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Intelligent Multisensor Cooperative Localization
Under Cooperative Redundancy Validation

Lu Yin, Member, IEEE, Qiang Ni, Senior Member, IEEE, Zhongliang Deng

Abstract—Localization plays a key role in Internet of Things
(IoT). This paper proposes a novel intelligent cooperative mul-
tisensor localization method called Edge Cloud Cooperative
Localization (ECCL) which has the range and angle observations
from the neighbour nodes along with the location observations
from an absolute coordinate localization system like Global
Positioning System (GPS). The edge cloud structure is proposed
which employs several distributed Kalman Filters (KFs) in
sensor nodes edge and a centralized cooperative fusion unit
in the cloud. For a robust fusion, a Cooperative Redundancy
Validation (CRV) method is proposed to detect the outliers. The
proposed ECCL scheme has the advantages of both distributed
and centralized localization, which satisfies the needs of high
reliability and high accuracy, especially when sensor nodes have
limited computational resources. The simulation and experiment
results show that our proposed ECCL algorithm outperforms the
other schemes both in outlier detection and localization accuracy.

Index Terms—Cooperative Localization, Multisensor, Cooper-
ative Redundancy Validation.

I. INTRODUCTION

INTERNET of Things (IoT) is a new evolution for industrial
and civil applications. It mines the potential of all kinds of

sensors like industrial products, smartphones and intelligent
equipments. An important property of IoT is the location of the
Things, such as applications for the pedestrian/vehicle naviga-
tion, logistics management, industrial equipment monitoring
and venue supervision [1]-[6]. The Global Positioning System
(GPS) itself is not enough in IoT applications because in these
complicated environments (such as the urban areas and the
buildings), the satellite signal can be blocked sometimes that
might lead to very large errors or even localization suspend [7],
[8]. Thus, different types of localization systems or methods
are developed to overcome the weaknesses of satellite posi-
tioning system, such as using Wireless Sensor Network (WSN)
[6], [9]-[14], base-station [15]-[19], Wi-Fi/Bluetooth [1], [2],
[20]-[22] and ultra-wide bandwidth (UWB) signal [3], [22]-
[26]. Hybrid localization which fuses massive observations
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measured by different signal sources could provide higher lo-
calization accuracy and stronger robustness. Therefore, hybrid
localization by multisensors is popular in recent years [3], [4],
[12], [16], [20], [22], [27]-[30].

Sensors which can provide the range and angle observations,
known as the Time of Arrival (TOA) and Angle of Arrival
(AOA), are usually used in multisensor localization [12], [26],
[30], [31]. In this paper, we focus on the multisensor cooper-
ative localization which fuses absolute location measurements
and TOA-AOA observations together. The absolute location
may be provided by GPS or other absolute localization systems
when GPS is not available, such as the pseudolite localization
system [17], the Time & Code Division-Orthogonal Frequency
Division Multiplexing (TC-OFDM) localization system [15],
the Bluetooth localization system [20] and so on. Cooperative
localization means joint information from collaborating nodes,
including the measurements and full statistical data, is consid-
ered in the localization process. In contrast, non-cooperative
means there are no information exchanges between nodes.

The cooperative localization method is usually classified
into two types: distributed and centralized [32], [33]. For
distributed one, every node calculates its own state locally by
collecting other nodes’ information. Nodes are also required
to share their own information in the cooperative network.
For example, distributed belief propagation based algorithms,
which usually use factor graph to represent the relationship of
the collaborating information, have been proposed in [3], [24],
[27], [34]. For the centralized one, all information from each
node is gathered in a unique process unit and corresponding
positioning algorithms are used to calculate the fusion result
[11], [13], [31]. The usage of either distributed or centralized
method depends on the computation capacity, latency needs
and the hybrid accuracy.

One of the limitation of the distributed method is the
computation capacity of each node. Notice that all reachable
information is gathered to one node, the computation grows
much with the increasing of the visible node’s amount [10],
[11]. Considering the low-cost IoT sensors, it is a heavy burden
to calculate locally. On the other hand, to achieve a conver-
gence of localization accuracy, several iterations are needed
in the distributed hybrid method. This is to say, iterative
broadcasting and receiving between nodes are implemented
which will lead to long latency [24], [27], [32]. Although
the centralized method also surfers the latency problem as
information exchanges between nodes and central processor
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as well1, the centralized latency is much smaller than the
distributed one as the iteration is not needed.

In various IoT applications, such as the vehicle navigation,
logistics management and industrial equipment monitoring,
either timely local localization or complicated computation is
needed to ensure high reliability and accuracy [4], [35]. So a
novel cooperative localization scheme, which has the potential
of high accuracy localization and a local localization ability
in the traffic network, must be investigated. The emerging
Edge Cloud computing gives a new perspective to solve this
contradiction, which plays an important role to guarantee a
fast processing on the edge and strong computing capability on
the cloud [36], [37]. The edge cloud structure is dramatically
suitable for multisensor cooperative localization to combine
the advantages of both distributed and centralized types.

From the aspect of hybrid algorithm, most of state-of-the-
art localization algorithms are based on geometric estima-
tion. Cooperative localization is often modeled as geometric
optimization problems. The linear/nonlinear/weighted least
squares based estimator and maximum likelihood (ML) based
estimator are frequently used [12], [23], [30], [31], [38].
Convex relaxation is usually employed by transforming the
nonconvex problems to convex one to find the global optimal
solution [9], [11], [13], [39]. Bayes filters are good at dealing
with the recursive location state estimation. Kalman filter (KF)
is one of the most widely implement of Bayes filters in multi-
sensor fusion which provides the optimal estimate while both
the process and measurement noise are Gaussian [14], [20],
[40]-[42]. In the non-linear cases, the derivations of KF, such
as extended KF (EKF) and the unscented KF (UKF) are more
suitable [28], [43], [44]. KF-based interacting multiple model
(IMM) provides adaptive solutions when the sensors have
multiple dynamic models [4], [21]. Besides, nonparametric
approaches are employed in the non-linear and non-Gaussian
conditions, such as the particle filter which uses a finite
number of particles to draw the posterior [22], [25]. Similar to
particle filter, nonparametric belief propagation is proposed to
implement distributed belief propagation algorithm [27], [34].

Different from all other existing work, we aim to develop a
more accurate and reliable intelligent cooperative localization
method in this work which can assess the corresponding
noise and distinguish the outliers. The proposed localization
methodology, called the Edge Cloud Cooperative Localization
(ECCL), combines several distributed KFs in the nodes edge
and a centralized cooperative fusion unit in the cloud server
together to form a fusion loop. Before centralized fusion, a
cooperative noise assessment method is proposed to detect
the outliers for a robust fusion. The reason we employ an
edge cloud structure is that it has the advantages of strong
computing and fast processing capabilities. Our system design
offers a novel efficient solution to combine edge preprocessing
and centralized computing with the emergence of IoT and the
mobile crowd sensing.

