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Abstract—This paper investigates the physical layer security of
non-orthogonal multiple access (NOMA) in large-scale networks
with invoking stochastic geometry. Both single-antenna and
multiple-antenna aided transmission scenarios are considered,
where the base station (BS) communicates with randomly dis-
tributed NOMA users. In the single-antenna scenario, we adopt
a protected zone around the BS to establish an eavesdropper-
exclusion area with the aid of careful channel-ordering of the
NOMA users. In the multiple-antenna scenario, artificial noise
is generated at the BS for further improving the security of a
beamforming-aided system. In order to characterize the secrecy
performance, we derive new exact expressions of the security
outage probability for both single-antenna and multiple-antenna
aided scenarios. To obtain further insights, 1) for the single
antenna scenario, we perform secrecy diversity order analysis of
the selected user pair. The analytical results derived demonstrate
that the secrecy diversity order is determined by the specific
user having the worse channel condition among the selected
user pair; and 2) for the multiple-antenna scenario, we derive
the asymptotic secrecy outage probability, when the numberof
transmit antennas tends to infinity. Monte Carlo simulations are
provided for verifying the analytical results derived and to show
that: i) The security performance of the NOMA networks can
be improved by invoking the protected zone and by generating
artificial noise at the BS; and ii) The asymptotic secrecy outage
probability is close to the exact secrecy outage probability.

Index Terms—Artificial noise, physical layer security, non-
orthogonal multiple access, stochastic geometry

I. I NTRODUCTION

The unprecedented expansion of new Internet-enabled smart
devices, applications and services is expediting the develop-
ment of the fifth generation (5G) networks, which aim for
substantially increasing the throughput of the fourth generation
(4G) networks. In addition to the key technologies such as
large-scale multiple-input multiple-output (MIMO) solutions,
heterogeneous networks and millimeter wave, as well as
novel multiple access (MA) techniques should be invoked for
improving the spectral efficiency. The existing MA techniques
can be primarily classified into two main categories, namely
orthogonal multiple access and non-orthogonal multiple access
(NOMA), by distinguishing whether a specific resource block
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can be occupied by more than one user [2]. More specifically,
upon investigating the multiplexing gain gleaned from the
different domains, the NOMA technique can be further clas-
sified as code-domain NOMA and power-domain NOMA [3].
Power-domain NOMA1, which has been recently proposed
for the 3GPP Long Term Evolution (LTE) initiative [4], is
deemed to have a superior spectral efficiency [5, 6]. It has
also been pointed out that NOMA has the potential to be
integrated with existing MA paradigms, since it exploits the
new dimension of the power domain. The key idea of NOMA
is to ensure that multiple users can be served within a given
resource slot (e.g., time/frequency), by applying successive in-
terference cancellation (SIC). The concept of SIC, which was
first proposed by Cover in 1972 [7], constitutes a promising
technique, since it imposes lower complexity than the joint
decoding approach [8].

Hence NOMA techniques have received remarkable atten-
tion both in the world of academia and industry [9–13]. Ding
et al. [9] investigated the performance of the NOMA downlink
for randomly roaming users. It was shown that NOMA is
indeed capable of achieving a better performance than their
traditional orthogonal multiple access (OMA) counter parts.
By considering the user fairness of a NOMA system, a user-
power allocation optimization problem was addressed by Tim-
otheou and Krikidis [10]. A cooperative simultaneous wireless
power transfer (SWIPT) aided NOMA protocol was proposed
by Liu et al. [11], where a NOMA user benefitting from good
channel conditions acts as an energy harvesting source in order
to assist a NOMA user suffering from poor channel condi-
tions. With the goal of maximizing the energy efficiency of
transmission in multi-user downlink NOMA scenarios, Zhang
et al. [14] proposed an efficient power allocation technique
capable of supporting the data rate required by each user. To
further improve the performance of NOMA systems, multiple
antennas were introduced in [12, 13]. More particularly, the
application of multiple-input single-output (MISO) solution to
NOMA was investigated by Choiet al. [12], where a two-stage
beamforming strategy was proposed. Power optimization was
invoked by Sunet al. [13] for maximizing the ergodic capacity
of MIMO aided NOMA systems. As a further advance, a
massive multiple-input multiple-output (MIMO) aided hybrid
heterogenous NOMA framework was proposed for downlink

1Hence in this paper, we focus our attention on the family of power-domain
NOMA schemes. We simply use “NOMA” to refer to “power-domainNOMA”
in the following.
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transmission by Liuet al. [15]. The impact of the locations
of users and interferers was investigated by using stochastic
geometry approaches.

Given the broadcast nature of wireless transmissions, the
concept of physical (PHY) layer security (PLS) was proposed
by Wyner as early as 1975 from an information-theoretical
perspective [16]. This research topic has sparked of wide-
spread recent interests. To elaborate, PLS has been considered
from a practical perspective in [17–21]. Specifically, robust
beamforming transmission was conceived in conjunction with
applying artificial noise (AN) for mitigating the impact of
imperfect channel state information (CSI) in MIMO wiretap
channels was proposed by Mukherjee and Swindlehurst [17].
Ding et al. [18] invoked relay-aided cooperative diversity for
increasing the capacity of the desired link. More particularly,
the impact of eavesdroppers on the diversity and multiplexing
gains was investigated both in single-antenna and multiple-
antenna scenarios. Additionally, the tradeoffs between secure
performance and reliability in the presence of eavesdropping
attacks was identified by Zouet al. [20]. Furthermore, the
physical layer security of D2D communication in large-scale
cognitive radio networks was investigated by Liuet al. [21]
with invoking a wireless power transfer model, where the
positions of the power beacons, the legitimate and the eaves-
dropping nodes were modeled using stochastic geometry.

Recently, various PHY layer techniques, such as cooperative
jamming [22] and AN [23] aided solutions were proposed
for improving the PLS, even if the eavesdroppers have better
channel conditions than the legitimate receivers. A popular
technique is to generate AN at the transmitter for degrading
the eavesdroppers’ reception, which was proposed by Goel and
Negi in [23]. In contrast to the traditional view, which regards
noise and interference as a detrimental effect, generating
AN at the transmitter is capable of improving the security,
because it degrades the channel conditions of eavesdroppers
without affecting those of the legitimate receivers. An AN-
based multi-antenna aided secure transmission scheme affected
by colluding eavesdroppers was considered by Zhou and
McKay [24] for the scenarios associated both with perfect and
imperfect CSI at both the transmitter and receiver. As a further
development, the secrecy enhancement achieved in wireless
Ad Hoc networks was investigated by Zhanget al. [25], with
the aid of both beamforming and sectoring techniques. By
simultaneously considering matched filter precoding and AN
generation techniques, the secure transmission strategies for a
multi-user massive MIMO systems was investigated by Wuet
al. [26]. Very recently, the PLS of a single-input single-output
(SISO) NOMA system was studied by Zhanget al. [27], with
the objective of maximizing the secrecy sum rate of multiple
users.

A. Motivation and Contribution

As mentioned above, PLS has been studied in various
scenarios, but there is still a paucity of research contributions
on investigating the security issues of NOMA, which motivates
this contribution. Note that the employment of SIC in NOMA
results in a unique interference status at the receivers, which

makes the analysis of the PLS of NOMA different from that
of OMA. In this paper, we specifically consider the scenario
of large-scale networks, where a base station (BS) supports
randomly roaming NOMA users. In order to avoid sophisti-
cated high-complexity message detection at the receivers,a
user pairing technique is adopted for ensuring that only two
users share a specific orthogonal resource slot, which can be
readily separated by low-complexity SIC. A random number
of eavesdroppers are randomly positioned on an infinite two-
dimensional plane according to a homogeneous Poisson point
process (PPP). An eavesdropper-exclusion zone is introduced
around the BS for improving the secrecy performance of the
large-scale networks considered in which no eavesdroppers
are allowed to roam. This ‘disc’ was referred to as a protected
zone in [25, 28, 29]. Specifically, we consider both a single-
antenna scenario and a multiple-antenna scenario at the base
station (BS). 1) For the single-antenna scenario,M NOMA
users are randomly roaming in an finite disc (user zone) with
the quality-order of their channel conditions known at the BS.
For example, them-th NOMA user is channel-quality order
of m. In this case, them-th user is paired with then-th
user for transmission within the same resource slot; 2) For
the multiple-antenna scenario, we invoke beamforming at the
BS for generating AN. In order to reduce the complexity of
channel ordering of MISO channels for NOMA, we partitioned
the circular cell of Fig. 1 into an internal disc and an external
ring. We select one user from the internal disc and another
from the external ring to be paired together for transmission
within the same resource slot using a NOMA protocol. The
primary contributions of this paper are as follows:

• We investigate the secrecy performance of large-scale
NOMA networks both for a single-antenna aided and a
multiple-antenna assisted scenario at the BS. A protected
zone synonymously referred to as the eavesdropper-
exclusion area, is invoked in both scenarios for improving
the PLS. Additionally, we propose to generate AN at
the BS in the multiple-antenna aided scenario for further
enhancing the secrecy performance.

