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Abstract 

Traditional GWAS have successfully detected genetic variants associated with 

schizophrenia. However, only a small fraction of heritability can be explained. Gene-set/pathway 

based methods can overcome limitations arising from single SNP-based analysis, but most of 

them place constraints on size which may exclude highly specific and functional sets, like 

macromolecules. Voltage-gated calcium (Cav) channels, belonging to macromolecules, are 

composed of several subunits whose encoding genes are located far away or even on different 

chromosomes. We combined information about such molecules with GWAS data to investigate 

how functional channels associated with schizophrenia. We defined a biologically meaningful 

SNP-set based on channel structure and performed an association study by using a validated 

method: SNP-set (Sequence) Kernel Association Test. We identified 8 subtypes of Cav channels 

significantly associated with schizophrenia from a subsample of published data (N = 56,605), 

including the L-type channels (Cav1.1, Cav1.2, Cav1.3), P-/Q-type Cav2.1, N-type Cav2.2, R-type 

Cav2.3, T-type Cav3.1 and Cav3.3. Only genes from Cav1.2 and Cav3.3 have been implicated by 

the largest GWAS (N = 82,315). Each subtype of Cav channels showed relatively high chip 

heritability, proportional to the size of its constituent gene regions. The results suggest that 

abnormalities of Cav channels may play an important role in the pathophysiology of 

schizophrenia and these channels may represent appropriate drug targets for therapeutics. 

Analyzing subunit-encoding genes of a macromolecule in aggregate is a complementary way to 

identify more genetic variants of polygenic diseases. This study offers the potential of power for 

discovery the biological mechanisms of schizophrenia. 

 

Keywords: schizophrenia, channels, molecule-based GWAS, SNP-sets, SKAT  
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Introduction 
 

Schizophrenia is a highly heritable complex disease (Lichtenstein et al. 2009). The 

biological underpinnings of schizophrenia remain an enigma, making prevention difficult and 

delaying development of better treatment alternatives (Van Os and Kapur 2009). Recently, 

advances in technology and the establishment of an international consortium, the Psychiatric 

Genomics Consortium (PGC), have made it possible to perform genome-wide association studies 

(GWAS) involving more than a hundred thousand individuals. The latest study from PGC has 

reported 108 independent genomic regions associated with schizophrenia (Schizophrenia 

Working Group of the Psychiatric Genomics Consortium 2014). However, the variants identified 

can only explain a small fraction of the estimated heritability (Giusti-Rodríguez and Sullivan 

2013; Goldstein 2009; Ripke et al. 2013; Schizophrenia Working Group of the Psychiatric 

Genomics Consortium 2014), and the functional consequences of these variants remain largely 

uncharacterized. These problems may originate from inherent limitations of the GWAS 

methodology: The mass univariate testing approach requires an extremely stringent significance 

threshold to control false positives, thus reducing power; Genetic heterogeneity further 

complicate interpretation in large meta-analysis; Connecting SNP markers to the causal variants 

they represent is not straightforward; And, robust, efficient methods for detecting interactions 

among genetic variants remain elusive.  

Gene-based, and gene-set/pathway based methods provide promising alternatives to 

overcome certain limitations of GWAS (Askland et al. 2012). Typically, genetic variants within 

or near to a gene are aggregated and tested for associations with a disease (Liu et al. 2010). 

Gene-set/pathway based analyses aggregate functionally related genes, providing a potentially 

powerful and biologically oriented bridge between genotypes and phenotypes (Ramanan et al. 
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2012; Wang et al. 2010). These methods, complementary to GWAS, have several advantages: 

They can reduce the number of tests performed; They may reduce the impact of genetic 

heterogeneity across cohorts; And they can facilitate the interpretation of findings. On the other 

hand, they also have limitations: Genes typically work in concert with one another (Liu et al. 

2010), thus gene-based methods cannot take into account the joint effect among genes; The 

organization of pathways is typically derived from experiments of model organisms or predicted 

from mathematical models so uncertainties may be present (Bauer‐Mehren et al. 2009); The 

mechanism of the pathways is rarely clear (Khatri et al. 2012); And most published gene-

set/pathway analyses place constraints on size from ten to a few hundred genes (Ramanan et al. 