The main contributions of this paper are as follows:

1If the node’s computational resources are enough, centralized localization
algorithm could also be executed in each node rather than central processor.
Latency between the nodes and the central processor is vanished in this kind
of applications.

1) We propose a novel hybrid distributed and centralized
cooperative fusion and localization framework based
on the edge cloud structure to obtain a more accurate
and reliable location. The proposed ECCL methodology
fuses all absolute and relative measurements as well as
statistical data together. It has the advantage of high
capacity for huge amount sensors’ fusion especially
considering sensor nodes usually have limited compu-
tational resources.

2) We propose a location information validation method
to detect the outliers and derive the probability of false
dismissal/alarm. Our proposed methodology, called the
Cooperative Redundancy Validation (CRV), considers
all of the available observations. Meanwhile, it will not
be affected by the outliers in the observation set when
assessing others. To the best of our knowledge, it is
the first time to use the probabilities (the probabilities
that the location is an outlier assessed by all reference
nodes) rather than the distances (between the assessed
and reference nodes) to assess the outliers, so that it
avoids the interference of the large errors from the ref-
erence values. The proposed CRV method enhances the
system’s location accuracy and robustness substantially.

The paper is organized as follows: Section II gives an intro-
duction of the system model and the background knowledge
of Kalman filter and Dempster-Shafer Evidence Theory (D-
S Theory) which will be improved in our system. Section
III describes the proposed intelligent multisensor cooperative
localization scheme based on the edge cloud structure. Section
IV proposes the CRV method to detect the outliers. Section V
evaluates the performance of the proposed methodology via
simulation, numerical analysis and semi-experiment results.
Finally, the conclusions are given in Section VI.

Notations: I , 1M×N and 0M×N represent the identity
matrix, the M × N matrix of ones and zeros, respectively.
The operator cov (·), ⊗, ◦, �, ◦, erfc (·), u (·), U (·) and
‖·‖ represent the covariance, the Kronecker product, the
Hadamard product, the Hadamard division, the Hadamard
root, the complementary Gauss error function, the Heaviside
step function, the uniform distribution and the Euclidean
distance, respectively. tr (A) represents the trace of matrix
A. diag (A,B) means a matrix which diagonal sub-matrices
are matrix A and B, and the rest of this matrix are zeros.
For a square matrix A, diag (A) represents a column matrix
which elements are the diagonal elements of A. For a column
matrix X(i) and set N = {1, 2, ..., N}, we denote X(N ) =[
X(1)T , ..., X(N)T

]T
, X(iN ) =

[
X(i1)T , ..., X(iN)T

]T
and

X(NN ) =
[
X(1N )T , ..., X(NN )T

]T
, respectively. For a co-

variance matrix P (ij) = cov
(
X(i), X(j)

)
, we denote P (N ) =(

P (ij)
)
, i, j ∈ N , where P (ij)s are the elements (sub-

matrices) of P (N ). Symbols frequently used in this paper are
listed in Table I.

II. PRELIMINARY

A. System Model

Consider a sensor network which can provide the TOA-
AOA measurements in their local coordinates and the position
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TABLE I
SYMBOL DEFINITION

Symbol* Definition
N , N N is the total node amount. And N = {1, 2, ..., N}.

subscript k The time slot.
T The time interval.

X(i), V (i) Absolute location/velocity of node i, respectively.
Φ(i) The state of node i. Φ(i) =

[
X(i)T , V (i)T

]T
.

d(ij) Distance between node i and node j, measured by
node i (In local coordinate of node i).

ϕ(ij), α(ij) Azimuth/elevation angle of node j, measured by
node i (In local coordinate of node i), respectively.

L(ij) The local coordinates.
L(ij) =

[
d(ij), ϕ(ij), α(ij)

]T
.

∆X(ij) Relative coordinate between node i and node j.
∆X(ij) =

[
∆x(ij),∆y(ij),∆z(ij)

]T
.

Φ̂(i) The prediction of node i’s state Φ(i).
Φ̆(i) Estimate of node i’s state Φ(i) by KF.

X̆(i), V̆ (i) Location/velocity components of Φ̆(i), respectively.

X
(ij)
BP

Base-point Propagation Estimate (BPE) of node i
calculated by node j (defined by (16)).

X
(i)
CF

Cooperative fusion result of node i.

Φ
(i)
FE

Final estimate of node i.

ρ(ij,g), ρ(ij,0) Distance between the assessed and reference
locations (defined by (29) and (38), respectively).

n
(i)
X , n(i)

Φ Measurement errors of X(i)
m and Φ(i)

m , respectively.
n

(ij)
∆X , n(ij)

BP ,
n

(i)
FE

Errors of ∆X(ij)
m , X(ij)

BP and Φ(i)
FE , respectively.

n
(i)
P

Process noise of node i.

n
(ij)
A,k

The equivalent measurement error defined by (29).

n
(ij,g)
R ,
n

(ij,0)
R

The equivalent reference errors defined by (29) and
(38), respectively.

σ2
x, σ

2
v

Variances of the location/velocity measurement
errors, respectively. (Assuming the variance of each
node is equal to each other.)

σ2
d, σ2

ϕ, σ2
α

Variances of the measurement errors of d(ij), ϕ(ij)

and α(ij), respectively. (Assuming the variance of
each node is equal to each other.)

σ2
P,x, σ

2
P,v

Variances of the location/velocity process noise,
respectively.

PP , PΦ
Covariance matrices of the process noise and the
measurement error, respectively.

PL Covariance matrix of L(ij)
m .

P
(ij)
∆X Covariance matrix of ∆X(ij)

m .
P

(i−j)
∆X Covariance matrix of ∆X(iN )

m and ∆X(jN )
m .

P
(ij)
KF,k|k−1 Covariance matrix of Φ̂(i)

k and Φ̂(j)
k .

P
(ij)
KF,k Covariance matrix of Φ̆(i)

k and Φ̆(j)
k .

P
(ij)
KF,x,k ,

P
(ij)
KF,v,k

The location/velocity component of PKF,k ,
respectively.

P
(i−j)
BP Covariance matrix of X(iN )

BP and X(jN )
BP .

P
(NN )
BP

Covariance matrix of X(NN )
BP . Its elements

(sub-matrices) are P (i−j)
BP s.

P
(ij)
CF Covariance matrix of X(i)

CF and X(j)
CF .

