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Abstract—Physical-layer security has drawn ever-
increasing attention in the next generation wireless commu-
nications. In this paper, we focus on studying the secure
communication in an HPN-to-devices (HTD) network, in
which a new type of MAC spoofing attack is considered.
To detect the malicious attack, we propose a novel algo-
rithm, namely, eigenvalue test using random matrix theory
(ETRMT) algorithm, which needs no prior information
about the channel. In particular, when the number of
samples is finite at the receiver or the number of devices
is large, the sampled signal is the biased estimation of
the actual signal, which inspires us to use the random
matrix theory to analyze the spoofing attack detection. The
closed-form expressions of the detection probability, the
false alarm probability, and the Neyman-Pearson threshold
are derived based on eigenvalue distribution of the spiked
population model. In addition, taking the channel time-
varying into consideration, we provide an adaptive thresh-
old tracking method by using Bayesian forecasting. Finally,
the simulations are conducted to validate our proposed
method and some insightful conclusions are obtained.

Index Terms—Active MAC spoofing attack detection,
random matrix theory, Bayesian forecasting.

I. INTRODUCTION

Thanks to the next generation wireless communica-

tions, the high-speed data communication is gradually

becoming reality. However, owing to the broadcast na-

ture of wireless communications, they are vulnerable

to MAC spoofing attack, in which the spoofer claims

himself as a legitimate user by eavesdropping and then

modify its MAC address to legitimate user’s. Because

of the management and control frame are usually not

protected in existing security techniques [1], such attack

can further launch significant denial of service (DoS) or

man-in-the-middle (MITM) attack.

Many previous work exploited the physical layer char-

acteristics derived from intrinsic channel randomness to

verify the identities of terminals. received signal strength

indicator (RSSI) [2], [3], channel state information (CSI)

[4], [5], channel impulse response (CIR) [6]–[8] have

been widely used. However, reference [9] shown that

the intrinsic channel randomness is time-varying, i.e.,

doppler frequency shift, location, scattered multi-path

environment etc, thus, limits the design of physical-layer

(PHY-layer) security. With the consideration of channel

time-varying, many related work has been explored. In

[10], the authors modeled the variable part of the channel

response as a wide sense stationary uncorrelated scatter-

ing process and utilized an autoregressive model of order

1 to characterize the temporal process. Game theory and

Q-learning based authentication was proposed in [8] to

determine the optimal threshold for spoofer detection in

a dynamic unknown channel model. In addition, the au-

thors proposed a logistic regression based authentication

to remove the assumption on the known channel model

and used a distributed Frank-Wolfe based authentication

method to reduce the communication overhead in [3]. In

light of the aforementioned work, some intense interests

mainly focused on time-varying channel spoofing attack

detection. However, there are still some urgent problems

need to be solved. The main motivations of this paper

are based on the following considerations:

1) Most of existence work only consider the passive

MAC spoofing attack which launches when trans-

mitter is in idle state, and they have to store the

genuine user’s PHY-layer fingerprint in the off-line

phase, i.e., [3]–[5], [8], [10].

2) The prior channel information is needed, which

introduces a high overhead and estimation error.

If the attacker mimics the legitimate channel in-

formation (no spatial diversity), many landmark

methods may not work well, i.e., [4]–[8].

In this paper, we study the multi-user cooperative

detection for active MAC spoofing attack in an HPN-to-

devices (HTD) network, and the channel time-varying is

considered. In this attack, the attacker eavesdrops the

legitimate channels information and MAC address in

HTD uplink transmission, and then fabricating both of

them in HTD downlink transmission. In this case, if the

forged management or control frame signal (aliased as

control signal) and legitimate control signal are trans-



mitted synchronously and the transmission power of the

forged one is higher than the legitimate one, then the

receivers would accept the spoofing codewords and reject

the HPN’s codewords [11]. Hence, such attacker is more

of threat to the network services than passive spoofer,

i.e., availability refers to communication continuity and

timeliness, besides launching DoS or MITM attack. It

becomes even more worse, specifically in multiple access

systems, i.e., non-orthogonal multiple access (NOMA)

system. Due to all the serious damages this attack could

cause, first of all, it is important for the user to be able to

detect it. In general, the design for the above stated active

spoofing attack and its detection approach are non-trivial,

the main contributions of this work are summarized as

follows

• Unlike the passive MAC spoofing attack detec-

tion, we propose an eigenvalue test using random

matrix theory (ETRMT) algorithm to cooperative

detect active MAC spoofing attack. Our proposed

ETRMT algorithm is a “location freely” and “on-

line” method, which needs no prior information

about the channel and do not have to store any PHY-

layer fingerprint in the off-line phase.

