
This is the peer reviewed version of the following article “Aerodynamic design optimization of 

wind turbine rotors under geometric uncertainty”, by M.S. Campobasso, E. Minisci, M. Caboni, 

Wind Energy, 2016, which has been published in final form at https://doi.org/10.1002/we.1820. 

This article may be used for non-commercial purposes in accordance with Wiley Terms and 

Conditions for Use of Self-Archived Versions. 

 

 
 
Aerodynamic design optimization of wind turbine rotors under geometric 
uncertainty 
 
M. Sergio Campobasso, E. Minisci, M. Caboni 

 

Wind Energy, Vol. 19, no. 1, 2016, pp. 51-66. 
 

First published: 14 November 2014 
 

 
 

https://doi.org/10.1002/we.1820


AERODYNAMIC DESIGN OPTIMIZATION OF WIND

TURBINE ROTORS UNDER GEOMETRIC UNCERTAINTY

M. Sergio Campobasso
Lancaster University

Department of Engineering
Engineering Building

Lancaster LA1 4YR, United Kingdom
m.s.campobasso@lancaster.ac.uk

Edmondo Minisci
University of Strathclyde

Department of Mechanical and
Aerospace Engineering

75 Montrose Street
Glasgow, G1 1XJ, United Kingdom

edmondo.minisci@strath.ac.uk

Marco Caboni∗

University of Glasgow
School of Engineering

James Watt Building South
University Avenue

Glasgow, G12 8QQ, United Kingdom
Phone: +44 (0) 7918876704

m.caboni.1@research.gla.ac.uk

November 16, 2014

∗Address all correspondence to this author.

1



Abstract

Presented is a robust optimization strategy for the aerodynamic design of horizontal axis wind
turbine rotors including the variability of the annual energy production due to the uncertainty
of the blade geometry caused by manufacturing and assembly errors. The energy production
of a rotor designed with the proposed robust optimization approach features lower sensitivity
to stochastic geometry errors with respect to that of a rotor designed with the conventional
deterministic optimization approach that ignores these errors. The geometry uncertainty is
represented by normal distributions of the blade pitch angle, and the twist angle and chord of the
airfoils. The aerodynamic module is a blade-element momentum theory code. Both Monte Carlo
sampling and the univariate reduced quadrature technique, a novel deterministic uncertainty
analysis method, are used for uncertainty propagation. The performance of the two approaches
is assessed in terms of accuracy and computational speed. A two-stage multi-objective evolution-
based optimization strategy is used. Results highlight that, for the considered turbine type, the
sensitivity of the annual energy production to rotor geometry errors can be reduced by reducing
the rotational speed and increasing the blade loading. The primary objective of the paper is
to highlight how to incorporate an efficient and accurate uncertainty propagation strategy in
wind turbine design. The formulation of the considered design problem does not include all
the engineering constraints adopted in real turbine design, but the proposed probabilistic design
strategy is fairly independent of the problem definition and can be easily extended to turbine
design systems of any complexity.

KEYWORDS: wind turbine rotor design; stochastic geometry errors; manufacturing toler-
ances; probabilistic design optimization.
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Nomenclature

AEP Annual energy production.
BM Root bending moment.
DE Differential evolution.
EA Evolutionary algorithm.
HAWT Horizontal axis wind turbine.
IDEA Inflationary differential evolution algorithm.
MC Monte Carlo.
MOPED Multi-objective Parzen-based estimation of distribution.
PDF Probability density function.
Nd Number of design variables.
R Tip radius.
SSC Stochastic simplex collocation.
TSR Tips speed ratio.
U Freestream wind velocity.
Urel Relative wind velocity.
URQ Univariate reduced quadrature.
n Number of uncertain design variables.
r Radius along the blade.
x Array of design variables.
α Angle of attack.
θp Section pitch angle.
θp,0 Blade pitch angle.
θT Blade twist angle.
µ Expectation.
σ Standard deviation.
σ2 Variance.
φ Angle of relative wind.
Ω Rotational speed.
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1 Introduction

The growing availability of large computational resources and progress of design optimization tech-
nologies offer the means to automate significant portions of product design. In the past few years,
several studies on the use of diverse optimization techniques for the preliminary design of hor-
izontal axis wind turbines (HAWTs) have appeared. Some of these applications have focused
on the optimization of existing blades by means of local search approaches [1, 2, 3, 4], utilizing
low- to medium-fidelity models. Global multi-objective evolution-based search methods have also
been used, often to optimize HAWT conceptual designs, and investigate the choice of fundamental
HAWT design parameters, such as its rotor diameter, on the economy of whole wind farms [5].

One way in which modern HAWT design could be further improved is by accounting for the
effects of environmental, operational and engineering uncertainty throughout the design process.
The use of uncertainty management and quantification tools increases computational costs, and
this motivates the efforts to develop new approaches allowing these technologies to be efficiently
integrated in HAWT design. Accounting for the impact of uncertainty in HAWT design requires the
use of numerical methods which can reliably propagate uncertainty throughout the design system
without keeping HAWT design computationally unaffordable. The conceptually simplest way to
propagate uncertainty through an analysis system is to sample the design space using Monte Carlo
(MC) methods [6]. Unfortunately, MC methods are computationally expensive, requiring a large
number of function evaluations to converge. Therefore, researchers have been developing alterna-
tive, computationally cheaper approaches to uncertainty propagation. The main difficulty is to
reduce computational costs with respect to MC methods while maintaining an acceptable accuracy
of the probabilistic parameters of the output values. The techniques that have been proposed to ac-
complish these two conflicting requirements range from the Taylor-based method of moments [7, 8]
to quadrature methods [9] and polynomial chaos expansion [10]. Among the proposed alternatives,
an appealing one is the Univariate Reduced Quadrature (URQ) approach [11], which has been suc-
cessfully used for the robust shape optimization of a transonic airfoil by means of a local gradient
based search. The use of this deterministic sampling technique in robust design optimization based
on global search methods is appealing and promising, but so far the URQ uncertainty propagation
technique has not been used in global design optimization. As shown below, the use of URQ in the
context of robust design optimization of HAWT rotors based on global search method is one of the
novel elements of this paper.

