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Abstract.  Hybrid materials or hybrids incorporating both organic and inorganic constituents are emerging 

as a very potent and promising class of materials due to a diverse, but complementary nature of the 

properties inherent to these different classes of materials. The complementarity leads to a perfect synergy 

of properties of desired material and eventually an end-product. The diversity of resultant properties and 

materials used in construction of hybrids leads to a very broad range of application areas generated by 

engaging very different research communities. We provide here a general classification of hybrid materials, 

wherein organics–in-inorganics (inorganic materials modified by organic moieties) are distinguished from 

inorganics–in–organics (organic materials or matrices modified by inorganic constituents). In the former area, 

the surface functionalization of colloids is distinguished as a stand-alone sub-area. The latter area – 

functionalization of organic materials by inorganic additives – is the focus of current overview. Inorganic 

constituents often in the form of small particles or structures are made of minerals, clays, semiconductors, 

metals, carbons, and ceramics. They are shown to be incorporated into organic matrices, which can be 

distinguished as two classes: chemical and biological. The former class, chemical organic matrices include 

coatings, vehicles and capsules assembled into: hydrogels, layer-by-layer assembly, polymer brushes, block 

co-polymers and other assemblies. Biological organic matrices encompass bio-molecules (lipids, 

polysaccharides, proteins and enzymes, and nucleic acids) as well as higher level organisms: cells, bacteria, 

and microorganisms. In addition to providing details of the above classification and analysis of the 

composition of hybrids, we highlight also some antagonist properties of organic and inorganic materials, 

review applications and providing an outlook to emerging trends.  
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INTRODUCTION 

Integration of both organic and inorganic materials is typically performed to improve the properties or to 

bring in additional functionalities into resultant hybrid materials(Ruiz-Hitzky et al., 2008). A classic example 

here is incorporation of hard and soft – two antagonist properties, which are very different in organic (soft) 

and inorganic (hard) materials – constituents into hybrids with a tunable stiffness of the resultant composite 

material. Interestingly, a combination of different materials has been present even from the time of ancient 

Greece, where hybrid pigments were formed(Sanchez et al., 2005). Different approaches to classification of 

hybrid materials have been discussed. On the one hand, it can be based either on the interactions(Sanchez 

and Soler-Illia, 2006), wherein those associated with van der Waals, hydrogen bonding, electrostatics are 

distinguished from those based on covalent and iono-covalent bonds or, on the other hand, a distinction can 

be made based on their composition(Kickelbick, 2003). The area of hybrid materials is continuing to rapidly 

expand linking new research communities together with their own structures, specific subjects, and 

approaches. The resulting pool of diversity of approaches is a potent catalyst to spur innovation, but 

developments in respective sub-areas may get, at least temporary, unnoticed by other research 

communities. Also, it takes a while to establish the same structural basis, common terms, interconnection 

and organization of broad and often still expanding research areas. This prompts not only to reflect 

tremendous, on-going growth and update interconnections of the associated research areas, but, at this 

stage, also to provide a general structural basis for classification and organization of the overall hierarchy of 

hybrid materials.  

In this regard, two distinct areas in the field of hybrid materials are identified: modification of inorganic 

materials by organic molecules and, vice versa, modification of organic matrices by inorganic constituents. 

Overall, this can be structurally classified as follows:  

(1)  Organic molecule-modified inorganic materials (organics-in-inorganics), which can be sub-divided: 

(a) inorganic structures modified by organic molecules; 

(b) colloidal particles stabilized by organic molecules.  

(2)  Inorganic-modified organic materials (inorganics-in-organics).  

This structure is reflected graphically in Figure 1 with additional details.  In the first (1a) application area, 

Figure 1 (left panel): modifications of an inorganic content with organic molecules (organics), organics-in-

inorganics, have been performed even with sol-gel hybrid nanocomposites, where addition of organic and 

inorganic phases allowed for combining complementary properties of these two classes of materials for 

producing those with a lower density and higher strength (Novak, 1993). Numerous applications, many of 

which have been commercialized becoming household items, have emerged (Sanchez et al., 2005) and their 

number is continuing to grow. Generally speaking, another application sub-area (1b) can be viewed as a 

stand-alone sub-area, albeit that a clear distinction is not always made (Mir et al., 2018). First and foremost 

and in contrast to modifications in the first area (1a), where they (modifications) bring in additional 

properties, a functionalization of colloids by organic surfactants, with an exception of the electrostatic 

stabilization, is essential for their stability and it has become an inherent part of subjects and ensuing 

research on small particles and clusters. Reflecting this fact, It is not surprising then that colloidal science, 

which deals with inorganic nanoparticles, nanorods, nanotubes, nanostars, etc and their stabilization, has 

become a distinct discipline. This area (1b), which can be also referred to as a surface modification or 

functionalization with ligands (Erathodiyil and Ying, 2011;Chanana and Liz-Marzan, 2012), is designated as a 

stand-alone sub-area (1b) in the classification chart, Figure 1 (bottom-row, in the middle).   

In the last area (2), also depicted in Figure 1, such inorganic modifiers as colloidal (and nano-) particles of 

minerals, clays metals, semiconductors, carbons and ceramics are incorporated into organic materials of: (a) 

chemical (synthetic molecules, monomers, polymers, etc as well as materials based on them: hydrogels, LbL, 

brushes, block copolymers both in the form of coatings and vehicles) or (b) biological origin (i.e. naturally 



occurring molecules, lipids, polysaccharides, proteins, nucleic acids including cells, bacteria, microorganisms). 

What further points to a distinct character of these areas is the fact that they are often developed by 

researchers from either inorganic chemistry or physical/organic chemistry backgrounds. It should be noted 

that organic-inorganic hybrids were described earlier(Chujo, 1996), but extensive systematic classification 

and organization needs to be updated.  

This review focuses on the latter area (2): modification of organic matrices with inorganic components, as 

underlined by distinct solid black lines in Figure 1. We discuss their composition and highlight applications. 

Organic material base, also referred to as matrices, are briefly introduced highlighting the need for hybrids. 

Then, inorganic modifiers (inorganics) are briefly introduced identifying the range of properties they can 

enable. Hybrid materials for each class of organics are then described followed by a table-summary and 

conclusions with an outlook.  

 

FIGURE 1 | General classification of hybrid materials incorporating both organic and inorganic compounents. 

Functionalization of inorganic materials (the base material or matrix) by organic molecules, referred to as 

organics-in-organics, is shown on the left-hand side (shown in grey-dashed lines out outline the overall 

hierarchy of hybrids, but without being the focus of this research). Incorporation of inorganic constituents or 

components into organic materials (matrices) is referred to as inorganics-in-organics and is shown on the 

right-hand side (shown in solid dark lines, being the focus of this overview). The composition of inorganics-

in-organics is outlined in a separate panel (right-hand side, in the middle). The bottom row depicts schematics 

of actual materials for each corresponding category of hybrids.  

  



ORGANIC MATRICES  

Organic materials, also referred to as matrices, may play an important role in hybrid materials(Mastria et al., 

2015), and they can be logically divided into chemical and biological.  

Organic chemical matrices are predominantly constructed from synthetic molecules, monomers, polymer 

based materials structurally distinguished as coatings and vehicles, while compositionally assembled in the 

form of: hydrogels, layer-by-layer (LbL) assemblies, polymer brushes, and block copolymer based constructs. 

Some examples of these structures are presented in Figure 2 (right-hand panel).  