• Different from existing energy detection based

methods [2], [3], we consider the impact of estima-

tion error caused by finite number of samples and

use the RMT to compensate this error. The closed-

form expressions of detection probability and false

alarm probability are derived. We prove the mini-

mum eigenvalue distribution with the presence of

signals. The adaptive threshold tracking method is

proposed using Bayesian forecasting.

• The proposed cooperative detection algorithm can

detect the attacker in a pure PHY-layer approach

(relative to cross-layer security design means),

which makes the mobile device save a large amount

of time and overhead. In addition, this method

requires no modification to the current transmit-

receive structure and can be integrated with tradi-

tional authentication mechanisms to enhance wire-

less communication security.

Notation: Boldface uppercase and lowercase letters

denote matrix and vector, such as A and a, respectively.

A
⊤ and A

† represent transpose and conjugate transpose,

respectively. IM is the identity matrix of order M ×M
and RA is the covariance matrix of matrix A. E[·] is the

expectation operator. Cm×n denotes the complex space

of order m× n.

II. SYSTEM MODEL

A. Attack Model

We consider a PHY-layer active MAC spoofing attack

that the malicious spoofer can eavesdrop the legitimate

channels information and HPN’s MAC address in up-

link orthogonal channels, i.e., the attacker deploys a

“helper node” who stays close to the receiver to pas-

sive eavesdropping the reverse training phase [12], then

attacker emulates the legitimate channels information

and transmits the deceiving signal, i.e., the illegitimate

control signal, using HPN’s MAC address in downlink

transmission1. We assume that the spoofer and HPN

are separated by a reasonable security distance and can

emulate the legitimate channels (compensate channel

differences) by equipping a circular smart antennas array

to design signal precode [13].

B. Network Model

We assume that the network consists of one location

fixed HPN, M free moving devices, one fusion center

(FC), all of them are equipped with single antenna. In

addition, one location free spoofer are equipped with

a smart antenna array and uses a low power single

antenna helper node to eavesdropping and transmission.

Let b denote the HPN, m ∈ {1, · · · ,M} denote the

m-th device, and s denote the spoofer. Let x(t) be the

time continuous downlink frame signal with bandwidth

W , the sampling rate is fs ≥ W , and the sampling

period is Ts = 1/fs. For the Ns samples of signal

x(t), we write it as x = {xnsTs
|ns = 1, · · · , Ns}. The

channel between transmitter and the m-th receiver is

reciprocal and orthogonal, which is defined as htm =√
d−η
tm h̃tm, where dtm represents the distance between

transmitter and the m-th receiver, η is the path loss

exponent and h̃tm represents small-scale fading follows

zero-mean complex Gaussian processes of unit-variance.

Specifically, we treat htm as a wide sense stationary

uncorrelated scattering process with the classical Jakes’

power spectrum of maximum Doppler frequency fd and

the channel is time-varying but correlated between the

time t and the next time t+ T . In addition, during time

slot T , we assume the channel is quasi-static. To this

end, we model the channel as an autoregressive of order

1 random process follows

htm(t+ T ) = ρhtm(t) + u(t), (1)

where ρ is the correlation coefficient of the time-varying

channel with respect to the zero-th order Bessel function

of the first kind and u(t) is independent of the channel

htm(t), following zero-mean complex Gaussian distri-

bution with variance 1 − ρ2. For all devices M , the

N samples of the received signal in downlink can be

denoted as a matrix form2

Y =
√

Pbhbdxb +Φ
√

Pshsdx
p
s +N, (2)

where Y ∈ C
M×Ns (Ns ≫ M ), Pb,Ps (Pb < Ps)

are the power budget of HPN and spoofer, hbd,hsd ∈
1Each receiver knows the normal signal power by estimating using

HTD uplink, i.e., reverse training, and the attacker knows the legitimate
channels information by eavesdropping HTD uplink.