This paper focuses on the development and the demonstration of a general methodology to
incorporate uncertainty in HAWT design. To the best of the authors’ knowledge, this issue has so
far received little attention despite the significant implications it may have on HAWT design, turbine
energy production and, ultimately, cost of energy. One of the sources of engineering uncertainty
is the effect of blade geometry errors caused by finite manufacturing and assembly tolerances on
the power and, for a selected site, the energy production of the turbine. The problems associated
with deviations of the actual blade geometry from its nominal shape is mentioned in [12], and a few
preliminary investigations of this matter are reported in [13]. Petrone et al. [14] have studied the
impact of blade twist errors due to finite manufacturing tolerances, and also wind speed, turbulence
intensity and wind direction variability, and blade surface roughness variations caused by insect
contamination on the mean power coefficient and acoustic emissions of a stall-regulated HAWT.
These authors have used Latin Hypercube Sampling and the Stochastic Simplex Collocation (SSC)
method to propagate uncertainties throughout the multi-disciplinary analysis system. Petrone et
al. [15] have also optimized the blade geometry of a stall-regulated rotor for maximum mean power
coefficient and minimum acoustic emissions considering the uncertainty on laminar-to-turbulent
transition caused by uncertain blade surface roughness levels. Uncertainty has been propagated
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using the SSC method, and the optimization has been carried out using a multi-objective genetic
algorithm.

This paper presents a new computationally very fast method to account for uncertainty in
HAWT design optimization, resulting in a computationally affordable HAWT probabilistic design
optimization framework. The considered sample application is the aerodynamic design of a variable-
speed fixed-pitch stall-regulated HAWT rotor, subject to the uncertainty associated with stochastic
blade geometry errors due to finite manufacturing and assembly tolerances (in the remainder of
the paper, ’rotor’ denotes the turbine blades, and ’rotor geometry’ denotes the blade geometry
and their pitch angle.) A detailed investigation into the effects of the stochastic variations of
the rotor geometry on the level and variability of the turbine power is presented. Use of the
probabilistic design optimization framework yields a robust aerodynamic design, namely a rotor,
the aerodynamic performance of which has minimal sensitivity to blade geometry errors.

The aerodynamic module of the design system is a blade-element momentum theory code.
Uncertainty is propagated using the rapid URQ technique, and an evolution-based optimization
approach is used. More specifically, the adopted evolution-based global search method is a two-
stage optimization process: the first stage is based on a multi-objective Estimation of Distribution
algorithm [16, 17], which has been shown to have very good exploratory capabilities; the second
stage uses a differential evolution-based approach [18], which has good exploitation capabilities.
It should be noted that, even when only one objective function is considered, robust design opti-
mization problems can be viewed as multi-objective optimization problems. This is because one
has to optimize both the expectation and the standard deviation of the objective function, which,
in the present study, is the HAWT energy production, as shown below. Hence, one of the main
reasons for using evolution-based optimization in this study was that this technology can easily
handle multi-objective problems. Another reason for this choice is the global exploration character
of evolutionary methods, which offers the possibility of considering fairly radical new designs.

Due to some modeling limitations of the adopted aerodynamic analysis tools (see below), the
optimal design solutions presented in this study may require further verification. The main objective
of the robust turbine design optimization exercise presented herein, however, is to explore the
potential of robust design optimization for improving general multi-disciplinary HAWT design
technologies [19], rather than proposing new design solutions for a particular turbine type. The
reason for selecting a variable-speed fixed-pitch stall-regulated turbine is merely that this work
stemmed from research collaborations of the authors with manufacturers of relatively small HAWTs,
and the selected turbine layout is often adopted for small wind turbines.

The paper first describes the optimization approach. This is followed by the definition of the
probabilistic design optimization problem. The following section presents a comparative numerical
study of the MC and URQ approaches to uncertainty propagation aimed at assessing their accuracy
and computational cost in view of their use within the global evolution-based optimizers used in
this study. The result section reports the findings of two slightly different variants of the same
general robust optimization problem. It also provides a comparative analysis of two optimized
rotor geometries, one obtained by neglecting uncertainty (deterministic optimization), and the
other obtained by including the aforementioned geometry uncertainty (robust optimization). The
main conclusions of the study are summarized in the closing section.

2 Optimizers

Evolutionary Algorithms (EAs) solve optimization problems by making a generation of individuals
evolve subject to selection and search operators. In this study, an individual denotes a HAWT rotor
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configuration, defined by the geometry of the its blades and its range of rotational speeds. This
iterative process eventually leads to a population containing the fittest possible individuals (best
rotor configuration designs), or individuals who are significantly fitter than those of the starting
population. The role of the selection operators is to identify the fittest or most promising individuals
of the current population, whereas search operators such as crossover and mutation attempt to
generate better offspring starting from suitably selected individuals of the current generation. Each
individual is defined by genes, which correspond to design variables in design optimization. The
solution of the optimization problems reported in this study is based on a two-stage approach using
the Multi-Objective Parzen-based Estimation of Distribution (MOPED) [16] and the Inflationary
Differential Evolution Algorithm (IDEA) [18].

MOPED belongs to a subset of EAs and was developed to circumvent certain algorithmic
problems of conventional EAs, which can be ineffective when the problem at hand features a high
level of interaction among the design variables.

This is mainly due to the fact that the recombination operators are likely to disrupt promising
sub-structures that may lead to optimal solutions. Additionally, the use of the crossover and mu-
tation operators may result in slow convergence to the solution of the optimization; that is, it may
require a large number of generations to obtain very fit individuals. MOPED was developed to
circumvent shortfalls of this kind. Its use of statistical tools enables it to preserve promising sub-
structures associated with variable interaction from one generation to another (automatic linkage
learning). Such statistical tools also replace the crossover and mutation operators of conventional
EAs, and they allow a faster convergence of MOPED with respect to the latter class of optimizers.
Starting from the individuals of the current population, MOPED builds an approximate proba-
bilistic model of the search space. The role of the crossover and mutation operators is replaced by
sampling of this probabilistic model. There exist similar other evolutionary methods that use the
aforementioned strategy, and they are called Estimation of Distribution Algorithms [20]. MOPED
is a multi-objective optimizer for continuous problems that belongs to this class of algorithms and
uses the Parzen method [21] to build a probabilistic representation of Pareto solutions, and can
handle multivariate dependencies of the variables [16, 17]. MOPED implements the general layout
and the selection techniques of the Non-dominated Sorting Genetic Algorithm II (NSGA-II) [22],
but traditional crossover and mutation search approaches of NSGA-II are replaced by sampling of
the Parzen model. NSGA-II was chosen as the base for MOPED mainly due to its simplicity, and
also for the excellent results obtained for many diverse optimization problems [23, 24].

The Parzen method utilizes a non-parametric approach to kernel density estimation, and results
in an estimator that converges asymptotically to the true Probability Density Function (PDF) over
the whole design space. Additionally, when the true PDF is uniformly continuous, the Parzen
estimator can also be made uniformly consistent. The Parzen method allocates Nind identical
kernels (where Nind is the number of individuals of the current population), each centered on a
different element of the sample. A probabilistic model of the promising search space portion is
built on the basis of the statistical data provided by the Nind individuals through their kernels,
and τENind new individuals (τE ≥ 1) are sampled. The variance of each kernel depends on (i)
the location of the individuals in the search space and (ii) the fitness value of these individuals,
and its construction leads to values that favor sampling in the neighborhood of the most promising
solutions.

