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ABSTRACT

This study investigates the potential use of hyperspectral and thermal remote sensing 

for the early pre-visual detection and quantification of plant stress caused by oil pollution. 

Further, it examines the potential for these techniques to discriminate between oil pollution 

and two typically encountered plant stresses of waterlogging and water deficit. Results show 

that oil pollution, waterlogging and water deficit significantly decreased the physiological 

functions of plants and can result in pre-visual changes in spectral and thermal responses. 

Various spectral indices such as (R755-R7i6)/(R755+R7i6) and R800/R6O6 were efficient for the 

early detection of oil-induced stress in maize (up to 10 days earlier) and bean (up to 4 days 

earlier), respectively. These indices and other simple ratios of reflectance such as R673/R545 

were also sensitive in the early detection (up to 6  days earlier) of stress symptoms caused by 

waterlogging in bean. The canopy absolute temperature and thermal index (IG) were good 

indicators of oil related stress in bean, but were insensitive to waterlogging. Absolute leaf 

temperature had minimal potential for detecting oil pollution in maize. While the spectral 

indices lacked ability for the early detection of stress caused by water deficit at the leaf scale 

in both maize and bean, absolute temperature was effective in this regard irrespective of 

scale of measurement. Results show that by combining spectral and thermal information, oil 

pollution can be discriminated from waterlogging or water deficit treatment. This study 

concludes that hyperspectral and thermal remote sensing have the potential to detect and 

quantify plant stress caused by oil pollution and it is possible to discriminate between this 

and other common stresses. However, further work is needed to refine and operationalise the 

approach, and the problems and challenges associated with this are presented and discussed.
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Chapter 1

INTRODUCTION

1.1 Background

Oil pollution is noted as one o f the major causes of environmental degradation 

and can arise from spills o f crude and refined oil in aquatic and terrestrial environments 

(Ogboghodo et al., 2004). Possible sources include accidental oil well blow out, loading 

activities of oil tanks, tank washing activities o f ocean going vessels, port and harbour 

run off from pipeline leaks and road tanker accidents. Equipment failure such as 

malfunctioning, overloading, corrosion or abrasion of parts has also increased the 

incidence o f oil spills (Nwankwo and Ifeadi, 1986). In recent years, wilful vandalism of 

oil pipelines, particularly in some locales, has also contributed to the menace. For 

example, vandalism is a leading cause of oil spills in Nigeria today (Yo-Essien, 2008). 

The environmental, safety, economic and health implications of oil pollution cannot be 

over emphasised. Some hundreds of thousands barrels of oil are lost to the environment 

due to oil spill incidents (Aroh et al., 2010). Available statistics show that, 

approximately three million, one hundred and twenty one thousand, nine hundred and 

ten barrels of oil were lost between 1976 and 2005 as a result of oil spills. Many lives 

have been claimed by oil spill disasters. For example, the Jesse (in Niger Delta) spill 

incident o f 1998 resulted in a fire incident that claimed over a thousand lives and raved 

the fragile ecosystem (Yo-Essien, 2008). People have contacted various illnesses and 

diseases through drinking polluted water and eating contaminated food (Aroh et al.,
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2010, Odu and Offodum, 1986). Furthermore, damage done to fishponds, nets and traps 

was put at over 2 million naira (Odu and Offodum, 1986).

Contamination of soils with petroleum products is becoming an ever-increasing 

problem, especially in the light of several breakdowns o f oil pipelines and wells reported 

recently (Wyszkowski et al., 2004). For safety and security reasons, oil facilities such as 

pipelines are kept constantly under surveillance. This is done in several ways such as 

foot patrols by appointed officials and intermittent aerial surveillance particularly the 

critical sections of the pipelines using manual observations from aircraft. The overall 

aim is to guard the pipeline from damage and to look out for possible leaks. Despite the 

security and safety measures in place, reports o f oil leaks and spills with disastrous 

effects continue to rise rapidly, especially in some parts of the world. For example, 

Nigeria which is the largest oil producer in Africa and the sixth largest in the world 

recorded a total number of 4,835 oil spill incidents between 1976 and 1996 and 2,097 

between 1997 and 2001 (Nwilo and Badejo, 2004). In addition, 253, 588, and 419 oil 

spill incidents were reported in 2006, 2007, and first two quarters of 2008, respectively 

(Edem, 2008).

The aerial surveillance of oil pipelines and facilities is costly, has flight risks 

associated with low level aircraft and relies absolutely on the accuracy o f the pilot 

(Smith et al., 2004). Foot patrol is tedious and time consuming and cannot cover a large 

area. It is also logistically difficult in inaccessible areas and hostile environments. If not 

detected and stopped early, oil leaks can develop into massive spills, leading to fire 

outbreak which can be very disastrous. This has safety, health, economic and 

environmental implications including soil contamination, destruction o f vegetative
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ecosystems and arable crops/lands, contamination o f surface and underground water, air 

pollution and extinction of endangered species. Thus, given the severe limitations and 

demonstrable ineffectiveness of current surveillance approaches, it is imperative that a 

technique is developed for frequent, accurate and spatially-comprehensive monitoring 

and detection of oil pollution.

1.2 Effects of oil pollution on plants: threats and opportunities

Plants are extremely important in the lives of people throughout the world. 

People depend upon plants to satisfy such basic human needs such as food, clothing, 

shelter and health care. These needs are growing rapidly because of a growing world 

population, increasing income and urbanisation. Unfortunately under field conditions, 

plants are constantly vulnerable to a wide range of biotic, abiotic and anthropogenic 

stress inducing factors within the growth environment, which consequently alter their 

physiological and biochemical functioning. In regions of oil exploration and 

exploitation, oil pollution regularly affects subsistence crops and natural vegetation 

growing across a range of hydrological settings from wetlands through to arid 

environments. Previous investigations have found that plants are influenced 

considerably by hydrocarbon pollution. Thus, identification of the best approaches for 

monitoring and detecting the menace of oil pollution in the environment remain a 

subject o f growing concern.

Today, there is a growing interest in the study o f plant stress caused by various 

agents through a multitude of different mechanisms, such as soil oxygen depletion, 

increased carbon dioxide (CO2), reduced water uptake and toxic effects using remote
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sensing techniques (e.g. Masoni et al., 1996; Penuelas et al., 1997; Riedell and 

Blackmer, 1999; Else et al., 2001; Wyszkowski et al., 2004; Dobrowski et al., 2005; 

Thomas, 2005; Yordanova et al., 2005; Ladjal et al., 2007; Graeff and Claupein, 2007). 

The logic behind the approach is that unfavourable growing conditions result in 

morphological, physiological and/or biochemical changes that impact on the manner 

with which plants interact with light (Liew et al., 2008). For example, changes have 

been observed in biochemistry and reflectance in vegetation growing near natural 

hydrocarbon seeps (Lang et al., 1985, Bammel and Birnie, 1994, Yang et al., 1999) and 

leaking gas pipelines (Pysek and Pysek, 1989, Smith et a l, 2000, Smith, 2002). Thus, 

there may be some potential for bio-detection of oil pollution using hyperspectral remote 

sensing to measure the changes in vegetation reflectance due to oil-induced stress.

Changes in the rate of transpiration by plants can also be exploited as an 

indicator of developing stress (Liew et al. 2008), with thermal imaging providing 

information on the effects of stress on stomatal related parameters (West et al. 2005). It 

is known that oil contaminated soil can indirectly induce water stress in plants. Jong 

(1980) observed that oil markedly decreased water uptake by wheat from contaminated 

soil layers or from deeper water tables below. In studying the effects of soil 

contamination with diesel oil on yellow lupine, Wyszkowski et al. (2004) found that as 

oil penetrates soil it blocks air spaces and thereby decreases the fluxes o f air and water, 

leading to a decrease in crop yield. This presumably is due to anoxia, decreased nutrient 

and water uptake, or a combination of all three. Since oil contaminated soil can induce 

water stress in plants, thermal remote sensing techniques are potentially o f value as an 

indicator of oil-induced stress. In combination, several remotely-sensed spectral and
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thermal parameters have been identified as viable indicators o f plant stress, but their 

potential in the early detection of oil-induced stress is poorly understood.

In the real world, other natural stress occurring factors such as waterlogging and 

water deficit affect plants and this can occur separately or concurrently with oil 

pollution. Land degradation and serious environmental and poverty impacts have been 

associated with waterlogging (World Bank, 1994). Waterlogging can cause stress in 

plants by displacing the oxygen in soil by filling the soil spaces with water and thus 

limiting oxygen supply to roots and preventing carbon dioxide from diffusing away 

(Smith, 2004a). The principal causes of waterlogging are irrigation without drainage, 

over-irrigation, low delivery efficiency o f the irrigation and malfunctioning of the 

drainage system (Mirani and Memon, 2001). Waterlogging is a typical problem in many 

river valleys and delta areas where farmlands are constantly affected. For example, in 

many river valleys and deltas at the western foot o f the Andes along the coast of the 

Pacific Ocean more than 30% of the agricultural land is affected by waterlogging due to 

irrigation of the higher-lying lands (De la Torre, 1987). Oils are also found in delta 

regions and thus, there is the possibility that oil pollution which can arise from 

exploration and exploitation activities and waterlogging can affect plants in such regions 

singly or collectively. Thus, there is the need to develop an approach that can be used in 

discriminating between oil pollution and waterlogging. It has been found that 

waterlogging can instigate malfunctioning of the root thus, it is expected that such 

conditions could result in reflectance changes commonly related to plant stress, such as 

increased reflectance in the chlorophyll and water absorption regions (Carter, 1993; 

Lichtenhaler et a l,  1996). Indeed, some studies have shown that waterlogging can be
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detected in plants using changes in reflectance spectra (Anderson and Perry, 1996; 

Pickering and Malthus, 1998; Smith et al., 2004a). However, there is a poor 

understanding of the capabilities of thermal remote sensing in this context.

It is generally known that water is a vital component for all forms of life but 

unfortunately, water deficit is identified as one o f the major naturally occurring stress 

factors. In plants, water plays a key role in photosynthesis and the movement of 

nutrients; as water evaporates from the surface of leaves, it pulls water upwards from the 

root system thus, transporting nutrients and other solutes to the above ground 

components of the plant (Audesirk and Audesirk, 1999). When water is in short supply, 

plants become stressed as the amount of water taken up by the roots is unable to keep up 

with the rate of evaporation of water from the leaves. Thus, the leaves of the plant begin 

to wilt as the amount o f water present within the leaf tissue decreases. Water stress is 

typically well developed and negatively affecting the plant before it is detected visually, 

as visual detection of water stress already indicates high levels of water stress (Griffeth 

III, 2009). Therefore, there is the need for early detection of stress caused by water 

deficit in order to facilitate timely delivery of remedial measures which can enhance 

plant growth and productivity. Also, since water deficit is an important biotic stress 

agent that can affect plants singly or concurrently with other stresses such as oil 

pollution, therefore, there is the need to develop an approach that can be used in 

discriminating between them.

Recent applications o f thermal imaging techniques have shown that water stress 

can be detected through an increase in leaf temperature as a result o f stomatal closure in 

response to soil drying during a water deficit (Jones, 1999; Grant et al., 2006). Using
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such techniques, Olga et al., (2007) were able to distinguish between irrigated and non­

irrigated grapevine canopies, and even between different deficit irrigation treatments. 

When leaf or canopy photosynthesis is compromised due to stress, stomatal conductance 

is expected to decrease because of a decrease in demand for atmospheric CO2 (Farquhar 

and Sharkey, 1982). If  transpiration is restricted due to stomatal closure, leaf 

temperatures will increase (Nobel, 1991; Pezeshki and DeLaune, 1993) because o f less 

cooling by transpired water as it evaporates from the leaf surfaces. Thus, changes in leaf 

temperature may occur as a direct effect of soil water deficit or as an indirect 

consequence o f a decrease in photosynthesis that may result from a range of different 

types o f stress.

Hence, while spectral and thermal sensing individually have been shown to be 

sensitive to different forms of plant stress, there is little evidence with respect to oil 

pollution. Moreover, with these water-related stresses being commonplace, it is likely 

that oil-induced stress will occur in combination with water-related stress. Yet, little 

work has been done in the use o f remote sensing technology for detecting, quantifying 

and discriminating between these stresses.

1.3 Research aims and objectives

Remote sensing technology has been identified as a useful tool for monitoring 

vast areas of land surface and it is also viable in ecological studies such as in monitoring 

plant health status. For early detection and accurate monitoring o f oil pollution, there is 

the need to develop a system that is sensitive to physiological changes in plants prior to 

visual stress observation. Thus, this study investigated the potential of hyperspectral
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reflectance and thermal information for detecting and quantifying plant stress induced by 

oil pollution. Furthermore, it examined the potential of these remote sensing techniques 

for discriminating between oil-induced stress in plants and other stresses caused by 

waterlogging and water deficit. In order to achieve this aim, the study was motivated by 

the following four scientific questions:

■ What is the optimum remotely-sensed index for early detection of oil-induced 

stress in plants at lethal and sub-lethal levels?

■ What is the optimum set of spectral and thermal responses that can be used for 

early, non-destructive quantification and discrimination between oil pollution 

and waterlogging stress in plants?

■ What is the optimum set o f spectral and thermal responses that can be used for 

early, non-destructive quantification and discrimination between oil pollution 

and water deficit stress in plants?

■ How consistent are the spectral and thermal responses of plants to oil and water 

deficit stress between species and across leaf and canopy scales?

1.4 Research outline

The thesis commences with a literature review as presented in chapter 2. The 

details about the effect o f oil on soils and plant are discussed. Specific reference is made 

on the use o f remote sensing techniques for monitoring the effects o f a wide range of 

stress factors that affect plant, and to provide the conceptual basis for developing 

techniques for remote detection of oil-induced stress. Generally, the chapter aims to 

understand the background theory and general discussion going on in this area of study



and to identify gaps that would ultimately be covered. Chapter 3 presents the general 

methodology adopted in this study. Chapter 4 starts with a pilot study with the aim of 

testing overall feasibility, logistics and some of the proposed experimental designs. 

Primarily, the impacts o f oil pollution on the physiological, optical, and thermal 

properties of maize (Zea mays L.) are investigated in this chapter. In chapter 5, the 

spectral and thermal response of stress in bean (Phaseolus vulgaris ‘Tendergreen’) 

canopies caused by oil pollution and waterlogging are explored with the aim of 

identifying the optimum set of responses that could be used for early, non-destructive 

quantification and discrimination between the two stresses. Chapter 6  exploits spectral 

and thermal responses of maize leaves for early detection and discrimination of stress 

caused by oil pollution and water deficit. In chapter 7, the spectral and thermal responses 

of bean for early detection and discrimination of stress caused by oil pollution and water 

deficit are explored with the aim of determining whether the responses translated from 

leaf to canopy scale. Finally, chapter 8  summarises the main conclusions of this study 

and presents a synthesis o f the whole thesis and suggestions for possible areas for further 

investigations.

9



Chapter 2

LITERATURE REVIEW

2.1 Introduction

Recent studies have identified remote sensing as a valuable tool for detecting oil 

spills in the environment. Remote sensing applications in spill detection have mostly 

been in the marine environment using a variety o f sensors operating across the optical to 

microwave domains. Consequently, there is a considerable body o f literature in this area. 