P
(ij)
FE Covariance matrix of Φ(i)

FE and Φ(j)
FE .

P
(ij)
A , P (ij,g)

R ,
P

(ij,0)
R

Covariance matrices of n(ij)
A , n(ij,g)

R and n(ij,0)
R ,

respectively.
* We use subscript m to represent the measurement value in this paper.
i.e. Xm represents the measurement of X . For saving space, measurements
symbols are not listed in this table.

Nodei

Nodej

d(ij)

φ(ij)
α(ij)

φ(ji)α(ji)

X

Y

Z

(x(i),y(i),z(i))
(x(j),y(j),z(j))

Fig. 1. System model of multisensor cooperative localization

measurements in the absolute coordinate. The system model is
shown in Figure 1. For absolute coordinate, nodes could get
their positions from an absolute localization system directly
as:

X(i)
m =

 x
(i)
m

y
(i)
m

z
(i)
m

 =

 x(i) + n
(i)
x

y(i) + n
(i)
y

z(i) + n
(i)
z

 = X(i) + n
(i)
X (1)

Then by using the geometric relationship of the absolute and
local coordinate, we can easily get the relative coordinate:

∆X(ij) = X(j) −X(i)

=

 d(ij) cos(α(ij)) cos(ϕ(ij))
d(ij) cos(α(ij)) sin(ϕ(ij))

d(ij) sin(α(ij))

 (2)

Note that each symbol in local coordinate has an opposite
value which is measured by the other node, such as d(ij) and
d(ji). Assume each pair of nodes has the same range and angle
error variances, we can just average the measurement values
of the two nodes. For simplification, we use superscript “ij”
to describe the averaged value from now on, namely:

d(ij)
m =

1

2

(
d(ij)
m + d(ji)

m

)
ϕ(ij)
m =

1

2

[
ϕ(ij)
m +

(
ϕ(ji)
m − π

)]
, i < j

α(ij)
m =

1

2

(
α(ij)
m − α(ji)

m

)
(3)

Notice that the angular measurement errors may cause π
ambiguities, the method in [30] will be used to eliminate these
ambiguities in (3).

B. Kalman Filter

Consider a Markov process

Φk = AΦk−1 + nP,k (4)

where A is the system transition matrix. The measurement
function is:

Φm,k = CΦk + nΦ,k (5)

where C is the measurement matrix. If nP and nΦ are Gaus-
sian noises and the initial PDF p(Φ0) is Gaussian distribution,
KF can be used to solve this problem as shown in (6)-(10)
[42]:

Prediction: Φ̂k = AΦ̆k−1 (6)
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Fig. 2. Intelligent multisensor cooperative localization scheme based on edge cloud structure

Prediction Covariance: PKF,k|k−1 = APKF,k−1A
T + PP

(7)

Kalman Gain: Kk = PKF,k|k−1C
T
(
CPKF,k|k−1C

T + PΦ
)−1

(8)

Optimal Estimate: Φ̆k = Φ̂k +Kk

(
Φm,k − CΦ̂k

)
(9)

Update Covariance: PKF,k = (I −KkC)PKF,k|k−1 (10)

C. Dempster-Shafer (D-S) Evidence Theory

In the D-S evidence theory [45], the frame of discernment
Θ is a set of mutually exclusive and complete hypotheses. For
any hypothesis Ω ⊆ Θ, it is subjected to a probability that
satisfies:

m(∅) = 0∑
Ω∈2Θ

m(Ω) = 1 (11)

where 0 ≤ m ≤ 1 is the basic belief assignment function, 2Θ

is the set of the subsets of Θ. The belief function of Ω means
the credibility that hypothesis Ω is true:

bel (Ω) =
∑
Λ⊆Ω

m (Λ) (12)

where Λ is the complete subset of Ω. If there are two basic
belief assignment functions m1 and m2, they can be fused
by the Dempster’s rule to yield a new basic belief assignment
function m12 = m1 ⊕m2 as:

m12 (Ω) =

{
0 Ω = ∅∑

Λ∩Υ=Ωm1(Λ)m2(Υ )/L Ω 6= ∅ (13)

where L =
∑
Λ∩Υ 6=∅m1(Λ)m2(Υ ) is the normalization co-

efficient. If there are more than two evidences, repeat the
algorithm by using the formal fused m12 and the new evi-
dence’s mi to yield the new basic belief assignment function
m1:i = m1 ⊕m2 ⊕ · · · ⊕mi. For all Ω ∈ 2Θ, the most likely
hypothesis is Ω̂ = arg max

Ω
[m1:i (Ω)].

III. PROPOSED INTELLIGENT MULTISENSOR
COOPERATIVE LOCALIZATION SCHEME

The proposed localization scheme is based on the edge
cloud structure with three phases under the assumption that
all measurements are synchronous as shown in Figure 2.

1) Data preprocessing. This phase is operated in the sensor
nodes edge. For absolute measurements, a pre-filter is
used with the priors to obtain the state estimate which
is called suboptimal estimate in this paper as it does not
consider the relative measurements.

2) Noise assessment. Mulitsensor provides a lot of redun-
dant information which will be more likely to introduce
outliers than single sensor outputs. Thus, a noise assess-
ment method is applied before the cooperative fusion.
This phase is operated in the cloud.

3) Cooperative fusion. A node’s location is fused with
all available absolute and relative measurements, in-
cluding the absolute measurement itself and the other
absolute/relative measurements by cooperative fusion in
the cloud. To improve the localization accuracy, the
centralized estimate is fed back to the sensor nodes edge.

A. Pre-filtering
Distributed KFs are used in pre-filtering for absolute

measurements of each node. The state space φ is defined
in Table I. We assume each node has the same process and
measurement model. Then, the process model is:

A =


1 0 0 T 0 0
0 1 0 0 T 0
0 0 1 0 0 T
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1

 (14)

with the covariance of process noise PP =
diag

(
σ2
P,xI3×3, σ

2
P,vI3×3

)
. The position and velocity

are directly output by absolute localization system, thus the
measurement matrix is C = I6×6 with the covariance of
measurement noise PΦ = diag

(
σ2
xI3×3, σ

2
vI3×3

)
.

