.2 

HT7 1.74 

HT8 7.04 

Table 23 - Mean flow estimated at tributary sites in the Heyuan sampling zone. 
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Figure 49 - Satellite imagery of sampling site HT6 in a rural catchment within the Heyuan zone. Arrows indicate direction of flow. Imagery from Google Earth
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Figure 50 - Photo taken from the area near sample site HT6. This small, unstable bridge and a ferry is the only 

means for accessing the other side of the river. This photo provides an example the level of development in the 

area. 
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Figure 51 – Photo taken from the area near sampling site HT6. These residents appear to tend a small amount of 

crops, and chickens. This is an example of small-scale, subsistence farming observed in the area.
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Figure 52 - Satellite imagery of the catchment of HT7 in a rural area within Heyuan zone. Arrows indicate direction of flow. 

Imagery from Google Earth. 

 

Figure 53 -Photo taken at sampling site HT7 - looking upstream. This area is rural with a sparse population, as illustrated 

here.   
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Figure 54 - Simulated and measured results for the 13 sampling sites within the Heyuan sampling zone in 2016 - for Estrone, 17β-estradiol and Triclocarban. 
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Figure 55 - Simulated and measured results for the 9 sampling sites within the Longchuan sampling zone in 2016 – For Triclosan. Triclosan is parameterised with different in-stream 

removal constants, where: (TCS A) – removal constant = 0.0138h-1, (TCS B) – removal constant = 0.061h-1, (TCS C) – removal constant = 0.21h-1. 
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Figure 56 - Median simulated concentration of Triclocarban in 2016 in the Heyuan sampling zone (ng/l). 
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Huizhou 

The Huizhou zone represents a densely populated area that contains a portion of Huizhou 

and Shenzhen city (Figure 19). Chemical inputs are significantly higher than in the other two 

zones and therefore wastewater removal and dilution are important. 

 E1 E2 TCC TCS A TCS B TCS C 

All sites 4.59 0.67 45.71 89.96 47.69 37.96 

Main stream 0.93 0.22 2.87 5.26 9.11 11.23 

Tributaries 5.20 0.71 49.35 97.15 51.37 40.74 

H1-H4  6.14 0.49 33.73 54.21 17.27 55.70 

HA1-HA3 4.86 0.79 67.86 130.03 74.24 35.53 

HB1-HB2 7.08 1.27 44.80 79.92 28.58 33.51 

T1-T3 0.91 0.06 47.78 112.55 64.05 22.15 

Table 24- RMSE (ng/l) between the median estimated concentration and the mean measured concentration for 

samples collected at sampling sites within specified spatial units - for the Huizhou sampling zone, 2016 model. 

Triclosan is parameterised with different in-stream removal constants, where: (A) – 0.0138 h-1, (B) – 0.061 h-1, (C) 

– 0.21 h-1. 

 

The main stream in this section leads to the outlet to the study area and therefore the 

discharge is high. However, the chemical load is very high, accumulating from the 

wastewater from several million people living in this region; Huizhou and Shenzhen have a 

population of ~3 and 11 million respectively (Guangdong Provincial Bureau of Statistics, n.d.). 

The model underestimates the concentration of E1 at both sites, although the RMSE is <1 

ng/l. For E2, the RMSE for the main stream is very low, and the measured concentrations are 

within the estimated 10th-90th percentile range. The measured concentration of TCC is within 

the estimated 10th-90th percentile range at HZM1, however, the concentration at HZM2 is 
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overestimated. Finally, for TCS, the RMSE is at its lowest for the TCS A in-stream removal 

scenario. HZM1 is underestimated by TCS A, but the measured concentration of TCS is within 

the estimated 10th-90th percentile range for HZM2. Both TCS B and TCS C underestimate the 

concentration at both sites. 

The catchment area containing HA and HB sites is densely populated with some of the 

largest STWs in the catchment. As the majority of the HA sub catchments are served by a 

STW it is perhaps expected that the subcatchment is easier to characterise. However, the 

population served by the STWs in the HB sampling tributary is not known and a significant 

proportion of the catchment is not served. In addition, the accuracy of the flow estimation is 

uncertain for the Shenzhen subcatchment (Figure 38), as no gauging data is available, this 

area includes H, HA and HB sampling sites.  

For all HA and HB tributary sampling sites, the measured concentration of E1 and E2 is within 

the estimated 10th-90th percentile range, with the exception of HB2, which is underestimated 

by the model for E1. 

TCC is overestimated at every HA and HB sampling site, with a RMSE significantly higher than 

E1 and E2. The RMSE for TCS is lower for HA and HB for the TCS C or TCS B in-stream removal 

scenarios respectively. Measured concentrations for samples taken at HA and HB sites are 

within the estimated 10th-90th percentile range for TCS B, apart from HA1 which is 

overestimated. For the TCS C scenario, both HA3 and HB2 are underestimated by the model. 

Finally, the TCS A scenario overestimates every HA and HB sample site. 

The H sample sites represent the longitudinal change from the outskirts of the city at H1 to 

the inlet of the East river main stem at H4 (Figure 57-62). Mid-profile, H2 and H3 are located 

near towns that surround the city. This sampling region is far more uncertain than the HA 

and HB subcatchments, as a high proportion of the catchment outside of HA/HB area is 

untreated. In addition, there are five STWs for which the population served is estimated. 
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HZT1, HZT2 and HZT3 are located downstream of 3 of these STWs. The measured 

concentration of E2 is within the estimated 10th-90th percentile concentration range for all H 

sites. For E1, H2 and H3 measured concentrations are within the estimated 10th-90th 

percentile range, whereas H1 is underestimated and H4 is overestimated. The in-stream 

removal scenario with the lowest RMSE for TCS is the B scenario, with all measured 

concentrations within the estimated 10th-90th percentile range.  Regarding TCC, the model 

overestimates the concentration at all H sites. 

T1 is located in a rural subcatchment, with a low population density (relative to the rest of 

the sampling area), as shown by Figure 63. T2 and T3 are both located upstream of the 

Shenzhen subcatchment confluence but are located downstream of two STWs and the 

Baipenzhu reservoir. The measured concentration of E1 is within the estimated 10th-90th 

percentile range for T1 and T2, but overestimates at T3. For E2, measured concentrations are 

either within the estimated 10th-90th percentile range, or the modelled 10th percentile 

concentrations are close to 0 at all sampling sites where E2 is not detected in the samples 

collected. TCC is again overestimated at all sample sites, suggesting that TCC is modelled 

poorly in Huizhou. For TCS, the RMSE is lowest for in-stream removal scenario C, although for 

the TCS B scenario, the measured concentration is within the 10th-90th percentile range for 

T2 and T3. TCS C underestimates T2 and T3, and all TCS scenarios overestimate T1. 
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Figure 57 - Median simulated concentration of Triclosan A in 2016 in the 14 sites within Huizhou sampling zone (ng/l). 
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Figure 58 - Median simulated concentration of Triclosan B in 2016 for the 14 sites within the Huizhou sampling zone (ng/l). 
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Figure 59- Median simulated concentration of Triclosan C in 2016 for the 14 sites within the 14 Huizhou sampling zone (ng/l). 
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Figure 60 - Median simulated concentration of Triclocarban in 2016 for the 14 sites within the Huizhou sampling zone (ng/l).
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Figure 61 - Median simulated concentration of Estrone in 2016 for the 14 sites within the Huizhou sampling zone (ng/l). 
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Figure 62 - Median simulated concentration of 17β-estradiol in 2016 for the 14 sites within the Huizhou sampling zone (ng/l). 
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Figure 63 - Satellite imagery of sampling site HTZ1, in a rural area of Huizhou zone. Arrows indicate direction of 

flow. Imagery from Google Earth. 

 

Summary 

The ability of the model to simulate the catchment as a whole is assessed for each chemical 

here. Table 25 displays the RMSE for each chemical, as a whole, for the main stream and for 

tributary sampling sites. Figure 64 displays scatter graphs for each chemical, plotting the 

measured concentration against the estimated 50th percentile concentration. 

E1 and E2 both have a relatively low RMSE overall, and scatter graphs suggest that the 50th 

percentile is relatively similar to the measured concentration in most cases, although when 

this is not the case, the estimated 50th percentile concentration is less than the measured 

concentration. The model appears to estimate the concentration of TCC on the main stream 
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with reasonable accuracy, as suggested by the RMSE value of 2.77ng/l. However, the 

performance in the tributary sites is relatively poor as described previously. Finally, for TCS, it 

appears that the lowest and highest in-stream removal constant is most appropriate for the 

main stream and the tributaries respectively. However, as discussed earlier, the most 

appropriate in-stream removal scenario varies between individual sampling sites. Examining 

the scatter graphs, TCS A tends to overestimate, TCS C tends to underestimate and for TCS B, 

modelled results are relatively similar to measured concentrations. 

 E1 E2 TCC TCS A TCS B TCS C 

All sites 4.25 0.82 31.30 62.74 31.85 24.86 

Main stream 0.76 1.02 2.77 4 6.23 7.47 

Tributaries 5.17 0.68 38.28 76.79 38.76 29.99 

Table 25- RMSE (ng/l) between the median estimated concentration and the mean measured concentration for 

samples collected at sampling sites within the East river catchment as a whole, for the 2016 model. Triclosan is 

parameterised with different in-stream removal constants, where: (A) – 0.0138h-1, (B) – 0.061h-1, (C) – 0.21h-1. 
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Figure 64 – Scatter graphs displaying measured concentration against estimated concentration of Estrone, 17β-estradiol, Triclocarban and Triclosan for the 2016 model. Triclosan is 

parameterised with different in-stream removal constants, where: (TCS A) – removal constant = 0.0138h-1, (TCS B) – removal constant = 0.061h-1, (TCS C) – removal constant =   

0.21h-1. A line is drawn on all graphs, where: measured = modelled. 
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4.3. Model analysis 

It is important to be able to explain the distribution of modelled results in space and time, in 

order to be able to make a sound assessment of its capabilities. A comparison of modelled 

results between the 2008 and 2016 models at 2016 sampling sites is provided here. The 

initial purpose of selecting these locations was for sampling only. The ratio of modelled 

concentrations in 2008 and 2016 (Table 26), and scatter graphs with 2008 concentration 

(C2008) plotted against 2016 concentration (C2008) (Figure 65A and Figure 66A) are included 

for the purpose of this analysis. 

