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We consider the selective permeation of ions through narrow water-¯lled channels in the

presence of strong interaction between the ions. These interactions lead to highly correlated

ionic motion, which can conveniently be described via the concept of a quasiparticle. Here, we

connect the quasiparticle's e®ective potential and the multi-ion potential of the mean force,
found through molecular dynamics simulations, and we validate the method on an analytical

toy model of the KcsA channel. Possible future applications of the method to the connection

between molecular dynamical calculations and the experimentally measured current-voltage
and current-concentration characteristics of the channel are discussed.

Keywords: Ion channel; highly-correlated ionic motion; quasiparticle; e®ective potential;
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1. Introduction

The selective permeation of ions through narrow water-¯lled pores is an unsolved

problem that continues to attract great attention. In Nature, this permeation hap-

pens through ion channels which constitute important control elements in biology [1,

2]. Over the last several decades, their properties have become a focus of intensive

research, not least on account of their role as potential pharmacological targets. That

is why e±cient theoretical and numerical methods of coupling a channel's structure

to its properties ��� e.g., conductivity, selectivity, and recti¯cation ��� still remain
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subjects of active research. Although there has been signi¯cant progress in that

direction, many unsolved problems [1, 3] still remain.

The main challenge is the presence of strong all-to-all, not necessarily classical,

interactions at short and long ranges between the relevant entities [1]. The latter

include dissolved ions, water molecules and the protein backbone. The ¯nite size

and discrete charge of the ions need to be taken into account. So also do the water–

ion (hydration), water–protein and water–water interactions, as well as possible

interactions between the ions and the lipid bilayer. Moreover, a protein's structure

is °exible rather than rigid, and the molecule polarizes when a charged object

approaches it closely. Molecular dynamics [4, 5] encompasses all of these inter-

actions, but at the cost of substantial computational time. One of the most im-

portant outputs of molecular dynamics (MD) is the potential of the mean force

(PMF) [6]. Brownian dynamics (BD) [7, 8] provides a more computationally e±-

cient approach to the problem. It describes the motion of individual ions with ion–

water collisions being included implicitly as °uctuations. The strengths of the two

approaches can be uni¯ed by calculating the forces between particles in BD

simulations through use of the PMFs derived in MD simulations. This tandem

approach has been applied successfully to a number of nanoscale systems [6, 9–11].

Importantly, in narrow channels with strong interaction between ions, MD results

in multi-ion PMFs that di®er according to the number of ions in the channel.

The corresponding continuous description has evolved along the lines of Poisson–

Nernst–Planck (PNP) [12]. The rigorous derivation of the PNP relations for a given

system requires ad hoc closing relations which have not been veri¯ed in narrow

channels [13]. Importantly, the discreteness of the ions and interaction between them

are missed, resulting in disagreement with experimental and BD studies [14]. The

Fokker–Planck (FP) method faces the di±culty of the choice of correct boundary

conditions [15]. Thus, although being in some ways more attractive, the continuous

description cannot be applied directly to strongly-interacting ions in a narrow

channel. Possible solutions of the problem can utilize, e.g., hierarchical FP sys-

tems [16] or the concept of quasiparticles (QPs).

The notion of a QP was introduced to describe collective ionic motion in narrow

channels [17, 18]. This concept reduces the complexity of many-body motion to the

one-dimensional motion of a single QP in an e®ective potential, providing a very

clear physical interpretation of permeation [16, 17]. The idea was introduced in

relation to a simple toy model, and the QP concept still needs to be connected to the

structures of real channels.

Here, we extend this concept and derive an explicit relationship between the

e®ective potential of a QP and the multi-ion PMFs related to the structure of the

channel. It is validated on the toy model of ion–ion and ion-channel interactions

from [17, 18] to simplify the comparison between the theoretical and BD simulation

results. Our approach is equally applicable to the more complex real biological

structures, providing a clear route from a protein's structural properties to a QP's

e®ective potential.

M. L. Barabash et al.
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2. Methods

2.1. The motion of individual ions

The Streptomyces lividans KcsA is a prokaryotic pH-activated Kþ channel. Its

highly-selective pore region ��� the selectivity ¯lter (SF, left panel in Fig. 1) ���
contains the amino acid sequence TVGYG, which is highly conserved among both

prokaryotic and eukaryotic Kþ voltage channels. The latter fact, the discovered

KcsA crystallographic structure [19], and its ability to discriminate between Kþ and

Naþ with accuracy 1000:1 at the di®usion rate� 108 ions/sec have made this channel

a reference specimen for many studies of ion channels.