 

ORGANIC CHEMICAL MATRICES  

Hydrogels are polymer based materials, Figure 2 (right-hand panel) formed by cross-linked polymers leaving 

substantial volume for water(Drury and Mooney, 2003). They can consist of networks of such crosslinked 

hydrophilic polymers as collagen, alginate, elastin, fibrin, etc. Cross-linking of hydrogels can be achieved by 

chemical methods: by aldehydes, addition and condensation reactions as well as physical methods: ionic 

interactions, crystallization. In addition, the following methods can be used for crosslinking: protein 

interactions, hydrogen bonds, reactions of amphiphilic block and graft copolymers(Hennink and van 

Nostrum, 2002). Hydrogels are very versatile(Tokarev and Minko, 2010). The three-dimensional (3D) 

microenvironment of hydrogel structure allows to supply nutrients, gases, and wastes, as well as the delivery 

of active biomolecules, particularly important in tissue engineering and regenerative medicine(Stowers et al., 

2015). Their properties can be precisely controlled in space and time(Place et al., 2009). The hydrogel 

stiffness influences cell behavior and can serve as a multidimensional cell culture platform to simulate 

tissue(Robitaille et al., 2013). The stiffness of hydrogels containing tissue/organ extracellular matrix supports 

cell morphology, while cell attachment, viability, and organization of the actin cytoskeleton can be controlled 

by adjusting the stiffness of hydrogels. It is desirable here to: control the stiffness, provide additional means 

for assembly, for example, biomineralization, and bring additional functionalities.  

Layer-by-Layer (LbL ) assembly, Figure 2 (right-hand panel), has emerged as a simple and versatile method 

for coating biological and non-biological surfaces by alternatively depositing oppositely charged 

polyelectrolyte polymers (Decher, 1997). Its particular advantages are the flexibility to control the thickness, 

architecture, composition, and possibilities of incorporation of various materials(Lavalle et al., 2011) 

accompanied by various stimuli to control the properties(Delcea et al., 2011b). Research activities in the 

area of LbL include planar films (von Klitzing, 2006;Selin et al., 2018) and capsules. In addition to nanometer-

thin LbL films, the so-called micrometer thick exponentially grown LbL films were developed(Lavalle et al., 

2004), which can host enormous amount of both small and high molecular weight substances due to a large 

thickness of multilayers, e.g. those made of biopolymers (Sustr et al., 2015;Velk et al., 2016;Vikulina et al., 

2016;Prokopovic et al., 2017;Sustr et al., 2018). The uptake of the molecules of various nature is driven by 

the molecule interaction with free (uncompensated) charges of the inter-polymer complexes in the 

multilayers. Cell adhesion to PEM films is mediated through electrostatic interactions and, more indirectly, 

via adsorbed serum proteins (Muller et al., 2010). Adsorption of enzymes was reported to be beneficial for 

cell growth(Liang et al., 2017). The amount of protein adsorption primarily depends on the final terminating 

layer(Wittmer et al., 2008), pH of the solution(Kreke et al., 2005) and the ionic strength(Ma et al., 2013b). In 

addition to the influence of electrostatic interactions, the cell adhesion increases with an increasaing 

rigidity(Thompson et al., 2005). Soft and very hydrated multilayers can become cell-adhesive by 

enhancement of mechanical properties via coating with metal nanoparticles or cells can be localized into 

patterned multilayers made by microfluidics without any chemical or physical modification (Madaboosi et 

al., 2012a;Madaboosi et al., 2012b;Schmidt et al., 2012). Depositing semipermeable LbL layers onto colloidal 

particles has led to PEM capsules, which are freely suspended in a solution. Improving mechanical properties 

of PEM assemblies, adding sensory and remote release capabilities are desired functionalities in this area.  



Polymer brushes. Polymer brushes, Figure 2 (right-hand panel) represent another type of coatings. They are 

constructed using long-chain polymer molecules, in which one end is attached to a surface or interface. The 

density of attached polymers is typically high forcing the chains to stretch away from the interface. Under 

these circumstances, the behavior of polymers, which can be also controlled by solvents, is different 

compared to that of flexible polymer chains in a solution. In some cases, diblock polymers can be used for 

the chain attachment between interfaces(Milner, 1991;Zhao and Brittain, 2000). It has been described that 

polymer brushes prepared from block polymers and synthesized by ionic polymerization can be absorbed 

onto flat substrates(Pyun and Matyjaszewski, 2001), while free-radical polymerization, which can be used to 

control the thickness, has been also used as a route to covalently bind polymer chains from surfaces with 

high grafting densities(Prucker and Ruhe, 1998). Atom transfer radical polymerization (ATRP) is known as a 

versatile technique for this purpose(Pyun et al., 2003), while thermal treatment of polymer 

brushes(Schroeder et al., 2018;Stetsyshyn et al., 2018) has been shown to affect the structure. Polymers can 

be tethered in a high density in an arrangement known as a bottle brush(Chremos and Douglas, 2018). Some 

examples of applications are prevention of bacterial adherence, cell attachment, electrochemistry, formation 

of colloidal crystals(Ayres, 2010), while additional functionalities are sought here.  

Block copolymers, Figure 2 (right-hand panel), represent a more general class of materails assembled using 

polymers with at least two polymeric sub-units. Various polymerization routes including atom transfer radical 

polymerization, addtion-fragmentation chain transfer, ring-opening polymerization can be used to synthesize 

polymers with a tight polydispersity index and well-controlled molecular weight. Realizing that amphiphilic 

block coolymers can assemble in a similar fashion (as lipids form liposomes) has led to the research area of 

polymersomes (Discher and Eisenberg, 2002). What is particularly important is the fact that self-assembly of 

amphiphilic polymers(Zhao et al., 2013) can be made in such a way that the vesicles become even more 

stable than liposomes(Tanner et al., 2011). The area of polymersomes has seen a rapid growth and many 

new structures and assemblies, particularly relevant for biomedicine(Checot et al., 2002;Palivan et al., 2016), 

have been designed (Cui et al., 2007;Christian et al., 2009;van Oers et al., 2013). Also, optimization of the 

loading efficiency has been done(Sanson et al., 2010) and various other structures, including micelles (Li et 

al., 2004) and micelles with different shapes(Wang et al., 2007) have been obtained. Furthremore, in a similar 

way to liposomes, membrane fusion has been demonstrated(Zhou and Yan, 2005). Various stimuli(Delcea et 

al., 2011b) can be also used in the area of polymersomes to control their properties(Che and van Hest, 2016). 

Further development of responsive polymer vesicles is desired in this area.  

 

ORGANIC BIOLOGICAL MATRICES  

Organic biological matrices are predominantly constructed from biologically relevant molecules including 

lipids, carbohydrates, proteins, nucleic acids (Cooper, 2000) as well as such higher level organisms as cells, 

bacteria, microorganisms. Some of the structures of organic biological materials are presented in Figure 2 

(right-hand panel).  

Lipids. Lipid bilayers, also referred to as lipid membranes, are thin membranes comprised of two layers of 

lipid molecules(Nagle and Tristram-Nagle, 2000). Although lipid bilayer membranes undergo some changes 

of their state(Andersen and Koeppe, 2007), their permeability to molecules and ions is an essential 

funcitonality and has been the subject of intensive research. A particular relevence of lipid bilayers is 

associated with cells, because they form a continuous barrier surrounding cells providing the identity, 

communication with environment, compartmentalization and protection(Hauser et al., 1972). It is due to 

these very important functions that the area of lipid bilayer is one of the most research areas. Research area 

of liposomes(Pick et al., 2018) – small spherical vesicles comprised of lipids, which are used for delivery of 

nutrients and nutrient supplements – is closely associated with lipids. Liposomes have always been important 

drug delivery carriers; they were reported to be multicarriers(Torchilin, 2006) capable of delivery of 



doxorubicin, daunorubicin, cisplatin. A desired functionality in the area of lipid membranes and liposomes is 

to control their permeability or add functionalities.  