However, spill monitoring and detection in the terrestrial environment has received 

inadequate attention. However, to address some of the needs of agricultural, ecological 

and environmental sectors, earlier and on-going studies have led to quantitative 

estimation of the biochemical, biophysical, and physiological properties of plants using 

various remote sensing techniques. Information about these properties is generally useful 

in predicting the health status of vegetation. The emergence of hyperspectral remote 

sensing technology has further promoted applications in this area. The high spectral 

resolution data provided by hyperspectral remote sensing systems has created an 

opportunity for remote sensing of vegetation stress caused by various environmental 

factors in a way that was not possible using traditional broad band multispectral data. 

Environmental stressors are diverse in nature and range from biotic to abiotic factors. 

The focus of this review is on the use of remote sensing technologies for monitoring, 

and discriminating the effects o f these factors on plant, and to provide the conceptual 

basis for developing techniques for remote detection of oil-induced stress.
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2.2 Plants

Plants growing in a particular place play an essential role to humans and their 

environment. Plants are very crucial for a sustainable ecosystem, as they coexist and live 

inter-dependably with humans and animals. They provide a necessary habitat for 

wildlife populations and are the ultimate sources of metabolic energy for fauna. The 

Iowa Department o f Transportation (2007) noted that 25 percent o f all prescriptions 

written annually in the United States contain chemicals from plants and that many 

important drugs are yet to be discovered. In addition, about 98 percent of plant species 

are yet to be tested for their medical potential. Plants are good sources of some industrial 

products, they aid in erosion control and enhance both air and water qualities. They 

positively influence regional climate and plant communities form the basis for many 

important recreational activities.

2.2.1 Plant stress

Plant stress describes any unfavourable condition and environmental constraints 

that are faced by plants. Osmond et al. (1987) reasoned that plant stress has general 

connotations rather than a precise definition. Thus, while attempting to make plant stress 

a measurable and meaningful term, their study defined it as any factor that decreases 

plant growth and reproduction below the genotype’s potential. Similarly, Jackson (1986) 

defined plant stress as any disturbance that adversely influences vegetation growth. 

Potentially, adverse environmental conditions affect plant growth and development and
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trigger a wide range of responses, from altered gene expression and modifications in 

cellular metabolism to changes in growth rate and crop yields (Kacperska, 2004).

Plant fitness depends on acquiring sufficient resources for growth and 

reproduction. However, an optimal environment for plant growth varies with plant 

species and growing stage (Hashimoto, 1989) and there is an understanding that 

environmental stress may retard plant growth yet improve its quality. For example, 

Lichtenthaler (1998) suggested that a mild stress may activate cell metabolism and 

increase the physiological activity o f the plant, without causing any damaging effects 

even at a long duration. On the other hand, high stress will cause damage to the plant 

and induce early senescence and finally death if the stressor is not removed (Smith,

2002). An optimal environmental condition for plant growth is not defined because, as 

environmental conditions vary, so the adaptability o f various plant species to change 

varies.

Plants are constantly threatened by either nature or humans or both. Table 2.0 

illustrates examples o f natural and anthropogenic stress factors. Crude petroleum, 

petroleum by-products and heavy metals are the most prevalent industrial pollutants 

(Rosso et al., 2005). Previous investigations have found that hydrocarbon influences the 

soil and vegetation around hydrocarbon seepage (Noomen et al., 2003). Displacement of 

soil oxygen by natural gas leaking from pipelines into the soil was the main damaging 

effect on plant growth (Smith, 2002). Van Der Meijde et a l , (2004) found that fields 

directly above the gas pipeline show significant increase in vegetation stress possibly 

due to gas leaks. This is because one o f the major environmental problems related to 

pipelines is the leakage of hydrocarbons into the environment.
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Table 2.0 List of natural and anthropogenic stresses acting on terrestrial vegetation.

I. Natural stress factors:

• high irradiance (photoinhibition, photooxidation)

• heat (increased temperature)

• low temperature (chilling)

• sudden and late frost

• water shortage (desiccation problems)

• natural mineral deficiency (e.g. nitrogen shortage)

• long rainy periods

• insects

• viral, fungal, and bacterial pathogens

II. Anthropogenic stress factors:

• herbicides, pesticides, fungicides

• air pollutants (e.g., S02, NO, N 02, NOx)

• ozone (0 3) and photochemical smog

• formation of highly reactive oxygen species

• (102, radicals O2-  and OH*, H20 2)

• photooxidants (e.g. peroxyacylnitrates)

• acid rain, acid fog, acid morning dew

• acid pH of soil and water

• mineral deficiency of the soil, often induced by acid rain

• oversupply of nitrogen (dry and wet NO3- deposits)

• heavy metal load (lead, cadmium, etc.)

• spills from petroleum

• overproduction of NH4+ in breeding stations (uncoupling of 

electron transport)

• increased UV radiation (UV-B and UV-A)

• increased C 02, global climate change

Adapted from Lichtenthaler (1998)
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Hydrocarbons can establish locally anomalous zones that favour the development 

o f a diverse array o f chemical and mineralogical changes (Van Der Meijde et al., 2004). 

Thus, any vegetation present in these zones is likely to be influenced by the hostile and 

polluted environment. Furthermore, Godwin et al., (1990) found restricted growth and 

reproduction, and decreased number of individuals of plants subjected to natural gas 

leakage into the surrounding soil. Plant stress creates all manner of visible and invisible 

stress conditions such as etiolating, wilting, leaf colouring, stomatal closure, poor crop 

yield, and early senescence. Smith et al. (2005) recorded visible evidence in vegetation 

change around gas leaks. Unfortunately, stress conditions cannot be completely avoided 

due to the nature o f their causative factors. However, they could ultimately be mitigated 

if  detected on time.

2.3 Impact of oil on soils and plants

Oil is known to exert adverse effects on soil properties and plant communities 

(Osuji and Nwoye, 2007). Crude oil in soil makes the soil condition unsatisfactory for 

plant growth (De Jong, 1980), due to the reduction in the level o f available plant 

nutrients or a rise in toxic levels of certain elements such as iron and zinc (Udo and 

Fayemi, 1995). Beyond 3% concentration, oil has been reported to be increasingly 

deleterious to soil biota and crop growth (Baker, 1976; Amadi et al., 1993; Osuji et al., 

2005). Crude oil is composed of the following elements or compounds: Carbon -  84%, 

hydrogen -  14%, sulphur -  1 to 3% (hydrogen sulfides, sulfides, disulfides, elemental 

sulphur), nitrogen -  less than 1% (basic compounds with amine groups), oxygen (0 2) -  

less than 1% (found in organic compounds such as C 0 2, phenols, ketones, carboxylic
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acids), metals -  less than 1 % (nickel, iron, vanadium, copper, arsenic), salts -  less than 

1% (sodium chloride, magnesium chloride, calcium chloride) (Freudenrich, 2008).These 

compounds are largely responsible for changed fertility of soil (Tyczkowski, 1993; 

Iwanow et al., 1994) and properties which can result to damage of organisms such as 

plants growing therein (Figure 2.0). Soil fertility may be defined as the capacity of the 

soil to support the growth of plants on sustained basis under given conditions o f climate 

and other relevant properties of land (Aina and Adedipe, 1991). Loss of soil fertility and 

other forms of soil degradation are major problems associated with agricultural 

productivity in the oil producing areas of Nigeria (Osuji and Nwoye, 2007) perhaps, due 

to the frequent occurrence of oil spills in the environment. A study conducted for 

NEST/FORD FOUNDATION in the Niger Delta, NDES (1999) reported that soil 

fertility loss and declining crop yield were found to be indirect sources of pressure on 

natural resources and community structure, especially among the poor.

Figure 2.0 Schematic of plant canopies (a-f) and soil structure (g).
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2.3.1 Effects of oil on soil

Oil can change the mineralogy of the soil and can displace soil air, including the 

oxygen. Indeed, previous studies noted that oil leads to depletion o f oxygen or 

insufficient aeration in the soil (Rowell, 1977; De Song, 1980; Schumacher, 1996; 

Noomen et al., 2003) and prevents water from entering the soil layers (Wyszkowski et 

al., 2004). Soil fertility is influenced by the activity o f bacteria and fungi, thus, oxygen 

deficit in the soil gives rise to changes in the reduction-oxidation potential and soil pH. 

The pH o f the oil-impacted soils was found to be significantly lower than the 

uncontaminated soils (Osuji and Nwoye, 2007). This was attributed to possible 

disruption of leaching of basic salts which are responsible for raising pH in non­

contaminated soils. In general, these activities create imbalances in the metabolic 

functions of plant organisms, thereby introducing stress, as their normal growth and 

general health condition are disrupted. Soil - oxygen is further reduced by an increase in 

demand for oxygen brought about by the activities of oil-decomposing micro-organisms 

(Gudin and Syratt, 1975). Lee and Banks (1993) found that the microbial plate counts in 

petroleum contaminated vegetated soil were significantly higher than those of un­

vegetated contaminated soil. This indicates that plant roots stimulate microbial 

populations in polluted soils which promote degradation of contaminants. On the other 

hand, as the microbial population in the soil increases demand for oxygen also increases. 

Overall, soil aeration can be depleted if the rate at which oil gets into the soil is faster 

than the rate the oil is degraded by microbes.

Furthermore, when oil covers the soil surface, oxygen movement into the soil is 

restricted which can lead to more anaerobic soil conditions (Ranwell, 1968; Cowell.
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1969). Apparently, C 0 2 increases with decrease in 0 2 thus, depletion of 0 2 in the soil as 

a result of effects of hydrocarbon and activities of microbial will invariably lead to 

increased concentration o f C 0 2 in the soil (Hillel, 1998). Accumulation o f C 0 2 in the 

soil may affect the water permeability of roots more directly than 0 2 deficiency and a 

buildup o f inhibitory concentrations of ethylene in anaerobic soils may affect plant 

growth (de Wit, 1978; Trought and Drew, 1980a). Soil 0 2 depletion can disrupt root 

metabolism which, in turn, can affect the hormone balance of the shoot (Trought and 

Drew, 1980b). A number of factors such as soil type, soil organic matter, size fraction of 

soil mineral matter (Figure 2.0) and soil texture play significant roles in the fate of 

hydrocarbon in the soil and have extensively been reviewed elsewhere (Pezeshki et al., 

2000). Generally, oil has adversely affected soil drainage. Earlier studies found that oil 

reduced water infiltration (Toogood, 1977; Everett, 1978) in mineral soils and this was 

attributed to a decrease in soil permeability resulting from the formation of hydrophobic 

films on soil particles. Similarly, Gill et al. (1992) reported that fresh crude oil showed a 

coagulatory effect on the soil, binding the soil particles into a water impregnable soil 

block which seriously impair water drainage and oxygen diffusion. Gassed soil 

deteriorates soil drainage so that the soil constantly puddled (Schollenberger, 1930; 

Hoeks, 1972). Godwin et al. (1990) also found that the soil drainage was decreased in 

the vicinity of gas wells and that puddles formed at the surface.

Oil reduces the available nitrogen content of the soil (Sojka et al., 1975; Jong, 

1980) which results from consumption o f all available nitrogen by bacteria and fungi 

growing on a hydrocarbon medium in soil thus, restricting the uptake of these elements 

by plants (Malachowska-Jutsz et al., 1997; Xu and Johnson, 1997). These activities are
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caused by a depression in ammonification and nitrification processes triggered by 

inhibition in conversion o f mineral and organic nitrogen compounds in soil by petroleum 

derived compounds (Iwanow et al., 1994; Amadi et al., 1996). Oil degrading or 

hydrocarbon-utilizing microbes such as Azobacter spp. have been reported to become 

more abundant while nitrifying bacteria such as Nitrosomonas spp. become reduced in 

number (Odu et al., 1985) in oil contaminated soil. Osuji and Nwoye (2007) suggest that 

the process of nitrification might have reduced following the incidence of oil spillage 

which has led to reduction in the concentration o f nitrate-nitrogen (NO3-N) in oil 

contaminated sites.

The physical, chemical and geological characteristics of soil play significant 

roles in the degree of its vulnerability to an oil spill (Gundlach and Hayes, 1978). In 

some areas, oil may sink and/or be buried rapidly, making clean up difficult while in 

some areas, most of the oil will not adhere to, nor penetrate into the compacted soil. For 

example, among the shoreline type, salt marsh and mangrove forest are the most 

vulnerable to oil spill while the exposed rocky headland is the least. Oil may persist for 

years in salt marsh and mangrove forest areas making cleaning o f oil in these areas a 

challenging task. On the contrary, the exposed rocky headland areas may require no 

clean-up, as wave reflection keeps most of the oil offshore (Gundlach and Hayes, 1978).

Furthermore, contamination of soil with refinery products modifies the structure 

(Figure 2.0) and appearance o f the soil and deteriorates its biochemical and 

physicochemical properties (Tyczkowski, 1993; Kucharski and Wyszkowska, 2001; 

Wyszkowska et al., 2002; Wyszkowski et al., 2004). Schollenberger (1930) and Hoeks 

(1972) found that the gassed soil was darker than the ungassed soil, and the normal
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structure of the soil was lost. Several studies have indicated that soil polluted by 

petroleum-based products loses its biological activity and may not recover it over ten 

years (Sparrow and Sparrow, 1988; Racine, 1993; Wyszkowska et a l, 2001). A recent 

study noted that the greasy texture of hydrocarbons, in excessive amount in the soil, is 

responsible for the prevailing amounts of organic carbon over those of nitrogen in soil 

(Wyszkowski et a l, 2004). Partial coating o f soil surfaces by the hydrophobic 

hydrocarbons might reduce the water holding capacity of the soil due to some significant 

reduction in the binding property of clay (Osuji and Nwoye, 2007). Usually, such partial 

coats lead to a breakdown of soil structure and the dispersion of soil particles, which 

reduce percolation and retention of water. Osuji et al. (2006b) found that soils develop 

severe and persistent water repellency following contamination with crude oil. The 

coupling effects of this and exhaustion of oxygen in the soil can increase the microbial 

activity and thus interfere with the plant-soil-water relationship (Esenowo et a l,  2006). 

This can affect plants general growth and productivity.

2.3.2 Effects of oil on plants

Studies show that plants are important productive resources but very vulnerable 

in the event o f an oil spill (West et al., 2005). They are highly susceptible to oil 

exposure and this may kill them within a few weeks to several months (Omosun et al., 

2008). Thus, they are considered number one priority in oil spill response assignments. 

It has been discovered that very often, it is difficult to get rid of the oil from the 

environment once contaminated; hence lots of damage is done as oil persist therein for 

many years (Gundlach & Hayes, 1978). Both heavy metals and petroleum oils are
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known to cause stress in plants (Mendelssohn et al., 2001). The adverse effects of oil 

pollution on economic plants have been reported (Odu, 1981; Isirimah et al., 1989; 

Amadi et al., 1993; Anoliefo and Okoloko, 2000). At high concentrations of oil in soil, 

most plants species suffered serious depression in growth (Udo and Fayami, 1975; 

Amakiri and Onoteghara, 1984). This condition has been attributed to poor soil 

conditions, dehydration and impaired nutrient uptake by the roots, created by the 

presence of crude oil (Anoliefo et al., 2003).