• For the single-antenna scenario, we derive the exact
analytical expressions of the secrecy outage probabil-
ity (SOP) of the selected pair of NOMA users, when
relying on channel ordering. We then further extend on
the secrecy diversity analysis and derive the expressions
of asymptotic SOP. The results derived confirm that: 1)
for the selected pair, them-th user is capable of attaining
a secrecy diversity order ofm; 2) the secrecy diversity
order is determined by the one associated with the worse
channel condition between the paired users.

• For the multiple-antenna scenario, we derive the exact
analytical expressions of the SOP in conjunction with AN
generated at the BS. To gain further insights, we assume
having a large antenna array and derive the expressions
of SOP, when the number of antennas tends to infinity.
The results derived confirm that increasing the number
of antennas has no effect on the received signal-to-
interference-plus-noise ratio (SINR) at the eavesdroppers,
when the BS is equipped with a large antenna array.
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• It is shown that: 1) the SOP can be reduced both by
extending the protected zone and by generating AN at the
BS; 2) the asymptotic SOP results of our large antenna
array analysis is capable of closely approximating the
exact secrecy outage probability; 3) there is an optimal
desired signal-power and AN power sharing ratio, which
minimizes the SOP in the multi-antenna scenario.

B. Organization

The rest of the paper is organized as follows. In Section II, a
single-antenna transmission scenario is investigated in random
wireless networks, where channel ordering of the NOMA users
is relied on. In Section III, a multiple-antenna transmission
scenario is investigated, which relies on generating AN at the
BS. Our numerical results are presented in Section IV for
verifying our analysis, which is followed by our conclusions
in Section V.

II. PHYSICAL LAYER SECURITY IN RANDOM WIRELESS

NETWORKS WITH CHANNEL ORDERING

As shown in Fig. 1, we focus our attention on a secure
downlink communication scenario. In the scenario considered,
a BS communicates withM legitimate users (LUs) in the
presence of eavesdroppers (Eves). We assume that theM users
are divided intoM/2 orthogonal pairs. Each pair is randomly
allocated to a single resource block, such as a time slot or
an orthogonal frequency band. For simplicity, we only focus
our attention on investigating a typical pair of users in this
treatise. Random user-pairing is adopted in this work2. For
each pair, the NOMA transmission protocol is invoked. It is
assumed that BS is located at the center of a disc, denoted by
D, which has a coverage radius ofRD (which is defined as
the user zone for NOMA [9]). TheM randomly roaming LUs
are uniformly distributed within the disc. A random number of
Eves is distributed across an infinite two-dimensional plane,
which are assumed to have powerful detection capabilities and
can overhear the messages of all orthogonal RBs, i.e. time
slots or frequency slots. The spatial distribution of all Eves is
modeled using a homogeneous PPP, which is denoted byΦe

and it is associated with the densityλe. It is assumed that the
Eves can be detected, provided that they are close enough to
BS. Therefore, an Eve-exclusion area having a radius ofrp is
introduced. Additionally, all channels are assumed to impose
quasi-static Rayleigh fading, where the channel coefficients are
constant for each transmission block, but vary independently
between different blocks.

Without loss of generality, it is assumed that all the channels
between the BS and LUs obey|h1|2 ≤ · · ·|hm|2 ≤ · · ·|hn|2 ≤
···|hM |2. Both the the small-scale fading and the path loss are
incorporated into the ordered channel gain. Again, we assume
that them-th user and then-th user (m < n) are paired
for transmission in the same resource slot. Without loss of
generality, we focus our attention on a single selected pair
of users in the rest of the paper. In the NOMA transmission

2We note that however sophisticated user pairing is capable of enhancing
the performance of the networks considered [11], which is set aside for our
future work.

DR

∞

User Eavesdropper

pr

Base station

Fig. 1: Network model for secure NOMA transmission in
single-antenna scenario, whererp, RD, and∞ is the radius
of the Eve-exclusion area, NOMA user zone, and an infinite
two dimensional plane for Eves, respectively.

protocol, more power should be allocated to the user suffering
from worse channel condition [5, 6]. Therefore, the power
allocation coefficients satisfy the conditions thatam > an
and am + an = 1. By stipulating this assumption, SIC can
be invoked by then-th user for first detecting the specific
user having a higher transmit power (TX-power), who hence
has a less interference-infested signal. Accordingly, them-
th user’s signal is then remodulated and deducted from the
original composite signal. This procedure then directly delivers
the decontaminated lower-TX-power signal of then-th user
itself3. We assume having fixed power allocation sharing
between two users, but optimal power sharing strategies are
capable of further enhancing the performance of the networks
considered, which is beyond the scope of this paper. Based
on the aforementioned assumptions, the instantaneous SINR
of the m-th user and the signal-to-noise ratio (SNR) of the
n-th user can be written as:

γBm
=

am|hm|2

an|hm|2 + 1
ρb

, (1)

γBn
= ρban|hn|2, (2)

respectively. We introduce the convenient concept of transmit
SNRρb =

PT

σ2
b

, wherePT is the TX-power of composite signal

at the BS andσ2
b is the variance of the additive white Gaussian

noise (AWGN) at the LUs, noting that this is not a physically
measurable quantity owing to their geographic separation.
Perfectly flawless detection is assumed in this treatise, which
is realistic at today’s state-of-the-art with the aid of iterative
turbo-detection techniques [30, 31]. Additionally, a bounded
path loss model is used for guaranteeing that there is a practical
path-loss, which is higher than one even for small distances.

3It is assumed that perfect SIC is achieved at then-th user, although
achieving perfect SIC may be a non-trivial task. As a consequence, our
analytical results may over-estimate the attainable secrecy performance of
networks. Our future work will relax this idealized simplifying assumption,
perhaps by analyzing both the connection outage probability and the secrecy
outage probability of the networks considered, with the aidthe results derived
in this treatise.
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We consider the worst-case scenario of large-scale networks,
in which the Eves are assumed to have powerful detection
capabilities [25, 32]. Specifically, by applying multiuserdetec-
tion techniques, the multiuser data stream received from BS
can be distinguished by the Eves, upon subtracting interference
generated by the superposed signals from each other. In fact,
this assumption overestimates the Eves’ multi-user decodabil-
ity. In the scenario considered, all the CSIs of the LUs are
assumed to be known at BS. However, the CSIs of Eves are
assumed to be unknown at the BS. The most detrimental Eve
is not necessarily the nearest one, but the one having the best
channel to BS. Non-colluding eavesdroppers are consideredin
this work. Therefore, the instantaneous SNR of detecting the
information of them-th user and then-th user at the most
detrimental Eve can be expressed as follows:

γEκ
= ρeaκ max

e∈Φe,de≥rp

{

|ge|2L (de)
}

. (3)

It is assumed thatκ ∈ {m,n}, ρe = PT

σ2
e

is the transmit SNR
with σ2

e being the variance of the AWGN at Eves. Additionally,
ge is defined as the small-scale fading coefficient associated
with ge ∼ CN (0, 1), L (de) =

1
dα
e

is the path loss, andde is
the distance from Eves to BS. Note that due to the existence of
the Eve-exclusion area (we assumerp > 1), it is not required
to bound the path loss for Eves sincede will always be larger
than one.

A. New Channel Statistics

In this subsection, we derive several new channel statistics
for LUs and Eves, which will be used for deriving the secrecy
outage probability in the next subsection.

Lemma 1. AssumingM randomly located NOMA users in
the disc of Fig. 1, the cumulative distribution function (CDF)
FγBn

of then-th LU is given by

FγBn
(x) ≈ ϕn

M−n∑

p=0

(
M − n

p

)
(−1)

p

n+ p
×

∑

S̃
p
n

(
n+ p

q0 + · · ·+ qK

)( K∏

K=0

bqkk

)

e
−

K
∑

k=0

qkck
x

ρban
, (4)

where K is a complexity-vs-accuracy tradeoff parameter,

bk = −ωK

√

1− φ2
k (φk + 1), b0 = −

K∑

k=1

bk, ck = 1 +
[
RD

2 (φk + 1)
]α

, ωK = π
K

, φk = cos
(
2k−1
2K π

)
, S̃p

n =
{

(q0, q1, · · · , qK)|
K∑

i=0

qi = n+ p

}

,
(

n+p
q0+···+qK

)
= (n+p)!

q0!···qK !

andϕn = M !
(M−n)!(n−1)! .

Proof: See Appendix A .

Lemma 2. Assuming M randomly positioned NOMA
users in the disc of Fig. 1, the CDFFγBm

of the m-
th LU is given in (5) at the top of next page, where

U (x) =

{
1, x > 0

0, x ≤ 0
is the unit step function , and̃Sp

m =

{

(q0, q1, · · · , qK)|
K∑

i=0

qi = m+ p

}

.

Proof: Based on(1), the CDF of FγBm
(x) can be

expressed as

FγBm
(x) =







Pr

{

|hm|2 <
x

(am − anx) ρb

}

︸ ︷︷ ︸

Φm

, x < am

an

1, x ≥ am

an

.