The features of MOPED often prevent the true Pareto front from being achieved, particularly
when the front is broad and the individuals of the population are spread over different areas, which
are far apart from each other in the feasible space. This circumstance has prompted coupling
MOPED with another EA, which has better convergence properties. To this aim, the Inflationary
Differential Evolution Algorithm has been selected. IDEA was first developed for the design opti-
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mization of interplanetary trajectories, and it is an improved variant of the differential evolution
(DE) algorithms [18]. The IDEA algorithm is based on a synergic hybridization of a standard DE
algorithm and the strategy behind the monotonic basin hopping [25]. The resulting algorithm was
shown to outperform both standard DE optimizers and the monotonic basin hopping algorithm
in the solution of challenging space trajectory design problems, featuring a multiple funnel-like
structure. In this paper, a modified version of IDEA has been used to move the individuals of the
approximate Pareto front obtained with MOPED closer to the true front.

The main features of the original IDEA algorithm are reported in [18]. The IDEA algorithm
works as follows: a DE process is performed several times and each process is stopped when the
population contracts below a predefined threshold. At the end of each DE step, a local search is
performed in order to get closer to the local optimum. In the case of non-trivial functions, where
there is a high likelihood of converging to local optima, the combined DE/local search is usually
iterated several times, performing either a local or a global restart on the basis of a predefined
scheduling.

The design optimization presented in this study is constrained. Therefore, the DE step has been
modified so that the fitness assessment of the individuals during the DE process also takes into
account the constraints. The constraint handling technique used herein is one of the approaches
that can be adopted in evolutionary computing, and is similar to the approach used by MOPED.
In the unconstrained DE algorithm [26], and also in the unconstrained IDEA algorithm [18], each
parent solution is compared with its offspring, and the solution with a better value of the objective
function is passed to the next generation. In the constrained case, on the other hand, when parents
and offspring are compared, the solutions are first evaluated in terms of constraint compatibility
cp. Its definition is:

cp(xxx) =
m∑

j=1

sj(xxx) (1)

where x is the array of design variables, m is the number of constraints, and the constraint factor
sj is:

sj(xxx) = max{gj(xxx), 0} (2)

The constraint factor equals 0 when the constraint (gj(xxx) ≤ 0) is satisfied and is strictly positive
when the constraint is violated. The solution with the better values of cp is then passed to the next
generation. When the cp values of parent and offspring are the same, the selection is performed on
the basis of the objective function.

In the current implementation, MOPED and IDEA are used sequentially. When MOPED has
reached a given number of generations, its final population represents a first and good approximation
to the sought Pareto front. Then, clustered sub-populations of such a population are used as initial
solutions of the single-objective constraint IDEA optimizer. this algorithm ’pushes’ the individuals
of a sub-population of the MOPED front towards a better local approximation of the sought
Pareto front. The resulting two-stage optimizer blends the exploratory capabilities of MOPED
(global exploration) and the favorable convergence characteristics of IDEA (exploitation of local
information).

3 Problem set-up

3.1 design problem definition

In all HAWT rotor design optimizations reported below, the objective function to be maximized
is the annual energy production (AEP) of a three-blade turbine, and this output is taken to be
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the yearly amount of mechanical energy at the turbine shaft. The yearly frequency distribution
of the freestream wind velocity U is represented by a Weibull distribution with scale parameter of
7 m/s and shape parameter of 2, resulting in a yearly average speed of 6.2 m/s. The turbine is
regulated by varying its rotational speed Ω until its rated speed, and stall-regulated thereafter. The
design specifications are that the blades feature a single airfoil geometry, namely the NACA4413
airfoil, the root and tip radii of the blades be fixed to 1.3 m and 6.3 m, respectively. and the rated
wind speed vary between 10 and 12 m/s. The nominal blade shape is parametrized by means of
one design parameter defining the blade pitch angle θp,0, six design parameters defining the radial
distribution of the twist angle θT , i.e.the rotation of the considered blade section with respect
to θp,0, and six design parameters defining the radial distribution of the chord c, The angles θp,0

and θT are reported in Fig. 1, along with the overall sectional pitch θp = θT + θp,0. Figure 1 also
reports the angular speed vector ω, the freestram wind velocity U , and the relative wind speed
velocity vector Urel observed by the considered section. The vector Urel is inclined by an angle φ
on the rotor plane, and the local angle of attack is therefore α = φ − θp.

Figure 1: Geometric and aerodynamic parameters of a generic blade section.

The rotational speed Ω associated with each wind speed is also a design variable. Since seven
wind speeds have been considered, given by Ui = 5 + i, i = 1, 7, there are seven additional design
variables, which are the seven rotational speeds Ωi associated with the seven wind speeds Ui. The
overall number of design parameters is thus Nd = 20. The formulation of the design optimization
problem could be slightly simplified by not including the blade pitch in the set of independent
variables, but rather taking it as the twist of a section at a reference blade height. Nevertheless it
has been preferred to keep the blade pitch as an independent design variable to test this approach
in view of using the developed design system also for HAWTs adopting pitch control for power
regulation. One could also replace the seven design variables associated with the rotational speeds
with only the tip speed ratio (TSR). Without active constraints, the two approaches lead similar
results, corresponding to fairly constant optimal tip speed ratio. Here the choice of taking Ω to be
a general function of U has been made for further verifying the implementation of the optimization
system in view of its use with an aeroacoustic constraint, which can become active even before the
rated wind speed, thus preventing a constant optimal TSR until rated wind speed. An additional
reason for making and testing this modeling choice has been its forthcoming use in the design
optimization of modern multi-megawatt HAWTs. In this machines the transition from the constant
optimal TSR region before the rated wind speed to the constant power region is smooth and occurs
over a sizable wind speed interval where TSR can take significantly sub-optimal values well before
the rated wind speed. The adopted modeling choice will also enable accounting for such variability
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in HAWT design optimization.
The design variables x1 to x6 are the values of the chord c at the radial positions

(r1 r2 r3 r4 r5 r6) = (1.3 2 3 4 5 6.3) m, and the design variables x7 to x12 are the values of
the twist angles θT at the same six radial positions. The shape of the blade is reconstructed by
using the MATLAB R© shape-preserving piecewise cubic interpolation function pchip over the six
radial stations. The variable x13 is the blade pitch angle θp,0, and the variables x14 to x20 are
the seven values of Ω associated with the seven considered values of U . The bounds of all design
variables are given in Table 1.

x1 ∈ [0.10, 0.90] m c(r1)

x2 ∈ [0.10, 0.90] m c(r2)

x3 ∈ [0.10, 0.90] m c(r3)

x4 ∈ [0.10, 0.60] m c(r4)

x5 ∈ [0.10, 0.50] m c(r5)

x6 ∈ [0.10, 0.40] m c(r6)

x7 ∈ [0, 50] deg θT (r1)

x8 ∈ [0, 50] deg θT (r2)

x9 ∈ [0, 40] deg θT (r3)

x10 ∈ [0, 20] deg θT (r4)

x11 ∈ [0, 10] deg θT (r5)

x12 ∈ [0, 10] deg θT (r6)

x13 ∈ [−10, 10] deg θp,0

x14−20 ∈ [50, 150] rpm Ωi(Ui), i = 1, 7

Table 1: Range of design variables.

