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Abstract 

 

The current thesis examined the development of the neural mechanism underlying 

emotional body perception, during childhood, using Event-Related Potentials (ERPs). 

Understanding other people’s emotional status is a crucial need in children’s everyday 

interactions. Literature suggests that children benefit from body cues as much as they do 

from facial cues in identifying emotion (Nelson & Russell, 2011). Moreover, bodily emotion 

recognition is an important indicator of children’s cognitive development (Atkinson, 2009; 

Munoz, 2009). However, despite being such an important cue of emotion information for 

children, the neural mechanism behind emotional body perception, as well as its 

developmental pattern during childhood, remained poorly investigated.  

This thesis is comprised of three studies that explored these unknown areas in the field. 

Paper 1 examined the developmental changes in the neural mechanism underlying body 

perception, by looking at the associated ERPs in response to upright and inverted bodies. 

Results revealed an opposite body inversion effect across 3-10-year-old children compared 

to that of adults, suggesting that adult-like processing is still not achieved until late 

childhood.  

Paper 2 examined emotion processing from static body postures in 5-8-years-old children. 

Findings suggested from the age of 5 children show early emotion sensitivity at the body 

structure encoding stage. Furthermore, body representation was found to interfere with 

emotion perception.  

Paper 3 examined emotional body perception in realistic seeting by looking at 3-6-year-old 

children’s neural response to semantic incongruent effects of pair point-light displays of 

body movements and target emotional words. Results indicated that, from the age of 3, 

children can extract emotional information from subtle body movements and integrate 

semantic meaning to this.  



 iii 

Overall, the current work addresses the development of children’s body emotion recognition 

in terms of the neural fundamentals of body recognition and emotion recognition from static, 

as well as from dynamic postures. This thesis provided essential evidence for reducing the 

knowledge gap in emotional body perception development. 
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Neural Correlates for Body Perception Development During Childhood: An Introduction 

 

Thesis overview 

As humans are social animals, understanding each other’s emotions is a constant 

need in everyday interaction. Therefore, our ability to recognise emotions develops from a 

very early stage of life. Emotions are expressed from multiple cues such as facial 

expressions and vocalizations. With the development of motor ability and increasingly 

complicated social interactions, the body expression becomes a much more important 

resource of emotional information. Imagine a child playing hide and seek with a group of 

peers. The child has to quickly detect if they should run away from potential “danger” (i.e. 

the seeker) in their surroundings. When detecting their friends’ sudden emotional change, 

their facial expressions, their screaming, or their body movements could be relevant 

signals. During such fast moments, a friend’s face could be too small and far away to see 

its expression; vocal expressions might not happen every time a friend detects a threat. 

Among all these resources, as the physically biggest target, the moving body becomes the 

most reliable resource to detect emotional information.  

Previously, most of the investigations into infants and children relied on only their 

inferring of emotion from facial expressions. However, with the increasing complexity of 

social interaction, starting from childhood, facial expressions are not always easy to 

decode. Such as in the situation described above, when facial expression is difficult to 

detect, or when children are in urgent situations that don’t allow them to observe the face 

clearly, a quick glance of the body would give all the necessary information. In fact, 

bodily emotion recognition is found as an important indicator in cognitive development. 

For example, individuals with autism spectrum disorders (ASD) have difficulty in 

recognising emotions from body movement (Atkinson, 2009; Hubert et al., 2007; Philip et 

al., 2010; Nackaerts et al., 2012); impairment in detecting fearful information from the 
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body is also found related to higher callous-unemotional traits in children (Munoz, 2009). 

Moreover, pre-school children’s emotion knowledge from body cues are found to be 

associated to their social skills reported by their teachers and caregivers (Parker, Mathis & 

Kupersmidt, 2013). These findings suggest that studying children’s emotion recognition 

ability from body cues can be essential in identifying children’s social and behavioural 

functioning in practice. Evidence from recent studies from both children and adults 

discovered that the body’s role in information delivery is as important as the face. 

Behavioural investigation with adults and children found that performance benefits from 

multiple cues when both facial and body expressions are presented; furthermore, the 

accuracy recognising expressions from the body is similar to that for faces (Montepare, 

Koff, Zaitchik, & Albert, 1999; Vieillard & Guidetti, 2009; Nelson & Russell, 2011). At 

the neuroscientific level, any inconsistent expression between bodies and faces is 

immediately recognised by the brain (Fallon & Rozin, 1985; Singh, 1993; Meeren, van 

Heijnsbergen & de Gelder, 2005; Nelson & Russell, 2011; Robbins & Coltheart, 2015). 

When detecting some extreme emotions, body cues are even more helpful than the face 

(Aviezer, Trope, & Todorov, 2012). Nonetheless, despite the handful of studies that have 

provided some rough information about the early emergence of sensitivity to emotion 

recognition from verbal cues and children’s body perception, surprisingly, a large 

knowledge gap has been left in this research field from a developmental standpoint. 

The current thesis aims to contribute to the missing pieces in this field by looking 

at the neural mechanisms underlying emotional body processing, during childhood, using 

event-related brain potentials (ERPs). In order to achieve this, three studies were 

conducted. Paper 1 aimed to reveal the neural mechanism underlying static body structure 

processing in children, providing fundamental knowledge for additional investigations. 

Based on Paper 1, Paper 2 examined the neural correlates of children’s emotion processing 

from static body postures. Paper 3 aimed to extend our understanding of children’s 
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emotional body perception in naturalistic environment, looking at how children extract 

emotion from moving bodies. To be specific, in Paper 1, we investigated the neural 

mechanism in body representation encoding by examining the body inversion effect on 3- 

to 10-year-old children’s ERPs responses. Further, Paper2 investigated the cognitive 

processing sub-serving children’s emotion processing from static body postures. Finally, 

Paper 3 looked at the neural mechanism in extracting emotional information from dynamic 

body movement, using point-light displays (PLDs) of emotional body expression. 

In all the studies of the current work, we measure and analyse the mean, peak 

amplitudes as well as the latencies of all the ERP components. The peak amplitude value 

is the highest voltage within a time window, and the latency is the time of this point. 

These two measurements are the typical ways to describe ERP components’ morphology 

and time course. The mean amplitude is computed by taking the voltage at each sample 

point within a time window and averaging the voltages. The mean amplitude indicates the 

area of a components within a time window, which is a common alternative to peak 

amplitude as it’s believed to be more reliable (Luck, 2014).  Especially in early 

developmental study, the nosiness of ERP data brings great challenge in peak amplitude 

and latency measurement. However, the time course of cognitive processing is one of the 

important features we are interested in in the current work. Given the age range covered in 

the current work is old enough to emerge peaked adult waveform (DeBoer, Scott, & 

Nelson, 2007), in the current work we also look at peak amplitude and latency, with 

carefully computed methods explained in each paper.  

In this introductory chapter I will therefore outline our current knowledge of the 

bodily emotion recognition in the developmental domain. We will begin by reviewing the 

emotion recognition development in children. In the following section, the encoding of 

body shape in children will be introduced as the fundamental point to the emotional body 

perception. When we are detecting the emotion delivered by body, we are perceiving the 
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information from body in two ways: the peak postures of the emotion portrayal, and the 

dynamic process of the continuous movement. Therefore, based on the knowledge 

reviewed in this section, the next section will focus on the previous literature on children’s 

perception of emotional body expressivity in terms of both static body postures; while the 

last section will review our current knowledge of the development of emotion perception 

from dynamic body movement.   

 

Emotion processing in childhood and the neglected role of bodily expressivity 

Identifying other people’s emotion is an important ability for children. Emotion 

identification behaviours such as capturing peer’s emotion during play or reading 

caregiver’s emotion status during everyday life are adaptively meaningful for children’s 

everyday life. Empirical evidence suggested that children’s emotion knowledge is 

positively related to their social cognitive development. For example, children who have 

more emotion knowledge are better liked by their peers and teacher, they also show more 

prosocial responsiveness to peers (Denham, McKinley, Couchoud, & Holt, 1990). 

Furthermore, children who recognize emotions better also show higher frequencies of 

positive social behaviours and better academic competence (Channell, Conners & Barth, 

2014). In this section, we will start from the basic theoretical background of emotion 

theories; we will then move to the development of emotion processing, and discuss the 

important role of body in emotion processing development. 

A brief introduction of the emotion theories 

Three major emotion theoretical approaches have been developed to explain the 

process underlying affective responses; these approaches also contribute to our 

understanding of the development of children’s emotion processing. The first one is the 

discrete-category model (the basic emotion model) based on the basic emotion theories 

(Izard 1977; Ekman, 1993). The functional hypothesis is that there are six basic emotions 
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(happy, sad, fear, anger, surprise, disgust) which are universal. The specific affect 

programme corresponding to each basic emotion is triggered by each specific type of 

event (Izard 1977; Ekman, 1993).  The development of emotion perception under this 

model is suggested to be a progression of understanding emotions from the most basic 

level to more specific emotion categories with the maturation of processing and the 

experience of events (Ekman, 1992, 1993; Panksepp, 1998; see Figure 1).  

Another approach to emotion investigation is the dimensional model based on the 

constructivist emotion theories (Russell, 2003). The constructivist emotion theories 

conceptualise emotion as composed of two orthogonal dimensions: one related to 

emotional valence (a pleasure– displeasure continuum) and the other to emotional arousal 

(activation–deactivation) (Posner, Russell, & Peterson, 2005). All emotions vary along 

these two continuous dimensions (see Figure 2). This model allows us to understand 

emotion processing early on in development, when a broad differentiation between 

positive and negative stimuli takes place, whereas appreciation of different levels of 

arousal occurs later in development (Widen & Russell, 2008a). The emotion categories are 

suggested to develop out of this initial differentiation between valance and arousal levels, 

with the development of the verbal labels (Russell & Bullock, 1985; Widen & 

Russell,2008).  

The third approach is represented by appraisal theories. Similar to discrete emotion 

theories, appraisal theories see events as the triggers of the emotions. However, appraisal 

theories assume that the emotion architecture is produced by an individual’s subjective 

appraisal of events, instead of by the event itself (Scherer, 2009). By proposing that the 

individual’s appraisal precedes the emotion identification, appraisal theories address 

individual differences in emotion identification in response to the same trigger (Roseman, 

& Smith, 2001). In terms of developmental changes in emotion perception, appraisal 
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theories propose that the same situation will be appraised differently across development, 

therefore leading to changes in emotion identification (Roseman, & Smith, 2001).  

Although there have been ongoing debates surrounding the emotion models 

presented above, together these models help build up our understanding of the specific 

processes involved in the development of emotion processing. Therefore, the notions of 

the models are presented here in order to provide the foundation of understanding in the 

following literature. In the current section and the following chapters, when we discuss the 

development of children’s emotions perception, we will combine and use the notions of 

both basic emotion model and the dimensional model. As the basic emotion models is 

practical in research in terms of defining the emotion categories; whereas the dimensional 

model provides stronger evidence on developmental approach.  

 

 

Figure 1. The discrete-category model of emotions. Adapted from “Handbook of 

Emotions: Young Children’s Understanding of Other’s Emotions” (p.349), by S. C. 

Widen, and J. A.  Russell, 2008. New York, Copyright 2008 by the Guilford Press.  
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Figure 2. The circumplex model of emotions. Adapted from “Core Affect and the 

Psychological Construction of Emotions”, by J. A.  Russell, 2003, Psychological Review, 

110(1), p.148.  Copyright 2003 by the American Psychological Association, Inc.  

 

Emotion processing development and the importance of bodily expressivity 

The sensitivity to emotion starts at very early stage of life. As early as 10 weeks 

old infants show longer looking time to matched facial and vocal expression, they also 

smile more to happy facial expressions than sad ones (D’Entremont & Muir, 1999; 

Kahana-Kalman & Walker-Andrews, 2001). From 5-7 months old infants can match facial 

expression with voices of emotions in positive and negative valances (Kahana-Kalman & 

Walker-Andrews, 2001). However, the absence of verbal communication of emotions 

might lead to a possibility that the early emotion-related evidence is a result of perceptual 

reaction, instead of deeper emotion processing.  

From approximately 2 years old, the developing of language brings our 

understanding of children’s emotion knowledge to an advanced stage. Being able to 

verbally describe self and other’s feeling or status promotes children to learn emotion in a 

more abstract way, enriching the categorising of emotions; it also allows multiple ways to 

investigate children’s emotion recognition. Apart from parental report and observation, 

labelling (including force labelling and free labelling) and emotion matching (using 
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emotional faces or stories/ events) are the two main kinds of tasks used at this 

developmental stage. Studies using these methods have provided rich information of the 

developmental trajectory of children’s emotion knowledge. Matching with the importance 

of emotion recognition during childhood, this developmental period marks the emerging 

and fast improving ability of emotion identification. The ability to use verbal labels to 

identify emotion expressed by the faces improves fast from 3 years old, the accuracy of 

identifying happy and angry faces is especially good (Widen, 2013). From the age of 5 

years, children are able to distinguish five emotions (happy, fear, anger distress, shame, 

disgust, surprised, interest) in an emotion matching task; from 7 years old, children’s 

performance in discriminating emotions by valences in an emotion matching task becomes 

stable and comparable with adults (Odom & Lemond, 1972; De Sonneville et al., 2002). 

Research by Widen and Rusell (2008) using labelling tasks reveals that children’s use of 

emotion categories increases in a systematic order from 3 years old to early school age: 

commonly starting with happy, followed by angry and sad, then fearful and surprised, and 

in the 6 examined emotion labels, the use of disgust develops last. Overall, previous 

literature using labelling and emotion matching tasks suggests that children’s emotion 

recognition ability improves with age in terms of accuracy, precision and speed, and 

follows a simple-multiple pathway, starting from few basic emotions, extending to broader 

and more specific feelings related to more complicated situations. 

However, most of the tasks used in prior investigations of children’s emotion 

recognition use facial expression as task stimuli, as historically faces are considered as the 

dominant emotion carrier. The human body, which is an essential carrier of multiple 

information, as well as an equally frequently seen stimulus as faces in everyday life, 

remains poorly explored in the studies of emotion recognition. Although research shows 

that faces dominate human’s visual field from early in life (Fausey, Jayaraman, & Smith, 

2016), the existing evidence suggests that children use the information provided by the 
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body in order to make inferences about or to detect others’ emotions. In fact, infants are 

able to recognize body motion starts in the first couple of months of life almost as early as 

they react to emotion (Bertenthal, Proffitt, & Cutting, 1984; Bertenthal, Proffitt, Kramer, 

& Spetner, 1987). Comparable with emotion recognition from facial expression, from as 

early as 6.5 months old infants start to distinguish happy body movement from neutral 

movements, and they performed longer looking time to matched happy body expression 

and voice (Zieber, Kangas, Hock, & Bhatt, 2014). Body cues are found to be as important 

as facial cues in recognition from 8 years old, and 10-year-old children show comparable 

performance with adults in recognition tasks using body without head or whole-body cue 

(Robbins & Coltheart, 2015). This evidence allows us to address the importance of bodily 

expression during childhood.   

 

How Do Children Process the Human Body? 

Before understanding how emotion is encoded from body expression in children’s 

brains, it is important to answer a more basic question: how the human body is encoded in 

children’s brains. In this section, we will start by examining body perception in adults, 

because understanding the way adults perceive body representations will provide a 

framework for studying the development of body perception. The neural mechanism of 

body perception in terms of the relevant ERPs will then be discussed; and finally we will 

review the current knowledge of body perception development. 

The mature body perception in adults 

Evidence from both behavioural and neuroscientific studies suggest that the 

cognitive processing of bodies and faces shares some similarity. Behavioural evidence 

suggests that the body structure encoding involves a specialized processing strategy such 

as facial structure encoding does: configural processing. Configural processing refers to 

the cognitive processing style of perceiving the relations among all the features in a 
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stimulus (Maurer, Grand, & Mondloch, 2002; Reed, Stone, Grubb & McGoldrick, 2006). 

Configural processing refers to a type of processing that perceiving the relations among 

the features of a stimulus. In facial structural encoding, configural processing includes 

three types of information, the first-order information, the holistic processing and the 

second order information. The first-order information refers to the structural information 

that is shared by all human faces: two eyes above a nose, which is above a mouth. This 

order helps recognition of a face from other objects. Secondly, the holistic processing 

helps bring up the features into a Gestalt; and lastly the second-order information 

describes the spatial distances between each feature, which tells the individual differences 

of each face (Diamond & Carey, 1986; Maurer, Grand, & Mondloch, 2002). One of the 

phenomena believed to reflect the activation of facial representation is the facial inversion 

effect. The facial inversion effect refers to people’s impaired performance in terms of 

reduced accuracy as well as longer reaction time when observing an inverted face in 

comparison to upright faces; such phenomena are usually diminished or not observed 

when observing inverted faces, and non-facial objects (Yin, 1969; Rossion, et al., 2002). 

Facial inversion also disrupts the recognition of the changes in second order information 

such as moving individual elements on face up and down (Friere et al., 2000). It is thus 

suggested that the inversion effect reflects a disruption of the cognitive processes involved 

in facial recognition as it impairs access to various types of facial information relevant for 

this task (Yin, 1969; Rossion, et al., 2002; Reed et al., 2006).  

This inversion effect is also observed in body structure processing. Although very 

different in shapes, the human body shares a similar first-order information with faces in a 

sense that key elements of a body are joined in a certain way (i.e., a torso with a head 

above, two arms attached on both side and two legs below). Apart from the first-order 

information, the body also contains structural information, referring to the position of each 

part within the overall structural hierarchy of the body (Reed et al., 2006). Investigations 
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using intact body images with postures show that when observing upside-down body 

pictures, people make more errors in recognising body posture. Their reaction time when 

judging inverted body images also gets delayed (Reed, Stone, Bozova & Tanaka, 2003; 

Reed et al., 2006). This inversion effect is also diminished for the non-body objects, 

suggesting the processing of body and facial representation share some similarities. 

However, as discussed at the beginning, bodies are exclusive in terms of its 

functions in everyday life. Despite that behavioural evidence suggesting bodies are 

perceived configurally as faces are, neuroimaging investigations established that there is 

body specialized processing. Functional MRI studies demonstrated that there is a neural 

network functionally associated with processing human bodies. Studies revealed a distinct 

area in the occipito-temporal cortex (OTC) as well as the middle fusiform gyrus respond 

more to neutral body images and body parts than non-body objects. There are therefore 

named as the extrastriatal body area (EBA) and the fusiform body area (FBA) (Downing, 

Jiang, Shuman, & Kanwisher, 2001; Peelen & Downing, 2005); which are partially 

overlapped but mainly distinct with the fusiform face area (FFA).With regards to the 

perception of moving bodies,  the posterior superior temporal sulcus (pSTS), parietal 

cortex and premotor cortex are found involved in biological motion perception. The STS 

is found to be responsive to biological motions as well as body-related stimuli such as eye 

gaze (Grossmann, et al., 2000; Hoffman & Haxby, 2000). These body-exclusive brain 

networks provide neural resources to the neurophysiological body-specific processing 

activities.  

Neurophysiological evidence of mature body perception: N190 and P1 

Neuropsychologically, event-related brain potential (ERPs) studies functionally 

inform specialised cognitive processes sub-serving bodily perception.  Evidence from 

adult studies establish that body and face processing share similarities in terms of the 

associated ERP components: the N170 (N190 for body) and the P1.  
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Human faces elicit a negative going amplitude from the posterior temporal sites 

peaking at around 170ms after picture onset; this specific is not triggered by scrambled 

faces or non-face objects; further, this component can also be triggered by object forms 

similar to faces, such as schematic face pictures (Bentin, Allison, Puce, Perez & McCarthy, 

1996; Bentin & Deouell, 2000). This component is therefore commonly agreed as a neural 

correlate of face recognition in high-level visual processing, sources from the posterior 

fusiform, the lateral occipital-temporal complex and the middle fusiform gyrus (Bentin et 

al., 2002; Rossion & Jacques; 2011). Especially, the N170 component is found to be 

sensitive to any configural change to face stimuli, such as inversion or changing of spatial 

distances. The N170 latency is related to the facial inversion effect, showing delayed 

latency to inverted faces in comparison to upright faces, similar with the behavioural 

findings of the facial inversion effect; this latency shift is not found on upright and 

inverted non-face objects (Bentin et al., 1996; Rossion et al., 1999, 2000). This effect is 

interpreted as a neural reflection of impaired cognitive processing of facial configuration. 

The information in the inverted face being more difficult to access, leads to sustained 

attentional processing, and this modulation effect of attention is therefore reflected by 

N170 amplitude/ latency (Eimer, 2000). The N170 inversion effect is therefore used to 

determine the perception stages of facial recognition.  

The P1 component in prior to the N170 is also usually found in facial ERPs. The 

P1 is a positive going peak around 80-100ms after stimuli onset from occipital regions.  In 

facial processing, some studies have found larger P1 amplitude in response to face than 

objects (Eimer, 1998; 2000; Itier & Taylor, 2004b), or larger amplitude and longer latency 

for inverted/scrambled faces than upright (Rossion et al., 1999; Itiler & Taylor, 2004b; 

Kuefner et al., 2010). However, these findings are not consistently observed (Sagiv & 

Bentin, 2001; Rossion, et al., 2002) as N170 effect does. As the P1 component is usually 

found sensitive to low level visual cues such as luminance, colour, contrast, or spatial 
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frequency, but not any orientation changes (Regan, 1989), the changes of P1 amplitude 

and latency are considered to reflect the low-level changes between faces and non-faces 

stimuli (for a review, see Rossion & Jacques, 2011). The P1 is thought to originate mainly 

from the striate and lateral extrastriate visual areas (Clark & Hillyard, 1995; Di Russo, 

Martinez, Sereno, Pitzalis, & Hillyard, 2002; Halgren, Raji, Marinkovic, Jousmaki, & Hari, 

2000; Tanskanen et al., 2005; Tarkiainen et al., 2002). 

Similarly, this P1-N170 morphology is also observed in body perception 

investigations. Images of intact bodies or bodies without head with different postures 

elicited the N170 from occipital-temporal sites of similar amplitude as faces but slightly 

later in latency, peaks at around 190ms (Gliga & Dehaene-Lambertz, 2005; Meeren et al., 

2005; Thierry et al., 2006). Furthermore, the inversion effect is also found on the bodily 

N170 component, with larger amplitude and increased latency recorded in response to 

inverted bodies compared to upright bodies; a similar effect is not observed between 

upright and inverted objects (Stekeleburg & de Gelder, 2006; Righart & de Gelder, 2007; 

Minnebusche et la., 2009), suggesting that similar with facial perception, there is fast 

processing of the bodily configuration. However, as the origin of the bodily N170 is 

suggested being different from facial N170, having its source from the EBA (Thierry et al., 

2006; Peelen & Downing, 2007). In order to discriminate these two components, the 

bodily N170 is also called the N190 in some literatures. In the current thesis, we will use 

“N190” for bodily N170 in order to distinguish these. Moreover, although there are not 

many studies, current evidence suggests that in body processing the P1 is also larger for 

bodies than non-body objects, but not sensitive to any inversion or configural changes on 

adults (Stekeleburg & de Gelder, 2006; Righart & de Gelder, 2007). This indicates that 

similarly to facial perception, the P1 in body perception is also likely associated to 

sensitivity to low-level visual change, and contributes ultimately to the following 

configural information processing. 
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The development of body perception  

Our sensitivity to the body starts early. Eighteen-month-old infants show initial 

knowledge of human body structure, as they are able to discriminate scrambled body 

images from intact bodies by looking longer to the scrambled ones (Slaughter, Heron, & 

Sim, 2002). Robbin and Coltheart (2015)’s study of 8- and 10-years old children 

suggested that from at least the age of 8 years, children are able to use body cues to 

recognise people under both static and moving conditions, although their performance is 

significantly worse than adults. Functional MRI research also established that although 

bodily expression activates similar brain regions with adults and children from 6 years old, 

including the EBA, the FBA and the pSTS. The activity of these regions is not as mature 

as that in adults until 11 years old (Ross, de Gelder, Crabbe, & Grosbras, 2014). These 

indicate the improvement of body knowledge with age throughout childhood. 

However, unlike the richness of the investigations looking at the neural 

mechanisms underlying facial perception in children (de Haan & Nelson, 1999; Rossion et 

al., 1999; Taylor, et al., 1999; Halit, de Haan, Johnson, 2003; Itlier & Taylor, 2004; 

Kuefner et al., 2010; Peykarjou et al., 2013; Peykarjou, et al., 2014), evidence of the 

development of body perception during childhood has not been extensively researched.  

Neurophysiological evidence in body perception development: N290 and P400 

Despite the N190 and P1 being associated with the adult body perception, two ERP 

components are typically reported to be associated with body perception in the 

developmental domain: the N290 and the P400. 

The N290 and the P400 are two ERP components that are associated with visual 

perception of faces in 3 to 12-month-old infants. The N290 is a negative component that 

peaks 290 to 350ms over the midline and paramidline electrodes, and shows larger 

amplitude and often a shorter latency for human faces than that for other objects (Betntin 

et al., 1996; Taylor et al., 1999; Rossion et al., 2000). The P400 is a positive going 
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component that occurs over posterior lateral electrodes, and peaks approximately 390-

450ms in 3 to 12 months old infants. Apart from showing a similar inversion effect to that 

with the adult N170, the P400 also shows faster latency to human faces in comparison to 

objects (Halit, de Haan, & Johnson, 2003; de Haan, Johnson, Halit, 2003). The N290 is 

believed to reflect the structural encoding of the physical information in faces; while the 

P400 is suggested to be sensitive to the distortion of normal structural information (de 

Haan et al., 2003; Gliga, & Dehaene-Lambertz; 2005). These two components both form 

the developmental precursors of the adult N170 in facial perception (de Haan et al., 2003).  

Only one study looked at the associated ERPs in response to body images in the 

early stage of life (Gliga, & Dehaene-Lambertz, 2005). It was found 3-month-old infants 

already show a P1 followed by a N290 from occipital-temporal sites when perceiving 

body postures. Although the N290 component didn't show sensitivity to any impairment of 

the body configuration, the distorted configurations elicited an amplitude change on the 

lateral positive component P400. These findings again suggested the shared similarities 

between body and face perception; more importantly, their findings showed that at 3 

months old infant’s perception of the body is far from the mature performance of adults. 

However, the developmental picture of the body perception cognitive process from 

infancy, and the mature pathway until adult-like, remains largely unknown. 

Especially, face perception studies suggested there is developmental change 

underlying the flexible use of configural and featural processing. Although early 

preference to face-like stimuli is reported during the fetal and neonatal periods (Goren, 

Sarty, & Wu, 1975; Reid et al., 2017), and the earliest age at which the shows configural 

process effect is reported at 7 months old (Cohen & Cashon, 2001); the maturation of 

configural processing follows a long developmental path. Both configural and featural 

processing are used during children’s facial identity recognition; however, increasing use 

of configural processing over featural use is reported earliest from 8-years-old 
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(Baenninger, 1994). Furthermore, the recognition rates to inverted faces improve with age, 

however always worse than upright faces, this improving curve is observed from 7 to at 

least 16 years old (Flin, 1985). These studies suggest the slow maturational curve of the 

dominant use of configural processing during childhood.  

Considering the shared similarity of developmental improvement between body 

and face perception, this implies the numerous possibilities of the developmental 

variability of the body processing during childhood. However, as neuroimaging and 

neurophysiological evidence on adults indicated that the similar neurophysiological 

topography of facial and bodily perception may have different neural resources, 

suggesting distinct processing mechanism; we shall also predict a development pathway 

for body perception during childhood. 

Emotion perception from static body postures in children 

The static body emotion perception development 

Most of the time in everyday life we see moving bodies and perceive information 

from them. However, when seeing the body in static pictures, or having to detect emotion 

from the body at a quick glance, we also perceive the emotion information using bodily 

expression from static body postures. The biological nature of emotion expressivity 

provides the fundamentals of detecting emotion from static body posture. When we are 

expressing emotions, the muscle changes in our face and body show matching cues. For 

example, when expressing anger, people will tense their eyebrows and mouth, as well as 

their shoulders and arms (Parjer, Methis, & Kupersmidt, 2013). This shared information 

gives us the possibility to process emotion from body posture in isolation from facial 

expression.  

In fact, studies suggest that adults are able to use only static body posture to detect 

most of the basic emotions, and adults’ responses to the static expressions of emotions are 

consistent. Adults are reported to be able to correctly categorise happiness, sad, anger, fear 
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and disgust from static full-light body postures at above chance level, with the accuracy to 

the disgust bodies being the worst (Atkinson, Dittrich, Gemmell, & Young, 2004). Similar 

findings are reported in Coulson’s (2004) investigation using 176 computer-generated 

mannequin figures expressing 6 emotions; adults correctly categorise anger, fear, 

happiness, sadness, and surprise. Nonetheless, intensive emotions are detected better 

through body postures in comparison to facial expressions (Aviezer, Trope, & Todorov, 

2012). When asked to judge whether the person wins the game or not using isolated facial 

and body expressions, adults showed higher accuracy when basing their judgement on 

body postures. A possible explanation is that face muscles are not as flexible as bodies in 

expressing extreme emotions (Aviezer, Trope, & Todorov, 2012). 

The sensitivity to the emotional information from body postures develops early. In 

agreement with the dimensional model of emotions (Russell, 2003), the differentiation of 

emotions from static body postures can only be seen between positive and negative stimuli 

from early ages, and becomes more specific over time in terms of the arousal level within 

the valences. From 6.5 months old infants show discriminative response to happy and sad 

body postures. Evidence from experiment examining infants’ looking time suggested that 

by 6.5 months old they can match affective body postures to vocalizations from two 

opposite valences (happy and angry) (Kahana-Kalman & Waker-Andrews, 2001; Zieber. 

et al., 2014). Later on in childhood, children can discriminate bodily emotions not only 

between positive and negative valences, but also label emotions of the same valence at 

different arousal levels. From 4 years old, children are able to identify happy, sad and 

fearful emotions by isolated body posture cues in a forced labelling task (Mondloch, 

Horner, & Mian, 2013). Children’s performance in identification accuracy also improves 

with age. From 6 years old children start to detect incongruent emotions from facial 

expression and body postures as adults do (Mondloch, Horner, & Mian, 2013). The 

accuracy of recognising happy and sad emotions from body postures improves 
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significantly from 5 to 10 years old, and as early as 8 years old their performance in 

labelling happy and sad body postures is as good as adults (Balas, Auen, Saville, & 

Schmidt, 2017).  

Functional MRI investigations on adults have established the neural network 

underlying emotional body perception shares several cortical and subcortical regions with 

emotional facial processing, involving amygdala, temporal gyrus, orbitofrontal cortex 

(OFC) and anterior cingulate cortex (ACC) (Phillips et al., 1997; Sprengelmeyer, Raush, 

Eysel & Przuntek, 1998; Allison, Puce & McCarthy, 2000; Morris et al., 1996; Haxby, 

Hoffman & Gobbini, 2002; Adolphs, 2002; Philips et al., 1998; Blair, Morris, Frith, 

Perrett, & Dolan, 1999). Some of those regions are involved in both body and facial 

emotion processing; for example, fearful bodies activate the amygdala, OFC and ACC, 

which are typically associated with fearful facial recognition (Hadjikhani & de Gelder, 

2003). Furthermore, in comparison to facial perception, the perceived body images 

enhance activity in regions such as the sensorimotor and premotor cortex. fMRI studies 

using emotional whole body or body parts established the recruitment of additional 

regions such as the motor system, which is unlike the central role of the amygdala in facial 

perception (Grosbras & Paus, 2005; Grèzes, Pichon, & de Gelder, 2006, see de Gelder, 

2006 as a review). This indicated that although there is some shared network underlying 

facial and bodily emotion processing, bodily emotion processing has its own selective 

network. In children, a fMRI study on 6- to 11-year-old children showed that when 

observing body movements, children from 6 years old show the same active brain regions 

(EBA, FBA, pSTS) as adults do, however, the strength and spatial extent of the fMRI 

signal is more diminished than that in adults, indicating the development of body 

perception is not yet complete until late childhood (Ross, de Gelder, Carbbe, & Grosbras, 

2014). 

Neurophysiological findings associated with emotional body posture perception 
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Despite the typical visual components associated with body perception – the N190, 

P1, and the N290, P400 – an infant component Nc (the negative central) is also found to 

be typically involved in emotion perception from the body. As its name indicates, the 

infant Nc is a negative going ERP component usually occurring around the 400-800ms 

time window after stimulus onset over the midline area, and reflects the direction of 

attention to unfamiliar objects (de Hann & Nelson, 1997; 1999). In facial emotion 

perception, the Nc is reported to show larger amplitude in response to fearful faces than 

happy faces in infants from 6 and 7 months old (Nelson, & de Haan, 1996; de Haan, 

Belsky, Reid, Volein & Johnson, 2004; Kobiella et al., 2008), indicating the emergence of 

the attentional response to emotions of two valences. 