When k ≥ 2, the final estimate (Φ(i)
FE) from the following

cooperative fusion procedure will be fed back to the pre-
filtering input as Φ(i)

k = Φ
(i)
FE,k−1. With the prior process and
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J
(ij)
k ≈

 cosα
(ij)
m,k cosϕ

(ij)
m,k −d(ij)

m,k cosα
(ij)
m,k sinϕ

(ij)
m,k −d(ij)

m,k sinα
(ij)
m,k cosϕ

(ij)
m,k

cosα
(ij)
m,k sinϕ

(ij)
m,k d

(ij)
m,k cosα

(ij)
m,k cosϕ

(ij)
m,k −d(ij)

m,k sinα
(ij)
m,k sinϕ

(ij)
m,k

sinα
(ij)
m,k 0 d

(ij)
m,k cosα

(ij)
m,k

 (19)

measurement noise covariances PP and PΦ, the error covari-
ance reduces to P (ii)

KF,k =
(
I −K(i)

k

)(
AP

(ii)
FE,k−1A

T + PP

)
(see (7) and (10)) from PΦ after KF, where P (ii)

FE,k−1 is the
covariance matrix of Φ(i)

FE,k−1 (see (25)).
For later use, we introduce the covariance of different node’s

suboptimal estimate:

P
(ij)
KF,k = cov

(
Φ̆

(i)
k , Φ̆

(j)
k

)
=
(
I −K(i)

k

)
AP

(ij)
FE,k−1A

T
(
I −K(j)

k

)T
, i 6= j (15)

B. Cooperative Fusion

In this subsection, the cooperative fusion algorithm is in-
troduced under the assumption that the outliers have been
rejected.

Relative measurements provide much redundant information
of node’s location. For example, if there are N nodes, (N−1)
redundant locations of node i will be obtained with relative
observations L(ij)

m ∀j 6= i, j ∈ N , and node j’s location subop-
timal estimate X̆(j). Define Base-point Propagation Estimate
(BPE) X(ij)

BP as the node i’s estimate location calculated by
node j’s suboptimal estimate and the relative measurements
between the two nodes:

X
(ij)
BP,k = X̆

(j)
k +∆X

(ij)
m,k , j 6= i (16)

Thus, there will be N estimate locations of a single node,
including a suboptimal estimate itself and (N − 1) BPEs.
For a simple representation, note that X(ii)

BP,k = X̆
(i)
k where

∆X
(ii)
m,k = 0.

With the errors of relative measurements, relative coordinate
is approximate to Gaussian distribution with errors n(ij)

∆X,k:

∆X
(ij)
m,k =

 d
(ij)
m,k cosα

(ij)
m,k cosϕ

(ij)
m,k

d
(ij)
m,k cosα

(ij)
m,k sinϕ

(ij)
m,k

d
(ij)
m,k sinα

(ij)
m,k

+ n
(ij)
∆X,k (17)

By using Taylor series and ignoring higher order terms, the
covariance matrix of (17) is obtained:

P
(ij)
∆X,k = J

(ij)
k PLJ

(ij)T
k (18)

where PL = diag
(
σ2
d, σ

2
ϕ, σ

2
α

)
and J (ij)

k is the Jacobi matrix
of ∆X

(ij)
m,k shown in (19). Please notice P

(ii)
∆X,k = 0 as

∆X
(ii)
m,k = 0.

We note X(iN )
BP as the set of all BPEs for node i. Because

the suboptimal and relative measurements are two independent

Gaussian variable sets, the covariance matrix of different BPE
sets is:

P
(i−j)
BP,k = cov

(
X

(iN )
BP,k, X

(jN )
BP,k

)
= cov

(
X̆

(N )
k , X̆

(N )
k

)
︸ ︷︷ ︸

P
(N)
KF,x,k

+cov
(
∆X

(iN )
k , ∆X

(jN )
k

)
︸ ︷︷ ︸

P
(i−j)
∆X,k

(20)

The elements in P
(i−j)
∆X,k are related to i and j. When i = j,

P
(i−j)
∆X,k is a diagonal matrix (the diagonal elements are sub-

matrices) as it is an auto-correlation of ∆X(iN )
m,k . When i 6= j,

most of the elements are 0s except the elements (sub-matrices)
of g = j and h = i as

∣∣∣∆X(ig)
m,k

∣∣∣ =
∣∣∣∆X(gi)

m,k

∣∣∣ =
∣∣∣∆X(jh)

m,k

∣∣∣ =∣∣∣∆X(hj)
m,k

∣∣∣ (see (3)). So the elements (sub-matrices) of P (i−j)
∆X,k

are calculated as:

P
(i−j,gh)
∆X,k =


P

(ig)
∆X,k , i = j and g = h

J
(hg)
k P̄LJ

(gh)T
k , i 6= j and g = j andh = i

0 , others
(21)

where P̄L = diag
(
σ2
d, σ

2
ϕ,−σ2

α

)
as the measurement errors of

the elevation angle between two nodes are opposite after using
(3). Please notice the difference between P (i−j)

∆X,k and P (ij)
∆X,k.

We denote Ψ = IN⊗1N×1⊗I3×3 which satisfies X(NN )
BP,k =

ΨX
(N )
k +n

(NN )
BP,k . Then the cooperative fusion is applied under

the maximum likelihood criterion as:

X
(N )
CF,k = βkX

(NN )
BP,k (22)

where βk = arg min
{

tr
[
cov

(
X

(N )
CF,k, X

(N )
CF,k

)]}
is the

weights calculated by the ML criterion which is obtained as:

βk =

[
ΨT
(
P

(NN )
BP,k

)−1

Ψ

]−1

ΨT
(
P

(NN )
BP,k

)−1

(23)

The covariance matrix of X(N )
CF,k is:

P
(N )
CF,k = βkP

(NN )
BP,k β

T
k (24)

Notice that only the location is fused in the cooperative
fusion, so the velocity comes from the suboptimal estimate
is used as the final estimate which is defined as Φ(i)

FE,k =[
X

(i)T
CF,k, V̆

(i)T
k

]T
. Then, the covariance matrix of Φ(i)

FE,k is:

P
(ij)
FE,k ≈ diag

(
P

(ij)
CF,k, P

(ij)
KF,v,k

)
(25)

The cross-correlation between X
(i)
CF,k and V̆

(j)
k is ignored

in (25). The reasons are: 1) The variance of velocity is often
much smaller than the one of location. For example, in GPS,
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the variance of velocity is about (0.2m/s)2 while the one of
location is about (several meters)2. 2) The suboptimal estimate
is only a part of X(i)

CF,k after cooperative fusion procedure
which will weaken the cross-correlation as well.

At last, the final estimate Φ(N )
FE,k and P (N )

FE,k will be fed back
to the pre-filtering unit.