2012). Restriction to pathways with more than ten genes may exclude highly specific and 

potentially informative functional SNP sets, like macromolecules. 

A macromolecule is a very large molecule created by polymerization of multiple smaller 

subunits. Voltage-gated calcium (Cav) channels that belong to macromolecules, are pore-forming 

membrane proteins involved in diverse physiological processes including depolarization of 

neuronal action potentials, neurotransmitter release, neuronal excitability and intracellular 

signaling(Simms and Zamponi 2014). Before interesting GWAS findings emerged, they have 

already received considerable physiological investigations in psychiatric and neurological 

disorders due to their importance to brain function (Catterall 2000; Simms and Zamponi 2014). 

Cav channels are key mediators of calcium entry into neurons (Turner et al. 2011) and calcium 

signaling is involved in major molecular hypothesis of schizophrenia such as dopamine, 

glutamatergic and GABAergic hypothesis (Lidow 2003). In fact, calcium signaling dysfunction 

has been suggested as a unifying pathological mechanism in schizophrenia (Lidow 2003). Thus, 
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Cav channels gene variants are of large interest in relationship to schizophrenia and we chose to 

perform the macromolecular analysis of functional Cav channels.  

Recent GWAS have identified several associated neuronal ion channel genes (e.g. 

CACNA1C, CACNB2, CACNA1I, KCNB1, HCN1, CHRNA3, CHRNA5, CHRNB4) (Cross-

Disorder Group of the Psychiatric Genomics Consortium 2013; Ripke et al. 2013). In particular, 

associations at CACNA1C, CACNB2 and CACNA1I, which encode Cav channel subunits, extend 

previous findings implicating members of Cav channels in schizophrenia (Hamshere et al. 2013; 

Ripke et al. 2013). Cav channels can either be monomers (one subunit), or heteromultimers (three 

or four subunits). Although these subunits physically bind together to form a channel, their 

encoding genes are located in different regions of a chromosome or even on different 

chromosomes. For example, in the Cav1.1 channel (Bannister and Beam 2013), the 1 subunit 

gene CACNA1S, 2 subunit gene CACNA2D1,  subunit gene CACNB1 and  subunit gene 

CACNG1 are located at chromosomal bands 1q32, 7q21-q22, 17q21-q22 and 17q24, respectively 

(Fig. 1). Due to the limitations of gene-based and gene-set based analysis mentioned above, it is 

possible that taking the macromolecules (Cav channels) as a joint entity can explain more for the 

risk of schizophrenia than one single locus alone.  

We defined a SNP set from single channel genes and investigated how this biologically 

functional unit is associated with schizophrenia, using the accessible PGC schizophrenia GWAS 

data (N = 56,605: 25,629 cases and 30,976 controls) divided into a discovery and a replication 

sample. We applied the SNP-set (Sequence) Kernel Association Test (SKAT) (Wu et al. 2010) 

and identified significant associations in eight subtypes of Cav channels (Cav1.1, Cav1.2, Cav1.3, 

Cav2.1, Cav2.2, Cav2.3, Cav3.1 and Cav3.3). In contrast, only genes (CACNA1C, CACNB2 and 

CACNA1I) from two subtypes were implicated by the original GWAS despite its larger sample 
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(N = 82,315). These findings show the potential of the macromolecule approach to identify the 

possible etiology of diseases, and suggest that abnormalities of Cav channels may play an 

important role in the pathophysiology of schizophrenia. 

 

Materials and Methods 

Cav Genes 

A total of 26 genes encoding subunits of Cav channels can be classified into 4 groups 

(Table 1) according to the types of subunits they encode (Catterall 2000; Simms and Zamponi 

2014). Genes CACNA1A, CACNA1B, CACNA1C, CACNA1D, CACNA1E, CACNA1F, 

CACNA1G, CACNA1H, CACNA1I, CACNA1S encode the 1 subunits, CACNA2D1, 

CACNA2D2, CACNA2D3, CACNA2D4 encode the 2 subunits, CACNB1, CACNB2, CACNB3, 

CACNB4 encode the  subunits and CACNG1, CACNG2, CACNG3, CACNG4, CACNG5, 

CACNG6, CACNG7, CACNG8 encode the  subunits. We only analyzed genes located on the 

autosomes, so the gene CACNA1F on the X-chromosome was excluded. 