Proteins and enzymes, carbohydrates, nucleic acids 

Proteins and enzymes, carbohydrates, nucleic acid and lipids are constituents of cells(Cooper, 2000). It can 

be noted that, on the one hand, these molecules consititute cells, while on the other hand, they can facilitate 

cell interaction with coatings through integrin-ligand interactions (e.g., collagen, fibrin, polypeptides) or 

other cell surface receptors (e.g., HA). Functionalization by these molecules is relevant for all coatings, 

including hydrogels (DeVolder and Kong, 2012). Enzymatic functionalization of coatings is another important 

property(Sigolaeva et al., 2018), because enzymes are also excellent candidates for creating tissue-like 

extracellular matrices(Caliari et al., 2016) and can be even used to encapsulate cells for creating pre-seeded 

scaffolds (Hoffman, 2012). Drug  delivery vehicles or coatings can be directly modified by inorganic 

constituents, mostly by nanostructures for sensing, enhancing mechaniacl properties (also in drug delivery), 

or promoting cell-surface interaction. Furthremore, a direct functionalization of molecules with inorganic 

nanostructures, nanoparticles and clusters can bring additional functionality in this area.  

Cells, bacteria, microorganisms 

Cells, bacteria and microorganisms consist of organic molecules specified in the category organic biological 

matrices. But they are at a higher level of organisation making them stand in a separate category. In Figure 

1, a subsection in the bottom-right panel points to the fact that this category stands apart in the overall 

organisation. Both plant and mammalian cells (Cooper, 2000) as well as bacteria (Shapiro, 1998) are the 

builging blocks of cell biology and microbiology. Single cells allow one to obtain essential information about 

fundamental processes in cell biology, while studying other multicellular organisms, i.e. bacteria, worms, 

insects, tissue, biofilms, and other microorganisms allows to understand more sophisticated organisms.  

INORGANIC MODIFIERS 

Structurally, inorganic modifiers exist in many different shapes: particles of various shapes, coatings of 

different geometries as well as a variety of sizes ranging from clusters of atoms, nano- and micro- particles 

to larger structures. The size is particularly essential, because they determine the overall properties due to 

specific effects associated with the behavior of electrons or induced charges.  

In regard with compositionally, they can be divided into the following classes: minerals, clays, metals, 

semiconductors, carbons, ceramics as shown in Figure 2 (left-hand side). Minerals include a very broad range 

of materials, including rocks, stones, some oxides, and can either occur in nature or synthesized 

(hydroxyapatites and carbonates, for biomineralization). Clays comprise of several groups: montmorillonite,  

kaolinite, Illite, chlorite. Hardness of clays is a property, which can be used in hybrid materials. Metals possess 

many attractive properties with their free electrons providing high electrical and thermal conductivity as well 

as enhanced absorption. At the nanoscale confinement comparable with the free electron path defines 

essential properties(Kelly et al., 2003). Semiconductors exhibit conductivity values between those of metals 

and insulators; the structure of their electron states makes them perfect candidates for sensing(Alivisatos, 

2004). Carbon, as an element, is fairly abandon in the Earth’s crust and universe. But what brings carbons to 

this list are its well-known forms: carbon nanotubes, graphene, carbon dots, whose absorption and 

conductivity make them attractive materials(Novoselov et al., 2004). Ceramics is another class of inorganic 

materials with predominantly covalent or ionic bonds between atoms. Although many oxides constitute 

ceramics, its structure is generally more ordered than that of glass.  

Various routes for assembling hybrid materials exist, including in situ sinthesis (Adnan et al., 2018). But 

adsorption or interaction of already pre-made components is still frequently used in assembly by by 

incorporating inorganic constituents in the form of nanoparticles, nanorods, particles, etc and comprised of 

above mentioned materials, Figure 2, into organic materials to obtain hybrids.   



  
FIGURE 2 | Classification of selected major classes of inorganic (left) and organic (right) components of hybrid 

materials as depicted by electron microscopy images. The inorganic constituents: minerals (SEM image of the 

calcium carbonate particles reproduced from (Parakhonskiy et al., 2012) with permission Wiley-VCH),  clays 

(TEM image of halloysites, reproduced from (Fix et al., 2009) with permission Wiley-VCH), metals (TEM image 

of metal nanoparticles, reproduced from (Simakin et al., 2019) with permission the ACS), semiconductors 

(TEM image of CdSe based nanocrystals, reproduced from (Franzl et al., 2007) ), carbons (SEM image of 

carbon nanotubes, reproduced from (Niazov-Elkan et al., 2018) with permission Wiley-VHC), ceramics (SEM 

images of TiO2, which is used in ceramics and reproduced from (Weir et al., 2012) with permission of the 

ACS). The organic matrices are represented by the following chemical: polymers (SEM image of the 

polycaprolactone scaffold reproduced from (Savelyeva et al., 2017) with permission Wiley-Blackwell), 

hydrogels (an optical photograph of the Image of an DNA hydrogel removed from atubeonapipette tip 

reproduced from (Xu et al., 2017) with permission Wiley-VCH), LbL (SEM image of a polyelectrolyte capsule 

reproduced from (Bedard et al., 2009c) with permission the Royal Society of Chemistry), brushes (AFM image 

of the brush polymer film, reproduced from (Lemieux et al., 2003) with permission of the ACS), block 

copolymers (TEM image micelles formed by amphiphilic diblock co-polymer poly(ethylene glycol)-block-

polystyrene-PS310 reproduced from (Geng et al., 2016) with permission of Wiley-VCH); and biological: lipids 

(TEM image of liposomes, reproduced from (Ruozi et al., 2011) with permission of Dove Medical Press), 

proteins (TEM image of the BSA, reproduced from (Longchamp et al., 2017) with permission of the Natl. Acad. 

Sci.), carbohydrates (TEM image of pectin, reproduced from (Hernandez-Cerdan et al., 2018) with permission 

of the ACS), nucleic acids (TEM image of DNA brick Cuboid structure assembly, reproduced from (Wei et al., 

2014) with permission from Wiley-VCH) materials. 

We note that the composition of the major classes provided in Figure 2 is not absolutely strict, but it provides 

a convenient way of classifying these major components of both classes of materials.  

 

 



HYBRID AND COMPOSITE MATERIALS  

Some examples include improvement or modification of mechanical properties and elasticity for cell 

adhesion, optical, catalytic and electrochemical properties, sensors, waterproofing, anticorrosion, 

insulation, etc. Figure 3 provides selected applications of inorganics-in-organics hybrid materials illustrating 

some images of the corresponding materials.  

FIGURE 3 | Various modifications of organic matrices by 

in ` organic components classified according to their applications. The left-hand side schematics shows a 

more general range of applications of hybrid materials, in which inorganic constituent is added to organic 

matrices, including: biomineralization, biomimetics, retartation of flames, antibacterial properties and 

catalysis, fuel and solar cells, packaging and applications in dentistry, sensors and membranes, release from 

drug delivery vehicles, cells or delivery into cells, enhancement of mechanical properties, electrical and 

thermal conductivity. The right-hand side image illustrates selected objects assembled by incorporating 

inorganic constituents in organic materials for: enhancement of mechanical properties (Optical image of the 

cell adhesion behaviour and the film surface morphology for different AuNP surface coverage, reproduced 

from (Schmidt et al., 2012) with permission of the ACS), sensoric functions (SEM image of BSE on 

hydroxyapatite with silver nanoparticles as SERS platform, reproduced from (Parakhonskiy et al., 2014) with 

permission of Elsevier Science BV), electroconductivity (SEM images of the surface of CNT/PS 

nanocomposites, reproduced from (Grossiord et al., 2008) with permission of Wiley-VCH), remote release 

by an external action of a laser (TEM images of the shell of the polyelectrolyte capsule with Ag-nanoparticles, 

reproduced from (Skirtach et al., 2004) with permission of the ACS); biomimetics (SEM image of the 

Polycaprolactone scaffolds mineralized with vaterite, reproduced from (Savelyeva et al., 2017) with 

permission of Wiley-Blackwell), catalysis (TEM images of poly(N-vinylcaprolactam-co- acetoacetoxyethyl 

methacrylate-co-acrylic acid) P(VCL-AAEM-AAc) microgels reproduced from (Agrawal et al., 2013) with 

permission of the Royal Society of Chemistry), flame retardation (SEM images of polyurethane foam, with 3-

bilayer halloysite nanotubes coatings, reproduced from (Smith et al., 2018) with permisssion from the Wiley 

VCH); packaging (SEM images of zein-Kaolin nanocomposites containing 2.5% Kaolin, reproduced from 

(Arora and Padua, 2010) with permission from Wiley-Blackwell); solar cells (cross-sectional SEM image of a 

complete perovskite device, reproduced from (Jeon et al., 2014) with permission of Nature Publish. Group).  