Oil spills directly or indirectly contaminate plants in several ways. Oil can enter 

the soil and create unfavourable conditions (explained in section 2.3.1) for plant growth 

and survival (De Jong, 1980; Gunther et al., 1996). For example, Edema et al. (2009) 

noted that crude oil reduced phosphate, sulphate and nitrate ionic concentrations in soils 

and thus, oil spillage could make vital plant nutrients unavailable to plants (Odu, 1981; 

Anoliefo et al., 2003). Also, it was found that oil markedly reduced water uptake by 

wheat from contaminated layers or below such layers (Jong, 1980) and that water 

absorption may be inhibited after long periods of anaerobis (Smith, 2002). On the other 

hand, plants can be directly affected through physical contact with oil, for example, 

through coating of plant foliage (Pezeshki et al., 2000), especially when plant canopies 

grow over the land surface (as labeled b. and e. in Figure 2.0). Coating o f plant leaves by 

oil causes stomatal closure and consequently, an increase in leaf temperature because of 

blocked transpiration pathways (Pezeshki and DeLaune, 1993). However, it is not clear 

whether similar thermal effects occur in plants that are indirectly exposed through oil 

contamination o f soil.
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Stomatal closure also reduces leaf photosynthesis because o f restricted entry of 

CO2 through stomatal pores (Pezeshki and DeLaune, 1993; Webb, 1994; Pezeshki et al., 

1995). Other workers have mentioned the effects o f crude oil on the growth and 

physiology of different plants (Cook and Westlake, 1974; Terge, 1984; Gill et al., 1992; 

Pezeshki and DeLaune, 1993; Quinones-Aquilar et al., 2003). Previous studies have 

mentioned that the crude oil penetrates the pore spaces of terrestrial vegetation (Bossert 

and Bartha, 1984) and subsequently impedes photosynthesis and other physiological 

processes of the plant (Odu, 1977, 1981). Through physical contact, refined and light oil 

in particular, can penetrate into plants/leaf tissue and consequently, destroy cellular 

integrity, and prevent leaf and shoot regeneration (Webb, 1994; Pezeshki et al., 1995; 

Pezeshki et al., 2000). The adverse effects of petroleum and its compounds on plant 

growth have earlier been reported by Gill et al. (1992). Also, the inhibition o f plant 

growth by harmful metallic ions present in petroleum was reported by Winter et al. 

(1976).

It has been found that oil penetrating and accumulating in plants can cause 

damage to cell membranes and leakage o f cell content (Baker, 1970). Consequently, it 

has been observed that oil affects germination, plant height, grain yield, and dry matter 

content of crops especially when pollution is heavy (Ogboghodo et al., 2004). A recent 

study noted that soils contaminated with crude oil contain polycyclic aromatic 

hydrocarbons (PAH) and heavy metals that are toxic to plants (Edema et al., 2009). 

Crude oil is phytotoxic because it creates unsatisfactory conditions for plant growth 

ranging from heavy metal toxicity to inhibited aeration o f the soil. Edema et al. (2009) 

also found that the nature of crude oil and its components was responsible for the low
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number of plant families encountered in the field. Toxicity symptoms observed in plants 

exposed to oil pollution include chlorosis, necrosis, stunted growth, suppression of 

leaves, enormous reduction in biomass to stomatal abnormalities (Baker, 1970).

In some salt-tolerant plants, petroleum hydrocarbons may damage root 

membranes, thereby adversely affecting the ionic balance of the plants and their ability 

to tolerate salinity (Gilfillan et al., 1989). Further investigations have found that the 

growth o f cereal in oil polluted soil was inhibited, with leaves undergoing chlorosis and 

general plant dehydration (Udo and Fayemi, 1975). Oxygen is generally obtained from 

the soil and is required for correct functioning of plant roots (Smith, 2002). It is 

necessary for aerobic respiration and the supply of metabolic energy, which is used for 

the production o f new root cells for growth and for the uptake o f nutrients from the soil 

(de Wit, 1978). Drew and Sisworo (1979) found significant effects on the normal 

functioning of waterlogged barley due to mild oxygen depletion from the soil. Therefore 

absence or insufficient oxygen in soil caused by oil pollution can lead to plant death.

Spartina alterniflora is an important coastal salt-marsh species and is particularly 

susceptible to coastal oil slicks thus; considerable attention has been drawn towards 

investigating their response to oil pollution as illustrated in Pezeshki et al. (2000). 

Several studies found that accumulation of high levels of crude oils in the soil resulted in 

the death of Spartina alterniflora (Krebs and Tanner, 1981; Alexander and Webb, 1987). 

A similar study using the same species found that leaves died after about 40 days of 

contamination (Pezeshki et a l,  1995). Overall, oil pollution reduces plant transpiration 

and carbon fixation and increases plant mortality (Baker, 1970; Pezeshki and Delaune, 

1993). However, the extent o f damage highly depends on a number of factors for
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example; season o f spill, soil type, oil type and these were extensively discussed in 

Pezeshki et al. (2000). Overall, plant stress whether directly or indirectly induced by oil 

pollution can cause harmful effects on vegetation leading to growth inhibition, early 

senescence, chlorosis, dehydration, and death.

In order to minimise the impacts of oil pollution in the environment and to 

ensure timely response, recovery and possible bioremediation measures; its early 

detection through remotely-sensed response of vegetation becomes o f paramount 

importance. Fortunately, stress condition in plants is visible in the spectra (Knipling, 

1970; Noomen et al., 2003; Kempeneers et al., 2005) thus, making remote sensing a 

valuable tool for early detection of plant stress (Rosso et al., 2005).

2.4 Remote sensing of plant stress

Remote sensing is broadly defined as the science of acquiring information about 

an object with a device without being in physical contact with it. In general, the process 

requires measuring the interactions between matter and electromagnetic radiation to 

identify properties and processes of the object of interest. These interactions are 

controlled by the physical, chemical and biological characteristics of the object (Liew et 

al., 2008) which, in turn, control its remotely-sensed response. Incident radiation (I) on a 

plant leaf is either reflected (R), absorbed (A), or transmitted (T), as illustrated in Figure 

2.1, and their relative proportions vary with the wavelength of radiation. The absorbed 

energy may be subsequently emitted by the object. Remote sensing systems record the 

reflected and emitted energy which, when processed appropriately, can reveal 

information about the object measured.
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F ig u r e  2.1 In te rac t ion  o f  in c iden t  e le c t ro m a g n e t ic  rad ia t ion  w ith  p lan t  leaf.

2.4.1 The spectral reflectance of plants

The spectral ‘signature' o f  plants is defined by the reflectance or absorption o f  

electro-magnetic radiation in the visible, near-infrared (NIR) and short-wave infrared 

(SW1R) wavebands. The ‘signature' is formed when the intensity o f  light energy coming 

from the plant is plotted over a range o f  wavelengths; the connected points produce a 

curve hence its spectral ‘signature' (Figure 2.2). Plants have generally low reflectance in 

the visible region and high reflectance in the NIR and lower reflectance in the SWIR. 

However, while this typical ‘signature' is characteristic o f  healthy leaves and canopies, 

the spectral reflectance o f  plants can vary considerably depending upon a wide range o f  

factors.
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Figure 2.2 Typical reflectance characteristics of leaves. Adapted from Hoffer (1978).

Leaf reflectance in the visible region is predominantly influenced by 

chlorophylls and, to a varying extent, other photo synthetic and photoprotective pigments 

(Woolley, 1971; Wessman, 1990; Volgelmann, 1993; Fourty et a l, 1996; Ustin, et al. 

1999, 2004; Asner, 2004; Baltzer and Thomas, 2005; Liew et a l, 2008). These pi gments 

absorb light strongly in the visible wavelengths and thus create low reflectance. In the 

NIR and SWIR, leaf cell structure (Slaton et a l, 2001) and water content in the tissues 

(Buschmann and Lichtenthaler, 1988) are the dominant factors, respectively. 

Chlorophylls which are o f two forms (chlorophyll a and b) have a dominant control 

upon the amount o f solar radiation that a leaf absorbs (Smith, 2002; Blackburn, 2007). 

Most pigments absorb in the blue region centered around 445 nm but only chlorophyll
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absorbs in the red centered around 645 nm (Gates et al., 1965). There is high reflectance 

in the NIR due to light scattering o f the leaf cell structure and non absorption of 

chlorophylls. The structure of the leaf, with many air-water interfaces, makes a very 

strong scattering medium that causes high reflectance and transmittance in any region 

where absorbance is low (Woolley, 1971). A summary of the major features responsible 

for absorption/ reflectance of certain wavelengths that has been derived from Berry and 

Ritter (1997), Zwiggelaar (1998), Smith (2002), Blackburn (2007) is given in Table 2.1.

Table 2.1 Absorption features of plant spectra.

Controlling factor Waveband/wavelengths (nm) Spectral effect

Chlorophyll a 435, 670-680, 740 Strong absorption

Chlorophyll b 480, 600-650 Strong absorption

a-carotenoid 420, 440, 470 Strong absorption

B-carotenoid 425, 450, 480 Strong absorption

anthocyanins 400-550 absorption

chlorophyll a & b 550 strong reflectance/weak absorption

lutein 425, 445, 475 absorption

violaxanthin 425, 450, 475 absorption

water 970 weak absorption

water, C02 1450, 1944 strong absorption

water, oxygen 760 strong absorption

Adapted from Zwiggelaar (1998), Smith (2002), Blackburn (2007).

2.4.1.1 Controls on canopy-scale reflectance of plants

Single leaf reflectance can be very misleading for predicting reflectance at the 

canopy scale (Moran et al., 2004). This is because other non-green materials such as the
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senescent leaves and litter, bark, wood, and dry reproductive structures do occur in the 

majority o f plant canopies, and can contribute significantly to canopy reflectance 

(Blackburn, 1993). Other controlling factors are canopy specific such as senescent 

vegetation; phenology, soil background, and canopy geometry (plant architecture, Leaf- 

Area-Index (LAI), Leaf Angle Distribution (LAD) and viewing geometry specific such 

as solar zenith-, sensor look-, and relative solar azimuth angles (Milton and Wardley, 

1987; Kasischke et a l,  2004; Moran et al., 2004; Blackburn, 2007). Although stress 

senescent detection is closely related to chlorophyll degradation (Goetz et a l, 1983; 

Horler et al., 1983), live and dry vegetation amounts within two canopies of the same 

total biomass amount may vary, thus can create change in canopy reflectance 

(Blackburn, 1993). Indeed, studies have shown that plants at different developmental 

stages alter the type of canopy element presented to the sensor (Peterson, 1992; Peterson 

andNilson, 1993).

Apart from the effects o f soil and litter background, physiological stress can 

cause wilting o f canopy elements which can change reflectance of the canopy as more 

soil and less vegetation is seen by the sensor (Collins, 1978). Recent studies have given 

evidence about the biophysical sources of variability in canopy reflectance and 

bidirectional reflectance function (BRF) variations due to observing geometry 

(Jacquemoud, 1993; Asner, 1998; Gastellu-Etchegoriy et a l, 1999). The majority of 

these factors influence measurements mostly in field conditions particularly from space- 

borne sensors. However, this study investigates the reflectance of stressed vegetation at 

the plant scale within a controlled environment and thus, not all the factors may affect 

canopy scale reflectance measurements.
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2.4.2 Diagnostic indicators of plant stress

2.4.2.1 Visible reflectance

The visible region ranges from 0.4-0.7pm (400-700nm), which is an extremely 

small portion of the electromagnetic spectrum but this corresponds to the spectral 

sensitivity o f the human eye. The blue, green and red colours are ascribed to the 

approximate ranges of 0.4-0.5pm (400-500nm), 0.5-0.6pm (500-600nm) and 0.6-0.7pm 

(600-700nm) respectively. Several studies have recorded that visible reflectance 

increases consistently in various plant species in response to stress induced by a range of 

different stressors (Carter and Miller, 1994; Carter et al., 1996).

Spectral measurements by Smith et al. (2004) showed that vegetation exposed to 

high concentrations of natural gas in the soil had significantly increased reflectance in 

the visible and decreased reflectance in the infrared. Several researchers identified 

similar responses to a wide range of plant stresses such as waterlogging, nutrient stress, 

heavy metal toxicity and soil oxygen deficiency (Woolley, 1971; Horler et al., 1983; 

Milton et al., 1989; Carter, 1993; Carter and Miller, 1994; Anderson and Perry, 1996; 

Noomen et al., 2003). In response to a number of different stressors, plants exhibit a 

decrease in the production of chlorophyll and other biochemical constituents, which 

leads to a decrease in their absorption capacity and therefore an increase in reflectance in 

the visible region. Sensitivity analysis of leaf spectral reflectance to leaf characteristics 

performed by Ceccato et al. (2002) using the new version o f the PROSPECT model 

(Jacquemoud, et al., 2000) shows that chlorophyll content had a major influence 

(followed by leaf internal structure) over reflectance values between 400 and 71 Onm 

compared to other pigments.
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As the visible region is characterized by high absorption coefficients for 

pigments, reflectance in this region is more sensitive to lower pigment concentrations. 

For example, Blackburn (1998a, 1998b) and Sari et al. (2005) noted that reflectance at 

wavelengths corresponding to the centre of the major absorption features are most 

sensitive to low pigment concentrations as found in early immature and later senescent 

leaves and canopies with low leaf area and canopy cover. An empirical study by Rosso 

et al. (2005) showed that highly contaminated plants reflected incident radiation in the 

deep absorption features of the visible spectrum such as 670nm.

2.4.2.2 Red-edge region

The region of the reflectance red-edge has been used as a means of identifying 

stress in plants. The red-edge adjoins the red end o f the visible portion o f the spectrum. 

It is an area where there is change in reflectance between wavelengths 690 and 750nm 

which characterises the boundary between dominance by the strong absorption of red 

light by chlorophyll and the high scattering of radiation in the leaf mesophyll (Smith el 

al., 2004). At this region, reflectance rises rapidly leading to a plateau of high 

reflectance in the near-infrared, where pigments no longer absorb radiation (Blackburn, 

2007). Horler et al. (1983) also stated that the red-edge is the sharp rise in reflectance of 

green vegetation between 670 and 780nm.

There is further suggestion that the red-edge region o f the spectrum is considered 

a unique parameter for detecting stress in plant. The reflectance of stressed plants often 

shows a shift o f the ‘red edge’ position towards shorter wavelengths (Noomen et al.,

2003). Red-edge shifts measured in airborne imaging spectrometer data have been
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proposed useful to provide an early indicator of vegetation stress. Evidence is given in 

Rock et al. (1988) where a shift in red-edge towards the blue, of approximately 5nm was 

detected when measuring severe foliage stress on spruce trees due to air pollution. The 

shift which was attributed to decline in chlorophyll in the pine needles was detected 

before visual symptoms became apparent.

A small number of investigations have looked specifically at the effects of 

hydrocarbon pollution on the reflectance red-edge of vegetation. Investigations by 

Bammel and Bimie (1994) discovered a consistent and significant blue shift of the green 

peak and red trough positions of sagebrush spectra and concluded that the red-edge is 

the most reliable indicator of hydrocarbon-induced vegetation stress. A large body of 

literature exists that generally shows a decrease in chlorophyll in natural vegetation due 

to stress, resulting in a shift to shorter wavelength of the red-edge. However, 

spectroscopic analysis by Yang et al. (1999) showed that the red-edge position of wheat 

spectra taken from areas of well known hydrocarbon microseepage has shifted 7nm to 

longer wavelengths.

To explain the situation, it is important to note that it is generally accepted that 

the position and shift o f the red-edge is related to leaf and canopy chlorophyll 

concentration. Hence, a decrease or increase in chlorophyll results in red-edge shift 

towards either the shorter or longer wavelengths, respectively. In the case of Yang et al. 

