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Summary 

For many different investigative purposes, trees and forests are aerially scanned using light 

detection and ranging (LiDAR). Often, this also requires the manual measurement of ground 

reference (GR) plots within the LiDAR scan. Upon analysis, there is regularly a mismatch 

between the alignment of GR and LiDAR tree locations, crown areas and tree heights. This 

anomaly is frequently overlooked and under-reported in the current literature. This study 

investigates the suitability of match pairing algorithms for the quantification of misalignment 

errors between two datasets representing GR and LiDAR data, and recommends an algorithm 

for accurately quantifying match-pairing differences.  
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1. Background 

 

Light detection and ranging (LiDAR) investigations from aerial platforms are frequently used for the 

investigation of forests, woodlands or individual trees. These remote sensing (RS) operations are used 

to capture various forest attributes, including; data for forest inventory and mensuration, investigations 

into carbon accounting, the assessment of ecological habitats and for a range of environmental 

modelling purposes using geo-spatial analyses (Eysn et al., 2012; Jakubowksi et al., 2013; Wu et al., 

2016). For these and other similar investigations, it is common practice to establish ground reference 

(GR) plots within the area that is scanned as part of the LiDAR flightline. The GR plots would typically 

be directly measured in as high level of detail as it is possible to achieve using manual methods, with 

the intention of enabling data training or validation of the indirectly measured RS data in attempts to 

minimise errors (Chen et al., 2006). Typically, this process requires the absolute position of the tree 

being recorded as where the stem emerges from the ground, attempting to avoid any ground assessment 

errors of determining where the aerial parts of the tree are located within space, albeit assessed only 

from the ground viewpoint position (Mills et al., 2010). When using LiDAR for individual tree crown 

(ITC) delineation, methods may vary according to the scale of the investigation and the intended use 

of the data. Frequent delineation approaches include; manual delineation, watershed or inverse 

watershed delineation, and local maxima delineation methods. For coniferous trees with their regular 

shape and form, ITC delineation is a readily repeatable exercise. However, broadleaved trees with their 

uniquely shaped crowns that differ in relation to their location and exposure to available sunlight, which 

causes unpredictable changes to the tree shape (Loehle, 1986), offer a more complex ITC delineation 

problem: this is the Broccoli problem.  

 

Fundamentally, many of the ITC delineation methods use the calculation of high peaks and valley 

troughs within the LiDAR data to designate the central location, crown area and height of the RS trees. 
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However, as Valubuena (2014) describes, there are frequently differences between the location of the 

tree as measured in the GR data capture, and the location of the same tree when it is identified in the 

RS data. An accepted status quo regarding identifying the match between two data sets appears to be 

the acceptance of a ‘reasonable’ match, on the grounds of the assessment of indicative variables, or by 

applying arbitrary thresholds. For example; a match pairing will be accepted if a single tree, as 

represented in the GR and LiDAR datasets, is spatially located within 5 metres of one another (Næsset, 

2002; Hyyppa et al., 2012; Listopad et al., 2011). It has been stated that there is a requirement for a 

standardised methodology to evaluate the success tree delineation methods (Zhen et al., 2016), although 

it is understood that no discrete index for quantifying the success of the match is currently available.  

 

2. Aim and Objectives 

 

The aim of this work was to develop a methodology for the assessment of match pairing algorithms to 

determine ITC delineation accuracy. This approach was developed for use with the complex canopies 

of broadleaved trees as situated within a woodland setting. This was achieved through the development 

of a synthetic environment for the creation and testing of computationally modelled trees. Matched 

pairing is a mathematical theory used to assess the correspondence between an object in one data set, 

with an object in another data set, based upon predetermined, observable characteristics. Different 

match pairing algorithms were used to quantify the degree of match pairing alignment between two 

data sets representing, for example; GR to LiDAR data, or LiDAR to LiDAR data. Developmental 

testing included the progressive increase of data noise into the synthetic environment to identify which 

algorithms are best suited to quantifying the matched pairing differences.  