There are hardly any electroencephalography investigations of static body emotion 

processing in children. Studies on adults found that fearful body postures elicited a faster 

P1 latency from occipital sites to fearful body postures in comparison to neutral ones, 

showing emotion sensitivities from body expression are encoded from an early visual 

stage (Heijnsbergen et al., 2007). This emotion response elicited by fearful bodies is also 

found in the VPP (vertex positive potential, which in facial studies is seen as a positive 

counterpart of N170) at early stage, as well as on sustained potential in frontal-central sites 

at a later processing stage (Stekelenburg & de Gelder, 2004). Although their findings 

indicated a prolonged processing of emotion information from static body postures, more 

investigations are needed to clarify the potential reasons of the prolonged processing. One 

investigation looked at 8-month-old infants’ neuropsychological response to fearful and 

happy body postures, and reported more negative N290 as well as Nc (negative central) 

mean amplitude to fearful bodies than happy bodies (Missana, Rajhans, Atkinson, & 

Grossmann, 2014), similar to the Nc emotion effect found in 6-7-month-olds in facial 

perception investigations (Nelson, & de Haan, 1996; de Haan et al., 2004; Kobiella et al., 

2008). Taking the findings of the Nc in facial perception as well as the role of the N290 in 
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infants’ body perception, this indicated there is some level of attentional response to 

emotions of different valences from body postures early at 8 months old. However, 

between the early neural response and the mature performance indicated by investigations 

of the infant and adult emotional body perception investigation, brain markers of the 

cognitive function across childhood are largely unexplored.   

Given the described similarity of body and face perception, the knowledge about 

the ERP correlates of face perception development would be a starting point to build up 

the understanding of the body perception development. Emotion processing using pictures 

of emotional face expression and the passive viewing paradigm have provided the 

developmental pathway of the neural physiological change in children. After the findings 

of early emerging emotion sensitivity at 6 months old (Nelson, & de Haan, 1996; de Haan, 

Belsky, Reid, Volein & Johnson, 2004; Kobiella et al., 2008), from 7 to 32 months old, 

instead of the Nc, an earlier negative component peaks between 90-250ms from fronto-

central sites showing greater amplitude to sadness in comparison to fear (Parker & Neslon, 

2005). This shows that young children can at least perceptually distinguish emotions in the 

same valences from the body as from the face. Adult-like P1-N170 morphology in facial 

perception emerges from preschool age, and shows an emotion effect: an early response to 

emotional information from bodily expression is found in 4- to 7-year-old children; fearful 

faces elicit slower P1 latency than happy, surprised and emotional neutral faces. However, 

the emotion effect is found moved to the following facial structural encoding component 

N170 when children get older; negative faces overall elicit larger N170 amplitude than 

positive faces (Batty & Taylor, 2006). Moreover, an emotion sensitive ERP response in 4- 

to 15-year-old children is derived from occipito-parietal sites, different from the fronto-

central and midline response in infants (de Hann & Nelson, 1997; 1999; Parker & Neslon, 

2005; Batty & Taylor, 2006).  As discussed before, the P1 is an early component sensitive 

to low-level feature change but not any configural information in faces (Mercure, Dick & 
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Johnson, 2008), while the N170 is suggested to be a neutral representation of the facial 

structural encoding process. Hence, the emotion effect moving from P1 to N170 during 

childhood is suggested to reflect the developmental change of emotional facial encoding. 

With the increasing reliance of configural information in facial perception, the early global 

response to emotion on P1 is replaced by the using of second-order information that 

discriminates the emotional gestural on the face (Batty & Taylor, 2003). Furthermore, the 

adult-like emotional sensitivity on the facial selective component N170 is still not clearly 

observed until adolescence, suggesting that children use different strategies in facial 

emotion recognition, as well as the protracted matureness of the processing lasting until 

late adolescence (Batty & Taylor, 2003; Ashley, Vuilleumier & Swick, 2004; Batty & 

Taylor, 2006).  

Considering that bodies and faces share similar structural encoding processes (i.e. 

the configural processing) discussed previously, and usually carry similar social 

behavioural information, we would expect that similarly with facial emotion perception 

development, the ERP morphology changes as well as the protracted matureness of the 

processing mechanism during childhood will also be observed in emotional body posture 

recognition. However, dissociation between the similarities of body and facial perception 

has been indicated at least in adults. For example, different brain region sources are found 

to subserve the same ERP components.  The N170 elicited by human faces was reported to 

have its source from the brain areas selectively involved in processing faces, such as the 

fusiform face area (FFA) and the posterior superior temporal sulcus (pSTS) 

(Mnatsakanian & Tarkka, 2004; Rossion & Jacques, 2011; Itier & Taylor, 2004; Watanabe 

et al., 2003; Rossion & Jacques, 2011), whereas the N170 in response to human bodies 

was suggested to originate from the extrastriate body area (EBA) (Thierry et al., 2006; 

Peelen & Downing, 2007). Therefore, instead of generalising the electrophysiological 

evidence of face perception to body perception development, investigations that 
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particularly aim to address the developmental details specific to static emotion expression 

from the body are highly necessary. 

The processing of structure information in emotional static body processing 

One potential difference between body and facial emotion perception is that unlike 

emotion recognition from faces, which may rely on featural and second-order information, 

detecting emotion through body postures would depend more on the processing of 

structural information. 

Coulson’s (2004) study used body images posting different postures to express 

anger, disgust, fear, happiness, sadness and surprise. Sixty-one adult participants labelled 

each body posture from given emotional labels. Results showed that people show high 

concordance on relating certain body postures with six basic emotions. For example, head 

and chest bending forward with shoulder swinging backward and elbow holding tight are 

most likely to be labelled as angry, whereas upper body leaning backwards with elbow 

bending straight is highly likely to be perceived as happy. Although the concordance of 

the emotions depends on viewing the postures from front, side or rear angle, the detection 

of emotions also relies on some other perceptual variables such as the context (Carroll & 

Russell, 1996). Findings of this investigation still established the importance of perceiving 

bodily structural information in emotion recognition (Coulson, 2004). This brings the 

possibility that different types of information such as the bending degree of the body 

elements, or viewing the body postures from different viewing angles might interfere with 

emotion perception. 

In fact, both behavioural and neurophysiological evidence indicate that impairing 

body configural information interferes the emotion processing of both adults and infants. 

In adults, upright-down body movements significantly reduce their accuracy in 

recognising emotions in comparison to upright condition, although their recognition of 

emotion is not completely abolished, still show performance at above chance level 
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(Atkinson, Tunstall, & Dittrich, 2007). Similarly, Missana and colleagues’ (2014) 

neurophysiological investigation report that the greater N290 mean amplitude for fearful 

in comparison to happy bodies in infants is only shown when the body images are 

presented upright but not inverted, suggesting infants’ neural response discriminates 

emotions from body posture only in the upright condition. As previous works show that 

the perception of body expression is impaired by the body inversion, when investigating 

children’s neural correlates of static emotion perception from bodies, it’s necessary to take 

into account the possibility that the body inversion interferes with emotion perception.  

 

Emotion perception from dynamic body movement 

Although both adults and children can encode emotion from static body postures 

(Montepare, Koff, Zaitchik, & Albert, 1999; Vieillard & Guidetti, 2008; Nelson & Russell, 

2011), in everyday life, moving bodies are still the most common source of bodily 

emotion information. Adults can accurately identify emotions when briefly viewing 

moving bodies (Montepare et al., 1999; Volkova et al., 2014). The early emergence of the 

sensitivity to body movement indicates the importance of this information to us. 3-month-

old infants look longer at a point-light display (PLDs) of a human body walking towards 

them compared to random moving dots, suggesting that at least from this age they are 

sensitive to the biological motion of the body (Bertenthal, 1993). Interestingly, not until 18 

months old do infants start to be able to distinguish intact body images and scrambled 

body images (Slaughter, Heron, & Sim, 2002); this indicates that infants develop 

sensitivities to moving bodies even before they learn the notion of body structure. 

Moreover, the dynamic information helps to improve preschool children’s recognition of 

emotions (Nelson & Russell, 2011b; Vieillard & Guidetti, 2008; Nelson & Mondloch, 

2017).  
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Evidence provided by multiple kinds of behavioral measurements indicates the 

improvement in development of emotion encoding from moving bodies. The very early 

sensitivity to emotion sensitivities from body movements is found in infants from 6.5 

months old. Again the differentiation emerges from broad valence levels; they show a 

visual preference for happy bodies over neutral ones (Zieber et al., 2014). This also 

implies that infants from this age can discriminate emotion from moving bodies at least at 

a perceptual level; however, evidence at this stage cannot lead to a conclusion of emotion 

recognition yet. The earliest age that children are found to be able to identify emotions 

from body movements is 3 years; children from 3 to 5 years old can verbally label four 

emotions which vary between valence and arousal levels (happy, sad, angry and scared) 

from body movement video clips, with an accuracy rate of 72%, only slightly lower than 

recognition from facial expression (80%) (Nelson & Russell, 2011a). Furthermore, 

although by the age of 5 years their accuracy is still not as good as the adults, their 

performance continuously improves with age (Nelson & Russell, 2011a). Five-year-old 

children’s emotion identification performance is significantly worse than that of 8-year-

old children; by 8 years old children’s accuracy is quite comparable with adults (Boone & 

Cunningham, 1988; Nelson, & Mondloch, 2017). However, in comparison to the rich 

behavioural findings of emotion recognition from facial expression which provide a 

detailed image of development in terms of recognizing emotions based on valence and 

arousal (Dunn, 1994; Odom & Lemond, 1972; De Sonneville et al., 2002; Widen & 

Russell, 2003; Widen & Russell, 2008; Widen, 2013), the behavioural evidence only 

offers limited information about the development of children’s emotion recognition from 

body movements.  

Further, the fact that emotions are expressed in multiple ways, leads to the multiple 

cognitive approach (i.e., recognizing facial/bodily expression, understanding emotional 

words) of emotion identification; therefore, different behavioural methods may only tap 
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certain aspects of the emotion recognition ability. For example, a verbal labelling task 

requires a certain language ability and lexical understanding of emotions, thus, behavioral 

evidence of children’s improving performance in verbal labeling tasks may reflect the 

increasing familiarity of perceiving matching emotional situations with words, but may 

not be able to reflect the nonverbal understanding of emotions before language ability was 

fully matured. Moreover, the sorting task or non-verbal labelling task will leave the 

question of how well the children understand the emotional expression or labels they 

sorted in the experiment. In fact, behavioural investigation using a sorting task shows that 

children have different understanding of emotion categories than adults. When asked to 

sort the same emotional faces into one box, 2-year-old children put other negative 

emotional faces (sad, fearful) into the angry box as well (Russell & Widen, 2002).  

In comparison to behavioural evidence, neuroimaging and neurophysiology 

investigations using fMRI or ERPs can help provide more direct measures of children’s 

neural response to different emotions, without being mediated by language ability. 

Evidence from fMRI on adults reveals that observing emotional bodies actives brain 

regions that are specifically related to emotion processing, such as the amygdala, OFC, 

ACC and anterior insula (Damasio, 1999; Hadjikhani & de Gelder, 2003; de Gelder, 

Snyder, Greve, Gerard, & Hadjikhani, 2004); moreover, the biological movements of 

bodies also elicit the activities of STS, parietal cortex and premotor cortex (see de Gelder, 

2006 for a review). However, few studies have looked at the developmental domain. 

Evidence from neurophysiology suggests that the perceptual discrimination of emotions 

from moving bodies is shown in the early ages. ERP investigations of emotional body 

perception establish that by 8 months old infants show a more positive amplitude over the 

late components to happy PLDs of bodies than fearful ones, suggesting an early sensitivity 

to positive emotions from body movements (Missana, Atkinson, & Grossmann, 2015). 

However, fMRI studies on 6- to 11-year-old children and adults find that when observing 
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video-clips of emotional body movements, children show brain activity in similar regions 

as those reported for adults (EBA, pSTS, FBA, amygdala and precentral gyrus); however, 

in response to emotional body movements, adults’ brains activate across a broader 

network, and the fMRI signal shows better strength (Ross et al., 2014). This suggests the 

ability of emotion body perception is still developing during the second decade of life. 

Nevertheless, in terms of the neural mechanism of the emotional body movements during 

childhood, a large blank has been left in the domain.  

Thesis outline 

This review highlighted the importance of the ability to process emotion from the 

body (both from static postures and dynamic movements) during childhood, along with 

the theoretical and knowledge gaps currently present in the field; especially the neural 

mechanism underlying this ability. From what have been discussed above, we can now 

clearly see several gaps in this field that are particularly essential but haven’t been 

investigated. For example, we do not know about the neural mechanism of body structure 

perception throughout the entire childhood, nor the mechanism underlying emotion 

perception from body static and dynamic perception. Although some behavioural studies 

have been done, to understand the neural mechanism behind the behavioural evidence can 

help us to reveal the reasons behind the changes, as well as the nature of the emotion 

perception development. Therefore, this thesis aims to address these knowledge gaps by 

investigating the neural correlates of children’s emotion perception from static and 

dynamic body information, and therefore, to contribute to a more coherent understanding 

of the big map. 

In order to reveal the development of the neural mechanism underlying children’s 

bodily emotion recognition, key aspects have to be addressed. Therefore, the current work 

will first investigate the cognitive processing of body shape perception in children. Paper 1 

will address this issue by looking at the developmental changes in the ERP responses to 
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body structure processing in children age from 3 to 10 years old, and compare this with 

the neural response in adults. We chose to start with this specific age range for two main 

reasons: first, as discussed at the beginning, we consider children from 3 years old have 

sufficient motor ability and social needs for perceiving bodily information; second, from 

the practical perspective 3 years old is the earliest age during childhood that is more likely 

to guarantee data of good quality. We are interested in the existence and possible 

developmental changes of the P1 and N170 ERP components in response to bodies in 

comparison to objects. We are also interested in the emerging and changing of the N170 

inversion effect during childhood, also its possible difference with the adult N170 

inversion effect. These findings would help in describing when children start to show the 

adult-like perception of body shape.  

By knowing how the visual presented body is processed in children’s brains, Paper 

2 will examine children’s emotion perception from static body postures with the 

predictions based on the findings of Paper 1, also using ERPs. We will look at the ERP 

responses to happiness, sadness and fear from static body postures on children aged from 

5 to 8 years old, as previous findings suggest that children at this age should be able to 

process those basic emotions at different valence and arousal levels, following the 

predictions of the dimensional model (Russell, 2003). The reason of choosing this specific 

age range is that previous behavioural evidence suggested children from 5 years old 

performed above-chance level accuracy in decoding emotions from bodily expression for 

basic emotions such as sad, happy and fearful; and by 8 years old their performance are 

improved quickly, and as good as adults (Boone & Cunningham, 1998; Balas, et l., 2017). 

We are particularly interested in the role of body configural information in emotion 

encoding. The findings of this study will provide preliminary evidences of how body 

posture cues are relevant for emotion perception in children.     
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As the last step of this investigation, Paper 3 aims to reveal the neural correlates as 

well as their development of emotion processing from moving bodies and their 

development. Ideally, we would like to directly measure the ERP response towards 

emotional body motions. However, to present a body motion that is long enough for 

children to extract emotional meaning will not be practical for ERP measurement. 

Therefore, to achieve the research question, we will use an affective priming paradigm, 

and will be looking at the incongruence effect between the priming of emotional body 

movements and the target emotion words in children’s ERP response. We will compare 3- 

and 6-year-old children’s neural response to the words describing two basic emotions from 

different valence (“happy” and “angry”) primed by either semantically congruent or 

incongruent dynamic body motions. The findings of this study will reveal whether 

children from 3 years old are able to extract the emotional information from dynamic 

expressions from body. 

Overall, this thesis investigates the neural correlates of emotion body perception 

during childhood, in terms of the processing of body structure, as well as the perception of 

emotion expressivity from both static and dynamic body. By achieving these research 

aims, the current work will provide valuable information with regards to the development 

of emotional body perception during the very important childhood period.   



CHILDHOOD BODY PERCEPTION: INTRODUCTION 

 

30 

References 

Adolphs, R. (2002). Recognizing emotion from facial expressions: Psychological and 

neurological mecha- nisms. Behavioral and Cognitive Neuroscience Reviews, 1, 

21–62. 

Allison, T., Puce, A., McCarty, G., 2000. Social perception from visual cues: role of the 

STS region. TICS, 4, 267–278. 

Ashley, V., Vuilleumier, C. A. P., & Swick, D. (2004). Time course and speci ¢ city of 

event-related potentials to emotional expressions. Neuroreport,15(1),211–216. 

http://doi.org/10.1097/01.wnr.0000091411.19795.f5 

Atkinson, A. P. (2009). Impaired recognition of emotions from body movements is 

associated with elevated motion coherence thresholds in autism spectrum disorders. 

Neuropsychologia,47(13),3023–3029. 

http://doi.org/10.1016/j.neuropsychologia.2009.05.019 

Atkinson, A. P., Dittrich,W. H., Gemmell, A. J., and Young, A.W. (2004). Emotion 

perception from dynamic and static body expressions in point-light and full- light 

displays. Perception 33, 717–746. doi: 10.1068/p5096 

Atkinson, A. P., Tunstall, M. L., and Dittrich, W. H. (2007). Evidence for distinct 

contributions of form and motion information to the recognition of emotions 

frombody gestures. Cognition 104, 59–72. doi: 10.1016/j.cognition.2006.05.005 

Aviezer, Hillel; Trope, Yaacow; Todorov, A. (2012). Body cues, not facial expressions, 

discrimintae between intense positive and negative emotions. Science, 338(11), 

1225–1229. http://doi.org/10.1126/science.1224313 

Baenninger, M.A. (1994). The development of face recogni- tion: featural or configural 

processing? Journal of Experimental Child Psychology, 57, 377–396.  

Balas, B., Auen, A., Saville, A., & Schmidt, J. (2017). Body emotion recognition 

disproportionately depends on vertical orientations during childhood. International 



CHILDHOOD BODY PERCEPTION: INTRODUCTION 

 

31 

Journal of Behavioral Development, 16502541769026. 

http://doi.org/10.1177/0165025417690267 

Batty, M., & Taylor, M. J. (2003). Early processing of the six basic facial emotional 

expressions. Cognitive Brain Research, 17(3), 613–620. 

http://doi.org/10.1016/S0926-6410(03)00174-5 

Batty, M., & Taylor, M. J. (2006). The development of emotional face processing during 

childhood. Developmental Science, 9, 207–220. http://doi.org/10.1111/j.1467-

7687.2006.00480.x 

Bentin, S., & Deouell, L. Y. (2000). Structural encoding and identification in face 

processing: ERP evidence for separate mechanisms. Cognitive neuropsychology, 

17(1-3), 35-55. 

Bentin, S., Allison, T., Puce, A., Perez, E., & McCarthy, G. (1996). Electrophysiological 

studies of face perception in humans. Journal of Cognitive Neuroscience, 8, 551–

565. 

Bentin, S., Sagiv, N., Mecklinger, A., Friederici, A., & von Cramon, Y. D. (2002). 

Priming Visual Face-Processing Mechanisms: Electrophysiological Evidence. 

Psychological Science, 13(2), 190–193. http://doi.org/10.1111/1467-9280.00435 

Bertenthal, B. (1993). Infants’ perception of biomechanical motions: intrinsic image and 

knowledge-based constraints. In C. Granrud (Ed.), Visual perception and cognition 

in infancy. Hillsdale, NJ: Lawrence Erlbaum Associates. 

Bertenthal, B. I., Proffitt, D. R., & Cutting, J. E. (1984). Infant sensitivity to figural 

coherence in biomechanical motions. Journal of Experimental Child Psychology, 

37(2), 213–230. http://doi.org/10.1016/0022-0965(84)90001-8 

Bertenthal, B. I., Proffitt, D. R., Kramer, S. J., & Spetner, N. B. (1987). Infants’ encoding 

of kinetic displays varying in relative coherence. Developmental Psychology, 23(2), 

171–178. http://doi.org/10.1037/0012-1649.23.2.171 



CHILDHOOD BODY PERCEPTION: INTRODUCTION 

 

32 

Blair, R. J. R., Morris, J. S., Frith, C. D., Perrett, D. I., & Dolan, R. J. (1999). Dissociable 

neural responses to facial expressions of sadness and anger, Brain, 883–893. 

Boone, R. T., & Cunningham, J. G. (1998). Children’s decoding of emotion in expressive 

body movement: The development of cue attunement. Developmental Psychology, 

34(7), 1007–1016. http://doi.org/10.1037//0012-1649.34.5.1007 

Carroll, J.M., & Russell, J.A. (1996). Do facial expressions signal speci? c emotions? 

Judging emotion from the face in context. Journal of Personality and Social 

Psychology, 70, 205–218. 

Channell, M. M., Conners, F. A., & Barth, J. M. (2014). Emotion knowledge in children 

and adolescents with Down syndrome: A new methodological approach. American 

Journal on Intellectual and Developmental Disabilities, 119(5), 405–421. 

http://doi.org/10.1352/1944-7558-119.5.405 

Clark, V. P., Fan, S., & Hillyard, S. A. (1995). Identification of early visual evoked 

potential generators by retinotopic and topographic analyses. Human Brain 

Mapping, 2, 170–187. 

Cohen, L.B., & Cashon, C.H. (2001). Do 7-month old infants process independent features 

or facial configurations? Infant and Child Development, 10, 83–92. 

Coulson, M. (2004). Attributing emotion to static body postures: Recognition accuracy, 

confusions, and viewpoint dependence. Journal of Nonverbal Behavior, 28(2), 

117–139. http://doi.org/10.1023/B:JONB.0000023655.25550.be 

Damasio, A. R. (1999) The Feeling of What Happens (Harcourt Brace, New York). 

D’Entremont, B., & Muir, D. (1999). Infant responses to adult happy and sad vocal and 

facial expressions during face-to-face interactions. Infant Behavior & Development, 

22, 527?539. 

de Gelder, B. (2006). Towards the neurobiology of emotional body language. Nature 

Reviews. Neuroscience, 7(3), 242–249. http://doi.org/10.1038/nrn1872 



CHILDHOOD BODY PERCEPTION: INTRODUCTION 

 

33 

de Gelder, B. (2006). Towards the neurobiology of emotional body language. Nature 

Reviews. Neuroscience, 7(3), 242–249. http://doi.org/10.1038/nrn1872 

De Gelder, B., Snyder, J., Greve, D., Gerard, G., & Hadjikhani, N. (2004). Fear fosters 

flight: a mechanism for fear contagion when perceiving emotion expressed by a 

whole body. Proceedings of the National Academy of Sciences of the United States 

of America, 101(47), 16701-16706. 

de Haan, M. De, Belsky, J., Reid, V., Volein, A., & Johnson, M. H. (2004). Maternal 

Personality and Infants’ Neural and Visual Responsivity To Facial Expressions Of 

Emotion, Journal of Child Psychology and Psychiatry, 7, 1209–1218. 

http://doi.org/10.1111/j.1469-7610.2004.00320.x 

de Haan, M., & Nelson, C. A. (1999). Brain activity differentiates face and object 

processing in 6-month-old infants. Developmental Psychology, 35(4), 1113–1121. 

http://doi.org/10.1037/0012-1649.35.4.1113 

de Haan, M., Belsky, J., Reid, V., Volein, A., & Johnson, M. H. (2004). Maternal 

personality and infants’ neural and visual responsivity to facial expressions of 

emotion. Journal of Child Psychology and Psychiatry, 45(7), 1209-1218. 

de Haan, M., Johnson, M. H., & Halit, H. (2003). Development of face-sensitive event-

related potentials during infancy: A review. International Journal of 

Psychophysiology, 51(1), 45–58. http://doi.org/10.1016/S0167-8760(03)00152-1 

de Haan, M., Nelson, C.A., 1997. Recognition of the mother’s face by six- month-old 

infants: a neurobehavioral study. Child Development, 68 (2), 187–210. 

De Sonneville, L. M. J., Verschoor, C. A., Njiokiktjien, C., Op het Veld, V., Toorenaar, N., 

& Vranken, M. (2002). Facial Identity and Facial Emotions: Speed, Accuracy, and 

Processing Strategies in Children and Adults. Journal of Clinical and 

Experimental Neuropsychology (Neuropsychology, Development and Cognition: 

Section A), 24(2), 200–213. http://doi.org/10.1076/jcen.24.2.200.989 



CHILDHOOD BODY PERCEPTION: INTRODUCTION 

 

34 

Denham, S. A., McKinley, M., Couchoud, E. A., & Holt, R. (1990). Emotional and 

Behavioral Predictors of Preschool Peer Ratings. Child Development, 61, 1145-

1152. http://dx.doi.org/10.2307/1130882 

Di Russo, F., Martinez, A., Sereno, M. I., Pitzalis, S., & Hillyard, S. A. (2002). Cortical 

sources of the early components of the visual evoked potential. Human Brain 

Mapping, 15, 95–111. 

Diamond, R., & Carey, S. (1986). Why faces are and are not special: an effect of expertise. 

Journal of Experimental Psychology. General, 115(2), 107–17. 

http://doi.org/10.1037/0096-3445.115.2.107 

Downing, P. E., Jiang, Y., Shuman, M., & Kanwisher, N. (2001). A Cortical Area 

Selective for Visual Processing of the Human Body. Science,293(5539), 2470–

2473.  

Dunn, J. (1994). Understanding others and the social world: Current issues in 

developmental research and their relation to preschool experiences and practice. 

Journal of Applied Developmental Psychology, 15(4), 571–583. 

http://doi.org/10.1016/0193-3973(94)90023-X 

Eimer, M. (2000). Effects of face inversion on the structural encoding and recognition of 

faces - Evidence from event-related brain potentials. Cognitive Brain Research, 

10(1–2), 145–158. http://doi.org/10.1016/S0926-6410(00)00038-0 

Ekman, P. (1992). Are there basic emotions? Psychological Reviews, 99, 550-553 

Ekman, P. (1993). Facial expression and emotion. American psychologist, 48(4), 384. 

Fallon, A. E., & Rozin, P. (1985). Sex differences in perceptions of desirable body shape. 

Journal of Abnormal Psychology, 94, 102–105. 

Fausey, C. M., Jayaraman, S., & Smith, L. B. (2016). From faces to hands: Changing 

visual input in the first two years. Cognition, 152, 101–107. 

http://doi.org/10.1016/j.cognition.2016.03.005.From 



CHILDHOOD BODY PERCEPTION: INTRODUCTION 

 

35 

Flin, R. 1985. Development of face recognition: an encoding switch? British Journal of 

Psychology, 76: 123–134. 

Friere, A., Lee, K., & Symons, L. (2000). The face inversion effect as a deficit in the 

encoding of configural information: Direct evidence. Perception, 29, 159–170. 

Frijda, N. H., & Mesquita, B. (1994). The Social Roles and Functions of Emotions. 

Emotion and Culture: Empirical Studies and Mutual Influences: Empirical Studies 

of Mutual Influences. http://doi.org/10.1037/10152-002 

Gliga, T., & Dehaene-Lambertz, G. (2005). Structural encoding of body and face in 

human infants and adults. Journal of Cognitive Neuroscience, 17, 1328–1340. 

http://doi.org/10.1162/0898929055002481 

Goren, G., Sarty, M., & Wu, P. (1975). Visual following and pattern discrimination of 

face-like stimuli by newborn infants. Pediatrics, 56, 544–549. 

Grèzes, J., Pichon, S., de Gelder, B., 2007. Perceiving fear in dynamic body expressions. 

NeuroImage, 35, 959–967. 

Grosbras, M.H., Paus, T., 2005. Brain networks involved in viewing angry hands or faces. 

Cerebral Cortex, 16, 1087–1096. 

Hadjikhani, N., & De Gelder, B. (2003). Seeing Fearful Body Expressions Activates the 

Fusiform Cortex and Amygdala. Current Biology, 13(24), 2201–2205. 

http://doi.org/10.1016/j.cub.2003.11.049 

Halgren, E., Raij, T., Marinkovic, K., Jousmaki, V., & Hari, R. (2000). Cognitive response 

profile of the human fusiform face area as determined by MEG. Cerebral Cortex, 

10, 69–81. 

Halit, H., de Haan, M., & Johnson, M. H. (2003). Cortical specialisation for face 

processing: face-sensitive event-related potential components in 3-and 12-month-

old infants. Neuroimage, 19(3), 1180-1193. 



CHILDHOOD BODY PERCEPTION: INTRODUCTION 

 

36 

 Haxby, J. V., Hoffman, E. A., & Gobbini, M. I. (2002). Human neural systems for face 

recognition and social communication. Biological psychiatry, 51(1), 59-67. 

Hoffman, E. A., & Haxby, J. V. (2000). Distinct representations of eye gaze and identity 

in the distributed human neural system for face perception. Nature neuroscience, 

3(1), 80. 

Hubert, B., Wicker, B., Moore, D. G., Monfardini, E., Duverger, H., Da Fonséca, D., & 

Deruelle, C. (2007). Brief report: Recognition of emotional and non-emotional 

biological motion in individuals with autistic spectrum disorders. Journal of 

Autism and Developmental Disorders, 37(7), 1386–1392. 

http://doi.org/10.1007/s10803-006-0275-y 

Itier, R. J., & Taylor, M. J. (2004). Source analysis of the N170 to faces and objects. 

Neuroreport, 15(8), 1261–1265. 

http://doi.org/10.1097/01.wnr.0000127827.73576.d8 

Kahana-kalman, R., & Walker-Andrews, A. S. (2001). The Role of Person Familiarity in 

Young Infants’ Perception of Emotional Expressions. Child Development, 72(2), 

352–369. 

Kuefner, D., Heering, A. De, Jacques, C., Palmero-Soler, E., & Rossion, B. (2010). Early 

visually evoked electrophysiological responses over the human brain (P1 , N170 ) 

show stable patterns of face-sensitivity from 4 years to adulthood, Frontiers in 

Human Neuroscience,  3(1), 1–22. http://doi.org/10.3389/neuro.09.067 

Maurer, D., Le Grand, R., & Mondloch, C. J. (2002). The many faces of configural 

processing. Trends in Cognitive Sciences, 6(6), 255–260. 

http://doi.org/10.1016/S1364-6613(02)01903-4 

Meeren, H. K. M., van Heijnsbergen, C. C. R. J., & de Gelder, B. (2005). Rapid perceptual 

integration of facial expression and emotional body language. Proceedings of the 



CHILDHOOD BODY PERCEPTION: INTRODUCTION 

 

37 

National Academy of Sciences of the United States of America, 102(45), 16518–23. 

http://doi.org/10.1073/pnas.0507650102 

Mercure, E., Dick, F., & Johnson, M. H. (2008). Featural and configural face processing 

differentially modulate ERP components. Brain Research, 1239, 162–170. 

http://doi.org/10.1016/j.brainres.2008.07.098 

Minnebusch, D. A., Suchan, B. & Daum, I. (2009). Losing Your Head: Behavioral and 

Electrophysiological Effects of Body Inversion. Journal of Cognitive Neuroscience, 

21(5), 865-874. 

Missana, M., Atkinson, A. P., & Grossmann, T. (2015). Tuning the developing brain to 

emotional body expressions. Developmental Science, 18(2), 243–253. 

http://doi.org/10.1111/desc.12209 

Mondloch, C. J., Horner, M., & Mian, J. (2013). Wide eyes and drooping arms: Adult-like 

congruency effects emerge early in the development of sensitivity to emotional 

faces and body postures. Journal of Experimental Child Psychology, 114(2), 203–

216. http://doi.org/10.1016/j.jecp.2012.06.003 

Montepare, J., Koff, E., Zaitchik, D., and Albert, M. (1999). The use of body movement 

and gestures as cues to emotions in younger and older adults. Journal of Nonverbal 

Behavior, 23, 133–152. 

Morris, J. S., Frith, C. D., Perrett, D. I., Rowland, D., Young, A. W., Calder, A. J., & 

Dolan, R. J. (1996). A differential neural response in the human amygdala to 

fearful and happy facial expressions. Nature, 383(6603), 812. 

Muñoz, L. C. (2009). Callous-Unemotional Traits are Related to Combined Deficits in 

Recognizing Afraid Faces and Body Poses. Journal of the American Academy of 

Child & Adolescent Psychiatry, 48(5), 554–562. 

http://doi.org/10.1097/CHI.0b013e31819c2419 



CHILDHOOD BODY PERCEPTION: INTRODUCTION 

 

38 

Nackaerts, E., Wagemans, J., Helsen, W., Swinnen, S. P., Wenderoth, N., & Alaerts, K. 

(2012). Recognizing Biological Motion and Emotions from Point-Light Displays 

in Autism Spectrum Disorders. PLoS ONE, 7(9), 1–12. 

http://doi.org/10.1371/journal.pone.0044473 

Nelson, C. A., & de Haan, M. (1996). Neural correlates of visual responsiveness to facial 

expressions of emotion. Developmental Psychobiology, 29(6), 1–18. 