(1999), it was suspected that hydrocarbons might have served as nutrients during the 

short growing season of wheat, which however needs further investigation. Evidence 

from previous studies shows that red-edge inflection point (A,p) (the peak in the first 

derivative of reflectance that can be used to describe changes due to stress) ranges
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between 700 and 745nm. Jago and Curran (1996) found two first derivative maxima 

within the red-edge with peaks at approximately 693 and 709nm, while studying 

grassland canopies at a site contaminated with oil. However, the potential for exploiting 

the position o f these peaks and other red edge features such as the distance between the 

peaks, and the magnitude or area o f the red edge for plant stress detection have not been 

explored.

2.4.2.3 Near infrared (NIR) region

The NIR waveband ranges between 700 and about lOOOnm. The region is 

characterised by high reflectance primarily due to light scattering by leaf tissue or 

cellular structure (Gausman et al., 1970). Ceccato et al. (2002) found that the leaf 

internal structure accounts for 70-80% of reflectance variations in the NIR whereas the 

leaf dry matter accounts for the remaining variations (30-20%). Leaf reflectance is very 

high in the NIR at ~800nm (Lenk et al., 2007) and a decrease of the reflectance at 

800nm may be taken as an indicator of reduced aerial interspaces in the mesophyll of 

leaves under stress conditions (Gausman and Quisenberry, 1990; Buschmann et al.. 

1991). A body o f literature has recently been developed through experimental studies, 

which show substantial evidence of high and low reflectance in non-stressed and 

stressed plants respectively within this region (Noomen et al., 2003; Smith et al., 2004; 

Kempeneers et al., 2005; Rosso et al., 2005; Smith et a l,  2005;). Within these empirical 

studies, different problems were simulated given different scenarios. These include 

utilisation of different types of plant species, which were subjected to a range of 

stressors including water and nitrogen stress, water logging, shading, gas and heavy
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metal at varying levels o f contamination. A similarity within this range o f studies lies in 

the use of a ground based sensor -  the spectroradiometer to measure the spectral 

reflectance characteristics of the experimental plants.

Treating plants of Salicornia virginicia with two metals -  cadmium and 

vanadium, at different levels of contamination, Rosso et al. (2005) found that reflectance 

differences in the near infrared (NIR) portion followed a similar progression as the 

symptom expression; in contrast to visible wavelengths, towards a reduction in 

reflectance with stress. A reduction in intercellular spaces produces less light scattering 

and less reflectance (Rosso et al., 2005). Water stress influences reflectance in the NIR 

region because of changes in mesophyll structure (Bowman, 1989). However, leaf 

structural characteristics have more influence in NIR reflectance than at short wave 

infrared, whereas water content has a strong control on reflectance at short wave infrared 

(SWIR) (Woolley, 1971; Ceccato et al., 2001). It is worth noting that absorption of 

radiation by water does not have a large direct influence on reflectance in the NIR but it 

does have an important indirect effect due to its influence on leaf cellular structure 

which varies considerably as water content varies. Further evidence had been given in 

Ustin et al. (1999) and Jacquemoud et al. (1996); that NIR reflectance is strongly 

determined by the structural characteristics of leaf parenchyma, fractions of air spaces 

and air-water interfaces.

2.4.2.4 Shortwave infrared (SWIR) region

The SWIR ranges between 1300 and 2500 nm and is characterised by light 

absorption by the leaf water. Tucker, (1980) and Gausman, (1985) show that SWIR is

32



heavily influenced by water in plant tissue. Bowman (1989) indicated that water stress 

influences reflectance at the SWIR region because of a reduction o f water content. A 

study by Fourty and Baret (1997) showed that the wavelengths at 1530 and 1720nm 

seem to be most appropriate for assessing vegetation water. Also, the radiative transfer 

model PROSPECT (Jacquemoud et al., 2000) as a function of chlorophyll a & b 

concentration, Cw, Cm, and N was very efficient for estimation of vegetation water 

content at leaf level. In an attempt to detect vegetation leaf water content using 

reflectance in the optical domain, Ceccato et al. (2001) found that parameters such as the 

Equivalent water thickness (Cw) are not the only parameters responsible for significant 

reflectance variations within the SWIR range. Other controlling factors include the 

internal structure (N) and the dry matter content (Cm). The N and Cm affect reflectance at 

wavelength range from 700 to 2500 nm, while Cw affects the wavelength range from 900 

to 2500 nm. While Cw accounts for 86.7% of the reflectance variation in the SWIR, N 

and Cm account for only 5.8% and 7.5% respectively. Thus, the SWIR reflectance value 

alone is not suitable for retrieving vegetation water content at leaf scale. Although Cw is 

the dominant factor, the study suggests that combination o f information from both NIR 

(820nm) and SWIR (1600nm) is necessary for accurate estimation of vegetation water 

content at leaf scale from optical observations.

Ceccato et al. (2001) explained several indices proposed to measure vegetation 

stress due to water stress such as Crop Water Stress Index (CWSI), the Stress Index (SI), 

and the Water Deficit Index (WDI). These indices assumed that differences between the 

air and surface temperatures were related to plant water content and to water stress. 

Other indices, such as the moisture stress indices that combine satellite-based
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information on the relationship between Normalised Difference Vegetation Index 

(NDVI), surface temperature, and air temperature, in association with production 

efficiency models, have been developed (Goetz et a l, 1999). These indices do not 

provide a very accurate way for estimation o f water stress because vegetation status is 

not a direct measurement of water content and many species may show signs of reduced 

evapotranspiration without experiencing a reduction in water content (Ceccato et a l, 

2001).

2.4.2.5 Spectral and derivative indices

Several researchers have developed a wide range o f spectral indices and 

wavelength regions that are feasible in detecting stress in a wide range of plant species 

(Carter, 1994a; Tarpley et a l, 2000; Read et a l, 2002; Sims and Gamon, 2002; Smith et 

a l, 2005; Campell et a l, 2007). Spectral indices based on reflectance spectroscopy offer 

the possibility for estimation o f leaf pigment content. The indices commonly use 

reflectance ratios derived from dividing leaf reflectance at stress-sensitive wavelengths 

by that at stress insensitive wavelengths (Liew et a l, 2008). The idea for using this 

approach is to eliminate the effects of leaf internal reflections and thus, provide stronger 

quantitative relationships with chlorophyll content (Carter and Miller, 1994). A diverse 

range o f spectral indices that combine reflectance in wavebands of different spectral 

regions have been employed for plant stress detection and includes simple ratios of 

reflectance and normalised difference ratios.

For example, in studying plant spectral responses to gas leaks and other stresses, 

Smith et a l (2005) calculated a reflectance ratio by combining wavebands in the visible
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region near 560nm and 670nm. The study found that in contrast to the control or the 

shade-stressed plants, the ratio increased in gas- and herbicide-stressed plants. They 

suggested that an increase in the ratio R670-680/R555-565 could be used to detect plant stress 

caused by elevated natural gas in soils due to leaks. Tarpley et al. (2000) suggested that 

simple reflectance ratios that combine leaf reflectance values at 700nm or 716mn and 

755-920nm could improve precision and accuracy in predicting cotton leaf nitrogen 

concentration. Read et al. (2002) found strong associations between leaf constituents 

such as chlorophyll, carotenoids and nitrogen and simple ratios of reflectance at the 

wavelengths 415/695nm, 415/685nm, and 415/710nm, respectively. They found that 

reflectance at waveband 415nm appeared to be a more stable spectral feature under 

nitrogen stress, as compared with more pronounced changes along the reflectance red 

edge at 630nm - 690nm.

Zhao et al. (2005) found high correlation between the reflectance ratios of 

R551/R915 and R708/R915 and chlorophyll concentrations in field-grown cotton. They also 

found the same relationship at a single wavelength of 551nm or 707nm and high linear 

correlation between nitrogen concentrations and a spectral reflectance ratio of R517/R4 13 • 

Sims and Gamon (2002) and le Maire et al. (2004) enhanced spectral indices by 

incorporating waveband in the blue region to correct for specular reflectance. This 

resulted to more accurate estimation of leaf chlorophyll concentrations. Many other 

spectral indices derived not only from spectral reflectance but also from derivative 

spectroscopy have been found useful for studying plant damage. For example, 

derivatives ratios such as D715/D705, D rep /D 7145 D744, D705, or D745 (where D  represents 

the amplitude o f the first derivative at specific wavelength and D rep is the amplitude of

35



the first derivative at the wavelength of the maximum amplitude in the red edge region) 

were sensitive to stress and reflect the differences in the shape of the first derivative 

curve among damage levels (Entcheva, 2000). In their experimental study, Campell et 

al. (2007) found that D715/D705 consistently performed well as they exhibited high values 

for the unstressed condition and significantly lower values as vegetation stress increased.

From the foregoing discussion, it is clear that change in plant reflectance spectra 

at specific regions, red-edge features, ratios of narrowband reflectance and derivatives 

are valuable indicators o f stress. However, the optimal index to monitor plant stress 

response to oil pollution is not known. Besides, the potentials o f other red-edge features 

such as the position o f the double features, the distance between them and the magnitude 

or area o f the red-edge for plant stress detection have not fully been explored.

2.4.3 Optical remote sensing techniques

Optical remote sensing techniques use data from sensors that collect radiation in 

the reflected solar spectrum (about 350 to 2500nm). Optical remote sensing instruments 

can be operated from different platforms such as ground-based, air-borne or space- 

borne, each with various strengths and weaknesses. Basically, at field and laboratory 

scales, the methodology or approach that could be applied at a larger scale for various 

plant stress monitoring applications could be developed. For example, a variety of 

narrow band spectral reflectance features have been shown to be related to changes in 

vegetation condition and amount through laboratory and field studies (Treitz and 

Howarth, 1999). In addition, results from laboratory scale studies can provide the basis 

for operational applications of vegetation stress monitoring. However, aside from scale
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or platform definitions, optical remote sensing for vegetation stress monitoring has been 

more commonly categorized according to spectral resolution.

2.4.3.1 Multispectral and hyperspectral remote sensing

Multispectral sensors collect data in a few broad spectral bands that cover 

important regions of the reflected solar spectrum and have been applied for a wide 

variety of environmental applications (Okin and Roberts, 2004). Van Der Meer et al. 

(2002) noted that the laboratory and field scale spectra o f vegetation stress have been 

studied in detail, but the resolution of broad-band instruments such as the Landsat 

Thematic Mapper (TM) or Multispectral Scanner (MSS) is not sufficiently high for 

comparison with laboratory or field spectra. This means that the broad bandwidth cannot 

characterize all the absorption features that respond to vegetation stress, regardless of the 

type o f enhancements employed or the type of information extraction method applied 

(Van Der Meer et a l,  2002). For this reason, a frequent use of multispectral remote 

sensing systems is with vegetation indices.

Van Der Meer et al. (2002) note that vegetation indices are quantitative 

measurements, based on digital values, which attempt to measure biomass or vegetative 

vigour and the most popular and widely used is NDVI. The index combines two 

channels in a ratio or difference i.e. (NIR-RED)/(NIR+RED) which allows response to 

vegetation growth to be distinguished from the background signals. Some of the inherent 

limitations associated with NDVI are adequately provided in Okin and Roberts (2004) 

and Van Der Meer et al. (2002). For vegetated landscapes, attention has been directed 

towards increased spectral sampling because o f great spectral variability, in the 0.7pm to
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2.5pm range (Curran, 2001). A detailed description o f the band-ratio strategy is given in 

Van Der Meer et al. (2002).

Multispectral sensors feature a combination o f limited number o f spectral bands 

with planes, helicopters or satellites as their platforms. With satellites, it is possible to 

acquire high spatial resolution images at a very wide coverage and on regular basis 

which makes it cost effective. However, satellite data are known to be adversely affected 

by cloud cover, atmospheric attenuation and scattering which necessitate some 

corrections. In addition, fixed satellite orbits impose some limitations as they create 

inflexibility in timing of data acquisition. For example, when high cloud cover for a 

given region coincides with time the satellite orbits that region, it will be impossible to 

acquire clear images for that region. The visible and infrared regions are affected in 

particular and are very critical for vegetation monitoring. Hence, satellite-based 

multispectral systems have been proved very useful in regions where there are relatively 

clear skies, but can be very limited in regions with frequent cloud cover. Using data 

from a feasibility study from 1990, Steven et al. (1997) found that in UK, the number of 

days with less than 2 oktas cloud cover between June and September sampled by the 

SPOT (orbiting 11 times every 26 days) and Landsat (orbiting once every 16 days), 

systems were between 2 and 9 days.

Multispectral remote sensing technologies have well-known applications in 

vegetation studies, for example in the mapping of physical and structural features of 

vegetative ecosystems and in forest surveys (Treitz and Howarth, 1999). In addition, it 

has offered opportunity for successful monitoring o f deforestation and desertification 

through quantification and estimation of vegetative ecosystems. With multispectral
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remote sensing such as the Landsat Thematic Mapper, it is possible to quantify 

vegetation biophysical properties such as Leaf Area Index (LAI) using spectral indices 

derived from their broad wavebands (Asner, 1998; Treitz and Howarth, 1999; 

Blackburn, 2007). Table 2.2 illustrates some characteristics o f airborne and spacebome 

multispectral systems.
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ĉ > r- 
<U G 
*2 .2 
o  ^p 1) 

Cu o

o

"S
o
s c x

"O . 2
g "o oo Z, .S u
Oh ^r v  3  
3  .2 2E ^
cn O f■K .5>. 3 
2 §

(D b 3
O . 3

X ~
O  cny c
S  o

3X  3
<D __ _
3  O .o Dh

X  e f

(D ^2 
3  C  . 3  (D

X ) ES c3 o 
<D . 3
cn >O 3B S 
B o .2
3 'S

•2 3
2 E
O  oo

1/0 ^ 7

°°1 2 S  
§ I o gCl.00 3b ^-  ^  8 5̂

a ^  a s
E gV") >- 00

O7t



a
p  >  o  >
ui 5  ®3 1313

£  - 2  ^ 7 3  ^
S S i s z

(D T3

Cd <D

^ O  
(N <N 
CN i

m23 o

§ 3  Pu a

pp1/5 § 2 co'—'
'a S SP  i n  <n -0- vq cn 
0 — 0

PJ P3 
o  o
<U Vo  o

•p c
c ■£O cd 

X  o' o —<D Q.

2 £ 
CO t- ^  <D

p  o

I I
.§ ^
£ §

a a
CN 00

S I 
S I 
!■!

T3 C<D .—
c/3 —a  o
a -e
C3 O  

CN «

- C
£ ^ 
S S
0 0 ~

00 O C —

oo <D
Cd Xl 
PJ 73
CQ S
H fo X
ti= CO

S P tSCO 0-<c  o a.a *o >.

P 3 
u .  T 3(D <U

C CO O CO
‘So 1s _.

td  H 3  o  
M  a  K  O

as os 
/ -^  °°„ o ' 1? o '

« a ^  a s
O  3 . 0  3 .  c .