 

This diverse range of applications shown in Figure 3 is a result of combining complementary properties of the 

corresponding materials. We discuss further applications of these materials.  

 



Hybrid hydrogels 

Introduction of inorganic particles into hydrogel coatings allows to produce catalytically active 

interfaces(Agrawal et al., 2013), while on the other hand optical properties of hydrogels can be controlled by 

addition of nanoparticles(Agrawal et al., 2013). Incorporation of magnetic nanoparticles into organic coatings 

has been used for induction of release functionality(Hu et al., 2008) and manipulation of tissue for tissue 

engineering(Vidiasheva et al., 2018). And magnetic nanoparticles have been used for adding magneto-

responsive properties to magnetic hydrogels(Jaiswal et al., 2014). Stimuli responsiveness of hybrid interfaces 

produced by radical polymerization at the surface has been also shown(He et al., 2009).  

Various functionalities and incorporation ways of inorganic contents(Zou and Kim, 2012) of organic/inorganic 

coatings have been shown. Properly designed inorganic/organic interfaces or hybrid(Schroeder et al., 2018) 

and functional hybrid(Sanchez, 2005) materials with special properties can address several biomedical 

challenges including regeneration of a bone tissue(Wang et al., 2012). Addition of nano- or macro- particles 

is beneficial for biomineralization, Figure 3. Calcium carbonate (vaterite) microparticles containing RGD 

peptide sequences can act as a template for stimulation of mineralization and mesenchymal stromal cell 

(MSC) differentiation in vitro and augment in vivo bone formation and impact on bone grafting(Green et al., 

2009). Calcium carbonate as a promising material for many researchers has been applied in various areas. 

Crystallization process of calcium carbonate is complicated and include formation of different crystalline 

phases such as calcite, aragonite, and vaterite. Vaterite can be hardly found in nature and is the unstable 

polymorph(Shirsath et al., 2015). Porous vaterite calcium carbonate particles are spherical mesoporous 

polycrystals with abundant advantageous properties like biocompatibility and high bio-macromolecule 

capacity that is useful for drug delivery applications. Vaterite microparticles have been also utilized as a 

stabilizer in suspension polymerization in industrial settings and for regenerative medical 

approaches(Parakhonskiy et al., 2012;Shirsath et al., 2015). One of the most promising utilization of these 

particles is as an active coating or efficient drug delivery due to their entrance to micrometer-sized structures 

like cells and tissues(Parakhonskiy et al., 2012). Synthesis of CaCO3 particles with such variable properties as 

size, surface area, porosity, and hydrophobicity makes them a good candidate for surface coatings(Shirsath 

et al., 2015;Feoktistova et al., 2016) while loading of bioactive macromolecules makes them attractive 

carriers for drug protection and release(Vikulina et al., 2018). Morphology and crystal form of calcium 

carbonate have been transformed relating to protein-mediated nucleation during biomineralization(Xue et 

al., 2011). CaCO3-lentinan microspheres with a hierarchical composite pore structure have been produced by 

self-assembly of nanoparticles. These structures could clearly decrease the release rate and prolong the 

release time of the anticancer drug reducing potential side effects(Ma et al., 2013a). Hybrid crystals of CaCO3 

with bovine serum (CaCO3/BSA) in the shape of a flying plate have been synthesized using nanoparticles. It 

has been illustrated that the nucleation and aggregation of the crystals affect the secondary structure of 

proteins, providing a promising way for encapsulation and delivery of different substances for 

pharmaceutical applications(Yang et al., 2009). It should be noted that biomineralization with calcium 

phosphate is also an important process(Cai and Tang, 2008). In addition, vaterite CaCO3 crystals can serve as 

sacrificial templates to assemble bio-functional structures for drug delivery such as mesoporous carriers 

made of PEG and proteins(Behra et al., 2012;Schmidt et al., 2014;Balabushevich et al., 2015;Balabushevich 

et al., 2016). In addition to mechanical properties, surface functionalization of the coatings has been 

identified as an important functionalities(Azevedo et al., 2005). In this regard, functionalization of the 

coatings with enzymes and proteins has been identified to stimulate and promote cell growth. Recently, the 

addition of ALP (alkaline phosphates) on the surface of hybrid scaffolds has been shown to promote the cell 

adhesion(Muderrisoglu et al., 2018), where functionalization of titanium implants modified with hydrogels 

and calcium carbonate particles resulted in ~ 1.4 times higher cell viability. Antibacterial properties of the 

coatings have always been an important attribute of the coatings. Enhancing them by adding green materials, 

for example, pectin is seen as a significant development(Douglas et al., 2019). It can be stated that hybrid 



organic-inorganic coatings are continuing(Rezwan et al., 2006) to attract significant attention particularly in 

tissue engineering and mechanical properties is an important criterion here. Traditionally, tuning the 

mechanical properties plays a prominent role in controlling the cell adhesion. The addition of nanoparticles 

to a polymeric matrix has been linked with the formation of additional chemical bridges with polymers 

resulting in enhancement of mechanical properties(Bedard et al., 2009b) and can be used for control 

mechanical stiffness, which needs to be tuned in a broad range, Figure 4. Functionalization of polymeric films 

and coatings with remotely activatable microcapsules opens further possibilities for drug delivery from the 

coatings(Volodkin et al., 2009a). Metal nanoparticles can also serve as local heating centers(Skirtach et al., 

2005), which were shown to guide cells on a polymeric/nanoparticle surface(Kolesnikova et al., 2012) and 

can also serve for selective control of the polymer surfaces by laser(Skirtach et al., 2010) the release 

functionality of molecules adsorbed on their surface(Volodkin et al., 2009b). Morphological surface 

modifications represent another desirable functionality; here gradient coatings(Pinchasik et al., 2014) as well 

as recently proposed sponge-like structures(Manda et al., 2018) are seen as important functional building 

blocks. Tuning mechanical properties is seen as a very important functionality enhanced by adding inorganic 

particles to the polymer matrix. This is tailored to match materials necessary to host various cells, which 

possess very different mechanical properties, Figure 4. It can be seen from Figure 4 that by adjusting the 

inorganic fraction (weight percent) in organic coatings can be used to adjust their mechanical properties 

matching those of cells. Enhancement of mechanical properties by combining organic molecules with 

inorganic nanoparticles has been shown (Schmidt et al., 2012). A similar effect has been also observed by 

adding carbon nanotubes(Yashchenok et al., 2010) and by precipitating carbon nanotubes together with 

calcium carbonate particles (Chojnacka-Gorka et al., 2016). Furthermore, very different filler, nanocellulose, 

has been also applied to enhance mechanical properties of soft coatings(Lee et al., 2014). Investigation of 

the influence of the inorganic fraction on   mechanical properties of softer coatings has been also carried 

out(Fu et al., 2008). 