(6)

To derive the CDF ofFγBm
(x), Φm can be expressed as

Φm = F|hm|2

(
x

(am−anx)ρb

)

. Based on(A.5), interchanging
the parametersm → n and applyingy = x

(am−anx)ρb
, we

obtain

Φm = ϕm

M−m∑

p=0

(
M −m

p

)
(−1)p

m+ p
×

∑

S̃
p
m

(
m+ p

q0 + · · ·+ qK

)( K∏

k=0

bqkk

)

e
−

K
∑

k=0

qkck
x

(am−anx)ρb . (7)

By substituting(7) into (6), with the aid of the unit step
function, the CDF ofFγBm

(x) can be obtained. The proof
is completed.

Lemma 3. Assuming that the eavesdroppers obey the PPP
distribution and the Eve-exclusion zone has a radius ofrp,
the probability density function (PDF)fγEκ

of the most
detrimental Eve(whereκ ∈ {m,n} ) is given by

fγEκ
(x) = µκ1e

−
µκ1Γ(δ,µκ2x)

xδ

(
µδ
κ2e

−µκ2x

x
+

δΓ (δ, µκ2x)

xδ+1

)

,

(8)

whereµκ1 = δπλe(ρeaκ)
δ
, µκ2 =

rαp
ρeaκ

, δ = 2
α

andΓ(·, ·) is
the upper incomplete Gamma function.

Proof: To derive the PDF offγEκ
(x), we have to compute

the CDF ofFγEκ
firstly as

FγEκ
(x) =EΦe







∏

e∈Φe,de≥rp

F|ge|
2

(
xdαe
ρeaκ

)





. (9)

Following the similar approach as [33], by applying the
generating function [34],(9) can be rewritten as

FγEκ
(x) = exp

[

−λe

∫

R2

(

1− F|ge|
2

(
xdαe
ρeaκ

))

rdr

]

=exp

[

−2πλe

∫ ∞

rp

re−
x

ρeaκ
rαdr

]

. (10)

By applying [35, Eq. (3.381.9)], we arrive at:

FγEκ
(x) = e−

δπλe(ρeaκ)δΓ

(

δ,
xrαp
ρeaκ

)

xδ . (11)

By taking the derivative of the CDFFγEκ
(x) in (11), we

obtain the PDFγEκ
in (8). The proof is completed.
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FγBm
(x) ≈ U

(

x− am
an

)

+ U

(
am
an

− x

)

ϕm

M−m∑

p=0

(
M −m

p

)
(−1)

p

m+ p

∑

S̃
p
m

(
m+ p

q0 + · · ·+ qK

)( K∏

k=0

bqkk

)

e
−

K
∑

k=0

qkck
x

(am−anx)ρb .

(5)

B. Secrecy Outage Probability

In the networks considered, the capacity of the LU’s channel
for the κ-h user (κ ∈ {m,n} ) is given byCBκ

= log2(1 +
γBκ

), while the capacity of the Eve’s channel for theκ-th
user is quantified byCEκ

= log2(1+ γEκ
). It is assumed that

the length of the block is sufficiently high for facilitatingthe
employment of capacity-achieving codes within each block.
Additionally, the fading block length of the main channel and
of the eavesdropper’s channel are assumed to be the same. As
such, according to [36], the secrecy rate of then-th and of the
m-th user can be expressed as

Cn = [CBn
− CEn

]+, (12)

Cm = [CBm
− CEm

]+, (13)

where we have[x]+ = max{x, 0}. Here, the secrecy rates of
LUs are strictly positive [37]. Recall that the Eves’ CSIs are
unknown at the BS, hence the BS can only send information
to the LUs at a constant rate, but perfect secrecy is not always
guaranteed [38]. Considering theκ-th user as an example, if
Rκ < Cκ, the information with a rate ofRκ (κ ∈ {m,n}
is conveyed in perfect secrecy. By contrast, for the case of
Rκ > Cκ the information-theoretic security is compromised.
Motivated by this, secrecy outage probability is used as our
secrecy performance metric in this paper. Given the expected
secrecy rateRκ of the κ-th user, a secrecy outage event is
declared, when the secrecy rateCκ drops belowRκ, which
is defined as the SOP for theκ-th user. Recall that we have
allocatedM users toM/2 orthogonal RBs, each pair of users
are independent from all other pairs of users. We focus our
attention on the SOP of a typical pair of users. We then derive
the SOP of theκ-th user in the following two Theorems.
We consider the SOP under the condition that the connection
between BS and LUs can be established.

Theorem 1. Assuming that the LUs position obeys the PPP
for the ordered channels of the LUs, the SOP of then-th user
is given by (14) at the top of this page.

Proof: In this treatise, we consider the SOP under the
condition that the connection between the BS and LUs can
be established. As such, the SIC has been assumed to be
successfully performed at then-th user. Based on(12), the
SOP is given by

Pn (Rn) =

∫ ∞

0

fγEn
(x)FγBn

(
2Rn (1 + x)− 1

)
dx. (15)

Upon using the results ofLemma 1 and Lemma 3, substi-
tuting (4) and (8) into (15), after some further mathematical
manipulations, we can express the SOP of then-th user. The
proof is completed.

Theorem 2. Assuming that the LUs position obeys the PPP
for the ordered channels of the LUs, the SOP of them-th
user is given by (16) at the top of next page, where we have
τm = 1

2Rm (1−am) − 1.
Proof: Based on(13) and according to [37], the SOP for

them-th user is given by

Pm (Rm) =

∫ ∞

0

fγEm
(x)FγBm

(
2Rm (1 + x)− 1

)
dx.

(17)

Upon using the results ofLemma 2 and Lemma 3, as
well as substituting(5) and (8) into (17), after some further
mathematical manipulations, we can express the SOP of the
m-th user. The proof is completed.

In this paper, based on the assumptions of perfect SIC of
LUs and strong detection capabilities of Eves aforementioned,
the secrecy outage occurs in them-th user and then-th user are
independent. Note that relaxing these two assumptions requires
to consider dependence between two users by discussing more
sophisticated connect/secrecy outage events, which should be
included in our future work with the aid of the results derived
in this paper. In other words, the SOP of them-th user has
no effect on the SOP of then-th user and vice versa. As a
consequence, we define the SOP for the selected user pair as
that of either them-th user or then-th user outage.

Proposition 1. The SOP of the selected user pair is given by

Pmn = 1− (1− Pm) (1− Pn) , (18)

wherePn andPm are given by(14) and (16), respectively.

C. Secrecy Diversity Order Analysis

In order to derive the secrecy diversity order to gain
further insights into the system’s operation in the high-SNR
regime, the following new analytical framework is introduced.
Again, as the worst-case scenario, we assume that Eves have
a powerful detection capability. The asymptotic behavior is
analyzed, usually when the SNR of the channels between the
BS and LUs is sufficiently high, i.e., when the BS’s transmit
SNR obeysρb → ∞, while and the SNR of the channels
between BS and Eves is set to arbitrary values. It is noted
that for the Eve’s transmit SNR ofρe → ∞, the probability
of successful eavesdropping will tend to unity. The secrecy
diversity order can be defined as follows:

ds = − lim
ρb→∞

logP∞

log ρb
, (19)

whereP∞ is the asymptotic SOP.
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Pn (Rn) =ϕn

M−n∑

p=0

(
M − n

p

)
(−1)p

n+ p

∑

S̃
p
n

(
n+ p

q0 + · · ·+ qK

)( K∏

K=0

bqkk

)

×
∫ ∞

0

µn1

(
µδ
n2e

−µn2x

x
+

δΓ (δ, µn2x)

xδ+1

)

e
−

µn1Γ(δ,µn2x)

xδ −
K
∑

k=0

qkck
2Rn (1+x)−1

ρban
dx. (14)

Pm (Rm) =1− e
−

µm1Γ(δ,τmµm2)

τm
δ + ϕm

M−m∑

p=0

(
M −m

p

)
(−1)p

m+ p

∑

S̃
p
m

(
m+ p

q0 + · · ·+ qK

)( K∏

k=0

bqkk

)

×
∫ τm

0

µm1

(
µδ
m2e

−µm2x

x
+

δΓ (δ, µm2x)

xδ+1

)

e
−

µm1Γ(δ,µm2x)

xδ −
K
∑

k=0

qkck
2Rm (1+x)−1

(am−an(2Rm (1+x)−1))ρb dx. (16)

Corollary 1. Assuming that the LUs position obeys the PPP
for the ordered channels of the LUs, the asymptotic SOP of
the n-th user is given by

P∞
n (Rn) = Gn(ρb)

−Dn + o
(

ρ−Dn

b

)

, (20)

where we haveQ1 =
∫∞

0
µn1e

−
µn1Γ(δ,µn2x)

xδ ×
(

µδ
n2e

−µn2x

x
+ δΓ(δ,µn2x)

xδ+1

)(

(2Rn (1+x)−1)ℓ
an

)n

dx,

Gn = ϕnQ1

n
, andDn = n.