2Note that this argument assumes perfect synchronization of HPN
and spoofer’s transmissions when Φ = 1.



C
M×1, x

⊤
b ∈ C

Ns×1 is the sampled unit-energy gen-

uine control signal, x
p
s
⊤ ∈ C

Ns×1 is the sampled

illegitimate control signal with precode, i.e., the spoofer

sends xp
s(t) = wmxs(t) to the m-th device via precode

h
⊤
sdwm = hmb, N ∈ C

M×Ns is independent of signal,

each term is i.i.d. complex Gaussian random variable

with zero-mean and variance σ2, and Φ = 1 or Φ = 0
represents the active spoofer is present or absent.

III. COOPERATIVE PHY-LAYER SPOOFING

DETECTION

According to (2), when the spoofer is present (Φ = 1),

the spoofer and the HPN are co-existence. Hence, the

control signals are underlay and the power is obviously

larger than normal (no attack). The larger the signal

power is, the higher risk the attacker will be detected.

Hence, we use this interesting phenomenon to detect the

active attacker. Since the channel and the noise variance

are time-varying, the samples are finite, which make

channel information difficult to estimate accurately, thus,

we propose the ETRMT algorithm.

A. Eigenvalue Test Using Random Matrix Theory

After broadcasting the control signal, each device

transmits Ns samples of the received control signal to

a fusion center (FC), then FC calculates the sample

covariance matrix

RY(Ns) = E[YY
†]. (3)

Since signal covariance matrix is full-rank, the sample

covariance matrix RY(Ns) can be denoted as a diagonal

form

E
†
RY(Ns)E = σ2

IM + diag(λ0, · · · , λm, 0 · · · , 0),

where E is the eigenvector matrix corresponding to the

eigenvalue matrix. Let λ0 ≥ · · · ≥ λm denote the eigen-

values in the descending order, we find that the signal

power is almost concentrated on λmax(RY(Ns)) = λ0

and the noise power can be estimated by the minimum

eigenvalue λmin(RY(Ns)) = σ2. We use the maximum

eigenvalue ratio the minimum eigenvalue to detect the

spoofer’s state. The cooperative spoofing attack detection

can be transformed into the hypothesis test

λmax(RY(Ns))

λmin(RY(Ns))

H0

⋚
H1

γ. (4)

Where H0 indicates the attacker is absent and H1

indicates the attacker is present. If the test statistic is less

than a threshold γ, which is derived from the statistic

of the initial normal signal, the device accepts H0.

Otherwise, the device accepts H1.

However, the number of samples is finite in practice,

the sample covariance matrix RY(Ns) is the biased

estimate of the statistical covariance matrix RY. Let us

rewrite (2) with Φ = 0 as

Y =



hb,1 σ 0

...
. . .

hb,M 0 σ




︸ ︷︷ ︸
Tb




xb,1 · · · xb,Ns

n1 · · · nNs

...
...

n1 · · · nNs




where hb,m ,
√
Pbhbm represents the channel of the

m-th device, and nk is the noise with unit variance at

sample k. Note that TbT
†
b has clearly one eigenvalue

ρb,0 =
∑M

m=1 |hb,m|2 + σ2 and the rest eigenvalues

are σ2. It inspires us to analyze the behavior of the

eigenvalue of RY(Ns) using random matrix theory. This

behavior is related to the eigenvalue of large sample

covariance matrix of spiked population model Tb [14].

In the following, the symbol
∑M

m=1 is omitted to
∑

and

λmax(RY(Ns)) to λmax, if no confusion occurs.

Theorem 1: Let RY(Ns) denote the sample covariance

matrix of Ns samples with a single signal of strength∑
|hb,m|2 from (2) (Φ = 0). Then, if Ns,M → ∞, with

M
Ns

fixed, the largest eigenvalue of RY(Ns) converges

w.p.1 to [15]

λb,max = (
∑

|hb,m|2 + σ2)
(
1 +

Mσ2

Ns

∑ |hb,m|2
)

(5)

Similarly, we rewrite (2) with Φ = 1 as

Y =



hb,1 hs,1 σ 0

...
...