Nelson, N. L., & Mondloch, C. J. (2017). Adults’ and children’s perception of facial 

expressions is influenced by body postures even for dynamic stimuli. Visual 

Cognition, 25(4–6), 563–574. http://doi.org/10.1080/13506285.2017.1301615 

Nelson, N. L., & Russell, J. a. (2011, a). Putting motion in emotion: Do dynamic 

presentations increase preschooler’s recognition of emotion? Cognitive 

Development, 26(3), 248–259. http://doi.org/10.1016/j.cogdev.2011.06.001 

Nelson, N. L., & Russell, J. A. (2011, b). Preschoolers’ use of dynamic facial, bodily, and 

vocal cues to emotion. Journal of Experimental Child Psychology, 110(1), 52–61. 

http://doi.org/10.1016/j.jecp.2011.03.014 

Odom, R. D., & Lemond, C. M. (1972). Developmental differences in the perception and 

production of facial expressions. Child Development, 43, 359-369. 

Panksepp, J. (1998). Affective Neuroscience: The Foundations of Human And Animal 

Emotions. New York: Oxford University Press 

Parker, A. E., Mathis, E. T., & Kupersmidt, J. B. (2013). How Is This Child Feeling? 

Preschool-Aged Children’s Ability to Recognize Emotion in Faces and Body Poses. 

Early Education and Development, 24(2), 188–211. 

http://doi.org/10.1080/10409289.2012.657536 

Parker, S. W., & Nelson, C. A. (2005). The Impact of Early Institutional Rearing on the 

Ability to Discriminate Facial Expressions of Emotion: An Event-Related Potential 

Study. Child Development, 76(1), 54–72. 



CHILDHOOD BODY PERCEPTION: INTRODUCTION 

 

39 

Peelen, M. V., & Downing, P. E. (2005). Selectivity for the human body in the fusiform 

gyrus. Journal of Neurophysiology, 93(1), 603–608. 

http://doi.org/10.1152/jn.00513.2004 

Peykarjou, S., & Hoehl, S. (2013). Three-month-olds’ brain responses to upright and 

inverted faces and cars. Developmental Neuropsychology, 38(4), 272–80. 

http://doi.org/10.1080/87565641.2013.786719 

Peykarjou, S., Westerlund2, A., Cassia, V. M., Kuefner, D., & Nelson, C. A. (2013). The 

neural correlates of processing newborn and adult faces in 3-year-old children. 

Developmental Science, 6, n/a-n/a. http://doi.org/10.1111/desc.12063 

Phillips, M. L., Young, A. W., Senior, C., Brammer, M., Andrew, C., Calder, A. J., ... & 

Gray, J. A. (1997). A specific neural substrate for perceiving facial expressions of 

disgust. Nature, 389(6650), 495. 

Philip, R. C. M., Whalley, H. C., Stanfield, A. C., Sprengelmeyer, R., Santos, I. M., 

Young, A. W., … Hall, J. (2010). Deficits in facial, body movement and vocal 

emotional processing in autism spectrum disorders. Psychological Medicine, 

40(11), 1919–1929. http://doi.org/10.1017/S0033291709992364 

 Posner, J., Russel, J. A., & Peterson, B. S. (2005). The circumplex model of affect: An 

integrative approach to affective neuroscience, cognitive development, and 

psychopathology Jonathan. Development and Psychopathology, 17(3), 715–734. 

http://doi.org/10.1038/jid.2014.371 

Reed, C. L., Stone, V. E., Bozova, S., & Tanaka, J. (2003). The Body-Inversion Effect. 

Psychological Science, 14(4), 302–308. http://doi.org/10.1111/1467-9280.14431 

Reed, C. L., Stone, V. E., Grubb, J. D., & Mcgoldrick, J. E. (2006). Turning Configural 

Processing Upside Down: Part and Whole Body Postures. Journal of Experimental 



CHILDHOOD BODY PERCEPTION: INTRODUCTION 

 

40 

Psychology: Human Perception and Performance, 32(1), 73–87. 

http://doi.org/10.1037/0096-1523.32.1.73 

Regan, D. (1989). Human brain electrophysiology: Evoked potentials and evoked 

magnetic fields in science and medicine . New York: Elsevier. 

Reid, V. M., Dunn, K., Young, R. J., Amu, J., Donovan, T., Reissland, N., & Reissland, N. 

(2017). The Human Fetus Preferentially Engages with Face-like Visual Stimuli 

Report. Current Biology, 27(12), 1825–1828.e3. 

http://doi.org/10.1016/j.cub.2017.05.044 

 Righart, R., & de Gelder, B. (2007). Impaired face and body perception in developmental 

prosopagnosia. Proceedings of the National Academy of Sciences of the United 

States of America, 104(43), 17234–17238. http://doi.org/10.1073/pnas.0707753104 

Robbins, R. A., & Coltheart, M. (2015). The relative importance of heads, bodies, and 

movement to person recognition across development. Journal of Experimental 

Child Psychology, 138, 1–14. http://doi.org/10.1016/j.jecp.2015.04.006 

Roseman, I. J., & Smith, C. A. (2001). Appraisal theory. Appraisal processes in emotion: 

Theory, methods, research, 3-19. 

Ross, P. D., de Gelder, B., Crabbe, F., & Grosbras, M.-H. (2014). Body-selective areas in 

the visual cortex are less active in children than in adults. Frontiers in Human 

Neuroscience, 8(11), 941. http://doi.org/10.3389/fnhum.2014.00941s 

Rossion, B., & Jacques, C. (2011). The N170: understanding the time-course of face 

perception in the human brain. The Oxford Handbook of ERP Components, (12), 

115–142. http://doi.org/10.1093/oxfordhb/9780195374148.013.0064 

Rossion, B., Curran, T., & Gauthier, I. (2002). A defense of the subordinate-level 

expertise account for the N170 component. Cognition, 85(2), 189–196. 

http://doi.org/10.1016/S0010-0277(02)00101-4 



CHILDHOOD BODY PERCEPTION: INTRODUCTION 

 

41 

Rossion, B., Delvenne, J. F., Debatisse, D., Goffaux, V., Bruyer, R., Crommelinck, M., & 

Guérit, J. M. (1999). Spatio-temporal localization of the face inversion effect: An 

event-related potentials study. Biological Psychology, 50(3), 173–189. 

http://doi.org/10.1016/S0301-0511(99)00013-7 

Russell, J. A., & Bullock, M. (1985). Multidimensional Scaling of Emotional Facial 

Expressions. Similarity from Preschoolers to Adults. Journal of Personality and 

Social Psychology, 48(5), 1290–1298. http://doi.org/10.1037/0022-3514.48.5.1290 

Russell, J. A., & Widen, S. C. (2002). A label superiority effect in children’s 

categorization of facial expressions. Social Development, 11(1), 30–52. 

http://doi.org/10.1111/1467-9507.00185 

Singh, D. (1993). Body shape and women’s attractiveness: the critical role of waist-to-hip 

ratio. Human Nature, 4, 297–321. 

Scherer, K. R. (2009). Emotions are emergent processes: they require a dynamic 

computational architecture. Philosophical Transactions of the Royal Society B: 

Biological Sciences, 364(1535), 3459–3474. http://doi.org/10.1098/rstb.2009.0141 

Slaughter, V., Heron, M., & Sim, S. (2002). Development of preferences for the human 

body shape in infancy. Cognition, 85(3), 71–81. http://doi.org/10.1016/S0010-

0277(02)00111-7 

Sprengelmeyer, R. et al. (1998) Neural structures associated with recognition of facial 

expressions of basic emotions. Proc. R. Soc. London B Biol. Sci. 265, 1927–1931 

Stekelenburg, J., & de Gelder, B. (2004). The neural correlates of perceiving human 

bodies:an ERP study on the body-inversion effect. Neuroreport, 15(3), 487–491. 

http://doi.org/10.1097/01.wnr.00001 

Tanskanen, T., Nasanen, R., Montez, T., Paallysaho, J., & Hari, R. (2005). Face 

recognition and cortical responses show similar sensitivity to noise spatial 

frequency. Cerebral Cortex, 15, 526–534. 



CHILDHOOD BODY PERCEPTION: INTRODUCTION 

 

42 

Tarkiainen, A., Cornelissen, P.L., Salmelin, R., 2002. Dynamics of visual feature analysis 

and object-level processing in face versus letter-string perception. Brain 125, 

1125–1136. 

Taylor, M. J., McCarthy, G., Saliba, E., & Degiovanni, E. (1999). ERP evidence of 

developmental changes in processing of faces. Clinical Neurophysiology, 110(5), 

910–915. http://doi.org/10.1016/S1388-2457(99)00006-1 

Thierry, G., Pegna, A. J., Dodds, C., Roberts, M., Basan, S., & Downing, P. (2006). An 

event-related potential component sensitive to images of the human body. 

NeuroImage, 32(2), 871–879. http://doi.org/10.1016/j.neuroimage.2006.03.060 

Vieillard, S., & Guidetti, M. (2009). Children’s perception and understanding of 

(dis)similarities among dynamic bodily/facial expressions of happiness, pleasure, 

anger, and irritation. Journal of Experimental Child Psychology, 102(1), 78–95. 

http://doi.org/10.1016/j.jecp.2008.04.005 

Volkova, E., De La Rosa, S., Bülthoff, H. H., & Mohler, B. (2014). The MPI emotional 

body expressions database for narrative scenarios. PLoS ONE, 9(12), 1–28. 

http://doi.org/10.1371/journal.pone.0113647 

Widen, S. C. (2013). Children’ s Interpretation of Facial Expressions: The Long Path from 

Valence-Based to Specific Discrete Categories Understanding Facial Expressions. 

Emotion Review, http://doi.org/10.1177/1754073912451492 

Widen, S. C., & Russell, J. A. (2003). A closer look at preschoolers’ freely produced 

labels for facial expressions. Developmental Psychology, 39(1), 114–128. 

http://doi.org/10.1037/0012-1649.39.1.114 

Widen, S. C., & Russell, J. A. (2008)a. Children acquire emotion categories gradually. 

Cognitive Development, 23(2), 291–312. 

http://doi.org/10.1016/j.cogdev.2008.01.002 



CHILDHOOD BODY PERCEPTION: INTRODUCTION 

 

43 

Widen, S. and Russell, J. ed., (2008). Young children's understanding of others' emotion. 

In: Hand book of emotion, 3rd ed. New York: The Guilford Press, p.349. 

Yin, R. K. (1969). Looking at upside-down faces. Journal of Experimental Psychology, 

81(1), 141–145. http://doi.org/10.1037/h0027474 

Zieber, N., Kangas, A., Hock, A., & Bhatt, R. S. (2014). Infants’ Perception of Emotion 

from Body Movements. Child Development, 85(2), 675–684. 

http://doi.org/10.1111/cdev.12134 

 



Running	Head:	PERCEPTION	OF	BODY	POSTURE																																																																									1 

	

 

 

 

 

 

 

The Development of Human Body Perception During Childhood. An ERP Investigation of 

The Body-Inversion Effect. 

 

Han Ke1* & Elena Geangu2 

 

1Lancaster University 

Psychology Department 

Bailrigg, Lancaster 

United Kingdom  LA1 4YF 

 

2University of York 

Department of Psychology 

Heslington, York 

United Kingdom  YO10 5DD 

 

 

*Corresponding author 

kehan@outlook.com  



Running	Head:	PERCEPTION	OF	BODY	POSTURE																																																																									2 

	

Abstract 

 

Body perception plays a crucial role in our everyday social life. Nevertheless, in 

contrast to faces, research on the development of body perception remains limited. This study 

investigated the configural processing of the human body during childhood by using a body 

inversion event-related potentials (ERPs) paradigm. ERPs were recorded while 3-, 4-, 10-year-

old children and adults viewed human bodies and objects presented either with upright or 

inverted orientation. The P1 and N190 components were examined to determine whether 

configural information is related to body perception during childhood in comparison to 

adulthood, and whether any developmental changes occur in this respect. The results revealed 

a paradoxical body inversion effect on the N190 in children. In contrast with the finding on 

adults, inverted bodies evoked a less negative N190 than their upright versions, and this effect 

was not found for structurally similar objects. Thus, although configural information may be 

integral to human body representations during childhood, the extent and the conditions under 

which such diagnostic information is used remain to be established. Significant developmental 

changes could also be observed in the early ERP components typically associated with the 

processing of low-level visual information which is relevant for the perception of complex 

visual social stimuli. Taken together, these findings suggest that body perception continues to 

develop well into childhood and further research is required in order to specify the exact nature 

of this process.	

Keywords: body perception, body inversion, configural processing, development, 

childhood, N190, P1. 
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The Development of Human Body Perception During Childhood. An ERP 

Investigation of The Body-Inversion Effect. 

 

Introduction 

Facial expressions are often regarded as the main channel for social information. 

However, in everyday life, the human body also provides rich information relevant to social 

communication and interaction, such as identity, sex, intentions, and emotions (Cutting & 

Kozlowski, 1977; Kozlowski & Cutting, 1977; Hadjikhani & de Gelder, 2003). Especially 

when the face is not visible or when the facial features are difficult to detect, the body posture 

becomes much more informative. Recent evidence indicates that the information provided by 

the body postures is integral to social perception. For example, the incongruence between the 

body and face emotional expression is quickly detected by the human brain (Meeren, van 

Heijnsbergen & de Gelder, 2005), while the presence of the body significantly improves the 

recognition of a person (Robbins & Coltheart, 2015). However, compared to faces, the 

development of body perception is largely understudied. Characterizing the typical ontogenetic 

trajectory of human body processing is highly relevant not only to understand typical social 

development, but also for the timely detection and intervention in developmental disorders 

where processing the information conveyed by human bodies appears to be impaired, such as 

in autism spectrum disorders (Atkinson, 2009; Hubert et al., 2007; Philip et al., 2010;	Nackaerts 

et al., 2012), aggression (Munoz, 2009), and anorexia nervosa (Urgesi et al., 2012). In order to 

reduce this gap, our study aims to investigate the development of the neural correlates of human 

body perception using a cross sectional design spanning the early and mid-childhood (3- to 10-

year-old).	

Body and face perception share some similarities (de Gelder, 2006; Downing, Peelen, 

Wiggett, & Tew, 2006; Minnebusch & Daum, 2009). Human faces, as highly-observed stimuli, 

involve different perceptual strategies, some of which focus more on processing its individual 
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elements, while others on the relations between these elements that specify the facial 

configurations (Maurer, le Grand, & Mondloch, 2002; Yin, 1969). The types of configural 

relations between the face elements can be seen on a continuum (Leder & Bruce, 2000). The 

most basic, first-order relations refer to the fact that faces always have two eyes above a nose, 

and that all are located above a mouth. Another aspect of facial configurations is the structural 

information about the organization of parts in terms of the overall object as well as the spatial 

relationship between parts (Marr, 1982). More detailed relational information (i.e., second-

order), such as the exact metric distance between different face parts, was also shown to be 

relevant for processing faces as configurations (e.g., Carey, 1992). Similar configural 

information can be established for bodies as well (Reed, Stone, Grubb, & McGoldrick, 2006). 

Changing the orientation of faces and bodies by presenting them upside down appears to 

interfere with the extraction of the configural information, with faces and bodies being more 

difficult to be perceived as such. Consequently, this inversion effect has been widely used to 

investigate the perceptual strategies involved in face and body processing (see Valentine, 2013 

for a review). Although objects can also be specified in terms of their characteristic 

configurations, such information appears not to be as readily used by adults (Song et al., 2017; 

Rossion & Jacques, 2011; Stekelenburg & de Gelder, 2004). This is reflected by the reduction 

or absence of an inversion effect for objects compared to faces and bodies (Maurer, le Grand, 

& Mondloch, 2002; Yin, 1969; Reed et al., 2006; Reed, Stone, Bozova, & Tanaka, 2003).	

The use of high temporal resolution electrophysiology methods (e.g. EEG) and the 

inversion paradigm have shown that the extraction of the configural information of visual 

stimuli such as faces and bodies is fast. Moreover, body and face processing show similarities 

in the chronology of the underlying neurocognitive mechanisms.	One of the most established 

ERP components associated with both the face and body processing is the N170 (N190 for 

bodies), a negative deflection that peaks around 170ms (190ms for bodies) after the stimulus 

onset at occipito-temporal sites. The N170 shows systematically larger amplitudes for human 
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faces compared to non-face objects (Bentin, Allison, Puce, Perez, & McCarthy, 1996; Eimer, 

2000; Sagiv & Bentin, 2001; Rossion & Jacques, 2011). The broad consensus is that the larger 

amplitude of the N170 for faces is primarily driven by the early activation of their neural 

representation in the high-level visual cortex,  the perception of a stimulus as a face (Rossion 

& Jacques, 2011; Bentin, Sagiv, Mecklinger, Friederici, & von Cramon, 2002). The more a 

stimulus is perceived as a face, the larger the amplitude of the N170 (Bentin et al., 2002). When 

the diagnostic information used to perceive a stimulus as a face is more difficult to process, the 

N170 can be delayed or its amplitude increased, most likely reflecting a slowed down and more 

effortful processing in the neural population coding for faces (Bentin et al., 1996; Rossion et 

al., 1999; Jacques & Rossion, 2007; Perrett et al., 1998). For example, rendering the configural 

information more difficult to access by presenting faces up-side down leads to larger amplitude 

and delayed N170 compared to up-right oriented faces (Bentin et al., 1996; Rossion et al., 

1999). When the diagnostic information is too distorted, and the stimulus is not perceived 

anymore as being a face, the amplitude of the N170 is usually significantly attenuated (Rossion 

& Caharel, 2011). A larger N190 is also recorded for the inverted compared to the upright 

bodies, showing that the relation between the parts specific to body configurations is processed 

fast and contributes to the activation of the corresponding neural representations (Righart & de 

Gelder, 2008; Stekelenburg & de Gelder, 2004; Minnebusch et al., 2008; Minnebusch et al., 

2010).	

Although the N170/N190 was shown to be particularly sensitive to the perception of 

configural information characteristic to human faces and bodies, the extraction of the low-level 

visual properties of the stimuli which ultimately contribute to the perception of configural 

information happens chronologically earlier in the processing stream. The positive ERP 

component peaking around 100ms from stimulus onset (P1) was shown to be sensitive to the 

low-level visual properties of the stimuli such as luminance, color, contrast, or spatial 

frequency (Regan, 1989) and it is thought to originate mainly from the striate and lateral 
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extrastriate visual areas (Clark & Hillyard, 1995; Di Russo, Martinez, Sereno, Pitzalis, & 

Hillyard, 2002; Halgren, Raji, Marinkovic, Jousmaki, & Hari, 2000; Tanskanen et al., 2005; 

Tarkiainen et al., 2002). The P1 is not usually modulated by the orientation of the stimuli. Thus, 

differences in the P1 between stimuli are regarded as reflecting their low-level visual properties 

(Rousselet et al., 2005).	

While many investigations documented the development of face perception and the 

associated ERP components throughout childhood (de Haan & Nelson, 1999; Taylor, et al., 

1999; Halit, de Hann, Johnson, 2003; Itlier & Taylor, 2004; Kuefner et al., 2010; Peykarjou, 

Westerlund, Cassia, Kuefner, & Nelson, 2013), less than a handful provided similar evidence 

for body perception (Gliga, & Dehaene-Lambertz, 2005). One could suggest that given their 

described similarity, the knowledge about the ERP correlates of face perception development 

could be extrapolated to human bodies. However, at least in adults, the cortical sources of the 

N170 elicited by faces and bodies are partially distinct (Thierry et al., 2006; Taylor et al., 2010; 

Itier & Taylor, 2004; Rossion & Jacques, 2011). While the N170 in response to human faces 

was associated with the activation of brain areas selectively involved in processing this type of 

stimuli (e.g., the fusiform face area (FFA) - Mnatsakanian & Tarkka, 2004; Rossion & Jacques, 

2011; the posterior superior temporal sulcus (pSTS) - Itier & Taylor, 2004; Watanabe et al., 

2003; Rossion & Jacques, 2011), it is possible to trace the source of the N190 to regions 

corresponding to the extrastriate body area (EBA – Thierry et al., 2006; Peelen & Downing, 

2007) which is particularly responsive to this type of stimuli. Such a dissociation in the cortical 

sources for the N170/N190 prevents the generalization of the findings from the 

electrophysiological investigations into face perception to understanding body perception 

development, and recommends further investigation. In the current experiment, we studied the 

development of human body perception by analyzing the effect of orientation inversion on the 

N190 ERP component.	
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Behavioral and functional neuroimaging evidence indicates that human body 

perception development follows a protracted trajectory spanning across the entire childhood. 

Soon after birth, infants appear to be sensitive to the biophysical properties of the body. For 

example, neonates visually discriminate between biomechanically possible and impossible 

hand movements (Longhi et al., 2015). Using looking time paradigms which manipulate the 

body orientation, Zieber and colleagues (2010, 2015) showed that at the age of 3-months, 

infants visually discriminate changes in human body shape, size, and the organization of the 

body parts when the bodies are presented upright but not when inverted (Zieber et al., 2010; 

Zieber et al., 2015). Only one study analyzed infants’ ERP responses at this age in order to 

explore potential similarities with adults in the chronology of the underlying processing stream 

(Gliga & Dehaene-Lambertz, 2005). Three-month-old’s ERP responses to images of typical 

upright human bodies were contrasted to images of human bodies in which the structural 

information was altered by relocating the limbs in relation to the body trunk. Although the 

infant corresponding N190 (N290) was elicited by the perception of human bodies, this 

component was not sensitive to manipulations of structural information as it was shown for 

adults. Rather, sensitivity to configural information was shown for 3-months-old infants only 

at a later stage of processing, indexed by the positive ERP component P400. These results 

suggest that at this age the behavioral discrimination between manipulations of different body 

properties relies on immature perceptual representations of human bodies. Later on, around the 

age of 6-8- months, infants seem to extract more complex social information from body 

postures, such as emotional expressions, which may rely on processing the relations between 

body parts (Zieber et al., 2014a; Zieber et al, 2014b; Missana et al., 2014). The ERP 

investigations conducted at this age show that the infant correspondent N190 (N290) is 

sensitive to variations in emotional body postures (Missana et al., 2014), but no systematic 

experimental manipulations (e.g., inversion of orientation) were conducted to help 
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understanding at which level of processing are the aspects of human body configuration taken 

into account.	

Behavioral evidence indicates that the incipient abilities to process human bodies 

described in infancy continue to mature well beyond this age. For example, 8- to 10-year- old 

children are less accurate and slower than adults in recognizing people based on their bodies 

(Robbins & Coltheart, 2015). Nevertheless, the exact nature of this development is unclear. 

fMRI studies show that the neural network functionally associated with human body processing 

in adults (i.e., the fusiform body area - FBA, the superior temporal sulcus - STS, the amygdala, 

the inferior parietal lobule - IPL, and the extrastriata body area – EBA; Downing et al., 2001; 

Peelen & Downing, 2007; Pitcher et al., 2009; de Gelder & de Borst, 2015) is selectively 

responsive to static and dynamic human bodies by the age of 6- years (Ross et al., 2014; Peelen 

et al., 2009). This indicates that some degree of cortical specialization for processing human 

bodies has been reached. However, this may not be fully mature yet, as the activation of the 

body circuitry in the right hemisphere continues to show an increase in activation beyond this 

age, and does not reach adult levels by the age of 11 years (Ross et al., 2014). These studies 

are important because they indicate that quantitative changes in the neural circuitry underlying 

body processing continue well into childhood. However, due to their limited temporal 

resolution, fMRI studies are less informative with regards to any potential changes in the 

perceptual strategies or speed of processing. For example, it is not yet clear whether at different 

ages children engage in the same manner in processing human bodies as configurations of 

elements. Thus, further investigations into the development of the neurocognitive mechanisms 

underlying human body processing are required.	

The goal of the current study was to test age-related changes in both children’s and 

adults’ ERP responses to human bodies and their sensitivity to configural information. For this 

purpose, we randomly presented 3-, 4-, and 10-year-old children, as well as adults with static 

images of female and male human bodies with neutral postures and images of structurally 
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similar objects (i.e., hat stands) in upright and 180° inverted orientation. The fact that previous 

studies did not find evidence for a change in the effect of face inversion on the N170 between 

the ages of 4 and 10 (Taylor, Batty & Itier, 2004) partially motivated the current choice of age 

groups. Due to the reduced ability of the very young children included in this study to follow 

complex instructions and to provide motor responses on request, we kept this task passive. This 

would also facilitate potential future comparisons with the results from infant studies. We were 

particularly interested in the N190 and the P1 ERP components since these were previously 

shown to be sensitive to potential differences in processing between human bodies and other 

objects (Thierry et al., 2006; Taylor et al., 2010; Stekelenburg and de Gelder, 2004). We 

anticipated that in both children and adults observing human bodies compared to objects will 

elicit an increased amplitude and earlier peak of the N190. If the N190 reflects the activation 

of the neural representation of bodies in high-level visual cortex based on information related 

to configural relations between body-parts, we anticipate an inversion effect on the N190. 

Specifically, a more negative N190 is expected for the inverted compared to upright bodies. 

An inversion effect on the N190 is not expected for objects. Shorter latencies of the P1 for 

human bodies compared to objects were previously reported (Thierry et al., 2006), and we 

anticipate to find these differences as well, most likely reflecting the extraction of the low-level 

visual properties relevant for later stimulus categorization (Rossion & Jacques, 2008). The 

comparisons across children age groups and with the adult group will allow conclusions about 

any potential developmental changes in the morphology of the components of interest, 

differences in speed of processing, and reliance on configural information. 	

	

Method 

Participants 
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The final analysis included 45 children and 16 adults: 3-year-old, N = 16, 8 females, 

Mage = 35.25 months (SDage = 4.34); 4-year-old, N = 15, 9 females, Mage = 54.93 months (SDage 

= 6.65); 10-year-old, N = 14, 8 females, Mage = 128.29 months (SDage = 6.35); adults, N =16, 

5 females, Mage=25.13 (SDage = 3.81). Additional 25 participants (3-year- old, N = 16; 4-year-

old N = 8; 10-year-old, N = 1; adults, N= 1) were tested but not included in the analysis due to 

technical issues (N = 5) or insufficient number of artifact free trials (N =23). The participants 

were recruited from an urban area in North-West England. For children, parents gave informed 

written consent for their participation in the study before the procedure began. Children also 

assented for their participation in the study. Adult participants gave informed written consent 

before the procedure began. The procedure followed the ethical standards (the Declaration of 

Helsinki, BMJ 1991; 302:1194) and was approved by the University Ethic Committee. 

Stimuli and procedure 

The stimuli consisted of static grayscale images of human bodies and objects with 

similar structure (i.e., hat stands) presented in upright and inverted position (upright human 

bodies – UB; inverted human bodies – IB; upright objects – UO; inverted objects – IO). The 

human body stimuli included 10 different exemplars of both male (N = 5) and female (N = 5) 

bodies displaying an emotionally neutral posture. These stimuli were selected from the Bodily 

Expressive Action Stimulus Test (BEAST, de Gelder & Van den Stock, 2011). The object 

stimuli included 10 different exemplars of hat stands which were selected from images found 

on-line (Figure 1). Both human body and object stimuli were displayed on a grey background, 

with a size of 142 x 312 pixel, subtending a visual angle of 3.18°× 8.67° (horizontal × vertical 

and a viewing distance of 70 cm. Stimuli were also normalized for luminance (~180 cd/m2). 

Within a single trial, the stimulus was presented for 800ms, followed by a central 

fixation cross on a grey background with a duration varying randomly between 1200 and 

1600ms. This is to avoid the participant’s neural response biased by their expectation to a set 
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interval. In order to maintain participants’ attentiveness throughout the task, a black or red star 

on a grey background was presented randomly every 4 to 6 stimuli before the fixation cross. 

Participants were asked to press a button as soon as they saw a star on the screen. The 

presentation of the star lasted 1000ms irrespective of whether the participant pressed the button 

or not (see Figure 1 for an example of the trial structure). 

All stimuli (upright human bodies – UB; inverted human bodies – IB; upright objects 

– UO; inverted objects – IO) were presented with equal frequency (20/condition) across several 

blocks. In order to avoid excessive movement due to limited attention span and maintain the 

quality of the data recording, younger children were presented with fewer maximum number 

of trials than the older children and adults. Three- and 4-years-old group watched a maximum 

of 240 trials (3 blocks, 80 trials/block). Ten-year-old children and adults watched a maximum 

of 320 trials (4 blocks; 80 trials/block). 
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Figure 1. Example of trial structure and the stimuli used in the study: upright human 

body UB), inverted human body (IB), upright object (UO), inverted object (IO).  

EEG Recording and Analysis 

The ERPs were recorded continuously using a 128-electrode HydroCel Geodesic 

Sensor Net (Electrical Geodesic Inc., Eugene, OR) and amplified using an EGI NetAmps 300 

amplifier. The signal was referenced online to the vertex electrode (Cz) as default for the EGI 

system, and a bandpass filter of 0.1–100 Hz was applied. The data were sampled at 500 Hz. 

Impedances were checked prior to the beginning of the recording and they were considered 

acceptable if lower than 50 Ω as recommended by the EGI system. A digital video of the child 

was recorded synchronously with the EEG, in order to identify the eye movements and visual 

attendance to the stimuli. 

The raw EEG data were further processed offline using NetStation v4.5.4 (Eugene, OR). 

The signal was band-pass filtered (0.3–30Hz), and the ERP trials were segmented with a 200ms 

baseline and 800ms following stimulus onset. To eliminate artifacts, different methods are 

applied for infants’ and adults’ data. For adults, segmented data were automatically rejected 

whenever the signal exceeded ± 100 μV for eye-movement and ± 140 μV for eye-blinks at any 

electrode; data were further checked through visual inspection for eye-movements, eye-blinks 

and other body movement artifacts not detected by the automated algorithm. Trials were 

excluded if more than 12 (approximate 10% for the 128-channel net) channels that the signal 

exceeded ± 80 μV, and also if the participant did not attend visually to the stimulus (as indicated 

by the digital video recording). For infants, segmented data were automatically rejected 

whenever the signal exceeded ± 200 μV at any electrode, due to the nature of the data. The data 

were further checked through visual inspection for eye-movements, eye-blinks and other body 

movement artifacts not detected by the automated algorithm. Trials were excluded if more than 

18 (approximate 14% for the 128-channel net) channels that the signal exceeded ± 80μV, and 

also if the participant did not attend visually to the stimulus (as indicated by the digital video 
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recording). A minimum of 10 trials/condition was required in order to include a participant in 

the analysis. The average number of trail’s remaining in each condition for each age group is 

presented in Table 1.	

Table 1 	

Number of the trials included in the analysis for each condition across the 3 age groups	

Age Group Mean (SD) of the numbers of trials 

 UB IB UO IO 

3-year-old 22.69 (8.28) 22.06 (7.11) 22.56 (7.30) 22.94 (7.78) 

4-year-old 32.47 (11.11) 32 (13.82) 31.13 (12.02) 31.00 (13.47) 

10-year-ol 42.07 (14.42) 46.36 (15.05) 43.71 (13.61) 44.00 (14.12) 

Adult 58.94 (15.08) 52.64 (14.54) 60.69 (13.50) 61.19 (12.59) 

 

Note. UB = Upright Body, IB = Inverted Body, UO = Upright Object, IO = Inverted 

Object. Each condition contains 80 trials. 

Based on previous literature (Stekelenburg and de Gelder, 2004; Peykarjou et al., 2013) 

and visual inspection of the data, we chose different regions of interests (ROIs) for children 

and adults for analysis. The posterior leads as ROIs for the analysis of the P1 and N190 

components are: children, left - 66, 65, 69; right - 84, 90, 89 (Figure 2); adults, left - 58, 51; 

right - 96, 97 (Figure 3). The visual inspection of the average waveforms for each individual 

child participant revealed a large variability in the latency to the peak value of the N190 

component. Such variability was previously reported in studies using similar paradigms for the 

investigation of face processing during childhood (Kuefner, Heering, Jacques, Palmero-Soler, 

& Rossion, 2010). In order to accommodate these individual differences, for children we 

followed the existent methodological guidelines (Kuefner et al, 2010), and calculated the peak 

of each component as the maximum voltage within a ~50ms window defined separately for 

each participant by visual inspection of the waveforms. The same temporal window was used 
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for all conditions within the same participant. We further calculated the latency for the peak 

voltage of each component defined this way. A bifid peak on N190 was also observed for some 

of the participants (N = 24) across all the children groups, as it was previously reported for face 

processing (Hirai and Hiraki, 2015; Kuefner et al., 2010; Taylor, Batty and Itier, 2004). In these 

cases, the N190 was considered as the first negative deflection after the P1, even if this 

deflection was smaller in amplitude than the second one (Kuefner et al., 2010). For the adult 

group, the time windows for P1 (100-150ms) and N190 (150-200ms) were selected based on 

the previous literature (Stekelenburg and de Gelder, 2004) and visual inspection. The mean 

amplitude for each component was calculated by averaging all data points within the time 

window defined as described above. 