 

Genotype data 

Due to IRB restrictions from some sub-studies in PGC, we used the largest accessible 

PGC schizophrenia data which contains 36 case-control sub-studies (N = 56,605; 25,629 cases 

and 30,976 controls compared to 52 sub-studies and N=82,315 in the primary study) 

(Schizophrenia Working Group of the Psychiatric Genomics Consortium 2014). Quality control 

and imputation were performed by the PGC Statistical Analysis Group for each dataset 

separately. Briefly, SNP meets with following conditions were retained: SNP missingness < 

0.05, SNP Hardy-Weinberg equilibrium P > 1x10-6 in controls or P > 1x10-10 in cases. Samples 
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with missing rate > 0.05 were removed. After quality control, the remaining genotypes were 

imputed using SHAPEIT2/IMPUTE2 (Delaneau et al. 2014; Howie et al. 2012) based on the full 

1000 Genomes Project dataset (Schizophrenia Working Group of the Psychiatric Genomics 

Consortium 2014). To evaluate the replicability of our analysis, we selected out the data used in 

the first phase of PGC (PGC1) as a discovery sample (10,616 cases and 10,315 controls), and 

used the rest as replication sample (15,013 cases and 20,661 controls). In addition, we also used 

combined samples from both discovery and replication stages. We first merged the best-guessed 

genotype data (imputation information score > 0.8 and minor allele frequency > 0.05) across 36 

sub-studies, and then, performed the second round of quality controls using parameters SNP-

missingness < 0.05 and minor allele frequency > 0.05. To control the impact of population 

stratification on our analysis, we computed the first 20 principal components based on the 

merged and quality controlled genotype data by using the program EigenSoft (Price et al. 2006). 

Since some Cav genes are close together in genomic position (for example, CACNG6, CACNG7 

and CACNG8), it is possible that some SNPs may be assigned to more than one genes. In order 

to avoid such undesired bias, we annotated SNPs to the closest gene (GENCODEv1.9) based on 

genomic positions that were derived from the human genome assembly build hg19 

(Supplementary Table S8). Then based on the SNPs list, the genotypes of the 25 Cav genes were 

extracted.  

Cav channels can either be monomers (only the 1 subunit), or heteromultimers (three 

subunits 1, , 2; or four subunits 1, , 2, ). Great diversity of Cav channels allows them 

to fulfill highly specialized roles in specific neuronal subtypes (Simms and Zamponi 2014). 

Thus, for each 1 subunit (principal subunit for classifying subtypes of Cav channels), co-

assembly of a variety of ancillary subunits (, 2, ) exists (Table 2). In some Cav channels, the 
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ancillary subunit types are not completely known. So for channel-level association analysis, we 

test all of the possible combinations based on the current literatures (Buraei and Yang 2010; 

Catterall 1996; Davies et al. 2010; Hofmann et al. 2014; Schlick et al. 2010). According to 

different subunit gene combinations (3 or 4 genes per set), genotypes of the genes consisting of a 

Cav channel were concatenated. Therefore, each SNP set is corresponding to one functional 

channel that exists in nature. 

 

SNP-set (Sequence) Kernel Association Test (SKAT)  

SKAT was used to test for association between a set of genetic variants and dichotomous 

or quantitative phenotypes. It uses the logistic kernel-machine regression modeling framework. 