Concentration is lower in the 2016 model overall, but although the concentration at the 

majority of sampled sites is relatively similar, there are a small number of sites where the 

concentration in the 2016 model is much lower than the 2008 model. These sites are the HA 

and HB Huizhou tributary sites, and within the catchment areas of these sampling sites, large 

improvements to the wastewater infrastructure occurred between 2008 and 2016. However, 

for the majority of sites, the most significant change is flow, which is illustrated by Figure 65B 

and Figure 66B. Discharge was generally greater in the 2016 model, for which the primary 

effect was to increase dilution, which is reflected by the strong relationship between the 

ratios: Q2016/Q2008 and C2016/C2008. However, this relationship is weaker for TCS C. This 

appears to relate to in-stream removal, which has a positive relationship with the ratio of 

C2016/C2008 for TCS, as shown by Figure 67. Increasing river discharge also increases 

velocity which reduces the  removal of a chemical between one stretch and the next, which 

is more significant for higher in-stream removal constants (e.g. TCS C); this therefore 

counteracts the effects of increased dilution, and weakens the relationship between 

discharge and C2016/C2008. 

Overall the model appears to be a reasonable representation of the catchment for E1 and 

E2. However there are notable errors for TCC and for TCS under specific conditions and areas 
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of the catchment. Results from different in-stream removal scenarios for TCS seem to 

suggest that in-stream removal may be lower than estimated in larger catchments with 

higher discharge.  In previous GREAT-ER (or models of similar design) studies, it became 

apparent that with larger catchments the errors in simulating in-stream removal processes 

increase with increasing residence time (Johnson et al., 2008b; Anderson et al., 2003; Alder 

et al., 2010). It was noted by Price et al. (2009) that applying different in-stream removal 

rates for different areas of the catchment may significantly improve the GREAT-ER model’s 

predictions. They suggested that higher removal rates are likely to dominate in the shallow 

water of tributaries whereas in the main stream, lower removal rates may be more 

appropriate due to lower contact between fixed-film microbial biomass and the water 

column, which relates to a lower biodegradation rate. In addition, photolysis will be reduced 

due to increased light-extinction. This contrasts with the conclusion made by Grill et al. 

(2016) who suggested that differences in in-stream removal was not significant. 

Correctly defining chemical removal for in-stream processes is important. There is significant 

spatial and temporal variation for all removal processes, which leads to difficulties when 

attempting to characterise these processes. 

Site 
Concentration ratio 

(2016/2008) 

E1 0.82 

E2 0.86 

TCC 0.84 

TCS A 0.85 

TCS B 0.88 

TCS C 0.93 

Table 26 - Ratio of modelled concentration between the 2008 and 2016 models. 

 

The methodologies used to generate the in-stream removal rates examined in this study do 

not estimate removal in deep water. Therefore, in-stream removal may be overestimated in 
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deep water. However, this is likely to be not the only factor influencing the accuracy of the 

model. There may be other factors that are not represented by the model that become 

significant for catchments with greater contributing areas. It is has also been suggested that 

sediment may be a significant sink and potential source for TCC and TCS (Zhao et al., 2010). 

This may be released following resuspension, which is more likely outside of low-flow 

conditions. 

Tributaries to the East river are clearly of greater concern, because they are less diluted than 

the main stream. This has been noted in previous studies, which has led to modelling 

approaches that focus heavily upon dilution and population (e.g. Keller et al., 2014). In the 

case of the Shenzhen catchment, the proportion of population that is treated is relatively 

high, although as the population is very high and dilution is relatively low, concentrations can 

still be high after treatment. 

Rural catchments tend to have lower dilution and are treated to a lesser extent; this is the 

case for both developed and developing countries. This is reflected in a study by Johnson et 

al. (2007a), who noted that the contribution of a small STW in a small rural stream was much 

more significant than large STWs on the main stream. Often the largest populations are 

located in the lower catchment, which then discharge into rivers with greater dilution than 

found upstream. In the case of the East river, treatment of sparse populations is likely to be 

limited and crude. The model assumes that populations that are not treated by a STW are 

not treated at all, which may not be the case for all regions within the catchment, although it 

is conservative. These regions may be of concern as these areas may be of greater ecological 

significance. Zhang et al. (2010) noted that macroinvertebrate diversity was significantly 

higher in upper reaches in comparison to lower reaches. They suggested this related to 

stream disturbance from anthropogenic activity, particularly urban activity and water 
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quality. Therefore, protection of the upper reaches is important in order to preserve the 

resident ecological communities. 

For remote rural sampling sites in Heyuan, it was suggested that usage for TCC and TCS may 

possibly be overestimated. In contrast, the model is able to simulate natural estrogens in the 

area relatively well. It is also important to reiterate that natural estrogens are released from 

all humans, but product use will vary quite significantly. It is likely that the usage of personal 

care products in the local area is relatively low; the area is much less developed in 

comparison to the cities in the region. Observations during the sampling campaign revealed 

buildings and transport links that are much more basic, and the use of technology in the 

region appears to be much lower, with many residents observed to be reliant upon animals 

to transport goods and machinery. It is likely that income in the region is much lower in 

comparison to urban areas in the country, and therefore many products would be 

unaffordable for the population. This might be confirmed by conducting a product use 

survey, and interviewing residents in the region. 

The approach used to determine usage for TCC and TCS assumed usage was dependent on 

GDP. The major limitation is that GDP is determined at the county level. In rural areas, 

counties may be very large and therefore the spatial resolution is low. Furthermore, a more 

refined approach may be required to improve the estimation of product usage spatially. 

However, TCC was overestimated in sites across the catchment, not just in rural tributary 

sites, which suggests that usage may be overestimated for the entire catchment. Back-

calculation of usage for E1 and E2 had significant advantages. There are many studies 

regarding the concentration of E1 and E2 in influent and effluent for STWs in China and 

therefore it was possible to describe the usage of E1 and E2 as a log-normal distribution. This 

is a significant reason as to why E1 and E2 often outperformed TCS and TCC. In addition, a 

fraction of a given chemical may be removed during transportation in sewers. This is often 
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an unknown proportion but has been shown to be significant for surfactants (Matthijs et al., 

1995). These results suggest that back-calculating usage may be more appropriate at the 

catchment scale. This will provide a range of values that may be input as a distribution to 

represent the uncertainty of the parameter. However, high resolution GDP datasets are 

emerging, which may potentially be utilised to refine the usage estimate. 

Estimates in some of the smallest rivers were deemed to be unrealistically high. For example 

for TCS, there are a small number (<0.3%) of stretches that were estimated to have a 

concentration >500ng/l, for stretches immediately downstream of major STWs, which 

rapidly become diluted downstream of the point. Flow is likely to be significantly 

underestimated at these points, which is a particular problem within the heavily urbanised 

areas. However, as these are of a minority they are considered to be insignificant. This effect 

has been observed in previous GREAT-ER studies, with concentrations noted above that of 

untreated STW effluent in some stretches (Hannah et al., 2009). No explanation was 

provided by the author of this work, however it is plausible that the discharge of the 

receiving stream may had been defined to be less than that of the untreated wastewater 

discharge. This may occur if the flow estimate was calculated before a STW was constructed 

or simply if the modeller did not account for the effects of the STW discharge upon flow. 
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Figure 65 - Scatter graphs for the analysis of Estrone, 17β-estradiol and Triclocarban between the 2008 and 2016 models, where: (A) concentration in 2016 (C2016) against concentration in 

2008 (C2008); and (B) ratio of C2016/C2008 against ratio of Q2016/Q2008. Line drawn on graphs is where: C2008 = C2016. 

 

A 

B 
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Figure 66 - Scatter graphs for the analysis of Triclosan between the 2008 and 2016 models, where: (A) concentration in 2016 (C2016) against concentration in 2008 (C2008), and (B) ratio of 

C2016/C2008 against ratio of Q2016/Q2008. Triclosan is parameterised with different in-stream removal constants, where: (TCS A) – removal constant = 0.0138h-1, (TCS B) – removal constant 

= 0.061h-1, (TCS C) – removal constant =   0.21h-1. Line drawn on graphs is where: C2008 = C2016.
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Figure 67 - Scatter graph illustrating the relationship between in-stream removal and the ratio between the 

concentration in 2016 (C2016) and 2008 (C2008). 

 

4.3.1.  Sensitivity analysis 

The sensitivity of the model to physio-chemical and environmental parameters was 

investigated through the means of a one-at-a-time sensitivity analysis. The change in 

predicted concentrations at 2016 sample sites was observed, following the change of a single 

parameter from its original value (base state) to a different value (sensitivity state). For 

results from this analysis to be comparable, this analysis aimed to determine the percentage 

change of chemical concentration as a result of a 20% change in a model input. 

For this analysis, the stochastic nature of the model was removed; all parameters were 

defined as single values, including flow, which was defined by the mean flow only. The base 

and sensitivity states of each parameter are tabulated in Table 27. This analysis focuses on 

TCC, using the 2016 model. 
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Parameter Base case Sensitivity case +20% Sensitivity case -20% 

STW removal 0.5 0.6 0.4 

DER 0.5 0.6 0.4 

Usage (kg/capita/year) 7.4e-05 8.88E-05 5.92E-05 

In-stream removal (h-1) 0.0102 0.01224 0.00816 

Koc (L kg-1) 71687.0 86024.4 57349.6 

Suspended solids 

concentration (mg/l) 

18 21.6 14.4 

Flow (m3/s) - +20% -20% 

Velocity (m/s) - +20% -20% 

Table 27 – Parameter set for TCC used for the purpose of sensitivity analysis of the 2016 East river model. The 

base state is the default state and the sensitivity state is the value 20% above/below the base state, used to test 

the sensitivity of the model to changes in this parameter. 

 

Parameter +20% -20% 

Koc -2.23% 2.34% 

Suspended solids concentration -2.23% 2.34% 

Velocity 3.9% -5.8% 

In-stream removal constant -4.7% 5.0% 

STW removal -9.3% 9.3% 

DER 12.3% -12.3% 

Flow -20.0% 20.0% 

Usage 20.0% -20.0% 

Table 28 - Sensitivity of the model to changes of each parameter by +/- 20%. Sensitivity is the percentage change 

in concentration normalised by the percentage change in the parameter (20%). 
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The most significant observation from this analysis is the ranking of parameter sensitivity; 

this information is illustrated by results tabulated in Table 28. Firstly, there is little or no 

difference between the response from positive and negative changes to each parameter. As 

for the relative importance of each parameter, results suggest that parameters that describe 

chemical input (usage) and chemical dilution (flow) are of most importance. DER is of greater 

importance than STW removal; STW removal relates to the chemical emission from areas of 

the catchment with the highest population, however, the majority of the catchment is 

untreated, and therefore the effect of DER is more important overall. In-stream removal 

constant and velocity are of equal importance as they both relate to the degradation of the 

chemical, as described by Equation 11. Previous analysis has suggested that in-stream 

removal may be of importance, however the sensitivity analysis suggests that its relative 

importance is less than parameters that describe emission and dilution. The parameters that 

relate to sorption, Koc and suspended solids concentration, are of the least importance. A 

value for suspended solids was obtained based on the mean suspended solids concentration 

at the catchment outlet (Bolou flow gauge), however the spatial and temporal variability of 

suspended solids is likely to vary significantly, but, the results of the sensitivity analysis 

suggest that this would likely have little impact upon the model result.
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4.4.  Scenario based assessment 

4.4.1 Risk assessment 

A full risk assessment was not a specific aim for this thesis. However, to present the viability 

of the model for risk assessment purposes PNECs for the four chemicals were used as 

thresholds to estimate risk for the catchment in 2016. As a conservative measure, the lowest 

in-stream removal scenario for TCS, TCS A, was used.  