Proof: We commence our diversity order analysis by
characterizing the CDF of the LUsF∞

γBm
and F∞

γBn
in the

high-SNR regime. Wheny → 0, based on(A.3) and the
approximation of1 − e−y ≈ y, we obtain the asymptotic

unordered CDF of
∣
∣
∣h̃n

∣
∣
∣

2

as follows:

F∞

|h̃n|2 (y) ≈
2y

R2
D

∫ RD

0

(1 + rα) rdr = yℓ, (21)

whereℓ = 1+
2Rα

D

α+2 . Substituting(21) into (A.2), the asymptotic

unordered CDF of
∣
∣
∣h̃n

∣
∣
∣

2

is given by

F∞
|hn|

2 (y) = ϕn

M−n∑

p=0

(
M − n

p

)
(−1)

p

n+ p
(yℓ)

n+p ≈ ϕn

n
(yℓ)

n
.

(22)

Then based on(A.1), we can obtainF∞
γBn

(x) ≈ ϕn

n

(
xℓ

ρban

)n

.
Based on(15), we can replace the CDF ofFγBn

by the
asymptoticF∞

γBn
. After some manipulations, we arrive at the

asymptotic SOP of then-th user. The proof is completed.

Remark 1. Upon substituting(20) into (19), we obtain the
secrecy diversity order of then-th user isn.

Corollary 2. Assuming that the LUs position obeys the PPP
for the ordered channels of the LUs, the asymptotic SOP for
them-th user is given by

P∞
m (Rn) = Gm(ρb)

−Dm + o
(

ρ−Dm

b

)

, (23)

where we haveQ2 =
∫ τm

0
µm1e

−
µm1Γ(δ,µm2x)

xδ ×
(

µδ
m2e

−µm2x

x
+ δΓ(δ,µm2x)

xδ+1

)(

(2Rm (1+x)−1)ℓ
(am−an(2Rm (1+x)−1))

)m

dx,

Gm = ϕmQ2

m
andDm = m.

Proof: Based onΦm and (22), we can arrive at:

Φ∞
m ≈ϕm

m

(
xℓ

(am − anx) ρb

)m

. (24)

Substituting(24) into (6), the asymptotic CDF ofγBm
can be

expressed as

F∞
γBm

(x) = U

(

x− am
an

)

+ U

(
am
an

− x

)

Φ∞
m , (25)

where Φ∞
m is given in (24). Then, based on(17), we can

replace the CDF ofFγBm
by the asymptoticF∞

γBm
of (25).

Additionally, we can formulate the asymptotic SOP of them-th
user. The proof is completed.

Remark 2. Upon substituting(23) into (19), we obtain the
secrecy diversity order of them-th user ism.

Proposition 2. Form < n, the secrecy diversity order can be
expressed as

ds = − lim
ρb→∞

log (P∞
m + P∞

n − P∞
m P∞

n )

log ρb
= m. (26)

Proof: Based onCorollary 2 and Corollary 1, and upon
substituting(20) and (23) into (18), the asymptotic SOP for
the user pair can be expressed as

P∞
mn =P∞

m + P∞
n − P∞

m P∞
n ≈ P∞

m Gm(ρb)
−Dm . (27)

Upon substituting(27) into (19), we arrive at(26). The proof
is completed.

Remark 3. The results of (26) indicate that the secrecy
diversity order and the asymptotic SOP for the user pair
considered are determined by them-th user.

Remark 3 provides insightful guidelines for improving the
SOP of the networks considered by invoking user pairing
among of theM users. Since the SOP of a user pair is
determined by that of the one having a poor channel, it is
efficient to pair the user having the best channel and the second
best channel for the sake of achieving an increased secrecy
diversity order.
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User m Eavesdropper

pr

Base station

1DR

2DR

User n

∞

Fig. 2: Network model for secure NOMA transmission using
AN in multiple-antenna scenario, whererp, RD1 , RD2 , and
∞ is the radius of the Eve-exclusion zone, NOMA user zone
for usern, NOMA user zone for userm, and an infinite two
dimensional plane for eavesdroppers, respectively.

III. E NHANCING SECURITY WITH THE AID OF ARTIFICIAL

NOISE

In addition to single antenna scenario [1], for further im-
proving the secrecy performance, let us now consider the
employment of multiple antennas at BS for generating AN
in order to degrade the Eves’ SNR. More particularly, the
BS is equipped withNA antennas, while all LUs and Eves
are equipped with a single antenna each. Here,NA > 2
is assumed for ensuring the existence of a null-space for
two NOMA users. We mask the superposed information of
NOMA by superimposing AN on Eves with the aid of the
BS. It is assumed that the perfect CSI of LUs are known at
BS4. Since the AN is in the null space of the intended LU’s
channel, it will not impose any effects on LUs. However, it
can significantly degrade the channel and hence the capacityof
Eves. More precisely, the key idea of using AN as proposed
in [39] can be described as follows: an orthogonal basis of
CNA is generated at BS for userκ, (whereκ ∈ {m,n}) as a
(NA ×NA)–element precoding matrixUκ = [uκ,Vκ], where

we haveuκ = h†
κ

/

‖hκ‖ , andVκ is of sizeNA × (NA − 1).
Here,hκ is denoted as the intended channel between the BS
and userκ. It is noted that each column ofVκ is orthogonal to
uκ. Beamforming is applied at the BS for generating AN. As
such, the transmitted superposed information, which is masked
by AN at the BS is given by

∑

κ∈{m,n}

√
aκxκ =

∑

κ∈{m,n}

√
aκ (sκuκ + tκVκ) , (28)

wheresκ is the information-bearing signal with a variance of
σ2
s , andtκ is the AN. Here the (NA − 1) elements oftκ are

independent identically distributed (i.i.d.) complex Gaussian
random variables with a variance ofσ2

a. As such, the overall
power per transmission isPT = PS+PA, wherePS = θPT =

4In practical scenarios, estimating the CSI may be a non-trivial task,
therefore, our work actually provides an upper bound in terms of the attainable
secrecy performance.

σ2
s is the transmission power of the desired information-

bearing signal, whilePA = (1− θ)PT = (NA − 1) σ2
a is the

transmission power of the AN. Hereθ represents the power
sharing coefficients between the information-bearing signal
and AN.

As shown in Fig. 2, we divide the discD into two regions,
namely,D1 and D2, respectively. The motivation of using
this topology hinges on two aspects. The first one is to create
more distinct channel quality differences between the paired
users, since existing NOMA studies have demonstrated that it
is beneficial to pair two users having rather different channel
conditions [5, 11, 40]. The second one is that of reducing the
complexity of channel ordering in this MISO NOMA system,
which provides a compelling flexibility. By doing so, the path
loss is the dominant channel impairment in this scenario, be-
cause compared to the instantaneous small-scale fading effects,
the path loss is more stable and more dominant. A quantitative
example of comparing the small-scale fading and path loss was
provided in Chapter 2 of [41]. Note that the proposed design
cannot guarantee the optimal ordering for MISO NOMA chan-
nels. More sophisticated precoding/detection design strategies
(e.g., cluster based design, signal alignment and etc.) canbe
developed for further enhancing the attainable performance
of the networks considered [42, 43], but this is beyond the
scope of this treatise. Here,D1 is an internal disc with radius
RD1 , and the group of usern is located in this region.D2

is an external ring spanning the radius distance fromRD1 to
RD2 , and the group of userm is located in this region. For
simplicity, we assume that usern and userm are the selected
user from each group in the rest of this paper. The cell-center
usern is assumed to be capable of cancelling the interference
of the cell-edge userm using SIC techniques5. User n and
userm are randomly selected in each region for pairing them
for NOMA. The combined signal at userm is given by

ym =
hmum

√
amsm

√
1 + dαm

︸ ︷︷ ︸

Signal part

+
hmun

√
ansn

√
1 + dαm

+
hmVn

√
antn

√
1 + dαm

+ nm

︸ ︷︷ ︸

Interference and noise part

,

(29)

wherenm is a Gaussian noise vector at userm, while dm
is the distance between the BS and userm. Substituting (28)
into (29), the received SINR at userm is given by

γAN
Bm

=
amσ2

s‖hm‖2

anσ2
s

∣
∣
∣hm

h
†
n

‖hn‖

∣
∣
∣

2

+ anσ2
a‖hmVn‖2 + 1 + dαm

, (30)

where the variance ofnm is normalized to unity. As such, we
can express the transmit SNR at BS asρt = PT .

Since SIC is applied at usern, the interference arriving from
userm can be detected and subtracted firstly. The aggregate

5Note that upon invoking the signal alignment technique [43], the BS is
capable of simultaneously supporting multiple pairs of NOMA users, by
designing more sophisticated precoding/detection strategies for interference
cancelation. However, these considerations are beyond thescope of this paper.
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signal at usern is given by

yn =
hnun

√
ansn

√
1 + dαn

︸ ︷︷ ︸

Signal part

+
hnVm

√
amtm

√
1 + dαn

+ nn

︸ ︷︷ ︸

Interference and noise part

, (31)

wherenn is the Gaussian noise at usern, while dn is the
distance between the BS and usern. The received SINR at
usern is given by

γAN
Bn

=
anσ

2
s‖hn‖2

amσ2
a‖hnVm‖2 + 1 + dαn

, (32)

where the variance ofnn is normalized to unity. The signal
observed by Eves is given by

ye =
∑

κ∈{m,n}

he
√
aκxκ

√
dαe

+ ne, (33)

wherene is the Gaussian noises at Eves, whilehe ∈ C1×NA

is the channel vector between the BS and Eves. Similar to the
single-antenna scenario, again, we assume that the Eves have
a strong detection capability and hence they unambiguously
distinguish the messages of userm and usern. The received
SINR of the most detrimental Eve associated with detecting
userκ is given by

γAN
Eκ

= aκσ
2
s max
e∈Φe,de≥rp

{
Xe,κ

IAN
e + dαe

}

, (34)

where the variance ofne is normalized to unity, and we have

Xe,κ =
∣
∣
∣he

h†
κ

‖hκ‖

∣
∣
∣

2

as well asIAN
e = amσ2

a‖heVm‖2 +

anσ
2
a‖heVn‖2.