The 13 independent parameters (xi, i = 1, 13) defining the blade geometry are assumed to be
affected by non-correlated normally distributed uncertainty. The joint Gaussian distribution of
these 13 parameters is centered at the nominal values of the corresponding design variable, and has
a standard deviations of 1cm for lengths and about 2.5 degrees for angles. The order of magnitude
of these standard deviations is representative of the geometry errors observed for the blade size
considered in this study. Since the optimizers use a nondimensionalized search space, with the input
variables varying in the interval [0, 1], the vector of nondimensional standard deviations of each
blade, obtained by dividing each standard deviation by the dimensional range of the corresponding
variable, is σ1 = [0.0125 0.0125 0.0125 0.02 0.025
0.0333 0.05 0.05 0.05 0.1 0.2 0.2 0.1]. The stochastic blade shape geometry errors may induce some
uncertainty in the dependence of the power coefficient on TSR, and, hence, also on the optimal
values of the latter parameter, which determine the optimal rotational speeds for each wind speed.
The impact of the variability of Ω due to the blade geometry errors on the AEP variability, however,
is likely to depend of the adopted control strategy [27]. Using maximum power tracking, for example,
the rotational speed is set by choosing in real time the value that maximizes the turbine power, the
turbine works at its true optimal rotational speed all times, and variations of Ω with respect to its
nominally optimal value contribute fairly little to the power variability. Conversely, the variations
of the optimal Ω caused by geometry errors may contribute more to such power variability when the
machine model is used directly by the controller, like in the cases in which the controller attempts to
track the nominally optimal TSR or the nominally optimal aerodynamic torque. This is because the
rotor may be forced to work at a speed significantly different from its actual optimum. In practice,
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however, rotational speed controllers are affected by additional and expectedly larger uncertainty
sources, such as low accuracy by which required input data like wind speed can be measured [27],
and also high spatial and temporal wind variability resulting in significant deviations from the
often overly simple machine model used by the controller. In this study, only the uncertainty on
the energy production caused by the dependence of blade aerodynamics on the probabilistic blade
geometry errors is analyzed. The analysis of the uncertainty of turbine controllers is beyond the
scope of the article. Therefore, rather than considering in an incomplete manner the uncertainty
on affecting Ω, it has been preferred to treat the rotational speeds as deterministic variables. The
incorporation of all uncertainty sources affecting the turbine speed control in a probabilistic multi-
disciplinary HAWT design system will be treated in future extensions of this work.

The power curve of the turbines analyzed in the design optimization have been computed
using WINSTRIP, an in-house FORTRAN code implementing the blade-element momentum (BEM)
theory [28]. Theoretically BEM codes have a relatively narrow range of applicability, but several
semi-empirical correction models enable their use for a wider range of operating conditions. The
corrections implemented in WINSTRIP include: a) Prandtl’s tip and hub loss corrections [28], b)
Glauert’s correction [28] improved by Buhl [29] to account for axial induction factors exceeding the
maximum theoretical limit of 1/2, and c) Snel’s [30] and the AERODAS [31] corrections to account
for the rotational effect known as Himmelskamp or centrifugal pumping effect, occurring in the
presence of large areas of stalled flow. WINSTRIP has been validated against the experimental
data of the NREL 2-blade UAE phase-VI test turbine [32], and a good agreement has been observed.
In the present work, the airfoil lift and drag data required by the BEM code have been computed
using the Massachusetts Institute of Technology (MIT) viscous-inviscid panel code XFOIL [33].
Unfortunately, XFOIL cannot be used for producing reliable airfoil force data after stall. For this
reason, the BEM code could be used only for wind speeds not yielding rotor stall, i.e.between cut-in
and rated wind speeds, although wind energy is harvested also between rated and cut-out speeds.
Due to this omission, further verification of the optimal solutions presented below may be required.
Such omission, however, does not hinder the demonstration of the great potential of HAWT robust
design optimization, as evident in the remainder of this study.

The objective of the robust design optimization is to maximize the mean AEP and minimize its
standard deviation by considering the rotor swept area corresponding to the specified rotor radius
of 6.3 m and the site characterized by the specified Weibull wind frequency distribution, varying
the 20 design variables listed above, and propagating the uncertainty affecting the 13 geometric
design variables. It should be noted that in this study the rotor nominal power is an output of
the optimization rather than a design specification. Mathematically, the aforementioned problem
corresponds to minimize the functions F1 and F2 given by:

F1 = −µAEP

F2 = σ2

AEP

(3)

where µAEP is the mean AEP, and σ2

AEP is its variance. The considered constraints are:

C1 : F1 ≤ −4 · 104 kWh
C2 : F2 ≤ 2 · 107 kWh2

C3 : (µBM )max ≤ 12 kNm
(4)

where BM denotes the blade root bending moment, and (µBM )max the maximum expectation of
BM selected among the seven expectations corresponding to each considered wind speed. For
each turbine, AEP is obtained by integrating the power curve against the aforementioned Weibull
distribution.
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To assess the impact of considering stochastic blade geometry errors in the design optimization,
a deterministic optimization, i.e.one not including uncertainty, has also been carried out. The
deterministic optimization has a single-objective function, namely F = −AEP . The enforced
constraints are:

C1 : F ≤ −4 · 104 kWh
C2 : BMmax ≤ 12 kNm

(5)

where BMmax is the maximum BM selected among the seven values corresponding to each consid-
ered wind speed.