SKAT aggregates individual score test statistics of SNPs in a SNP set and computes SNP-set 

level P-values. SKAT can be used for common or/and rare variants (Ionita-Laza et al. 2013; Wu 

et al. 2010; Wu et al. 2011). In the current study, we focus on the common variants in line with 

the PGC schizophrenia study and used SKAT version 1.07 (Wu et al. 2010). The linear kernel 

with beta (p, 1.25), where p is the minor allele frequency of a SNP, was used. In our analysis, we 

carefully selected the cohort indicators and the first six principal components as covariates after 

comparing results including different number of principal components (three, six and ten) 

(Supplementary Table S1). At the same time, to overcome the issue of the large number of 

degrees of freedom, SKAT employs a test that adaptively estimates the degrees of freedom by 

accounting for correlation (LD) among the SNPs (Wu et al. 2010). In this study, a SNP set can 

be a collection of SNPs from a gene or several genes consisting of a heteromeric channel. The 

Benjamini Hochberg (BH) procedure was used to correct for multiple comparisons both in the 

Table 1 and Table 2 (Hochberg and Benjamini 1990; Wu et al. 2011). 
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Estimate schizophrenia heritability contributed by Cav Channels SNPs 

Channels significantly associated with schizophrenia (Table 2; Supplementary Table S6) 

were selected. For each subtype of Cav channel, all of the auxiliary subunit (β, α2δ, γ) genes 

contributing to a significant association with schizophrenia were grouped with each α1 gene. The 

following gene lists Cav1.1 (CACNA1S, CACNA2D1, CACNB1, CACNG1), Cav1.2 (CACNA1C, 

CACNA2D1, CACNA2D2, CACNA2D3, CACNA2D4, CACNB1, CACNB2, CACNB3, CACNB4, 

CACNG1, CACNG2, CACNG3, CACNG4, CACNG5, CACNG6, CACNG7, CACNG8), Cav1.3 

(CACNA1D, CACNA2D3, CACNB3, CACNB4), Cav2.1 (CACNA1A, CACNA2D1, CACNA2D3, 

CACNA2D4, CACNB1, CACNB4), Cav2.2 (CACNA1B, CACNA2D1, CACNA2D3, CACNB1, 

CACNB3, CACNB4), Cav2.3 (CACNA1E, CACNA2D1, CACNB1, CACNB2, CACNB3, 

CACNB4), Cav3.1 (CACNA1G), Cav3.3 (CACNA1I) were used to extract genotype-phenotype 

data for estimating chip heritability by using the linear mixed method BOLT-REML (Loh et al. 

2015). The level of enrichment for association with schizophrenia was represented by the ratio of 

proportion of chip heritability (from each subtype of channel) in total heritability (33%) (Ripke 

et al. 2013) to the proportion of their SNPs in all SNPs (9423850 variants, minor allele frequency 

> 0.05) from the 1000 Genomes Project. 

 

Results 

Association of Cav genes with schizophrenia (gene level) 

Two genes, CACNA1C and CACNA1I significantly associate with schizophrenia in the 

discovery cohort (corrected P < 0.05) and in the replication cohort (corrected P < 0.05) both 

according to the SNP-set (Sequence) Kernel Association Test (SKAT) method (Table 1) and 
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univariate analysis (Supplementary Table S2). Within the combined sample (56,605 subjects) a 

further three genes were identified by the SKAT analysis: CACNA1E, CACNA1G and CACNB2. 

CACNA1C, CACNA1I and CACNB2 were previously reported, while CACNA1E and CACNA1G 

have not been reported as schizophrenia candidates (Schizophrenia Working Group of the 

Psychiatric Genomics Consortium 2014). 

 

Association of Cav channels with schizophrenia (macromolecule level) 

Macromolecule-level testing in the discovery cohort identified heteromers Cav1.2 (all 

possible subunits combinations), Cav2.3 (1E 2 21), and monomers Cav3.1 (1G) and Cav3.3 

(1I) as associated (corrected P < 0.05). All of them except Cav3.1 (1G) were replicated in the 

separate samples by SKAT analysis (Table 2). In the combined sample, heteromers Cav1.1 (1S 

1 21 1), Cav1.2 (all possible subunits combinations), Cav1.3 (1D 3 23, 1D 4 23), Cav2.1 

(1A 1 21, 1A 4 21, 1A 4 23, 1A 4 24), Cav2.2 (1B 1 21, 1B 1 23, 1B 3 21, 

1B 3 23, 1B 4 21, 1B 4 23), and Cav2.3 (1E 1 21, 1E 2 21, 1E 3 21, 1E 4 

21), and monomers Cav3.1 (1G) and Cav3.3 (1I) associate with the risk of schizophrenia 

(corrected P < 0.05) (Table 2). 