A. New Channel Statistics

In this subsection, we derive several new channel statistics
for LUs and Eves in the presence of AN, which will be used
for deriving the SOP in the next subsection.

Lemma 4. Assuming that usern is randomly positioned in
the discD1 of Fig. 2, the CDF ofFAN

Bn
is given by

FAN
Bn

(x) = 1− b2e
− ϑx

am

NA−1∑

p=0

ϑpxp

p!

p
∑

q=0

(
p

q

)

×

Γ (NA − 1 + q) aq−p
m

(

ϑx+ NA−1
PA

)NA−1+q

p−q
∑

u=0

(
p− q

u

)au+δ
m γ

(

u+ δ, ϑx
am

Rα
D1

)

(ϑx)
u+δ

,

(35)

where we haveb2 = δ

R2
D1

Γ(NA−1)
(

PA
NA−1

)NA−1 andϑ = am

anPS
.

Proof: See Appendix B.

Lemma 5. Assuming that userm is randomly positioned in
the ringD2 of Fig. 2, for the case ofθ 6= 1

NA
, the CDF of

FAN
Bm

is given by

FAN
Bm

(x) = 1− e−
νx
an

NA−1∑

p=0

(νx)p

p!

p
∑

q=0

(
p

q

)

aq−p
n ×

a1






Γ (q + 1)
(

νx+ 1
PS

)q+1 −
NA−2∑

l=0

(
NA−1
PA

− 1
PS

)l

l!
(

νx+
NA−1

PA

)q+l+1

Γ(q+l+1)






︸ ︷︷ ︸

I(θ)

×

p−q
∑

u=0

(
p− q

u

)γ
(

u+ δ, νx
an

Rα
D2

)

− γ
(

u+ δ, νx
an

Rα
D1

)

(
νx
an

)u+δ
, (36)

where γ (·, ·) is the lower incomplete Gamma
function, Γ (·) is the Gamma function, a1 =

δ
(

1− PA

(NA−1)PS

)1−NA

/
((
R2

D2
−R2

D1

)
PS

)
, and

ν = an

amPS
.

For the case ofθ = 1
NA

, the CDF ofFAN
Bm

is given by
(36) upon substitutingI (θ) by I∗ (θ), where we haveI∗ (θ) =

a2Γ(q+NA)
(

νx+ 1
PS

)q+NA

p−q∑

u=0

(
p−q
u

)
anda2 = δ

(

R2
D2

−R2
D1

)

PS
NA (NA−1)!

.

Proof: See Appendix C.

Lemma 6. Assuming that the distribution of Eves obeys a
PPP and that the Eve-exclusion zone has a radius ofrp, the
PDF of fγAN

Eκ
(whereκ ∈ {m,n}) is given by

fγAN
Eκ

(x) = −eΘκΨκ1×
((

µAN
κ2

)δ
e−xµAN

κ2

x
Ψκ1 +

δΘκΨκ1

x
+ΘκΨκ2

)

, (37)

where Θκ =
Γ(δ,xµAN

κ2 )
xδ , Γ (·, ·) is the upper incom-

plete Gamma function,Ψκ1 = Ω 1
(

x
aκPS

+τi

)j ,Ψκ2 =

Ω 1
(

x
aκPS

+τi

)j

(

j
(

x
aκPS

+τi

)

1
aκPS

)

, Ω = (−1)
NAµAN

κ1 ×
2∏

i=1

τNA−1
i

2∑

i=1

NA−1∑

j=1

aNA−j,NA−1(2τi − L)
j−(2NA−2) , L =

τ1 + τ2, τ1 = NA−1
amPA

, τ2 = NA−1
anPA

, aNA−j,NA−1 =
(
2NA−j−3
NA−j−1

)
,

µAN
κ1 = πλeδ(aκPS)

δ, andµAN
κ2 =

rαp
aκPS

.
Proof: See Appendix D.

B. Secrecy Outage Probability

In this subsection, we investigate the SOP of a multiple-
antenna aided scenario relying on AN.

Theorem 3. Assuming that the LUs and Eves distribution
obey PPPs and that AN is generated at the BS, the SOP of
usern is given by (38) at the top of next page, whereιn∗ =
ϑ(2Rn (1+x)−1)

am
.

Proof: Using the results ofLemma 4 andLemma 6, upon
substituting(35) and (37) into (15), we can obtain the SOP
of usern. The proof is completed.

Theorem 4. Assuming that the LUs and Eves distribution
obey PPPs and that AN is generated at the BS, for the case
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PAN
n (Rn) =

∫ ∞

0

−eΘnΨn1

((
µAN
n2

)δ
e−xµAN

n2

x
Ψn1 +

δΘnΨn1

x
+ΘnΨn2

)

×




1− b2e

−ιn

NA−1∑

p=0

ιn∗
p!

p
∑

q=0

(
p

q

)
Γ (NA − 1 + q) aqm

(

amιn∗ +
NA−1
PA

)NA−1+q

p−q
∑

u=0

(
p− q

u

)
γ
(
u+ δ, ιn∗R

α
D1

)

ιu+δ
n∗




 dx, (38)

PAN
m (Rm) =

∫ ∞

0

−eΘmΨm1

((
µAN
m2

)δ
e−xµAN

m2

x
Ψm1 +

δΘmΨm1

x
+ΘmΨm2

)

×




1− a∗1

NA−1∑

p=0

ιpm
p!

p
∑

q=0

(
p

q

)

aqn






Γ (q + 1)
(

anιm∗ +
1
PS

)q+1 −
NA−2∑

l=0

1
l!

(
NA−1
PA

− 1
PS

)l

Γ (q + l + 1)
(

anιm∗ +
NA−1
PA

)q+l+1




T∗

1






︸ ︷︷ ︸

K(θ)

dx, (39)

θ 6= 1
NA

, the SOP of userm is given by (39) at the top of

next page, where we havea∗1 =
δe−ιm∗

(

1−
PA

(NA−1)PS

)1−NA

(

R2
D2

−R2
D1

)

PS

,

T∗
1 =

p−q∑

u=0

(
p−q
u

)γ(u+δ,ιm∗R
α
D2
)−γ(u+δ,ιm∗R

α
D1
)

ιu+δ
m∗

, and ιm∗ =

ν(2Rm (1+x)−1)
an

.
For the case ofθ = 1

NA
, the SOP for userm is given by

(39) upon substitutingK(θ) with K∗ (θ), whereK∗ (θ) = 1−
a∗2

NA−1∑

p=0

ιpm∗

p!

p∑

q=0

(
p
q

) Γ(q+NA)aq
n

(

anιm∗+
1

PS

)q+NA

p−q∑

u=0

(
p−q
u

)
T∗

1, anda∗2 =

δe−ιm∗
(

R2
D2

−R2
D1

)

PS
NA (NA−1)!

.

Proof: Using the results ofLemma 5 andLemma 6, upon
substituting(36) and (37) into (17), we obtain the SOP of user
m. The proof is completed.

Proposition 3. The SOP of multiple-antenna aided scenario
relaying on AN for the selected user pair can be expressed as

PAN
mn = 1−

(
1− PAN

m

) (
1− PAN

n

)
. (40)

wherePn andPm are given by(38) and (39), respectively.

C. Large Antenna Array Analysis

In this subsection, we investigate the system’s asymptotic
behavior when the BS is equipped with large antenna ar-
rays. Large antenna arrays using narrow beamforming are
potentially capable of distinguishing multiple users in the
angular domain [44, 45]. Nonetheless, the users covered by
the same narrow beam in dense deployments still remain
non-orthogonal [46]. It is noted that for the exact SOP
derived in (39) and (38), asNA increases, the number of
summations in the equations will increase exponentially, which
imposes an excessive complexity. Motivated by this, we seek
good approximations for the SOP associated with a large
NA. With the aid of the theorem of large values, we have
the following approximations [24]. lim

NA→∞
‖hn‖2 → NA,

lim
NA→∞

‖hm‖2 → NA, lim
NA→∞

‖hnVm‖2 → NA − 1, and

lim
NA→∞

‖hmVn‖2 → NA − 1. We first derive the asymptotic

CDF of usern for NA → ∞.

Lemma 7. Assuming that usern is randomly located in the
discD1 of Fig. 2 andNA → ∞, the CDF ofFAN

Bn,∞ is given
by

FAN
Bn,∞ (x) =







0, x < ζn

1−
(

anPSNA
x

−amPA−1
)δ

R2
D1

, ζn ≤ x ≤ ξn

1, x ≥ ξn

,

(41)

where we haveζn = anPSNA

Rα
D1

+amPA+1 andξn = anPSNA

amPA+1 .