 FIGURE 4 | Mechanical properties (Youngs’ modulus) of various constituents of organic-inorganic hybrid 

materials in relation to those of cells, tissue, and organs. Data are based on (Kuznetsova et al., 

2007;Moeendarbary and Harris, 2014). 

 
Hybrid LbL materials  
Enhancment of mechanical properties, additional sensor functions, catalysis, and remote release capabilities 

have been implemented through incorporation of nanoparticles in polyelectrolyte multilayer capsules and 

films even from early research on nanoparticles in LbL layers(Yu et al., 2003). Nanoparticles, which form 

additional bonds and are generally stronger, have been incorporated in the shelll of microcapsules and a 

remarkable increase of the Young’s modulus has been observed by pressing on them with a colloidal probe 

AFM(Bedard et al., 2009b). Subsequently, the addition of carbone nanotubes have been used to both 

enhance the mechanical properties and control the permeability through capsules(Yashchenok et al., 2010). 



Sensory functions have been added upon incorporation of quantum dots in the the PEM network(Ionov et 

al., 2006), while catalytic properties of microcapsules have been implemented upon incorporatoin of silver 

nanoparticles in the shell of polyelectrolyte multilayer capsules(Skirtach et al., 2007). Remote release 

capabilities has been developed into a fairly extensive research area with numerous and continuously 

developing applications. They can be achieved by various stimuli(Skirtach et al., 2011), among which is 

nanoplasmonics performed by the laser action on nanoparticles incoroporated into PEM layers of capsules. 

At first, silver(Skirtach et al., 2004) and gold(Radt et al., 2004;Angelatos et al., 2005;Skirtach et al., 2005) 

nanoparticles have been tested both enabling the release by increasing the localized temperature increase. 

Later on, the release has been achieved using various lasr wavelengths(Skirtach et al., 2008). Also, spatially- 

and directionally- selective release was realized on capsules (Bedard et al., 2009a). One of the first 

applications of release from microcapsules was that inside living cells(Skirtach et al., 2006), which has later 

on led to inestigate surface presentation of peptides relevant to immunology(Palankar et al., 

2009).Subsequently, release was conducted in organisms, i.e. inside Hydra(Anbrosone et al., 2016) and C 

elegans worms(Lengert et al., 2018). In addition to nanoplasmonics, magnetic nanoparticles have been used 

to induce release by a magnetic field. Subsequently, release has been realized by ultrasound, where metal 

nanoparticles in PEM layers increased the density of the shell. Furthermore, capabilities of organic/inorganic 

interfaces for LbL have been shown to act as sorbents of radionucleotides(Bratskaya et al., 2014), UV 

responsiveness of polymeric layers was shown to be enhanced by the addition of an inorganic 

content(Katagiri et al., 2009). Extension in dual responsiveness to UV and ultrasound by TiO2/polyelectrolyte 

layers has been recently demonstrated(Gao et al., 2016), while functionalization of phenolic networks with 

metals has allowed to increase the multifunctionality of the coatings(Guo et al., 2014). Carbon based 

materials have been also applied to polyelectrolyte multilayer structures, where incorporation of 

graphene(Kulkarni et al., 2010) has added responsiveness to light (Potts et al., 2011;Kurapati and Raichur, 

2013), while redox potential has been added by ferrocene(Wang et al., 2011). Inorganic quantum dots 

incorporated into polyelectrolyte multilayer capsules served the function of sensors(Nifontova et al., 

2018;Nifontova et al., 2019). Bringing in an inorganic content was shown to improve thermal properties of 

organoclays(Calderon et al., 2008) and mitigate the scaling of calcium carbonate(Sheikhi et al., 2018). A 

combination of polyelectrolyte polymers and brushes have been reported to be enhanced by the addition of 

gold nanoparticles(Boyaciyan et al., 2018). Some other functionalities include enhancement of thermal 

properties(Banjare et al., 2014) including that in LbL layers(Puhr et al., 2014). An essential need for 

modificaiton by inorganic nanoparticles was fully felt on thick, so called exponential and gel-like coatings 

often produced using PLL (poly-L-lysine) and hyaluronic acid (HA). The addition of nanoparticles(Skirtach et 

al., 2010) has strenghtened the otherwise weak, gel-like films and enabled delivery of biomolecules on cells, 

while adsorption of capsules to those films has added drug delivery capabilities(Volodkin et al., 2011). 

Furthermore, PLL/HA films have been used for masking approximately half of an embedded capsule to 

produce Janus capsules(Delcea et al., 2011a). Here, nanoparticles absorbed on the surface of thick but soft 

PLL/HA films have been used to tune the rigidity of the film, which allows to control the degree of protrusion 

of particles and to control the patchiness of produced Janus capsules(Kohler et al., 2012).  

Hybrid block copolymers and polymersomes 

In functionalization of polymersomes with inorganic agents the surface plays an important role(Egli et al., 

2011). Responsiveness to light is a very desirable property of polymeric delivery vesicles, for which case 

delivery and release of sulforhodamine B upon exposure to ultraviolet light(Dinu et al., 2016). But 

responsiveness to light can be also used for propulsion and therapy, which was generated upon asymmetric 

deposition of a thin layer of gold on erythrocyte membrane modified polymersome shell(Shao et al., 2018). 

Modification of the polymersome shell with magnetic nanoparticles has been shown to control release from 

such hybrid vesicles(Sanson et al., 2011). Another valuable additional property of magnetic nanoparticles 



added onto the surface of polymersomes is enhanced contrast agent function for magnetic resonance (MR) 

imaging and drug delivery (Yang et al., 2018).  

Hybrid polymer brushes 

Polymer brushes prepared by the end-grafting of chains to/from flat or curved surfaces can be organic or 

inorganic in nature. It was shown that small nanoparticles with good affinity to polymers interact with 

polymer brushes without aggregation, but if the interaction between the polymer brushes and nanoparticles 

is weak, then aggreagation can take place(Kim and O'Shaughnessy, 2002). Tunabillity of the properties of 

hybrid organic-inorganic brushes is one of the most desired and frequently used application. 

Functionalization of polymeric brushes by nanoparticles takes place at the interface. There, nanoparticles 

can be either adsorbed onto the surface of brushes or they can be inserted into the brushes with such factors 

as pH, temperature, solvent, ionic strength affecting this process (Tokareva et al., 2006). The process of the 

swelling and shrinking of polymer brushes can be performed reversibly, in which case the nanoparticles will 

be either exposed or hidden into the interior of brushes. Various nanoparticles have been added to brushes 

including metal Pt, Ag, Au and semiconductor CdSe with predominantly sensor-like functions (Ionov et al., 

2006).  

Other hybrid materials  

There are also other types of matrices not mentioned in the terminology above. One example is resins, which 

can be of either synthetic or plant nature and which converted to organic compounds. Hybrid resin based 

materials found applications not only in automotive industry, but also as fillers in dentistry. The dentures are 

immersed into hybrid materials and then cured(Jafari A.A. et al., 2017). Some other interesting examples 

applications of polymeric based hybrid materials are in membrane and water treatment(Tripathi and Shahi, 

2011), where metal and metal oxide nanoparticles have been used as the inorganic phase(Ng et al., 2013).  