 

3. Method 

 

When trees are scanned in LiDAR they are measured and recorded in 3D space, however, ITC 

delineation is fundamentally a 2D problem where tree locations, crown area and crown extent are 

expressed in the 2D Euclidean plane either as an organically shaped polygon, or as a formal 2D shape, 

typically a circle. A computational environment was created where a single, modelled tree was 

generated. The known tree characteristics included the tree’s location, crown area and height. These 

characteristics were considered representative of the data captured for a typical broadleaved tree for 

GR data. A series of changes to the location, crown area and height were applied, thereby creating a 

second tree which represented a new dataset. The second tree was considered to exhibit the 

characteristics of a broadleaved tree that has been ITC delineated from aerially scanned LiDAR data. 

As the differences between the two trees was already identified, this was used to form a known 

‘divergence’ model. A series of match pairing algorithms were tested against the two trees to identify 

which algorithm gave the most accurate quantification of the differences between the two trees when 

compared with the divergence model. The algorithms used were the calculation of the Hausdorff 

distance (HD), Hausdorff distance with multivariate inputs (HD++), and the Hungarian combinatorial 

optimisation algorithm, also known as the Hungarian method (HM). An assignment ranking index was 

developed that was based upon the accumulated difference values between the matched pairings. For 

example, if a pair of trees from two data sets matched, the difference in values between the location, 

height and area were scored to indicate the quality of the pairing. The number of agreed pairings 

between the two datasets was also recorded. To test the efficacy of the algorithms, data noise was added 

incrementally on a scale from 1-5 with randomised changes in tree location, crown area and height. 

This was achieved as a normal distribution can be described by a Gaussian function given both a mean 

and a standard deviation (Figure 1), where the properties of each tree were modified by +/- of a random 

sample from the appropriate distribution at each noise level (Table 1). Repeat testing also increased the 

modelled tree population from one in each dataset to a population of ten, and finally to populations of 

500, thereby creating a synthetic environment that replicated trees in a complex woodland setting.  

 



 

Figure 1  Gaussian curves demonstrating the effect on the data population by increasing standard 

deviations. 

Table 1  Introduction of data noise following modification of the normal distribution and 

standard deviation (SD) effect on the data population relative to data noise levels.  

Data Noise Level Population (%) by Standard Deviation (SD) 

1 SD1 = 68% +/-1, 95% +/-2, 99% +/-3 

2 SD2 = 68% +/-2, 95% +/-4, 99% +/-6 

3 SD3 = 68% +/-3, 95% +/-6, 99% +/-9 

4 SD4 = 68% +/-4, 95% +/-8, 99% +/-12 

5 SD5 = 68% +/-5, 95% +/-10, 99% +/-15 

 

4. Results 

 

Following the expansion of the tree populations to 500 trees, and the introduction of the highest level 

of data noise, level 5, the metrics HD, HD++ and HM were compared against the known divergence 

model to produce r2 and root mean squared error values (RMSE). The pairing success and assignment 

rank was also calculated. The two datasets were representative of GR and LiDAR data. The algorithm 

HD paired 59% of trees between GR and LiDAR, with an assignment rank of 30969, r2 = 0.165 and 

RMSE = 1056.8. The algorithm HD++ paired 42.2% of all available trees, with an assignment rank of 

44510, r2 = 0.075 and RMSE = 2235.2. The HM algorithm paired 100% of the trees, with an assignment 

rank of 17942.2, r2 = 0.898 and RMSE = 195.5 (Figure 2). 
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Figure 2 Three algorithms tested for their suitability in identifying the matched pairing 

alignment between two datasets with high levels of data noise, which represent 

individual tree delineations from remotely sensed data. The HD and HD++ algorithms 

achieve low numbers of matches between the two datasets and perform poorly against 

the expected divergence model (r2, RMSE). The HM algorithm achieves a 100% 

paired agreement between the two datasets and high correspondence with the expected 

divergence model (r2, RMSE).  

5. Conclusion 

 

Our findings demonstrate it is possible to use specific algorithms to quantify the matched paring success 

between two distinct data sets. We demonstrate in a synthetic environment with known amounts of data 

noise, that the algorithms HD, HD++ and HM can all quantify the matched paring task with varying 

degrees of success. However, it is evident that the HM algorithm is best suited to quantifying the success 

of matched pairing, and in dealing with the structural complexities of ITC delineation in a broadleaved 



woodland. These results also indicate that the HM algorithm could be used to quantify matched paring 

between real-world GR and LiDAR data. We envisage further work will include the refinement of using 

the HM algorithm, the normalisation of the assignment ranking and the use of the HM algorithm with 

real-world acquired data.  
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