The SF of KcsA is only a few Å wide [19]. Due to this narrowness, the permeating

ions cannot pass each other and therefore move e®ectively in one-dimension.

This allows us to simplify ionic motion in the SF to dynamics along the channel's

longitudinal axis z. The Langevin equation of motion for the kth-ion of species �

is [20]

m� dv�
k

dt
¼ ���m�v�

k þ FNðr�
kÞ þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2m���kBT

p
»ðtÞ; ð1Þ

where m� is ion's mass, �� is its friction coe±cient which is coupled to its

di®usivity D� by the Einstein relation D� ¼ kBT=m
���, v�

k is the ion's velocity,

FNðr�
kÞ represents the force acting on an ion located at r�

k when N ions are present

in the channel, kB is Boltzmann's constant, T represents the absolute temperature,

and » is three-dimensional white noise of unit intensity (h»i ¼ 0, h»ðtþ �Þ»ðtÞi ¼
�ð�Þ).

The force is given by

FNðr�
mÞ ¼ � @WNðr�

mÞ
@r�

m

; ð2Þ

where an N-particle PMF WNðr�
1 ; r

�
2 ; . . .Þ has been introduced [5, 6, 9, 21]

e�WN ðr �
1 ;...;r

�
N Þ=kBT ¼ C

Z
dXe�Uallðr �

1
;...;r �

N ;XÞ=kBT :

Here, C is a constant, and Uallðr�
1 ; . . . ; r

�
N ;XÞ represents the potential energy due to

interactions between all atoms, i.e., permeable ions located at fr�
1 ; . . . ; r

�
Ng and other

atoms at X ¼ fr�
1 ; r

�
2 ; . . .g. The PMF in the selectivity ¯lter of the KcsA channel is

illustrated in the right panel of Fig. 1.

The use of MD-generated PMFs in studies of nanoscale systems yields several

bene¯ts. For instance, it self-consistently includes the ion's interactions with other

ions in the pore, the e®ects of dehydration at the entrance and inside the channel, the

induced charges on the pore walls, and the in°uence of the °exible pore structure.

Using state-dependent PMFs, we take a step towards using the dynamical potential

landscape [10].

From the Potential of the Mean Force to a Quasiparticle's E®ective Potential in Narrow Ion Channels

1940006-3

Fl
uc

t. 
N

oi
se

 L
et

t. 
D

ow
nl

oa
de

d 
fr

om
 w

w
w

.w
or

ld
sc

ie
nt

if
ic

.c
om

by
 U

N
IV

E
R

SI
T

Y
 O

F 
L

A
N

C
A

ST
E

R
 U

N
IV

E
R

SI
T

Y
 L

IB
R

A
R

Y
 -

 S
E

R
IA

L
S 

D
E

PA
R

T
M

E
N

T
 o

n 
04

/1
5/

19
. R

e-
us

e 
an

d 
di

st
ri

bu
tio

n 
is

 s
tr

ic
tly

 n
ot

 p
er

m
itt

ed
, e

xc
ep

t f
or

 O
pe

n 
A

cc
es

s 
ar

tic
le

s.



2.2. Motion of QP

Importantly, the one-dimensional motion and strong ion–ion interactions allow one

to describe ionic collective [19] behavior as the motion of a \quasiparticle" [17],

represented by the centre of mass q� and relative distances p�
m between neighboring

ions of a given species

q�N ¼
PN�

k¼1 z
�
k

N�
; � ¼ Kþ; Cl�; . . . ð3Þ

p�
k ¼ z�

kþ1 � z�
k ð4Þ

with respective velocities v� ¼ z
:
� and _p�

k . Here, ions are numbered from outside to

inside as in [5]. The inverse coordinate transformation z�
k ¼ z�

k ðqN ;pÞ is given by

Cramer's rule, where, for clarity of notation, the set of relative distances is written as

a vector [17] p ¼ fp1; p2; . . . ; pN�1g. Generalization for multiple species is straight-

forward, and unless explicitly stated we omit species' indices in specifying the ion's

and QP's coordinates, for clarity. It is worth noting that the QP de¯ned

above [17, 18], also known as a \quasi-ion" or a \super-ion" [16], represents the

centre of mass of the ions, whereas a \quasi-ion" (\permion") [12, 22] includes the

ion, water molecules and the protein channel.