Hybrid lipid membranes 

Functionalization of lipid bilayers with inorganic nanoparticles has been traditionally important not only for 

fundamental understanding of cell function, but also for practical applications. Given the nanometer size of 

lipid bilayer membranes, typically only nano-sized objects have been used to functionalize the lipid 

membrane. Interaction between lipid bilayers and nanoparticles depend on (a) the nanoparticles: material 

and its oxidation state, size, shape, roughness, charge, hydrophobicity; (b) the stabilizers of nanoparticles 

used to retain colloidal stability; and (c) the interface between nanoparticle/stabilizers and lipid interface. All 

these interactions determine the dominant forces upon the interaction among van der Waals, electrostatic, 

steric, depletion and solvent driven contributions. Some peculiarities of the interaction in a physiological 

medium are determined by the presence of the physiological buffer with ionic strength of 150 mM, implying 

that electrostatic interactions are screened at the relevant distances. Since lipid bilayers are relevant for cells, 

the interaction of nanoparticles with living cells and organisms is of particular important. Here, the NCL 

(National Characterization Laboratory) has screened over 100 various nanoparticles and concluded that size, 

surface charge and hydrophobicity are the most relevant parameters in regard with biocompatibility(McNeil, 

2009). Functionalization of lipid membranes by nanoparticles brings a number of functionalities and is of 

continuously remaining interest(Chan and Kral, 2018). Both hydrophilic adsorption of nanoparticles on the 

other part of the membrane(Volodkin et al., 2009c) or incorporation of nanoparticles into the hydrophobic 

core of lipid bilayers(Rasch et al., 2010) is possible. Increasing the stability of lipid membranes and liposomes 

has been one of functionalities enabled by nanoparticles(Zhang and Granick, 2006;Michel et al., 2013), which 

proved to be used in drug delivery. It is worth noting that the interaction between nanoparticles and 

liposomes can be controlled, for example, by halides(Liu et al., 2018). The lipid membranes were 

functionalized with silica nanoparticles serving the function of sensors and providing drug delivery(Zuccarello 

et al., 2016). Metal nanoparticles adsorbed on the surface of lipid membranes and liposomes have been 

widely used to control the permeability of lipid membranes. For example, ionic current has been monitored 



upon laser illumination(Palankar et al., 2014;Urban et al., 2016) to gain detailed understanding of re-

arrangements within the lipid membrane, where the reversibility of the opening and closing of membranes 

upon turning on- and off- laser light has been demonstrated. Nanoplasmonics, or laser-nanoparticles 

interaction, has been used to study phase transition of lipids(Urban et al., 2009) and has been reported to 

initiate transport of molecules across the lipid membrane(Wu et al., 2008;Troutman et al., 2009;Volodkin et 

al., 2009c;Paasonen et al., 2010). Magnetic iron oxide nanoparticles on lipid membranes allowed to induce 

triggered release from liposomes upon application of a magnetic field(Amstad and Reimhult, 2012;Bixner et 

al., 2016a). Release from the so-called bilayer-decorated magneto-liposomes has been realized by alternating 

current electromagnetic fields(Chen et al., 2010b), while metal oxide nanoparticles have been also proposed 

for release(Wang and Liu, 2014). Another important class of lipid bilayer vesicles is exosomes, which are shed 

out by cells. It is important to determine their composition, which can be linked to diagnostics of various 

diseases. Upon linking nanoparticles to the outer shell of exosomes, enhancement of a rather weak Raman 

signal was obtained by means of the surface enhanced Raman scattering (SERS). And that allowed to 

distinguish various types of exosomes(Stremersch et al., 2016).   

 

Hybrid proteins and enzymes, carbohydrates, nucleic acids as well as bacteria and cells  

In hybrid materials, proteins and enzymes, carbohydrates and nucleic acids are often used in the organic-in-

inorganic assemblies(Alvarez-Paino et al., 2013;Umemura, 2015;Elzoghby et al., 2016;Compostella et al., 

2017;Vetro et al., 2017), this falls into the subject of modification of the surface of nanoparticles. But 

inorganic nanoparticles find a distinct application niche in inorganics-in-organics assemblies. To fully exploit 

diversified properties on inorganic nanoparticles adsorbed onto or incorporated inside above mentioned 

materials, it is essential to control their spatial distribution or self-assembly needs to be controlled. There are 

various approaches to achieve that, for example, by adding polymers in the area of synthetic polymers 

(Parakhonskiy et al., 2010). In this regard, nucleic acids, specifically DNA molecules, have been shown to drive 

molecular self-assembly at the nanometer scale(Rogers et al., 2016). Furthermore, DNA molecules can be 

used for assembling gold nanoparticles, for example, chiral structures(Kuzyk et al., 2012).  

Modification of bacteria by nanoparticles is also very useful for sensing. Indeed, microbial identification and 

microbial interactions can be performed with a label-free Raman spectroscopy(Lorenz et al., 2017). In this 

area, a very refined investigation is dedicated to detect phenotypic heterogeneity of bacteria, where Raman 

spectroscopy offers advantages over flow cytometry (Heyse et al., 2019). Coating bacteria with inorganic 

noble metal nanoparticles facilitates enhancement of the Raman scattering signal(Zhou et al., 2014).  

Functionalization of cells has been performed with various inorganic nanoparticles. Magnetic nanoparticle 

functionalization of red blood cells(Brahler et al., 2006) has been performed for enhancing efficiency of MRI 

detection. In such applications, red blood cells can be used for delivery of medicine and nanoparticles  (Delcea 

et al., 2012). Here, absorption of gold nanoparticles on the outer layer of red blood cells has been 

reported(Delcea et al., 2012) bringing in remote release functionalities. In this case, red blood cells could be 

taken from a patient, loaded with a desired drug, modified with nanoparticles and injected back to the same 

patient with now remote release enabled functionality. Thermolysis of leukemia cells has been performed 

by laser-nanoparticle interaction(Lapotko et al., 2006). Nanoparticles have been brought in proximity to cells 

for gene delivery(Arita et al., 2011). The outer membrane of mammalian cells have been also functionalized 

with gold nanoparticles and laser light has been can been used in this case to deliver specifically deliver 

molecules from surrounding cell culture medium into only desired cells with a pre-determined patterning 

(Xiong et al., 2014). In the following step in this area, spatially selective transfection of the chosen living cells 

has been achieved (Xiong et al., 2017).  

 



Properties of inorganic and organic constituents making them perfect complementary materials   

Analyzing above mentioned properties of hybrid materials it can be notices that incorporation of inorganic 

constituents is made with a specific goal – to bring or complement missing properties, often these are 

mechanical strength, conductivity, optical/electrical/thermal properties or mass. A brief summery is outlined 

in Figure 5 to emphasize the contrast between these two groups of materials; this is similar to what was 

analyzed organic versus inorganic (oxide) materials discussed earlier(Sanchez et al., 2005). It can be noted 

that the same philosophy and the same properties drive the incorporation of organic materials into inorganic 

matrices (organics-in-inorganics), but the difference of approaches is that research in the area of inorganics-

in-organics is driven by research community working with organic and soft matter, while research in organics-

in-inorganics is put forward by researchers working and specializing mostly in inorganic materials and use 

organic materials as additives. But, again, designing hybrid materials appropriate complementarity is chosen 

and utilized to the advantage of both types of materials.  

 FIGURE 5 | Antagonist (yin and yang), but complementary, properties of most common inorganic and organic 

compounds motivating their incorporation into hybrid materials.  

 

Overall, the choice of inorganic components would be determined depending on whether they possess these 

properties. Very often the added materials would add functionality associated with specific stimuli: physical, 

chemical or biological (Delcea et al., 2011b).   

 

A summary of some selected examples of hybrid inorganics-in-organics materials  is presented in Table 1.  

TABLE 1 | Selected examples of hybrid inorganics-in-organics coatings presenting the composition, 

feature/functionalities and corresponding references.  