Firstly, it was important to assess whether the model was suitable as a predictive tool for risk 

assessment. At the majority of sample sites for the 2016 model, the 90th percentile exceeds 

the measured concentration, as illustrated by Figure 69. This suggests that the model may be 

acceptable as a preventative tool in the majority of cases, although there is clearly room for 

improvement, with a need to refine the model in order to reduce the number of cases where 

the estimated 90th percentile is exceeded by the measured concentration. 

As shown by Figure 70, modelled results at the 50th percentile suggest that much of the 

catchment is at risk from TCS exposure, with much of the catchment estimated to be 

exposed to a factor of over 5 times the PNEC. The estimated concentration of TCS at the 90th 

percentile (Figure 71) exceeds its PNEC value for a slightly larger area than the 50th percentile 

estimate but also generally exceeds the PNEC by a greater margin.  
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Figure 69 – Scatter graph displaying measured concentration against estimated concentration for all chemicals, 

using the 2016 model. A line is drawn on the graph, where: measured = modelled. 

 

In contrast to TCS, at the 50th percentile, the model predicts that no region of the catchment 

is exposed to a concentration that exceeds the PNEC (Figure 70). However, concentration of 

TCC at the 90th percentile (Figure 71) exceeds the PNEC threshold for stretches mostly 

within the Huizhou and Shenzhen area, but also a few short stretches in small streams 

throughout the catchment. 

Risk from E1 and E2 is largely acceptable for the catchment. However, there are notable 

hotspots within the catchment as shown by Figure 72. For E1, areas with unacceptable risk 

appear to be largely confined to the Shenzhen subcatchment (Figure 38), and a few small 

tributaries throughout the catchment. For E2, the area at risk is significantly smaller, which 

includes the upper Shenzhen catchment and minor stretches located just downstream of 

population centres with insufficient dilution relative to the population size. At the 90th 

percentile (Figure 73), the area that the model estimates to exceed the PNEC for E1 and E2 

extends to relatively small tributaries within the Longchuan sampling zone to the North, and 

to tributaries in the West and East in the Heyuan sampling zone. 
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4.4.2 Catchment management scenarios 

In Chapter 1 it was suggested that the GREAT-ER model could have the potential to be used 

for catchment management. To test this potential, scenarios are used here to determine the 

effect of different management decisions on chemical risk; specifically focused on 

wastewater infrastructure. Firstly, population was upgraded to estimate 2020 levels and all 

existing STWs were assumed to be upgraded to incorporate additional population within 

their service areas. Secondly, two planned STWs (Figure 39) were identified through various 

reports (in Chinese), which were acknowledged when locating STWs as discussed in Chapter 

2. These were incorporated into the catchment model. In addition, plans were identified for 

an upgrade of the service area for a STW upstream of sampling site HB1, the entire 

subcatchment was assumed to be served by this STW. An additional risk assessment was 

then completed for each chemical, at the 50th percentile.  

As shown by Figure 74, the number of stretches that exceed the PNEC for TCS does not 

change significantly in comparison to 2016; however, the concentration of TCS is predicted 

to be higher overall, apart from stretches in catchments with enhanced wastewater 

infrastructure. As a result of increased population, the number of stretches that exceed the 

PNEC for TCC increases from 0 to 3, all of which are located downstream of STWs in the 

Heyuan and Huizhou sampling zones. For estimates of E1 and E2 at the 50th percentile, the 

number of stretches that exceed the PNEC values within subcatchments with improvements 

to wastewater infrastructure decreased; however the area estimated to exceed the PNEC 

value extended (Figure 75), this is due to the increase in population.
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Figure 70 - Assessment of risk, at the 50th percentile concentration, from TCS (left) and TCC (right) for the 2016 model, assuming a PNEC of 4.7 and 146ng/l respectively. 
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Figure 71 - Assessment of risk at the 90th percentile concentration from TCS (left) and TCC (right) for the 2016 model, assuming a PNEC of 4.7 and 146ng/l respectively. 
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Figure 72 - Assessment of risk, at the 50th percentile concentration, from E1 (left) and E2 (right) for the 2016 model, assuming a PNEC of 6 and 2ng/l respectively. 
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Figure 73 - Assessment of risk at the 90th modelling percentile concentration from E1 (left) and E2 (right) for the 2016 model, assuming a PNEC of 6 and 2ng/l respectively.  
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A further scenario was performed which predicted the effect of improved STW removal 

efficiency. From data pooled from literature sources regarding the fraction removed in STWs 

(described in section 3.5), STW removal was redefined as a uniform distribution with a 

minimum and maximum value defined by the 75th percentile and the maximum removal 

fraction (from these pooled data) respectively (Table 29). 

Chemical STW removal (%) 

Triclosan 95.1-99 

Triclocarban 90.5-97.5 

Estrone 93.6-99.9 

17β-Estradiol 93.9-99.4 

Table 29 - The fraction removed by STWs defined for use within a management scenario assuming increased STW 

efficiency. 

 

Applying increased STW removal for TCS appears to make little difference in the risk as 

shown by Figure 76. In terms of wastewater treatment, as a result, there is little else that can 

be done to significantly reduce the area that is at risk within the catchment. However, 

increasing STW removal reduces the number of stretches in the catchment exceeding the 

PNEC value for TCC to 0. As for E1 and E2, the area that is estimated to exceed the PNEC 

values is reduced considerably, as shown by Figure 77. Unacceptable risk still remains for a 

small number of stretches without treatment; however this may be mitigated by expanding 

the service area of existing STWs and constructing new STWs in areas where this is not 

possible. These regions are highlighted in Figure 77. 

This second part of the assessment focuses upon E1 and E2. For areas at risk, STW service 

areas were expanded to serve subcatchments containing a relatively high population 

upstream of stretches highlighted to be at risk, or if there was no nearby STW, a new STW 
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was implemented for areas with a total population exceeding 2000. These measures, as 

shown by Figure 78, result in risk being reduced to an acceptable level for all areas targeted, 

albeit with 0.4% and 0.1% of stretches with unacceptable risk remaining for E1 and E2 

respectively. Of course it is important to note that this scenario does not account for the 

monetary expense for this solution which is likely to be considerable. It must also be noted 

that the proposal to increase STW efficiency has no actual real meaning, as there is no 

mention of specific technology to apply and where. Unfortunately, there is not enough data 

available within the literature that describes the removal of any of the target chemicals by 

treatment sub-type (e.g. oxidation ditch or membrane bioreactor treatment technology), 

which would be required in order to determine an appropriate treatment technology that 

would meet the performance specified by this scenario.  

However, this exercise demonstrates the possible solutions available to a catchment 

manager, who may be able to update the model to represent the true state of wastewater 

treatment within the catchment, for example treatment efficiencies for STWs and service 

area. 
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Figure 74 - Assessment of risk, at the 50th percentile concentration, from TCS (left) and TCC (right) in the year 2020 base scenario, assuming a PNEC of 4.7 and 146ng/l respectively. 
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Figure 75 - Assessment of risk, at the 50th percentile concentration, from E1 (left) and E2 (right) in the year 2020 base scenario, assuming a PNEC of 6 and 2ng/l respectively.
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Figure 76 - Assessment of risk, at the 50th percentile concentration, from TCS (left) and TCC (right) in the year 2020 with high STW removal (95.1-99% and 90.5-97.5% respectively); assuming a 

PNEC of 4.7 and 146ng/l respectively.
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Figure 77 - Assessment of risk, at the 50th percentile concentration from E1 (left) and E2 (right) in the year 2020 with high 

STW removal (93.6-99.9% and 93.9-99.4% respectively); assuming a PNEC of 6 and 2ng/l respectively. Circles indicate areas 

in need of improvement. 
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Figure 78 - Risk from E1 (left) and E2 (right), at the 50th percentile concentration, in 2020 following proposed STW 

management scenario; assuming a PNEC of 6 and 2ng/l respectively. 
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4.5. Conclusions 

This study suggests that the GREAT-ER model may be used with some success in both a rural and 

urban Chinese environments. However, significant deviations have been observed between 

estimated and measured concentrations at some of the sample sites. The model’s estimate of 

the 90th percentile concentration exceeds the measured concentration in the majority of cases. 

However, improvements are still required in order for the GREAT-ER model to be used as a 

reliable risk assessment tool for the East river. 

The most significant improvements include an improved estimate of usage for TCC and TCS, and 

implementing variable in-stream removal rates for all chemicals. In addition, greater detail about 

the wastewater infrastructure in the catchment should help to improve the accuracy of the 

model, although this would be quite difficult to obtain. 

Using management scenarios, it was demonstrated that the GREAT-ER model is capable of 

assisting catchment management, with the aim of minimising chemical risk within the 

catchment. The model would likely be most useful for scoping purposes, to define areas of 

concern, and derive possible solutions. 

Addressing the thesis aim: “To be able to predict reliably the in-stream concentration of down-

the-drain chemicals TCS, TCC, E1 and E2”; this has been achieved to some extent. There are 

significant errors between some of the model’s predictions and measured concentrations, but 

overall there is some agreement between modelled and measured concentrations. 

The final thesis aim has been achieved: “To demonstrate the potential of GREAT-ER for both risk 

assessment and catchment management purposes, based upon the present and year 2020 

scenario”. The GREAT-ER model may be used within China successfully, albeit with some 
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difficulty, and it has been demonstrated that there is potential for its use in catchment 

management and chemical risk assessment. 
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Chapter 5 – Evaluation 

5.1. Overview 

The first aim of this thesis was to be able to develop a complete methodology that allows one to 

reasonably setup a catchment model in China using the GREAT-ER model. This required a 

number of modelling challenges to be overcome. The modelling challenges primarily derived 

from data availability. The availability of high quality data provides the potential for higher 

quality models. Therefore, a methodology was developed to estimate the data required using 

reliable global datasets such as DEMs, satellite imagery and population datasets. There is now 

the potential to model other data poor regions. 