The potential energy of the system of ions located at Z ¼ ðz1; z2; . . . ; zNÞ is given
by the PMF WNðz1; z2; . . . ; zNÞ. By expressing the coordinates of individual ions

zk ¼ zkðq;pÞ via their centre-of-mass and relative distances fq;pg, one can express

the energy of the system via the parameters of the QP: WN ¼ WNðq;pÞ.

Fig. 1. Left panel: Scheme of the simulation domain. The selectivity ¯lter (narrow cylinder), reservoirs

(wide cylinders) and ions of both signs (orange and blue spheres) are shown. The structure of the KcsA
selectivity ¯lter is shown in the licorice representation. Right panel: Slices of the 3D PMF in the KcsA

channel with the permeation pathway shown in black. Numbers 1–5 correspond to permeation landmarks

from [5]. Original data, also used in [5], has kindly been provided by Dr. D. Medovoy and Prof. B. Roux.

M. L. Barabash et al.
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In the spirit of [17], we use the full Langevin equation (1) to describe the evolution

of the QP's position q� in time

q
::
N ¼ � kBT

mD �
N

q
:� 1

mN

XN
k¼1

@WNðzkðq;pÞÞ
@zk

þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ðkBT Þ2
D �

N

s
�ðtÞ; ð5Þ

p
::
k ¼ � kBT

mD �
N

_pk �
1

m

@WNðzkþ1ðq;pÞÞ
@zkþ1

� @WNðzkðq;pÞÞ
@zk

� �
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ðkBT Þ2
D�

N

s
�ðtÞ: ð6Þ

The coe±cientD �
N represents the transport di®usivity [23]. For interacting particles,

this coe±cient di®ers from a simple product ND between the number of ions N and

di®usivity D given in [17].

Applying the chain rule and making use of the de¯nitions (3)–(4), one arrives at

q
::
N ¼ � kBT

mD �
N

q
:
N � 1

m

@WN

@qN
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ðkBT Þ2
D�

N

s
�ðtÞ;

p
::
k ¼ � kBT

mD �
N

_pk �
1

m
2
@WN

@pk
� @WN

@pk�1

� @WN

@pkþ1

� �
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ðkBT Þ2
D�

N

s
�ðtÞ:

ð7Þ

The above equations apply to the di®usion of a QP consisting of a ¯xed number of

ions. However, during permeation this number varies. For instance, the knock-on

mechanism, when an incoming ion causes the furthermost one to leave the channel,

appears to be inherent to the KcsA potassium channel [19]. The non-constant N has

two important consequences. First, it implies that the set of energy landscapes WN

for a QP is discrete, as we demonstrate explicitly in Sec. 3. Secondly, the discrete

changes of pore occupancy lead to spatial jumps of the QP (Fig. 2(a)). The positions

of a QP before and after a jump are coupled [17]. For instance, for an N-ion QP

located at qN , the entry (exit) of an ion from side S relocates it to qNþ1 (to qN�1)

according to [17]

ion enters : qNþ1 ¼
NqN þ S

N þ 1
; ion exits : qN�1 ¼

NqN � S

N � 1
ð8Þ

as shown in Fig. 2(b). Thirdly, the di®usivity, charge, mass and e®ective potential of

the QP simultaneously change their values in a jump-like manner as well.

Figure 2(a) visualizes motion during a typical simulation. Following the trajec-

tories of single ions in the channel (black traces), one observes the centre-of-mass

dynamics according to Eq. (7) (red). Ionic di®usion results in the corresponding

di®usion of the QP. At approximately 0:5 ns after the initial time, one of three ions

escapes from the channel which results in the QP abruptly jumping to a new position.

Di®usion of the ion at the boundary back and forth for some time gives rise to a series

of jumps of the QP. These jumps cease once the ion ¯nally leaves the neighborhood of

the channel and travels further into one of reservoirs.