      Organic content  
 

Inorganic 
content  

Features, functionalities, references  

 
Polymers 

 
PLGA 

 
Hydroxyapatite 

 
Enhanced mechanical properties(Kang 
et al., 2011)  

Polyaspartate CaCO3 Biomimetics(Sommerdijk and de With, 
2008)  

PLL Silica NP Morphology control of biomimetics 
(Tomczak et al., 2005)  

PLA Organoclays Biodegradable bioplastics(Kasuga et al., 
2001;Chang et al., 2003)  



PSS (polystyrene 
sulfonate) 

TiO2 Catalysis, environmental 
applications(Priya et al., 2009)  

PCL Hydroxyapatite Stem cell growth(Priya et al., 2009)   

Cellulose  AgNP Antibacterial properties(Perez-Masia et 
al., 2014)  

Silk fibroin AuNP Redox activity(Kharlampieva et al., 2009)  

Silk fibroin Graphene Enhancement of mechanical 
properties(Wang et al., 2016)  

Latex Carbon 
nanotubes 

Electroconductivity increase(Grossiord 
et al., 2008)  

PMMA, PVA, PLA, PAN, 
PBO, PA6, PDMS, epoxy 

Carbon 
nanotubes 

Reinforcement and theory of fiber 
reinforced composites(Coleman et al., 
2006) 

Styrene-butyl acrylate Carbon black Vibrational damping & electrical 
conductivity(Hu and Chung, 2011)  

MDMO-PPV ZnO Solar energy(Beek et al., 2004) 

 Various polymers Metal/metal 
oxide 

Membrane and filtration (Tripathi and 
Shahi, 2011;Ng et al., 2013) 

Hydrogels  Silk based injectable 
hydrogels 

Hydroxyapatite Enhancement of mechanics (Young’s 
modulus 21 kPa), osteo-
differentiation(Ding et al., 2017)  

Elastomeric (pHEMA) 
hydrogels  

Hydroxyapatite Stem cell differentiation(Song et al., 
2009)  

Various hydrogels Hydroxyapatite Biomineralization(Cai and Tang, 2008) 

Gellan gum CaCO3 Biomineralization(Douglas et al., 2016) 

Gellan gum 
 
 

Montmorrilo-
nite 

Composition control(Lvov et al., 1996) 
 

LbL 
polymers 

PEI/PDADMAC/PAA AuNP Optical properties(Malikova et al., 2002)  

PSS/PAH AgNP Remote laser activation and release 
(Skirtach et al., 2004); catalysis & 
ultrasound(Skirtach et al., 2007) 

PSS/PAH, PSS/PDADMAC AuNP Remote laser activation(Radt et al., 
2004;Angelatos et al., 2005) and 
measurement of temperature 
rise(Skirtach et al., 2005) 

PSS/PAH 
PDADMAC/ 
montmorrilonite 

Quantum dots Sensors(Kharlampieva et al., 2010)  

AgNP Mechanical & antibacterial 
properties(Cheng et al., 2017)  

PMAA (poly(methacrylic 
acid) 

AuNR Sensors (pH)(Kozlovskaya et al., 2008)   

PLL/HA AuNP Sensitivity to laser and enhanced 
mechanical properties(Volodkin et al., 
2009a;Skirtach et al., 2010) 

PSS/PAH Graphene 
oxide 

Enhancement of mechanical 
properties(Kulkarni et al., 2010)  

IL-NH2  Graphene Electro-catalysis(Zhu et al., 2010)  

PSS/PAH Halloysite Novel functionalization(Konnova et al., 
2013) 



PUF/PEI/PAA Halloysite Flame retardant(Smith et al., 2018) 

PMMA/PS Halloysite Wear resistance(Song et al., 2016)` 

PEI/PAA TiO2 Dye- solar cells(Chen et al., 2013) 

PSS/NTA (nickel-
nitrillotriacetic acid) 

TiO2 Desorption of proteins(Andreeva et al., 
2016) 

PSS with PEI as support TiO2 Hydrophilic to hydrophobic 
conversion(Lu and Hu, 2016) 

PLA Montmorrilo-
nite 

Mechanical properties(Svagan et al., 
2012)  

PSS/PAH CNT Mechanical properties & 
release(Yashchenok et al., 2010) 

PSS/PAH and alginate AuNP Hydra, metazoan(Anbrosone et al., 
2016); in C elegans (Lengert et al., 2018) 

Polymer 
brushes 
 
 
 

P2-VP AuNP pH sensing(Tokareva et al., 2006)  

Brushes PtNP Sensors(Mei et al., 2005)  

Brushes AgNP Sensors(Lu et al., 2006)  

Brushes AuNP Sensors(Lu et al., 2006),  
pH sensitivity(Boyaciyan et al., 2018) 

P2-VP CdSe Sensors(Ionov et al., 2006)  

Block co-
polymers & 
polymer-
somes 

Poly(trimethylene 
carbonate)-b-poly(l-
glutamic acid) 

Magnetic 
nanoparticles 

Magnetic resonance imaging and 
magneto-chemotherapy(Sanson et al., 
2011) 

 PNIPAM-based Magnetic 
nanoparticles 

Triggered release(Bixner et al., 2016b) 

 PEG-PPO-PEG, PEG-PBD; 
PS-b-PAA 

Magnetic 
nanoparticles 

MR contrast agent(Yan et al., 2015) and 
delivery(Yang et al., 2018) 

 Chitosan and heparin Gold layer Propulsion and therapy(Shao et al., 
2018) 

Lipids Liposomes AuNP Multiple reports on permeability 
changes and release of contents(Wu et 
al., 2008;Troutman et al., 2009;Volodkin 
et al., 2009c;Paasonen et al., 2010) 

Lipid bilayer membranes AuNR, AuNP Ion current modulation of by laser-AuNP 
and AuNR (Palankar et al., 2014) & by 
AuNP(Urban et al., 2016) 

Liposomes (DOPC) SiO2, ZnO, TiO2, 
Fe3O4 

Light-controlled release(Wang and Liu, 
2014) 

Lipid membranes,  
phospholipids, 
phosphate-dylcholine, 
liposomes 

Magnetic NP Targeted delivery and permeability 
control(Chen et al., 2010a;Amstad et al., 
2011)  

Membrane of red blood 
cells 

AuNP Remote laser activation and 
release(Delcea et al., 2012)  

Exosomes AuNP Diagnostics(Stremersch et al., 2016)  

Inside living cells  AuNP-
polymeric 
capsules & 
AuNP 

Release from AuNP-functionalized 
capsules: a) inside HeLa cells(Javier et 
al., 2006);  b) in immunology(Palankar et 



al., 2009);  c) from AuNP inside 
cells(Huschka et al., 2010) 

On membrane of living 
cells 

AuNP Delivery of biomolecules from outside 
inside neurons(Xiong et al., 2018) and 
cells(Xiong et al., 2017)  

On membrane of cancer 
cells 

AuNP Destruction of leukemia cells(Lapotko et 
al., 2006), HeLa cells(Javier et al., 2008), 
tumors(Lukianova-Hleb et al., 2014)   

Proteins 
 
 
 
 
Polysacchari
des 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Nucleic 
acids 

Alginate, pectin, 
carrageenan, 
xanthan 

Montmorillo-
nite, sepiolite, 
CNT 

Enhancement of mechanical properties, 
sensors(Ruiz-Hitzky et al., 2008) 

Pectin Nanoclay Environmentally friendly 
packaging(Vartiainen et al., 2011) 

Galactose CNT Pathogen binding(Xia et al., 2017)  

PVA CoO, BiFeO3 Dielectric CoO(Das et al., 2018)  as well 
as thermal & magnetic properties of 
BiFeO3(Halder et al., 2018) 

Gelatin, 
collagen 

Hydroxyapatite  Good cell response of stem cells(Raucci 
et al., 2018)  