 

Chip heritability of Cav channels 

We estimate that 0.0567% (s.e. 0.0391%), 0.5051% (s.e. 0.1172%), 0.2453% (s.e. 

0.0946%), 0.1788% (s.e. 0.0708%), 0.2578% (s.e. 0.0929%), 0.176% (s.e. 0.0658%), 0.0272% 

(s.e. 0.0316%) and 0.0569% (s.e. 0.0464%) of the variance in schizophrenia can be explained by 

Cav1.1,  Cav1.2, Cav1.3, Cav2.1, Cav2.2, Cav2.3, Cav3.1 and Cav3.3 SNPs respectively (Fig. 2a). 

The Cav1.2 account for the largest amount of chip heritability (0.5051%, s.e. 0.1172%) and the 
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Cav3.1 account for the least (0.0272%, s.e. 0.0316%). However, after accounting for the number 

of SNPs included in each Cav subtype, Cav3.1 and Cav3.3 show largest fold enrichment (39.83 

and 36.51, respectively) (Fig. 2b). All tested subtypes of Cav channels show > 6-fold enrichment. 

The variance explained by each subtype of Cav channels is proportional to its number of SNPs 

(Supplementary Fig. S1). This is in line with the previous discovery that the larger the genomic 

region, the higher the proportion of chip heritability that can be accounted for (Yang et al. 2011).  

 

Robustness of the channel-based association 

 

Cav channels that are significantly associated with schizophrenia reported by SKAT were 

also identified by another program MAGMA (de Leeuw et al. 2015) (Supplementary Table S4 & 

Table S5). However, MAGMA identified fewer channels at the discovery stage compared with 

SKAT (Table 2; Supplementary Table S5). But for the largest European dataset (49 sub-studies), 

MAGMA reports similar results with SKAT. 

 

 

 

Discussion 

In the current study we applied a macromolecule approach to a subsample of published 

schizophrenia GWAS (N = 56,605) and identified eight subtypes of Cav channels associated with 

schizophrenia, including the L-type Cav channels (Cav1.1, Cav1.2, Cav1.3), P-/Q-type Cav2.1, N-

type Cav2.2, R-type Cav2.3, T-type channels (Cav3.1, Cav3.3). Only genes (CACNA1C, CACNB2 

and CACNA1I) from Cav1.2 and Cav3.3 were implicated in the primary PGC analysis, which was 

based on a larger sample (N = 82,315) (Schizophrenia Working Group of the Psychiatric 

Genomics Consortium 2014). In addition, we used another published statistical tool MAGMA to 



 12 

confirm our analysis. The results are highly consistent although the two programs are based on 

different assumptions and statistical models. It demonstrates that analyzing macromolecule 

subunit genes in aggregate is a complementary way to identify more genetic variants of 

schizophrenia compare to the traditional GWAS that treating each SNP separately. 

The macromolecule subunits physically bind together to achieve their cellular functions, 

thus perturbations of any of their subunits may contribute to disease pathogenesis. In previous 

GWAS of schizophrenia, only a handful of channel subunits were implicated, perhaps due to the 

limited power of the massive univariate tests (Lichtenstein et al. 2009; Ripke et al. 2013; 

Schizophrenia Working Group of the Psychiatric Genomics Consortium 2014). To the best of 

our knowledge, only Askland and coworkers (Askland et al. 2012) have performed an 

association analysis of ion channels with schizophrenia, but the gene-sets defined in their study 

is a mixture of subunit-encoding genes from many ionic species and does not therefore 

correspond to a macromolecule existing in nature. In addition, it was tested in a much smaller 

sample. In order to test whether each functional Cav channel is associated with schizophrenia or 

not, we composed specific gene-set based on molecular structures of Cav channels (Buraei and 

Yang 2010; Catterall 1996; Davies et al. 2010; Schlick et al. 2010; Simms and Zamponi 2014). 