. . .

hb,M hs,M 0 σ




︸ ︷︷ ︸
Ts




xb,1 · · · xb,Ns

xs,1 · · · xs,Ns

n1 · · · nNs

...
...

n1 · · · nNs




where hs,m ,
√
Pshsm represents the m-th forged chan-

nel. If the eigenvalues are arranged in the descending

order, we find TsT
†
s has two eigenvalues ρs,0 ≥ ρs,1,

and the rest eigenvalues are σ2. The following theorem

describes the behavior of the largest eigenvalue λs,max

of RY(Ns), i.e., (2) with Φ = 1, with K sufficiently

strong signals, i.e., ρs,0 − σ2 > σ2(M
Ns

)1/2 [16].

Theorem 2: Let RY(Ns) denote the sample covariance

matrix of Ns samples from (2) (Φ = 1) with K signals.

Then, if Ns,M → ∞, with M
Ns

fixed, the eigenvalue

λs,m of RY(Ns) can converge w.p.1 to

λs,k =

{
ρs,k

(
1 + Mσ2

Ns(ρs,k−σ2)

)
, k = 0, · · · ,K − 1;

σ2[1 + (M
Ns

)1/2]2, otherwise.

and the largest eigenvalue is

λs,max = ρs,0

(
1 +

Mσ2

Ns (ρs,0 − σ2)

)
. (6)

Corollary 1: Assuming each term hb,m with respect

to channel vector hbd is an i.i.d complex random process

with zero-mean and variance σ2
b . Then, when Ns,M



is large, i.e., Ns = 1000, M = 50, the single signal

of strength
∑

|hb,m|2

M can converge w.p.1 to a Gaussian

distribution with mean µ∞ = σ2
b and variance σ2

∞ =
σ4

b

M
for complex random variable.

Proof: Using central limit theorem, the variance can

be denoted as

σ2
∞ = E

[(∑ |hb,m|2
M

)2
]
− E

[∑ |hb,m|2
M

]2

=
1

M
E
[
|hb,m|4 − σ4

b

]
. (7)

For complex random variable hb,m = hr + jhj with

variance σ2
b , we obtain

E[|hb,m|4] =

∫ +∞

−∞

∫ +∞

−∞

|hb,m|4
πσ2

b

× exp

[
−
h2
r + h2

j

σ2
b

]
dhrdhj

= 2σ4
b . (8)

Substituting (8) into (7), the proof is completed.

When the terms of Y are zero-mean i.i.d. Gaussian

noise, RY is commonly referred to as a Wishart random

matrix [14]. However, the matrix form of (2) is no longer

a Wishart random matrix, which is difficult to obtain the

eigenvalue distribution of λmin. To solve it, we prove

the theorem 3.

Theorem 3: Let λ′
min = Ns

σ2 λmin denote the min-

imum eigenvalue of the normalized statistical covari-

ance matrix. For a setting with K signals (sufficiently

strong), if Ns,M → ∞,
λ′

min−µK

φK
converges w.p.1

to the Tracy-Widom distribution of order 2 [17], with

µK = (N
1/2
s − (M −K)1/2)2, φK = ((M −K)1/2 −

N
1/2
s )((M −K)−1/2 −N

−1/2
s )1/3.

Proof: See Appendix A for details.

B. Detection Probability and False Alarm Probability

Since the finite number of samples and time-vary

noise, observation will exist estimation error, which lead

to imperfect detection. We estimate the performance of

our proposed ETRMT method by detection probability

and false alarm probability. That is, if a spoofer is ob-

served, while the actual state is null (spoofer is absent),

we say a false alarm occurs and denote this probability

as Pf , otherwise we have a correct detection probability

Pd. Using theorem 3, the actually detection probability

can be calculated by

Pd = Pr
(λs,max

λs,min
> γ|H1

)

= Pr
(λ′

s,min − µ1

φ1
<

Nsλs,max

σ2γφ1
− µ1

φ1

)

= FTW2

(Nsρ
2
s,0 −Nsρs,0σ

2 +Mσ2

σ2γφ1ρs,0 − σ4γφ1
− µ1

φ1

)
.