Proof: Based on(32), we can express the asymptotic CDF
of FAN

Bn,∞
asFAN

Bn,∞
(x) = Pr

{
anPSNA

amPA+1+dα
n
≤ x

}

. After some
further mathematical manipulations, we can obtain the CDF
of FAN

Bn,∞
for large antenna arrays. The proof is completed.

We then derive the asymptotic CDF of userm for NA → ∞.

Lemma 8. Assuming that userm is randomly located in the
ring D2 of Fig. 2 andNA → ∞, the CDF ofFAN

Bm,∞ is given
by

FAN
Bm,∞ (x) =







1, x ≥ ζm1

R2
D2

−t2m+b1e
−

amPSNA
xanPS

R2
D2

−R2
D1

×
∫ tm

RD1
re

rα

anPS dr, ζm2 < x ≤ ζm1

b1e
−

amPSNA
xanPS

R2
D2

−R2
D1

∫ RD2

RD1
re

rα

anPS dr, x < ζm2

,

(42)

where we have b1 = 2e
anPA+1

anPS , tm =
α

√
amPSNA

x
− anPA − 1, ζm1 = amPSNA

Rα
D1

+anPA+1 , ζm2 =
amPSNA

Rα
D2

+anPA+1 , andξm = amPSNA

anPA+1 .
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Proof: Similarly, based on(30),the CDF of the asymptotic
FAN
Bm,∞ is given by

FAN
Bm,∞ (x) = Pr







amPSNA

anPS

∣
∣
∣hm

h
†
n

‖hn‖

∣
∣
∣

2

+ anPA + 1 + dαm

≤ x







.

(43)

After some further mathematical manipulations, we obtain
the CDF ofFAN

Bm,∞ for large antenna arrays. The proof is
completed.

Let us now turn our attention to the derivation of the Eves’
PDF in a large-scale antenna scenario.

Lemma 9. Assuming that the Eves distribution obeys a PPP
and that AN is generated at the BS, the Eve-exclusion zone
has a radius ofrp, andNA → ∞, the PDF offγAN

Eκ,∞
(where

κ ∈ {m,n}) is given by

fγAN
Eκ,∞

(x) = e
−

µAN
κ1 Γ(δ,µAN

κ2 x)e
−

PAx

aκPS

xδ −
PAx

aκPS µAN
κ1 x−δ

×
(
(
µAN
κ2

)δ
xδ−1e−µAN

κ2 x + Γ
(
δ, µAN

κ2 x
)
(

PA

aκPS

+
δ

x

))

.

(44)

Proof: Using the theorem of large values, we have
lim

NA→∞
IAN
e,∞ = amσ2

a‖heVm‖2 + anσ
2
a‖heVn‖2 → PA. The

asymptotic CDF ofFγAN
Eκ,∞

associated withNA → ∞ is given
by

FγAN
Eκ,∞

(x) = Pr

{

max
e∈Φe,de≥rp

{
aκPSXe,κ

IAN
e,∞ + dαe

}

≤ x

}

= EΦe







∏

e∈Φe,de≥rp

FXe,κ

(
(PA + dαe ) x

aκPS

)





. (45)

Following the procedure used for deriving(10), we apply the
generating function and switch to polar coordinates. Then with
the help of [35, Eq. (3.381.9)],(45) can be expressed as

FγAN
Eκ,∞

(x) = exp

[

−µAN
κ1 Γ

(
δ, µAN

κ2 x
)

xδ
e
−

PAx

aκPS

]

. (46)

Taking derivative of(46), we obtain the PDF offγAN
Eκ,∞

. The
proof is completed.

Remark 4. The results derived in(44) show that the PDF of
fγAN

Eκ,∞
is independent of the number of antennasNA in our

large antenna array analysis.

Let us now derive the SOP for our large antenna array
scenario in the following two Theorems.

Corollary 3. Assuming that the LUs and Eves distribution
obey PPPs, AN is generated at the BS andNA → ∞, the

TABLE I: Table of Parameters

Monte Carlo simulations repeated 106 times
The radius of a disc region for Eves 1000 m
power sharing coefficients of NOMA am = 0.6, an = 0.4

Targeted secrecy rates Rm = Rn = 0.1 BPCU
Pass loss exponent α = 4

The radius of the user zone of Section II RD = 10 m
The radius of the user zone of Section III RD1

= 5 m, RD2
= 10 m

SOP for usern is given by

PAN
n,∞ (Rn) = 1− e

−
µAN
n1 Γ(δ,µAN

n2 χn2)
(χn2)

δ e
−

PAχn2
anPS

+ µAN
n1

∫ χn2

χn1

e
−

µAN
n1 Γ(δ,µAN

n2 x)e
−

PAx

anPS

xδ −
PAx

anPS Ξ2

×
(

1− 1

R2
D1

(
anPSNA

2Rn (1 + x)− 1
− amPA − 1

)δ
)

dx, (47)

where χn1 = ζn+1
2Rn

− 1, χn2 = ξn+1
2Rn

− 1, and Ξ2 =

x−δ
((

µAN
n2

)δ
xδ−1e−µAN

n2 x + Γ
(
δ, µAN

n2 x
) (

PA

anPS
+ δ

x

))

.
Proof: Using the results ofLemma 7 andLemma 9, upon

substituting(41) and (44) into (15), we can express the SOP
for usern.

Corollary 4. Assuming that the LUs and Eves
distribution obey PPPs, AN is generated at the BS,
and NA → ∞, the SOP for userm is given by (48)
at the top of the next page, where we haveΞ1 =

x−δ
(

µAN
m2

(
µAN
m2 x

)δ−1
e−µAN

m2 x + Γ
(
δ, µAN

m2 x
) (

PA

amPS
+ δ

x

))

,

Λ1 =
∫ RD2

RD1
re

rα

anPS dr,Λ2 =
∫ tm∗

RD1
re

rα

anPS dr,

tm∗ = α

√
amPSNA

2Rm (1+x)−1 − anPA − 1, andχm2 = ζm2+1
2Rm

− 1.
Proof: Using the results ofLemma 8 andLemma 9, upon

substituting(42) and (44) into (17), we can express the SOP
for userm. The proof is completed.

Proposition 4. Under the assumption ofNA → ∞, the SOP
of multiple-antenna aided scenario relaying on AN for the
selected user pair can be expressed as

PAN
mn,∞ = 1−

(
1− PAN

m,∞

) (
1− PAN

n,∞

)
. (49)

wherePAN
n,∞ and PAN

m,∞ are given by(47) and (48), respec-
tively.

IV. N UMERICAL RESULTS

In this section, our numerical results are presented for
characterizing the performance of large-scale networks. The
complexity-vs-accuracy tradeoff parameter isK = 20. Table I
summarizes the the Monte Carlo simulation parameters used
in this section. BPCU is short for bit per channel use.

A. Secrecy outage probability with channel ordering

From Fig. 3 to Fig. 5, we investigate the secrecy perfor-
mance in conjunction with channel ordering, which correspond
to the scenario considered in Section II.

Fig. 3 plots the SOP of a single user (m-th andn-th) versus
ρb for different user zone radii. The curves represent the exact
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PAN
m,∞ (Rm) = 1− e

−
µAN
κ1 Γ(δ,µAN

κ2 χm1)
(χm1)δ

e
−

PAχm1
aκPS

+
µAN
m1 b1Λ1

R2
D2

−R2
D1

∫ χm2

0

e
−

µAN
m1 Γ(δ,µAN

m2 x)e
−

PAx

amPS

xδ −
amPSNA

(2Rm (1+x)−1)anPS
−

PAx

amPS Ξ1dx

+
µAN
m1

R2
D2

−R2
D1

∫ χm1

χm2

e
−

µAN
m1 Γ(δ,µAN

m2 x)e
−

PAx

amPS

xδ −
PAx

amPS

(

R2
D2

− t2m∗ + b1e
−

amPSNA

(2Rm (1+x)−1)anPS

)

Ξ1Λ2dx, (48)
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Fig. 3: The SOP versusρb, with ρe = 10 dB, α = 4,
λe = 10−3, M = 2, m = 1, n = 2, and rp = 10 m. The
exact analytical results are calculated from (16) and (14).The
asymptotic analytical results are calculated from (20) and(23).

analytical SOP of both them-th user and ofn-th user derived
in (16) and (14), respectively. The asymptotic analytical SOP
of both them-th andn-th users, are derived in (23) and (20),
respectively. Fig. 3 confirms the close agreement between the
simulation and analytical results. A specific observation is that
the reduced SOP can be achieved by reducing the radius of
the user zone, since a smaller user zone leads to a lower path-
loss. Another observation is that then-th user has a more
steep slope than them-th user. This is due to the fact that we
havem < n and them-th user as well asn-th user achieve
a secrecy diversity order ofm andn respectively, as inferred
from (23) and (20).