A general methodology to apply the GREAT-ER model to China is described in Chapter 2; whilst 

in Chapter 3 a specific methodology for application of the GREAT-ER model in the East river 

catchment was described. As described by Chapter 4, the application of the GREAT-ER model in 

the East river catchment was, to some extent, successful. The GREAT-ER model was used to 

simulate the possible exposure of triclosan, triclocarban, estrone and 17β-estradiol. In 

comparison with measurements from two sampling campaigns, the modelled results largely 

agreed with the concentrations measured. However, there were a few significant limitations and 

barriers noted. These elements will be discussed in more detail, with suggestions for their 

resolution. Finally, a discussion on the future of GREAT-ER and future research directions is 

presented. 
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5.2. Suggested methodological improvements 

5.2.1. Validation of flow and untreated discharge 

Other than flow data availability, the primary identified concern was that of the estimation of 

artificial influences upon flow, which was considerable within the East river catchment. An 

approach that could identify and/or estimate the location and magnitude of artificial influences 

would be useful, as would the ability to determine the relative accuracy of flow within artificially 

influenced, ungauged catchments. 

In previous GREAT-ER studies, conservative wastewater constituents (e.g. Boron), were initially 

selected for simulation. As removal by STW and in-stream processes is deemed to be 

insignificant for these conservative substances, the outputs of the model are entirely dependent 

on the estimates for  dilution and chemical emission, and therefore the accuracy of these 

elements can be assessed by comparison of modelled to measured concentrations (Johnson et 

al., 2008b; Schulze et al., 1999; Fox et al., 2000; Wind et al., 2004).  Boron was particularly 

favoured due to its conservative nature (Matthijs et al., 1997), the ease of analysis and the 

strong relationship with wastewater sources; boron is commonly used within detergents, 

although some natural sources may exist (Wind et al., 2004; Johnson et al., 2008b). In an 

environment with few untreated sources and a conservative nature, the accuracy of the model 

can be assumed to be entirely related to emission estimation and flow estimation. However, 

Boron is no longer widely used (Personal communication, Unilever) and therefore it is no longer 

appropriate for use for this purpose. 

It is possible to estimate the relative flow between multiple sample sites along a stream by 

releasing a fluorescent dye, for example, Rhodamine WT, which can be measured  on-site (e.g. 

using a fluorometer) (Kunkel and Radke, 2011; Fox et al., 2000; Hubbard et al., 1982). The area 
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under a plotted curve for measured Rhodamine WT fluorescence intensity against time may be 

used to estimate the relative dilution between sampling sites; the area under the curve is used 

to account for dispersion of the dye. The area under the curve is expected to decrease at 

downstream sampling sites, which may provide an indication of the change in dilution; this 

information may be useful when interpreting the relative change in concentration for target 

chemicals. Rhodamine WT is resistant to degradation processes (Turner et al., 1991), however it 

does adsorb to sediment (Fox et al., 2000; Kunkel and Radke, 2011), and therefore shouldn’t be 

considered to be a conservative tracer. Runkel (2015) suggested that it is reasonable to use 

Rhodamine WT in large river systems, as the volume of water is much larger than the surface 

area of the streambed and therefore there is less interaction with solids in the bank and bed. 

However, use of Rhodamine WT in smaller systems was not recommended by Runkel, as 

sorption may be more significant. Another disadvantage is that it may not be feasible to perform 

a dye study for every sampled reach as it is more resource intensive. Finally, there may be 

political obstacles to the use of a dye. Prior to the East river sampling campaign, it was suggested 

to collaborators that we should complete our own dye study in order to estimate in-stream 

removal; however the response from our collaborators was that the local authorities would not 

agree to a campaign of this nature, as the locals might mistake the dye for a pollutant spill, 

which would have political ramifications. 

Sucralose and other artificial sweeteners have been previously identified as suitable wastewater 

tracers as they are conservative and are primarily sourced from domestic wastewater (Tran et 

al., 2014). The production of Sucralose increased significantly after the expiry of its patents in 

2009. However, it has been suggested that the majority of sucralose produced is exported 

(Research and Markets, 2013). It is uncertain as to how widespread the use of sucralose in China 

is, although it has been detected within urban environments (Gan et al., 2013; Heeb et al., 2012) 
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and seawater (Sang et al., 2014). Caffeine has also been suggested for use as a tracer for 

untreated effluent (Buerge et al., 2003) as it undergoes near-complete removal in biological 

sewage treatment (Sui et al., 2010; Qi et al., 2015) and is used frequently and widely within 

China.  

Van Stempvoort et al. (2013) proposed that the use of multiple co-tracers is the most 

appropriate approach, given that many tracers have multiple sources, may be subject to varied       

in-stream removal, or their use may not be regular or widespread. Further research may be 

necessary to determine which tracers may be effective for use in China. 

Scholefield et al. (2008) described a novel approach to sampling which involved the deployment 

of a GPS-enabled drogue which may be released to traverse downstream, measuring velocity, 

conductivity, dissolved oxygen, pH and temperature, which it then maps as a function of time 

and space. They also attached a diffusive gradients in thin films (DGT) (Davlson and Zhang, 1994; 

Zhang and Davison, 1995; Chen et al., 2012) sampler in an attempt to determine the average 

concentration for the stretch. These DGT devices consist of a membrane filter, a diffusive gel and 

a binding gel. Chemical substances diffuse through the membrane filter and the diffusive gel, 

and are then assimilated by the binding gel. However, the practical application of a DGT sampler 

is likely to be limited, as the time exposed to the water is not likely to be sufficient to reach a 

mass above detection limits.  

The drogue based technology has the potential to map the location and magnitude of untreated 

discharges and to validate estimates of surface water velocity. However, due to obstacles such 

as weirs, reservoirs and vegetation, it is challenging to sample significant distances downstream. 
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5.2.2. Refining estimates of in-stream removal 

It is clear that in-stream removal can vary significantly in time and space. A removal rate for a 

given chemical determined within one catchment may not be appropriate for use within another 

catchment (Sabaliunas et al., 2003; Morrall et al., 2004), and therefore it is most appropriate to 

measure in-stream removal within the catchment of interest. Removal rates may vary 

significantly within the catchment itself,(Jürgens et al., 2002) depending upon water depth, 

suspended solid concentration, light penetration, weather, biological activity and various other 

factors (Ciffroy et al., 2017). It was suggested that the in-stream removal rate within the main 

channel of the East river catchment was likely to be less than that of its tributaries, which was a 

conclusion shared with other GREAT-ER studies (Price et al., 2009; Fox et al., 2000). 

Laboratory derived removal rates may be available for the chemical of interest (Robinson et al., 

2007). However, these do not necessarily reflect natural conditions; it may be difficult to apply 

these removal rates directly to models. Therefore it is important to estimate the factors within 

the natural environment that may enhance or reduce laboratory derived removal estimates. For 

example, Robinson et al. (2007) adjusted laboratory derived photodegradation rates to account 

for: season, latitude, water depth, light extinction from turbidity and river mixing. Alternatively, 

the software GCSOLAR (Zepp and Cline, 1977), may be used to adjust the photodegradation rate 

based upon season, latitude, time of day, water depth and ozone thickness. GCSOLAR was also 

utilised by Tixier et al. (2002) in order to adjust photodegradation rates of TCS and by Gerecke et 

al. (2001) to adjust the photodegradation rates for various phenylurea herbicides derived within 

the laboratory, with both studies adjusting photodegradation rates for the Lake Greifensee, 

Switzerland. In addition to adjustments made in GCSOLAR, both studies also adjusted to account 

for reduced sunlight intensity due to cloud cover, calculated using the hourly measured global 
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radiation at Dübendorf, the actual zenith angle and a correction factor for aerosol scattering 

(0.92) (Gerecke et al., 2001; Tixier et al., 2002). All environmental data required are relatively 

abundant and therefore the methodology is relatively simple to apply. 

A more in depth approach may be used such as the use of the more recently developed “higher 

tier” chemical risk assessment models such as the hydro-biogeochemical model INCA-

Contaminants (Nizzetto et al., 2016). This model is able to estimate the concentration within soil, 

water and sediment, but also focuses upon the biological and chemical processes within the 

whole catchment, not limited to in-stream processes. However, the use of models of this 

complexity may be hindered by data availability in China, although it may be plausible for 

research catchments and for regions where there is substantial support from authorities.  

 

5.2.3. Wet season mechanics 

The majority of China experiences a well-defined wet season. The South of China is by far the 

wettest, and experiences both monsoonal and frontal rainfall in the summer months. This 

includes the East river catchment. Modelling of the East river catchment was confined to the 

winter months due to the difficulties of representing the mechanics of the wet season. It was 

noted that a number of previous studies observed higher concentrations of TCS and TCC in the 

wet season, despite a significant increase in dilution. It was suggested that two different 

mechanisms may explain this phenomenon. The first involved the wash off of chemicals that are 

contained in wastewater storage ditches, the second is the resuspension of sediment and 

subsequent desorption. These wet season mechanics are challenging to model. The effects of 

sewer overflows have been taken into account in the past by previous GREAT-ER studies 

(Hüffmeyer et al., 2009) and similar models (Whelan et al., 1999). However, as many of more 
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significant overflow events occur from unlocated untreated sources this is difficult to 

characterise without additional data. As for resuspension, it is likely that the most appropriate 

option would be to utilise a “higher tier” chemical risk model that takes into account sediment 

resuspension in response to changes in flow, such as INCA-Contaminants (Nizzetto et al., 2016). 

However, this would require a significant amount of data. It may be possible to provide a more 

simplistic model to address this, although it is uncertain as to what and how successful this 

would be. 

 

5.3. Addressing data limitations 

Data limitations were overcome for the East river study. However, two significant barriers were 

observed, which are likely to remain a problem for future studies. 

 

5.3.1. Hydrological data 

The acquisition of hydrological data is the greatest barrier in the modelling methodology. Several 

flow gauges, with relatively long records were located within the East river catchment. However, 

obtaining these data was a significant challenge. Hydrological data is often confidential in China, 

although policy varies between regions. Hydrological data may be politically sensitive in certain 

contexts, especially for high and low flows. Data is available in hard copy format which are often 

distributed to various governmental and academic institutions. 

Hydrological data for the East river were made available from an academic institution in Beijing. 

Data was stored as a hard copy and therefore data had to be copied manually into electronic 
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format. Copying data into electronic format had the potential for human error and limited the 

quantity of data that could be obtained. Data was also available in electronic format from the 

river authority’s website. However, the data obtained was of poor quality with numerous errors 

and missing data. Data available in hard copy hydrological yearbooks was fully processed, and 

relatively free of errors. It is clearly essential for foreign nationals to find an appropriate 3rd party 

contact to obtain hydrological data, which may not always be possible. 

 

5.3.2. Locating STWs 

STWs of importance should be located and digitised, which is a time consuming process. The 

precise location must be obtained manually using satellite imagery. Satellite imagery is not 

always available for recent periods, and therefore it is possible that STWs may have been built 

after the most recent image was captured. Therefore, for populations without STWs, further 

investigation should be taken to determine whether a STW is present or if one will be 

constructed in the future. This is time consuming, which may be a problem for large catchments. 