Alginate Sr Tissue engineering(Catanzano et al., 
2018) 

Gelatin, collagen,  
zein 

Clay Enhanced properties(Alcantara et al., 
2012)  

Layered double 
hydroxides 

Biocomposite non-viral vector(Desigaux 
et al., 2006)  

Chitosan AuNP Biosensors (Rocha-Santos, 2014)  
 Montmorillo-

nite  
Enhancement stability(Wang et al., 
2005)  

 CaCO3 Biomimetics(Yao et al., 2011)  
 Hydroxyapatite Control of properties(Ren et al., 2018)  
   
DNA AuNP Sensors based on aggregation of NP 

(Storhoff et al., 1998)  
DNA AuNP Nanostoves for melting DNA(Stehr et al., 

2008) 
Nucleic acids Layered double 

hydroxides 
Gene transfection(Kundu et al., 2017) 

Red blood 
cells 

Interior Magnetic 
nanoparticles 

Contrast for MRI (Brahler et al., 2006) 

Red blood 
cells  

Surface modification AuNP Release by laser light (Delcea et al., 
2012) 

Bacteria Surface modification AgNP, AuNP Sensing and detection(Zhou et al., 2014) 
Dentures-
polymers 

Composites and 
polymers 

Silicon dioxide Filling in dentistry (Jafari A.A. et al., 
2017) 

 

 

  



CONCLUSIONS  

Hybrid coatings incorporating both organic and inorganic materials continue to hold a prominent role in 

developing advanced applications, where the softness, flexibility, and functionality of soft matter matrix 

needs to be complemented with the hardness, responsiveness to external stimuli and other properties 

offered by inorganic components.  In this overview, we have described and analyzed:  

- hierarchy and structural organization of the area hybrid materials in general, identifying inorganics-in-

organics (inorganic constituents modifying organic materials), the focus of this overview, and situating it in 

the overall hierarchical scheme;  

- composition of inorganics-in-organics is also analyzed identifying and describing the following inorganic 

constituents: minerals, clays, metals, semiconductors, carbons, and ceramics modifying such organic 

materials as: polymers in general as well as hydrogels, layer-by-layer assemblies, polymer brushes, block 

copolymers, other materials (resins), lipids, proteins and enzymes, carbohydrates, nucleic acids as well as 

higher level organisms: cells, bacteria, microorganisms;  

- a diverse range of applications of hybrid inorganics-in-organics is presented highlighting hybrid:  

(1) chemically relevant molecules:  

(a) hydrogels where inorganic content has been used for biomineralization and enhancement of 

mechanical properties;  

(b) layer-by-layer assembly, in which inorganic nanoparticles have been widely used for release of 

contents from capsules and coatings as well as enhancement of mechanical properties and 

sensor function.  

(c) polymer brushes, where inorganic nanoparticles has been used as sensors and enhancement of 

mechanical properties;  

(d) block copolymers, where inorganic nanoparticles have been used for propulsion of 

polymersomes.  

(e) other materials, i.e. resins, where inorganic content has been used to cross-link the composite 

fillings in dentistry or enhance resins in automotive and other industries; together with 

(2) biologically relevant molecules:  

 (a)   lipids, proteins/enzymes, carbohydrates, nucleic acids;  

 (c)   bacteria, cells and microorganisms.  

- yin & yang antagonist properties (hardness <-> softness, brittleness <-> flexibility, conductivity <-> non-

conductive nature of soft materials, high density <-> low density, high thermal stability <-> low thermal 

stability) determining complementarity of hybrid materials.  

Research in the area of hybrid materials in the area is seen to be put forward to more than one research 

communities: organic-in-inorganics (structures) – by research community mostly working with inorganic 

structures, organics-in-inorganics (colloids)  –  by scientists designing colloidal particles; inorganics-in-

organics – by researchers working with polymers, soft matter, and bio- and chemical molecules. Providing 

the organizational framework for the overall area of hybrid materials should be useful to share ideas, 

protocols and developments between these different research communities. Because what unifies them is 

designing best performing hybrid materials responsive to stimuli of choice(Delcea et al., 2011b). Critical mass 

of knowledge, a diversity of approaches of the above mentioned research communities and ideal 

combination of yin-and-yang properties of organic and inorganic material point to a bright future of research 

in the area of hybrid materials.  

  



OUTLOOK 

Generally, attractive opportunities are awaiting research in the area of hybrid materials, because of extensive 

range of diverse properties of very complementary types of materials; critical mass of researchers interested 

in the subject; diversity of approaches of different research communities; extensive multidisciplinarity of 

approaches used by researchers working in this area; projected high demand from other research 

communities, for example, biological sciences to tap into potential of not only hybrid materials, but also 

approaches used to work with them.  

More specifically, further research is on-going in various fields of inorganics-in-organics to utilize the synergy 

between materials and research communities. In the area of hydrogels, development of biomineralization 

enrichment, where inorganic particles supply cross-linking ions, utilization of possibilities of remote 

modification (cross-linking) or laser activation would be beneficial. Hydrogels seem to be of paramount 

importance in a number of areas, particularly in tissue engineering, where control and adjustment of 

mechanical properties is a challenge. Modification of hydrogels by enzymes, proteins, active biomolecules as 

well as nanoparticles provides a rich environment for further enhancement of intrinsic properties of the 

organic matrix and for development of desirable properties. Antibacterial and anticorrosion functionalities, 

often achieved through the addition of active compounds in nanoparticles, are other important 

characteristics of material relevant in the biomedical sector and nanomedicine. In LbL, complementarity 

between organic and inorganic materials is expected to impact design of advanced drug delivery vehicles and 

capsules, including remote release in vivo, control of reactions in micro-compartment volumes as well as 

further exploring a way of producing LbL in a more simple and reliable fashion. Incorporation of nanoparticles 

is seen as an important mechanism to control mechanical properties and to enable spontaneous and remote 

release of encapsulated biomolecules. LbL coatings on flat substrates are seen to also benefit from 

mechanical properties control, sensor functions, remote action of various stimuli obtained through 

incorporation of inorganic nanoparticles and nano-structures. Furthermore, development of gradient 

coatings is seen to bring additional functionalities. In polymer brushes, the introduction of inorganic 

nanoparticles is seen to further impact control of micro- and macro- level properties, where sensor functions 

can be particularly remarked. In the area of block co-polymers and polymersomes, remote release and sensor 

functions are desired functionalities to be developed further using hybrids. In the case of polymersomes as 

well as other delivery vehicles, propulsion enabled by addition of inorganic nanoparticles is seen to allow 

development advanced applications.  

In the area of lipid bilayers, introduction of inorganic nanoparticles will help to understand fundamental 

mechanisms of lipid membrane functioning, which will be useful not only for fundamental science, but is also 

expected to impact drug delivery. Liposomes, particularly with development of the so-called “stealth” 

liposomes, are effective delivery vesicles, while their modification by inorganic nanoparticles would further 

extend the range of release capabilities. Such other biologically relevant molecules, for example DNA, can be 

utilized for self-assembly of inorganic nanoparticles, which can eventually be used to build advanced sensors. 

Label-free sensing is also relevant for bacteria and inorganic nanoparticles can provide necessary 

enhancement. In cell biology, either constructs described above can be used or inorganic nanoparticles can 

release from cells is seen to provide further effective ways of delivering drugs. In addition, analytical methods 

allow to tailor and control the cell adhesion, where the properties of inorganic nanoparticles and 

nanostructures are difficult to replace.  

A large number of foreseen developments will be interdisciplinary in nature best positioned to both 

contribute and benefit from a perfect synergy between organic and inorganic materials. In short, the outlook 

is bright for hybrids.  
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