Fig. 4 plots the SOP of the selected user pair versus the
transmit SNRρb for different path-loss factors. The exact
analytical SOP curves are plotted from (18). The asymptotic
analytical SOP curves are plotted from (27). It can be observed
that the two kinds of dashed curves have the same slopes.
By contrast, the solid curves indicate a higher secrecy outage
slope, which is due to the fact that the secrecy diversity order
of the user pair is determined by that of the poor one. This
phenomenon is also confirmed by the insights inRemark 1.

Fig. 5 plots the SOP of the selected user pair versus
rp for different densities of the Eves. We can observe that
as expected, the SOP decreases, as the radius of the Eve-
exclusion zone increases. Another option for enhancing the
PLS is to reduce the radius of the user zone, since it reduces
the total path loss. It is also worth noting that having a lower
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Fig. 4: The SOP of user pair versusρb, with ρe = 10 dB,
λe = 10−3, RD = 10 m, M = 3, andrp = 10 m. The exact
analytical results are calculated from (18). The asymptotic
analytical results are calculated from (27).
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Fig. 5: The SOP of user pair versusrp, with ρb = 50 dB,
ρe = 40 dB, M = 2, m = 1, n = 2, andα = 4. The exact
analytical results are calculated from (18).

E densityλe results in an improved PLS, i.e. reduced SOP.
This behavior is due to the plausible fact that a lowerλe

results in having less Eves, which degrades the multiuser
diversity gain, when the most detrimental E is selected. As
a result, the destructive capability of the most detrimental
E is reduced and hence the SOP is improved. It is worth
pointing out that dynamic power sharing between two users is
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Fig. 6: The SOP versusθ, with α = 4, RD1 = 5 m, RD2 =
10 m, λe = 10−4, NA = 4, ρt = 30 dB. The exact analytical
results are calculated from (39) and (38).

capable of improving the secrecy performance of the scenarios
considered, but this is beyond the scope of this paper.

B. Secrecy outage probability with artificial noise

From Fig. 6 to Fig. 10, we investigate the secrecy perfor-
mance in the presence of AN, which correspond to the scenario
considered in Section III.

Fig. 6 plots the SOP of userm and usern versusθ for
different Eve-exclusion zones. The solid and dashed curves
represent the analytical performance of userm and user
n, corresponding to the results derived in (39) and (38).
Monte Carlo simulations are used for verifying our derivations.
Fig. 6 confirms a close agreement between the simulation and
analytical results. Again, a reduced SOP can be achieved by
increasing the Eve-exclusion zone, which degrades the channel
conditions of the Eves. Another observation is that usern
achieves a lower SOP than userm, which is explained as
follows: 1) usern has better channel conditions than user
m, owing to its lower path loss; and 2) usern is capable
of cancelling the interference imposed by userm using SIC
techniques, while userm suffers from the interference inflicted
by user n. It is also worth noting that the SOP is not a
monotonic function ofθ. This phenomenon indicates that there
exists an optimal value for power allocation, which depends
on the system parameters.

Fig. 7 plots the SOP of userm and usern versusλe

for different number of antennas. We can observe that the
SOP decreases, as the E density is reduced. This behavior
is caused by the fact that a lowerλe leads to having less
Eves, which reduces the multiuser diversity gain, when the
most detrimental E is considered. As a result, the distinctive
capability of the most detrimental E is reduced and hence the
secrecy performance is improved. It is also worth noting that
increasing the number of antennas is capable of increasing the
secrecy performance. This is due to the fact that‖hm‖2 in (30)
and‖hn‖2 in (32) both followGamma (NA, 1) distributions,
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Fig. 7: The SOP versusλe, with θ = 0.8, α = 4, RD1 = 5 m,
RD2 = 10 m, ρt = 30 dB, rp = 4 m. The exact analytical
results are calculated from (39) and (38).
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Fig. 8: The SOP of the user pair versusNA, with RD1 = 5 m,
RD2 = 10 m, α = 3, λe = 10−3, ρt = 30 dB.

which is the benefit of the improved multi-antenna diversity
gain.

Fig. 8 plots the SOP of the selected user pair versusNA

for different path loss exponents. In this figure, the curves
representing the case without AN are generated by setting
θ = 1, which means that all the power is allocated to the
desired signal. In this case, the BS only uses beamforming
for transmitting the desired signals and no AN is generated.
The curves in the presence of AN are generated by setting
θ = 0.9. We show that the PLS can be enhanced by using
AN. This behavior is caused by the fact that at the receiver
side, userm and usern are only affected by the AN generated
by each other; By contrast, the Eves are affected by the AN
of both userm and usern. We can observe that the SOP of
the selected user pair decreases, as the Eve-exclusion radius
increases.

Fig. 9 plots the SOP of the selected user pair versusρt and
θ. It is observed that the SOP first decreases then increases as
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Fig. 9: SOP of the user pair versusρt and θ, with NA = 4,
α = 4, RD1 = 5 m, RD2 = 10 m, λe = 10−4, rp = 10 m.
The exact analytical results are calculated from (40).

ρt increases, which is in contrast to the traditional trend, where
the SOP always decreases as the transmit SNR increases.
This behavior can be explained as follows. The SOP of the
selected user pair is determined by userm. As ρt increases,
on the one hand, the signal power of userm is increased,
which improves the secrecy performance; On the other hand,
userm also suffers from the interference imposed by usern
(including both the signal and AN), because whenρt increases,
the signal power of usern is also increased, which in turn
degrades the secrecy performance. As a consequence, there is
a tradeoff betweenρt and the SOP. It is also noted that the
power sharing factorθ also affect the optimal SOP associated
with different values ofρt. This phenomenon indicates that it
is of salient significance to select beneficial system parameters.
Furthermore, optimizing the parametersρt andθ is capable of
further improving the SOP.

Fig. 10 plots the SOP of large antenna arrays of the selected
user pair versusNA parameterized by different transmit SNRs.
The dashed curves represent the analytical SOP of the selected
user pair, corresponding to the results derived in (49). We
observe a close agreement between the theoretical analysis
and the Monte Carlo simulations, which verifies the accuracy
of our derivations. We observe that asNA increases, the
approximation used in our analysis approaches the exact SOP.
This phenomenon indicates that the asymptotic SOP derived
converges to the exact values, whenNA is a sufficiently large
number.

V. CONCLUSIONS

In this paper, the secrecy performance of applying the
NOMA protocol in large-scale networks was examined.
Specifically, stochastic geometry based techniques were used
for modeling both the locations of NOMA users and of the
Eves in the networks considered. Additionally, new analytical
SOP expressions were derived for characterizing the system’s
secrecy performance in both single-antenna and multiple-
antenna scenarios. For the single-antenna scenario, the secrecy
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Fig. 10: Large analysis for the SOP of user pair versusNA,
with θ = 0.8, RD1 = 5 m, RD2 = 10 m, λe = 10−4,
rp = 5 m. The asymptotic analytical results are calculated
from (49).

diversity order of the user pair was also characterized. It was
analytically demonstrated that the secrecy diversity order was
determined by that one of the user pair who had a poorer
channel. For the multiple-antenna scenario, it was shown that
the Eves’ channel quality is independent of the number of
antennas at the BS for large antenna array scenarios. Numer-
ical results were also presented for validating the analysis. It
was concluded that the secrecy performance can be improved
both by extending the Eve-exclusion zone and by generating
AN at the BS. Assuming perfect SIC operations may lead to
overestimating the performance of the networks considered,
hence our future research may consider investigating imperfect
SIC. Optimizing the power sharing between two NOMA users
is capable of further improving the secrecy performance of
the networks considered, which is another promising future
research direction.

APPENDIX A: PROOF OFLEMMA 1

To derive the CDF ofFγB
, based on (2), we can formulate

FγB
(x) = Pr

{

ρban|hn|2 ≤ x
}

= F|hn|
2

(
x

ρban

)

, (A.1)

whereF|hn|
2 is the CDF of the ordered channel gain for the

n-th user. Assumingy = x
ρban

, and using order statistics [47]
as well as applying binary series expansion, the CDF of
the ordered channels has a relationship with the unordered
channels captured as follows:

F|hn|
2 (y) = ϕn

M−n∑

p=0

(
M − n

p

)
(−1)p

n+ p

(

F|h̃n|2 (y)
)n+p

,

(A.2)

whereF|h̃n|2 is the CDF of unordered channel gain for the

n-th user.
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Based on the assumption of homogeneous PPP, and by
relying on polar coordinates,F|h̃n|2 is expressed as

F|h̃n|2 (y) =
2

R2
D

∫ RD

0

(

1− e−(1+rα)y
)

rdr. (A.3)

However, it is challenging to arrive at an easily implemented
insightful expression forF|h̃n|2 (y). Therefore, the Gaussian-

Chebyshev quadrature relationship [48] is invoked for finding
an approximation of (A.3) in the following form:

F|h̃n|2 (y) ≈
K∑

k=0

bke
−cky. (A.4)

Substituting (A.4) into (A.2) and applying the multinomial
theorem, the CDFF|hn|

2 of ordered channel gain is given by

F|hn|
2 (y) ≈ ϕn

M−n∑

p=0

(
M − n

p

)
(−1)

p

n+ p

×
∑

S̃
p
n

(
n+ p

q0 + · · ·+ qK

)( K∏

k=0

bqkk

)

e
−

K
∑

k=0

qkcky

. (A.5)

Substitutingy = x
ρban

into (A.5), we can obtain (4). The
proof is completed.