However, spatial and non-spatial data has been collected and published by multiple 

organisations and individuals. As mentioned in Chapter 2, a partial geodatabase of STW locations 

is provided by www.ipe.org.cn. This database has recently been expanded to include the 

locations of industrial/commercial discharges and monitoring data for many of the discharges. 

Non-spatial databases have also been developed, with over 3000 STWs documented by Li et al. 

(2017). Data availability is improving over time, which may improve the efficiency of model 

setup. 

 

http://www.ipe.org.cn/
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5.3.3. STW data 

Estimating or acquiring STW data may be time consuming, particularly population served. It is 

therefore important to establish which STWs should be digitised and which should be ignored. 

Conclusions from the East river modelling exercise suggests that only large STWs will have any 

significant impact upon streams of high dilution such as the main stem of the East river. Small or 

medium STWs that discharge into large rivers are likely to be of little importance. However, 

small STWs that discharge to very small streams may have a significant impact. If information 

regarding the STW discharge is available, it may be useful to calculate the ratio of STW discharge 

and river discharge. 

Population served may be estimated for towns and villages relatively quickly.  A semi-automatic 

approach similar to that described by Keller et al. (2006) may be developed to increase the 

efficiency and repeatability of this process. 

However, for large urban areas this data should ideally be from published sources or wastewater 

managers. Without this information it may be extremely challenging to estimate population 

served with a reasonable degree of accuracy. Population served is sometimes reported in news 

publications. However, the accuracy of these reports is uncertain. It may also be obtained 

directly from the plant operator. However, this is very time consuming and therefore it is not 

always possible for large catchments. In some cases, this information is confidential and, 

therefore, it may not be possible to obtain. It is perhaps inevitable that a significant amount of 

time is necessary to determine the population served. This is likely to prove to be the most 

inhibitive factor when attempting to model a large catchment. 
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For the East river catchment it was assumed that all STWs used activated sludge treatment 

technology. This was supported by the list of STWs within the area, although this may not be the 

case for other catchments. The difference in treatment efficiency between activated sludge and 

trickling filter is often significant. For example, trickling filters have been reported to remove E1 

with an average efficiency of 30% (Johnson et al., 2007b), this contrasts with a mean efficiency 

of ~84% for activated sludge technology, determined from a literature review for the East river 

study. However, according to STW lists released by the China Ministry of Environmental 

Protection (http://www.mep.gov.cn), trickling filter technology does not appear to be prevalent 

in China. 

It is particularly important to increase the availability of STW removal information for multiple 

treatment types in order to capture the variation in removal efficiency, which may be significant 

even for a single STW (Johnson et al., 2008b; Williams et al., 2003; Vieno et al., 2005). If a 

modeller is able to determine the particular type of treatment for a STW, then potentially the 

uncertainty of the model may be significantly reduced, as different treatment technologies may 

have significantly different efficiencies. However, this may only be achieved with sufficient data 

describing the removal efficiency for multiple treatment types and sub-treatment types. 

 

5.3.4. Chemical validation data 

Measured sample data is required for validation purposes; however, measured data is often not 

available and may be difficult to acquire. It may be possible to use surrogate data for chemicals 

that are similar to the chemical of interest for validation (Grill et al., 2016; Chen et al., 2014). For 

the initial setup phase of a model, it may be plausible to utilise more readily available water 
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quality data such as BOD. However, water quality data in China is often released heavily 

aggregated in the form of water quality classes (Chen et al., 2015). These were utilised by 

Whelan et al. (2012) who compared the predicted concentration of LAS with water quality 

classes throughout China. Although water quality classes are not directly indicative of the 

presence of the chemical of interest, it does provide an indication of the level of human 

influence. Sampling campaigns are still necessary to confirm the presence and magnitude of the 

chemical of interest, although utilising alternative measurements such as water quality classes 

may either increase the confidence in the model or may allow the modeller to reassess areas for 

which water quality data conflicts with the model results. 

 

5.3.5. Open data 

A major barrier to undertaking scientific activities within China relates to data policy and 

legislation of the Chinese government. Large datasets covering a wide range of subjects is stored 

by the Chinese government. Unfortunately, data sharing by the Chinese government has been 

very restricted historically, and data that is released is highly aggregated (Chen et al., 2015), 

especially for spatial data. 

Collection of data is also a significant challenge, especially geographic data. The distribution and 

mapping of geographic data is restricted by Chinese law. Requirements of the ‘Surveying and 

Mapping Law of the People’s Republic of China’ include approval before surveying activities, 

applying of a state approved co-ordinate system and approval before publication of mapping 

activities. The crowd source mapping project, OpenStreetMap (OSM) states that: “This seems to 

outlaw the entire OSM project and any participation or contribution” (Openstreetmap, n.d.). 

This is particularly significant for foreign nationals, who have to form a Chinese-foreign 
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partnership. For those in breach of the law fines or imprisonment may follow (Hvistendahl, 

2013). 

However, in March 2015 the Chinese Premier announced that government data should be open 

to the public. This was followed by the announcement of the TPWP in April of the same year, 

insisting upon increased public participation in the process. If this is a serious deviation of policy 

then this may have a significant impact upon science in China. This depends upon whether the 

government now recognises the true value of open data to science, culture, the environment 

and the economy. China’s TPWP recognises the need for an increased role from science, 

technology and the market. Scientists are restricted as to the extent they may contribute as a 

result of poor data availability.  Increased data sharing from government sources to scientists, 

including foreign nationals, will lead to the development of tools, policy and data which may 

advance the goals of the TPWP. The primary purpose of this section is to illustrate how open 

data and collaboration from the Chinese government may be beneficial for the advancement of 

environmental policy, specifically in the context of water pollution from point sources. 

The GREAT-ER model, and other similar chemical exposure models, may provide useful 

functionality for the purpose of risk assessment and catchment management. Both the MEP 

order 7 (Wang et al., 2012) and the TPWP would benefit from tools that provide an assessment 

of the exposure of contaminants within surface waters. Tools that provide an assessment of risk 

and to provide possible solutions to alleviate said risk would be valuable for governmental use. 

Therefore, it is important to communicate the value of these models and to describe the data 

barriers that are in place and where governmental support would help. 

A new discharge permit system has been proposed as part of the TPWP. At present China 

already registers new and old STWs which are published in lists to the public. There is the 
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potential to expand this reporting system to also provide specific locations of STWs and to 

potentially provide population or population equivalents for each. 

The Ministry of Water Resources manages a vast dataset of hydrological information for gauges 

across the country. The release of hydrological data has significant benefits to science, the 

environment and the economy (Hannah et al., 2011). The release of hydrological data may 

benefit the environmental protection service industry which TPWP aims to expand. More 

significantly, the release of hydrological data allows for risk to river catchments to be better 

assessed and managed. For high resolution chemical exposure models like GREAT-ER, 

hydrological data is essential. Flow may be estimated without hydrological data using 

mechanistic hydrological models, but most Chinese catchments are affected by complex artificial 

influences to flow and, therefore, this is likely to be inaccurate. 

From a catchment management perspective, the GREAT-ER model may be used to provide 

solutions to complex catchment issues. The potential of the model may be reached if the model 

can be presented as an effective management tool to the appropriate authorities. With much 

greater data accessibility, a greater number of applications become available. For example, with 

detailed information about the different artificial influences within a catchment it may be 

possible to determine the effects of changing water use, different reservoir management 

strategies and other issues relating to water resources. In the context of the East river, it would 

be possible to create a scenario that provides a possible solution to chemical risk by increasing 

dilution in the Shenzhen catchment. However, this would require much more detailed 

information about the reservoir release profiles and the abstraction and discharge points. 
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5.4. Potential for GREATER 

Following the completion of the East river study, there are two examples of the application of 

GREAT-ER in China; this study and a heavily urbanised catchment in Beijing (Zhang et al., 2015a). 

The creation of the East river model was challenging but there are many areas of China where 

the challenge presented by the environment is significantly reduced. The first GREAT-ER study in 

China investigated the heavily urbanised Wenyu  catchment, Beijing (Zhang et al., 2015a). The 

area was subject to little or no untreated discharges and the authors were able to obtain 

population served data from the plant managers. There was also a readily available, calibrated 

SWAT model parameterised for the catchment. It may be reasonable to initially focus upon 

relatively simple catchments, with readily accessible data. China is a large, diverse country with 

many complex river catchments that are difficult to represent other than at the catchment scale. 

It is, therefore, important to model a diverse range of river catchments within China. It is also 

important to model high risk areas of the country, which may have been previously identified to 

be at risk either by large scale risk assessment models, or monitoring studies. 

  

5.4.1. Modelling climate extremes 

The climate of China varies significantly between regions (Figure 79). There are regions of severe 

cold to the North-East and Western China, a wet and hot South-East and an arid/semi-arid 

North-West China (Domrös and Peng, 2012; Qin et al., 2015). Each of these regions provides a 

unique modelling challenge. 

Severe cold climate 
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Severe cold conditions are prevalent over much of China. However, from a risk assessment 

perspective, the most significant region is likely to be the North-East, which has a relatively high 

population density. The city of Harbin (Figure 80), with a population of 10.64 million, 

experiences a mean January temperature of -18°C, The Songhua river flows through Harbin, 

which freezes over during the winter months with ice approximately 1 meter thick. During 

freeze-up, discharge and velocity decreases and flow depth increases (Ferrick and Calkins, 1996). 

Flow decreases further later in the year as groundwater sources deplete; in the case of North 

flowing rivers, precipitation and subsequent runoff also decrease. A critical problem when 

attempting to model cold climates such as this is that the measurement of flow is often difficult 

during freeze-over and is often interpolated between less frequent observations (Prowse, 2001). 

The formation of an ice-cover has implications for biochemical activity. In particular the 

exchange of gasses with the atmosphere is drastically reduced. This leads to a lowering of 

dissolved-oxygen within the river channel (Prowse, 2001), which has implications for biological 

activity. In addition, there is also significant attenuation of solar radiation by covering ice and 

snow (Prowse, 2001) and therefore a reduction in the photolysis rate. Sediment load is also 

significantly related to the formation and break up of ice. During the ice covered period, as a 

result of reduced flow velocity, transport capacity is reduced (Prowse, 2001). During ice breakup 

suspended sediment transport increases dramatically as a result of surge conditions (Prowse, 

2001). This has significant implications for chemical risk assessment, with conditions likely 

favouring a significant reduction of in-stream removal and dilution. It is likely that a model such 

as GREAT-ER would be unsuitable for use within these complex conditions. There are also 

significant barriers to obtaining grab samples, especially when a thick ice-cover is present. 