.£
C/3"cd Pu .2C/3

o cdW) o
c3 Ua
o cduz, V-.
-o (U>C ?>cd a>
.2 c
"5 <L>
n 2

3c £
c *po C/3
’p -ocd co cd
'Hh C/3GDh ocd
o cd

X a
a*cd;_ Pm

&00 cd
o
b

00p

1)

c
S -2

’I  ^ 
>  S '

73 O

c/5 C/3w c-c/3 P

a I

XI 
Co b
§-s
a rS

(U 73
2 w a  oo
© a •CO 2 (U X o

in

c
g

‘oo
wl-

C/3 '  

>  ’

eo73 x
a -2-2 4J„ 00 (D 0)

1 1<u 3
P m W
p ^ c >

i> <*>

5 s
X 13 '-ft o  ^
13 co
a a
P  "2 

•a c

6  Tf —
S' 
p

5c 7T
°? Soi

^  Cd ^
£ gs g
5 w  w
^ a  a

P I  1 c l
*  X  .2 ■£ 8w u  c/3 o  a E—i o .23 w .;

°  X2 m
« * 'S

t t t  "2
S f
Q - g  
00 >=; .a c2
Dm "O
&§
3 «“ 
! •£
"1  ̂>  ^  d> <l> -X c/3 <D X
3 S
:§> §? 
73 53 
O o

Co, u

X  
”2  co
§ ^  —1 X<U '

. a  m '' 3
2  2 -

5  o

3^  o 
O Ml<U ^c  03 <U wa ° to —

c ^
.2  §  
to  c  
£ .2

cdX >
o

ca ©
<u

C  ,u  
'S  t‘- ' O . <u 
CO »- 
CO

a °, . W
00 o  c co od . a

g S  
3 S

S ¥  “1 o

. ' -— o 
X  2  *P e

1 P 1
7l- in — CO

O j -  00

c  “ c :
J j C  3
& c -g

■° E . - SC/3 S* ^ X  3  co

o  o  o  O *n Os 
d̂" <r> in



rO
3
C/3

*CdV-
aa

3
(Z)

CO

a  § «•P S w
O  $  CO
CO U  -© a
O (U
cd a  a c
c  •"*

a  c

g §00
X X

£" cfo oo <u a) X
00 o
cd + *
C/3 0 0

a l

cd
b cd
s £
JS’Ph <D o

3 o
i - lcd £

CNTt

m omm mm v© oo 
o  o ’ m o ' m ov oo vo rf ■Tf m vo

c l ,  0 5  0*00 
< Q



The main advantage of airborne remote sensing is that the effects o f cloud 

cover, atmospheric attenuation and scattering can be controlled or avoided. Data can 

be acquired when the skies are clear and at any desired temporal frequency on a 

repetitive basis thus, leading to a cost effective means o f monitoring the 

environment. The system provides several advantages over satellite systems as they 

are simple, reliable and inexpensive (Campbell, 1996). However, airborne systems 

have a more limited spatial coverage than satellite systems, which offer the potential 

o f complete global coverage. In addition, there are inherent risks associated with low 

level flights required for monitoring leaks from oil pipeline as the accuracy of 

information depends solely on the pilot.

However, the major consideration in the choice o f appropriate remote sensing 

system for vegetation stress monitoring is the spectral resolution. As information 

about the general health status o f vegetation is often embedded in narrow spectral 

features, a high spectral resolution is required. The spectral resolution, which is the 

ability o f a sensor to resolve spectral features, is controlled by the bandwidth, 

spectral sampling interval and number o f bands. In principle, the higher the spectral 

resolution, the greater the chances o f gathering useful information for better 

understanding o f plant health status. Biochemical constituents relate to and 

invariably provide accurate information about physiological characteristics and thus, 

allow assessment o f vegetation condition. Many biochemicals have fine spectral 

features which cannot be sampled using the broad bandwidths o f some optical 

remote sensing systems (Clark, 1999; Yang et al., 2000; Curran, 2001; Broge and 

Mortensen, 2002; Van Der Meer et al., 2002). This is because they use average 

spectral information over broadband widths resulting in loss o f critical information 

available in specific narrow bands (Blackburn, 1998; Thenkabail et a l, 2000).
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Overall, it is clear how spectral resolution can be important in determining the ability 

o f a remote sensing system to monitor vegetation stress.

Spatial resolution specifies the smallest object that could be detected by a 

sensor. There are several remote sensing systems o f very high spatial resolution of 

lm  or less (Table 2.2) but they have a limited spectral resolution. High spatial 

resolution data have primary applications in managing forest inventory related to 

assessing stock levels and classification o f vegetation types (Wulder, 1998; Wulder 

et al., 2000). Indeed high spatial resolution data are extremely useful for refining 

stress detection methods by allowing us to discriminate between different vegetation 

types and therefore constrain our predictions. However, there is growing evidence 

that for mapping o f vegetation condition associated with health and nutrition, and 

biological invasion (pest, diseases, and weeds), a sensor that can measure in several 

hundreds o f narrow bands is required, usually with a bandwidth o f lOnm or less 

(Filella and Pehuelas, 1994; Yang et a l, 2000; Bronge and Mortensen, 2002; Asner 

and Vitousek, 2005; Liew et al., 2008). Unfortunately, due to technical constraints, 

satellite remote sensing systems are unable to offer both high spatial and high 

spectral resolution but airborne systems do have this capacity.

In reviewing hyperspectral techniques for estimating biophysical parameters 

o f forest ecosystems, Treitz and Howarth (1999) provide characteristics of several 

imaging spectrometers that can acquire contiguous spectra over land and water 

surfaces. These are presented in Table 2.3.
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Table 2.3 Characteristics o f selected hyperspectral imaging spectrometers.

Sensor No. of 
bands

Spectral
coverage
(nm)

Spatial
resolution
(m)

Band width 
(nm)

Period of 
operation

Platform

CASI 288 385-905 25cm-1.5m 10 since 1989 Airborne

AVIRIS 224 380-2500 20m 9.4-16.0 since 1987 Airborne

SFSI 240 1200-2400 4 10 since 1994 Airborne

Probe-1 128 400-2450 l-10m Nov-18 since 1994 Airborne

Hymap 126 50-2500 03-Oct 15-20 since 1999 Airborne

Hyperion 242 400-2500 30 10 since 2000 Space-

borne

CASI -  Compact Airborne Spectrographic Imager 

AVIRIS -  Airborne Visible Infrared Imaging Spectrometer 

SFSI -  Shortwave Infrared Full Spectrum Imager

(Adapted from NERC Earth Observation data centre and Treitz and Howarth, 1999)

2.4.4 Thermal infrared imaging techniques

The common target and overall aim for remote sensing o f plant stress remains 

early detection o f stress with an interest to achieve timely response and treatment. 

Although remote sensing research has traditionally focused on reflectance 

measurements in the visible and NIR in order to fulfil this aim, there is significant 

potential for using the techniques o f thermography in this context.

Theoretically, all objects that possess heat energy that are above 0 k emit 

electromagnetic radiation continuously, as a result o f random particle motion (Asner, 

2004). In the context o f plant organisms, the temperature and emission of thermal 

radiation is linked to the stomatal conductance, which is controlled by a complex 

regularity network that integrates environmental and developmental factors (Fan et
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a l, 2004; Chaerle et a l, 2005; Li et al., 2006). Disturbance to the processes of 

transpiration can be exploited as cues for plant stresses (Liew et a l, 2008) and the 

thermal imaging technique provides information on the effect o f stressor on stomatal 

related parameters (West et al., 2005).

Past studies show that the thermal dynamics o f vegetation, involving changes 

in leaf or canopy temperatures are good indicators o f vegetation stress. Water deficit 

in plant induces stomatal closure and as a result restricts transpiration processes 

which ultimately could lead to less water evaporation from the leaf surface (Ceccato 

et al., 2001). Thus, this brings about less cooling effects through latent heat loss and 

consequently an increase in leaf temperature (Jackson, 1986).

Evidence shows that it is feasible to employ thermal imaging techniques for 

plant stress detection because their thermal properties in the use o f captured light 

energy possibly changes upon stress (Buschmann, 1999). One way o f employing 

thermal techniques for plant stress detection is by use o f thermography. The 

operational principle o f thermography as a passive imaging system for detecting the 

long-wave (thermal) radiation emitted by the subject is as an indicator o f leaf 

temperature (Chaerle et al., 2007). Jones (1999) indicated that thermography 

visualizes leaf surface temperature, and has equally been pronounced as a proxy for 

transpiration and stomatal conductance. The technique can monitor the event of 

water stress as decreased transpirational cooling from stomatal closure leading to an 

increase in leaf temperature (Jones, 1999; Jones, 2004; Grant et al., 2007).

Thermography has been successfully used at the laboratory scale to reveal 

stress situations that affect stomatal conductance (Jones, 2004). Stomatal 

conductance is one of the key factors that determine plant yield (West et al., 2005); 

hence it is an acceptable parameter for measuring stress condition. Surface
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temperature control offered by the transpiration process helps us to interpret different 

thermal signals exhibited by plants with respect to stress response. Thus, the 

difference in the thermal signals as imaged by thermography could provide reliable 

information about the health status o f plants. There are instances where the initial 

rise in leaf temperature corresponds to plant resistance to biotic stress, otherwise 

called hypersensitive response. Hypersensitive reaction o f tobacco to tobacco mosaic 

virus results in initial rise in leaf temperature caused by stomatal closure (Chaerle et 

a l, 2007), resulting from accumulation of salicylic acid (Chaerle et a l, 1999). After 

an initial rapid thermal expansion over a given period o f time, the thermal signal 

gradually declines. This gives additional support and offers strong evidence about the 

potentials o f thermal imaging techniques as a viable tool in early detection o f plants 

stress -  particularly pathogen-induced. Besides disease induced stress, Jones (2004) 

noted that most applications of thermal imaging systems are related to monitoring 

plant responses to water deficit stress.

Apart from biotic stress, few o f the abiotic-induced stress effects on plant 

thermal response have been studied. In a comparative study, Carter et a l (1996) 

found no significant difference between plant canopy temperature subjected to 

herbicide-induced stress and unstressed canopy. As explained in section 2.4, there is 

a view that temperature increases when leaves are coated with oil (Pezeshki et a l , 

2000) due to blockage o f transpiration pathways (Pezeshki and DeLaune, 1993). 

However, the thermal response o f plants indirectly exposed to oil pollution, through 

soil contamination is not known.

47



2.4.5 Synthetic Aperture Radar (SAR) imaging techniques

Radars are active sensors which operate in the microwave region o f the 

electromagnetic spectrum (wavelengths in the order o f millimeters to centimeters). 

SAR imaging has potential for large area coverage and is noted to have all weather 

and cloud cover penetration capabilities, and thus, is valuable in areas that are prone 

to frequent cloud cover. The European Space Agency (ESA) (2007) indicates that the 

microwave capability offered by the ERS series means that observation is not limited 

by weather or light conditions as are optical data. The agency provides an overview 

o f the wide range o f applications o f Earth Resources Satellite (ERS) SAR data. 

These ranges o f practical application o f the earth observation system have been 

classified under oceanic and land environments and have also been noted as an 

emergency application technique.

For example, on the oceans, most o f the illegal or accidental anthropogenic 

spills, as well as natural seepage from oil deposits, are clearly visible on radar 

images. Ships can be detected and tracked from their wakes. Ice monitoring, 

mapping o f the topography o f the ocean floor and provision o f input data (such as 

ocean waves and their direction o f displacement) for wave forecasting and marine 

climatology are achievable. Major areas o f application o f SAR images include:

(i) mapping and monitoring landuse/landcover and for forestry changes and 

agriculture studies for monitoring crop development.

(ii) enhancement o f geological or geomorphological features.

(iii) supports georeferencing o f other satellite imagery to high precision, and 

in regular updating o f thematic maps.

(iv) helps to optimize response initiatives and assess damages after flooding.
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(v) interferometric SAR can be used under suitable conditions, to derive 

elevation models or to detect small surface movements, in the order of a 

few centimeters, caused by earthquakes, landslides or glacier 

advancement.

Monitoring the scale o f global crop production and trade has been identified 

as an area in which SAR data may be able to assist. In addition, these systems 

provide information for mapping forest extent and type, particularly in tropical areas 

which have not previously been mapped due to almost continuous cloud cover. It is a 

unique source o f data, and in conjunction with other remotely sensed data it can be 

used to map forest damage, the encroachment o f agriculture onto forested areas 

unsuitable for development, and in general to provide inventories o f timber areas.

It is worth noting that despite many advantages o f SAR system, it has some 

inherent limitations especially in the context of vegetation stress monitoring. There is 

a lack o f evidence that it can be used in this context as many o f the available 

microwave sensors lack spatial resolution to be practical for plant stress monitoring. 

They are more responsive to change in vegetation structure than function thus, can 

only be o f relevance for severe or later stages o f stress especially when plant death 

must have occurred.

2.4.6 LiDAR imaging techniques

One emerging technology that is gaining rapid attention in remote sensing of 

vegetation particularly at canopy scale is LiDAR (Light Detection and Ranging). 

LiDAR is an active system; based on an artificial radiation source that operates in the 

near-infrared. Vegetation has high reflectance and transmittance at this region;
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allowing a strong return from the forest canopy as well as from the forest floor 

(Kasischke et al., 2004). The technology provides horizontal and vertical information 

at high spatial resolutions and vertical accuracies (Lim et al., 2003). LiDAR has the 

capability o f measuring the geometrical structure of plants which is the most 

important factor that influences the reflectance o f plants at canopy scale. For 

example, Riano et al. (2004) demonstrated the possibility o f measuring canopy LAI 

from LiDAR imagery.

Thus, while LiDAR imagery alone is probably insufficient for monitoring 

plant stress, its combination with hyperspectral imagery is very promising, in this 

respect. For example, one notable area o f LiDAR data application which has 

improved the accuracy o f pigment estimates at the stand scale is in extraction of 

spectral information from tree crowns, while extraneous spectral information from 

canopy gaps are removed (Blackburn, 2002). The study noted that this was possible 

by applying spatial filters created from the canopy surface elevation models derived 

from the LiDAR data to imaging spectrometer data from forests. Again, with 

imaging LiDAR, it is possible to quantify total canopy chlorophyll content; by using 

the measured canopy LAI to scale-up estimates o f foliar chlorophyll concentration 

derived from hyperspectral data (Solberg et al., 2005). Blackburn (2007) suggests 

that the combination o f LiDAR and hyperspectral imaging technique in studying the 

geometrical structure o f heterogeneous canopies remain a possibility which needs 

further investigation.
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2.5 Conclusion

Plant stress can be caused by various biotic and abiotic factors. Oil pollution 

is an abiotic factor that can affect plants. Plants can be affected directly through 

physical contamination with oil or indirectly through soil pollution. Various remote 

sensing techniques have been identified as valuable tools for estimating and mapping 

plant biochemical and biophysical properties, in order to understand the health status 

o f plants.

In the context o f hyperspectral remote sensing, several approaches have been 

found to be useful for plant stress detection both at early and later stages. These 

include: the use o f characteristics o f spectral reflectance in the visible, NIR and 

SWIR regions, the characteristics o f the red edge such as the position, selection of 

diagnostic individual narrow wavebands, and a plethora o f spectral reflectance- and 

derivative-based ratios. However, the optimal spectral indicator for monitoring plant 

stress induced by oil pollution is not known. The potential o f thermal imaging 

techniques for detection o f plant stress, particularly abiotic-induced stresses other 

than water deficit, have not been extensively studied. The literature suggests that 

increased leaf temperature is one o f the possible effects o f physically-induced oil 

pollution on plants but it is not known if  the same effect occurs when plants are 

polluted indirectly through soil contamination. In summary, there is strong evidence 

that hyperspectral and thermal remote sensing techniques hold considerable potential 

for monitoring plant stress, but the specific case o f detecting and quantifying stress 

induced by oil pollution requires further investigation.
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Chapter 3

METHODOLOGY

3.1 Introduction

This chapter deals with the general methodology adopted in this study. It 

covers the range o f plant materials used and various treatments applied. Various 

measurements undertaken including the instrumentation and measurement 

procedures used are presented. The methods and procedures used to analyse the data 

are explained and key criteria for evaluating the information found are identified.