3.2 modeling aspects

To analyze both the algorithmic and engineering aspects of the proposed probabilistic design op-
timization framework, the robust optimization problem presented above has been formulated and
solved in several different manners. On the algorithmic side, such analyses have aimed to assess
the computational cost and the robustness of the MC and URQ approaches to uncertainty propa-
gation when using global search evolution-based optimizers. On the engineering side, two different
definitions of the problem have been considered. One assumes that the shape of all three blades of
a given rotor is identical, namely that identical geometry errors affect the three blades. The other
assumes that such errors are different, though they are described by the same PDF. The latter
scenario is more realistic, but the former has also been considered because it enables a clearer
identification of the effects of stochastic geometry variability on the AEP variability. Therefore,
four different robust optimizations have been performed. The first optimization (MC1) uses MC
sampling and assumes that the three blades are identical; the second optimization (URQ1) uses
URQ sampling, and also assumes that the three blades are identical; the third optimization (MC3)
uses MC sampling and adopts a different pattern of geometry errors for the three blades of a given
rotor, even though all error patterns belong to the same joint PDF; the fourth problem (URQ3)
differs from MC3 only in that it uses URQ sampling for propagating uncertainty. In the MC3 case,
the performance of each ’real’ rotor is obtained by taking the arithmetic average of the performance
of three different ’fictitious’ rotors, each with identical blades affected by a different pattern of ge-
ometry errors. Conceptually, the same approach is adopted in the URQ3 case. However, the URQ
method is based on a deterministic quadrature approach [11], and uses only the first four moments
of the uncertainty distribution of the input variables, rather than particular instantiations of such
a distribution like the MC method. Hence, the three ’fictitious’ rotors of the URQ3 analysis are
identical, and the performance of a rotor with blades affected by different patterns of geometry
errors can be obtained by considering one rather than three rotors. Furthermore, making use of the
URQ-based expressions for the expectation and the variance of output functionals [11], it is found
that a) the expectation of an output using either the URQ1 or the URQ3 model for a given nominal
rotor is the same, and b) the ratio of the standard deviations of an output functional computed
with the URQ1 and URQ3 models is

√
3.

In the URQ1 and MC1 cases, a particular instantiation of the 13 geometric design variables
defines the shape of the entire rotor. As the deterministic sampling of URQ requires 2n + 1
evaluations of the functional of interest [11], with n being the number of uncertain design variables,
each robust analysis requires 27 computations of AEP, namely 189 WINSTRIP runs. By contrast,
10, 000 AEP calculations, requiring 70, 000 WINSTRIP runs are performed in the MC1 case. In
the URQ3 and MC3 cases, the nominal blade geometry is still defined by 13 parameters, but, as
the three blades are not identical, the number of uncertain geometry variables is n = 39. Denoting
respectively by µ1 and σ1 the arrays of mean values and standard deviations of the geometric
design variables when all three blades are identical, the mean and standard deviation arrays when
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the three blades differ are respectively µ3 = [µ1 µ1 µ1] and σ3 = [σ1 σ1 σ1]. As mentioned above,
this is because, even though in the MC3 and URQ3 cases the three blades are different, their errors
are described by the same joint PDF of the URQ1 and MC1 cases. In the MC3 case, the AEP
of a particular rotor is obtained by taking the arithmetic average of the AEP of three different
rotors with identical blades, as explained above. Like in the MC1 problem, a set of 10, 000 ‘real’
rotors has been used to determine mean and expectation of AEP and the expectation of the BM
constraint for each nominal rotor. In the MC3 problem, however, consideration of a 10, 000 ‘real’
rotors requires the generation of 30, 000 blade geometries using the input PDF. In the URQ3 case,
the number of AEP and constraint evaluations required for each nominal rotor is the same as for
URQ1 for the reasons discussed above.

4 Uncertainty propagation

Here the URQ and MC sampling techniques are assessed and compared both in terms of accuracy
and computational costs and accuracy. Extensive numerical testing has shown that the use of a
10, 000-rotor set with both MC1 and MC3 sampling yields fully converged estimates of both the
expectation and the standard deviation of AEP and BM. For this reason, this number of samples
has been maintained throughout the MC1 and MC3 optimization problems. As discussed in the
preceding section, the number of rotor configurations to be analyzed to obtain the mean and the
expectation of AEP and BM. This highlights the substantial computational cost achieved by using
URQ rather than MC sampling.

As shown in the next section, the considered type of optimization problem leads to a Pareto
front arising from the trade-off between the expectation and the standard deviation of AEP. In the
following, the MC and URQ estimates of the mean and standard deviations of the output functionals
are cross-compared for two nominal rotors: a non-optimal rotor, namely one lying relatively far
from the Pareto front, and an optimal rotor lying on the Pareto front. The comparison of the
MC and URQ expectations and standard deviations of AEP and BM of the non-optimal nominal
rotor is presented in Table 2. The symbol (µBM )max denotes the maximum expectation of BM
selected among the seven expectations corresponding to each considered wind speed, whereas the
symbol (σBM )max is the standard deviation of BM at the wind speed associated with (µBM )max.
These results highlight that the expectation of both functionals does not depend on whether the
blades of a given rotor are taken to be identical or not. An excellent agreement between the MC
and URQ expectations is also observed. Two main observations emerges from the inspection of
the standard deviations of Table 2. Firstly, for a given propagation method, the estimate of σAEP

obtained by taking all three blades to be identical is higher than that obtained by assuming that
the three blades differ. The URQ approach predicts the ratio between the former and the latter
standard deviations to be

√
3. Secondly, the difference between the MC1 and URQ1 estimates

of σAEP is about 5.7 %, whereas that between the MC3 and the URQ3 estimates of σAEP is
about 2.9 %.

To further investigate the differences between the URQ and MC estimates of expectation and
standard deviation, the analysis of an optimal nominal rotor is now considered. The MC and URQ
expectations and standard deviations of AEP and BM of the optimal nominal rotor are reported in
Table 3. These results confirm that the expectation of both functionals does not depend on whether
the three rotor blades are taken to be identical or not. An excellent agreement between the MC
and URQ expectations is observed also for this rotor. Also in this case, the estimates of σAEP

obtained by considering all three blades to be identical is higher than that obtained by assuming
that different geometry errors affect the three rotor blades. The agreement between the MC and the
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URQ predictions of σAEP is slightly worse than for the non-optimal rotor: the difference between
the MC1 and URQ1 values of σAEP is about 9.0 %, and that between the MC3 and the URQ3
estimates is about 11.0 %.

µAEP (µBM )max σAEP (σBM )max

URQ1 42150.4 5.2136 2432.1 0.5719

MC1 42126.9 5.2051 2580.1 0.5742

URQ3 42150.4 5.2136 1404.2 0.5719

MC3 42123.7 5.2016 1445.9 0.5762

Table 2: Expectations and standard deviations of AEP [kWh] and BM [kNm] of a non-optimal
nominal rotor based on MC and URQ sampling.

