
Emergent Scheduling of Distributed Execution
Frameworks

Paul Allan Dean
Supervisor: Dr. Barry Porter

School of computing and Communication
Lancaster University

Lancaster, UK
(p.dean1, b.f.porter)@lancaster.ac.uk

I. MOTIVATION & PROBLEM

Distributed Execution Frameworks (DEFs) provide a plat-
form for handling the increasing volume of data available to
distributed computational processes, forming the creation and
usage of a large number of DEFs for performing distributed
computations. For example, sorting and analyzing large data
sets through map and reduce operations [1], performing a set
of operations across points in a data stream to provide near
real-time analysis [2],and the training and testing of machine
learning models for varying methods of learning, such as,
supervised, unsupervised and reinforcement learning [3], [4],
exploiting the vast amounts of data available. However, this
has led to various DEFs becoming optimal for either fine or
course-grained computations. Prominent examples for course-
grained data-parallel DEFs are Apache Hadoop, utilising the
MapReduce programming model [5], and Apache Spark which
offered a significant performance increase over Hadoop for
iterative workloads while hindering the capabilities of handling
fine-grained tasks due to scheduling latency [1]. Whereas,
Apache Flink ,offers real-time processing of workloads as data
streams, while sacrificing the locality aware data-parallelism
offered by Spark [2].

Furthermore, Ray also highlights the issues presented by
Sparks inability to handle latency sensitive tasks and the ever
growing types of workloads available and offers a low-latency
DEF while again similar to Flink, Ray sacrifices data-locality
hindering performance for data-parallel computation [4]

The increasing number of varying frameworks, designed for
different workloads, illustrate the problem DEFs are facing
with meeting the changing computational needs of organi-
sations and current DEFs inability to adapt to a new set of
requirements.

Therefore, this PhD will focus on overcoming the issue of
trading performance for differing workloads by exploiting the
capabilities presented by emergent software systems which
learn how to assemble and re-assemble themselves in response
to their current deployment conditions and input pattern [6].
This allows the creation of a component based DEF capable of
altering both the local behaviour of a DEF (i.e. Local Sched-
ulers and placement polices within a centralised scheduler) to
potentially improve the performance of single DEF as well as

global behaviour of a DEF, for example the adaptation of a
centralised to two-level scheduler.

The creation of an emergent DEF presents the problem of
identifying points during the execution of a workload which
would signify when a change in behaviour is required to
improve a specific performance metric (E.g. Job Completion
Time). Therefore, the projects key problem to be addressed
is the exploration of a learning agent capable of learning,
identifying and selecting the optimal composition for master
and worker nodes at runtime. The problem consist of several
issues which are to be addressed during the project, (i) finding
an agent capable of exploring the given search space of
available compositions and identifying the optimal usage of
each. (ii) The workloads used to explore the performance of
compositions are stochastic, often non-repeating and their ar-
rival sporadic, as such a method for overcoming the presented
challenge will be investigated. (iii) The learning process is
required across all nodes within a given cluster and each node
may present differing types and quantity of tasks dependent
on the global scheduler. All of which is to be performed
for each DEF framework available and presents the problem
of avoiding the need to re-learn previously explored compo-
nents/compositions performance for a given workload/tasks.
Thus emphasizing the need for the transfer of learning between
DEFs to avoid the costly process of re-training the agent [7].

II. CONTRIBUTION & OBJECTIVES

The PhD intends to deliver two contributions, the first, a
Emergent DEF capable of swapping components at runtime
and allowing the optimal composition of components for
a given workload to be assembled during runtime. Which
would produce a DEF capable of avoiding the inherently
fixed nature of previously discussed DEFs. Second, a learning
agent capable of learning within a distributed environment
and transferring the previously learned compositions and their
performance to an altered set of components and available
compositions. This is particularly important in the context of
DEFs due to the sporadic, non-repetitive nature of workloads,
which makes typical reinforcement learning approaches diffi-
cult to use.



III. PRELIMINARY RESULTS & METHODOLOGY

The rationale behind the Initial experiments is to understand
whether or not divergent optimal compositions exist for com-
mon kinds of DEF workload. Analysis of preliminary results
signifies points where a learning agent may adapt compositions
for improved performance and forms the motivation for the
PhD’s research into an emergent solution. Experiments will
be performed across 5 nodes, 2 workers comprised of a singe
Intel Xeon Processor E3-1280 v2 with 4 cores (8Threads)
and 16GB memory with an additional 2 workers and master
node consisting of a Intel(R) Xeon(R) CPU E5-2620 v4 @
2.10GHz with 8 cores (16 threads) and 16GB memory. The
experiments will measure the total job completion time for a
three workloads for three differing cluster resource schedulers,
FIFO, Naive Fair and Dominant Resource Fairness [8], [9].
Each workload consists of 20 applications with differing
percentages of fine and course granularity tasks. Workload 1
consists of 80% course grained applications and remainder
fair. workload 2 is 80% fine grained and 20% course creating
a heavy-tailed distribution (large portion of work is in a small
percentage of the workload). Finally the third consist of 50%
fine and course. Resource requirements for course grained
applications vary between 2-4 cores and 2-6 Gigabytes of
memory. Whereas fine-grained tasks are between 1-2 cores
and 1-2 Gigabytes of memory. Each workload represents a
set of tasks representing common workloads encountered by
various previously discussed DEFs.

IV. FUTURE WORK & RESEARCH PLAN

Future work consist of the completion of the emergent DEF
and the creation of a learning agent to address the previously
discussed problems.

Completion of the DEF entails adding more behaviours
with significant differences (E.g. real-time data processing of
data streams & Machine Learning model training), providing
additional compositions to address a more diverse set of
workloads building upon the current set of components for
common DEF workloads. In addition, to exploring potential
learning agents for assessing the capabilities of compilations,
addressing the first of the previously discussed problems.