APPENDIX B: PROOF OFLEMMA 4

Based on (32), we express the CDF ofFAN
Bn

as follows:

FAN
Bn

(x) = Pr

{

‖hn‖2 ≤ xϑ

(
PA

NA − 1
Yn +

1 + dαn
am

)}

= 1−
NA−1∑

p=0

ϑpxp

p!

p
∑

q=0

(
p

q

)

Q3

×
∫

D1

e−
ϑx
am

(1+dα
n)

(
1

am
(1 + dαn)

)p−q

fD1 (ωn) dωn, (B.1)

where ϑ = am

anPS
, Q3 =

∫∞

0 e−ϑxznzqnfIAN
n

(zn) dzn,
fIAN

n
and fD1 (ωn) are the PDF ofIAN

n and D1. Here
IAN
n = PA

NA−1Yn, Yn = ‖hnVm‖2, and fD1 (ωn) = 1
πR2

D1

.

Upon changing to polar coordinates and applying [35, Eq.
(3.381.8)], we arrive at

FAN
Bn

(x) =1− δe−
ϑx
am

R2
D1

NA−1∑

p=0

ϑpxp

p!

p
∑

q=0

(
p

q

)

Q3a
q−p
m

×
p−q
∑

u=0

(
p− q

u

)γ
(

u+ δ, ϑx
am

Rα
D1

)

(
ϑx
am

)u+δ
. (B.2)

Finally we turn our attention onQ3. It is readily seen
that IAN

n obeys the Gamma distribution in conjunction

with the parameter
(

NA − 1, PA

NA−1

)

. Then we can obtain

the PDF of fIAN
n

(zn) = z
NA−2
n e

−
zn(NA−1)

PA
(

PA
NA−1

)NA−1
Γ(NA−1)

. Apply-

ing [35, Eq. (3.326.2)], we can expressQ3 as Q3 =
Γ(NA−1+q)

Γ(NA−1)
(

PA
NA−1

)NA−1(

ϑx+
NA−1

PA

)NA−1+q . Upon substituting

Q3 into (B.2), we obtain the CDF ofFAN
Bn

(x) as (35).

APPENDIX C: PROOF OFLEMMA 5

Based on (30), we express the CDF ofFAN
Bm

as

FAN
Bm

(x) = Pr
{
γAN
Bm

≤ x
}

= Pr







amσ2
s‖hm‖2

anσ2
s

∣
∣
∣hm

h
†
n

‖hn‖

∣
∣
∣

2

+ anσ2
a‖hmVn‖2 + 1 + dαm

≤ x







.

(C.1)

It may be readily seen that‖hm‖2 obeys a Gamma distribution
having the parameters of(NA, 1). Hence the CDF of‖hm‖2
is given by

FAN
Bm

(x) = 1− e−x

NA−1∑

p=0

xp

p!
. (C.2)

Denoting Xm =
∣
∣
∣hm

h†
n

‖hn‖

∣
∣
∣

2

, Ym = ‖hmVn‖2, based on
(C.2), we can re-write (C.1) as

FAN
Bm

(x) = Pr

{

‖hm‖2 ≤ xν

(

IAN
m +

1 + dαm
an

)}

= 1−
∫

D2

∫ ∞

0

NA−1∑

p=0

(

νx
(

zm +
1+dα

m

an

))p

p!

×
(

e−νxzm−νx
1+dαm
an

)

fIAN
m

(zm) fD2 (ωm) dzmdωm, (C.3)

where ν = an

amPS
, fIAN

m
and fD2 are the PDF ofIAN

m

andD2, respectively. Here we haveIAN
m = σ2

sXm + σ2
aYm

and fD2 (ωm) = 1

π
(

R2
D2

−R2
D1

) . Applying a binary series

expansion to (C.3), we arrive at:

FAN
Bm

(x) = 1−
NA−1∑

p=0

νpxp

p!

p
∑

q=0

(
p

q

)

Q1

×
∫

D2

e−νx
1+dαm

an

(
1 + dαm
an

)p−q

fD2 (ωm) dωm, (C.4)

where Q1 =
∫∞

0
e−νxzmzqmfIAN

m
(zm) dzm. Note that the

distancedm is determined by the location ofωm. Then we
change to polar coordinates and applying a binary series
expansion again, we obtain

FAN
Bm

(x) = 1− 2e−
νx
an

R2
D2

−R2
D1

NA−1∑

p=0

νpxp

p!

p
∑

q=0

(
p

q

)

×Q1
1

ap−q
n

p−q
∑

u=0

(
p− q

u

)∫ RD2

RD1

ruα+1e−νxPSrαdr. (C.5)

By invoking [35, Eq. (3.381.8)], we obtain

FAN
Bm

(x) = 1− 2e−
νx
an

R2
D2

−R2
D1

NA−1∑

p=0

νpxp

p!

p
∑

q=0

(
p

q

)

Q1
1

ap−q
n

×
p−q
∑

u=0

(
p− q

u

)γ
(

u+ δ, νx
an

Rα
D2

)

− γ
(

u+ δ, νx
an

Rα
D1

)

α
(

νx
an

)u+δ
.

(C.6)
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Let us now turn our attention to the derivation of the integral
Q1 in (C.4) – (C.6). Note thatXm follows the exponential
distribution with unit mean, whileYm follows the distribution
Ym ∼ Gamma (NA − 1, 1). As such, the PDF offIAN

m
is

given by [25]

fIAN
m

(zm) =







t1

e
zm
PS

(

1−
NA−2∑

l=0

(

NA−1

PA
− 1

PS

)l
zl
m

l!e

(

NA−1
PA

− 1
PS

)

zm

)

, θ 6= 1
NA

z
NA−1
m e

−
zm
PS

PS
NA (NA−1)!

, θ = 1
NA

,

(C.7)

where we havet1 =

(

1−
PA

(NA−1)PS

)1−NA

PS
. Based on (C.7), and

applying [35, Eq. (3.326.2)], we can expressQ1 as follows:

Q1 =







t1Γ(q+1)
(

xν+ 1
PS

)q+1 −
NA−2∑

l=0

t1
l!

(

NA−1

PA
− 1

PS

)l
Γ(q+l+1)

(

νx+
NA−1

PA

)q+l+1 , θ 6= 1
NA

Γ(q+NA)

PS
NA (NA−1)!

(

νx+ 1
PS

)q+NA
, θ = 1

NA

.

(C.8)

Upon substituting (C.8) into (C.6), the CDF ofFAN
Bm

is given
by (36).

APPENDIX D: PROOF OFLEMMA 6

Based on (34), the CDF ofFγAN
Eκ

can be expressed as

FγAN
Eκ

(x) = Pr

{

max
e∈Φe,de≥rp

{
aκPSXe,κ

IAN
e + dαe

}

≤ x

}

= EΦe







∏

e∈Φe,de≥rp

∫ ∞

0

FXe,κ

(
(z + dαe )x

aκPS

)

fIAN
e

(z) dz






.

(D.1)

Following a procedure similar to that used for obtaining
(10), we apply the generating function and switch to polar
coordinates. Then (D.1) can be expressed as

FγAN
Eκ

(x) = exp

[

−2πλe

∫ ∞

rp

re
− x

aκPS
rα

drQ2

]

, (D.2)

where Q2 =
∫∞

0
e
−z x

aκPS fIAN
e

(z) dz. Applying [35, Eq.
(3.381.9)], we arrive at

FγAN
Eκ

(x) = exp

[

−µAN
κ1 Γ

(
δ, µAN

κ2 x
)

xδ
Q2

]

. (D.3)

Let us now turn our attention to solving the integral
Q2. Note that all the elements ofheVm and heVn are
independent complex Gaussian distributed with a zero mean
and unit variance. We introduce the notationYe,m =
‖heVm‖2 and Ye,n = ‖heVn‖2. As a consequence, both
Ye,m and Ye,n obey theGamma (NA − 1, 1) distribution.
Based on the properties of the Gamma distribution, we
have amσ2

aYe,m ∼ Gamma
(
NA − 1, amσ2

a

)
, anσ

2
aYe,n ∼

Gamma
(
NA − 1, anσ

2
a

)
. Then the sum of these two items

IAN
e obeys the generalized integer Gamma (GIG) distribution.

According to [49], the PDF ofIAN
e is given by

fIAN
e

(z) =(−1)
NA−1

2∏

i=1

τNA−1
i

2∑

i=1

NA−1∑

j=1

aNA−j,NA−1

(j − 1)!
(2τi − L)j−(2NA−2)zj−1e−τiz.

(D.4)

Upon substituting (D.4) into (D.3), as well as applying [35,
Eq. (3.381.4)], after some further manipulations, we obtain the
CDF of FγAN

Eκ
as

FγAN
Eκ

(x) = exp







Ω

Γ
(
δ, xµAN

κ2

)

j∑

p=0

(
j
p

)
(x)

p+δ
(aκPS)

−p
τ j−p
i







. (D.5)

Upon setting the derivative of the CDF in (D.5), we can obtain
(37).
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