Correspondingly, false alarm probability is calculated by

Pf = Pr
(λb,max

λb,min
> γ|H0

)

= Pr
(λb,min − µ2

φ2
<

Nsλb,max

σ2γφ2
− µ2

φ2

)

= FTW2

(Nsρ
2
b,0 −Nsρb,0σ

2 +Mσ2

σ2γφ2ρb,0 − σ4γφ2
− µ2

φ2

)
,

where ρb,0 =
∑ |hb,m|2+σ2, FTW2(·) is the cumulative

distribution function (CDF) of the Tracy-Widom distri-

bution of order 2 (n = 1, 2), and µn = (N
1/2
s − (M −

n)1/2)2, φn = ((M − n)1/2 − N
1/2
s )((M − n)−1/2 −

N
−1/2
s )1/3. For a specified Pf , i.e., Pf = 0.1 with

respect to F−1
TW2(0.1) = −2.78, the Neyman-Pearson

threshold can be determined by

γ =
Nsλb,max

σ2φ2F
−1
TW2(Pf ) + µ2σ2

, (9)

where F−1
TW2(·) is the inverse function of Tracy-Widom

distribution FTW2(·).

C. Adaptive Tracking Using Bayesian Forecasting

Because of the channel is time-varying, which makes

the threshold extremely difficult to choice for FC with

time. Fortunately, according to (1) and corollary 1, we

can regard the channel gain
∑ |hb,m|2 at time T − 1

and T approximately as correlated Gaussian variables.

In this case, we adaptively predict the current threshold

recursively based on the past channel gain using Kalman

filter [18], a special case of Bayesian forecasting3. The

channel gain G =
∑

|hb,m|2 can be well approached by

an autoregressive of order 1 random process

G(T ) = f(T )G(T − 1) + w(T ), (10)

which represents the state transition equation for the

system, describing the variation of G at time T − 1
and T . Where G(T ) is the state of gain power at

time T , w(T ) is the process noise following zero-mean

Gaussian distribution with variance rw(T ), f(T ) is the

state transition probability. Both f(T ) and w(T ) can

be computed by the set of the Yule-Walker equations

defined as

f(T ) = r(1)
(
r(0)

)−1

, (11)

w(T ) = r(0) − f(T )r(−1), (12)

where the variance is given by r(g) = E[G(T )G(T −
g)] for lag g ∈ {−1, 0, 1}. The channel gain observed

by the receiver at time T is related to the state by the

measurement equation

z(T ) = HG(T ) + v(T ). (13)

3The initialization channel gain is available by means of reverse
training.



Where vector z(T ) represents the observed gain of time

T , v(T ) is the measurement noise following zero-mean

Gaussian distribution with covariance matrix Rv(T ) and

H = [0, f(T )]⊤ is the measurement that maps the state

transition probability into the measurement domain. The

Kalman equation that allow us to recursively calculate

Ĝ(T ) by combining past knowledge, prediction from

system model and noisy measurement. At time T , the re-

ceiver predicts power before receiving the measurement

with the equations

Ĝ(T−) = f(T )Ĝ(T − 1),

M(T−) = HM(T − 1)H⊤ +Rw(T ). (14)

Where M(·) is the state estimation mean square error

matrix of T − 1-th term, and Rw(T ) is the covariance

matrix with respect to rw(T ). After observing the mea-

surement from z(T ), receiver updates the Kalman gain

K(T ) and corrects the state estimate and correlation

coefficient according to the equations

Ĝ(T ) = Ĝ(T−) +K(T )(z(T )−HĜ(T−)),

M(T ) = [I2 −K(T )H]M(T−), (15)

where K(T ) = M(T−)H⊤[(HM(T−)H⊤
Rw(T )]

−1.

Then, FC updates the power gain Ĝ(T ) with respect to

the threshold via (14) and (15), recursively.