µAEP (µBM )max σAEP (σBM )max

URQ1 91619.2 11.9999 2778.8 1.3593

MC1 91745.8 12.0136 3056.4 1.3504

URQ3 91619.2 11.9999 1604.4 1.3593

MC3 91760.6 12.0376 1784.4 1.3545

Table 3: Expectations and standard deviations of AEP [kWh] and BM [kNm] of an optimal nominal
rotor based on MC and URQ sampling.

In absolute terms, the differences between the URQ and the reference MC estimates of σAEP

observed over the considered design space appear to be relatively high. In general, the accuracy of
URQ is fairly problem-dependent, and is expected to decrease when the output functionals feature a
strong nonlinear dependence on the input variables. Such a reduction also increases with the size of
the standard deviation of the input variables. The reported differences between the MC and URQ
estimates of σAEP point to the existence of significant nonlinearities of the BEM-based analysis. In
other robust optimizations making use of URQ for propagating uncertainty [9, 34], the discrepancies
between the URQ and MC estimates of the standard deviations of the output functionals has been
found to be substantially smaller than in the present case, presumably due to smaller nonlinearities
of the output functionals. The level of nonlinearity of the BEM-based analysis can be assessed
by examining the AEP PDF determined with MC sampling. The histograms of the left and right
subplots of Fig. 2 depict the MC1-based AEP PDF of the non-optimal and optimal nominal rotors
respectively. In both subplots, the curve labeled ‘gaussian’ is the normal distribution with mean
and standard deviation determined by MC1 sampling, whereas the curve labeled ‘parzen’ is the
continuous counterpart of the MC1 histogram. The deviation of the parzen fit from the gaussian
curve can be taken as a measure of the nonlinearity of the BEM-based analysis. This is because
a linear function would map a normally distributed input onto a normally distributed output.
Inspection of the results reported in Fig. 2 reveals that both the BEM analysis centered at the non-
optimal nominal rotor configuration and that centered at the optimal rotor configuration present
a significant degree of nonlinearity, and also that the nonlinearity is higher in the case of the latter
rotor configuration. These findings account for the observed discrepancies between the URQ- and
MC-based estimates of σAEP .

Despite these deviations of the URQ estimates of the standard deviations from the reference
MC results, the use of URQ for the robust design optimization problems considered herein is
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believed to be appropriate. This is because, as shown in the next section, the reductions of σAEP

obtained by performing a robust design optimization, based on either URQ or MC uncertainty
propagation, rather than a deterministic design optimization are substantially higher than the
observed discrepancies between the URQ and MC estimates of σAEP . Furthermore, a significant
advantage of the URQ uncertainty propagation technique is its substantially lower computational
cost with respect to the MC uncertainty propagation.
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Figure 2: Analysis of AEP [kWh] PDFs. Left subplot: non-optimal nominal rotor. Right subplot:
optimal nominal rotor.

5 Results

5.1 robust optimizations

The adopted formulation of the robust design optimization problem leads to a Pareto front arising
from the trade-off between the expectation and the standard deviation of AEP. The URQ1 and MC1
Pareto fronts obtained with MOPED are reported in the left subplot of Fig. 3. The figure also
reports the probabilistic performance of three additional rotors. One, the configuration labeled
‘Turbine A’, is the non-optimal rotor considered for the comparative analysis of the URQ and
MC methods reported in the preceding section. The other two configurations, labeled ‘URQ1
ref.’ and ‘MC1 ref.’ correspond to the nominal rotor geometries obtained by using the IDEA local
refinement starting from a point with maximum µAEP taken from the URQ1 and MC1 Pareto front
respectively. In both cases, the refinement is performed as follows: given the final population of
the MOPED optimization, a sub-population containing a solution with maximum µAEP is selected
and used as starting point of the IDEA optimization. This optimization aims at maximizing µAEP

subject to the constraints (4). The solution labeled ‘URQ1 ref.’ is the optimal rotor considered
in URQ/MC cross-comparison in the preceding section. The results provided by the left subplot
of Fig. 3 show that a wide range of Pareto-optimal values of µAEP exists, and that a substantially
smaller range of σAEP corresponds to this µAEP range. Even rotors featuring high values of µAEP

present relatively low values of σAEP .
The URQ3 and MC3 Pareto fronts of µAEP and σAEP obtained with MOPED are reported in

the right subplot of Fig. 3. The subplot also reports the probabilistic performance of two additional
rotors. These two configurations, labeled ‘URQ3 ref.’ and ‘MC3 ref.’ have been obtained by using
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the IDEA local refinement in the same manner as described above the URQ1 and MC1 problems.
One notes that also in the MC3 and URQ3 cases a wide range of Pareto-optimal values of µAEP

exists, and that a substantially smaller range of σAEP corresponds to this µAEP range. Furthermore,
the values of the Pareto-optimal values of σAEP are slightly lower than in the URQ1 and MC1 cases,
as expected.

On the basis of the URQ expressions for mean and standard deviation of an output func-
tional [11], a given nominal rotor has the same µAEP in the URQ1 and URQ3 cases. The URQ1
and URQ3 estimates of σAEP are instead different, and their ratio is

√
3. Due to the adopted

definition of the BM constraints, the URQ1 and URQ3 estimates of both (µBM )max and (σBM )max

are equal. Consequently, if none of the constraints depending on the geometry errors of the rotor
blades were active at the end of the optimization, and the optimizer converged to the best possi-
ble approximation of the true Pareto front, the URQ1 and URQ3 Pareto fronts would correspond
to the same set of rotors. This is because, in the two two-objective optimizations, one objective
function (µAEP ) is the same, and the other σAEP differs by a constant scaling factor. In line with
these considerations, the computed URQ1 and URQ3 Pareto fronts have found to differ only for
a constant scaling factor of σAEP . Moreover, it has been found that the rotors corresponding to
the optimal configurations labeled ‘URQ1 ref.’ in the left subplot of Fig. 3 and ‘URQ3 ref.’ in the
right subplot of Fig. 3 present very small differences.
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Figure 3: Pareto fronts of expectation and standard deviation of AEP [kWh]. Right subplot: URQ1
and MC1 fronts. Left subplot: URQ3 and MC3 fronts.