From the Potential of the Mean Force to a Quasiparticle's E®ective Potential in Narrow Ion Channels
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The correlation coe±cients between coordinates are found to be within

½0:75; 0:85�. These high values con¯rm that the strong ion–ion interaction results in

high correlation of the individual ions and their centre of mass, the QP.

Figure 2(b) represents Eq. (8) for the QP's coordinates immediately before and

after a jump. Depending on the side of the entry/exit, the positions of the QP before

and after form two parallel lines. The non-uniform distribution of original and ¯nal

positions is due to the presence of interactions, and their centroids de¯ne which

transition occurs. For instance, a 3-ion QP resides in two more probable positions

(maxima of distributions in (c–d)). This means that the three-ions are located closer

to the inner side of the channel, and one would expect the innermost ion to leave the

channel. This does happen (transition 3 ! 2, red square), with the QP relocating to

the centre.

We also note that in the KcsA selectivity ¯lter Kþ-ions reside at the binding sites

formed by carbonyl oxygen atoms [19]. Strong interactions with the latter de¯ne the

localization of individual ions very precisely [4, 5, 9]. The exact localization of in-

dividual ions results in a much sharper, almost discrete, distribution of QP during

permeation.

(a) (b)

(c)

(d)

Fig. 2. (a) Example of QP motion in Brownian dynamics simulations, illustrating a 3-ion QP that

evolves into a 2-ion QP. Individual ionic trajectories (black and grey traces) result in the motion of their

corresponding QP (red). At time t � 0:5 ns the rightmost ion leaves the channel; two ions remain, and

the QP consequently jumps from q3 to a new position q2. (b) The connection between the QP coor-
dinates before (plotted on the abscissa) and after (on the ordinate) a jump. Each BD data point

describes a single jump q3 to q2 (a circle) or q2 to q3 (a cross). The set of q3 to q2 points fall on the steeper

pair of parallel lines, each point corresponding to an individual ion's entry/exit through either the left
(dashed lines) or the right (solid lines) edge of the channel, as illustrated in the inset where individual

ions are grey and the larger orange circle represents the QP. The set of q2 to q3 points fall on the similar

but shallower pair of lines as described. In each case, the lines represent the theoretical predictions of

Eq. (8). The red square indicates the q3 to q2 jump shown in panel (a), when the rightmost ion exits the
channel (pale gray trajectory). (c) and (d) show the equilibrium distributions for 2-ion (orange) and

3-ion (blue) QPs.

M. L. Barabash et al.
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2.3. Coupling PMF WN(r1,r2, : : :) to the e®ective potential U eff

Equations (7) describes the dynamics of the position q of the QP, but still contains

ion–ion distances p. To simplify Eqs. (7) further, the underlying properties of

interactions in the channel must be discussed. Due to the strong interaction between

ions, the relative distances pm reach their equilibrium values rapidly, while the centre

of mass moves adiabatically [17]. This allows one to introduce the equilibrium dis-

tribution of mutual distances p, in terms of the position qN of the QP,

�f ðqN ; fpkgÞ ¼
e�WN ðqN ;pÞ=kBTR � � � R e�WN ðqN ;pÞ=kBT QN�1

m¼1 dpm
: ð9Þ

Utilizing the equilibrium property (9), we multiply both sides of Eq. (7) by the

distribution function (9) and integrate over all fpkg. We also rewrite Eq. (5) in

overdamped form. This yields the Langevin equation for the expected position of the

QP hqi

hq:Ni ¼
D�

N

kBT
F eff

N þ ffiffiffiffiffiffiffiffiffiffiffi
2D�

N

p
�ðtÞ ð10Þ

with

F eff
N ¼ � dU eff

N

dq
¼ �

Z
@WNðqN ;pÞ

@qN
�fNðqN ;pÞ

YN�1

m¼1

dpm: ð11Þ

In the integral above one has to ensure that the coordinates of individual ions

xkðq;pÞ lie inside the channel.

Equation (11) is the main result of this paper. It explicitly couples the PMF WN

and the e®ective potential U eff
N for a QP whose dynamics evolves according to

Eq. (10). Thus, the notion of QPs reduces the many-body problem (1) to e®ective

one-body motion. Moreover, the coupling with MD by means of a PMF allows one to

introduce atomistic details of the channel structure. The corresponding probabilistic

description, given by the coupled di®erential Chapman–Kolmogorov equations, will

be published elsewhere.