IV. LOCALIZATION INFORMATION VALIDATION

A. The Cooperative Redundancy Validation Theory

In this section, we propose a Cooperative Redundancy
Validation (CRV) method to assess the location information
validation. For a standard normal Gaussian variable ε, if
|ε| > Γ , where Γ is a threshold determined by the significance
level, ε is an outlier. We denote ξ0 ∼ N

(
ξ, σ2

ξ0

)
as the

location to be assessed where ξ is the true location and
ξi ∼ N

(
ξ, σ2

ξi

)
as the reference location. If ξ0 and ξi

are independent, then ρi = ξ0 − ξi ∼ N
(
0, σ2

ρi

)
, where

σ2
ρi = σ2

ξ0
+ σ2

ξi
. In the traditional validation method, if

|ρi/σρi | > Γ , ρi will be rejected as an outlier. Notice that
the reference value is also a Gaussian variable which might
affect the assessment result, the traditional method usually has
a large probability of false dismissal (PFD).

The probability that the location is an outlier is:

p1,i = p

(∣∣∣∣ξ0 − ξσξ0

∣∣∣∣ > Γ | ρi = ξ0 − ξi
)

= p (|nξ0 | > Γσξ0 | ρi = nξ0 − nξi) (26)

where nξ0 and nξi are the errors of ξ0 and ξi, respectively. We
do not use the value of ρi to assess the outliers directly, but
to calculate the probability that ξ0 is an outlier by ρi as (26)
shows. Because (nξ0 , nξi) ∼ N

(
0, σ2

ξ0
, 0, σ2

ξi
, 0
)

, we have:

p1,i =
1

2

[
erfc

(
µi + Γσξ0√

2σξ0i

)
+ erfc

(
−µi + Γσξ0√

2σξ0i

)]
(27)

where µi and σξ0i are given in Appendix A.
On the contrary, the probability that the location is not an

outlier is p0,i = 1− p1,i. Notice that if a location is assessed
as an outlier when p1,i > p0,i, the PFD will be p1,i when
p1,i < p0,i. Like the distributed detection problem in [46], a
tolerant threshold Th, which is determined by the desired PFD
and PFA (probability of false alarm, see Section V-B), is used.
When p1,i > Th, the location will be assessed as an outlier.

Normally, the variance of the reference node should be
smaller than the assessed one as the ruler must be exact itself.
So, we will not consider the probabilities obtained by the
reference node which variance is bigger than the assessed
one’s.
p1,i and p0,i can be seen as the evidences that claim a

location is or isn’t an outlier, then D-S theory is modified and
employed to fuse all probabilities to assess whether the loca-
tion is an outlier. Denote 1/0 as the location is/isn’t an outlier
respectively. The frame of discernment is Θ = {0, 1}. And
then let us define the basic belief assignment vectors as Mi =
[mi (Ω = {0}) = p0,i,mi (Ω = {1}) = p1,i], i = 1, 2, ..., N .

Meanwhile, define the judgment vector Th = [Th, (1− Th)]
which should be folded as Mis are updated by the evidences
fusing process. So the modified D-S theory is developed
to fuse the evidences and make the assessment decision as
Algorithm 1 shows.

Algorithm 1 Fusion algorithm of the probabilities from all
evidences by using modified D-S theory
Input: The basic belief assignment vectors Mi.
Output: Whether the location is an outlier.
1: for the evidence index i = 1 to N do
2: Define the discernment matrix H = MT

i−1Mi, then the
diagonal elements in H represent the beliefs of Ω =
{0} and Ω = {1} respectively, while the anti-diagonal
elements represent the probabilities that Λ ∩ Υ = ∅ in
Mi−1 (Λ)Mi (Υ ) respectively.

3: Update Mi = [~0,i, ~1,i] where ~0,i and ~1,i are the
diagonal elements of H respectively.

4: end for
5: Calculate the normalization coefficient L =∑

Λ∩Υ 6=∅m1(Λ)m2(Υ ) = ~0,N + ~1,N

6: Normalization: m1:N = MN/L. Notice that MN in this
step has been updated in step 3.

7: Fold the judgment vector by m1:N = T ◦Nh /L , where
L =

∑
T ◦Nh is the normalization coefficient.

8: if m1:N (Ω = {1}) > m1:N (Ω = {1}) then
9: return 1: The location is an outlier.

10: else
11: return 0: The location isn’t an outlier.
12: end if

The proposed CRV method uses the probabilities rather
than the distances to assess the outliers so that it avoids the
interference of the large errors from the reference value. That
means if the reference value has a large error, ρi may be large
too even if the measured location is not an outlier. Because
the maximum probability is bounded to 1, the interference of
the large errors from the reference value can be much reduced
when the amount of available reference nodes is not too little
under the assumption that most references are non-outliers.

B. Assessment of BPEs by CRV

We assume X(ij)
BP,k is the assessed BPE, then we can get N

probabilities that claim it is an outlier (N−1 by the other BPEs
and 1 by the prediction). Take (6) and (9) in the pre-filtering
procedure to (16), then we have:

X
(ij)
BP,k =

[(
I −K(j)

k

)
AΦ

(j)
FE,k−1 +K

(j)
k Φ

(j)
m,k

]
x

+∆X
(ij)
m,k

(28)

where subscript x represents the location component.
1) The reference is other BPEs: If X

(ig)
BP,k, g 6= j, is

the reference BPE, the distance between the assessed and
reference BPEs is shown in (29). Notice that n(ij)

A,k includes
all input errors of the assessed BPE, so we denote it as the
equivalent measurement error which will be assessed. n(ij)

A,k and
n

(ij,g)
R,k obey Gaussian distributions of mean 0 and covariances

shown in (30) and (31), respectively.
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ρ
(ij,g)
k = X

(ij)
BP,k −X

(ig)
BP,k

=
[(
I −K(j)

k

)
n

(j)
P,k +K

(j)
k n

(j)
Φ,k

]
x

+ n
(ij)
∆X,k︸ ︷︷ ︸

n
(ij)
A,k

+
[(
I −K(j)

k

)
An

(j)
FE,k−1 −

(
I −K(g)

k

)
An

(g)
FE,k−1

]
x
− n(ig)

A,k︸ ︷︷ ︸
−n(ij,g)

R,k

(29)

P
(ij)
A,k =

[(
I −K(j)

k

)
PP

(
I −K(j)

k

)T
+K

(j)
k PΦK

(j)T
k

]
x

+ P
(ij)
∆X,k (30)

P
(ij,g)
R,k =

[(
I −K(j)

k

)
AP

(jj)
FE,k−1A

T
(
I −K(j)

k

)T
+
(
I −K(g)

k

)
AP

(gg)
FE,k−1A

T
(
I −K(g)

k

)T
−(

I −K(j)
k

)
AP

(jg)
FE,k−1A

T
(
I −K(g)

k

)T
−
(
I −K(g)

k

)
AP

(gj)
FE,k−1A

T
(
I −K(j)

k

)T]
x

+ P
(ig)
A,k (31)