3.2 Plant material

With the exception o f a field based pilot study (reported in Chapter 4 below), 

all experiments were carried out in a glasshouse (10 x 3m) at the Lancaster 

Environment Centre, Lancaster University, UK. Day and night temperatures were 

typically 26°C (±2°C) and 15°C (±1°C) respectively, and a 12 h supplementary 

photoperiod (06.00 h to 18:00 h) was provided by Osram Plantastar 600W sodium 

lamps to give a photosynthetic photon flux density (PPFD) of 400 pmol m V  at 

bench height. Maize (Zea mays L.) and French dwarf bean (Phaseolus vulgaris 

‘Tendergreen ’) were the model plant species chosen for this study. Two seedlings of 

maize (previously pre-germinated for three days on damp tissue paper in darkness) or 

bean, were sown per 2 L pot containing a loam-based compost (John Innes No.2, J. 

Arthur Bowers, Lincoln, UK). Pots were placed on capillary matting that was 

watered daily to ensure that soils were kept moist and to prevent waterlogging and
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possible nutrient leaching that may have arisen by overhead watering. Plants were 

thinned to one per pot after two weeks and left to continue to establish for a further 

week before treatments commenced. Initial ‘zero tim e’ measurements were taken for 

all plants immediately before first treatment application. Measurements were 

repeated every 2 to 3 days thereafter.

3.3 Plant treatments

In all experiments, the control received no treatment. For the oil treatment, 

15W/40 diesel engine oil (Unipart, Crawley, UK) was applied to the soil surface and 

allowed to penetrate down through the pore spaces. In each case, the dosage was 

determined based on a percentage volume o f the soil water holding capacity (WHC) 

o f the pot (field capacity minus oven dry), previously determined as 0.63g H2O g '1 

compost at a density o f 0.8g cm'3. Application rates were 20% of WHC, being 

equivalent to 96g oil kg '1 soil. Waterlogging stress was instigated by flooding the 

pots with water to a depth o f 2.5cm above the soil surface twice a day. A water 

deficit stress was induced by watering to 25% of the soil WHC on a daily basis. The 

control and oil treated plants were watered to 80% of soil WHC daily. This was to 

ensure that plants received equal volumes o f water, to avoid totally displacing oil 

treatments where present, and to prevent occurrence o f incidental waterlogging 

where not required. During the experimental period, pots were randomized and 

periodically rotated around benches to minimize possible effects o f differences in 

glasshouse microclimate on plant development.
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3.4 Physiological measurements

In order to understand the physiological responses o f plants to the stress 

treatments, the same leaf on each plant was monitored throughout the experiment. 

The sixth or seventh fully emerged maize leaf and third trifoliate bean leaf (which 

was the most dominant from nadir at the start o f the experiment in bean), were 

chosen for physiological measurements. All measurements started on Day 0 

immediately prior to treatment and then every 2 to 3 days thereafter. Rates of 

photosynthesis, transpiration and stomatal conductance were determined using a 

portable infrared gas analyser (CIRAS-2, PP Systems, Hitchin, UK). The leaf cuvette 

conditions were set to track ambient glasshouse temperature, humidity and ambient 

CO2 concentration (38.5 Pa), with a PPFD o f 600 pmol m 'V 1, and a leaf 

equilibration time o f 3 minutes in the cuvette prior to recording data. At the same 

time plants were visually inspected for any visual signs o f stress.

3.5 Thermal imaging

Thermographs for individual leaves (for leaf scale measurements) and canopies (for 

canopy scale measurements) were acquired in the glasshouse (unless otherwise 

stated) using an SC2000 thermal camera (FLIR Systems, West Mailing, UK). The 

thermal camera operates in a waveband from 7.5 to 13 pm with a thermal sensitivity 

o f 0.07°C at 30°C. The field of view (FOV) was 24° x 18°, the spatial resolution 1.3 

mrad and emissivity was set to 0.95. Measurements were made following the 

procedure of Grant et al. (2006). At each time o f measurement, two leaves were cut 

o ff from the reserved maize plants and placed close to the leaf of interest in order to 

act as wet and dry reference surfaces. The wet references were regularly sprayed
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with water to keep them moist while the dry references were covered in petroleum 

jelly to inhibit water (and therefore heat) loss. The acquired thermal images were 

recorded on a portable disk and later downloaded to a PC for analysis.

3.6 Spectral measurements

Leaf and/or canopy spectral reflectance data were collected in a dark room 

directly opposite the glasshouse and immediately after physiological and thermal 

measurements, using a field portable GER 1500 spectroradiometer or an ASD 

FieldSpec® Pro Spectroradiometer (Boulder, CO 80301 USA). The GER 1500 uses a 

diffraction grating with a silicon diode array that has 512 discrete detectors that 

provides the capability to read 512 spectral bands. Thus, it scans the spectrum at 

approximately 1.5 nm intervals and covers a portion o f the Ultraviolet (UV), the 

Visible, and the Near-infrared (NIR) wavelengths from 350 nm to 1050 nm. The 

ASD sampling interval over the 350-1050 nm range was 1.4 nm with a spectral 

resolution o f 3 nm. Over the 1050-2500 nm range the sampling interval was 2 nm 

and the spectral resolution between 10 and 12 nm. The instrument interpolated data 

points to give output reflectance values at 1 nm intervals.

The spectral measurements were carried out in a dark laboratory room in 

order to ensure stable and uniform illumination conditions (Mutanga et al., 2003; 

Vaiphasa et al., 2005). To minimise the effects o f background spectral variations, 

each pot was placed on a fixed black tray directly under the sensor (Gong and Heald, 

2002; Mutanga et al., 2003). Before leaf spectral measurements were taken, the 

leaves were clipped onto a flat low-reflectance surface. The low reflectance was 

provided to minimise the effects o f a background spectra on the sample spectrum 

(Gong et al., 2002).

55



To fully illuminate the target, a 500W halogen lamp was mounted at a fixed 

position away from each leaf or plant canopy to be measured. Where an ASD 

FieldSpec® Pro Spectroradiometer was used for reflectance measurements, the ASD 

foreoptics were positioned at nadir, 6 cm above each leaf and plant canopy to be 

measured. An 18° FOV was used which covered a sample area 2cm diameter on the 

surface o f individual leaves and approximately the same diameter at the top surface 

o f the plant canopies sampled. Prior to scanning, the lamp was switched on for 20 

minutes to eliminate spectral changes in the lamp as it warmed up (Smith et al., 

2004a). Ten spectral measurements were captured per leaf or canopy for each o f the 

10 replicates per treatment. Additionally, spectra were taken randomly by 

concentrating around the centre o f the leaf or canopy and avoiding outer boundaries. 

Leaves were slightly shifted between measurements to capture spectral variations 

within each leaf. In order to capture spectral variation within canopies, small 

adjustments were made to the position and rotation of the pot between each spectral 

measurement. Prior to spectral measurement, a reference measurement was first 

made using a white Spectralon panel (Labsphere, North Sutton, New Hampshire, 

USA) placed in the same position as the leaf or canopy. In each case, the time 

between reference and target measurements never exceeded one minute. The leaf 

spectral reflectance (R) was computed by dividing the radiation reflected from the 

leaf or canopy (It) by that reflected from the white spectralon reference panel (Ir) and 

applying a correction (k) for the spectral reflectance properties o f the panel, as no 

perfectly reflecting panel exist in practice (Milton, 1987).

Thus, % R  = — x k x  100 (1)
Ir
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3.7 Measurement of leaf pigments and water content

After leaf and/or canopy thermal and spectral properties were measured, 

pigment concentrations o f the same leaves were determined. Ten circular discs, each 

10 mm in diameter, equivalent to 0.79 cm2 leaf disk areas (for maize) and 6  mm in 

diameter equivalent to 0.28 cm2 leaf disk areas (for bean) were punched from five of 

the ten replicate leaves for each treatment. On the next day o f measurements, discs 

were taken from the other five replicate leaves. The alternate disc collection 

sequence was maintained until the end o f the experiment to ensure that any possible 

damage to the leaves was minimised. A pilot study confirmed that the disc sampling 

technique used did not produce any significant differences in physiology or 

remotely-sensed response compared to leaves where discs were not removed. 

Immediately after disc removal, five o f the leaf samples were frozen at - 50°C for 

later determination o f pigment content. The rest o f the samples were immediately 

weighed to determine fresh mass before they were dried at 80°C until a constant dry 

mass was obtained. Leaf water content was calculated as the difference between leaf 

fresh and dry mass and expressed per unit leaf area.

For pigment content determination, the frozen samples were crushed in a few 

drops o f 1 0 0 % methanol with a pinch o f calcium carbonate, to form a homogenous 

slurry. Pigments were extracted from the crushed samples by adding 5 ml o f 100% 

methanol in a centrifuge tube. The tubes were placed in a refrigerator at < 5°C 

overnight to ensure complete extraction before centrifuging to remove particulates. 

The samples were spun for 2 minutes at 30,000 revolutions per minute (rpm). Three 

replicate extractions derived from each leaf disc were analysed using a Shimadzu UV 

mini 1240 UV-VIS spectrophotometer, with measurements of absorbance at 665.2 

nm, 652.4 nm and 470 nm. Prior to measurements, blank samples of methanol were
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measured to calibrate the cuvettes for each wavelength. The analysis procedure was 

designed to minimise the completion time after removing each leaf sample from the 

freezer. Thus, the preparation and analysis procedure took approximately 10 minutes 

per sample, excluding the overnight extraction time. All procedures were carried out 

under low-light conditions in the laboratory in order to minimise photo-oxidation of 

pigments.

The concentrations o f chlorophyll a, chlorophyll b, chlorophyll a + b and 

carotenoids x + c (cars) in pg cm"2 were determined using the equations derived by 

Lichtenthaler (1987):

Chlorophyll a = 16.72*A 665.2) -  (9.16 *A 652.4) (2)

Chlorophyll b = (34.09* A652.4) -  (15.28*A665.2) (3)

Chlorophyll a + b = (1.44*A665.2) + (24.93*A652.4) (4)

Cars = ((1000*A47o)-(1.63*chlorophyll a)-(104.96*chlorophyll b))/221 (5)

While equation 3 gives the concentration o f total chlorophyll, i.e., the sum of 

chlorophyll a and chlorophyll b (a + b) (hereafter referred to as total chlorophyll), 

equation 4 gives the concentration o f total carotenoids, i.e., the sum of the 

xanthophylls and (3-carotene (x + c). These equations gave pigment concentrations in 

micrograms per ml o f extract which was converted to contents in micrograms per 

cm2 o f leaf.

3.8 Data analysis

3.8.1 Physiological analysis

In order to ascertain and quantify the effects o f treatments on plant 

physiological properties, the photosynthetic rate, transpiration and stomatal
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conductance for each sample was measured on each day o f assessment. Physiological 

measurements o f treated plants were expressed as percentage o f control on each 

measurement occasion in order to account for the effects on absolute values, o f daily 

glasshouse variability in ambient temperature and humidity at the time of 

measurement.

3.8.2 Thermal imaging analysis

Thermal images were analysed using ThermaCAM Researcher 2001 software 

(FLIR Systems, West Mailing, UK). Polygon areas were selected from the image 

covering the wet and dry leaf references as well as the target leaf or canopy of 

interest to measure their thermal characteristics. The minimum, maximum, and 

average leaf or canopy temperatures were extracted for each replicates o f control and 

treated plants. The thermal index (Jo) was calculated from leaf or canopy 

temperatures as:

Ig = (Tdry -  Tieaf)/(Tieaf — Twet) (Grant et a l, 2006) (6)

Where, Tdry = temperature o f the dry reference

Tieaf = temperature o f the leaf or canopy o f interest

TWet= temperature of the wet reference

The Iq is theoretically proportional to stomatal conductance (gs) under any 

environmental conditions (Jones, 1999). The outputs were transferred to Microsoft 

Excel spreadsheets in order to determine treatment means and standard errors. 

Finally, leaf or canopy mean temperature and Ig (% of control) values were plotted 

against time in order to observe the effects o f treatments on thermal responses.
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3.8.3 Spectral data analysis

The spectral data in GER1500 .sig files were imported into Microsoft Excel 

for processing using a Visual Basic macro. Individual reflectance spectra were 

displayed and visually assessed to eliminate erroneous data. Differences between the 

initial spectral reflectance o f control and treatments were computed. These were used 

to normalise subsequent spectral reflectance o f treatments. This was to ensure a 

meaningful comparison between changes in spectral reflectance of control and 

treated plants. In order to examine the effect o f treatments on plant spectral 

properties, the mean reflectance spectra of control and treatments were plotted 

against wavelength. However, wavelengths shorter than 400 nm were not analysed 

due to excessive noise. Differences between the mean reflectance spectra of 

treatments and control were plotted in order to identity wavelengths o f high variation 

between the treatments and control.

Derivative spectroscopy concerns the rate o f change o f reflectance with 

wavelength (Smith et a l, 2004a). The derivative analysis was undertaken in order to 

(i) discriminate between overlapping bands, (ii) locate the position o f the primary 

red-edge wavelength associated with leaf damage (Miller et al., 1990; Martin, 1994; 

Smith et al., 2005) and (iii) identify other red-edge features that may indicate stress 

in leaves. Derivative analysis can enhance absorption features that might be masked 

by interfering background absorptions (Elvidge, 1990; Dawson and Curran, 1998) 

and leaf background effects. Thus, derivatives can provide a more sensitive analysis 

than using original reflectance spectra (Smith et al., 2004b). A first derivative 

spectrum displays the variation with wavelength in the slope o f the original 

reflectance spectrum (Blackburn, 2007b). Thus, the first derivative was calculated 

using the ratio of difference between original spectral reflectance values in two
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individual narrow wavebands that span a window of three adjacent wavebands. The 

resulting derivative was smoothed using a three-band window moving average across 

the spectrum. This procedure eliminated the effects o f noise and at the same time 

minimised the loss of fine spectral detail.

The red-edge region is the region of occurrence o f multiple peaks. The red- 

edge position (REP) is conventionally marked by the wavelength corresponding to 

the maximum amplitude o f the first derivative within the region o f the red-edge. 

Limitations associated with this method and other methods used in determining the 

REP were identified by Cho and Skidmore (2006). This led to the development o f a 

new approach called the linear extrapolation technique. The model defines the REP 

as the wavelength that corresponds to the intersection o f two straight lines 

extrapolated through two points on the far-red and two points on the NIR flanks of 

the first derivative reflectance spectrum o f the red-edge region. Thus:

REP = ~ ( c l ~ c2) (7)
(ml -  m2)

where c l and c2, and m l and m2 are the intercepts and slopes o f the far-red and NIR 

lines respectively. Afterwards, the amplitude which gives the degree o f height o f the 

REP, in other words, the first derivative reflectance o f the REP was recorded.

Besides the REP and its amplitude, other red-edge attributes analysed include

(i) the positions o f the first and second of the double peaks and (ii) the distance 

between the positions o f the double peaks in the second derivative reflectance red- 

edge region. Thus, the second derivative was calculated by taking the ratio of 

difference between first derivative reflectance values in two individual narrow 

wavebands that span a window of three adjacent wavebands. Essentially, the 

positions o f the double peaks correspond to points where the second derivative
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curves have a value o f zero (Cho and Skidmore, 2006). Thus, the position o f the first 

o f the double peaks was calculated as the wavelength that corresponds to the first 

data point o f zero value in the second derivative curve in the red-edge region. 