2.4. Simplifying assumptions for BD modeling

In order to verify the applicability of Eq. (11), we run Brownian dynamics simula-

tions in the toy model of ion–ion and ion-channel interactions proposed in [17]. This

model envisages N ions interacting with each other and with the channel, the energy

PMF of the system being given by

WN ¼
XN
m¼1

UðzmÞ þ
XN
k>m

V ðjrm � rkjÞ
" #

: ð12Þ

The energy comprises the ion-channel interaction

UðzÞ ¼ �U0 e�ðz=aÞ2 ð13Þ

From the Potential of the Mean Force to a Quasiparticle's E®ective Potential in Narrow Ion Channels
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and the ion–ion potential

V ðrÞ ¼ c1c2e
�r=d

4��0�r
þ F0r0

9

r0
r

� �
9
; ð14Þ

where the ¯rst term represents the screened Coulomb interaction [17] with shielding

constant d and dielectric permittivity �, and ionic charge c, while last term includes

short-range repulsion between ions at small distance [24]. The parameters take the

following values: a ¼ 9 Å, d ¼ 2:8 Å, U0 ¼ 10:5 kBT , F0 ¼ 2� 10�10 N, r0 ¼ 2:8 Å,
� ¼ 1 inside the channel and � ¼ 80 in the bulk, D ¼ 2� 10�9 m2/s. We consider the

case of zero applied electrostatic ¯eld.

The force Eq. (11) acting on the QP reduces to

F eff
N ðqNÞ ¼ �

Z
@UðzmðqN ;pÞÞ

@qN
�f ðqN ;pÞdp: ð15Þ

The toy model (12) simpli¯es the comparison of the analytical calculations Eq. (15)

with the PMF WN computed [25] in simulations from the equilibrium distributions

PN via

WN ¼ �kBT logPN þWoff ð16Þ
up to an arbitrary o®setting constant Woff . We consider explicitly the two distinct

PMFs when there are either 2 or 3 individual Kþ ions in the channel.

2.5. Brownian dynamics simulation details

We consider two ionic species of opposite charge (Kþ and Cl�) in contrast to [17].

The simulation domain (Fig. 1, left) includes the channel (narrow cylinder) of length

4 nm and two reservoirs. The radius of each reservoir is 2 nm, and its height is 2 nm.

In the ¯lter, a harmonic radial potential (k ¼ 10 kBT/Å2) is applied to ensure that

ions move one-dimensionally. A harmonic repulsive ¯eld is applied when an ion

approaches a domain boundary or the membrane closer than 0.3 Å.
The equations of motion of individual ions Eq. (1) are solved numerically using

the method of [20]. This o®ers third-order accuracy and does not suppose any re-

striction on the time step �t, which is �t ¼ 0:2 ps. The forces acting on individual

ions are calculated from Eq. (2). Each simulation covered 10	s of the ion's dynamics.

At small distances, large forces may develop due to the presence of the Coulomb

and strong repulsion terms in Eq. (14). Straightforward application of the integra-

tion scheme will lead to so-called long jump exceptions [26]. To accommodate these,

an adaptive time step was used, namely, when the distance r between ions became

smaller than a threshold value r0 ¼ 2:8 Å, the Euler scheme with the time step at the

next iteration was �t� ¼ �tðr=r0Þ
. As the forces grow as 1=r10 (see Eq. (14)), the

condition 
 > 10 should be applied. We chose 
 ¼ 14 as a trade-o® between accuracy

and computational speed, although other choices are admissible as well. In the vast

majority of cases, one adjustment su±ces to unravel the ions, and the next iteration

runs with the standard time step �t. The fraction of corrected steps was < 0:1%.
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The number of ions in the simulation was maintained constant, with stochastic

boundary conditions applied [27]. This meant that, when an ion crossed the channel,

say from the right, leaving it on the left, a leftmost ion from the left reservoir was

transplanted to a randomly chosen rightmost position of the right reservoir.

3. Simulation Results

In order to calculate the e®ective potential from Eq. (11), one has to transform the

coordinates fzmg ! fqN ;pg and thus derive WNðqN ;pÞ. This method becomes at-

tractive in the light of modern front-end studies of nanodevices which rely heavily on

MD. Thus, the PMF maps for many nanoscale systems have already been built.