P
(ij,0)
R,k =

[
AP

(ii)
FE,k−1A

T +
(
I −K(j)

k

)
AP

(jj)
FE,k−1A

T
(
I −K(j)

k

)T
−

AP
(ij)
FE,k−1A

T
(
I −K(j)

k

)T
−
(
I −K(j)

k

)
AP

(ji)
FE,k−1A

T + PP

]
x

(39)

Notice that n(ij)
A,k and n

(ij,g)
R,k are equivalent to nξ0 and nξi

in (26) , respectively. The error is assessed in each direction,
then we have:

µ
(ij,g)
k =

(
r

(ij,g)
k

)◦2
�
[(
r

(ij,g)
k

)◦2
+ 13×1

]
◦ ρ(ij,g)

k (32)

σ
(ij,g)
ξ0i,k

= r
(ij,g)
k �

[(
r

(ij,g)
k

)◦2
+ 13×1

]◦ 1
2

◦ σ(ij)
ξ0,k

(33)

where

σ
(ij)
ξ0,k

= diag
[(
P

(ij)
A,k

)◦ 1
2

]
(34)

σ
(ij,g)
ξi,k

= diag
[(
P

(ij,g)
R,k

)◦ 1
2

]
(35)

r
(ij,g)
k = σ

(ij)
ξ0,k
� σ(ij,g)

ξi,k
(36)

p
(ij,g)
1,k will be obtained by taking (32) and (33) into (27) as:

p
(ij,g)
1,k =

1

2

{
erfc

[
1√
2

(
µ

(ij,g)
k + Γσ

(ij)
ξ0,k

)
� σ(ij,g)

ξ0i,k

]
+

erfc
[

1√
2

(
−µ(ij,g)

k + Γσ
(ij)
ξ0,k

)
� σ(ij,g)

ξ0i,k

]}
(37)

2) The reference is the prediction: If the prediction X̂(i)
k in

the pre-filtering procedure is the reference, (29) becomes:

ρ
(ij,0)
k = X

(ij)
BP,k − X̂

(i)
k = n

(ij)
A,k+[(

I −K(j)
k

)
An

(j)
FE,k−1 −An

(i)
FE,k−1 − n

(i)
P,k

]
x︸ ︷︷ ︸

−n(ij,0)
R,k

(38)

where superscript 0 represents the prediction. Similar to the
calculation of P (ij,g)

R,k , the covariance of n(ij,0)
R,k is shown in

(39). Then we have p(ij,0)
1,k by replacing superscript g with 0

in (32)-(37).

V. PERFORMANCE EVALUATION

In this section, we evaluate our proposed ECCL by a
series of simulations and experiments. Firstly, we focus on
the localization performances of ECCL by comparing several
other localization methods in different scenarios. Then, we
analyze the performances of CRV method in theoretical and
design a specific simulation to examine its effectiveness in
localization procedure. At last, we did an experiment by real
hardware to confirm the simulation results.

A. Localization Performance

In this subsection, we did a number of simulations by
Matlab to analyze the performance of our algorithm. The
simulations are with the following assumptions:

1) The simulation area is set to a 200m×200m×200m cube;
2) The absolute and relative measurement variances of each

node are equal to each other;
3) The simulation variances are: σ2

x = (8m)
2, σ2

v =
(0.2m/s)

2, σ2
d = (1m)

2, σ2
α = σ2

ϕ = (3◦)
2;

4) All measurements are synchronous;
5) Only the line-of sight (LOS) scenario is considered.

Two scenarios with 100 time slots and 100 Monte Carlo runs
in each scenario are considered in the simulation:

1) Motionless scenario (MLS): 2˜20 nodes are randomly
placed in the simulation area, respectively.

2) Random motion scenario (RMS): 10 random trajecto-
ries are generated in the simulation area and the state
probabilities are: pstraight = 0.8, pleft = pright = 0.1,
pback = 0. The node will turn left or right if it reaches
the boundary of simulation area. The farthest relative
measurement distance is up to 150m. The velocity of
each node is about 3m/s.
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Fig. 3. Location performances in different scenarios

To evaluate the performance of our ECCL localization method-
ology, we compared its performance with 4 other methods:
the weighted least squares (WLS) [12], the cooperative fusion
by KF (CKF) (filtering WLS estimates by KF), the hybrid
sum-product algorithm over a wireless network (H-SPAWN)
[27] and the non-cooperative localization by KF (NCKF)
[42] which only considers the absolute measurements without
relative measurements.

Figure 3a shows the root mean square errors (RMSE2)
when different amounts of nodes exist in MLS. It is clear
that our proposed ECCL method has the highest localization
accuracy than the other methods. On the other hand, the
localization accuracy increases with the increasing of node
amount except NCKF. And the rate of increase decreases
with the increasing of node amount. Especially, there is little
accuracy improvement when N > 15 over all methods.

TABLE II
THE RMSES AND MAXIMUM ERRORS OF DIFFERENT ALGORITHMS IN

RMS

Algorithms ECCL CKF H-SPAWN WLS NCKF
RMSE (m) 0.98 1.34 1.82 3.05 2.83

Maximum Error (m) 4.17 4.47 7.33 9.52 8.71

Table II shows the comparison of the RMSEs and the
maximum errors3 among different algorithms in RMS. The
RMSEs of the proposed ECCL methodology are 26.87%,
46.15%, 67.87% and 65.37% smaller than the one of CKF,
H-SPAWN, WLS and NCKF, respectively. And the maximum
errors of proposed ECCL methodology are 6.71%, 43.11%,
56.20% and 52.12% smaller than the one of CKF, H-SPAWN,
WLS and NCKF, respectively. More detailed comparison is
shown in Figure 3b. From the cumulative distribution functions

2The RMSE is calculated by the sum of squared errors in each direction.
3The location error is calculated by the Euclidean distance between the

estimate and the true location.

(CDF), we can see more than 90% errors are under 1.5m in the
proposed methodology while about 2m, 2.5m, 4.5m and 4m in
other methods. In cooperative localization, our methodology
has the best performance among all while WLS is the worst
one.

B. Performance Evaluation of Cooperative Redundancy Vali-
dation

What we concern is the probability of false dismissal (PFD)
and the probability of false alarm (PFA). Because the higher
PFD means the higher risk of a large fusion error especially
with large amount of sensor nodes. The higher PFA means
more accurate location will be rejected which will lead to less
accurate fusion result. In this section, the significance level is
set to 10%, so Γ = 1.65 which is calculated by the PDF of
standard normal Gaussian distribution.