Initial exploration will investigate the use of Reinforcement
Learning agent and techniques for handling the previously
mentioned characteristics of workloads which create difficul-
ties in learning optimal compositions, with the investigation of
variance reduction techniques [10], presenting improvements
in the training of a reinforcement learning agent using input
sequences which may be non-repeatable. Therefore, providing
an initial avenue of exploration for addressing the second
previously mentioned problem.

Subsequently leading to the final avenue of future work
exploring the application of transfer learning techniques to
address the problem of a changing state and action space
across DEFs, with the motivation of addressing the third stated
problem of reducing the need to re-learn previously explored
assembled compositions.

Fig. 1. PhD research plan

A. Research Plan

The following section summarizes milestones within the
PhD research plan, with each milestone progressing the PhD
project and finally aiding in forming the doctoral Thesis
(Figure 1).

August 31, 2019:
Additional components addressing a more diverse set
of workloads, for example Unsupervised Learning
and Stream based computation. Providing a DEF a
learning agent may exploit and re-assemble

August 31, 2020:
A Learning agent has been selection from the initial
exploration and has been implemented, trained and
tested across a single DEF addressing the challenges
of learning from given workloads

August 31, 2021:
Learning across all Distributed Execution Frame-
works has been addressed through the exploration
and implementation of a transfer learning technique
to provide a generalized learning algorithm for the
problem space.

March 30, 2022:
Completed Doctoral Thesis

ACKNOWLEDGMENT

This work was partially funded by a PhD studentship from
Lancaster university Faculty of Science and Technology, and
by the UK Leverhulme Trust via the Self-Aware Datacentre
project, grant RPG-2017-166.



REFERENCES

[1] M. Zaharia, M. Chowdhury, M. J. Franklin, S. Shenker, and
I. Stoica, “Spark: Cluster computing with working sets,” in
Proceedings of the 2Nd USENIX Conference on Hot Topics
in Cloud Computing, ser. HotCloud’10. Berkeley, CA, USA:
USENIX Association, 2010, pp. 10–10. [Online]. Available:
http://dl.acm.org/citation.cfm?id=1863103.1863113

[2] P. Carbone, A. Katsifodimos, S. Ewen, V. Markl, S. Haridi, and
K. Tzoumas, “Apache flink: Stream and batch processing in a single
engine,” IEEE Data Eng. Bull., vol. 38, pp. 28–38, 2015.

[3] X. Meng, J. Bradley, B. Yavuz, E. Sparks, S. Venkataraman,
D. Liu, J. Freeman, D. Tsai, M. Amde, S. Owen, D. Xin,
R. Xin, M. J. Franklin, R. Zadeh, M. Zaharia, and A. Talwalkar,
“Mllib: Machine learning in apache spark,” J. Mach. Learn. Res.,
vol. 17, no. 1, pp. 1235–1241, Jan. 2016. [Online]. Available:
http://dl.acm.org/citation.cfm?id=2946645.2946679

[4] P. Moritz, R. Nishihara, S. Wang, A. Tumanov, R. Liaw,
E. Liang, M. Elibol, Z. Yang, W. Paul, M. I. Jordan,
and I. Stoica, “Ray: A distributed framework for emerging
AI applications,” in 13th USENIX Symposium on Operating
Systems Design and Implementation (OSDI 18). Carlsbad, CA:
USENIX Association, 2018, pp. 561–577. [Online]. Available:
https://www.usenix.org/conference/osdi18/presentation/moritz

[5] J. Dean and S. Ghemawat, “Mapreduce: Simplified data processing
on large clusters,” in OSDI’04: Sixth Symposium on Operating System
Design and Implementation, San Francisco, CA, 2004, pp. 137–150.

[6] R. R. Filho and B. Porter, “Defining emergent software using
continuous self-assembly, perception, and learning,” ACM Trans. Auton.
Adapt. Syst., vol. 12, no. 3, pp. 16:1–16:25, Sep. 2017. [Online].
Available: http://doi.acm.org/10.1145/3092691

[7] M. E. Taylor and P. Stone, “Transfer learning for
reinforcement learning domains: A survey,” J. Mach. Learn.
Res., vol. 10, pp. 1633–1685, Dec. 2009. [Online]. Available:
http://dl.acm.org/citation.cfm?id=1577069.1755839

[8] M. Zaharia, D. Borthakur, J. Sen Sarma, K. Elmeleegy, S. Shenker,
and I. Stoica, “Delay scheduling: A simple technique for achieving
locality and fairness in cluster scheduling,” in Proceedings of the
5th European Conference on Computer Systems, ser. EuroSys ’10.
New York, NY, USA: ACM, 2010, pp. 265–278. [Online]. Available:
http://doi.acm.org/10.1145/1755913.1755940

[9] A. Ghodsi, M. Zaharia, B. Hindman, A. Konwinski, S. Shenker, and
I. Stoica, “Dominant resource fairness: Fair allocation of multiple
resource types,” in Proceedings of the 8th USENIX Conference
on Networked Systems Design and Implementation, ser. NSDI’11.
Berkeley, CA, USA: USENIX Association, 2011, pp. 323–336.
[Online]. Available: http://dl.acm.org/citation.cfm?id=1972457.1972490

[10] H. Mao, S. B. Venkatakrishnan, M. Schwarzkopf, and M. Alizadeh,
“Variance reduction for reinforcement learning in input-driven environ-
ments,” in International Conference on Learning Representations, 2019.
[Online]. Available: https://openreview.net/forum?id=Hyg1G2AqtQ