The observed differences between the URQ1 and MC1 Pareto front estimates, and those be-
tween the URQ3 and MC3 Pareto front estimates highlight that the choice of the uncertainty
propagation technique has some influence on the solution of the robust optimization problem. The
main reason for such differences is a different converge rate of the MOPED optimizer using MC
or URQ uncertainty propagation. The MC and URQ approaches have different sensitivity to the
‘irregularities’ of the design space: when the neighborhood of a nominal rotor contains one or more
rotors for which WINSTRIP does not converge, the MC approach is more likely than the URQ
approach to sample one or more of these ‘defective’ solutions; in this circumstance, since an un-
determined solution cannot be used to compute the statistical characteristics of the performance,
the nominal geometry itself is considered defective and is discarded. When the URQ propagation
is used, MOPED is able to converge more rapidly in regions of the search space corresponding to
higher amounts of energy production, while the high level of noise of the MC sampling slows down
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or even prevents full convergence to the Pareto front. Thus, the use of MC sampling forces the
optimizer to act in a conservative fashion, due to the excessive sensitivity of this sampling strategy
to irregularities of the design space. Such irregularities, however, do not necessarily correspond to
actual characteristics of the real system. Indeed, the fact that the BEM analysis of certain rotor
geometries fails, does not necessarily imply that such configurations would deliver no power at all.
To a minor extent, an additional possible contribution to the observed differences between the URQ
and MC Pareto fronts could be the difference observed in some regions of the design space between
the standard deviation of the output functionals determined with the URQ and MC sampling. This
factor, however, is not believed to have a strong weight, since the differences between the URQ and
MC estimates of σAEP of Figure 3 are larger than the maximum differences between the URQ and
MC estimates of σAEP associated with a given nominal rotor.

One of the reasons why evolution-based rather than gradient-based optimization has been used
in this study is the existence of the aforementioned irregularities of the design space. Gradient-based
optimization can also cope with the occurrence of infeasible areas during the search, for example by
dynamically varying size and direction of the search step. The occurrence of an infeasible point in
evolution-based optimization, however, is less perturbing, since the optimizer continues its search
and simply ignores infeasible designs. The convergence to global optima could also be severely
slowed down or even prevented by the existence of local minima in a fairly wide design space
like that considered in this study. Furthermore, the use of MC-like sampling to compute robust
functionals is typically affected by numerical noise, and this feature would also create additional
difficulties to the convergence of gradient-based optimization. These are the main reasons why
evolution-based optimization has been selected for this study.

Both the URQ and MC optimizations use 100 generations with 100 individuals each. This
require 10, 000 probabilistic function evaluations. Each probabilistic evaluation, however, requires
consideration of 10, 000 rotors (or blades) in the MC cases, and only 27 rotors in the URQ cases.
thus, the ratio between the overall computational cost of the MC1 and URQ1 optimizations is
about 370. In the MC3 case, each probabilistic function evaluation requires consideration of 30, 000
rotors with identical blades. Hence, the ratio between the overall computational cost of the MC3
and URQ3 optimizations is about 1, 110.

The fitness parameter αf and the sampling proportion τE for all MOPED-based optimizations
have been set to 0.5 and 1, respectively. In all IDEA-based optimizations, the weighting factor F
and the crossover probability CR have both been set to 0.9. The IDEA search has used a random
population of 20 individuals, and has stopped when the population has contracted to 25% of the
maximum expansion during the evolution.

5.2 robust and deterministic optima

The optimal rotor obtained by solving the deterministic optimization problem described in sec-
tion 3 has a nominal AEP of 96, 170 kWh, and µAEP = 89, 974 kWh. Here, this rotor configu-
ration, denoted by ‘det. opt.’, is compared to the ‘URQ1 ref.’ rotor, which has a nominal AEP
of 95, 005 kWh and µAEP = 91, 619 kWh. The AEP standard deviation of the ‘det. opt.’ rotor
is σAEP = 4, 991 kWh, and is significantly higher than that of the ‘URQ1 ref.’ rotor, which has
σAEP = 2, 779 kWh. These figures highlight that the AEP standard deviation of the rotor designed
taking into account stochastic geometry errors due to finite manufacturing and assembly tolerances
is more than 44 % lower than that of the rotor designed neglecting such errors.

The performance of these two rotors is compared in greater detail in the three subplots of
Fig. 4. The left subplot compares power curves, the middle subplot compares the amount of
AEP accounted for by each wind speed U , and the right subplot compares the blade root bending
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moment against U . In all three subplots, the labels ‘nominal’ and ‘mean’ denote respectively
deterministic values computed using the nominal rotor geometries and expected values taking into
account stochastic geometric uncertainties. All mean curves also report error bars below and above
the ordinate of each curve base-point, and the size of each bar is the standard deviation of the
considered output. Examination of the left and middle subplots reveals that the ‘det. opt.’ rotor
has a slightly better nominal aerodynamic performance, but slightly worse mean performance than
the ‘URQ1 ref.’ rotor. More importantly, however, the standard deviations of both power and
energy production of the deterministically optimal rotor are significantly higher than those of the
probabilistically optimal rotor. This confirms that the use of robust design optimization yields
HAWT rotors which outperform, in a statistical sense, those obtained by using the deterministic
design approach, which neglects probabilistic geometry errors. The right subplot of Fig. 4 highlights
that the standard deviation of the bending moment of the probabilistically optimum rotor is lower
than that of the deterministically optimum rotor for all considered wind speeds. The mean and the
nominal values of this output for the two rotors are similar for all considered wind speeds, except
for the speed of 12 m/s, there the mean value of the probabilistic solution is slightly higher than
that of the deterministic solution. This may result in higher fatigue loads on the probabilistically
designed rotor. This problem could be solved by including a fatigue load-related constraint in the
probabilistic design optimization system.
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Figure 4: Rotor performance of deterministic and robust designs. Left subplot: mechanical power
[kW ] against wind speed U [m/s]. Middle subplot: proportion of AEP [kWh] accounted for by
each wind speed. Right subplot: blade root bending moment [kNm] against wind speed.

The radial profiles of the pitch angle θp and the chord c of the two rotors are reported respec-
tively in the top left and bottom left subplots of Fig. 5. The red curve of these two subplots is
the percentage variation (∆%) of these variables. One sees that the sectional pitch angle of the
probabilistically optimal rotor blade is smaller than that of the deterministically optimal blade over
most part of the blade length, featuring a maximum reduction of about 16 % at 4 m blade length.
The chord of the probabilistic optimum is wider than that of the deterministic optimum over the
entire blade length, featuring a maximum increment of nearly 60 % at the blade tip. The pitch
angle of the probabilistically optimal rotor and, to a minor extent, that of the deterministically
optimal rotor, are negative over part of the blade height. Fixed-pitch HAWTs, like those considered
in this study, rely on the aerodynamic torque of the hub region of the blades for starting from a
standstill [35]. One of the prerequisites for achieving a sufficiently high start-up torque is that the
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effective angle of attack in the hub region be not too high. If the local pitch angle is not too low, the
start-up torque may be increased by decambering the airfoils of the hub region, Modern wind tur-
bines of this size, however, can also be non-self-starting and started by external means. In general,
if a self-starting machine is required, the constraint of given minimum positive aerodynamic torque
at start-up could also be included in the formulation of the design optimization problem, though
such a constraint has not been adopted in the presented optimizations. The rotational speed of the
two rotors for all considered wind speeds is reported in the right subplot of Fig. 5, which highlights
that the probabilistically optimal rotor has lower Ω values than the deterministically optimal rotor.
The slope discontinuities of the Ω-curves at U = 11 m/s occur because the BM constraint becomes
active at U = 12 m/s, as visible in the right subplot of Fig. 4, The fulfillment of the BM constraint
is achieved through a reduction of the aerodynamic forces acting on the blade, and such a reduction
is achieved by slightly reducing the rotational speed with respect to the value it would have taken if
the structural constraint had remained inactive. This occurrence highlights that the selected type
and level of structural constraint are overly restrictive, since the rotational speed is usually not
limited by structural requirements before the rated wind speed. More realistic design specifications
would consider this type of structural constraint applied to extreme load conditions. This is an
item for future extensions of this work.