Similarly, the position o f the second peak was calculated as the wavelength that 

corresponds to the second data point of zero value in the second derivative curve in 

the red-edge region. The distance between the wavelength positions o f the double 

peaks was then calculated.

Various individual narrow wavebands and spectral indices were also used to 

analyse stress effects on leaf spectral reflectance. These were chosen based on 

systematic selection o f bands (using a single waveband per region o f the spectrum) 

and systematic combination of wavebands across the entire wavelength range. In 

addition, wavebands at which reflectance variation between treatments and controls 

were high were analysed. The entire reflectance spectrum was considered because 

subtle differences arising from physiological stress do not appear only at specific 

regions such as the red-edge but are distributed across the spectrum. The limitation 

o f not investigating all combinations o f wavebands across the entire spectrum was 

due to the significant computation time for performing the sensitivity analysis.

Spectral indices proposed by several studies as being useful for plant stress 

detection were investigated (Bonham-Carter, 1988; Miller et a l, 1990; Miller et al., 

1991; Vogelman et al., 1993; Carter, 1994; Belanger et al., 1995). These indices 

calculate ratios o f bands, or properties mainly in region o f the red-edge (Kempeneers 

et al., 2005).
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3.8.4 Statistical and sensitivity analysis

Statistical analysis was performed using Analysis o f Variance (ANOVA) to 

ascertain which o f the stress indicators was optimal for early detection, prediction 

and quantification of stress arising from treatments. The criteria used to judge their 

sensitivity to stress were time o f detection and consistency in detection during the 

remainder o f the experiment. Time o f detection was particularly considered in order 

to determine whether stress arising from treatments could be detected by 

hyperspectral and/or thermal sensing before symptoms became apparent to an 

unaided eye. However, both factors would help to establish reliability and general 

sensitivity for each of the stress indicators. All significant differences were at the 

0.05 level o f confidence unless otherwise stated. The hypothesis tested using 

ANOVA was that there is no significant effect o f treatments on plant physiological, 

spectral and thermal properties. Post hoc test analyses using Tukey HSD were 

performed on ANOVA to determine significant treatment differences by a mean 

square multiple comparison procedure. This helps to ascertain the sensitivity o f an 

indicator to various treatments. Regression analysis was conducted to ascertain 

relationships between remotely-sensed stress indicators and physiological 

parameters.

Where biochemical measurements were made, the measurements of treated 

plants were expressed as percentage o f control on each measurement occasion. 

Sensitivity analysis was performed on the biochemical data using ANOVA to 

determine when significant responses to the different treatments occurred and 

whether these responses were consistent throughout the experiment.

T-tests were performed on wavelengths of high spectral variation to 

determine whether differences in spectral responses were significantly different
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between treatments. Correlograms were computed to determine the relationships 

between the measured physiological and biochemical parameters and reflectance in 

each individual ASD waveband. In order to develop optimal spectral indices, 

wavebands with the highest correlations were identified in addition to wavebands 

with minimum correlations. Based on previous studies and theoretical considerations, 

the sensitivity o f a spectral index is improved when wavebands that are responsive to 

a given physiological property e.g. photo synthetic rate, are referenced to 

nonresponsive wavelengths (Schepers et al., 1996). Thus, several simple and 

normalised difference ratios were developed based on this theory. However, in order 

not to overlook some other potentially valuable spectral indices, a range o f existing 

spectral indices identified in the literature (Tarpley et al., 2000; Read et al., 2002) 

were also tested.
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Chapter 4*

PRE-VISUAL DETECTION OF OIL-INDUCED STRESS IN MAIZE (Zea 

mays, L.) USING LEAF SPECTRAL AND THERMAL RESPONSES

4.1 Introduction

Many studies have shown that pollution-induced stress has a negative effect 

on the physiological functioning o f plants. For example, it has been demonstrated 

that leakage o f natural gas into the soil caused restricted plant growth and 

reproduction as well as decreased the number o f individuals (Godwin et a l, 1990). 

However, changes in plant growth rate or species composition and plant community 

structure are relatively slow to respond to gas leaks and thus are generally inadequate 

as early stress indicators (Mendelssohn et al., 2001). Alternatively, visual 

observations o f plants may provide timely indications o f the symptoms o f plant 

stress. For example, visual stress symptoms in the form o f shoot and leaf chlorosis 

and to some extent, thinner canopies were observed in Salicornia virginica 13 days 

after high levels o f cadmium treatment (Rosso et a l, 2005). Similarly, severe effects 

o f cadmium on Spartina alterniflora leaf expansion were observed 5 days after 

treatment (Mendelssohn et a l, 2001). Shoot mortality, stunting and a moderate 

chlorosis were exhibited by Salicornia virginica 19 days after vanadium treatment 

and growth was inhibited in S. virginica 10 and 32 days after being contaminated 

with ‘Escravos’ and ‘Alba’ petroleum, respectively (Rosso et a l, 2005). These 

studies give evidence that it can take a considerable time for plants to show visible 

stress symptoms induced by pollution and that this time varies according to the type

* Part o f  this chapter has been published in Proceedings o f  the 33rd International Symposium on 
Rem ote Sensing o f  Environment (ISRSE), Stressa, Italy. 8 -1 1th May, 2009.
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of pollutant. Thus, relying solely on visual manifestation o f stress for early detection 

o f stress may not be adequate.

Stress conditions in plants are known to result in changes in the reflectance 

spectra o f leaves and canopies (Knipling, 1970; Noomen et al., 2003; Kempenneers 

et al., 2005) that can be detected before symptoms can be observed visually (Carter 

et al., 1996). In the latter study, herbicide-induced stress was detected 16 days prior 

to the first visible signs o f damage. Alterations in plant biochemistry and cellular 

composition imposed by environmental stressors produce changes in the reflectance 

characteristics that can be detected using remote sensors (Rosso et a l, 2005). Indeed, 

numerous studies have found a significant increase in visible reflectance and 

decrease in near-infrared reflectance in response to various stresses (Carter, 1993; 

Carter and Miller, 1994; Carter et al., 1996; De Oliveira, et al., 1997; Rosso et al., 

2005). In contrast, no significant reflectance changes were found in younger leaves 

o f plants contaminated with heavy metal at sub lethal levels (Mendelssohn et al., 

2001). This was attributed to the immaturity o f the leaves, as spectral reflectance was 

measured in the youngest fully expanded leaves, which were usually robust and 

healthy.

A large and growing body o f literature has used changes in thermal properties 

o f leaves or canopies to monitor stress, particularly water deficit. Plant temperature is 

a valuable index for detection o f plant and canopy water status (Ehrler, 1973; 

Jackson et al., 1977). Thus, it is worthwhile to investigate whether the thermal 

properties o f leaf could serve as additional way o f detecting stress induced by oil 

pollution. In some cases, combined spectral and thermal techniques have been 

employed to provide rapid identification o f crop growth status (Al-Abbas et al., 

1974; Thomas and Gausman, 1977; Schepers et al., 1996; Gitelson et al., 2003; Raun
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et al., 2005). Hence, the fusion o f spectral and thermal remote sensing techniques is 

potentially o f value in the context of oil pollution.

This chapter deals with measurements and analysis of physiological, spectral 

and thermal properties o f maize (Zea mays L.) contaminated with different levels of 

oil. Maize was chosen as model species because in developing countries where oil 

pollution is often a major problem affecting subsistence agriculture, maize is a 

common crop type and yields of maize are set to double and surpass that o f wheat 

and rice by 2020 (Pingali, 2001). Additionally, maize is an important crop which, in 

its different processed forms, makes a large contribution towards feeding the world’s 

populace and its livestock. Its by-products are used in the manufacture o f diverse 

commodities including ethanol, glue, soap, paint, insecticides, toothpaste, shaving 

cream, rubber tyres, rayon and moulded plastics. Oil pollution is known to affect 

farmlands which are likely to incorporate maize, which is widely cultivated 

throughout the world, and a greater weight of it is produced each year than any other 

grain.

Measurements were undertaken at various times before and after visual stress 

symptoms were seen. The time when significant changes in reflectance spectra and 

thermal properties first occurred was compared with the time o f first visible stress 

symptoms. Several spectral and thermal indices have been developed as viable stress 

indicators, but the indices that are most sensitive to oil-induced stress in maize are 

not known. In this study, the sensitivity o f a number o f stress indicators shall be 

compared in order to discover which is optimal. Attempt is made to quantify the 

effect o f refined oil on the photosynthesis, transpiration and stomatal conductance 

activities o f maize. The physiological properties are correlated with spectral and
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thermal properties in order to understand their relationships. The specific objectives 

are:

i) To determine the efficacy o f spectral and thermal properties o f plants as 

indicators for oil pollution.

ii) To determine an optimal remotely-sensed index for early detection o f oil- 

induced stress in plants.

4.2 Pilot study

In order to improve the quality and efficiency o f this experiment, a feasibility 

study was first undertaken to test logistics and gather useful information prior to the 

actual experiments. There were key issues from the proposed experimental design 

that needed clarification before undertaking further experiments. These include: (i) 

working out appropriate dosage for each treatment level as standardised lethal and 

sub lethal levels o f oil contamination are not known; (ii) assessing the appropriate 

duration o f experiments; and (iii) developing methods o f data analysis. Overall, there 

was the need to gain insight and understanding about the basic, technicalities and 

operational principles of some o f the techniques that would be used. Apart from 

clarifying the above methodological issues, the key aim o f the experimental study 

was to investigate the effects o f heavy refined oil product (engine oil) on the spectral 

reflectance properties o f two plant species, with two specific objectives:

(i) to examine how oil pollution at varying levels affect the spectral 

properties of individual plant species.

(ii) to examine how different plant species respond to oil pollution.
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4.2.1 Plant materials and treatments

A deciduous shrub called forsythia (Forsythia suspensa) and ornamental 

fountain grass (Pennisetum alopecuroides) plant species were used for the 

experiment. These plants were used for the pilot study because o f their availability at 

the time o f the experiment. Plants were up to six months old before the experiment 

studies begun on the 14th August, 2007 and ended on the 11th September, 2007. Four 

treatments, each comprised o f two replicates were established for each of the plant 

species. These include the control and three dose levels o f oil treatment. 

Systematically, 20%, 40% and 60% of soil WHC were chosen to represent low, 

medium, and high dose levels respectively. Pots were kept outdoors under natural 

and uniform environmental condition except when plants were taken into a dark 

room for spectral measurements. The plants were watered on a regular basis.

4.2.2 Spectral measurements and analysis

Plants were transferred in their pots from outside to a laboratory for 

measurements. This was to control the influence o f other factors on the spectra not 

related to plant vigour, such as change in illumination angle, atmospheric effects 

(Luther and Carrol, 1999; Mutanga et al., 2003; Vaiphasa, et a l, 2005) and areas of 

shadow (Blackburn, 2007). The relatively dense canopy structure formed by the 

plants also controlled the effects of even more controlling factors such as soil/litter 

surface reflectance, % canopy ground coverage, and presence o f non-leaf elements 

(Blackburn, 2007). A field portable GER 1500 spectroradiometer was used for all 

reflectance measurements. The specifications o f the instrument and every other 

procedure taken were given in chapter 3, section 3.5. However, the sensor was
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mounted in a fixed position at about 1.5 m above the canopy at the nadir position 

with a standard 4° field o f view fore-optic. Spectral measurements were undertaken 

every four to five days and development of stress symptoms was visually observed 

every week.

Wavelengths considered for analysis were based on systematic selection of 

different spectral regions that is, the blue (400-5OOnm), green (500-600nm), red 

(600-700nm), near infrared (700-800nm) and far infrared (800-900nm). With respect 

to these spectral regions, the wavebands at which the reflectance difference between 

the treated plants and controls was high were selected for statistical analysis. This 

was to ascertain whether change in their spectral reflectances were statistically 

different. The hypotheses tested were:

(i) There is no significant difference between changes in spectral reflectance of 

plants treated with oil at different doses.

(ii) There is no significant difference between change in spectral reflectance of 

different plant species (i.e. grass and forsythia) treated with oil.

ANOVA comparisons were used to test the first hypothesis. Where the spectral 

reflectance o f control and treated plants was statistically different, further analysis 

was carried out using Post hoc multiple comparisons to ascertain which samples 

were different. The second hypothesis was tested using Wilcoxon signed-rank test. 

Although, scale level o f measurement was used for data acquisition, the Wilcoxon 

signed-rank test was used because the sample size is small and they are also related.
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4.2.3 Results of pilot study

4.2.3.1 V isual stress sym ptom s

T reated  p lan ts o f  bo th  grass and fo rsy th ia  w ere v isually  affec ted  by  oil 

po llu tion  as show n in F igures 4.0 and 4.1 respectively . A  varie ty  o f  v isib le  stress 

sym ptom s rang ing  from  stunting, le a f  ch lorosis and  shoot m orta lity  w ere generally  

observed  in all trea ted  p lan ts as sum m arised  in Table 4.0. W hile stress sym ptom s 

w ere observed  in grass one w eek  after oil trea tm ents, the fo rsy th ia  show ed stress 

sym ptom s after tw o w eeks. H ow ever, the contro l p lan ts flourished  th roughou t the 

experim ental period.

Figure 4.0 Visual symptoms of grass according to treatment levels of engine oil. C = 
control, L = low, M = medium, H = high.

Engine oil

Figure 4.1 Visual symptoms of forsythia 28 days after treatments with engine oil at varied 
doses. C = control, L = low, M = medium, H = high.
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Table 4.0 Visual stress symptoms of grass and forsythia contaminated with engine oil at 

varied doses. C = Control, L = Low, M = Medium, H = High.

Plant Treatments Visual stress symptom
specie

D ay 0 Day 7 Day 14 Day 21 Day 28

Grass L same as growth rate few  leaves few  leaves few  leaves
above declining were were partially were partially

w hile som e dehydrated dehydrated dehydrated
leaves were w hile som e w hile som e
dehydrating change to 

reddish brown
change to 
reddish brown

M same as growth rate same as same as low same as low
above declining low  but but with an but with an

w hile som e involves increased rate increased rate
leaves are more
dehydrating number o f  

leaves
H same as same as low alm ost all leaves plant death

above and medium  
but at 
relatively 
higher rate

leaves
were
affected

com pletely
dehydrated

Forsy­ L same as same as still green very few very few
thia above above leaves

appeared pale
leaves
appeared pale 
while others 
remained 
green

M same as same as chlorosis similar similar
above above affecting 

very few  
number o f  
leaves

symptoms as 
low

symptoms as 
low  but 
affecting more 
number o f  
leaves

H sam e as same as same as similar som e o f  the
above above the

medium  
but with an 
increased 
rate

sym ptoms as 
low  but 
involves larger 
number o f  
leaves

leaves wilted  
and appeared 
pale and 
reddish brown, 
shoot 
mortality 
occurred

4.2.3.2 Spectral response to stress

The spectral reflectance of treated plants generally increased in the visible 

and decreased in the NIR region of the spectrum relative to control. Figures 4.2 and

4.3 show the mean reflectance o f the treated plants and controls on the final day o f 

the experiment. The pattern o f reflectance changes generally follows the dose level
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except in forsythia where medium dose level had highest reflectance in the NIR 

(Figure 4.3).
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Figure 4.2 Mean reflectance spectra of engine oil treatments and control in grass 28 days 

after treatments commenced. C = control, EL = engine oil low dose, EM = engine oil 

medium dose, EH = engine oil high dose.
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Figure 4.3 Mean reflectance spectra of engine oil treatments and control in forsythia 28 days 

after treatments commenced. C = control, EL = engine oil low dose, EM = engine oil 

medium dose, EH = engine oil high dose.
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Table 4.1 shows a summary o f ANOVA testing for significant differences 

between the spectral reflectance o f control and treated plants. Grasses treated with 

high dose o f oil showed a significant change in reflectance in the blue region. In the 

same region (blue), high treatment doses significantly affected forsythia’s spectral 

reflectance. In the green region, high treatment doses significantly affected the 

spectral reflectance of grass. Similarly, medium and high treatment doses had a 

significant effect on forsythia in the green region. In the red region, medium and high 

treatment doses significantly affected the spectral reflectance of grass and forsythia. 