Considering the differences in scalp location of the ROIs, the mean amplitude, peak 

amplitude, and latency to the peak were analyzed separately for children and adults. A 2 

(Stimuli: human body, object) × 2 (Orientation: upright, inverted) × 2 (Hemisphere: left, right) 

× 3 (Age: 3-, 4-, and 10-year-old) mixed ANOVA with age as a between factor was conducted 

for children. A 2 (Stimuli: human body, object) × 2 (Orientation: upright, inverted) × 2 

(Hemisphere: left, right) repeated measures ANOVA was conducted for adults. Holm–

Bonferroni correction was used for all Post-hoc tests. The results were interpreted at the 

significance threshold of p = .05. 
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Figure 2. Grand averaged ERPs of children for upright body (UB), inverted body (IB), 

upright object (UO) and inverted object (IO) from 6 electrodes (left: 66, 65, 69; right: 84, 90, 

89).  Please note that the negative is plotted upwards. 

 

Figure 3. Grand averaged ERPs of adults for upright body (UB), inverted body (IB), upright 

object (UO) and inverted object (IO) from 4 electrodes (left: 58, 51; right: 96, 97).  Please note 

that the negative is plotted upwards. 

 

Results 

Children 

P1 - Mean amplitude 
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The analysis revealed a main effect of Age, F(2, 45) = 12.76, p <.001, ηp2 = .207), 

showing that the mean amplitude of the P1 is larger for the 10-year-old children (M =10.46 µV, 

SD =4.59) compared to both the 3-year-olds (M = 5.53 µV, SD = 4.82, p < .001) and the 4-

year-olds (M =6.08 µV, SD =3.67, p < .001) (See Figure 4). No significant differences were 

observed between the two younger age groups (p = .320).  

 

 

Figure 4. Grand averaged ERPs of all three age groups across all conditions. Please 

note that the negative is plotted upwards 

We also found significant interactions between Stimuli × Hemisphere, F(1, 45) = 8.26, 

p = .006, ηp2 = .006); Stimuli × Age, F (1, 45) = 4.84, p = .013, ηp2 = .018), as well as a Stimuli 

× Hemisphere × Age, F (2,45) = 6.05, p = .005, ηp2 = .005). In order to disentangle this three-

way interaction, Stimuli × Hemisphere repeated measures ANOVAs were performed 

separately for each age group. For the 3-year-old group, a significant interaction Stimuli × 

Hemisphere was observed, F(1, 15) = 13.04, p = .003, ηp2 = .027. Post-hoc pairwise 

comparisons revealed that this interaction is driven by a difference in the P1 mean amplitude 

between hemispheres in response to body stimuli: the mean amplitude recorded in the right 

hemisphere for the body stimuli was larger (M = 6.92 µV, SD = 4.55) than in the left hemisphere 
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(M = 4.79 µV, SD = 5.69), p = .039. For the 10-year-old children, a main effect of stimulus 

was observed, F(1, 14) = 15.48. p = .002, ηp2 = .047), showing that across both hemispheres, 

body stimuli elicited larger P1 mean amplitude (M = 11.4 µV, SD = 4.61) than the hat-stand 

stimuli (M = 9.49 µV, SD = 4.41). The analysis further revealed an Orientation × Hemisphere 

interaction, F(1, 45) = 6.08, p = .018, ηp2 = .002), which was further qualified by an interaction 

with age: Orientation × Hemisphere × Age, F(2, 45) = 4.62, p = .015, ηp2 = .015. In order to 

disentangle this interaction, Orientation × Hemispheres repeated measures ANOVAs were 

performed separately for each age group. For the 3-year-old age group, a significant Orientation 

× Hemisphere interaction was found, F(1, 15) = 6.54, p = .022, ηp2 = .010, but no significant 

pairwise comparisons emerged. No significant effects were found for the older age groups 

(ps > .062).   	

P1 - Peak amplitude 

The analysis revealed a main effect of Age (F(2, 45) = 10.54, p = .001, ηp2 = .189), 

Stimuli (F(1, 45) = 4.77, p = .035, ηp2 = .008), and their interaction Stimuli × Age (F(2, 45) = 

4.54, p = .016, ηp2 = .016). Overall, 10-year-olds recorded larger P1 peak amplitude (M = 15.12 

µV, SD = 5.73) than the younger 3- (M = 9.97 µV, SD = 5.65) and 4-year-old (M = 9.73 µV, 

SD = 4.14) children, ps < .001 (See Figure 5). For the 10-year-old children F(1, 14) = 15.18, p 

= .002, ηp2 = .048), but not for the younger age groups (ps > .223), the peak P1 amplitude 

elicited by body images (M = 16.35 µV, SD = 5.76) is larger than that elicited by object images, 

M = 13.88 µV, SD = 5.48 (Figure 5).  

The main effect of Stimuli was also qualified by a further interaction with Hemisphere, 

F(1, 45) = 5.71, p = .021, ηp2= .004. The Post-hoc analysis shows that the peak P1 amplitude 

elicited by body images is larger over the right (M = 12.86 µV, SD = 6.22) than over the left 

hemisphere (M = 11.05 µV, SD = 5.82), p = .010. Moreover, on the right hemisphere, the peak 

P1 amplitude is larger for bodies (M = 12.86 µV; SD = 6.22) than for objects (M = 11.26 µV, 

SD = 5.94), p = .010.	
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We also observed an Orientation × Hemisphere × Age interaction, F(2, 45) = 5.53, p 

= .007, ηp2 = .003. An Orientation × Hemisphere interaction was found for the 4-year-old group 

(F(1, 15) = 5.81, p = .03, ηp2 = .007) and 10-year-old group (F (1, 14) = 6.73, p = .022, ηp2 

= .003), but no significant pairwise comparisons emerged (ps > .051).  

P1 - Latency 

The analysis revealed a Stimuli × Orientation interaction, F(1, 45) = 5.68, p = .022, ηp2 

= .008, which was further qualified by an interaction with age: Stimuli × Orientation × Age 

interaction, F(2,45) = 5.61, p = .007, ηp2 = .015, see Figure 6. This interaction was followed up 

by Stimuli × Orientation repeated measures ANOVAs of each age group. A significant Stimuli 

× Orientation interaction was observed for the 3-year-old children, F(1, 16) = 12.14, p = .003, 

ηp2 = .035, but not for the older age groups, ps > .859. The post-hoc analysis showed that for 

the 3-year-old children, the latency to the peak P1 amplitude is longer (p = .002) for the inverted 

(M = 175.5 ms, SD = 36.72) than for the upright bodies (M = 158.52 ms, SD = 37.98), and 

longer (p = .011) for the inverted bodies than for the inverted objects (M = 154.65 ms, SD = 

37.15). No significant differences were recorded in terms of the latency to the peak P1 

amplitude between upright and inverted objects (p = .124). An Orientation × Hemisphere 

interaction (F(1, 45) = 5.75, p = .021, ηp2 = .005) was also observed, but the pairwise 

comparisons failed to show any significant differences (ps > .101).	
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Figure 5. Left: Mean and peak amplitude of the P1 component in response to Bodies and 

Objects for all three age groups. Right: Latency of the P1 peak amplitude in response to Bodies 

and Objects in Inverted and Upright conditions. 

N190 - Mean amplitude 

The analysis of the N190 mean amplitude revealed a main effect of Age, F(2, 45) = 

4.26, p = .021, ηp2 = .086, showing that the 10-year-old children manifest a larger mean 

amplitude (M = 8.39µV, SD = 4.82) for this component in comparison to both 3- (M = 5.79 µV, 

SD = 5.85; p < .001) and 4-year-old children (M = 4.64 µV, SD = 4.71; p < .001) (See Figure 

4).  The mean N190 amplitude was similar for the two younger age groups (p = .096). 

The N190 mean amplitude was also found to vary as a function of stimulus type and 

orientation (Stimuli × Orientation, F(1, 45) = 5.07, p = .030, ηp2 = .009). Across all age groups 

included in the analysis, inverted bodies elicited greater mean N190 amplitude (M = 7.00 µV, 
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SD = 5.63) than the upright bodies (M = 5.48 µV, SD = 5.65), p = .028, while this differentiation 

was not observed for the hat-stands (p = .498) (See Figure 6 and 7).	

We also observed a Stimuli × Hemisphere interaction, F(1, 45) = 12.98, p = .001, 

ηp2= .009, which was further qualified by an interaction with age: Stimuli × Hemisphere × Age, 

F(2, 45) = 4.63, p = .015, ηp2= .006. To disentangle these effects, the three-way interaction was 

followed up by Stimuli × Hemispheres repeated measures ANOVAs performed separately for 

each age group. A significant Stimuli × Hemisphere interaction was found for 3-year-old 

children, F(1, 16) = 15.05, p = .001, ηp2= .030) but not for the two older age groups (p > .119). 

Pair-wise comparisons revealed that for 3-year-old group, the mean N170 amplitude elicited 

by body stimuli over the right hemisphere (M = 7.54, SD = 5.70) is larger than that over the 

left hemisphere (M = 4.15µV, SD = 6.45), p = .010.	

N190 - Peak amplitude  

Similar with the results obtained for the mean amplitude, the peak N190 amplitude also 

varied with Age, F(2, 45) = 4.08, p =.024, ηp2 =.074. Post-hoc comparisons showed that the 

peak N170 amplitude recorded for 10-year-old children is greater (M = 4.47 µV, SD = 4.73) 

than the one recorded for 3-year-old (M = 1.54 µV, SD = 6.28, p < .001) and 4-year-old (M = 

1.07µV, SD = 5.09, p <.001) children. No significant differences emerged between the peak 

N170 amplitude recorded for the two younger age groups (p = .510). 

The analysis revealed a Stimuli × Orientation interaction, F (1, 45) = 6.58, p = .014, 

ηp2=.014. Irrespective of the age group, the inverted bodies elicit higher peak N170 amplitude 

(M = 3.10μV, SD = 6.06) than the one elicited by the upright bodies (M = 1.33µV, SD = 5.85), 

p = .014. No other significant differences were observed (ps > .112) (See Figure 6 and 7)	

An interaction between Stimuli × Hemisphere, F (1, 45) = 22.70, p < .001, ηp2 =.016, 

was also observed, which was qualified by a further interaction with age, Stimuli × Hemisphere 

× Age, F(2, 45) = 8.08, p = .001, ηp2 =.012. This three-way interaction was followed up by 

Stimuli × Hemisphere ANOVA performed separately for each age group. A significant 
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interaction Stimuli × Hemisphere was obtained only for the 3-year-old children, F(1,16) = 27.8, 

p < .001, ηp2 =.054). Pair-wise comparisons suggested that the peak N190 amplitude elicited 

by body images is greater over right hemisphere (M = 3.09 µV, SD = 6.29) than left hemisphere 

(M = -0.95 µV, SD = 6.93), p = .003. Moreover, on the left hemisphere, the peak N190 

amplitude elicited by object images (M = 2.86 µV, SD = 5.50) is more positive than that 

recorded in response to body images (p = .011). Other comparisons failed to show significance 

(ps > .110). 

N190 - Latency 

In terms of latency to the peak N190 amplitude, the analysis showed a main effect of 

Orientation, F(1, 45) = 8.36, p = .006, ηp2 =.006). Irrespective of age group, all stimuli 

presented in the inverted orientation elicited faster latency of N190 (M = 212.10 ms, SD = 

41.10) than the stimuli presented with upright orientation (M = 218.10 ms, SD = 38.99) (See 

Figure 7).  	
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Figure 6. Grand averaged ERPs of the N190 and P1 components for body and object 

in upright and inverted conditions across all 3 age groups. 

 

Figure 7. Mean amplitudes and peak (the most negative going), and latency to the peak 

amplitude of the N190 (with standard error) in response to body and object in upright and 

inverted conditions.  

 

Adults P1 

No significant main effects or interactions were found for the mean, peak and latency 

analysis (ps > .092). 

N190 - Mean amplitude  

The mean analysis revealed a main effect of Orientation, F(1, 15) = 5.642, p = .031, 

ηp2 = 0.045. The upright images (M = 0.540 µV, SD = 1.792) elicited greater mean amplitude 

than invert images (M = -0.003 µV, SD = 1.792) regardless of stimulus category. 

N190	-	Peak amplitude  

The peak analysis revealed a main effect of Orientation, F(1, 15) = 8.641, p = .010, 

ηp2 = 0.049; which was further qualified by a Stimuli × Orientation interaction, F(1, 15) = 

5.795, p = .029, ηp2 = 0.031. Post-hoc comparisons showed that inverted bodies elicited 
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higher negative amplitude (M = -2.260 µV, SD = 2.664) than upright bodies (M = -1.100, SD 

= 1.964; p < .001). Furthermore, inverted object images (M = -1.376 µV, SD = 2.211) elicited 

greater peak amplitude than inverted body images (p = .009) (see Figure 3). 

N190	-	Latency amplitude  

The latency analysis revealed a significant Orientation × Region interaction, F(1, 15) 

= 4.673, p = .047, ηp2 = 0.022. Post-hoc comparisons found that in the right hemisphere 

upright images (M = 171.313 ms, SD = 15.447) elicited faster latency than inverted images 

(M = 177.063 ms, SD = 15.854; p =.009), regardless of stimulus category. 

 

Discussion 

The aim of the current study was to investigate the development of human body 

perception in 3- to 10-year-old children, by testing the effect of stimulus orientation on the P1 

and N190 ERP components. Images of human bodies and structurally similar objects – hat 

stands – were randomly presented to the participants in a passive paradigm. In children, both 

images of human bodies and hat stands elicited a positive ERP component which peaked at 

approximately 153ms, followed by a negative going component peaking approximately at 

215ms. Given their morphology and latency, these components are most likely the 

correspondents of the adult P1 and N190, respectively. The analysis revealed that the N190 is 

particularly sensitive to manipulations of human body orientation for all age groups included 

in the analysis; however, the inversion effect on N190 is presented in a paradoxical way 

between the adults and children. Inverted body images elicited a greater N190 than upright 

ones in adults, whereas in children this body inversion effect performs in an opposite way. The 

amplitude of both P1 and N190 was found to change with age from 3-10 years; the topography 

of the P1 and N190 amplitude for adults and children are very different as well. These findings 

are discussed in terms of their implications for understanding the development of human body 

perception in childhood in comparison to adults.	
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Previous studies with adult participants provided mixed results for the presence of a 

body effect on the N190, as reflected in an increased amplitude and faster latencies to human 

bodies compared to images of objects (Stekelenburg & de Gelder, 2004; Minnebusch, Suchan, 

& Daum, 2008; Thierry et al., 2006; Taylor et al., 2010; Gliga & Dehaene-Lambertz, 2004). In 

our study, the N190 amplitude in response to the human bodies and images of objects for all 

age groups is in line with the findings of Stekelenburg & de Gelder (2004). However, for the 

P1 in children, we recorded a larger amplitude for body stimuli compared to the hat stands, and 

this effect tended to be lateralized to the right hemisphere. The P1 differentiation is similar to 

the one reported in children and adults to the different responses towards face and object stimuli 

(e.g., Rossion & Caharel; Itier & Taylor 2004; Itier & Taylor, 2004; Kuefner et al., 2010), as 

well as between non-human mammal bodies and object stimuli (e.g. Itier & Taylor, 2004). 

Unlike the differences in the P1 latency between human bodies and objects reported in adults 

(Thierry et al., 2006), the P1 in our study peaked with similar latency for both categories of 

stimuli across all age groups. P1 is usually sensitive to the low-level visual properties of the 

stimuli (Regan, 1989) and it is thought to originate mainly from the striate and lateral 

extrastriate visual areas (Clark et al., 1995; Di Russo et al., 2002; Halgren et al., 2000; 

Tanskanen et al., 2005; Tarkiainen et al., 2002). Given that the P1 differences were recorded 

irrespective of orientation, they most likely reflect naturally occurring variations in the low-

level visual properties of the human bodies and hat-stands in children.	

Inversion effect 

Manipulating the orientation of human bodies by presenting them upside down 

interferes with the extraction of diagnostic information, such as the configuration of body. 

While inverted stimuli may be still perceived as human bodies (Reed et al., 2006), the activation 

of the specific representation is usually delayed and more effortful. The N190, which is thought 

to reflect the activation of the representations of the human bodies in high-level visual cortex, 

was previously found to be sensitive to such manipulations (Stekelenburg & de Gelder, 2004; 
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Minnebusch, Suchan, & Daum, 2008). Higher negative amplitudes and longer latencies of the 

N190 for the inverted compared to upright images of human bodies was interpreted as evidence 

of more effortful extraction of the configural information which is essential for the activation 

of the corresponding neural representations (Minnebusch, Suchan, & Daum, 2008). 

In our study, the body-selective inversion sensitivity is found on the N190 peak on adult 

participants; inverted bodies elicited greater N190 amplitude than upright bodies, and such 

effect was not observed in response to objects. This finding replicated the previous literature 

(Stekelenburt & deGelder, 2004; Minnebusch, Suchan, & Daum, 2008; Minnebusch et al., 

2010), and clarified the body inversion effect of adults’ configural processing of human bodies. 

That is, similar to facial perception, inverting whole human bodies influenced the cognitive 

processing of human bodies in adults. The adult N190 latency showed general orientation 

sensitivity to both bodies and objects; the absence of the body-selective inversion effect here 

is also in agreement with the findings by Minnebusch and colleagues (2010) using similar 

action-neutral body images. They found the N190 latency is unaffected by the degree of the 

rotation of the bodies, in contrast to findings with faces (Jacques and Rossion, 2007). 

Therefore, our findings on adult N190 latency also indicated that different processing 

mechanisms are involved in body and face processing. No inversion effect was observed on P1 

in adults, which is also in line with the previous adult finding that P1 is not sensitive to body 

inversion (Righart & de Gelder, 2007). 

 For the children, our findings show that children from 3- to 10-years of age recorded 

significant differences in the amplitude of the N190 component between the upright and 

inverted human bodies which was not extended to structurally similar objects. In line with some 

of the findings reported in adults (Minnebusch, Suchan, & Daum, 2008), but in contrast to the 

adult findings in the current study and other literature (Stekelenburg & de Gelder, 2004; 

Minnebusch, Suchan, & Daum, 2008), upright human bodies elicited a greater N190 (increased 

negative going amplitude) compared to their inverted presentations. Thus, for children, 
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although the manipulation of orientation affected the amplitude of the N190 selective for the 

human bodies and not for the hat-stands as it was predicted, the direction of the effect is 

opposite to the one typically reported in adults. The child N190 for inverted bodies was also 

slightly faster (~ 8ms) than for upright bodies, but similar in latency with that recorded for 

inverted objects. A greater N190 in response to upright compared to inverted faces was also 

found in 4- to 10-year-old children (Taylor, Batty, & Itier, 2004). Interestingly, adults with 

developmental prosopagnosia show the same paradoxical inversion effect on the N170/ N190 

for both face and human bodies (Righart & de Gelder, 2007). One possible explanation for 

these findings is that up to a certain age, children’s perception of faces and bodies makes more 

flexible use of configural information (Campbell, 1999; Mondloch, Le Grand, & Maurer, 

2002), with different perceptual strategies being equally efficient dependent on the task and 

context. For example, 8-to-11-year-old children recognize with similar accuracy the identity of 

both upright and inverted faces and the advantage for the upright faces only occurs after the 

age of 12-years (Mondloch et la., 2002). While behavioral responses could not be recorded in 

the current study due to the youngest participants’ age, the similar paradoxical bodily inversion 

effect on N190 in children and the presence of the typical bodily inversion effect on N190 in 

adults suggests that such findings in faces may apply to bodies as well.  

Some limited effects of body orientation were also observed at the earlier stages of 

processing reflected by the child P1. For the youngest 3-year-old children only, the P1 in 

response to inverted human bodies peaked approximately 20ms later compared to both upright 

bodies and inverted objects. The effect of body orientation did not extend to the P1 amplitude, 

which was similar for both upright and inverted presentations. Manipulations of the stimulation 

in the upper and lower visual field by changing the balance of simple parameters such as 

contrast are known to influence the latency of the P1 (Di Russo et al., 2002; Jacques & Rossion, 

2009). These findings indicate that the processing of naturally occurring differences in the low 

level visual properties between the lower and the upper part of stimuli, and not necessarily the 
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processing of the structured information, might drive the orientation effect on the P1 (Rossion 

& Caharel, 2011). One explanation for why this effect was only present in the younger children 

is that with increased experience in processing human bodies, children more readily detect the 

upper part of the torso even when the location in the visual field has changed. Further 

investigations on human body perception in which the visual properties are systematically 

manipulated and the gaze dynamic is tracked are needed in order to elucidate the significance 

of these findings.  

Developmental effects 

Both the P1 and the N170 showed more defined morphology with age, consistent with 

the previous reports for the face processing domain (Kuefner et al., 2010; Taylor, Batty, & 

Itier., 2004). The first visual evoked potential P1 did not change in latency across the 3 age 

groups, but its amplitude increased dramatically between the ages of 4 and 10-years. These age 

differences were similar for both bodies and objects. Importantly, they did not vary as a 

function of stimulus orientation, suggesting that they are potentially driven by the 

psychophysical properties of the stimuli. A sharp increase in P1 amplitude in early childhood 

was previously shown to be followed by a significant linear decline which continues until 

adulthood (van den Boomen et al., 2015). This trend can also be observed in our study. 

However, the exact source of these changes is not known. A decrease in EEG power, possibly 

due to an age-related reduction in gray matter volume (Whitford et al., 2007) and synaptic 

density (Huttenlocher, 1990), as well as changes in the conductivity of the underlying tissues 

and the general level of brain activity have all been proposed to be linked with changes in the 

P1 amplitude during childhood (Kuefner et al., 2010). In our study, across all children groups, 

the perception of bodies led to a larger P1 than the perception of objects. This effect was more 

specific to the right hemisphere, although the older 10-year-old children tended to record it 

bilaterally. Significant developments in the processing of the low-level visual properties of the 

stimuli occur during childhood (e.g., van den Boomen, Smagt & Kemner, 2012; van den 
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Boomen et al., 2015) with possible consequences on how human bodies and objects are 

processed. Further studies are thus needed in order to elucidate the interaction between vision 

development and the perception of social stimuli during childhood.  

The changes with age in the amplitude of the N190 largely mirrored those found for the 

P1, with 10-year-old children showing less negative (higher) mean and peak amplitude than 

both 3- and 4-year-olds. These findings are in line with those reported for face processing 

(Taylor et al., 2004; Kuefner et al., 2010), and are most likely partially due to the developmental 

changes in the P1 amplitude (Kuefner et al., 2010). Nevertheless, despite these age differences 

in mean amplitude, the orientation effect on the N170 specific for human bodies was stable 

across children groups, suggesting that the processing of the human body configural 

information is present at least as early as the age of 3. In average, the N190 peaked at 218ms 

for upright bodies which represents a delay of approximately 46ms compared to the adult N190 

(172ms). Although previous studies (Missana et al., 2014) did not quantify the exact latency of 

the N190 in younger age (i.e., 8-months-old infants), this seems to be slower by at least 50ms 

compared to the one recorded in young children. Thus, the activation of the neural 

representations of human bodies become faster between infancy and early childhood, followed 

by a period of stability at least up to the age of 10-years, before reaching adult characteristics.  

One limitation of the current study, particularly in terms of analyzing the developmental 

changes in human body perception, is the fact that no intermediate age groups between 4- and 

10-years of age were tested. It is possible that some of the changes with age in the P1 and N190 

amplitude noted here may occur earlier, and that the age of 10 represents one of the points on 

the declining slope of a U-shape trajectory which continues into adolescence and adulthood 

(Kuefner et al., Taylor et al., 2004; van den Boomen et al., 2015). Future studies which include 

more age groups may address this limitation and would also clarify when in ontogeny the 

typical body inversion effect on the N190 occurs. In the face processing domain, around the 

age of 10-11-years, a shift occurs from the paradoxical to the typical inversion effects on the 
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N170 (Taylor et al., 2004). This is not the case for the perception of human bodies, which 

suggests different developmental trajectories. A direct comparison between the body and the 

face inversion effect across childhood will be especially relevant for understanding the 

similarities and differences in the underlying neurocognitive processes and their development. 

Our study is one of the few to investigate the neural correlates of social information processing 

using ERPs in 3-year-old children. Although the attrition rate is higher than for older children, 

it shows that developmental ERP research can extend to include this age group, providing 

unique opportunities for adopting larger scale cross-sectional or longitudinal designs which 

span the entire childhood, beginning with infancy. 

To summarize, this study shows that human body perception is reflected in the P1 and 

N170 ERP components during early and middle childhood. For all age groups included in the 

study, the manipulation of the stimulus orientation affected predominantly the N190 in 

response to human bodies, but not the N190 for structurally similar objects. This body inversion 

effect in children is different from the one typically reported in adults, with upright bodies 

eliciting a more negative N190 compared to the inverted presentations. Thus, although 

configural information may be integral to human body representations during childhood, the 

extent and the conditions under which such diagnostic information is used remain to be 

established. Significant developmental changes were also observed in the early ERP 

components typically associated with the processing of low-level visual information, which is 

relevant for the perception of complex visual social stimuli. Taken together, these findings 

suggest that body perception continues to develop well into childhood and further research is 

required in order to specify the exact nature of this process. 

 

 

 

 



PERCEPTION	OF	BODY	POSTURE																																																																																																							 

	

29 

References 

 

Atkinson, A. P. (2009). Impaired recognition of emotions from body movements is associated 

with elevated motion coherence thresholds in autism spectrum disorders. 

Neuropsychologia, 47(13), 3023–3029. 

http://doi.org/10.1016/j.neuropsychologia.2009.05.019 

Batty, M., & Taylor, M. J. (2006). The development of emotional face processing during 

childhood. Developmental Science, 9, 207–220. http://doi.org/10.1111/j.1467-

7687.2006.00480.x	

Bertenthal, B. (1993). Infants’ perception of biomechanical motions: intrinsic image and 

knowledge-based constraints. In C. Granrud (Ed.), Visual perception and cognition in 

infancy. Hillsdale, NJ: Lawrence Erlbaum Associates. 

Bentin, S., Allison, T., Puce, A., Perez, E., & McCarthy, G. (1996). Electrophysiological 

studies of face perception in humans. Journal of Cognitive Neuroscience, 8, 551–565. 

Bentin, S., Deouell, L.Y., & Soroker, N., 1999. Selective visual streaming in face recognition: 

evidence from developmental prosopagnosia. Neuroreport 10, 823. 

Bentin, S., Sagiv, N., Mecklinger, A., Friederici, A., & von Cramon, Y. D. (2002). Priming 

Visual Face-Processing Mechanisms: Electrophysiological Evidence. Psychological 

Science, 13(2), 190–193. http://doi.org/10.1111/1467-9280.00435 

Brace, N. A., Hole, G. J., Kemp, R. I., Pike, G. E., Van Duuren, M., & Norgate, L. (2001). 

Developmental changes in the effect of inversion: Using a picture book to investigate 

face recognition. Perception, 30(1), 85-94. 

Caharel, S., Leleu, A., Bernard, C., Viggiano, M. P., Lalonde, R., & Rebaï, M. (2013). Early 

holistic face-like processing of Arcimboldo paintings in the right occipito-temporal 

cortex: evidence from the N170 ERP component. International Journal of 

Psychophysiology, 90(2), 157-164. 



PERCEPTION	OF	BODY	POSTURE																																																																																																							 

	

30 

Carey, S. (1992). Becoming a face expert. Philosophical Transactions of the Royal Society of 

London, Series B: Biological Sciences, 335,95–102. 

Carey, S., & Diamond, R. (1977). From piecemeal to configurational representation of 

faces. Science, 195(4275), 312-314. 

Clark, V. P., Fan, S., & Hillyard, S. A. (1995). Identification of early visual evoked potential 

generators by retinotopic and topographic analyses. Human Brain Mapping, 2, 170–187. 

Cutting, J. E., & Kozlowski, L. T. (1977). Recognizing friends by their walk: Gait perception 

without familiarity cues. Bulletin of the psychonomic society, 9(5), 353-356. 

de Haan, M., & Nelson, C. A. (1999). Brain activity differentiates face and object processing in 

6-month-old infants. Developmental Psychology, 35(4), 1113–1121. 

http://doi.org/10.1037/0012-1649.35.4.1113 

de Gelder, B. (2006). Towards the neurobiology of emotional body language. Nature Reviews. 

Neuroscience, 7(3), 242–249. http://doi.org/10.1038/nrn1872	

de Gelder, B., de Borst, A., & Watson, R. (2015). The perception of emotion in body 

expressions. Wiley Interdisciplinary Reviews: Cognitive Science, 6(2), 149–158. 

http://doi.org/10.1002/wcs.1335 

de Gelder, B., Snyder, J., Greve, D., Gerard, G., & Hadjikhani, N. (2004). Fear fosters flight: a 

mechanism for fear contagion when perceiving emotion expressed by a whole body. 

Proceedings of the National Academy of Sciences of the United States of America, 

101(47), 16701–16706. http://doi.org/10.1073/pnas.0407042101	

de Gelder, B. (2006). Towards the neurobiology of emotional body language. Nature Reviews. 

Neuroscience, 7(3), 242–249. http://doi.org/10.1038/nrn1872 

de Gelder, B. & Van den Stock, J. (2011). The Bodily Expressive Action Stimulus Test 

(BEAST). Construction and validation of a stimulus basis for measuring perception of 

whole body expression of emotions. Frontiers in Psychology 2:181. 

doi:10.3389/fpsyg.2011.0018. 



PERCEPTION	OF	BODY	POSTURE																																																																																																							 

	

31 

Di Russo, F., Martinez, A., Sereno, M. I., Pitzalis, S., & Hillyard, S. A. (2002). Cortical 

sources of the early components of the visual evoked potential. Human Brain Mapping, 

15, 95–111. 

Downing, P. E., Jiang, Y., Shuman, M., & Kanwisher, N. (2001). A Cortical Area Selective for 

Visual Processing of the Human Body. Science, 293(5539), 2470–2473. Retrieved from 

http://www.sciencemag.org/cgi/content/abstract/293/5539/2470 

Downing, P.E., Peelen, M.V.,Wiggett, A.J., Tew, B.D., 2006. The role of the extrastriate body 

area in action perception. Soc. Neurosci. 1, 52–62. 

Eimer, M. (2000). Effects of face inversion on the structural encoding and recognition of faces: 

Evidence from event-related brain potentials. Cognitive Brain Research, 10(1), 145-

158. 

Goren, C. C., Sarty, M., & Wu, P. Y. (1975). Visual following and pattern discrimination of 

face-like stimuli by newborn infants. Pediatrics, 56(4), 544-549. 

Gliga, T., & Dehaene-Lambertz, G. (2005). Structural encoding of body and face in human 

infants and adults. Journal of Cognitive Neuroscience, 17, 1328–1340. 

http://doi.org/10.1162/0898929055002481	

Hadjikhani, N., & De Gelder, B. (2003). Seeing Fearful Body Expressions Activates the 

Fusiform Cortex and Amygdala. Current Biology, 13(24), 2201–2205. 

http://doi.org/10.1016/j.cub.2003.11.049	

Halit, H., De Haan, M., & Johnson, M. H. (2003). Cortical specialisation for face processing: 

Face-sensitive event-related potential components in 3- and 12-month-old infants. 

NeuroImage, 19(3), 1180–1193. http://doi.org/10.1016/S1053-8119(03)00076-4	

Halgren, E., Raji, T., Marinkovic, K., Jousmäki, V., & Hari, R. (2000). Cognitive Response 

Profile of the Human Fusiform Face Area as Determined by MEG. Cerebral Cortex, 

10(1), 69–81. http://doi.org/10.1093/cercor/10.1.69 



PERCEPTION	OF	BODY	POSTURE																																																																																																							 

	

32 

Haxby, J. V., Hoffman, E. A., & Gobbini, M. I. (2000). The distributed human neural system 

for face perception. Trends in cognitive sciences, 4(6), 223-233. 

Herba, C., & Phillips, M. (2004). Annotation: Development of facial expression recognition 

from childhood to adolescence: Behavioural and neurological perspectives. Journal of 

Child Psychology and Psychiatry and Allied Disciplines, 45(7), 1185–1198. 

http://doi.org/10.1111/j.1469-7610.2004.00316.x 

Hirai, M., & Hiraki, K. (2005). An event-related potentials study of biological motion 

perception in human infants. Cognitive Brain Research, 22(2), 301–304. 

http://doi.org/10.1016/j.cogbrainres.2004.08.008	

Hubert, B., Wicker, B., Moore, D. G., Monfardini, E., Duverger, H., Da Fonséca, D., & Deruelle, 

C. (2007). Brief report: Recognition of emotional and non-emotional biological motion 

in individuals with autistic spectrum disorders. Journal of Autism and Developmental 

Disorders, 37(7), 1386–1392. http://doi.org/10.1007/s10803-006-0275-y 

Itier, R. J., & Taylor, M. J. (2004). Effects of repetition learning on upright, inverted and contrast-

reversed face processing using ERPs. Neuroimage, 21(4), 1518-1532. 