(a) (b)

(c) (d)

Fig. 3. Two-dimensional (left column) and three-dimensional (right column) PMFs WN , derived from

BD simulations, represented in terms of the coordinates of individual ions (top row) and QP (bottom row),
the signi¯cance of the colours being indicated by the colorbar. Slices of 3D PMFs are shown. Orange sleeves

trace the surface of constant potential energy 1kBT . The permeation paths are indicated by black lines.
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On the top row of Fig. 3 we illustrate the PMFs of Eq. (12), obtained from

BD simulations for two (a, b) and three (c, d) ions. Between jumps, ions move along

the permeation pathway (shown by a solid black line). For instance, considering a

two-ion case, an entering ion pushes its neighbor, so that the latter eventually leaves

the channel. Theoretical and simulation predictions match well (not shown), as they

do in Figs. 1, 2 of [16].

Under the coordinate transformation Eq. (3), the PMFs from the top row in Fig. 3

are transformed into the PMFs of a QP, bottom row. The two-ion permeation

process outlined above can now be reinterpreted in terms of permeation by a

QP. Following the path on Fig. 3(c), one ¯nds that the distance between ions

decreases, passes through a minimum and then increases again, being accompanied

by the overall displacement of the QP to the right. The spatial displacement of the

QP eventually leads to charge translocation through the ¯lter, i.e., to the electric

current.

Finally, we compute the e®ective potentials U eff
N . As shown in Fig. 4, the imple-

mentation of formula (11) shows very good agreement between BD simulations and

the theoretical predictions Eq. (15). One can see that the 2-ion e®ective potential

(solid blue line) inherits the minimum from the 1-ion potential well U0 (solid gray

line), but becomes shallower and wider. This occurs due to the repulsive interactions

which increase the ion–ion distances. Furthermore, the 3-ion e®ective potential (solid

black line) become even wider and gains two local minima located around �0:7 nm.

The increased width of the e®ective potential and its °atness imply that the QP is

less localized. This energy landscape thus de¯nes the spatial range over which the

charge is transferred during a permeation event.

Fig. 4. The e®ective potential U eff
N calculated from the BD simulations using Eq. (11) (dots and crosses),

and theoretically via Eq. (15) (solid lines), for the QP consisting of 1, 2, and 3 individual ions. U eff
1 (solid

gray line) coincides with U0 in Eq. (13). This diagram demonstrates how the multi-ion PMFsWN , shown in

Fig. 3, produce the 1D e®ective potential of the QP using formula (11).
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4. Discussion

We have derived the e®ective potential of a QP [17] from the potential of the mean

force [6]. The notion of a QP allows one to reduce the collective motion of strongly

interacting ions to the motion of a single particle in this e®ective potential. The

inclusion of the PMF couples the e®ective potential with the energy landscape seen

by the ions. Thus, the dynamics of the QP can now be connected to the structure of a

real channel.

Application of the derived relation, demonstrated on a toy analytical model of

interactions in the KcsA channel, enabled comparison of separate 2- and 3-ion an-

alytical PMFs with those obtained from Brownian dynamics simulations, and thus

simpli¯ed the comparison between theory and simulations. The method has direct

application to modern molecular dynamics studies of nanoscale systems, in which

PMFs are the primary targets for study of permeation mechanisms.

It was shown that during permeation a QP undergoes both di®usion and discrete

jumps in space, motion leading to the electric current ��� the major experimental

observable. The notion of the QP therefore couples the molecular dynamical calcu-

lations with the experimentally measured current-voltage and current-concentration

characteristics of the channel.

Further work being planned includes BD simulations incorporating MD-

generated PMFs in, e.g., the real KcsA channel [5, 9]. It will be important to see how

the Kþ/Naþ selectivity is re°ected in the properties of the QP. Another direction of

development is the connection with continuous methods. This suggests writing a set

of coupled di®erential Chapman–Kolmogorov (DCK) equations for each separate

occupancy state, describing di®usion and transitions of particles between states.

Integration of the set of coupled DCK equations along the channel axis would pro-

vide a further link to the kinetic rate theory [28].
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