Therefore calibration and validation of a model is difficult. In addition, in-stream removal would 

likely be difficult to derive by means of tracer based studies. 
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Figure 79 – Mean annual temperature and mean annual precipitation of China produced based upon data produced 

by Fick and Hijmans (2017). 
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Figure 80 - Population in China, based upon GPWv4 dataset (CIESIN, 2016b). The majority of the population is within 

South-East China; whilst much of North-West China is uninhabited, or sparely populated. 

 

Arid conditions 

Flow in river catchments in arid climates may reach critically low levels during part of the year, in 

some cases drying out completely. In urban catchments, flow may become dominated by 

wastewater flow which results in the water quality of the river strongly depending upon the 

efficiency of wastewater treatment (Carey and Migliaccio, 2009).  

The natural flow regime is likely to be affected by significant abstractions to flow, and in many 

arid catchments flow may become intermittent as a result of over abstraction (Smakhtin, 2001). 

Consequently, estimation of low-flows would be strongly dependent upon artificial influences to 

flow and therefore obtaining high quality data on the location and effects of artificial influences 

to flow would be essential. 
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The arid regions of China are of a relatively low population density and as such chemical 

emissions are likely to be much lower in comparison to other regions. However, the available 

flow to dilute wastewater discharges is much lower, with some streams ephemeral in nature. For 

example the North-Western city of Ürümqi (Figure 80) hosts a population of over 3 million (2010 

figures). Water demand significantly exceeds the available water resources and as such the 

dilution of wastewater is critically low during the dry season (Yao, 2013). The city’s population 

continues to grow and a need for alternative sources of water has led to suggestions to reuse 

wastewater for irrigation, industry and other urban uses but instead, much of the wastewater is 

discharged directly into a watercourse untreated (Yao, 2013). 

From a modelling perspective, the element of complexity is flow estimation. In the case of 

Ürümqi, annual potential evaporation (2300 mm/year) is much greater than annual precipitation  

(304mm/year) (Yao, 2013), and therefore flow may potentially decrease downstream as result of 

losses from evaporation and abstraction. Therefore a methodology for flow estimation in this 

region must take into account complex natural drivers of low-flows and utilise high quality 

artificial influence data. This is a significant challenge and as such requires a much more 

sophisticated approach in comparison to the East river catchment. 

It has been suggested that effluent-dominant streams may present the maximum hazard to in-

stream biota (Brooks et al., 2003). However, the effects of wastewater discharges may 

potentially be of benefit to downstream biota if additional habitat is created or if elements 

within the effluent reduce the bioavailability of upstream pollutants (Brooks et al., 2006). It was 

even suggested by Luthy et al. (2015) that the release of treated effluent to intermittent streams 

may be an effective management solution in order to improve or restore a stream’s physical 

habitat, leading to enhanced biodiversity. Ecological risk assessment in this environment is more 
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complex as, in some cases, without the release of wastewater, the ecosystem would not exist 

(Luthy et al., 2015). The impact zone concept, first introduced by Limlette III Workshop (1995), 

offers an alternative approach; this was originally conceived as an approach towards assessing 

the risk of consumer product ingredients in a river system that receives untreated wastewater. 

The ‘impact zone’ is the stretch of heavily polluted water downstream of an untreated 

discharge, primarily characterised as containing low levels of DO (McAvoy et al., 2003; Limlette 

III Workshop, 1995). It is argued that this zone is already impacted by pollutants and therefore 

the aims of a chemical risk assessment should include: 1) whether the chemical of interest 

affects the rate of self-purification and, 2) whether the concentration of the chemical of interest 

exceeds the PNEC beyond the impact zone. Self-purification occurs due to organisms within the 

stream acting to breakdown wastewater constituents (McAvoy et al., 2003). Arid, wastewater 

dominated streams, are likely to contain high concentrations of pollutants due to the low level 

of dilution; this impact zone approach could therefore be useful here, even for streams receiving 

treated wastewater. Regardless of whether the release of pollutants would create habitat or 

not, the two aims of the impact zone approach are important, as they would minimise the risk 

from the target chemical and from other contaminants to less polluted stretches downstream. 

To apply this approach, it is important to determine whether the degradation rate of the 

chemical in the impact zone is affected; as the level of DO may inhibit aerobic biodegradation 

(Whelan et al., 2007; Finnegan et al., 2009). This may be determined by means of plume studies 

at sites affected by untreated wastewater discharge (e.g. Whelan et al., 2007), or by means of 

laboratory simulation (e.g. Finnegan et al., 2009). To determine how the chemical of interest 

affects the self-purification process, tests may focus upon the concentration at which the 

chemical affects the rate of BOD decay (McAvoy et al., 2003). 
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5.5. Future modelling approaches 

The TPWP provides ambitious goals to improve water quality in China’s major river catchments. 

Management of water quality in a country of China’s size and complexity is very challenging and 

requires management at many different scales. At the national scale, an assessment of risk 

posed to individual catchments is required, which assist in the prioritisation of resources and 

chemicals of concern. At the catchment scale, specific areas within a catchment that may be at 

risk can be identified and measures which may lead to improvements in these areas may be 

assessed in suitable scenarios. 

 

5.5.1. Modelling at large scales 

National and global scale chemical risk assessment models have been developed in recent years. 

Data availability for large scale models are generally greater than for small-scale; a large number 

of global datasets are available for use. The primary use for large-scale models is to provide 

estimates for exposure with a high spatial coverage and to represent the long-range 

transportation of persistent chemicals (e.g. Zhu et al., 2014). 

 

5.5.2. Dilution based large-scale models 

Dilution based models focus upon the water phase, with some consideration for hydrological 

realism (e.g. Whelan et al., 2012; Keller et al., 2014). Chemical emissions are distributed based 

upon population distribution and assumed rates for sewage treatment removal and usage. The 

concentration is then determined based upon calculated dilution for each element (grid cell or 

vector polyline). Dilution is often determined based upon a water balance approach which takes 
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into account spatially resolved evaporation rates and precipitation, or by using existing runoff 

calculations (e.g. Fekete et al., 2002). Gauged data may be used to calibrate such models, when 

available. The chemical is routed from cell to cell based upon estimates of flow direction, 

determined using a DEM (as described in Chapter 2). Removal is often calculated using a 

combined first-order removal rate and travel time. This model type may perhaps be analogous 

to a large-scale GREAT-ER model. 

Hydrological data is available for many major rivers, made available through water authorities or 

from global datasets such as the global runoff database (GRDC) (http://www.bafg.de/GRDC), 

which includes many major river gauges in China. This approach has a number of disadvantages. 

Freely available hydrological data is often not available for the most recent decade and/or may 

be only available at a monthly resolution; in some cases this renders the data useless. Gauged 

data is more likely to be available for downstream sections of river that are more likely to be 

exposed to numerous artificial influences to flow (Rodda, 1998) and therefore may be 

inappropriate for use in regionalisation unless artificial influences are somehow taken into 

account .  

Large reservoirs are likely to provide the largest influence and therefore their effects need to be 

quantified. This is taken into account to some extent by water use and availability models such 

as GWAVA (Meigh et al., 1999) and WaterGAP (Alcamo et al., 2003). 

  

5.5.3. Multimedia modelling 

Multimedia models are described in Chapter 1. At the large-scale, there are many advantages for 

their use. The data requirements can be larger than dilution models, however they have the 

http://www.bafg.de/GRDC
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advantage of being able to estimate chemical exposure in different media. Therefore for 

chemicals which are primarily found in the water phase, dilution based models are clearly 

preferable. 

 

5.5.4. A cascading modelling system 

Both the large and the small scale models have different applications. National and global 

models often focus upon major river systems, which provide an indication of catchments that 

may be at risk. This may be comparable to a scoping exercise. However, smaller tributaries may 

be subject to greater risk due to lower levels of dilution. Therefore, small-scale catchment 

models such as GREAT-ER are important to provide greater detail about of risk within river 

catchments. 

Therefore, a cascading model system is proposed here. Global or national scale models may be 

used to highlight regions or catchments at risk. The catchment(s) with the greatest risk may then 

be investigated in greater detail using a small-scale model such as GREAT-ER. National scale 

chemical risk assessment models have already been developed for China (e.g. Zhu et al., 2016; 

Whelan et al., 2012). This could be investigated in even further detail for more critical catchment 

management applications by using emerging higher-tier chemical fate models. Examples include 

STREAM-EU (Lindim et al., 2016) which is a spatially and temporally explicit model with 

consideration of partitioning between groundwater, soil, water, sediment, snow/ice and air 

compartments. STREAM-EU is a dynamic model which requires modelled daily flow data, based 

upon an external hydrologic model. The model considers time variable temperatures, transport 

velocities and emissions. 
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5.6. More ecological relevance 

One of the primary purposes for ecological risk assessment (ERA) is to be protective to the 

freshwater ecosystem. However, it has been argued that the ecological element in chemical risk 

assessments is far too limited (Bednarska et al., 2013). Toxicity tests are carried out under 

standard conditions which do not take into account the complexity of the environment and 

animal behavioural patterns. Protection goals generally focus upon the population level (or 

above), whilst standardised tests only provide data regarding the effects on individuals 

(Hommen et al., 2010; Martin et al., 2014). There is also little consideration for interactions 

between chemicals and other stressors in a mixture, and how this may enhance or reduce the 

biological response from aquatic organisms (Beyer et al., 2014; Heys et al., 2016). These issues 

will be discussed in more detail in this section, with reference to possible approaches to address 

these issues. 

 

5.6.1.  Ecological models 

Population models enable effects to be predicted at the population-level and above, which is 

necessary in order to meet protection goals set at the population/community/ecosystem level 

(Forbes et al., 2011; Galic et al., 2010). It is plausible to utilise mesocosm/microcosm tests to 

determine effects at the population level; however, they often fail to take into account dispersal 

and recolonisation processes, usually do not include larger organisms (e.g. fish), and these tests 

are also often expensive to perform (Galic et al., 2010). Population models increase the realism 

of an ERA, and in doing so, may lead to estimated effects that are much higher or lower than 

expected, at the population level (Forbes et al., 2011). For example, Hayashi et al. (2009), by 
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using a population model, noted that population-level effects exceeded those at the individual 

level, as a result of the density-dependence of the population. The response of the population 

may differ significantly depending on the environmental conditions and habitat complexity, 

which may be accounted for in population models (Grimm and Railsback, 2013; Van den Brink et 

al., 2007). ERA currently does little to consider the life-history of organisms; however, population 

level effects may vary significantly between species with different life-history strategies (Calow 

et al., 1997; Stark et al., 2004). For example, a fish that reproduces multiple times a year may be 

more resilient as a population than a species that breeds once a year (Forbes et al., 2011). 