Jacques, C., & Rossion, B. (2007). Early electrophysiological responses to multiple face 

orientations correlate with individual discrimination performance in humans. 

NeuroImage, 36(3), 863–876. http://doi.org/10.1016/j.neuroimage.2007.04.016 

Johnson, M. H., Dziurawiec, S., Ellis, H., & Morton, J. (1991). Newborns' preferential tracking 

of face-like stimuli and its subsequent decline. Cognition, 40(1), 1-19. 

Kanwisher, N., McDermott, J., & Chun, M. M. (1997). The fusiform face area: a module in 

human extrastriate cortex specialized for face perception. Journal of 

neuroscience, 17(11), 4302-4311. 

Kozlowski, L. T., & Cutting, J. E. (1977). Recognizing the sex of a walker from a dynamic 

point-light display. Attention, Perception, & Psychophysics, 21(6), 575-580. 



PERCEPTION	OF	BODY	POSTURE																																																																																																							 

	

33 

Kuefner, D., Heering, A. De, Jacques, C., Palmero-soler, E., & Rossion, B. (2010). Early 

visually evoked electrophysiological responses over the human brain (P1, N170) show 

stable patterns of face-sensitivity from 4 years to adulthood, 3(January), 1–22. 

http://doi.org/10.3389/neuro.09.067	

Leder, H., & Bruce, V. (2000). When inverted faces are recognized: the role of configural 

information in face recognition. The Quarterly Journal of Experimental Psychology. A, 

Human Experimental Psychology, 53(2), 513–536. http://doi.org/10.1080/713755889	

Longhi, E., Senna, I., Bolognini, N., Bulf, H., Tagliabue, P., Cassia, V. M., & Turati, C. 

(2015). Discrimination of biome- chanically possible and impossible hand movements 

at birth. Child Development, 86, 632–41. doi:10.1111/cdev.12329 

Marr, D. (1982). Vision. San Francisco: Freeman 

Maruyama, K., & Endo, M. (1984). Illusory face dislocation effect and configurational 

integration in the inverted face. Tohoku Psychologica Folia, 43, 150-160.  

Maurer, D., & Barrera, M. (1981). Infants’ perception of natural and distorted arrangements of 

a schematic face. Child Development, 52(1), 196–202. http://doi.org/10.2307/1129230 

Maurer, D., Le Grand, R., & Mondloch, C. J. (2002). The many faces of configural processing. 

Trends in Cognitive Sciences, 6(6), 255–260. http://doi.org/10.1016/S1364-

6613(02)01903-4	

Meeren, H. K. M., van Heijnsbergen, C. C. R. J., & de Gelder, B. (2005). Rapid perceptual 

integration of facial expression and emotional body language. Proceedings of the 

National Academy of Sciences of the United States of America, 102(45), 16518–23. 

http://doi.org/10.1073/pnas.0507650102	

Minnebusch, D. A., Suchan, B., & Daum, I. (2008). Losing your Head: Behavioral and 

Electrophysiological Effects of Body Inversion, (2006), 865–874. 



PERCEPTION	OF	BODY	POSTURE																																																																																																							 

	

34 

Minnebusch, D. A., & Daum, I. (2009). Neuropsychological mechanisms of visual face and 

body perception. Neuroscience & Biobehavioral Reviews, 33(7), 1133–1144. 

http://doi.org/10.1016/j.neubiorev.2009.05.008	

Minnebusch, D. A., Keune, P. M., Suchan, B., & Daum, I. (2010). Gradual inversion affects 

the processing of human body shapes. NeuroImage, 49(3), 2746–2755. 

http://doi.org/10.1016/j.neuroimage.2009.10.046	

Missana, M., Rajhans, P., Atkinson, A. P., & Grossmann, T. (2014). Discrimination of fearful 

and happy body postures in 8-month-old infants: an event-related potential study. 

Frontiers in Human Neuroscience, 8(July), 1–7. 

http://doi.org/10.3389/fnhum.2014.00531 

Missana, M., Atkinson, A. P., & Grossmann, T. (2015). Tuning the developing brain to 

emotional body expressions. Developmental Science, 18(2), 243–253. 

http://doi.org/10.1111/desc.12209	

Mondloch, C. J., Le Grand, R., & Maurer, D. (2002). Configural face processing develops 

more slowly than featural face processing. Perception, 31(5), 553-566. 

Muñoz, L. C. (2009). Callous-Unemotional Traits Are Related to Combined Deficits in 

Recognizing Afraid Faces and Body Poses. Journal of the American Academy of Child 

& Adolescent Psychiatry, 48(5), 554–562. 

http://doi.org/10.1097/CHI.0b013e31819c2419	

Nackaerts, E., Wagemans, J., Helsen, W., Swinnen, S. P., Wenderoth, N., & Alaerts, K. (2012). 

Recognizing Biological Motion and Emotions from Point-Light Displays in Autism 

Spectrum Disorders. PLoS ONE, 7(9), 1–12. 

http://doi.org/10.1371/journal.pone.0044473 

Pascalis, O., de Haan, M., & Nelson, C. A. (2002). Is face processing species-specific during 

the first year of life? Science, 296(5571), 1321–1323. 

http://doi.org/10.1126/science.1070223	



PERCEPTION	OF	BODY	POSTURE																																																																																																							 

	

35 

Pedelty, L., Levine, S. C., & Shevell, S. K. (1985). Developmental changes in face processing: 

Results from multidimensional scaling. Journal of Experimental Child 

Psychology, 39(3), 421-436. 

Peelen, M. V, & Downing, P. E. (2007). The neural basis of visual body perception, 8(August), 

636–649. http://doi.org/10.1038/nrn2195	

Peelen, M. V., Glaser, B., Vuilleumier, P., & Eliez, S. (2009). Differential development of 

selectivity for faces and bodies in the fusiform gyrus. Developmental science, 12(6), F16-

F25. 

Peykarjou, S., & Hoehl, S. (2013). Three-month-olds’ brain responses to upright and inverted 

faces and cars. Developmental Neuropsychology, 38(4), 272–80. 

http://doi.org/10.1080/87565641.2013.786719	

Peykarjou, S., Westerlund2, A., Cassia, V. M., Kuefner, D., & Nelson, C. A. (2013). The neural 

correlates of processing newborn and adult faces in 3-year-old children. Developmental 

Science, 6, n/a-n/a. http://doi.org/10.1111/desc.12063	

Pitcher, D., Charles, L., Devlin, J. T., Walsh, V., & Duchaine, B. (2009). Triple dissociation of 

faces, bodies, and objects in extrastriate cortex. Current Biology, 19(4), 319-324. 

Philip, R. C. M., Whalley, H. C., Stanfield, A. C., Sprengelmeyer, R., Santos, I. M., Young, A. 

W., … Hall, J. (2010). Deficits in facial, body movement and vocal emotional 

processing in autism spectrum disorders. Psychological Medicine, 40(11), 1919–1929. 

http://doi.org/10.1017/S0033291709992364 

Reed, C. L., Stone, V. E., Grubb, J. D., & Mcgoldrick, J. E. (2006). Turning Configural 

Processing Upside Down: Part and Whole Body Postures, 32(1), 73–87. 

http://doi.org/10.1037/0096-1523.32.1.73 

Reed, C. L., Stone, V. E., Bozova, S., & Tanaka, J. (2003). The Body-Inversion Effect. 

Psychological Science, 14(4), 302–308. http://doi.org/10.1111/1467-9280.14431	



PERCEPTION	OF	BODY	POSTURE																																																																																																							 

	

36 

Regan D. 1989. Human brain electrophysiology: evoked potentials and evoked magnetic fields 

in science and medicine. New York: Elsevier. 

Robbins, R. A., & Coltheart, M. (2015). The relative importance of heads, bodies, and movement 

to person recognition across development. Journal of Experimental Child Psychology, 

138, 1–14. http://doi.org/10.1016/j.jecp.2015.04.006	

Ross, P. D., de Gelder, B., Crabbe, F., & Grosbras, M.H. (2014). Body-selective areas in the 

visual cortex are less active in children than in adults. Frontiers in Human Neuroscience, 

8(November), 941. http://doi.org/10.3389/fnhum.2014.00941 	

Rossion, B., & Caharel, S. (2011). ERP evidence for the speed of face categorization in the 

human brain: Disentangling the contribution of low-level visual cues from face 

perception. Vision Research, 51(12), 1297–1311. 

http://doi.org/10.1016/j.visres.2011.04.003 

Rossion, B., Delvenne, J. F., Debatisse, D., Goffaux, V., Bruyer, R., Crommelinck, M., & 

Guérit, J. M. (1999). Spatio-temporal localization of the face inversion effect: an event-

related potentials study. Biological psychology, 50(3), 173-189. 

Rossion, B., & Gauthier, I. (2002). How does the brain process upright and inverted faces? 

Behavioral and cognitive neuroscience reviews, 1(1), 63-75. 

Rossion, B., & Jacques, C. (2011). The N170: understanding the time-course of face perception 

in the human brain. The Oxford handbook of ERP components, 115-142. 

Righart, R., & de Gelder, B. (2007). Impaired face and body perception in developmental 

prosopagnosia. Proceedings of the National Academy of Sciences of the United States 

of America, 104(43), 17234–17238. http://doi.org/10.1073/pnas.0707753104 

Sagiv, N., & Bentin, S. (2001). Structural encoding of human and schematic faces: holistic and 

part-based processes. Journal of Cognitive Neuroscience, 13(7), 937-951. 



PERCEPTION	OF	BODY	POSTURE																																																																																																							 

	

37 

Song, J., Liu, M., Yao, S., Yan, Y., Ding, H., Yan, T., ... & Xu, G. (2017). Classification of 

emotional expressions is affected by inversion: Behavioral and electrophysiological 

evidence. Frontiers in behavioral neuroscience, 11. 

Stekelenburg, J., & de Gelder, B. (2004). The neural correlates of perceiving human bodies:an 

ERP study on the body-inversion effect. Neuroreport, 15 (3), 487–491. 

http://doi.org/10.1097/01.wnr.00001 

Slaughter, V., Heron, M., & Sim, S. (2002). Development of preferences for the human body 

shape in infancy. Cognition, 85(3), 71–81. http://doi.org/10.1016/S0010-

0277(02)00111-7	

Taylor, M. J., McCarthy, G., Saliba, E., & Degiovanni, E. (1999). ERP evidence of 

developmental changes in processing of faces. Clinical Neurophysiology, 110(5), 910–

915. http://doi.org/10.1016/S1388-2457(99)00006-1 

Tanaka, J. W., Kay, J. B., Grinnell, E., Stansfield, B., & Szechter, L. (1998). Face recognition in 

young children: When the whole is greater than the sum of its parts. Visual 

Cognition, 5(4), 479-496. 

Tanskanen, T., Nasanen, R., Montez, T., Paallysaho, J., Hari, R., 2005. Face recognition and 

cortical responses show similar sensitivity to noise spatial frequency. Cereb. Cortex 15, 

526–534. 

Tarkiainen, A., Cornelissen, P.L., Salmelin, R., 2002. Dynamics of visual feature analysis and 

object-level processing in face versus letter–string perception. 

Taylor, M. J., Batty, M., & Itier, R. J. (2004). The faces of development: a review of early face 

processing over childhood. Journal of Cognitive Neuroscience,16(8), 1426–1442. 

http://doi.org/10.1162/0898929042304732	

Taylor, M. J., McCarthy, G., Saliba, E., & Degiovanni, E. (1999). ERP evidence of 

developmental changes in processing of faces. Clinical Neurophysiology, 110(5), 910-

915. 



PERCEPTION	OF	BODY	POSTURE																																																																																																							 

	

38 

Thierry, G., Pegna, A. J., Dodds, C., Roberts, M., Basan, S., & Downing, P. (2006). An event-

related potential component sensitive to images of the human body. NeuroImage, 32(2), 

871–879.  

Urgesi, C., Fornasari, L., Perini, L., Canalaz, F., Cremaschi, S., Faleschini, L., … Brambilla, P. 

(2012). Visual body perception in anorexia nervosa. International Journal of Eating 

Disorders, 45(4), 501–511. http://doi.org/10.1002/eat.20982	

Valentine, T. (2013). Upside-down faces: A review of the effect of inversion upon face 

recpgnition. Journal of Chemical Information and Modeling, 53, 1689–1699. 

http://doi.org/10.1017/CBO9781107415324.004 

Whitford, T. J., Rennie, C. J., Grieve, S. M., Clark, C. R., Gordon, E., & Williams, L. M. (2007). 

Brain maturation in adolescence: Concurrent changes in neuroanatomy and 

neurophysiology. Human Brain Mapping, 28(3), 228–237. 

http://doi.org/10.1002/hbm.20273 

 Woodward, A., Phillips, A., & Spelke, E. (1993). Infants’ expectations about the motion of 

animate versus inanimate objects. Paper presented to the Cognitive Science Society, 

Boulder, CO. http://doi.org/10.1016/j.neuroimage.2006.03.060	

Yin, R. K. (1969). Looking at upside-down faces. Journal of Experimental Psychology, 81(1), 

141–145. http://doi.org/10.1037/h0027474 

Young, A. W., Hellawell, D., & Hay, D. C. (1987). Configurational information in face 

perception. Perception, 16(6), 747-759. 

Zieber, N., Bhatt, R. S., Hayden, A., Kangas, A., Collins, R., & Bada, H. (2010). Body 

representation in the first year of life. Infancy, 15(5), 534–544. 

http://doi.org/10.1111/j.1532-7078.2009.00026.x 

Zieber, N., Kangas, A., Hock, A., & Bhatt, R. S. (2014). The development of intermodal 

emotion perception from bodies and voices. Journal of Experimental Child Psychology, 

126, 68–79. http://doi.org/10.1016/j.jecp.2014.03.005 



PERCEPTION	OF	BODY	POSTURE																																																																																																							 

	

39 

Zieber, N., Kangas, A., Hock, A., & Bhatt, R. S. (2014). Infants’ Perception of Emotion From 

Body Movements. Child Development, 85(2), 675–684. 

http://doi.org/10.1111/cdev.12134	

Zieber, N., Kangas, A., Hock, A., & Bhatt, R. S. (2015). Body Structure Perception in Infancy. 

Infancy, 20(1), 1–17. http://doi.org/10.1111/infa.12064 

 

 

 

 

	



Running head: EMOTIONAL BODILY INVERSION EFFECT  1 

 

Inversion Effect in Children’s Emotional Body Perception: An ERP Investigation 

 

Han Ke1* & Elena Geangu2 

 

1Lancaster University 

Psychology Department 

Bailrigg, Lancaster 

United Kingdom LA1 4YF 

 

2University of York 

Department of Psychology 

Heslington, York 

United Kingdom YO10 5DD 

 

*Corresponding author 

h.ke@lancaster.ac.uk 

 

  



EMOTIONAL BODILY INVERSION EFFECT   2 

Abstract 

The human body provides rich emotional information in social interactions during 

childhood. However, so far, the investigation of the neural mechanism of processing 

emotional body postures received less attention than facial literatures. The present study 

aims to explore the neural mechanism underlying emotion perception from static body 

postures during childhood, using electroencephalography (EEG). Eighty emotional body 

images including happy, sad, fearful and emotional neutral actions were used as stimuli, half 

of which were presented upright and half inverted. ERPs time-locked to the stimuli onset 

were calculated. Twenty children aged from 5 to 7 years were tested. Results revealed a 

main effect of emotion on the N190 from occipito-temporal sites, as well as on the VPP 

from the frontal-central sites. Happy bodies elicited more negative amplitude and longer 

latency than the other emotional bodies. The main effect of emotion further interacted with 

body orientation. These findings suggest early emotional sensitivities at the body structure 

encoding stage in children from 5 years old; further, the emotion effect on N190 is different 

in upright and inverted conditions, indicating that the activation of the body representation 

interferes the emotion perception.  

Keywords: emotional body, invention effect, emotion, childhood, N190, VPP, EEG. 
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Introduction 

Sensitivity to people’s emotional state is an important skill for young humans to 

adapt to their social environment. As children develop throughout childhood, they are 

exposed to an increasing variety of social situations. In order to successfully interact with 

others, children need to rely on multiple sources of information. For example, during play, 

the face, the body, and the voice may differ in terms of how informative they are with regards 

to peers’ emotions depending on the distance between children. While at close proximity 

the face is clearly visible, at a distance it is more difficult to detect the changes in its 

expressivity. In this case, the body becomes more informative about how others feel. 

Moreover, the ability to recognise emotion from body images is reported to be related to 3-

6-year-old children’s social skills in pre-school (Parker, Mathis, & Kupersmidt, 2013). This 

further suggested that the ability to correctly detect emotion information from body postures 

is particularly important during this developmental period. Despite its importance, the study 

of the development of human body expressivity in children has only recently entered 

systematic scientific scrutiny.  

Emotions are usually conveyed in multiple ways, which tend to coincide in time and 

share some similarities. For example, facial emotion expressions are usually associated with 

matching body postures. When expressing anger, the muscles tense in both face and body 

(Parker, Mathis, & Kupersmidt, 2013). Prior research showed that both children and adults 

recognize emotions better when these are expressed both in face and body in comparison to 

facial-only conditions, suggesting body expression is beneficial for discriminating and 

understanding emotions (Montepare, Koff, Zaitchik, & Albert, 1999; Vieillard & Guidetti, 

2009; Nelson & Russell, 2011). From an early age, infants show discriminative response to 

emotions from extreme valances (happy and angry) expressed by static body postures 

(Zieber, Kangas, Hock, & Beat, 2014). Developing into childhood, children’s performance 

in discriminating emotions from body postures improves. From 4 years of age, children start 
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to show the ability to successfully sort happy and sad emotions expressed by isolated static 

body postures to matched context (Mondloch, Horner, & Mian, 2013). The accuracy of 

identifying emotions from body postures keeps developing from the age of 5 to 10 years. 

By the age of 8 years, children can correctly label emotions expressed by body postures 

from different valence (happy and sad) using given verbal labels, suggesting that the ability 

to understand and use emotional labels is independent of context. Further, performance of 

labelling happy and sad bodies at this age is also comparable to adults (Balas, Auen, Saville, 

& Schmidt, 2017). In terms of perceiving emotional information from dynamic body 

movements. Boone and Cunningham (1998)’s investigation discovered that children 

actually start to use the high emotional intensity movements from dancing activities to detect 

sadness, fear and happiness from 5 years onwards. By the age of 6, children can correctly 

match fearful and sad emotions expressed by isolated body postures with the appropriate 

emotions portrayed within the story. Further, when the bodily and facial expression was 

congruent, 6-year-old children showed increasing accuracy in matching emotional body 

expressions to the corresponding story in comparison to incongruent condition. This shows 

by the age of 6 there is adult-like congruency effect in detecting the mismatch information 

between body and facial expression. Despite this, children’s accuracy is lower than adults’ 

(Mondloch, Horner, & Mian, 2013).  

Despite the behavioural findings showing an improved performance in perceiving 

emotions from body postures during childhood, we have limited knowledge about the 

neurocognitive mechanism underlying children’s performance in these behavioral tasks; 

especially in terms of whether the behavioral improvement observed in children can reflect 

the development for all the sensory, perceptual and cognitive processes or only for some of 

them. Brain imaging fMRI studies on adults have established a body-selective brain network 

in the extrastriate body area (EBA), the fusiform body area (FBA), as well as the posterior 

superior temporal sulcus (pSTS) (Downing Jiang, Shuman, & Kanwisher, 2001; Peelen & 
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Downing, 2004; de Gelder, 2006). Six-year-old children show brain activation to dynamic 

emotional body expressions over similar brain regions (i.e. EBA, FBA and pSTS) as adults, 

however, until 11 years of age the strength and extent of those activities are still less mature 

compared to adults (Ross, de Gelder, Crabbe, & Grosbras, 2014). Apart from these findings, 

very few studies have investigated the developmental change of emotion perception from 

static body postures during childhood.  

In terms of the neurophysiological evidence, previous studies employing event-

related potentials (ERPs) in adults suggested that the cognitive processing underlying body 

perception shares some similarity with that of face perception. The facial N170 (a negative 

component that peaks around 170 ms after the stimulus onsets) that is larger for face than 

non-face objects. Similar response is also observed during this time window for body 

perception, a negative going component show larger amplitude for body stimuli than that 

for non-body objects, however, the bodily component is called N190 as it peaks slightly 

later than the facial one (Bentin, Allison, Puce, Perez, & McCarthy, 1996; Eimer, 2000; 

Sagiv & Bentin, 2001; Rossion & Jacques, 2011; Stekelenburg & de Gleder, 2004; 

Minnebusch, Suchan & Daum, 2008). The N170/N190 is preceded by a positive going 

component P1 that is sensitive to low-level visual information (Regan, 1989; Rousselet et 

al., 2005). Furthermore, presenting upside-down faces was found to lead to greater N170 

amplitude and/or longer N170 latency (Bentin et al., 1996; Rossion et al., 1999, 2000). A 

similar inversion response is not observed for objects. This N170 facial-inversion effect is 

therefore interpreted as reflecting the impairment of facial structural encoding (Bentin et al., 

1996; Rossion et al., 1999). Likewise, inverted body images also elicited a facial-like 

inversion effect, with longer latency or greater amplitude on the N190 components, thus 

suggesting a similar structural encoding strategy is shared by body and face perception in 

adults (Stekelenburg & de Gelder, 2006; Minnebusch et al., 2008). However, there are no 

sufficient studies for us to properly understand the development of emotion perception from 
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static bodies neurophysiologically. First, there are very few studies provide the evidence of 

maturational emotional body perception. There are only less than a handful studies shows 

that fearful body postures elicited faster responses at early visual processing stages from the 

occipital-temporal electrodes and sustained neural responses at later processing stages from 

frontal-central electrodes (Stekelenburg & de Gelder, 2006; Heijnsbergen et al., 2007). 

Apart from those adult investigations, there is only one study looking at infant’s 

neurophysiological response to emotional body postures. Results revealed that 8-month-old 

infants show more negative N290 (the infant N190) as well as Nc (Negative-central) mean 

amplitude to fearful body postures in comparison to happy ones (Missana, Rajhans, 

Atkinson, & Grossmann, 2014). The Nc is a negative going component peaking at 

approximately 600ms after stimulus onset at frontal central electrodes in infants. It is 

suggested that the Nc reflects attentional arousal to salient or unfamiliar stimuli (de Haan, 

et al., 2004; Parker & Nelson, 2005). Thus, these findings indicated that from 8 months old 

infants an attentional response to emotions of different valences emerges. However, apart 

from the early response and the mature pattern indicated by those infant and adult 

investigations, the neural correlates during childhood are poorly understood. 

Based on the described similarity of body and face perception, one would expect the 

development of emotional body perception to share some similarity with that of faces; thus, 

looking at the development of emotional face perception can be a starting point to 

understand the neural processes in response to emotional body postures.  

Evidence from emotional face perception ERP studies suggested that fearful faces 

elicit a larger Nc amplitude than happy faces in 7-month-old infants (Nelson, & de Haan, 

1996; de Haan, Belsky, Reid, Volein & Johnson, 2004). Between the ages of 7 to 32 months, 

infants show a greater amplitude to sad and fearful faces over happy and angry on the early 

negative component N170 from frontal-central and occipito-parietal electrodes, instead of 

the attention allocation response on the Nc. It is believed that this early negative component 
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is different from the adult N170 that is specific to the structural encoding of faces; instead, 

the infant N170 reflects that infants in this age range are able to distinguish facial expression 

of some emotions at the perceptual level (Parker & Nelson, 2005). From 4 years of age, an 

effect of emotion is observed on the face-selective N170 as well as on the early visual 

component at occipito-parietal sites. Furthermore, age related emotional changes are 

observed on both the N170 and P1 from 4 to 15 years (Batty & Taylor, 2006). The P1 

component in 4-7-year-old children shows a longer latency to fearful faces than happy, 

surprised and emotionally neutral faces, while happy faces elicited shorter P1 latency than 

disgusted, fearful and sad faces. Considering that low-level visual differences were 

controlled in this study, the researchers argued that the P1 emotional sensitivity reflects 

young children’s general processing of emotions’ primary meanings at the early processing 

stage. Whereas, emotional effect on N170 is found in older age groups, with larger N170 

amplitude for negative facial expressions than positive ones. This indicates an increasing 

reliance on configural processing in encoding emotional gestures in faces that replaces the 

early global discrimination during development (Batty & Taylor, 2006). Furthermore, 

findings at this age range are different from Batty and Taylor’s (2003) findings on adults, 

showing that the N170 is sensitive to fearful and sad faces on latency, and sensitive to 

surprised and neutral faces on amplitude. This suggests that emotion recognition from facial 

expression is not fully developed until adolescence.  

Moreover, we are also interested in the role of bodily configural information in 

children’s emotion perception. People’s attributing of emotions from body postures is highly 

associated with the biological angle and directions of the body elements; such as upper body 

bending backward or forwards, shoulder swinging up or down, body weight transferring 

backward or forward (Coulson, 2004). For example, when the upper body bends backwards 

with straight elbow and shoulder swing up, it will be perceived as happy, while upper body 

bending forwards with a tightly-bent elbow and body weight transferring forward is more 
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likely to be recognised as angry. Further, in body structural encoding, it is suggested that 

similar to facial perception, all body elements and the spatial relations between them are 

taken into account in the structural encoding (Reed, Stone, Bozova, & Tanaka, 2003; Reed, 

Stone, Grubb, & McGoldrick, 2006). One of the cognitive markers of the body structure 

processing is the inversion effect in body perception. When presenting body images upside 

down, people’s accuracy and reaction time in recognising the stimulus is delayed. This 

pattern of response is also observed in facial perception, and has been interpreted to suggest 

that the inversion disrupts the processing by unravelling the orders and relations among the 

features on body or faces (Yin, 1969; Reed et al., 2006). This leads to the hypothesis that 

body structural information might be necessary for emotion perception. In fact, 

neurophysiological evidence in infants shows that the neural responses between emotions 

are only observed when the static body expression is presented upright (Missana, Rajhans, 

Atkinson, Grossmann, 2014). Based on the previous work that adults’ perception of body 

structure is impaired by the inversion (Stekelenburg & de Gleder, 2004; Zieber et al., 2015), 

we predict that the orientation of the body postures will also interfere with emotion 

processing in children.  

The current research aims to investigate children’s neural correlates of emotion 

perception from static body postures, as well as the influence of body inversion in emotion 

processing. We are particularly interested in investigating this research question in 5- to 8-

year-old children, as at this age they are reported to successfully identify emotions from 

intense body expressions (Boone and Cunningham, 1998; Mondloch, Horner, & Mian, 

2013). We use body posture pictures expressing happy, fear and sad emotions, as 

behavioural data suggested that children of this age range show good performance in 

recognising these emotions in bodies (Boone & Cunningham, 1998; Balas, Auen, Saville, 

& Schmidt, 2017). As the age range tested in the current study showed emotion sensitivities 

on both P1 and N190 in emotional facial perception investigations (Batty & Taylor, 2006), 
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we predict that in the current study both P1 and N190 from the occipital regions will show 

emotion sensitivities, negative emotions might elicit larger amplitude than positive ones. 

Further, the VPP (vertex positive potential) component was reported to reflect the opposite 

side of the activity from the same generators of the N190 in facial perception investigation 

(Rousselet, et al., 2005; Joyce & Rossion, 2005; Rossion & Jacques, 2011). The VPP is a 

positive potential peak around 140 to 180ms after stimuli onset from the central sites, in 

facial perception it is seen as the positive counterpart of N190 (Rousselet, et al., 2005; Joyce 

& Rossion, 2005; Rossion & Jacques, 2011). In relation to the N190 effect and the previous 

finding (Stekelenburg & de Gelder, 2004), the inversion effect and emotional response is 

also expected to reflect on the VPP component. To be specific, we predict amplitude and/or 

latency differences between emotions on P1, N190, as well as VPP.  

Moreover, as we hypothesised that the body structure processing may influence 

emotion processing, we also expect the interaction of emotion and orientation on the N190. 

Based on previous work in infants (Missana et al., 2014) we predict the interaction will be 

driven by the emotion effect in the upright condition but not the inverted. Therefore, another 

possible direction of the interaction would be that the emotion effect in the inverted 

condition is not completely absent, but shows an impaired pattern, i.e. fewer differences 

between emotions.  

 

Methods 

Participants 

The final analysis included children aged 5-8-years (N = 20, 10 females, Mage = 

75.5 months, SDage = 11.94). The participants were recruited from an urban area in the 

North-West, UK. Parents gave informed consent for their children to take part in the study. 

Children received a small gift for their participation and parents were reimbursed for the 

cost of their travel to the lab. The procedure followed the ethical standards (the Declaration 
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of Helsinki, BMJ 1991; 302:1194) and was approved by the Lancaster University Ethic 

Committee.  

Stimuli and Procedure 

The stimuli were selected from the Bodily Expressive Action Stimulus Test (BEAST, 

de Gelder & Van den Stock, 2011) and consisted of 80 static black and white images of 

female bodies, displaying 3 emotional postures (Happy, Sad, Fear) and 1 emotionally 

neutral action (i.e., drinking water and talking on the phone). Each emotion condition 

contained 20 images. All stimuli were displayed on a grey background, with a size of 200 x 

250 pixels, subtending a visual angle of 6.36°× 7.94° (horizontal × vertical), and were 

normalized for luminance (~180 cd/m2) in Photoshop. Participants were sat in front of the 

monitor with a viewing distance of 70 cm. 

Within a single trial, the stimulus was presented for 800ms, followed by a central 

fixation cross on a grey background with a duration varying randomly between 1200 and 

1600 ms. This is to avoid the participant’s neural response being biased by their expectation 

to a set interval duration. In order to maintain the participant’s attentiveness throughout the 

task, a non-social colorful object (i.e. a star) displayed on a grey background was presented 

50% of the time after the stimuli presented. Participants were asked to press a button as soon 

as they saw the object on the screen. The presentation of the object lasted 1000ms 

irrespective of whether the participant pressed the button or not (see Figure 1 for an example 

of the trial structure). Stimuli presentation was organized in 4 blocks (80 trials/block), 

maximum of 320 trials in total. Each block contained 20 trials per emotion condition, in 

which half of the time the image was presented upright-down.   
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Figure 1. Example of a trial structure (A) and the stimuli used in the study (B).  

EEG Recording and Analysis 

The ERPs were recorded continuously using a 128-electrode HydroCel Geodesic 

Sensor Net (Electrical Geodesic Inc., Eugene, OR) and amplified using an EGI NetAmps 

300 amplifier. The signal was referenced online to the vertex electrode (Cz), A band pass 

filter of .1–100 Hz was applied. The data were sampled at 500 Hz. Impedances were checked 

prior to the beginning of the recording and they were considered acceptable if lower than 50 

k. In order to identify the eye movements and visual attendance to the stimuli, a digital video 

of the child was recorded synchronously with the EEG.  

The raw EEG data were later processed offline using NetStation 4.5.4 (Eugene, OR). 

The signal was band-pass filtered (0.3–30 Hz), and the ERP trials were segmented with a 
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200 ms baseline and 800 ms following stimulus onset. To eliminate artifacts, segmented 

data were automatically rejected whenever the signal exceeded ± 200 µV at any electrode. 

Data were further checked through visual inspection for eye-movements, eye-blinks and 

other body movement artifacts not detected by the automated algorithm. For the remaining 

trials, individual bad channels (channels that the signal exceeded ± 200 µV) replacement 

was conducted using spherical spline interpolation. Individual subject averages were 

computed separately for each channel across all trials within each condition, and then the 

data was re-referenced to the average reference. Trials were excluded if more than 18 bad 

channels were detected and if the participant did not attend visually to the stimulus (as 

indicated by the digital video recording). The Means and SDs of the numbers of trials that 

remained in each condition are presented in Table 1. 

 

Table 1 

Means and SDs of the numbers of the trails remained out of total 80 trials in each condition. 

  Emotion 

  Happy Fear Sad Neutral 

Orientation 
Upright 22.90(6.27) 22.25(497) 23.75(5.80) 23.05(7.04) 

Inverted 25.70(5.62) 25.25(6.93) 24.55(6.15) 25.40(6.48) 

 

Based on the previous literature (Stekelenburg and de Gelder, 2004; Taylor & Batty, 

2006) and visual inspection of the data, we analyzed the VPP (vertex positive potential) 

from frontal-central sites (170-250ms), the P1 (100-150ms), and the N190 (150-275ms) 

components from occipital-temporal sites. The regions of interest (ROIs) were as follows: 

frontal-central (Left - 12, 20, 13, 29; Right - 5, 118, 112, 111); occipital-temporal (Left - 60, 

67, 59, 66, 71, 70; Right - 85, 77, 91, 84, 76, 83), see Figure 2.  