For each channel (macromolecule-based analysis), although the containing genes locate far away 

or even on different chromosomes, the encoding subunits are physically binding together in one 

functional unit to deal with flow of calcium ions. This macromolecule-based approach is 

different from grouping genes based on their functional catalogs or pathways since their products 

(proteins) interact directly or indirectly and they could not form a unique functional 

macromolecule. Our approach combining biological priors with GWAS data identified eight 

subtypes of Cav channels associated with the risk of schizophrenia. It is possible that the 
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associations of whole channels with schizophrenia may be due to a highly associated component 

gene. This is likely the case for Cav1.2, where a few possible subunit combinations (for example, 

Cav1.2: 1C 1 22 that encoded by genes CACNA1C, CACNB1 and CACNA2D2) show their 

significance thanks to the 1 subunit gene CACNA1C (Table 1; Supplementary Table S7) 

although most of the others are not. The significant associations of the other heteromultimeric 

channels may be not due to a single significant gene. For example, during the discovery and 

replication stages, the Cav2.3 channel (subunits encoded by CACNA1E, CACNB2 and 

CACNA2D1) was discovered and replicated by SKAT but none of their composing genes was 

identified at the gene-level test. The univariate analysis (minP SNP represents channel) could not 

identify this channel in small samples (discovery and replication stages), but the combined 

sample could confirm this finding when applying a macromolecule-based approach 

(Supplementary Table S3). None of the channels Cav1.1, Cav1.3, Cav2.1 and Cav2.2 subunit 

genes was identified in gene-level testing, but the channels show significant association with 

schizophrenia in the combined sample. These results indicate that subunit genes can collectively 

associate with disease susceptibility, even if individual genes do not exhibit significant 

association. It seems that analyzing channel SNPs as a set can capture the joint effect of multiple 

variants located on different chromosomes. Thus, genetic variants with weak or moderate effects 

could be identified when we combined them together based on biological knowledge of the 

macromolecule.   

We also observed enrichment of heritability in significant Cav channels SNPs for 

schizophrenia and it may point to a major role of the inherited genetic variants in the risk of 

schizophrenia. These eight subtypes of Cav channels may provide more knowledge about the 

pathology of schizophrenia. Cav channels are the primary mediators of depolarization-induced 
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calcium entry into neurons (Simms and Zamponi 2014). Calcium-dependent processes such as 

neurotransmitter release, neuronal gene transcription, and activation of calcium-dependent 

enzymes are of critical importance to brain function (Clapham 2007; Simms and Zamponi 2014). 

L-type Cav channels (Cav1.1, Cav1.2, Cav1.3) are involved in learning, memory and synaptic 

plasticity (Moosmang et al. 2005; White et al. 2008; Woodside et al. 2004). Mutations in 

CACNA1C, the gene encoding the 1 subunit of Cav1.2, are responsible for Timothy syndrome, a 

multisystem disorder including cognitive impairment and autism spectrum disorder (Splawski et 

al. 2005; Splawski et al. 2004). SNPs located in CACNA1C are linked to development of 

schizophrenia, bipolar disorder and depression (Dao et al. 2010; Green et al. 2010; He et al. 

2014). Data from mice and humans suggest an involvement of Cav1.3 channels in 

neurophysiological functions, in particular in the dopaminergic system (Simms and Zamponi 

2014), which is involved in the pathology of schizophrenia (Brisch et al. 2014). Although, in 

humans, mutations in Cav1.1 have been linked to hypokalemic periodic paralysis (Ptáček et al. 