Finally, population models may take into account indirect effects, which are those that affect a 

species as a result of effects on another species, usually at another tropic level (Galic et al., 

2010). This may include the suppression of a predator’s prey as a result of toxic effects, which 

results in less food availability for the predator. These indirect effects may result in significant 

changes to the structure or functioning of the ecosystem (Galic et al., 2010). Indirect effects are 

best represented at the food-web level, however, it is also plausible to estimate indirect effects 

using models at the population level, for example, host-parasite interactions (Waage et al., 

1985). Food-web models, which may also be described as ecosystem-level models, include the 

models: AQUATOX (Park et al., 2008), CASM (Naito et al., 2002) and CATS  (Traas et al., 1998). 

Population-level models consider a single-species, which are used to estimate population change 

and abundance (Galic et al., 2010). These models may or may not be structured, which defines 

whether the model includes different characteristics for individuals at different stages of the life-

cycle. Structure models include matrix population models (Billoir et al., 2007; An et al., 2006), 

which are able to calculate population growth for a set of life-cycle data (e.g. age dependent 

survival data) (Galic et al., 2010).  
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Another common type of population-level model is the individual based model (IBM) (e.g. 

Jaworska et al., 1997; Beaudouin et al., 2008; Madenjian et al., 1993), which regards all 

individuals as being unique (DeAngelis and Grimm, 2014). The behaviour of individuals includes 

interactions with the environment as well as interspecific and intraspecific interactions (Galic et 

al., 2010). IBMs represent the highest level of realism, but as a result, tend to have high data and 

computational requirements, although individual models are considered to be generally more 

viable for experimental testing, as experiments tend to focus on effects on individuals (Van den 

Brink, 2008). Toxicokinetic-Toxicodynamic effect models (TKTD models) are individual-level 

models that simulate how contaminants interact with the organism internally; toxicokinetics (TK) 

describe the uptake, transformation and elimination of the chemical and toxicodynamics (TD) 

describes damage, repair and mortality (Jager, 2016). These models attempt to relate exposure 

to effects, and to some extent, describe why this effect occurs. They may be 

coupled/incorporated into existing IBM models (Galic et al., 2010). For example, Gabsi et al. 

(2014) coupled the IBM, IDamP (Preuss et al., 2009), with the general unified threshold model of 

survival (GUTS) TKTD model (Jager et al., 2011). This enabled the effects of Dispersogen A on the 

survival of daphnid individuals to be extrapolated to the population level (Gabsi et al., 2014). 

GUTS is a unified framework of different existing TKTD models that determine the effect of a 

substance on survival (Ashauer et al., 2011). GUTS may operate on as few as 4 parameters, 

which may potentially be estimated based on standard toxicity data alone. For other quantal 

endpoints (endpoints that can only: occur, or not occur, such as survival), the GUTS framework 

may be viable, if modified (Ashauer et al., 2011). Modifications include enabling the model to 

account for the reversibility of a response, which GUTS does not include (as death is not 

reversible). TKTD models may also be used to estimate the effects on life-history traits, such as 

maximum size and reproduction, but a more connected approach may be needed (Ashauer et 
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al., 2011). Life-history traits are linked, in that a limited pool of resources (e.g. energy) is 

allocated to each life-history trait, and therefore, if exposure to a contaminant inhibits a life-

history trait, other life-history traits may be affected too (Ashauer et al., 2011). Species may be 

classified based upon the supply-demand continuum (Lika et al., 2014; Banavar et al., 2002). 

Demand systems relate to organisms that, for example, eat what is needed rather than what is 

available and reproduction is not typically restrained by the ability to acquire and use resources 

(energetics) (Ashauer et al., 2011). Demand systems include most birds and mammals, whereas 

the majority of species are closer to the supply end of the spectrum (Jager, 2016). For organisms 

on the supply end of the spectrum, responses such as growth and reproduction rate depend on 

environmental interactions, particularly food availability and temperature. Creating links 

between a contaminant and effects on life-history traits is generally more difficult as there may 

either be direct impacts upon traits or there may an effect that may limit the amount of food 

that is collected or assimilated, which subsequently has an impact upon life-history traits (Jager, 

2016). Therefore, understanding which process is affected by a contaminant is important in 

order to predict effects upon relevant traits, and interactions with environmental conditions 

(Jager, 2016; Álvarez et al., 2006). It is particularly important to understand how individuals 

obtain and use food, and other resources (Martin et al., 2014). It is possible to represent this 

using an approach based upon the dynamic energy budget (Kooijman, 2001; Nisbet et al., 2000). 

The DEB is a representation of how individuals obtain and use resources, which accounts for 

feeding, assimilation, maintenance, growth, maturation and reproduction (Kooijman, 2001; 

Nisbet et al., 2000). Effects of pollutants are accounted for by adjusting the relevant parameters 

that relate to these processes in the model (Jager, 2016), this is determined by using partial life 

cycle tests, i.e. those focused upon observing the effects of individual physiological processes. 

These parameters are linearly (with threshold) related to the internal concentration (Jager, 
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2016).  Therefore, the model parameters relate to the physiological functions and furthermore, 

it has been suggested that it is theoretically possible to extrapolate between chemicals, life 

stages and between species, although the methods of achieving these extrapolations is not fully 

developed (Jager, 2016). It is important to note that different species exposed by the same 

chemical may be affected in different ways, i.e. the chemical affects different physiological 

processes (Álvarez et al., 2006). To determine which processes are affected, short, molecular 

level tests may be used (Groh et al., 2015; Ankley et al., 2006). 

A significant disadvantage of many TKTD models is that they often require additional 

experimental data in order to parameterise, and therefore wherever possible, estimating or 

extrapolating data is preferable (Jager and Kooijman, 2008; Jager, 2016; Ashauer et al., 2011). TK 

and TD parameters may be influenced by measurable chemical characteristics, for example, TK 

parameters may be influenced by physiochemical properties, and TD parameters may be 

influenced by the potency of the chemical (Ashauer and Escher, 2010). Therefore, if quantitative 

relationships are established between TK, TD and influential chemical characteristics, it may be 

possible to estimate the toxicity of previously untested chemicals (Hendriks et al., 2001; Gobas 

et al., 1999; Arnot and Gobas, 2004). Species traits may also relate to TK and TD, and if a 

quantitative relationship is determined, it might be possible to estimate the sensitivity of other, 

untested species (Rubach et al., 2011; Gergs et al., 2015). For example, it was noted by Gergs et 

al. (2015) that for the substance triphenyltin, toxicokinetics partially scaled with body size for the 

organisms: Daphnia magna, Chaoborus crystallinus and Mesocyclops leuckarti. Also, Rubach et 

al. (2012) noted that differences in the uptake rate of chlorpyrifos related to the traits: surface 

area, detritivore food preference, whether a species breathes atmospheric oxygen, and 

phylogeny, using multiple regression (R2 = 0.87). From this, TK parameters may potentially be 

extrapolated between species. There is the potential for the use of ecological traits to be used 
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without the need for additional effects testing on organisms, which is quite significant. However, 

based upon published literature, it is not currently possible to utilise this trait based approach to 

derive contaminant sensitivity. But with further development it is possible for traits to provide a 

more ecologically realistic assessment. 

 

5.2.1.  Effects of multiple stressors 

The combined effects of multiple stressors upon in-stream fauna and the possible interactions 

between them have been largely neglected in ecological risk assessments. The effects of 

naturally occurring stressing factors may directly or indirectly affect the toxicity of contaminants 

to aquatic organisms. For example, raising temperature has been observed to amplify the 

toxicity of acridine (a polycyclic aromatic compound) (Cooney et al., 1983), nickle (Bryant et al., 

1985), and pesticides (Demon and Eijsackers, 1985). However, ERAs are almost entirely based 

upon bioassays under standard conditions (Bednarska et al., 2013). When these interacting 

effects are fully understood, they may be applied to the results from exposure assessments. For 

example, Orvos et al. (2002) demonstrated that the toxicity of Triclosan is significantly 

influenced by pH, as a result of ionisation. Zhu et al. (2016) estimated the spatial distribution of 

pH in freshwater and sediment based upon measured data across China. This was incorporated 

into the multimedia model, SESAMe. The PNEC for Triclosan in the neutral form was recalculated 

based upon carefully controlled conditions for multiple measures of pH (Roberts et al., 2014). 

Further, the neutral form PEC for Triclosan was estimated across China (Zhu et al., 2016). It was 

noted that only 0.03% of freshwater areas exceed the recalculated PNEC for neutral form TCS. In 

a higher-tier assessment, Price et al. (2010) utilised pH data from monitoring surveys in the UK 

to determine the predominant form of Triclosan, for which concentration was estimated using 
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the high resolution water quality model LF2000-WQX (Williams et al., 2009).  The availability of 

water quality parameters (e.g. pH or DO) is limited in China (Chen et al., 2015), and therefore it 

may be difficult to estimate the combined effect of a chemical of interest and standard water 

quality parameters. 

In the natural environment, a mixture of different chemicals will likely be present within the 

water, and it has been observed that exposure to a mixture of chemicals may result in toxic 

effects, even if the concentration of all individual chemicals are below their respective NOEC 

values (Brian et al., 2007; Kortenkamp, 2008; Silva et al., 2002). The effects of the combination 

of chemicals may be: additive, synergetic (total effect is more than sum of effects (Sabljic, 2009)) 

or antagonistic (blocks action of an agonist, a chemical that binds to a receptor (Matthews, 

1993; Ashauer et al., 2007)). This needs to be considered in an ERA in order to assess the 

combined risk of these chemical mixtures, however, it is near-impossible to test every 

combination of chemicals, and therefore a different approach is required (Beyer et al., 2014). 

Two classical approaches to account for chemical mixtures are the concentration addition (CA) 

(Löewe and Muischnek, 1926) and the independent action (IA) (Bliss, 1939) approaches. The CA 

approach is applicable when multiple chemicals with a similar mechanism of action affect the 

same endpoint (Backhaus and Faust, 2012; Beyer et al., 2014). Whilst the IA approach assumes 

that each chemical affects the same endpoint, but through different mechanisms and acting on 

different subsystems of the organism. CA is an additive model and assumes all chemicals 

contribute to the total toxicity, even if some components are below the effect threshold (Heys et 

al., 2016). The mixture effect for CA is determined using Equation 52 below (Backhaus and Faust, 

2012): 
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(52) 

 

where: 

c*
I - concentration of the ith component in a n-component mixture, which contributes x% of the 

total effect 

ECxi - denotes the concentration of the ith component which would provoke an effect X if 

applied alone. 

The fraction: c*
I/ECxi is described as a toxic unit, which is the concentration of a component 

normalised by the component’s relative potency; if the summation of toxic units equals 1, then 

the mixture behaves according to CA (Backhaus and Faust, 2012).  