EMOTIONAL BODILY INVERSION EFFECT   13 

The mean amplitude, peak amplitude and latency of each component was averaged 

separately across each condition. Considering that the age range of the current sample could 

bring variations to P1 amplitude, to minimize the potential inference on the raw 

measurement of the follow up component N190, complementary P1-N190 peak-to-peak 

measurement (measurements of N190 minus P1) and analysis were performed to control for 

P1 variations. The same statistical analyses were performed on the mean amplitude 

difference between the peak of the N190 and the P1, as well as on the difference in 

milliseconds between the peak of the N190 and the peak of the P1. Both the analysis for the 

corrected and the uncorrected N190 are presented. The results were analyzed using a 3-way 

repeated-measure analyses of variance (ANOVAs). The factors included Emotion (Happy, 

Sad, Fear and Neutral), Orientation (Upright and Inverted) and Region (Left and Right). 

Holm-Bonferroni correction was applied for all the posthoc analysis.  

 

Figure 2. The regions of interest (ROIs) at frontal-central and occipital areas.  

 

Results 



EMOTIONAL BODILY INVERSION EFFECT   14 

VPP 

Mean amplitude. The analysis revealed a main effect of Emotion, F(3, 57) = 4.17, 

p = .010, ηp
2 = 0.052, with happy bodies eliciting greater mean amplitude (M = -1.737 μV, 

SD = 3.372) than the fearful (M = -3.254 μV, SD = 3.786, p = .014) and sad ones (M = -

3.102 μV, SD = 2.984, p = .036). Other comparisons failed to reach significance (ps > .705). 

A main effect of Orientation was also found, F(1,19) = 21.32, p < .001, ηp
2 = 0.121, with 

inverted body postures eliciting smaller mean amplitude (M = -3.595 μV, SD = 3.458) than 

the upright ones (M = -1.700 μV, SD = 3.175). 

Peak amplitude. The analysis revealed a main effect of Emotion, F (3, 57) = 2.906, 

p =.042, ηp
2 = 0.041, and a main effect of Orientation, F(1,19) = 17.03, p < .001, ηp

2 = 0.089, 

which were further qualified by their interaction, F(3, 57) = 3.141, p = .032, ηp
2 = 0.037. 

Posthoc paired t-tests showed that when presented upright, fearful (M = 2.106 μV, SD = 

3.858), happy (M = 3.002 μV, SD = 3.423) and emotionally neutral (M = 3.004 μV, SD = 

4.235) body postures elicited higher peak amplitude than when presented inverted (Fear: M 

= -0.618 μV, SD = 4.087, p < .001; Happy: M = 1.453 μV, SD = 3.990, p = .037; Neutral: 

M =0.486 μV, SD = 3.312, p < .001) respectively). No differences were found between 

upright and inverted sad body postures (p = .977) (Figure 4). Furthermore, a higher peak 

VPP amplitude was recorded in response to inverted happy bodies than in response to 

inverted fear bodies (p = .033). Other comparisons failed to reach significance (ps > .081). 

No significant main effects or interactions were observed for the latency of the VPP 

peak (ps >.060). 
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Figure 3. Grand average ERPs over frontal-central ROIs in response to body postures 

expressing fear, happiness, sadness and emotionally neutral actions. 

 

P1 

Mean amplitude. No significant results were found (ps >.106).  

Peak amplitude. The analysis of the peak amplitude revealed a main effect of 

Orientation (F(1, 19) = 6.173, p =.022, ηp
2 = 0.034), with greater peak amplitude in response 

to inverted (M = 19.782 μV, SD = 6.277) compared to upright bodies (M = 18.334 μV, SD = 

6.014).  

Latency. No significant results were found (ps >.100). 

 

N190  

Mean amplitude. The analysis of the mean N190 amplitude revealed a significant 

main effect of Emotion (F(3, 57) =7.770, p < .001, ηp
2 = 0.077), and a main effect of 

Orientation (F(1, 19) = 41.636, p  < .001, ηp
2 = 0.230), which were further qualified by their 

interaction, F(3, 57) = 3.331, p = .026, ηp
2 = 0.039. Posthoc analyses showed significant 

differences between emotional postures, although the patterns differed between the two 

orientations (Figure 4). More specifically, when presented upright, happy (M = 2.657μV, SD 

= 4.336, p = .005) and neutral (M = 2.837μV, SD = 4.724, p = .011) body postures lead to 
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increased negative amplitude compared to the sad bodies (M = 5.144μV, SD = 3.973). When 

presented inverted, the happy posture (M = 5.556μV, SD = 4.336, p < .001) elicited more 

negative amplitude than the fearful ones (M = 8.507μV, SD = 4.588). In addition, the mean 

N190 amplitude elicited by the upright bodies was significantly more negative than for the 

inverted ones when expressing fear (p  < .001), happiness (p  < .001) and emotionally neutral 

postures (p  < .001; M and SD of upright neutral postures are presented before, M and SD 

of inverted neutral postures: M = 6.654 μV, SD = 4.850), but not when expressing sadness 

(p = .081).  

Mean amplitude with respect to the P1: peak-to-peak analysis. The analysis 

revealed a significant main effect of Emotion (F(3, 57) =7.664, p < .001, μp
2 = 0.109), a 

main effect of Orientation (F(1, 19) = 91.208, p < .001, ηp
2 = 0.204), and a main effect of 

Region, (F(1, 19) = 19.635, p < .001, ηp
2 = 0.127). Happy bodies (M = -4.524 μV, SD = 

4.604) elicited more negative peak amplitude than fearful (M = -2.491 μV, SD = 3.899, p 

< .001), sad (M = -2.817 μV, SD = 4.035, p = .003) and emotional neutral bodies (M = -

2.916 μV, SD = 4.098, p = .006); no significant effects were found between other emotions 

(ps > 1.000). The mean amplitude recorded for the upright bodies (M = -4.447 μV, SD = 

4.064) was more negative than for the inverted bodies (M = -1.927 μV, SD = 4.008). The 

mean amplitude was more negative over the right (M = -4.048 μV, SD = 4.031) than the left 

hemisphere (M = -2.326 μV, SD = 4.245).  

Peak amplitude. A significant main effect of Emotion (F(3, 57) =5.352, p = .003, 

ηp
2 = 0.048) and Orientation (F(1, 19) = 25.480, p < .001, ηp

2 = 0.150) were found, which 

were further qualified by their interaction, F(3, 57) = 5.870, p = .001, ηp
2 = 0.057. Posthoc 

analyses showed significant differentiations between emotional conditions, which varied as 

a function of orientation (Figure 4). More specifically, when presented upright, happy (M = 

-7.249 μV, SD =5.334, p = .003), and neutral body postures (M = -7.182 μV, SD =6.529, p 

= .004) elicited more negative mean amplitudes than the sad ones (M = -4.380 μV, SD 
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=4.710). For the inverted orientation, happy (M = -3.560μV, SD =5.241, p = .041), and sad 

body postures (M = -4.399 μV, SD =5.656, p = .001) elicited more negative mean amplitudes 

than the fearful ones (M = -1.373 μV, SD = 4.828). In addition, the mean N190 amplitude 

elicited by upright bodies was significantly more negative than the inverted ones when 

expressing fear (Mup = -5.600μV, SDup = 5.633, p < .001), happiness (p < .001) and 

emotionally neutral postures (Min = -3.415μV, SDin = 5.877, p < .001), but not when 

expressing sadness (p = .984). Furthermore, a main effect of Region was observed, (F(1, 19) 

= 13.353, p < .001, ηp
2 = 0.179). Body postures elicited more negative N190 peak amplitude 

in the right (M = -6.265μV, SD = 5.471) compared to the left hemisphere (M = -3.024μV, 

SD = 5.584). 

Peak amplitude with respect to the P1: peak-to-peak analysis.  When taking into 

account the P1 peak amplitude, main effects of Orientation (F(1, 19) = 7.487, p = .013, ηp
2 

= 0.026), and of Regions (F(1, 19) = 16.690, p < .001, ηp
2 = 0.241) were observed, which 

were further qualified by their interaction, F(1, 19) = 4.897, p = .039, ηp
2 = 0.008. Posthoc 

comparisons showed that the upright bodies (M = -27.318μV, SD = 7.224) elicited more 

negative amplitude than for the inverted bodies (M = -25.089μV, SD = 6.552) at the right 

hemisphere (p < .001). This was not the case for the left hemisphere (p = .308). Furthermore, 

irrespective of orientation, body postures elicited more negative N190 peak amplitude in the 

right (M = -26.204μV, SD = 6.965) compared to the left hemisphere (M = -21.240 μV, SD = 

6.636). 

Latency. No significant results were found (ps > .056). 

Latency with respect to the P1: peak-to-peak analysis. The analysis revealed a 

significant main effect of Emotion (F(3, 57) = 3.570, p = .019, ηp
2 = 0.045). Emotional 

neutral bodies (M = 75.200ms, SD = 31.982) revealed shorter latency than the happy ones 

(M = 80.250ms, SD = 33.139, p = .042), while no significant differences were found between 

the other emotions (ps > .088). Other comparisons failed to show significance (ps > .057) 
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Figure 4. Grand average ERPs over the occipital-temporal ROIs in responses to the bodies 

expressing happy, fear, sad and emotionally neutral actions when presented in upright and 

inverted orientation, with the bar chat representing the differences of the N190 mean 

amplitude Voltage (before and after peak-to-peak correction) between emotions.  

 

Discussion 

The aim of the current study was to investigate the neural underpinnings of 

emotional body posture processing in 5- to 8-year-old children. We analysed the ERP 

responses to human body postures expressing happy, sad, fearful, and neutral affective states 

presented either upright or inverted. We were particularly interested in ERP components 

typically associated with different aspects of human body processing: P1, N190, and VPP. 

Our results show that observing pictures of human bodies elicits these components in 

children and that they are modulated in different ways by the emotional expression of the 

bodies and their orientation.  

The main effect of orientation on amplitude is the only effect revealed on the P1. 

Regardless of the emotional expression, inverted body images elicited greater P1 amplitude 

than upright bodies. Although the larger neural response to inverted face and body is 

considered as evidence of the impairment of configural processing on N170/N190, the 

inversion effect on P1 is also observed in response to non-face and non-body objects 

(Rossion & Caharel, 2010). The P1 is typically sensitive to the low-level visual features of 

the stimuli, such as luminance, color, or spatial frequency (Regan, 1989). Further, the P1 

latency is found to be sensitive to manipulations of the stimulation in the upper and lower 

visual field, such as changing the balance of simple parameters like contrast (Di Russo et 

al., 2002; Jacques & Rossion, 2009). Therefore, the early sensitivity to orientation observed 

at the level of the P1 in our study probably originates from the low-level visual cues between 

the lower and the upper part the body in different orientation at this age, rather than specific 
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to the structural encoding of bodies (Rossion & Caharel, 2011). Furthermore, this finding 

differs from previous findings on body perception in adults that show the P1 is not sensitive 

to the orientation change of bodies (Righart & de Gelder, 2007). This suggests that there are 

developmental differences in the body perception between 8-year-olds and adults. 

Interestingly, in facial perception studies, the orientation effect is observed on P1 from the 

temporal-occipital area from childhood until adulthood, with inverted faces eliciting greater 

amplitude and longer latency than upright faces (Linkenkaer-Hansen et al., 1998; Taylor et 

al., 2004). Therefore, the developmental differences on P1 components between bodily and 

facial perception support the findings of previous studies, that there are different neural 

resources behind similar ERP components of bodily and facial perception (Stekelenburg & 

de Gelder, 2004; Minnebusch et al., 2010). 

Emotion is known to have an influence on the P1 in facial and bodily perception. 

Batty and Taylor (2003)’s investigation of adults’ emotional processing of faces shows a 

small effect of emotion on the P1 amplitude, with neutral and surprised faces having the 

smallest amplitude compared to anger, disgust, fear, sadness, surprised and happy facial 

expressions, but the difference fails to reach significance. Their developmental findings of 

emotional face processing in children aged 4 to 15 years show an early emotional sensitivity 

on the P1. Fearful faces peak later than the neutral, happy, and surprised faces, while happy 

faces peak earlier than disgust, fear and sad faces. The faster neural response to happy faces 

in comparison to disgust, fear and sad faces is found in children from 4 to 7 years old at 

occipital regions (Batty & Taylor, 2006). Heijnsbergen and colleagues (2007)’ study of 

adults processing emotion from body images found that P1 showed shorter latency to fearful 

bodies as compared to neutral bodies. This implies that emotion processing happens earlier 

than and in parallel with the structural encoding of faces from 4 years old and body 

processing in adults. However, the early sensitivity towards emotional information on the 

P1 was absent in the current study. Unlike face processing at similar ages, when observing 
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emotional body expressions, early extraction of emotional information does not take place 

at this stage in 5-8-year-old children. This indicates that either emotion perception from 

body and facial expression involves different processing strategies, or the developmental 

pathway underlying the perception of emotional information in bodies and faces is different. 

Both emotion and orientation and their interaction effect were observed on the N190. 

The typical inversion effect in body processing refers to the impaired recognition of inverted 

body images with correct structural hierarchy of body parts. It is believed to be an index of 

the activation of the body representation (Reed et al., 2003; 2006). The body inversion leads 

to a greater amplitude and/or longer latency of the N190 in comparison to upright body 

images. The N190 is associated with the body structural encoding mechanism in the 

fusiform cortex (Stekerlenburg & de Gelder, 2006; Minnebush et al., 2009). The N190 

inversion effect is thus interpreted as the reflection of the impaired cognitive processing of 

the body representation (Stegelenburg & de Gleder, 2006; Minnenbush et al., 2009). In our 

study, we observed significant differences between upright and inverted body images on 

N190’s amplitude (before and after peak-to-peak analysis), but in a paradoxical way. Before 

peak-to-peak analysis, apart from the orientation main effect, the mean amplitude of N190 

showed an emotion by orientation interaction, with upright bodies evoking more negative 

mean amplitude than inverted bodies when expressing happy, fearful and neutral 

information. The sad bodies show similar amplitude differences between upright and 

inverted conditions, although this difference failed to reach significance. This tendency was 

also observed on the N190 peak before peak-to-peak analysis. After peak-to-peak analysis, 

with the absence of an early orientation effect driven by the P1, the emotion by orientation 

interaction was cancelled on both mean and peak amplitude of N190; while the inversion 

effect stays significant regardless of the emotions. This indicated the orientation effect is 

stable across all emotions after taking into account the different P1 amplitudes on the 

orientation. Furthermore, analysis of the N190 peak amplitude revealed that the greater 
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responses to upright bodies over inverted bodies was stronger on right hemisphere. 

Although this contrasts with the body perception research in adults (Stegelenburg & de 

Gelder, 2006), as well as with previous face perception research (Eimer & Holmes, 2002; 

Ashley, Vuilleumier & Swick, 2004), the paradoxical inversion effect is consistent with our 

previous findings using the same paradigm with human bodies of no actions or emotional 

expressions in 3-, 5- and 10-year-old children, indicating the developmental differences 

between adults and children in their processing of human bodies with or without emotion or 

action information (Ke & Geangu, Study 1). Interestingly, greater N190 amplitude for 

upright as compared to inverted faces is also found in Taylor, Batty and Itier (2004)’s 

investigation of children aged 4 to 10 years. Furthermore, adults with developmental 

prosopagnosia also show this paradoxical inversion effect for both face and bodies (Righart 

& de Gelder, 2007). One possible interpretation of this paradoxical inversion effect is the 

immature use of configural information in face and body structural encoding. Children 

before a certain developmental stage rely on both feature and configural information in 

facial perception (Campbell, 1999; Mondloch, Le Grand, & Maurer, 2002). For instance, 8- 

to 11-year-old children showed similar accuracy to both upright and inverted faces, an 

advantage of recognizing upright faces was not observed until 12 years of age (Mondloch 

et la., 2002).  

With regard to the emotion effect on N190 mean and peak amplitude, before 

correcting the orientation effect driven by P1, the emotion effect on the mean and peak of 

the N190 amplitude varied when the bodies were presented upright and inverted. The mean 

amplitude in response to happy bodies differed from that for sad bodies when the bodies 

were presented upright; while when presented upside-down, emotion differences were 

found between happy and fear on the mean amplitude; on the peak amplitude, the differences 

between happy and sad bodies were cancelled. Instead, fearful bodies elicited a more 

positive N190 peak than happy and sad bodies. This variation disappeared after P1-N190 
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peak to peak analysis. Therefore, the inconsistent emotion effect between upright and 

inverted bodies before correction was likely due to the disturbance of low-level visual cue 

change from the orientation driven by P1. After correction, the emotion main effect was also 

revealed at the N190 latency. Both the emotion differences at the mean amplitude and 

latency showed a consistently larger response to happy bodies in comparison to other 

emotions. This suggests that although previous behavioural studies showed children at this 

age are able to detect different negative emotions by choosing one category between the 

given labels (Mondloch, Horner, & Mian, 2013), they did not seem to discriminate negative 

emotions at the structural encoding stage, or the perception of negative emotions did not 

happen at this early stage. With regard to the early sensitivity to happy body postures, there 

are two possible inferences: first, the effect comes from low-level visual differences 

between happy bodies and other stimuli, as happy body postures have wider shoulder swing 

and elbow angle than other postures; second, the effect is actually due to perceptual 

sensitivities elicited by the structural differences between the emotional bodies, but takes 

place at the structural encoding stage. Given that there were no emotion differences found 

on the low-level visual component P1, we can infer that the second possibility is more likely 

to be the case. One explanation is that this indicates the fast detection of positive information. 

The early encoding of happiness was also found in a facial emotion recognition ERP study 

on adults (Rellecke, Palazova, Sommer, & Schacht, 2011), where a larger mean amplitude 

is observed in response to happy over neutral faces as early as 80-100ms after stimulus onset. 

Calvo and Nummenmaa (2009)’s eye tracking investigation interpreted this happy-face-

advantage as a facilitated detection of certain diagnostic visual properties of happy facial 

expression: Happy faces are not only detected faster, but also requires less encoding effort, 

as indicated by shorter first fixations.  They also require less cognitive effort as there were 

fewer refixations on happy faces than neutral faces during a recognition probe. Furthermore, 

investigation of the visual receptive fields found that the immature fixation pattern used to 
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explore faces by children in comparison to adults is associated with the development of the 

neural receptive fields across visual cortex in childhood (Gomez et al., 2017). Therefore, 

another possible explanation is that given the wider span of the body elements from the 

central torso, the visual properties of the happy bodies may be more difficult for children to 

perceive at this developmental stage than for other body images, and thus requiring higher 

cognitive effort. Both explanations require further investigations in body perception by 

tracking the dynamic of the gaze. 

As the positive counterpart of the N190, most of the findings on VPP mirrored the 

patterns of the N190 effect, suggesting the fast perceptual discrimination of happy body 

postures over other ones. Although few studies on emotional body image perception with 

adults found greater amplitude and faster latency on VPP in response to fearful bodies as 

compared to emotionally neutral bodies, no emotion effect is observed on N190 in these 

studies (Stekelenburg & de Gelder, 2006; Heijnsbergen et al., 2007). Our current finding in 

children seems to support the argument that VPP reflects the opposite phenomenon of the 

activity from the same generators of the N170 in facial perception (Rousselet, et al., 2005; 

Joyce & Rossion, 2005; Rossion & Jacques, 2011). 

To sum up, the present study provides the first neurophysiological evidence for the 

mechanisms underlying the perceptual processing of emotion signals expressed by static 

body posture in children. Our results suggested that at least from the age of 5 years, children 

are able to not only extract emotion information at around 205ms after observing a body 

posture expressing emotion, but can also perceptually discriminate happy bodies from 

fearful, sad and emotionally neutral presentations at the structural encoding stage.  

The current results also discovered key differences in the underlying mechanism of 

encoding emotion expressed by bodies and by faces. First, similar with the performance on 

adults (Stekenlenburg & de Gelder, 2006), at least from the age of 5 years, the perceptual 

processing of emotion as expressed by body posture (205ms) is not as fast as the processing 
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of emotion expressed by face (at appropriately 80ms, Batty & Taylor, 2006).  Second, 

consistent with our hypothesis, the inversion of the body stimuli interferes with emotion 

processing. Further investigation is required to clarify what type of information processing 

is involved in this interference on emotion perception. From the current findings we were 

also unable to tell whether the full meaning of the emotion expressed by body images was 

already processed and recognized. Although the current investigation showed children’s fast 

emotional signal detecting at least pf the positive emotion, these are most likely just the 

early stages of emotion processing. Furthermore, we should not forget that in everyday life, 

children process emotions from moving bodies rather than static body images. Therefore, 

the next stage of the investigation would be to try to reveal the perceptual processing of 

emotion from moving bodies. 
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Abstract 

 

Body movements provide a rich source of emotional information during social interactions. 

Although the ability to perceive the emotional information displayed by human bodies 

begins to develop in infancy, processing the semantic meaning of such information may 

continue to develop well into childhood. The present study uses electroencephalography 

(EEG) to investigate the development of semantic understanding of emotions from body 

movements during childhood. Point-light displays (PLDs) of human adult bodies showing 

Happy and Angry emotional movement were used as prime stimuli, while the audio 

recordings of the words Happy and Angry uttered with an emotionally neutral prosody 

represented the targets. The aim of the study was to examine the semantic incongruency 

effects on N300/N400 in response to the target words that were either congruent or 

incongruent with the prime PLDs; such as semantic incongruent condition elicits greater 

N300/N400 than congruent condition. Continuous EEG was recorded with a 128 electrodes 

Geodesic Sensor Net (EGI). ERPs time-locked to the audio stimuli onset were calculated. 

34 children aged 3 and 6-years old were tested. Results showed semantic incongruency 

effects on N300 and N400 for both age groups, suggesting children can process the 

emotional information from body movements, and are able to integrate the semantic 

meaning to the emotion they extracted.   

Keywords: emotional body perception, body motion, childhood, N300, N400 
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Three- and Six-Year-Old Children are Sensitive to Emotional Body Movements. An ERP 

Emotional Priming Study. 

 

Introduction 

Appropriate social interactions require the ability to interpret the feelings and 

intentions of people around us. Observing the subtle movements people often unconsciously 

and spontaneously make, can provide a rich source of information in this respect. Extensive 

research has shown that adults are highly sensitive to such “biological motion” – the fine 

variations of body movements of humans (for a review, see Thornton, 2006). This 

sensitivity can be demonstrated by presenting human bodies as a small number of moving 

points of light corresponding to major body parts (e.g., head, wrists, ankles, and hips). 

Despite the absence of many visual form cues (e.g., shape, colour, etc.), adults readily 

perceive these point-light-displays (PLDs) as a human body when the PLDs are dynamic 

but not when they are static (Johansson, 1973). Importantly, adults are able to quickly 

extract socially-relevant information from biological motion, such as sex (Mather, & 

Murdoch, 1994), subtle emotional expressions (Volkova, Mohler, Dodds, Tesch, & 

Bülthoff, 2014b), and even psychological traits (Thoresen et al., 2012). While new-born 

infants show similar sensitivity to biological motion, it is less clear when the ability to 

extract socially-relevant information from biological-motion cues develops. Towards this 

aim, the current study investigated young children’s processing of emotional body 

movements expressed during naturalistic narrative contexts and depicted as PLDs. 

The results from behavioural and neuroimaging studies with infants and children 

suggest that both the ability to detect biological motion (e.g., from PLDs; Hadad, Maurer, 

& Lewis, 2011; Pavlova, 2012) and to accurately identify the emotion expressed (Ross, 

Polson, & Grosbras, 2012) have a protracted developmental trajectory. It is believed that for 

both of these functions adults integrate local motion signals from the individual dots across 
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space and time into a global biological-motion perception (Movshon, Adelson, Gizzi, & 

Newsome, 1985; Smith, Snowden, & Milne, 1994; Movshon, 1990; Grossman, & Blake, 

1999; Giese, & Poggio, 2003). If the local motion signals are profoundly altered, infants can 

discriminate above chance between coherent biological motion and non-coherent biological 

motion in which the individual points are temporally or spatially “scrambled” (Berthenthal 

et al., 1987; Moore et al., 2007), and by the age of 4- to 6-years children are as accurate as 

adults (Vieillard, & Guidetti, 2009). However, if the local motion signals are only slightly 

altered, children’s sensitivity to biological motion continues to improve until adolescence 

although it remains particularly diminished in complex visual displays (Hadad et al., 2011, 

Freire et al., 2006).  

With respect to children’s ability to identify emotions expressed by body 

movements, Ross, Polson, and Grosbras (2012) tested 4- to 17-year-old children and adults’ 

ability to identify anger, happiness, fear, and sadness expressed by adult actors explicitly 

posing these emotions. The stimuli were presented as PLDs and as videos which contain 

both form and motion cues. Participants were asked to choose the verbal label corresponding 

to the posed emotion. The accuracy was significantly lower for PLDs than videos across all 

age groups and emotions, demonstrating that children and adults benefited from form cues 

in identifying emotions. Nevertheless, for both types of stimuli, accuracy improved 

throughout childhood and adolescence, with the steepest increase between the age of 4- and 

8.5-years. Other studies suggest that children’s ability to identify emotions expressed by 

body movements depends on various other factors. When children observe exaggerated 

body movements that extend over longer durations and are associated with dance narrative 

cues, they are able to identify the emotion at a slightly younger age (Boone, & Cunningham, 

1998; Lagerlöf, & Djerf, 2009). Five- to 8-year-old children can perform above chance and 

at similar levels with adults in identifying happiness, sadness, anger, and fear, particularly 

when they benefit from training about how body movement can express different meanings 
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(Lagerlöf, & Djerf, 2009). Younger 2- to 4-year-old children show the lowest performance 

(Boone, & Cunningham, 1998; Lagerlöf, & Djerf, 2009). Sadness tends to be more 

consistently identified in dance movements when children are closer to the age of 2-years, 

while the accurate labelling of happiness, anger and fear appears to become more frequent 

as children reach the age of 4 years (Lagerlöf, & Djerf, 2009). These studies used explicitly 

posed and potentially exaggerated body movements, which are uncharacteristic of 

children’s daily interactions. Thus, it is still unknown at which age children can identify the 

emotions of others from body movements which occur unconsciously and spontaneously 

during everyday life events. 

At the neural level, event-related potential (ERP) studies suggest that changes in the 

speed of processing of biological motion continue to occur in 8- to 10-year-old children but 

do not reach adult levels at this age range (Hirai et al., 2013). More specifically, 

developmental changes are present both for ERP components that reflect earlier stages of 

processing and for those that reflect later stages of processing. The early components are 

most often associated with extracting low-level properties of PLDs (Hirai et al., 2013; Coch 

et al., 2005; Mitchell, & Neville, 2004; McCarthy et al., 1999; Jokisch et al., 2005), while 

the later components are often linked with attributing a meaning to the perceived biological 

motion (Jokisch et al., 2005; Krakowski et al., 2011). In sum, children may first be able to 

detect changes in posed emotional body movements when these have an exaggerated 

expression and benefit from additional visual and semantic/contextual information, while 

sensitivity to expressions which are less exaggerated continues to develop throughout 

childhood. These developmental changes may be detected by specific ERP components. 

In the present study, we investigated 3- and 6-year-old children’s processing of anger 

and happiness expressed by subtle body movements during story narrations (Volkova et al., 

2014a, b). Unlike previous studies in which the stimuli were created by explicitly asking 

adult actors seated on a chair to pose distinctive emotional body expressions (e.g., Ross, 
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Polson, & Grosbras, 2012), here we used PLDs from spontaneous body movements 

expressed by adult actors while they imagined telling fairy tales to children and tried to 

recount the emotions of the narrator and the characters in the story (Volkova, De La Rosa, 

Bülthoff, & Mohler, 2014a). The actors did not receive any instructions about emotional 

expressivity per se or about which expressions to use; thus, the body movements from this 

database more resemble those produced naturally during similar daily social situations. To 

test whether children in the two age groups could extract emotional information from 

biological-motion cues, we used an ERP emotional semantic priming paradigm (Deacon, 

Hewitt, Yang, & Nagata, 2000). In this paradigm, we presented either an “anger” or a 

“happy” PLD as a prime followed by the word “angry” or “happy” uttered with emotionally-

neutral prosody as a target, and measured ERP responses to the auditory word target. 

Children in both age groups understand the meaning of the words (Ridgeway, Waters, & 

Ii,1985; Li, & Yu, 2015; Bretherton, Fritz, Zahn-Waxler, & Ridgeway, 2017). If they can 

extract the socially relevant emotional information from the PLD prime, then we expect 

differences in ERP responses to the word target when the prime-target pairs are congruent 

(i.e., refer to the same emotion information) versus incongruent (i.e., refer to different 

emotion information). Furthermore, this congruency effect may vary with age. Thus, by 

manipulating the emotional matching between the prime and the target, we can investigate 

children’s processing of anger and happiness expressed through subtle biological-motion 

cues.  

One of the reasons we chose to measure the ERP response to the emotional words 

as target, instead of directly measure ERPs to PLDs, is that the noisiness of the child ERPs 

brings practical difficulties in measure ERP response to long stimuli, such as PLDs 

expressing emotions. Moreover, we chose the ERP emotional semantic priming paradigm 

because it is well established that different ERP components can reflect different underlying 

perceptual and emotional relationships between prime and target. N400 and N300 are the 
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ERP components primarily shown to differentiate between emotional stimuli which are 

perceived to be semantically congruent or incongruent with the emotional context in which 

they appear (e.g., Bostanov, & Kotchoubey, 2004; Schirmer et al., 2002; Werheid et al., 

2005; Zhang et al., 2006; Paulmann, & Pell, 2010; Goerlich et al., 2012). The N400 is a 

negative-going deflection in adults usually observed in the centra-parietal sites. It is a 

broadly observed component in language investigations that peaks at around 400ms after 

the target word onset in a prime-target paradigm or sentential context. A typical N400 effect 

refers to enhanced amplitude to the semantically incongruent condition, therefore, it’s often 

considered as a sensitive index of semantic processing (Lau et al., 2008). However, it is also 

found elicited in incongruent conditions that involve any meaningful stimuli, such as story 

pictures, action sequences, or music and faces that contains emotional meanings (Aguado 

et al., 2013; West, & Holcomb, 2002; Steinbeins, & Koelsch, 2008; Reid, & Sriano, 2008). 

Although sometimes considered as reflecting the same processes with differences in latency 

due to ease of access to the semantic information (Bostanov, & Kotchoubey, 2004), N300 

and N400 have also been associated with different functions. The N300 is often reported 

either independent of or co-occurring with the N400 (Bostanov, & Kotchoubey, 2004; 

Paulmann, & Pell, 2010; Nobre, & McCarthy, 1995; Friederici, 2005). In children, 

negativities occurring around 300ms from stimulus onset have been interpreted to index 

familiarity effects reflecting the fulfillment of a phonological expectation after seeing the 

visual depiction of an object. This slightly precedes more advanced cognitive processing of 

the semantic content of the word (Friedrich, & Friederici, 2004; Friederici, 2005; Torklidsen 

et al., 2007). N300 has also been linked to image processing when the semantic content is 

presented visually (e.g., West, & Holcomb; 2000). Both N300 and N400 components are 

present in infancy and childhood (e.g., Friedrich, & Friederici, 2004, 2005, 2008; Friederici, 

2005; Parise, & Csibra, 2012; Sheehan, Namy, & Mills, 2007). As children mature, they 
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show a reduction in amplitude, a slowing in the latency of the peak response, and a change 

in hemispheric distribution (Holcomb, Coffey, & Neville, 1992).  

Typically, a target word which is semantically incongruent with the prime elicits 

more negative amplitude of N300 and N400 components compared to the words which 

semantically match the prime (Deacon et al., 2000; McPherson, & Holcomb, 1999; 

Amoruso et al., 2013; Lau et al., 2008). However, opposite effects have been reported as 

well (Bermeitinger, Frings, & Wentura, 2008), especially for emotional stimuli (e.g., 

Paulmann, & Pell, 2010; Goerlich et al., 2012; Kotz, & Paulmann, 2007; Aguado et al., 

2013) and in children (Holcomb et al., 1992; Bonte, & Blomert, 2004). In addition, 

variations in the latency of these components, as a function of the emotional meaning of the 

stimuli, have been noted (Paulmann, & Pell, 2010). Thus, irrespective of its direction, a 

difference in the amplitude and latency of the N300 and N400 components between the 

congruent and incongruent emotional PLD-emotional word pairs, will suggest that children 

extract, to a certain degree, the emotional information conveyed by body movement and 

establish the semantic relation with the corresponding word. We anticipate that while 

children may show a smaller N400 congruency effect than the one typically reported in 

adults, due to poorer semantic associations between the emotional body movement and the 

verbal label, they may nevertheless associate them during attentive process (Rämä, Sirri, & 

Serres, 2013). Thus, we predict differences in amplitude and latency of the N300 between 

congruent and incongruent prime-target pairs in both age groups.  