1) Theoretical analysis: Firstly, we consider the condition
that only one reference value exists. In this condition, The
PFD/PFA of the CRV is shown in (40), where p10 and p01

represent the PFD and PFA respectively [Proved in Appendix
B]. For saving space, we use p10/01 represent the PFD and
PFA in one equation respectively, and SPFDPFA represents using
≤ when calculates PFD, while using > when calculates PFA.
fnξ0 ,nξi (nξ0 , nξi) represents the joint distribution of nξ0 and
nξi , fnξ0 (nξ0) represents the marginal distribution of nξ0 .
Figures 4a and 4b show the impacts of the variance ratio ri0
and tolerant threshold Th on the PFD and PFA, respectively.

We compared our method to the Mahalanobis distance
method (MDM, [16]). Figure 5a shows that the PFD of CRV
is better than the one of MDM, while the PFA of CRV is
worse than the one of MDM when there is only 1 reference
node (N = 2).

Then we consider the condition that more than one reference
value exist. In this condition, it is hard to calculate the
probabilities as the complicated process, so we did the Monte
Carlo experiments to examine the performances. From Figure
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p10/01,i = p
(
p1,i S

PFD
PFA Th | |nξ0 | TPFDPFA Γσξ0

)
=

∫∫
|nξ0 |TPFDPFAΓσξ0 ,nξi∈R

u
(
±PFAPFDp1,i ∓PFAPFD Th

)
fnξ0 ,nξi (nξ0 , nξi) dnξ0dnξi∫

|nξ0 |TPFDPFAΓσξ0
fnξ0 (nξ0) dnξ0

(40)
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Fig. 5. Performance Evaluation that exists multiple reference nodes

5a, we can see the PFD/PFA of CRV when N = 11 are all
better than the ones when N = 2 and the ones of MDM.
Figure 5b shows the relationship between PFD/PFA and the
amount of nodes when ri0 = 0.5 and Th = 0.15. It is clear that
with the increasing of N , both of the PFD and PFA decrease.

2) The effect of CRV in localization procedure: To further
examine the performance of CRV, we randomly inject large
outliers into the observations of RMS with a probability of 5%

to simulate the real world. The magnitudes of the additional
outliers accord with λΓσ, where |λ| ∼ U (1.5, 3) for absolute
observations and |λ| ∼ U (1.5, 5) for relative observations. σ
represents the standard deviation of the observation.

Denote the localization error probabilities (LEP):

Ple (eth) = p (‖XCF −X‖ > eth) (41)

where X represents the true location. Figure 6 shows the LEPs
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of 4 algorithms: normal ECCL (ECCL), using MDM in ECCL
instead of CRV (ECCL-CRV+MDM), ECCL without using
any noise assessment method (ECCL-CRV) and the CKF.
It is clear that the ECCL-CRV and CKF have more large
errors as no noise assessment algorithm exists. Once an outlier
appears, the final estimation will have a large bias to the true
location. Then several large localization errors will follow until
convergence. So not only the amount of large errors, but also
the amount of small errors increases.

With comparing the curves of ECCL and ECCL-
CRV+MDM, we observe the latter one is close to the former
one when eth is small. On the contrary, the latter one moves
to the other curves when eth becomes larger. This is because
although some outliers have been rejected by MDM which
makes the amount of small errors not increase substantially,
lots of outliers are dismissed which leads to more large
localization errors than CRV. Of course, there are dismissed
outliers by using CRV as well. But there are less dismissed
outliers because of the lower PFD of CRV as Table III shows.
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Fig. 6. Localization error probabilities

TABLE III
COMPARISON BETWEEN DIFFERENT NOISE ASSESSMENT ALGORITHMS

Algorithms ECCL ECCL-CRV ECCL-CRV CKF+MDM
PFD (%) 13.94 27.74 – –
PFA (%) 4.21 5.25 – –

RMSE (m) 1.26 1.34 1.55 2.10
Maximum Error (m) 5.75 8.47 9.19 9.93

More information could be found in Table III. We observe
that the PFD of ECCL is nearly half of the one of MDM.
Which confirms that there are less dismissed outliers by using
CRV. Meanwhile, the PFA of ECCL is smaller than the one
of MDM as well.

On the other hand, it is clear that both of the RMSE and
maximum error of ECCL are much smaller than the ones
of other methods, which means the proposed CRV method

can distinguish most obvious outliers which lead to large
localization errors. However, both of them are larger than the
ones of the second column in Table II. It is the additional
outliers (dismissed outliers) which make the performance
reduction.

Comparing with the scenario without the additional outliers,
the RMSE and maximum error of CKF deteriorate by 0.76m
and 5.46m, respectively. While these are only 0.28m and
1.58m for ECCL. It is because the CRV which limits the
performance deterioration when outliers exist.

C. Experiments

In this subsection, we did a semi-experiment by real
hardware to examine the simulation results. In the semi-
experiment, 3 still nodes located at (-3,0,0), (3,0,0) and
(0,1.5,0) (Unit: m) in the Research Building of our campus
are deployed. The absolute measurements are obtained by
TC-OFDM indoor localization system [15] which accuracy is
about 3m (1σ, after filtering). The D2D range measurements
with approximate 1m (1σ) accuracy are obtained by our self-
designed development kit which can communicate with cloud
server by Wi-Fi module. The angle measurements are simu-
lated by adding Gaussian noises with variances (3◦)

2 to the
true angles. Because the angle measurements are simulated,
we say this experiment is a semi-experiment. The experiment
equipments and their main parameters are shown in Figure 7
and Table IV, respectively.

Information 

exchange

Node edge Cloud server

Fig. 7. Experiment equipments

For comparison, the experiment was simulated by using
the Matlab simulation data whose parameters approximately
subject to the real experiment. Namely, the variances of the
observations approximately equal to the true ones in the
experiment. And the locations of the nodes are absolutely
the same as the ones in the experiment. So the simulation
results can be seen as the theoretical results. The experiment
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TABLE IV
MAIN PARAMETERS OF THE EXPERIMENT EQUIPMENTS

Equipment Module Parameter

Nodes edge
CPU 400MHz frequency

FPGA 80,000 logic elements
Memory 256M SDRAM

Cloud server CPU 2.2GHz with 24 cores
Memory 64GB DDR III

last about 3 minutes with 1Hz localization frequency. While
the simulation last 1000 time slots.