The IA approach determines the mixture effect by calculating according to the joint probability 

of independent events, described by Equation 53 and 54. For when the value of a biological end 

point decreases with increasing concentration (e.g. survival), the mixture effect is determined 

using Equation 53 (Backhaus and Faust, 2012): 

E(cmix) = E(c1 + ⋯+ cn) = ∏E(ci)

n

i=1

 
 

(53) 

alternatively, for when the value of the biological end point increases with increasing 

concentration (e.g. immobility), Equation 54 is applied (Backhaus and Faust, 2012): 

E(cmix) = E(c1 + ⋯+ cn) = 1 − ∏[1 − E(ci)]

n

i=1

 
 

(54) 
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where: 

E(cmix) - the overall effect predicted, normalised to a range of 0-1, for a mixture containing n 

components at a total concentration of cmix 

E(ci) - the effect of component i if applied singly in a concentration ci , which corresponds to the 

concentration of that component in the mixture. 

If each component has a concentration below its respective effects threshold then no 

combination effects will apply (Heys et al., 2016; Kortenkamp et al., 2009). IA is frequently 

applied when evidence suggests that mixture toxicity is not additive (Kortenkamp et al., 2009). 

IA however, is not often applied, partially due to its assumptions (Backhaus and Faust, 2012). IA 

may only apply to quantal endpoints, and it has also been argued that chemicals may never truly 

act independently of each other (Cedergreen et al., 2008). CA is perhaps the most commonly 

used approach and although there is a danger of missing potential mixture interactions 

(particularly synergetic interactions), it is suggested that CA is appropriate in most cases 

(Backhaus and Faust, 2012; Belden et al., 2007; Heys et al., 2016). 

Attempts have been made to try to account for chemical interactions. The first is the adjusted 

hazard index (HI) or weight of evidence (WOE) approach (Heys et al., 2016; Mumtaz et al., 1993). 

The HI approach summates hazard quotients which are calculated based on the exposure and 

the reference effect level for the chemical (e.g. NOEC), if this summated value is greater than 

one, it is assumed to exceed acceptable toxicity levels (Heys et al., 2016). The adjusted HI/WOE 

approach assesses the likelihood of the toxicity being over- or under-estimated based on factors 

such as data quality and pairwise assessment of potential interactions between all mixture 

chemicals; this is more often used when data used to calculate HI is based on different 
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endpoints (Heys et al., 2016; Mumtaz et al., 1993). This is quite an intensive process which 

become less feasible with increasing number of chemicals within the mixture (Heys et al., 2016).
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Chapter 6  – Conclusions 
 

This thesis describes a methodology to facilitate the use of the GREAT-ER model in China. 

The two key barriers to its use were data requirements and the estimation of the distribution 

and magnitude of the discharge of untreated wastewater; the major data challenge was to 

obtain data regarding the location and population served by STWs. These were overcome 

with the development of a methodology to locate STWs, to estimate the catchment area 

(wastewatersheds) for each STW and thus estimate the population served. Further, 

wastewater generated by the population outside of these wastewatersheds was assumed to 

be untreated. For untreated wastewater, the fraction released to the river network was 

defined by the DER. The GREAT-ER model was successfully used to model the East river 

catchment, for the purpose of estimating the concentrations of Triclosan, Triclocarban, 

Estrone and 17β-estradiol. 

Regional regression was used to estimate low-flow statistics, which were adjusted for the 

influence of upstream reservoirs and other artificial influences. There was uncertainty 

regarding the influence of artificial influences on low-flows, especially for ungauged 

catchments. There was also uncertainty as to the distribution and extent of untreated 

discharge, which is likely to vary significantly throughout the catchment. The use of 

wastewater tracers and drogue technology should be explored in order to better estimate 

flow and to detect wastewater discharge points; however, it was noted that it may be 

difficult to obtain permission from Chinese authorities to undertake these measures. 

It was also highlighted that the estimation of population served for STWs within large urban 

areas was a significant barrier for the use of the model. It is essential to acquire either 

population served or service area data for the majority of STWs within these large areas. 
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Overall, E1 and E2 were modelled with reasonable accuracy; with an overall RMSE (between 

the median estimated concentration and the mean measured concentration) of 4.25 and 

0.82 ng/l for E1 and E2 respectively. However, the model’s estimate for the concentration of 

both TCC and TCS was subject to some significant errors. Overall, the RMSE of TCC was 31.3 

ng/l, and the RMSE for TCS, which depended on the in-stream removal rate, ranged between 

24.86-62.74 ng/l. TCC and TCS were significantly overestimated at some rural sampling sites, 

which was likely due to the underuse of products containing TCC and TCS as a result of a lack 

of affordability or tradition. Further research should be undertaken to better understand and 

represent the spatial distribution of chemical usage. It was also noted that in-stream removal 

was potentially quite important to describe the concentration of TCC and TCS, with a greater 

in-stream removal noted to be more effective to model rural tributary sites with a lower in-

stream removal rate for the main stream. It was postulated that in-stream removal, 

particular biodegradation, may be related to river discharge, which is likely to be lower in 

rural areas and higher in the main stream. Representation of in-stream removal could be 

refined, with standard water quality parameters modelled in tandem with the target 

pollutants. In-stream removal rate constants are sometimes based upon laboratory tests, 

which do not necessarily represent realistic conditions. Water quality parameters, along with 

data such as water depth and climate, may be used to adjust the estimate to conditions 

present within the modelled catchment, or with enough data, to consider in-stream removal 

as a spatially explicit process. Estimates of  water quality parameters could also be used to 

better estimate the effects upon stream biota. Water quality parameters such as 

temperature may regulate the effects of organic chemicals upon biota, and therefore 

including this element would improve the ecological relevance of the model. The challenge 

with this approach is to do so whilst minimising model complexity and data requirements. 

For ecological risk assessments, it is also important to determine the effects of mixtures of 

chemicals, to estimate effects at the population level or above, and to take into account 
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indirect effects on the ecosystem. This may be improved further by involvement of ecological 

models, including TKTD, DEB and individual-based population models. 

A risk assessment was performed for the four chemicals for both 2016 and 2020 scenarios, 

with comparison to PNECs determined from literature. The assessment considered there to 

be little or no risk from TCC for the East river catchment in 2016 at the 50th percentile, whilst 

at the 90th percentile areas that exceed the PNEC threshold were largely confined to the 

Huizhou and Shenzhen area, but also a few short stretches in small streams throughout the 

catchment. Risk from E1 and E2 is largely acceptable for the catchment. However, there are 

notable hotspots within the catchment, largely confined to the city of Shenzhen. In contrast, 

large areas of the catchment were predicted to exceed the PNEC for TCS for both the 50th 

and the 90th percentile in 2016. E1 and E2 were estimated to exceed the 50th and the 90th 

percentile in stretches mostly confined to large urban areas with lower dilution in 2016.  

In 2020, 3 stretches located downstream of major STWs were predicted to exceed the PNEC 

for TCC at the 50th percentile. As for E1 and E2, the area that exceeded the PNEC expanded in 

2020, apart from in areas with improved infrastructure, where stretches downstream of new 

STWs dropped below the PNEC threshold. Finally, for TCS the area that exceeded the PNEC 

threshold did not change, however the threshold was exceeded by a greater extent. 

Catchment management scenarios were implemented in order to determine possible 

mitigation strategies for the catchment. This reduced the number of stretches that exceeded 

the PNEC value for TCC, for the 50th percentile, to 0. For E1 and E2, the number of stretches 

that exceeded their PNEC threshold reduced significantly, however, there was no reduction 

of the number of stretches that exceeded the PNEC value for  TCS at the 50th percentile. A 

second scenario was implemented for E1 and E2 alone, with a focus upon remaining 

stretches indicating high risk. STW service areas were expanded to serve subcatchments 

containing a relatively high population upstream of stretches highlighted to be at risk or if 
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there was no nearby STW, a new STW was implemented. For areas targeted, estimated 

concentrations were reduced to below the PNEC threshold, at the 50th percentile. This 

provided confidence in the model as a catchment management tool. 

There is confidence that GREAT-ER may now be used in other catchments in China. Future 

implementations of GREAT-ER should focus upon areas which may prove a high risk, which 

may be determined using a large-scale risk assessment model (e.g. Zhu et al., 2014). The 

North-East of China is likely to experience the greatest risks from down-the-drain chemicals, 

due to the fact that population is very high, and river discharge is relatively low. Of particular 

interest are the cold regions; during the freeze-over period complex conditions are likely to 

result in low dilution and degradation, which may result in significant inputs to streams that 

flow through large population areas.  

The arid North-West may also experience elevated risks, in particular, large urban areas such 

as the city of Ürümqi. Dilution is very low during the dry season and there may be examples 

of streams that are fed entirely by wastewater discharge, much of which may be untreated. 

However, this water is likely to be already affected by pollutants, and that the release of 

wastewater may create habitat, where there was none before. Therefore, for the purpose of 

risk assessment this scenario may be best approached using the impact zone concept 

(Limlette III Workshop, 1995); where the impact zone is a heavily polluted stretch of river 

downstream of a wastewater discharge outlet. The aim behind this concept is to ensure that 

the chemical of interest does not affect self-purification within the “impact zone”, and does 

not exceed the PNEC beyond the “impact zone”.  
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Appendix 
 

 

Appendix A-1 - Chromatograms for 100 µg/L internal standard. Chemicals in order from top 

to bottom: E2, E1, TCC, TCS.
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Appendix A-2 - Chromatograms for blank sample 1. Chemicals in order from top to bottom: 

E2, E1, TCC, TCS. 
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Appendix A-3 - Chromatograms for sample HA1-1. Chemicals in order from top to bottom: 

E2, E1, TCC, TCS. 
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Appendix A-4 - Chromatograms for sample HA1-2. Chemicals in order from top to bottom: 

E2, E1, TCC, TCS. 
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Appendix B-1 - Mean simulated concentration of Triclosan A in 2016 in the Longchuan sampling zone (ng/l). 
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Appendix B-2 - Mean simulated concentration of Triclosan A in 2016 in the Heyuan sampling zone (ng/l). 
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Appendix B-3 - Mean simulated concentration of Triclosan B in 2016 in the Longchuan sampling zone (ng/l). 
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Appendix B-4 - Mean simulated concentration of Triclosan B in 2016 in the Heyuan sampling zone (ng/l). 
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Appendix B-5 - Mean simulated concentration of Triclosan C in 2016 in the Longchuan sampling zone (ng/l). 
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Appendix B-6 - Mean simulated concentration of Triclosan C in 2016 in the Heyuan sampling zone (ng/l). 
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Appendix B-7 - Mean simulated concentration of Estrone in 2016 in the Longchuan sampling zone (ng/l). 
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Appendix B-8 - Mean simulated concentration of Estrone in 2016 in the Heyuan sampling zone (ng/l). 
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Appendix B-9 - Mean simulated concentration of 17β-estradiol in 2016 in the Longchuan sampling zone (ng/l).
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Appendix B-10 - Mean simulated concentration of 17β-Estradiol in 2016 in the Heyuan sampling zone (ng/l). 