 

 
Methods 

Participants  

A total of 54 children were tested. The final analysis included 34 children, 3-year-

old, N = 17, 8 females, Mage = 45.82 months (SD = 5.60); 6-year-old, N = 17, 10 females, 

Mage = 78.24 months (SD = 5.18). The remaining 20 children (3-year-old, N = 18; 6-year-
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old, N =2) were excluded due to either technical issues (N = 3) or insufficient number of 

artefact free trials (N = 17). The participants were recruited from an urban area in Northwest 

England. Parents gave informed written consent on behalf of their child to take part in the 

study. The children assented to their participation in the study and received a small gift for 

their participation. The procedure followed ethical standards (the Declaration of Helsinki, 

BMJ 1991; 302:1194) and was approved by the Lancaster University Ethic Committee.  

Stimuli 

The stimuli consisted of PLDs which served as primes, and auditory words that 

served as targets. Six PLDs were selected from the MPI Emotional Body Expression 

Database (Volkova et al., 2014a), the actors are in seated position, three expressing “anger” 

and three expressing “happiness”. Each PLD consisted of 23 points located at the head, 

spine, and main joints, and depicted the body movements of adults while they narrated 

coherent emotional stories. The points were rendered as white circles against a black 

background. Importantly, independent observers rated the emotion expressed by the PLDs 

(see Volkova et al., 2014a, for details). Adult participants rated the stimuli selected for this 

study as expressing happiness and anger with correct valence (positive for happiness and 

negative for anger) and high arousal (1 as high and 0 as low) (Volkova, et al, 2014a). The 

average speed of the motion of the left and right wrists of the actor (as a measure of 

movement, speed?), along with the duration for each type of prime stimuli were presented 

in Table 1. As evident in the table, there are only small differences between the two types 

of primes. 

Table 1.  

Means and SDs of the measurement of the speed and duration for each type of prime 

Prime type Speed (m/s) Duration (s) 

Happy 0.34(0.02) 4.53 (0.57) 

Angry 0.43(0.06) 3.85(0.53) 
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The two target stimuli were 505-ms audio recordings of the words “angry” or 

“happy” spoken in an emotionally neutral tone by a native English-speaking female adult. 

They were selected from a pool of 30-word utterances recorded in an anechoic chamber by 

3 speakers (15 for “angry” and 15 for “happy”). Ten adult listeners rated each recording in 

terms of clarity (on a scale of 0-5) and prosody (“neutral”, “angry” or “happy”). Both target 

stimuli were rated to be the clearest (clarity = 5) and having “neutral” prosody by more than 

half of the raters. 

Apparatus 

Participants were tested individually in a dimly lit room. They sat approximately 

70 cm away from a CRT monitor which had a 75Hz refresh rate. The PLDs were presented 

on the monitor and the auditory words were presented via speakers. The PLDs covered a 

visual field of 22.07°× 22.07° (horizontal × vertical). The experiment was programmed in 

Matlab (Mathworks, Inc.). EEG was recorded with a 128-electrode HydroCel Geodesic 

Sensor Net (Electrical Geodesic Inc., Eugene, OR) and amplified using an EGI NetAmps 

300 amplifier. A video recorder synchronized with the EEG was used to record participants 

during the experiment. The videos were used off-line to identify eye movements and 

whether or not participants were looking at the visual stimuli.  

Design and Procedure 

Figure 1 illustrates the experimental paradigm. The participants were presented 

with a PLD prime followed by an auditory word target while we continuously recorded 

EEG. The two PLD primes were factorially combined with the two auditory word targets, 

resulting in four conditions (Figure 1B): Angry Congruent (AC; Angry PLD - Angry word), 

Angry Incongruent (AI; Happy PLD - Angry word), Happy Congruent (HC; Happy PLD - 

Happy word), and Happy Incongruent (HI; Angry PLD – Happy word). Note that emotion 

for the condition label is with respect to the auditory word target. 
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The trial sequence is illustrated in Figure 1B. Each trial began with a PLD prime 

presented at the centre of the screen for its duration. The auditory word target was presented 

for its full duration 200ms after the end of the PLD. The last “frame” of the prime remained 

on the screen during the 200-ms interval and throughout the duration of the target (~700ms 

in total). After the offset of the target, a central white fixation cross was presented on a black 

background for a duration varying randomly between 1800 and 2000ms. This is to avoid the 

participant’s neural response being biased by their expectation to a set interval. To maintain 

participants’ attention throughout the task, a non-task-related image (a rainbow-coloured 

star) was presented before the fixation cross on 40% of the trials. We chose to present the 

attention getters in this percentage so that they are frequent enough but not too frequent that 

the children will lose interests. Participants were asked to press a button as soon as they saw 

the image. The image was presented for 2000ms irrespective of their response. Each of the 

four conditions was presented for a maximum of 27 times. The three different PLDs for 

each emotion were randomly selected on each trial with replacement. 

 The 200-ms interval allowed a motion-free baseline for EEG recording. 

Furthermore, the presentation of the last “frame” of the PLD during the 200-ms interval and 

target presentation ensured that the participants remained engaged on each trial and that they 

were less likely to look away from the screen which could increase the chance of artefacts 

in the EEG data. 
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Figure 1. (A)  Schematic illustration of the prime-target pairs specific for each condition. 

(B) Example of a trial structure. Each trial began with the prime PLDs displayed in the 

centre of the screen, the auditory word target followed after 200ms from the offset of the 

motion.  

EEG Analysis 

EEG was recorded continuously at a sampling rate of 500 Hz. For each electrode, 

the signal was referenced online to the vertex electrode (Cz) and a band-pass filter of .1–

100 Hz was applied. Impedances were checked prior to the beginning of the recording and 

they were considered acceptable if lower than 50 kΩ. The EEG data were further processed 

off-line using NetStation v 4.5.4 (Eugene, OR). The signal was band-pass filtered (0.3–

30Hz) and segmented from 100ms before the onset of the auditory word target to 1000ms 

after onset for each trial. To eliminate artefacts, segmented data were automatically rejected 

whenever the signal exceeded ± 200 µV at any electrode. The data were further checked by 

visual inspection for eye-movements, eye-blinks, and other body movement artefacts not 

detected by the automated algorithm. At this stage, trials were excluded if more than 18 bad 

channels were detected or if participants did not look at the PLD primes (as indicated by the 
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video recording). For the remaining trials, after the data clearance and preparation, the 

individual channels that the signal exceeded ± 200 µV were replaced using spherical spline 

interpolation. Individual subject averages were computed separately, for each channel, 

across all trials within each condition, and then the data was re-referenced to the average 

reference. The average number of included trials, as a function of condition and age group, 

is presented in Table 2. 

 

Table 2  

Mean numbers of the trials (with SD) included in the analysis for each condition, separately 

for each age group 

Age Group Mean (SD) numbers of trials remains 

 Angry Congruent Angry Incongruent Happy Congruent Happy Incongruent 

3-year-old 13.82 (3.43) 12.82 (3.41) 12.82 (2.83) 13.35 (3.62) 

6-year-old 16.24 (3.91) 15.25 (4.46) 14.35 (5.50) 15.06 (4.59) 

  

Following pre-processing, we conducted statistical analyses on the amplitude and 

latency of different ERP components within regions of interest (ROIs). Figure 2 shows the 

two ROIs selected: central (left: 29, 35, 36; right: 104, 111, 110) and parietal (left: 42, 47, 

52; right: 92, 93, 98). The components included the N300 (250-380ms) at central ROIs, and 

the N400 (400-550ms) at the parietal ROIs (see Figure 3). The time windows for each 

component and ROIs were based on previous literature using similar paradigms with 

children and adults (Friedrich, & Friederici, 2004; Steinbeis, & Koelsch, 2008; Henderson 

et al., 2011) and visual inspection of the data. The visual inspection of the data also indicated 

that at central ROIs, differentiations between conditions may be present during an earlier 

positivity (150-250ms) which precedes the N300 and corresponds to the P200 component 

previously described in the literature (Paulmann, Bleichner, & Kotz, 2013; Paulmann, & 
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Kotz, 2008; Pell et al., 2015; Schirmer, Chen, Ching, Tan, & Hong, 2013). It is possible that 

variations in the P200 may have affected the N300 differently across conditions. In order to 

test for this possibility, we analysed the central P200 as well. Whenever significant effects 

of Emotion, Congruence, Age, or their interaction were observed for this component, we 

performed complementary P200-N300 peak-to-peak measurement (that is, to minus the 

measurement of P200 from N300) and analyses for the N300 to control for P200 variations. 

For each component, we submitted the mean amplitude, peak amplitude, and the latency to 

the peak to a 2 Emotion (Happy word, Angry word) ´ 2 Congruence (Congruent, 

Incongruent) ́   2 Hemisphere (Right, Left) ́   2 Age (3-year-old, 6-year-old) mixed analysis 

of variance (ANOVA), with Age as a between-subjects factor, and the remaining variables 

as within-subjects factors. Significant interactions were further analysed by simple 

ANOVAs. We report Bonferroni or Tukey corrected p-values for post-hoc comparisons. 

The results were interpreted at the significance threshold of p = .05. 

 

Figure 2. The location of the electrodes included in each regions of interest (ROIs)  
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Results 

Parietal N400 

Mean amplitude. The analysis revealed a significant main effect of Emotion 

(F(1,32) = 6.42, p = .016, ηp2 = 0.014), with the Angry word eliciting greater mean 

amplitude (M = 0.90μV, SD = 4.74) than the Happy word (M = -0.20μV, SD = 5.07). A 

significant main effect of Hemisphere, (F(1,32) = 7.24, p = .011, ηp2 = 0.037), showed an 

increased mean N400 amplitude over the left (M = 1.26μV, SD = 5.27) compared to the 

right region (M = -0.56μV, SD = 4.41). Furthermore, a significant Age × Congruence 

interaction emerged, F(1,32) = 7.35, p = .011, ηp2 = 0.085. The post-hoc comparisons 

showed that in 3-year-old children only, the Incongruent condition elicited reduced mean 

amplitude (M = 0.26μV, SD = 0.68) compared to the Congruent one (M = 1.22μV, SD = 

0.68, p = .041), see Figure 3 and 4.  

Peak amplitude. No significant main effects or interactions were found 

(ps > .062). 

N400 latency. A significant main effect of Age, F(1,32) = 10.93, p = .002, ηp2 = 

0.058, and interaction between Emotion × Congruence (F(1,32) = 16.11, p = .003, ηp2 = 

0.042), were found. These were further qualified by an Age × Emotion × Congruence 

interaction, (F(1,32) = 6.02, p = .020, ηp2 = 0.016). Further analysis revealed a significant 

Emotion × Congruence interaction in 6-year-old children only, F(1,16) = 21.16, p < .001, 

ηp2 = 0.131. Posthoc comparisons showed that the HC elicited peak N400 amplitude with 

longer latency (M = 478.82 ms, SD = 40.04) than the HI (M = 453.71ms, SD = 43.05, 

p= .003) and AC (M = 447.00 ms, SD = 39.63, p < .001). Furthermore, AI (M = 476.47 ms, 

SD = 40.69) elicited N400 peak amplitude with longer latency than AC (p < .001) and HI 

(p = .009), see Figure 4. An Emotion × Congruence × Hemisphere interaction was also 

found, (F(1,32) = 6.88, p = .013, ηp2 = 0.020. Emotion × Congruence repeated measures 

ANOVAs performed separately for each hemisphere revealed a significant interaction in the 
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left hemisphere only, F(1,32) = 23.60, p < .001, ηp2 = 0.111. Posthoc comparisons showed 

that, for both age groups, HC (M = 491.88 ms, SD = 40.05) elicited peak N400 amplitude 

with longer latency than HI (M = 462.65 ms, SD = 43.43, p=.001) and AC (M = 459.88 ms, 

SD = 49.23, p = .001). Furthermore, AI (M = 487.82 ms, SD = 41.89) elicited peak N400 

amplitude with longer latency than AC (p = .002) and HI (p = .010).  

The latency analysis also revealed a significant Age × Emotion × Hemisphere 

interaction (F(1,32) = 7.50, p = .010, ηp2 = 0.028).  A significant Emotion × Hemisphere 

interaction was observed in 3-year-olds only, F(1,16) = 7.34, p = .015, ηp2 = 0.036. The 

posthoc comparisons showed that over the right hemisphere, the Angry word elicits N400 

peak amplitude with shorter latency (M = 472.29 ms, SD = 41.51) than the Happy word (M 

= 491.59 ms, SD = 44.59, p = .047) (Figure 4). Although a significant Age × Congruence × 

Hemisphere interaction was also observed, (F(1,32) = 4.25, p = .048, ηp2 = 0.017), the 

posthoc analysis did not show any significant differences (p > .130). 



CHILDREN’S SENSITIVITY TO EMOTIONAL BODY MOVEMENTS                                                                                                                                               16 
 

 

Figure 3. Grand average ERPs and topography for the Happy and Angry in Congruent and 

Incongruent conditions from Parietal electrodes (left: 25, 35, 36; right: 111, 110, 104) of the 

two age groups.  



CHILDREN’S SENSITIVITY TO EMOTIONAL BODY MOVEMENTS                                                                                                                                               17 
 

 

Figure 4. Bar chart of the N400 mean, peak amplitude and the latency of the two age groups 

across each condition. 

  

Central P200 

Mean & peak amplitude. For both the mean and the peak amplitude of the P200 

recorded at central ROIs, a main effect of hemisphere was found, F(1,32) = 4.70, p = .038, 
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ηp2 = 0.018 and F(1,32) = 4.67, p =.038, ηp2 = 0.016, respectively. A higher amplitude was 

recorded at the left (M = 3.10 μV, SD = 4.14 and M = 8.22 μV, SD = 4.52, respectively) 

compared to the right hemisphere (M = 2.01 μV, SD = 3.97 and M = 7.02 μV, SD = 5.01, 

respectively).  

Latency. No significant results were found for the latency of the P200 at central 

ROI (ps > .055).  

 

Central N300 

Because no significant effect of Emotion, Congruence, Age, or their interaction 

were observed for the P200, we proceeded by analysing the N300 without correction. 

Mean amplitude. The analysis revealed an Emotion × Congruence interaction, 

F(1,32) = 5.28, p = .028, ηp2 = 0.012 (Figure 5). The posthoc comparisons showed that the 

AI elicited reduced mean amplitude (M = -0.56 μV, SD = 4.02) than the AC (M = 0.60μV, 

SD = 4.86; p = .046).  The mean amplitude elicited by the AI was also significantly reduced 

compared to that triggered by the HI (M = 0.69 μV, SD = 4.78; p= .039), see Figure 6. 

Peak amplitude. Although a significant Emotion × Congruence interaction was 

observed, F(1,32) = 4.38, p = .044, ηp2 = 0.010, the posthoc comparisons failed to reach 

significance, see Figure 6. 

Latency. A significant main effect of Age was found, F(1,32) = 5.14, p = .030, ηp2 

= .037, which was further qualified by a significant interaction with Congruence, F (1,32) = 

5.11, p = .031, ηp2 = .009. Posthoc pairwise comparisons showed that when the target word 

was incongruent with the prime, 3-year-olds (M = 320.59ms, SD = 42.66) reach the peak 

N300 amplitude after a longer latency than the 6-year-olds (M = 298.91ms, SD = 37.03, p 

= .004). Moreover, 6-year-olds reach the peak N300 amplitude significantly slower for the 

congruent (M = 308.09ms, SD = 38.37) than the incongruent condition (M = 298.91ms, SD 

= 37.03ms; p= .048). A significant Emotion × Congruence interaction was also found, F 
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(1,32) = 11.26, p = .002, ηp2 = 0.052. Posthoc pairwise comparisons showed that the AC 

elicited faster latency (M = 300.41 ms, SD = 37.89) than the AI (M = 315.74ms, SD = 39.67, 

p = .015) or the HC (M = 323.15 ms, SD = 34.80, p = .003). Moreover, the peak N300 

amplitude was reached significantly later for HC than for the HI (M = 303.76 ms, SD = 

42.22, p = .023), see Figure 6. Other comparisons failed to show significance (ps >.106). 

 

Figure 5. Grand average ERPs at Central ROI (left: 25, 35, 36; right: 111, 110, 104) for the 

Happy and Angry words primed congruently or incongruently by Happy and Angry PLDs.  
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Figure 6. Bar chat of the N300 mean, peak amplitude and latency cross each condition. 

 

Discussion 

Observing the subtle movements people often unconsciously and spontaneously 

make can reveal their emotions or psychological traits. Body movement is thus considered 

a rich source of social information with high relevance for social interactions. The aim of 

our study was to probe 3- and 6-year-old children’s sensitivity to the emotional information 
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expressed spontaneously by adults through subtle body movements during typical social 

events. Towards this aim we devised an emotional semantic priming ERP paradigm in 

which PLDs with angry or happy movement preceded congruently or incongruently the 

words ‘angry’ and ‘happy’ spoken with emotionally neutral prosody. The analysis of the 

ERP responses provided the opportunity to investigate the attentional and semantic 

functions involved in children’s emotion processing. We hypothesized that if children 

extract the emotional information from body movement and perceive the semantic and 

emotional relation with the corresponding verbal label, differentiations in the latency and 

amplitude of the N300 and the N400 ERP components will be recorded between the 

congruent and incongruent conditions. Overall, the analysis of the effect of congruence 

between the emotional PLD and the verbal label suggests that both 3- and 6-year-old 

children are sensitive to the emotional information conveyed by the subtle body movements 

occurring during story telling situations. However, variations between age groups in the 

latency of the ERP components of interest, and the modulations of the congruency effect by 

the emotional valence, indicate that the underlying processes may undergo important 

developments within this age range. In what follows, we present the findings and discuss 

their implications for understanding the development of emotional body movement 

processing in childhood. 

In line with previous semantic priming studies (Nobre, & McCarthy, 2003; 

Holcomb & Neville, 1990), for both 3- and 6-year-old children, the N300 recorded at central 

scalp locations reached peak amplitude faster when the words happy and angry were 

preceded by matching rather than mismatching emotional PLDs. As the latency to the peak 

amplitude of ERP components can be regarded an indicator of processing speed, it appears 

that watching emotional body movement facilitates the responses to the verbal label of its 

corresponding category. As we included different examples of happy and angry body 
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movement, these findings suggest that children are able to extract and represent the common 

psychophysical properties specific to each emotional category. 

The utterance of the target words ‘angry’ and ‘happy’ lasted 500ms, with the first 

half of this duration covering the first syllable of the word. Thus, the N300 effects are most 

likely due to the processing of the first syllable of the target word. Given that only two target 

words were used in the present study and that these have distinct first syllables, it would 

have been easier for children to anticipate the entire word based on this information alone. 

Moreover, the emotional information conveyed visually by the face and body, and auditorily 

by the voice are frequently associated with the corresponding emotion category label, and 

could be learned from very early on. Indeed, at the behavioural level, children as young as 

the age of 2 years can correctly choose the facial expression corresponding to the words 

‘happy’ and ‘angry’ (Denham et al., 2003). One possible interpretation of the results could 

be that the facilitation effect observed for the N300 is due to the perceptual association 

between the visual information characteristic to emotional body movement and the word 

(Zieber, Kangas, Hock, & Bhatt, 2014). 

However, previous semantic priming studies which report an N300 at anterior-

central locations also describe a more negative amplitude for the congruent compared to the 

incongruent trials (Nobre, & McCarthy, 2003; Holcomb, & Neville, 1990; Friedrich, & 

Friederici, 2005; Friederici, 2005; Torklidsen et al., 2007). This increased negativity is 

probably the result of a sharpened time locking between the target onset and the activation 

of its lexical/semantic representation due to priming, leading to increased temporal 

summation and thus amplitude of the N300 (Nobre, & McCarthy, 2003). In our study, for 

both 3- and 6-year-old children, angry congruent emotional PLDs-word pairs led to a 

diminished N300 amplitude compared to the angry incongruent pairs, in line with typical 

semantic and affective priming effects (Aguado et al., 2013; West, & Holcomb, 2002; 

Steinbeins, & Koelsch, 2008; Reid, & Sriano, 2008; Lau et al., 2008). Moreover, the analysis 
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shows an added effect of the emotional information in the prime and target on the N300 

latency. When anger was present in both the body movement and the word, N300 peaked 

faster than when happy information was presented. As indicators of the motivational and 

emotional states of an individual, emotional expressions displayed by faces, voices, and 

bodies are important social signals of intentions. From an evolutionary perspective, angry 

expressions signal a potential threat to the individual and it would be adaptive to detect them 

fast and to allocate attentional resources. In adults, threat cues elicit increased attention (e.g., 

Ӧhman, Flykt, & Esteves, 2001) and undergo more elaborate and facilitated processing 

(e.g., Schupp et al., 2004). In children, facial expressions indicating the presence of threat 

were shown to trigger increased attention as reflected by the central negative ERP 

component peaking around 300ms (Dennis, Malone, & Chen, 2009). It is thus possible that 

the faster N300 recorded in the present study, in response to angry compared to the happy 

congruent trials, reflects the activation of threat related representations, which further 

facilitate the early integration of the information conveyed by body movement and the 

verbal label.  

Although, indications of early integrating of the emotional information conveyed 

by body movement and the word were present for all children, age differences emerged as 

well. In particular, older children tended to process faster the incongruent emotion PLD – 

emotion word pairs compared to the younger children. Given that these differences were not 

observed for the congruent trials, it is possible that both 3- and 6-year-old children are able 

to integrate at an attentional level the emotional information extracted from the prime and 

target with similar speed, but may differ in terms of operating simultaneously with 

emotional information of different valence and detecting conflicting information (Rueda et 

al., 2014; Buss et al., 2011). Developmental research on conflict control suggested that 

children show longer reaction time as well as worse accuracy of conflict situation (such as 

the NoGo condition in a Go-NoGo task, or the incongruent condition in a flanker task) than 



CHILDREN’S SENSITIVITY TO EMOTIONAL BODY MOVEMENTS                                                                                                                                               24 
 

adults (Jonkman, 2006).  The N2 component, which is usually observed between 

approximately 300 to 400ms at the frontal-central sites in children, was found induced by 

the stimuli that require the inhibition of a prepared response, (Eimer, 1993; Rueda, Posner, 

Rothbart, & Davis-Stober, 2004; Jonkman, 2006; Forster, Carter, Cohen, & Cho, 2011). 

Therefore, the N2 is seen as the neural mark of conflict monitoring. Developmental research 

on N2 also suggested that its amplitude and latency show a decrease with age (Davis, Bruce, 

Snyder, & Nelson, 2003; Rueda et al., 2004; Jonkman, 2006; Espinet et al., 2012; Hoyniak, 

Petersen, Bates, & Molfese, 2017). Hence the age-related latency differences in processing 

incongruent information could also be the conflict monitoring process reflect on the ERP in 

this time window. In the current study, this indicated that it may take more time for younger 

children to activate the representations corresponding to an emotional target word of 

different valence than the prime, and this affects the speed with which they are integrated. 

Research which investigates the ERP responses to affectively primed information, 

as well as to lexical content, provided systematic evidence which links the N400 with 

semantic content processing. In particular, the N400 is considered to reflect the semantic 

and emotional integration of the currently processed information within the existent 

representations. Increased negative amplitude of the N400 is usually regarded to index 

integration difficulty (Paulmann, & Kotz, 2008; Friedrich, & Friederici, 2004). While most 

often, the presence of a prime stimulus, which matches the target emotionally and 

semantically, is reported to elicit reduced N400 amplitude compared to incongruent prime-

target pairs, the opposite effects (Bermeitinger, Frings, & Wentura, 2008) or variations, as 

a function of stimulus affective valence (Aguado et al., 2013), and individual characteristics 

(Paulmann, & Kotz, 2008; Goerlich et al., 2012; Bermeitinger et al., 2008; Schirmer et al., 

2002) have been reported as well. In the present study, variations in N400 amplitude and 

latency were observed as a function of the congruency between the emotional PLD prime 

and the target verbal label in both 3- and 6-year-old children. Overall, these findings show 
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that from as early as the age of 3-years, children extract the affective semantic information 

from body movement, and that this is further integrated with the emotional information 

conveyed at the lexical level by word labelling the corresponding affective category. 

However, age differences in the observed N400 effects suggest that developmental changes 

may also occur within this age range. In line with several semantic and emotional priming 

investigations (Bostanov, & Kotchoubey, 2004; Schirmer et al., 2002; Werheid et al., 2005; 

Zhang et al., 2006; Bermeitinger, Frings, & Wentura, 2008; Paulmann, & Pell, 2010; 

Goerlich et al., 2012), 3-year-old children in our study responded with increased N400 

negative amplitude to the target words primed incongruently by the emotional PLD. In 

contrast, this effect was not observed in 6-year-old children. At a first glance these results 

may suggest that older children do not extract the emotional meaning from the target word 

and/or the body movement. However, the difference in N400 amplitude between the target 

words and the differences in the latency with which the N400 reaches peak amplitude in 

different emotional PLD – emotional word pairs, suggest that this is less likely to be the 

case.  

Both 3- and 6-year-old children responded with increased N400 negative 

amplitude to the happy compared to the angry target word. This result is of particular 

relevance as it shows that children of both ages differentiate between these words at the 

semantic level. Moreover, it provides evidence to suggest that children within the 3- to 6-

years age range seem to engage in deeper semantic processing of the word happy compared 

to the word angry. Such differentiation could be due to the fact that happy emotional 

information is less novel in the children’s environments than the other basic emotions 

(Malatesta, & Haviland, 1982). As a result, the representation of happiness may be richer at 

this age and possibly requires more neural resources to activate compared to anger (Aguado 

et al., 2013). Nevertheless, 3- and 6-year-old children may differ in the processing time of 

the emotional meaning in the body movement prime, the word target, and how this 
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information is integrated. These aspects are known to influence the manifestation of the 

affective and semantic priming effect on the N400 (Alguado, Schirmer et al., 2002; 

Paulmann, & Kotz, 2008; Holcomb et al., 1992; Goerlich et al., 2012). While 3-year-old 

children extract the emotional information from the body movement and from the word, this 

may be more effortful and slower compared to older children, possibly due to having less 

experience observing and using such information (Boone, & Cunningham, 1998; Nelson, & 

Russell, 2011). Also, 3-year-old children may also need more information for processing 

the emotional meaning of the body movement. It is thus possible that younger children need 

to watch the entire emotional PLD prime to extract the relevant information. In this case the 

corresponding representation would reach the optimal level of activation to facilitate the 

processing of the emotional word at the end of the emotional body movement and shortly 

(200ms) before the onset of the target (Steinbeis, & Koelsch, 2008; Schirmer et al., 2002; 

Goerlich et al., 2012; Aguado et al., 2013). Younger children have also been shown to rely 

more on contextual information to process the meaning of the words compared to older 

children (Holcomb et al., 1992). Although 3-year-old children use and understand the words 

‘happy’ and ‘angry’ (Ridgeway, Waters, & Ii,1985; Li, & Yu ,2015; Bretherton, et al.,2017), 

they probably need, to a greater extent, the emotional information conveyed by body 

movement and other means of emotional expressivity (e.g., face, voice) in order to 

comprehend their meaning. In turn, 6-year-old children are probably able to infer emotional 

states based on fewer body movement cues. This leads to the activation of the corresponding 

representation well before the offset of the prime stimulus. With a longer delay until the 

perception of the target word, the activation of the emotion representation may diminish and 

not be sufficient to produce the typical facilitation effect reflected by the N400 amplitude 

(Lau et al., 2008). In addition, older children may focus more on the word itself for 

extracting the meaning (Holcomb et al., 1992), which may further diminish the typical 

semantic priming effect. The analysis of the latency with which the N400 reaches peak 
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amplitude provides further evidence to suggest that 6-year-old children extract the 

emotional meaning of the body movement and the target word, despite a lack of congruency 

effect on the mean N400 amplitude. Similar to the N300 responses, children from both age 

groups tended to record peak N400 amplitude with shorter latency after watching an angry 

body movement. Moreover, this latency tended to be shorter when both the prime and target 

conveyed anger. The influence of threat on the speed with which emotional information is 

processed at semantic level has been previously noted in adults as well (Paulmann, & Pell, 

2011), possibly reflecting the adaptive value of this type of emotional information in terms 

of preparing the individual to confront the danger which may potentially occur in their 

environment (Schupp et al., 2004). Thus, although the mean amplitude of the N400 was not 

sensitive to the emotional congruency between the prime PLD and the target word in 6-

year-old children, our overall results suggest that they too extract and integrate the emotional 

meaning from the body movement and the emotional words, but that the current 

experimental paradigm might not be sensitive enough to capture it. Future research, in which 

the ERP responses to the emotional body movement are analysed and the duration of the 

interval between the prime and target is manipulated, would be particularly relevant for 

testing these possible interpretations. 

In summary, the present study is one of the few that studied the development of 

children’s neural response underlying the emotion extraction from adults’ subtle body 

movements during typical social contexts. Current findings suggested that children from as 

young as 3 years old can recognise the semantic incongruity of the emotion from body 

movements and the emotional words, indicating that children from 3 years old can extract 

the emotional information from body movements, and are able to integrate the semantic 

meaning of the emotion they extracted. The present study also uncovered some 

developmental differences in this ability between 3- and 6-year-old children. Results 

implied that 3-year-old children are less efficient in extracting information from moving 
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bodies than 6-year-old children. The results also indicate that threatening information 

enhances the processing speed of emotion information at a semantic level in children of this 

age range. 
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Neural Correlates for Body Perception Development During Childhood: A Discussion 

 

Summary 

The current thesis aimed to reveal the neural mechanisms of the cognitive processes 

underlying emotional body perception in childhood, as well as their developmental pattern, 

using Event-Related Potentials (ERPs). We are particularly interested in these three research 

questions: 1) How does body structure processing develop during childhood? 2) What does the 

neural mechanism of emotion perception from static body postures look like? 3) How do 

children process emotion from dynamic body motions? In order to achieve these research aims, 

three studies have been conducted in order to address these issues incrementally, from the 

perception of body structure, to the emotion perception of static and dynamic body expressions.  

Paper 1 began the investigation by examining the development of body structure 

perception in children three to 10 years old. In order to answer the question of the neural 

mechanisms underlying body perception, this study looked at the change in associated ERP 

components in response to upright and inverted human bodies and objects. Children of 3-, 4- 

10-year-old children, as well as a group of adults passively viewed pictures of human bodies 

and objects (e.g., hat stand) that were randomly presented in upright and inverted position. Two 

ERP components, P1 and N190, occurring over occipito-temporal electrodes were measured. 

The P1, a positive going component that peaks at 100ms after stimulus onset, has been shown 

to be sensitive to low-level visual properties of the stimulus including luminance, color and 

contrast (Regan, 1989; Rousselet et al., 2005). In contrast, the N190 is a negative going 

component that peaks at 170-190ms after stimulus onset. The N190 is suggested to be the 

neural marker of body perception in high level visual cortex (Rossion & Jacques, 2011; 

Watanabe et al., 2003; Itier & Taylor, 2004), and it is reported to be sensitive to any distortion 

of body structure information, such as inverting the body (Righart & de Gelder, 2008; 

Stekelenburg & de Gelder, 2004; Minnebusch, Suchan, & Daum, 2008; Minnebusch et al., 
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2010). The main findings of this study revealed a general change with age in terms of the neural 

responses on both P1 and N190 components. The P1 amplitude for both bodies and objects 

enhanced dramatically from 4 to 10 years old. Mirroring the P1, the N190 mean and peak 

amplitude was less negative in 10-year-olds in comparison to both 3- and 4-year-olds. The 

implication of the developmental changes will be discussed in detail in the next section. 

Another important finding of this study is children’s paradoxical body inversion effect in 

comparison to adults in all age groups. Results from adults show greater N190 for inverted 

bodies over upright ones, and this phenomenon is not observed for objects. This inversion 

effect is seen as a neural marker reflecting the impairment of body processing in adults 

(Stekelenburg & de Gelder, 2004; Minnebusch et al., 2008; Minnebusch et al., 2010). The 

inversion effect in adults in our study replicated the previous adult ERP body perception studies. 

However, findings from Paper 1 suggested that in 3- to 10-year-old children, the N190 showed 

greater amplitude for upright bodies in comparison to inverted ones. This inversion effect was 

also absent in children for objects. This paradoxical inversion effect is reported in children of 

similar age (4- to 10-year-old) in ERP studies of facial perception (Taylor, Batty, & Itier, 2004), 

indicating that similar to facial perception development, until the later childhood the cognitive 

processing of body structure encoding is still developing.  