Figure 8 shows the comparison of the CDFs between
the experimental and theoretical results. We can see the
experimental results are consistent with the theoretical ones
well. Notice that the experimental ECCL results are slightly
worse than the theoretical ones, this is mainly because the
following two reasons: 1. The variance of the experimental
range measurements do not strictly equal to (1m)

2; 2. The
measurements are slightly affected by the non-line-of sight
(NLOS) and there are slightly biases from the true values.
Moreover, the maximum localization error of the experimental
NCKF results is 2.67 times (17.92m/6.73m) as large as the
one of the theoretical results. While this proportion of ECCL
results is only 1.4 times (3.88m/2.83m). This is mainly because
the experimental measurement errors are not ideal Gaussian
noises and have more outliers than the simulation data as the
complicated environment. And the ECCL methodology can
eliminate most outliers by CRV, so the maximum error of
ECCL results is not much large than the theoretical one.
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Fig. 8. The comparison of CDFs between the experimental and theoretical
results

Detailed examples of the fusion process when there is or
not an outlier in the semi-experiment are illustrated in Figure
9 respectively. Figure 9 is a snapshot in a time slot on the
x − y plane that occurs an outlier at y-direction of X(13)

BP .
The ellipses represent the uncertainties of X(13/12)

BP ((13) in
Figure 9a and (12) in Figure 9b) calculated by other reference
observations which are at the center of the corresponding
ellipses.

It is obvious from Figure 9a that the location at y-direction
(the horizontal dash line through X(13)

BP ) is far from the ellipses
which means all the reference observations ‘think’ it is an
outlier. For comparison, the assessment of X(12)

BP which is not
an outlier is shown in Figure 9b. Although the location at y-
direction of X(12)

BP is far from the ellipse which center is X(13)
BP

(We know this is caused by the outlier X(13)
BP , but the system

does not know), it is close to the other ellipses. This means
only X(13)

BP ‘thinks’ X(12)
BP is an outlier, while both X(11)

BP (the
suboptimal estimate) and the prediction ‘think’ it is not an
outlier. So X(12)

BP is finally assessed as a non-outlier by using
the proposed CRV method.

On the other hand, It is clear that the fusion location without
the outlier at y-direction is accurate than the one with outlier.
Moreover, the fusion location without the outlier at x-direction
is more accurate than the one with outlier as well. This is
because the measurement error at y-direction will leak to x-
direction in the cooperative fusion procedure as the cross-
correlation of each direction. Thus, the elimination of the
outlier at one direction will improve the estimate accuracy
at other directions as well.

VI. CONCLUSIONS

In this paper, we focused on an accurate and robust multi-
sensor cooperative localization method (named ECCL). A hy-
brid distributed and centralized fusion scheme was developed
based on the edge cloud structure for strong computing capa-
bilities and fast processing. Distributed KFs were employed
for pre-filtering to obtain an suboptimal estimate which was
used in the cooperative fusion. Then, to minimize the effect of
the outliers, especially when there were massive observations,
a localization information validation method called CRV was
proposed. The simulation and semi-experiment results for the
cooperative fusion and information validation were illustrated
respectively. For the CRV, the PFD is significantly improved
especially when two nodes have the same level of accuracy
which is common in mulitsensor scenario as each node is
in a similar condition. Meanwhile, the PFA reduces rapidly
especially when there are massive nodes. For the localization,
our ECCL has excellent performance than the other methods
no matter in MLS or RMS.

The proposed ECCL methodology can be used in the
industrial IoT applications, such as the vehicle localization, the
security monitoring, the fire rescue and the objects tracking,
etc. The edge cloud structure has the advantage of high
capacity for huge amount sensors fusion especially when
sensor nodes have limited computational resources.

APPENDIX

A. Derivation of p1,i

Let’s recall (26):

p1,i = p (|nξ0 | > Γσξ0 | ρi) =
p (|nξ0 | > Γσξ0 , ρi)

p (ρi)
(42)

Because (nξ0 , nξi) ∼ N
(

0, σ2
ξ0
, 0, σ2

ξi
, 0
)

and ρi = nξ0 −
nξi , then we have (43), where fnξ0 ,nξi (nξ0 , nξi) is the joint
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Fig. 9. Examples of the fusion process on the x− y plane

p (|nξ0 | > Γσξ0 , ρi) =

∫
|nξ0 |>Γσξ0

fnξ0 ,nξi (nξ0 , nξ0 − ρi) dnξ0

=

∫
|nξ0 |>Γσξ0

1

2πσξ0σξi
exp

{
−1

2

[
n2
ξ0

σ2
ξ0

+
(nξ0 − ρi)

2

σ2
ξi

]}
dnξ0 (43)

p (|nξ0 | > Γσξ0 , ρi) =

∫
|nξ0 |>Γσξ0

1√
2πσξ0i

exp

[
−1

2

(
nξ0 − µi
σξ0i

)2
]

1√
2πσρi

exp

(
− ρ2

i

2σ2
ρi

)
dnξ0 (44)

distribution of nξ0 and nξi . After rearrange the items we have

(44), where µi =
σ2
ξ0

σ2
ξ0

+σ2
ξi

ρi, σξ0i =
σξ0σξi√
σ2
ξ0

+σ2
ξi

. Notice ρi ∼

N
(
0, σ2

ρi

)
, then take (44) into (42), we have:

p1,i =

∫
|nξ0 |>Γσξ0

1√
2πσξ0i

exp

[
−1

2

(
nξ0 − µi
σξ0i

)2
]
dnξ0

=
1

2

[
erfc

(
µi + Γσξ0√

2σξ0i

)
+ erfc

(
−µi + Γσξ0√

2σξ0i

)]
(45)

We note ri0 = σξi/σξ0 , then µi =
r2
i0

r2
i0+1

ρi and σξ0i =
ri0√
r2
i0+1

σξ0 .

B. Derivation of the PFD/PFA of CRV

Taking the PFD of CRV for example, let’s recall (40):

p10,i = p (p1,i ≤ Th | |nξ0 | ≥ Γσξ0)

=
p (p1,i ≤ Th, |nξ0 | ≥ Γσξ0)

p (|nξ0 | ≥ Γσξ0)
(46)

Because:

p (p1,i ≤ Th, |nξ0 | ≥ Γσξ0)

=

∫
|nξ0 |≥Γσξ0

p (Th − p1,i ≥ 0|nξ0) p (nξ0) dnξ0 (47)

Notice that p (nξi |nξ0) = p (nξi) if nξ0 and nξi are indepen-
dent, so:

p (Th − p1,i ≥ 0|nξ0) =

∫ ∞
−∞

u (Th − p1,i) fnξi (nξi) dnξi

(48)
where fnξi (nξi) represents the marginal distribution of nξi .
Note fnξ0 (nξ0) as the marginal distribution of nξ0 , then we
have (40) by taking (47) and (48) into (46).

Similarly, we can calculate PFA of CRV by the aforemen-
tioned method.
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