IV. SIMULATION AND PERFORMANCE ANALYSIS

In this section, we verify the theory and analyze the

performance of the proposed algorithm by simulation. In

the simulation, we set the number of devices be M = 20,

maximum Doppler frequency fd = 20Hz. Without loss

of generality, we set the large-scale fading coefficients

to be one and the normal transmission power Pb = 1W .

Hence, the signal is transmitted through a multi-path

Rayleigh fading channel. At the receivers, the users send

the signal samples to FC to cooperative detect whether

the active spoofing attack is present or not. Fig. 1 shows

three instances of our proposed time-varying channel

gain tracking algorithm with time in different SNRs. As

shown in the figure, the tracked channel gain is fluctuate

around actual channel gain in each time slot. Moreover,

when the measurement noise increases, the algorithm can

still effectively track the power gain across time through

the recursive update.

Fig. 2 illustrates how the Neyman-Pearson threshold

γ change with the number of samples Ns increasing.

It shows that the threshold γ decreases as the number

of samples increases, and this threshold will converge

w.p.1 to an approximate fixed point no matter what the

noise power is. This is an meaningful insight, which

guides us to stably track the threshold via choosing a

proper sample number. For example, we do not need

to set the sample number Ns to be extremely large,

actually, we can get a good detection performance by

setting it to Ns = 200 or less. Furthermore, the higher

the noise power is, the lower the threshold will be. Next,

we conduct 10000 times of Monte-Carlo simulations and

plot the receiver operating characteristic (ROC) curves,

in which detection probability are plotted with respect

to the false alarm probability. In Fig. 3, we compare

our method with power spectral density (PSD) method

[5] in an OR role with different parameters, i.e., the

number of devices and spoofer’s power. We find that the

performance of the proposed ETRMT method is better

than PSD method in the same parameters. Both PSD and

ETRMT method’s detection performances are improved

with the increasing of device number and spoofer power.

In particular, we observe that our proposed method has

an apparent performance boost with Ps = 2W for M =
8 than PSD method, which thanks to the compensation

for finite sample number via RMT. Moreover, when the

device number is fixed, we see that a larger transmit

power is, the higher risk the attacker will be detected,

which shows a tradeoff between the transmit power and

the detection probability.
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Fig. 1. The time-varying channel gain tracking using Kalman filter.

V. CONCLUSION

In this paper, we introduced a new type of MAC

spoofing attack and proposed the ETRMT algorithm to

cooperative detect this attack. This approach needs no

prior information about the channel and do not have to

store the genuine user’s PHY-layer fingerprint in the off-

line phase. We used the random matrix theory to analyze

the detection performance of the proposed algorithm

and provided an depth analysis on the behavior of the

maximum and minimum eigenvalue distribution of the

sample covariance matrix. The closed-form expression

of the detection probability, false alarm probability and

the Neyman-Pearson threshold were derived. According

to the channel time-varying, we proposed an adaptive

threshold tracking method. Finally, the simulation results
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Fig. 3. The ROC of PSD-OR [5] vs. the proposed ETRMT.

showed that our proposed algorithm can effectively de-

tect the attacker with a good performance.

APPENDIX A

PROOF OF THEOREM 3

Lemma 1: For a Ns sample Wishart random matrix

of the Gaussian noise, if Ns,M → ∞, the normalized

minimum eigenvalue
λ′

min−µK

φK
converges to the Tracy-

Widom distribution of order 2. Where µK = (N
1/2
s −

M1/2)2, and φK = (M1/2−N
1/2
s )(M−1/2−N

−1/2
s )1/3

[17].

Lemma 2: Consider a setting with K signals, if

Ns,M → ∞, with M
Ns

fixed, the rest of the eigenvalue

with respect to noise and (K + 1)-th eigenvalue as

the maximum eigenvalue of this noise Wishart random

matrix [15].

Recall that the minimum eigenvalue of the sample

covariance matrix is denoted as λmin. According to

lemma 2, we get λmin is the minimum eigenvalue of

the Wishart random matrix. Let λ′
min = Ns

σ2 λmin denote

the minimum eigenvalue of the normalized statistical

covariance matrix. Combining lemma 1, we obtain the

theorem 3, and the proof is completed.
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