Building on the findings of children’s body structure perception reported in Paper 1, 

Paper 2 further investigated the role of emotional body postures perception in 5- to 8-year-old 

children. We moved to 5-year-old children because behavioural studies indicate that from this 

age children show above-chance level accuracy in identifying emotions from intensive body 

expressions (Boone & Cunningham, 1998; Mondloch, Horner, & Mian, 2013). Here, a similar 

paradigm was applied. Children passively viewed body images expressing happy, fearful, sad 

and emotionally neutral actions, and the images were presented upside-down randomly for half 

of the time. Again, the study measured the P1 and N190 components. The results showed a 

main effect of emotion on N190 mean amplitude and latency. This suggested that from five 
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years old, children show neural responses to emotions expressed via body posture at around 

205ms after stimulus onset. Furthermore, the emotion effect indicated that happy bodies 

elicited increased negative N190 amplitude as well as longer N190 latency over other 

emotional conditions, indicating that children from five years old are able to discriminate happy 

postures from other postures at least at a structural encoding or perceptual stage. The results 

also revealed that altering access to information for body structure detection influences emotion 

perception. The emotional body postures elicited different N190 amplitudes when the bodies 

were presented upright in comparison to the inverted condition. To be specific, when the bodies 

were presented upright, the N190 mean amplitude differed between happy and sad bodies; 

while in the inverted condition, the mean amplitude differed between fearful and happy bodies. 

This variation was cancelled after removing the influence of the orientation differences on P1, 

suggesting that the inconsistent emotion effect on N190 was likely due to the disturbance by 

the change of low-level visual cues. 

To extend our investigation of children’s body-based emotion perception to a realistic 

setting, Paper 3 investigated 3- to 6-year-old children’s emotion Extraction ability from point-

light displays (PLDs) of moving bodies. Stimuli included six PLDs of dynamic body video 

clips expressing happiness and anger, as well as two audio clips of the words “happy” and 

“angry” spoke in an emotionally neutral tone of voice. A semantic priming paradigm was used 

in the study (Deacon, Hewitt, Yang, & Nagata, 2000). In this paradigm, an “angry” or a 

“happy” PLD as a prime was paired with a target word (“angry” or “happy”) either congruent 

with the previous body movements or incongruent. ERP responses to the auditory word target 

were measured. We anticipated different N300/N400 responses to emotional words between 

the congruent and incongruent conditions. N400s are negative-going deflections that peak 

around 400ms after the stimulus onset from the central-parietal sites. This component is 

reported to be sensitive to any incongruency in meaning, showing variations in the amplitude 

and latency between the congruent and incongruent conditions (Lau et al., 2008; Aguado et al., 
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2013; West & Holcomb, 2002; Steinbeins & Koelsch, 2008; Reid & Sriano, 2008; 

Bermeitinger, Frings, & Wentura, 2008). The semantic incongruency effect is therefore 

interpreted as a neural marker of impaired processing of post-attempt to integrate the target 

with the prior context (Sereno, Rayner, & Posner, 1998; Hauk, Davis, Ford, Pulvermuller, & 

Marslen-Wilson, 2006). Therefore, any differences in the N400 amplitude and latency in 

congruent and incongruent conditions suggest that children can extract the emotional 

information conveyed by body movement and establish the semantic relation with the 

corresponding word. The N300 component is a negativity occurring around 300ms after 

stimulus onset. It is often reported as being independent from or co-occurring with the N400 

(Bostanov & Kotchoubey, 2004; Paulmann & Pell, 2010; Nobre & McCarthy, 1995; Friederici, 

2005). Analogous to N400, N300 is suggested to be sensitive to incongruity between sounds 

and prevous visual objects in emotion context (Bostanov & Kotchoubey, 2004; Paulman & 

Pell, 2010). The results of Paper 3 showed that both 3- and 6-year-old children show different 

latency N300/ N400 responses in congruent and incongruent conditions, suggesting that 

children from 3 years old can detect the incongruence of the emotion expressed by a moving 

body and the following lexical meaning. Thus, from as early as 3 years children may extract 

information with affective information from dynamic bodily expressions. 

Overall, the work presented in the current thesis addressed the development of bodily 

emotion perception in children in terms of the neural fundamentals of body perception, emotion 

perception from static postures, and emotion perception from dynamic displays. In the 

following section, we will further discuss the important developmental traits revealed by the 

current work, in terms of the neural mechanisms underlying body structure perception as well 

as emotion processing from body expressions. Finally, based on previous studies along with 

the contribution of the current work, we will discuss a temporal model of the neural 

mechanisms underlying emotion perception from bodily expression throughout childhood. 
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Development of Body Perception During Childhood 

As important as faces, human bodies also deliver various types of information such as 

the emotion status of the person (Meeren, van Heijnsbergen & de Gelder, 2005; Robbins & 

Coltheart, 2015). In particular, understanding the neural mechanisms of body perception is 

crucial in childhood. From toddlerhood children develop increasing needs to processing 

emotions from bodily expression, especially when faces are invisible or too far to see. Few 

studies summarised models of visual body perception as well as emotion perception from 

bodily expression based on the findings in adults (de Gelder, 2006; Minnebusch & Daum, 

2009). However, we are lacking a comprehensive understanding of the development of emotion 

perception from the body due to lack of evidence. The current work therefore provided 

important evidence to close the gap in the developmental domain. In the following section we 

will first go through the important findings of the current work, then consolidate the current 

findings with previous evidence, to reveal a possible model of information-processing of body 

along a developmental timeline during childhood. 

Important findings of the current work 

Paper 1 presented a cross-sectional investigation of the developmental change in the 

neural responses to body structure by contrasting four age groups: 3-, 4-, and 10-year-olds, as 

well as adults. The results reported in Paper 1 revealed for the first time dramatic 

developmental changes of relevant ERPs of body structural processing (the P1 and N190) from 

4- to 10-year olds. A decrease in N190 amplitude with the increase in age was observed. This 

finding mirrored the effect of the increasing on P1 amplitude, in which 10-year-old children 

showed greater mean and peak amplitude than younger children. These findings are consistent 

with the findings in facial perception studies (Taylor et al., 2004; Kuefner et al., 2010), 

implying the general development of visual social stimulus perception reflected in P1. 

Furthermore, a paradoxical inversion effect in contrast with the adult group was shown on the 

N190 amplitude throughout the 3 children groups, revealing that the immature pattern of body 
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perception lasted until late childhood. Based on the findings of Paper 1, Paper 2 investigated 

the neural mechanism underlying the emotion perception from static body postures from 5-8 

years old. In order to achieve this research aim, Paper 2 also measured the P1 and N190. One 

strength of this work is that both Paper 1 and 2 involve examinations of the associated ERPs 

(P1 and N190) of static body structures, so that we can present an integral perspective of the 

developmental change of neural physiological response underlying body perception throughout 

childhood.  

In order to describe the developmental trajectory of the neural mechanism underlying 

body structure perception across childhood, we combined the amplitude of the P1 and N190 

from Paper 1 and 2 from all age groups (see Figure 1). Bearing in mind the variability due to 

the use of individual peaks in Paper 1, in order to deliver better elucidate developmental 

changes, only the results of mean amplitudes from all age groups are presented here. 

Furthermore, Paper 2 tested children age from 5- to 8 years old. However, as there was an 

insufficient number of children to conduct between age group comparisons, we did not 

compare across ages in the analysis for Paper 2. Here, in order to get a clear understanding of 

the developmental traits throughout childhood, the children tested in Paper 2 were divided into 

two age groups: 5-6 years old (age = < 77 months, N = 11) and 7-8 years old (age > 78 months, 

N = 9). Msean amplitudes were averaged separately across these two age groups, and presented 

in Figure 1 with the mean amplitudes of the other three age groups tested in Paper 1. As any 

conclusions regarding developmental change in ERPs between these two age groups should 

only be made when there is a sufficient number to conduct the statistical analysis, here in the 

current section, we will only discuss the potential tendency that is shown in the graphs. 
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Figure 1 Mean amplitude of P1 and N190 to upright bodies across all age groups from Paper 

1(3-, 4-, 10-years-old, and adults) and 2 (5- and 7-year-old). 

 

Overall, across age groups, the P1 and N190 components show more defined 

morphology, and a general tendency to decrease from 3 to 4-5 years old, followed by a 

tendency to increase from 5 to 10 years old (see Figures 1, 2, 3). This result was similar to 

findings from previous developmental studies on face perception (Taylor, Batty & Itier, 2004; 

Kuefner et al., 2010). In Paper 1, the P1 amplitude showed a dramatic increase in 10- compared 

to 4- year-old children regardless of the type of stimuli (i.e., bodies, objects, up-right 

orientation, inverted orientation) the participants watched, most likely reflecting the 

development of processing of the psychophysical properties of the stimuli. Findings from Paper 

2 showed that this increase tended to be linear when taking into account the intermediate age 

range (5-8 years old). This is probably followed by a large decrease of mean amplitude in 

adulthood. This is consistent with the previous developmental findings that P1 amplitude 

sharply increases towards the age of 7-8 years, followed by a decline towards adulthood (van 

den Boomen et al., 2015). There are several possible explanations for these developmental 

changes in the P1, such as the reduction of gray matter volume and synaptic density 

(Huttenlocher, 1990; Whitford et al., 2007), changes in the conductivity of the underlying 

tissues, increasing of the head size and the general level of brain activity reflected in the 
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electronical signals (Kuefner et al., 2010). However, to elucidate the interaction between 

development of visual processing and the perception of social stimuli during childhood we 

need further investigations. 

 

Figure 2 Grand average ERPs in response to upright and inverted bodies from 3 years old until 

adult. 

The developmental changes in N190 mirrored the P1 in Paper 1. From the information 

Paper 2 contributed to Figure 1 we can observe that by 8 years old, both the N190 and the P1 

mean amplitude showed a tendency to increase towards 10 years old. These findings together 

indicate that both N190 and P1 in response to body structure decreases in early childhood, 

followed by an increase towards late childhood. This tendency was also in line with the 

developmental findings reported for face processing (Taylor et al., 2004; Kuefner et al., 2010). 
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The delay of the N190 peak between 10-year-old children and adults (46ms) further suggested 

that the processing speed of body perception in 10-year-old children is still not comparable 

with that in adults.  

Furthermore, both body inversion effects on the N190 observed in Paper 1 and Paper 2 

suggested a paradoxical inversion effect throughout early childhood to late childhood 

compared to the typical inversion effect found in adults (see Figure 3). This was in contrast to 

the inversion effect found for adults in the current thesis, as well as that found in adult body 

perception studies (Stekelenburg & de Gelder, 2004; Minnebusch et al., 2008; Minnebusch et 

al., 2010). In Taylor and colleagues’ (2004) investigation of children’s facial perception, 

children from 4 to 10 years old also showed this reversed inversion effect in relation to that 

observed previously in adults. The typical inversion effect in the N190 response to bodies is 

considered a neural marker of body perception. Therefore, one possible interpretation is that 

until a certain age, children apply a more flexible use of information in both body and face 

perception (Itier & Taylor, 2004; Taylor et al., 2016; Colombatto & McCarthy, 2017). The 

slow developmental pattern shown in the current work is also consistent with previous findings 

relating to facial perception; that is, the adult-like characteristics of the N190 are more likely 

to be manifest until early adolescence (Taylor et al., 2004).   

To sum up, papers 1 and 2 provided evidence that is important for describing the 

developmental changes in the neural mechanisms underlying body perception throughout 

childhood, as well as how these components differ from the one typically reported in adults.  
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Figure 3 Mean amplitude of the N190 to upright and inverted bodies from 3 years old until 

adulthood. 

A tentative time line of body perception development  

 Above, we have summarised previous studies’ findings relating to body perception 

from 3-month-olds to adulthood and incorporated these with findings from current work. 

Below we list the findings we now have from behavioural and ERP studies as well as fMRI 

measurements by age (Table 1). Based on these findings, we depict a developmental time line 

of body structure processing in Figure 4. Although the current work focused on childhood, 

for the timeline we propose we also present findings from infancy to provide a complete 

developmental pathway. We highlight our findings in grey in both tables, to help capture an 

intuition regarding how the current work contributes to the broader research landscape. 
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Table 1  

Findings relating to the development of body perception from previous studies and the 

current work. 

 Age Behavioural 
performance ERP evidence fMRI evidence Study 

 

3 months - 
Larger P400 mean 
amplitude to 
scrambled bodies 
than intact bodies 

- 
Gliga & 

Dehaene-
Lambertz, 

2005 

3.5-9 
months 

Preferences for 
normal body to 
scrambled and/or 
distorted bodies 
only when images 
were presented 
upright.  

- - 
Zieber et al., 

2010;  
Zieber et al., 

2014a 

     

9-18 
months 

Distinct patterns of 
responding to 
typical bodies and 
scrambled bodies 

- - 
Heron & 

Slaughter, 
2010 

3-4 years  
- 

Reversed inversion 
effect in N190. 
Greater N190 mean 
and peak amplitude 
for upright bodies 
than inverted ones. 
Larger P1 peak 
amplitude for bodies 
than objects. Faster 
P1 latency for 
upright bodies than 
inverted. 

 
- 

Ke & 
Geangu, 
Paper1 

4-5 years  
- 

 
Reversed inversion 
effect in N190. 
Greater N190 mean 
and peak amplitude 
for upright bodies 
than inverted ones. 
Larger P1 peak 
amplitude for bodies 
than objects. 

 
- 

 
Ke & 

Geangu, 
Paper1 

5-6 years  
- 

Larger N190 mean 
and peak amplitude 
to upright bodies 
than inverted 
bodies. 

Six to 11 years old 
show bilateral 
activity in right 
hemisphere of 
occipitotemporal 
regions, such as 

 
Ross et al., 

2014; 
Ke & 

Geangu, 
Paper2 
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7-8 years  
- 

pSTS, amygdala, 
fusiform gyrus and 
percentral gyrus. 
Also show 
significant less 
activation in those 
regions.  

 
Ross et al., 

2014; 
Ke & 

Geangu, 
Paper2 

10-11 
years 

 
- 

 
Reversed inversion 
effect in N190. 
Greater N190 mean 
and peak amplitude 
for upright bodies 
than inverted ones. 
Larger P1 peak 
amplitude for bodies 
than objects. 

 
Ross et al., 

2014; 
Ke & 

Geangu, 
Paper1 

 Adult 

 
Recognition of 
body structure is 
diminished by 
inversion.  

 
Greater N190 peak 
amplitude for 
inverted bodies than 
upright. 

 
Neural networks 
of extrastriate 
body area (EBA) 
and Fusiform body 
area (FBA) active 
when observing 
body parts and 
whole bodies. 

 
Reed et al., 

2003; 
Stekelenburg 
& de Gelder, 

2004;  
Righart & de 

Gelder. 
2007; 

Minnebusch 
et al., 2009; 
de Gelder, 

2010; 
Ke & 

Geangu, 
Paper 1 

 
Note. In order to be consistent with the current work, we only include studies using 

real body images. Findings contributed by the current work are highlighted in grey. 

 

Brain response 
shows evidence of 
fast configural 
information 
processing of body 
structure. 

Behavoural 
evidence of 
knowledge of 
intact human 
body structure. 

Brain 
response 
shows body-
specific 
response but 
immature 
patterns of 
configural 
processing  

Brain response shows body-
specific response but patterns 
of configural processing still 
immature 

Mature 
perception 
of bodily 
configural 
information. 

Brain regions show less 
activated and smaller areas of 
neural network when 
processing body structure  

 
3 months old 3.5-9 months old 3 years old 6 years old 10 years old Adult 

Figure 4. Developmental time line of body structure perception based on known findings.  
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The above time lines indicate clearly that the findings of the current work close a 

substantial gap in the developmental time line of the body structure processing. Previously 

we only had evidence for the immature pattern of body structure recognition in late infancy 

and the mature processing pattern in adults. The current work provided evidence of the neural 

mechanisms of the development of body structure processing during the early developmental 

stages. It revealed a possible pattern of flexible use of configural information during 

childhood, which is similar to facial perception development, indicating a prolonged 

maturation of configural information processing of both facial and bodily information. The 

contribution of the current work in childhood development also indicates a connection with 

findings from early developmental stages. Gliga and colleagues (2005) found sensitivity to 

impaired configural bodily information in P400 but not N290 in 3-month-olds. In the current 

work this sensitivity is found on the N190 component from 3 years. A similar developmental 

tendency is also observed in facial perception, with the N290 and P400 developing to become 

the N170 (Halit, de Haan, & Johnson, 2003; de Haan, Johnson, Halit, 2003; Gliga, & 

Dehaene-Lambertz; 2005). However, due to an insufficient number of studies, whether the 

N290 and P400 in early body perception also form the precursors of the N190 in children 

remains to be clarified.  

 

Bodily Emotion Perception in Childhood 

Another main aim of the current work is to close the gap in affective neuroscience in 

emotional body perception from the developmental point of view. Recent years have seen a 

number of studies revealing new understanding of emotion perception from bodies in 

childhood, as well as the possible important role of emotional body perception ability in social 

emotional development (Barth, & Bastiani, 1997; Atkinson, 2009; Muñoz, 2009). However, 

the affective neuroscience field has been dominated by studies of facial expression. To 

contribute to the largely unknown field of emotion body perception during childhood, the 
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second and third paper in the current work examined the neural mechanism of children’s 

perception of emotion from bodies, particularly from two typical situations: through static 

posture, and from body movements.  

To better understand the current status of what we know and what remains to be done, 

we will again first present the crucial contributions of the current work, then sum up previous 

findings and the current work into a tentative time line of emotion body perception 

development. 

Contributions of the current work 

An early stage in development of emotion discrimination from static postures is 

reported at 6.5 months, when infants can relate positive and negative body postures to matched 

vocalizations (Zieber, Kangas, Hock, & Beat, 2014). Certainly, this ability shows some early 

signs of emotion processing at a perceptual level at this age; however, performance could be 

due to infants’ familiarity with the matching of body postures with vocal cues in everyday life, 

rather than showing evidence of extracting the meaning of the body postures. Behavioural 

evidence indicating the ability to label emotions expressed by body postures is reported for 5-

year-old children (Boone and Cunningham, 1998; Mondloch, Horner, & Mian, 2013).  

Paper 2 enriched our understanding of emotion perception from static body posture in 

5- to 8-year-old children. Findings reported in Paper 2 revealed that there was no emotion 

sensitivity shown on P1, but emotion was found to have an impact on the N190 mean amplitude 

as well as latency. Happy bodies elicited more negative N190 mean amplitude than fearful, sad 

and emotionally neutral bodies. Happy bodies also triggered longer latencies than emotionally 

neutral bodies. This suggested that 5-year-old children are able to discriminate happy body 

postures from sad, fearful and emotionally neutral ones at around 205ms after onset of static 

body postures. The fact that body posture images did not trigger any emotion effect on the low-

level visual component P1 suggested that the emotion effect was not due to differences in the 

visual properties of the emotional body postures (e.g. the direction of the upper bodies, or the 
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angle of the hands or the legs). Therefore, the discriminative ERP response towards happy 

body postures in comparison to other body postures in this study indicated extraction of 

emotional information from static bodies. Another important finding is the interaction between 

the encoding of bodies and the perception of emotion. In Paper 2, the interpretation of this 

interaction focused on the processing of the visual properties of the body images. This is 

consistent with previous findings demonstrating that when judging emotions from static bodies, 

adults reply based on various body structure cues, such as the positioning of each element 

relative to the torso (Coulson, 2004; Mondloch et al., 2013).  Further research is needed in 

order to investigate how impairment of information leads to this interference effect on emotion 

perception in children. For example, does the impairment of bodily configural information or 

posture perception influence emotion perception? Furthermore, it will also be interesting to see 

whether this interference effect will be observed in adults. Comparing the potential differences 

between adults and children will provide us with further information about the maturation of 

the use of bodily information in emotion perception. 

Analysing the perception of dynamic body movements in 3- and 6-year-old children, 

Paper 3 established that from at least 3 years children are sensitive to the incongruence of 

information from moving bodies and subsequent lexical meanings. For both 3- and 6-year-old 

children, the N300 from the central scalp locations showed shorter latency when the target 

words were congruent with the previous emotional PLDs than when they were incongruent. 

Variations in N400 amplitude and latency between congruent and incongruent conditions were 

also observed in both 3- and 6-year-old children. Furthermore, faster N400 latency to target 

words primed by angry bodies was observed in both age groups. Also, response latency tended 

to increase when the target word and the PLDs were both angry. This suggested that children 

of both age groups can extract and integrate emotional meaning from body movement. Overall, 

Paper 3’s findings suggested that from at least 3 years, children can extract emotion 
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information from moving bodies, even when that information is expressed in highly abstract 

form such as point-light displays of body movements. 

 

Development time line of emotion perception from bodily expression  

As above, we summarise the previous findings relating to emotion perception from 

bodily expression, consolidate these with our findings, and list them by age. As we looked at 

emotion perception from both static and dynamic expressions, findings of studies using both 

expressions are included. Again, our findings are highlighted in grey.  

Table 2. 

Findings of the development of emotion perception from bodily expressions, from previous 

studies as well as the current work. 

 Age Behavioural 
performance ERP evidence fMRI evidence Study 

 3.5 
months 

Failed to match 
happy and angry 
bodily expression 
(both static and 
dynamic) to 
corresponding 
vocalizations 

- - 
Zeiber et al., 

2014b; 
Missana et al., 

2015 

4 months 

 
- 

Failed to show 
any significant 
ERP response to 
emotions from 
dynamic bodily 
expressions. 
 

- Missana et al., 
2015 

5 months Looked longer at 
matched dynamic 
body movements 
and voices when 
the movements 
were present 
upright but not 
inverted. 

- - Missana et al., 
2015 

 
6.5 

months 

 
Able to match 
happy and angry 
static bodily 
expression to 
corresponding 

- - Zeiber et al., 
2014b; 2014c 
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vocalizations when 
they were upright 
but not inverted. 
  
Showed preference 
for happy over 
angry dynamic 
bodily expressions 
in upright but not 
in inverted 
condition 

8 months 

- 

N290 and Nc 
showed 
significantly 
more negative 
mean amplitude 
to fearful bodies 
than happy 
bodies from 
static 
expressions. 
Larger Pc for 
happy bodies 
than fearful 
bodies in right 
hemisphere when 
PLDs were 
presented 
upright. 

- Missana et al., 
2014; 2015 

 
3 years 

 
Could correctly 
label Happy, Sad, 
Angry and Scared 
from dynamic 
bodily expressions 
at above chance 
level. Performance 
increased with 
age.  

- 

 
Incongruency 
effect on N300 
and N400 when 
processing 
unmatched 
emotional words 
and body 
movements. 

 
Ke & Vuong, 
Geangu, Paper 

3 

5 years 
 

 
Showed emotion 
effect on N190 in 
response to static 
bodily 
expressions. 
Happy bodies 
elicited more 
negative 
amplitude and 
longer latency 
than the other 
emotional bodies. 

- Nelson & 
Russell, 2011 

  

- Ke & Geangu, 
Paper 2 
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6 years  

- 

 
Incongruency 
effect on N300 
and N400 when 
processing 
unmatched 
emotional words 
and body 
movements. 

- 
Ke & Vuong, 
Geangu, Paper 

3 

 
7-8 years 

- 

 
Showed emotion 
effect on N190 in 
response to static 
bodily 
expressions. 
Happy bodies 
elicited more 
negative 
amplitude and 
longer latency 
than the other 
emotional bodies. 

- Ke & Geangu, 
Paper 2 

Adults 

 
Could accurately 
identify emotions 
from only 3s long 
dynamic bodily 
expression. 
 
Detected extreme 
emotions better 
from static body 
postures than static 
facial expression. 
 

 
Enhanced 
response to 
fearful static 
bodily expression 
than neutral ones 
on frontal vertex 
positive potential 
(VPP) and 
sustained 
potential. 
 

 
FFA and FG 
more activated 
when observing 
fearful bodies 
than instrumental 
ones. 

Montepare, 
Koff, Zaitchik, 

& Albert, 
1999; 

Hadjikhnani & 
de Gelder, 

2003; 
Stenkerlenburg 
& de Gelder, 

2004; 
de Gelder et 

al., 2004; 
Aviezer, 
Trope, & 
Todorov, 

2012; 
 

Note. Studies using both static and dynamic bodily expression as stimuli are included. 

Findings from dynamic expression are presented in italics. Findings contributed by the 

current work are highlighted in grey.  
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Perceptual 
awareness of 
Happy and 
Angry body 
expressions. 

Distinct brain 
response to 
Fearful and 
Happy body 
expressions 

Brain response 
shows ability 
to extract 
emotional 
information 
from Happy 
and Angry 
dynamic 
bodily 
expression. 

Can 
correctly 
label four 
basic 
emotions 
from 
dynamic 
body 
movements 

Brain response shows higher 
sensitivity to Happy body 
images in comparison to 
Fearful, Sad and emotional 
neutral at early perceptual 
stage.  

Fast 
detection of 
emotion 
from bodily 
expressions. 

At 6 years, brain responses 
show ability to extract 
emotional information from 
Happy and Angry dynamic 
bodily expression.  

 
5-6.5 months 

old 

8 months old 3 years old 5 years old 6 years old 8 years old Adult 

Figure 5. Developmental time line of emotion perception from both static and dynamic 

bodily expressions. The contribution of the current work is highlighted in grey. 

 

A tentative model of bodily information processing in immature brain 

By conducting three carefully designed and connected EEG investigations, the current 

work provided fundamental evidence towards a comprehensive understanding of the 

developmental time line of the emotional body perception; further, the findings of this work 

reveal information processing in emotion body perception in children. Therefore, based on 

previous neuroimaging findings, as well as the three interrelated brain network models in 

emotional body perception by de Gelder (2006), here we propose a tentative neural network of 

information processing in emotional body perception in children. 
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Figure 6. A network of the information processing in emotional body perception for children.  

The network of information processing from bodily expressions (see Figure 6) 

proposed here, involves brain regions including the visual system, motion perception system 

and the amygdala circuit for emotion processing. The first response reflecting the visual 

processing starts at approximately 150ms after stimulus onset, which is the low-level visual 

processing reflected on P1 component. It is suggested to stem from the lateral occipital cortex 

(LOC; Di Russo et al., 2002; Ke & Geangu, Paper 1). Around 215ms, bodily configural 

information processing emerges, based in the fusiform gyrus (FG; Stekelenburg & de Gelder; 

2004; Ke & Geangu, Paper 1). Early emotional information perception from body structure 

clue also happens at this stage (Ke & Geangu, Paper 2). To complete this network, the 

emotion processing network (amygdala (AMG), insula and anterior cingulate cortex (ACC); 

de Gelder et al., 2004) is possibly involved at this stage.  
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Processing emotional information from dynamic expression involves both the emotion 

and the motion perception network. Human body motion perception activates the body-

selective regions located in the posterior fusiform gyrus, overlapping with the motion-selective 

regions (Peelen, Wiggett, & Downing, 2006). Although the current work did not directly 

examine the neural response to emotional body motion, we looked at the semantic 

incongruency effect on N400 peaks around 450ms in the children we tested. N400 is commonly 

believed to origin from a highly distributed neural source (Kutas & Federmeier, 2011). In our 

study, semantic in/congruency processing involved integrating auditory lexical items with the 

emotion information extracted previously seen body motions. The superior temporal gyrus 

(STG) is responsible for auditory language processing (Bigler et al., 2007). Hence, this high-

level cognition reflected in the N400 likely involves the network between the STG and the 

emotion system during information integration. 

Taken together, the current work contributes crucial evidence for emotion perception 

from both static body postures and dynamic body movements during childhood at the 

neurophysiological level. Previously there were limited numbers of behavioural findings 

relating to 3-year-old children’s ability to identify emotion from others’ body movements. 

Adding to this literature, our findings revealed that at least from 3 years, children can extract 

emotion information from abstract body movements. Furthermore, extending existing 

knowledge that before 5 years children can accurately match verbal labels to corresponding 

body postures (Mondloch et al., 2013), our findings suggest that from 5 years, children can 

perceptually discriminate happy body posture from sad, fearful and emotionally neural body 

postures at very early processing stages. Overall, based on the new findings in this work, the 

current timeline provides a more comprehensive understanding of the development of body 

perception and emotion perception from bodily expression and signposts important directions 

for future work, which will be further discussed in the final section.  
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The outlook and limitations of this work 

The current work closes an important gap in our understanding of emotion perception 

from bodily expression as well as body perception per se during childhood. Based on the 

tentative models and developmental time lines presented above, various further investigations 

can be conducted to address the remaining gaps in terms of details of the maturational pattern. 

For example, although there are some behavioural findings in emotional body perception 

during childhood, collecting behavioural data with corresponding tasks would provide an 

important behavioural counterpoint to the ERP results. Moreover, investigations examining the 

development of the bodily inversion effect from late childhood into adolescence may enrich 

our understanding of the difference between children and adults in terms of the inversion effect.  

The current work also highlights essential possibilities for future social emotional 

developmental research. As discussed, a poor ability to recognise emotions from bodies is 

reported to be associated with higher levels of callous-unemotional traits and violent behaviour 

in 8- to 16-year-old children, as well as their social behavioural performance in the classroom 

as rated by teachers at school (Barth & Bastiani, 1997; Muñoz, 2009). Building on the 

characterisation of the neural mechanisms of body perception presented in the current work, 

future investigations can further examine the mechanisms underlying the impairment of 

recognition of body and behavioural performance, in terms of whether the nature of the 

impairment comes from the processing of bodies, emotional information, or the interactive 

effect of both.  

Another insight revealed in the current work is the affective bias on emotion processing. 

Previous literature has shown that the impact of affective bias on emotion perception emerges 

early in facial emotion perception, and becomes established with development. Infants from 8 

to 14 months old respond faster to angry faces compared to happy faces (LoBue and DeLoache, 

2010, LoBue, 2010). The current work cross referenced this impact by revealing a negative 

emotion bias in body perception in the age range of 3 to 6 years. As affect bias could also be 
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shaped by differences in children’s environment (Morales, Fu, & Pérez-Edgar, 2016), further 

investigations can be directed towards the potential role of individual differences in emotional 

body perception.   

As discussed above, one unexpected result in Paper 2 is that previous behavioural 

studies showed children from 4 years old can accurately identify fear and sadness from body 

posture by matching the verbal label to corresponding bodies (Mondloch, Horner, & Mian, 

2013). However, no difference was observed in the N190 in response to fear versus sad body 

postures. One limitation of the study is the short presentation of each stimulus (800ms), which 

may have restricted the options for examining the potential emotion information processing at 

a later cognitive stage, such as those reflected by the late positive potential (LPP). The LPP is 

a broadly superior posterior-distributed ERP component evident after approximately 300ms in 

adults. It is reported to be sensitive to affective valence and emotion regulation capacity, 

suggesting a facilitated attention to emotional information at the lateral processing stage 

(Dennis, & Hajcak, 2009; Aguado, Dieguez-Risco, Méndez-Bértolo, Pozo, &Hinojosa, 2013; 

DeCicco, O'Toole, & Dennis, 2014). Emotion arousal could have a prolonged effect on LPP 

amplitude after 300-400ms. For example, the amplitude of LPP reduced in response to 

emotionally negative pictures in comparison to neutral ones between 400-1000ms time window 

(Foti & Hajcak, 2008). Therefore, future studies that include longer stimulus presentations may 

address this limitation, and help clarify the time course of emotion perception from static body 

postures.  

Some additional limitations of the current work are about Paper 3. First of all, in Paper 

3 we did not analyse the relation between the neural response and language comprehension 

information. Paper 3 used two emotional words, “happy” and “angry”, as the targets. These 

two words were previously reported to be understood and used by children aged 3 to 6 years 

(Ridgeway, Waters, & Ii,1985; Li & Yu ,2015; Bretherton, Fritz, Zahn-Waxler, & Ridgeway, 

2017). However, evidence suggested that the N400 effect is related to listening and reading 
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comprehension performance in children. The incongruency effects on N400 amplitude were 

found to be correlated positively with listening comprehension (Henderson, Baseler, Clarke, 

Watson, & Snowling, 2011). Therefore, the relationship of language comprehension and 

children’s neural response when extracting emotions from body movements is worth 

investigating as a possible future direction. Further related to Paper 2 as well as Paper 3, a 

follow-up study looking at the inversion effect in emotion perception from dynamic body 

perception would be ideal. However, due to time constraints of PhD work, the practical reason 

we explained in Paper 3 about the potential difficulties of recoding EEG response to long 

stimuli in good quality, as well as that we try to out our focus on the emotional body perception 

instead of just body perception, we decided to leave this question for future investigation. 

In summary, the current thesis is one of the few works that provide essential evidence 

for reducing the knowledge gap in emotional body perception development. By focusing 

specifically on understanding the associated neural correlates, this work reveals the 

developmental traits of body structure perception in 3- to 10-year-old children for the first time, 

establishing the protracted progression of the perception of this type of stimuli. This thesis 

further provides neurophysiological evidence of emotion processing from static body 

expressions in childhood (in 5- to 8-year-olds), as well as establishing the ability of children as 

young as 3 years old to extract emotion from dynamic body motions. Although the 

developmental pattern at later ages, as well as various relations between emotional body 

processing and social emotional development, still remain to be investigated, the insights 

provided here provide essential foundational knowledge of the development of emotional body 

perception and establish multiple avenues for future investigations.  
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