The left subplot of Fig. 4 shows that the power curves of the two optimal rotors differ fairly
little from each other. This is because the effects of the variations of the geometric and operational
parameters on the turbine power output balance out. At a wind speed of 12 m/s, for example, the
reduction of the square of the rotational speed of the robust optimum relative to the deterministic
optimum is about 27 %, which constitutes a negative contribution to the power of the robust
optimum. This reduction, however, is balanced by the power increment associated with the wider
chords and the smaller pitch angles of the probabilistic optimum. This is highlighted by the radial
profiles of the percentage variations of θp and c reported respectively in the top left and bottom left
subplots of Fig. 5. As visible in these two subplots, the variation of these two geometric parameters
is of the same order of magnitude as that of the square of the rotational speed. It is also observed
that the extreme aerodynamic loads on the blades of the probabilistically designed rotor may be
higher than those on the blades of the deterministically optimized rotor due to the wider chord
of the former configuration. This aspect can be easily accounted for by including extreme load
constraints in the design frameworks presented herein.

To further verify the correctness of the comparative analysis of the two designs, the nominal
and stochastic performance of the ‘det. opt.’ rotor geometry using the rotational speeds of the
‘URQ1 ref.’ rotor have been computed. The nominal and mean AEP of this hybrid configuration
are AEP = 91, 191 kWh and µAEP = 88, 092 kWh respectively. More importantly, the hybrid
rotor has σAEP = 5, 197 kWh, which is significantly higher than σAEP of the deterministic design
‘det. opt.’. Thus, the performance of the hybrid configuration is poorer than that of both the
deterministic and probabilistic optima, and this confirms the self-consistency of the deterministic
and probabilistic optimizations.

The analyses above indicate that a lower sensitivity of AEP to rotor geometry errors can be
achieved by lowering rotational speeds and compensating for the reduction of power due to lower
rotational velocities by shifting upwards the radial profiles of CL. This increment of the aerodynamic
loading is achieved by increasing the angle of attack (to a large extent through lower values of the
sectional pitch) and the chord of the blade over most part of the blade length. This is the reason
why the ‘URQ1 ref.’ blade has lower values of θp: lower values of the section pitch angle lead
to higher values of α. An additional contribution to the increment of α comes from the reduced
circumferential speed, which results in higher values of the relative wind angle φ. The radial profiles
of the mean value of α of the two rotors at U = 12 m/s are reported in the left subplot of Fig. 6,
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which confirms that the angle of attack along the ‘URQ1 ref.’ blade is higher than that of the ‘det.
opt.’ blade. Note also that the standard deviation of α at a given radial position is about the same
for the two rotors. This is due to the fact that equal errors of the section pitch angle lead to equal
variations of α. The higher values of the mean radial profile of α of the ‘URQ1 ref.’ blade result
in significantly higher mean values of CL, as shown in the right subplot of Fig. 6. It is important
to note that the standard deviation of CL of the blade ‘det. opt.’ is between about 10 and 40 %
higher than that of the blade ‘URQ1 ref.’ over most part of the blade. Such lower values occur
because the overall level of α is in a region where the slope of the α − CL curve starts to decrease
with respect to the linear part corresponding to lower angles of attack. Therefore, the variation
of the lift coefficient caused by a given variation of α is smaller for the ‘URQ1 ref.’ blade. The
lower values of the standard deviation of CL are the main reason for the lower standard deviation
of the annual energy production of the probabilistically optimized rotor with respect to that of the
deterministically optimized rotor.
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Figure 5: Rotor geometry and control of deterministic and robust designs. Top left subplot: blade
chord c [m] against radius r [m]. Bottom left subplot: section pitch angle θp [deg] against radius.
Right subplot: rotational speed Ω [RPM ] against wind speed U [m/s].

6 Conclusions

A novel robust optimization framework for the design of variable-speed HAWT rotors has been
presented. The effectiveness of the developed technology has been demonstrated by considering the
design optimization of a three-blade rotor with blades affected by randomly distributed geometry
errors caused by manufacturing and assembly tolerances. The developed technology has been
used to maximize the expectation of the annual energy production and minimize its standard
deviation. This multi-objective optimization problem has been solved with an effective two-stage
multi-objective evolution-based optimization strategy.

Two alternative methods for propagating uncertainty through the design chain have been con-
sidered: a standard Monte Carlo approach and the Univariate Reduced Quadrature. The level
of agreement between the Monte Carlo and URQ estimates of mean and standard deviations of
the output functionals of interest has been found to be adequate for the considered robust design
applications. The latter approach reduces the cost of each robust analysis by up to three orders of
magnitude with respect to the case in which standard Monte Carlo sampling is adopted.

19



1 2 3 4 5 6 7
0

2

4

6

8

10

12

14

r

α

 

 

URQ1 ref.
det. opt.

1 2 3 4 5 6 7
0.4

0.6

0.8

1

1.2

1.4

1.6

r

C
L

Figure 6: Rotor aerodynamics of deterministic and robust designs at U = 12 m/s. Left subplot:
angle of attack α [deg] against radius r [m]. Right subplot: lift coefficient CL against radius.

The comparative analysis of a rotor design obtained by considering the stochastic geometry
errors, and a rotor design obtained by neglecting all uncertainties shows that the AEP standard
deviation of the former rotor is less than 40 % that of the latter. The feasibility of the particular
probabilistic stall-regulated rotor design presented herein needs to be further assessed from several
other viewpoints, including the choice of the rotor airfoils and the inclusion of the stalled rotor
regime (portion of the power curve from rated to cut-out wind speed) in the calculation of AEP.
These verifications were beyond the scope of the paper, and are ground for extensions of this work.
This was a prototype study, and one of its main objectives was to explore the potential of robust
design optimization for general HAWT rotor probabilistic design. This approach hopefully offers a
new way of incorporating several uncertainty sources in general HAWT design.
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