1994) and malignant hyperthermia (Monnier et al. 1997),  a pathway analysis for a set of calcium 

channel genes implicated CACNA1S (Cav1.1 channel 1 subunit gene) as one of the 20 gene 

regions associated in the five psychiatric disorder meta-analysis (Cross-Disorder Group of the 

Psychiatric Genomics Consortium 2013). P-/Q-type channel Cav2.1 and N-type channel Cav2.2 

play a role in neurotransmitter release at the presynaptic terminal and in neuronal integration in 

many neuronal types (Williams et al. 1992). R-type channel Cav2.3 are strongly expressed in 

cortex, hippocampus, striatum, amygdala and interpeduncular nucleus (Parajuli et al. 2012). The 

T-type channels (Cav3.1, Cav3.3) appear to play important roles in regulating neuronal 

excitability (Simms and Zamponi 2014). Although there is no direct evidence associating Cav2.1, 

Cav2.2, Cav2.3 and Cav3.1 with schizophrenia, due to their strong expression and wide 
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distribution in the human brain, these four subtypes of Cav channels are likely involved in some 

aspects of schizophrenia pathology. A recent study of rare variants in schizophrenia 

demonstrated that a gene set containing 26 Cav genes yielded a large odds ratio of 8.4 (Purcell et 

al. 2014). Given the central role of Cav channels in regulating neurotransmitter release and 

neuronal gene transcription, the identified channels may represent convenient drug targets for 

novel therapeutics. Designing drugs for specific channels by targeting 1 subunit, or designing 

more universal drugs for some channels by targeting shared ancillary subunits can improve 

efficiency of treatments. There are some Cav channels blockers in clinical use. A few L-type Cav 

channel antagonists such as verapamil and nifedipine which are used for hypertension, have been 

examined in clinical trials in schizophrenia (Lencz and Malhotra 2015). Revisiting the effect of 

existing agents on Cav channels or designing new drugs could be a high priority for new 

schizophrenia treatment development. 

The genetic association test of macromolecules may also suggest candidates for non-

additive interactions (epistasis) and improve polygenic predictions. In addition, while we only 

considered Cav channels, future work could consider other types of channels, such as potassium 

channels, sodium channels, and proton channels as interesting susceptibility candidates for 

schizophrenia and other psychiatric disorders. 

The present findings illustrate the power of the macromolecule-based approach applied to 

schizophrenia, which identified eight subtypes of Cav channels associated with the disorder. The 

results highlight the combined role of different aspects of calcium signaling in schizophrenia 

pathophysiology, and suggest several new potential drug targets for development of novel 

therapeutics.  
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Figure Legends 

Fig. 1 Molecular organization of voltage-gated calcium channels and chromosome locations of 

their subunit-coding genes. 

Most Cav channels are multi-subunit structure (containing 3 or 4 subunits, 1, , 2, with or 

without  subunits), but T-type Cav channels only have the 1 subunit. In one specific channel, 

the subunits are physically bound together, but their encoding genes are localized far apart or 

even on different chromosomes. Nine autosomal genes (CACNA1A, CACNA1B, CACNA1C, 

CACNA1D, CACNA1E, CACNA1G, CACNA1H, CACNA1I, CACNA1S) encode 1 subunit 

(connected by red lines), four genes (CACNB1, CACNB2, CACNB3, CACNB4) encode  

subunits (connected by blue lines), four genes (CACNA2D1, CACNA2D2, CACNA2D3, 

CACNA2D4) encode 2 subunit (connected by green lines) and eight genes (CACNG1, 

CACNG2, CACNG3, CACNG4, CACNG5, CACNG6, CACNG7, CACNG8) encode  subunit 

(connected by grey lines). The numbers 1, 2, 3, 7, 9, 10, 12, 16, 17, 19 & 22 represent 

chromosome numbers.  

 

Fig. 2 Estimates of the schizophrenia variance explained by SNPs from each subtype of Cav 

channels. (a) Chip heritability of each significant subtype of Cav channel, (b) Fold enrichment of 

each significant subtype of Cav channel in schizophrenia. The fold enrichment is the ratio of the 

proportion of chip heritability (from each significant subtype of channel) in total heritability 

(33%) to the proportion of their SNPs in all SNPs (9,423,850 variants, minor allele frequency > 

0.05) from 1000 Genomes Projects. 

 

 

 