In the NIR, high doses significantly affected grass spectral reflectance. However, 

medium and high doses had no significant effect on forsythia spectral reflectance in 

the same region (NIR). At longer wavelengths in the NIR, all treatment doses had a 

significant effect on grass spectral reflectance unlike in forsythia where no 

significant difference was found at all treatment doses.

Table 4.1 ANOVA showing significant difference in spectral reflectance changes of grass 

and forsythia treated with oil at different treatment doses. In the wavelength column, 

subscripts G and F refer to grass and forsythia respectively.

W avelength (nm) Treatments Plant species

Grass Forsythia
4 9 4 .7g, 401 .2 f Low 0.951 0.972

Medium 0.541 0.681
High 0 .0 0 1 * 0 .0 0 0 *

598 .6g, 550 .8f Low 1 . 0 0 0 0 .0 2 2 *
Medium 0.621 0.837
High 0 .0 0 1 * 0 .0 0 0 *

6 8 1 .Iq, 698 .6f Low 0.087 0.159
Medium 0 .0 0 0 * 0 .0 0 0 *
High 0 .0 0 0 * 0 .0 0 0 *

700.2g, 798 .5f Low 0.887 0.246
Medium 0.300 0.832
High 0 .0 0 1 * 0.899

8 0 0 .1G, 877.7F Low 0 .0 0 0 * 0.068
Medium 0 .0 0 0 * 0.237
High 0 .0 0 0 * 0.976

n = 20, o =  Grass, F = Forsythia, * = significant difference at 0.05.
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There is a significant difference between changes in spectral reflectance of 

grass and forsythia treated with engine oil at different levels at all waveband regions. 

Except in the NIR where the ANOVA test showed no significant difference between 

changes in spectral reflectance o f forsythia treated with oil at different levels. Thus, 

the hypothesis that there is no significant difference between changes in spectral 

reflectance o f plants treated with oil at different doses was rejected at all wavelengths 

for the grass and accepted in the NIR for the forsythia only. A Wilcoxon signed-rank 

test showed no significant difference (p = 0.109 > 0.05) between changes in spectral 

reflectance o f grass and forsythia treated with engine oil. Thus, the hypothesis that 

there is no significant difference between change in spectral reflectance o f  different 

plant species (i.e. grass and forsythia) treated with oil was accepted.

4.2.3.3 Discussion

Oil can flow through plant growing medium when spilled onto the soil 

surface. Oil reached the plant root zone as it flowed through the soil substrates, given 

that excesses were collected on the plastic bowls placed under the pots. The 

estimated dose for each treatment level needed review. The treatment doses adopted 

for the medium (40%) and low (20%) levels appeared to exhibit similar effects 

particularly on the spectra. Thus, it suggests that the low treatment be reduced by 

10%. In addition, plant response to oil doses varied with species and therefore, there 

was the need to determine oil treatment doses for each species used in subsequent 

experiments. Timing the experiment o f this kind was not straightforward as several 

factors such as plant type or specie, type o f pollutant and level o f pollution influence 

it. Plants have different levels o f sensitivity to stress, but can generally respond
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quickly to high dose o f pollution and slowly if  contaminated at a sub lethal level. On 

average, it can take couple o f weeks for a potted plant to reach mortality level from 

the time o f stress initiation. Visual observation and spectral reflectance features have 

potential for monitoring oil pollution. Consequently, this potential shall be explored 

further in subsequent experiments.

4.2.3.4 Conclusion

The visible region appears to be most sensitive to oil pollution for both plant 

species. This is expected as it is the region o f strong chlorophyll absorption. Since 

chlorophyll is responsible for light absorption particularly in the red, a higher 

reflectance exhibited by the polluted plants in this region implies a decrease in 

chlorophyll content. The low dose level (measured as 20% o f soil WHC) showed 

similar spectral effects as the medium dose (measured as 40% of soil WHC). Thus, 

in the next experiment, the low dose treatment will be reduced by 10% in order to 

simulate more accurately a sub lethal level o f oil pollution. Plant response to oil 

pollution varied with species and therefore, there may be the need to determine oil 

treatment doses for each species used in subsequent experiments. Based on the stress 

symptoms observed visually, forsythia appears to be more resistant to oil pollution 

than grass. This could possibly be attributed to its strong root system that may have 

stored sufficient resources needed to sustain plant growth. However, from the 

progression o f stress observed in forsythia, one can predict that mortality will occur 

if  the experiment is continued for a longer period than that used in the present 

experiment. This suggests that irrespective o f level o f oil pollution, duration of 

exposure could also count as an important factor for assessing plant damage by oil
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pollution. Thus, in subsequent experiments, measurements will continue until it 

becomes impossible to take further measurements as a result o f plant mortality.

Overall, spectral reflectance, particularly in the visible region, appears to be a 

potential indicator of oil stress that could be applicable across different plant species. 

This pilot study indicates that the use o f spectral reflectance as an indicator o f  oil- 

induced stress is worthy o f further investigation, that may be focused particularly on 

identifying appropriate analytical methods for quantifying spectral changes that are 

most sensitive. The subsequent experiments shall exclusively, be undertaken in a 

glasshouse and available resources will allow the use o f maize for the experiment.

4.3 Methods

This section describes distinctive approaches that were used to investigate the 

efficacy o f spectral and thermal responses for early detection o f oil-induced stress in 

maize. In addition to the use o f information and understanding that were gathered 

from the pilot study, the methodology previously described in chapter 3 was adopted 

in this experiment.

Four treatments comprised o f eight replicates were randomly selected from 

fifty established plants. Each treatment represents the control, low, medium, and high 

doses o f oil pollution. The pots were placed in plastic trays and labelled accordingly. 

The doses were chosen in order to subject the plants to lethal and sub lethal levels 

since oil pollution occurs at varied intensity. It was intended that the low and the 

high dose levels represent the lethal and sub lethal levels respectively while the 

medium dose stands as an intermediate level. The doses were determined by 

calculating 10%, 30%, and 50% of the average soil WHC (see chapter 3, section 3.2)
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to represent low, medium, and high levels respectively. Liquid fertilizer was applied 

at intervals after about one week when plant growth had increased in order to avoid 

nutrient deficiency.

The GER 1500 spectroradiometer (already discussed in chapter 3, section 

3.5) was mounted in a fixed position, at nadir, 15 cm above each leaf blade to be 

measured. An 8° fore-optic was used which covered an instantaneous field o f view 

approximately 2cm diameter centered upon the midrib o f the leaf. The 500W halogen 

lamp was mounted at a zenith angle o f 45° and at a distance o f 70cm from the leaf. 

Leaf pigments and water content were not measured in this experiment. A summary 

o f  the individual narrow wavebands, spectral indices and normalised difference ratios 

analysed is given in Table 4.2.
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Table 4.2 Individual narrow wavebands and spectra indices used for spectra analysis.

Individual narrow 
waveband Spectral region Spectral ratios

Band
combination

450 Blue 530/440 Blue/Green

550 Green 685/440 Blue/Red

650 Red 740/440 Blue/NIR

705 Far-red 685/530 Green/Red

706 Far-red 740/530 Green/NIR

708 Far-red 760/695 Red/NIR

710 NIR 750/700 Far-red/NIR

711 NIR 715/705 Far-red/NIR

712 NIR 740/685 Red/NIR

714 NIR 755/716 Far-red/NIR

716 NIR (920-655)/(920+655) Red/NIR

717 NIR (755-716)/(755+716) NIR/NTR

750 NIR

850 NIR

950 NIR

4.4 Results

4.4.1 Photosynthesis

Oil treatments at all levels reduced the photosynthetic activities o f maize 

(Figure 4.4.). The relative reductions followed dose levels with photosynthesis 

decreasing as stress increases. The net gas exchange was not affected at low dose 

level until after 6 days o f treatment while the medium and high levels were both 

affected after 2 days. The statistical significance o f the differences between the
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photosynthetic activities o f the different dose levels and the controls is given in Table 

4.3.
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Figure 4.4 Effects of treatment on photosynthesis in maize over the course of the 

experiment. Treatments are denoted by the key. Error bars = 1 x SD, n = 8.

Table 4.3 Statistics showing the significance of the differences in photosynthetic activity 

between the different dose levels and controls.

Parameter Treatment Mean difference (pmol m‘“ s ) Sig.
Photosynthesis Control Low 1.67 .51
(|imol m'2 s"1) Medium 7.54* .00

High 9.51* .00
Low Control -1.67 .51

Medium 5.88* .00
High 7.85* .00

Medium Control -7.54* .00
Low -5.88* .00
High 1.97 .36

High Control -9.51* .00
Low -7.85* .00
Medium -1.97 .36

*The mean difference is significant at 0.05, no. of leaves measured per sample n = 8.
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4.4.2 Transpiration

The rate o f transpiration increased for the low dose level a few days after 

treatment and gradually declined as stress progressed (Figure 4.5). On the contrary, 

the medium and high dose levels decreased from an early stage and this continued to 

the later stages o f the experiment. The statistical significance o f the differences 

between transpiration rates o f the different dose levels and the control are given in 

Table 4.4.
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Figure 4.5 Effects of treatment on transpiration in maize over the course of the experiment. 

Treatments are denoted by the key. Error bars = 1 x SD, n = 8.
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Table 4.4 Statistics showing significance of the differences in transpiration rates between 

the different dose levels and controls.

Parameter Treatment Mean difference (pmol rrf2 s'1) Sig.
Transpiration Control Low -.12 .75
(jwmol m'2 s"1) Medium .69* .00

High .84* .00
Low Control .12 .75

Medium .80* .00
High .96* .00

Medium Control -.69* .00
Low -.80* .00
High .15 .59

High Control -.84* .00
Low -.96* .00
Medium -.15 .59

*The mean difference is significant at 0.05, no. of leaves measured per sample n = 8.

4.4.3 Stomatal conductance

There was a general decrease in stomatal conductance which typically 

followed dose levels (Figure 4.6). Although the low level increased slightly at the 

early stage o f experiment, it eventually decreased at a later stage. While the high 

dose level had a continuous decrease in stomatal conductance from the onset until the 

end o f the experiment, the medium followed similar trend but appeared to increase 

slightly towards the end. High and medium dose levels had similar, rapid rate o f 

response when compared with low dose plants which responded much more slowly. 

The significant difference between changes in stomatal conductance o f different dose 

levels and control is given in Table 4.5.
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Figure 4.6 Effects of treatment on stomatal conductance in maize over the course of the 

experiment. Treatments are denoted by the key. Error bars = 1 x SD, n = 8.

Table 4.5 Statistics showing significance of the differences in stomatal conductance 

between different dose levels and controls.

Parameter_____________ Treatment_____________ Mean difference (pmol m~2 s'1) Sig.
Stomatal conductance Control Low -14.16 .19
(pmol m'2 s'1) Medium 43.68* .00

High 55.80* .00
Low Control 14.16 .19

Medium 57.84* .00
High 69.95* .00

Medium Control -43.68* .00
Low -57.84* .00
High 12.11 .32

High Control -55.80* .00
Low -69.95* .00
Medium -12.11 .32

*The mean difference is significant at 0.05, no. of leaves measured per sample n = 8.
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4.4.4 Visual stress observations

Expectedly, treatments caused different visible stress symptoms such as leaf 

chlorosis, rolling and wilting, the thinning of canopies and slower growth in maize 

and these increased with dosage and duration o f stress (Figure 4.7). About five days 

after oil stress initiation, the controls and treated plants did not show any signs o f 

stress visually. The plants flourished and appeared healthy and green. On the sixth 

day, there was slight chlorosis on some o f the leaves o f the high dose level plants. By 

the eleventh day, the medium and high levels showed symptoms o f stress such as 

shoot and leaf chlorosis, thinner canopies and to some extent growth reduction. The 

low dose plants exhibited a moderate leaf chlorosis after fourteen days while medium 

and high showed severe wilting and general mortality at that stage. The control 

plants did not show any visual symptoms o f stress at any time throughout the 

experimental period.

M ed iu mC ontrol

F ig u r e  4 .7  V isu a l stress sym p tom s o f  m a ize  accord in g  to  d o se  le v e ls  14 d ays after treatm ent.
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4.4.5 Spectral reflectance

There was a general increase in leaf reflectance in the visible region and a 

decrease in the NIR in response to oil pollution relative to control (Figure 4.8). The 

magnitude o f the response followed dose levels with the highest increment in the 

visible range (560 -  700 nm) for the high dose level, followed by medium and then 

low, and vice-versa in the NIR. Differences between the mean spectral reflectance of 

controls and treated leaves were highest in the red and far-red region o f the spectrum. 

The greatest reflectance difference was found around 750 nm while the blue, green, 

and NIR had minimal spectral differences.

— Control
 Low
 Medium
 High

= 30 •

®  20 -
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Figure 4.8 Mean reflectance spectra of control and treated maize 14 days after treatment. 

Dose level of treatments are denoted by the key, n = 80.

There was a strong relationship between the physiological parameters and 

reflectance around 700nm, particularly at approximately 705nm (Figure 4.9 a-c). The 

relationship between the physiological parameters and reflectance at 705nm are 

asymptotic which suggest that they saturate at a point. Thus, the sensitivity o f 705
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nm wavelength would struggle to predict changes in physiological parameters 

beyond 1 mol m 2 s \  The temporal change in reflectance at 705nm is shown in 

Figure 4.10. Reflectance at 705nm increases with dose level and duration of 

pollution and responds very quickly (within 2 days) to the high dose treatment, with 

slightly slower responses to the lower doses when compared to the control.
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Figure 4.9 Relationship between reflectance and measured physiological properties: a) R705 

and photosynthesis; b) R705 and transpiration; c) R705 and stomatal conductance.
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Figure 4.10 Temporal change in mean reflectance spectra of treatments at varied dose levels 

and control in maize at approximately 705 nm.

Table 4.6 illustrates the results o f the sensitivity analysis performed on the 

reflectance values o f selected individual narrow wavebands and on the simple and 

normalised-difference spectral indices. Individual narrow wavebands such as R450 

and R 550 did not show consistency in their response except at the later stage. The 

sensitivities at R450 and R550 were consistent after 9 days o f treatment in only high 

dose level and in medium and high dose levels respectively. At R65o, the sensitivity 

was consistent at the early stage (2 days after treatment) to high dose level. After 6  

days o f treatment, the waveband showed a consistent significant difference between 

spectral reflectance o f the controls and the medium dose levels. However R650 was 

insensitive to low level treatment throughout the experiment. R705 and R 7i0 were very 

consistent in their sensitivity to oil pollution at all dose levels. Both wavebands 

showed a significant difference between the controls and high dose levels only 2
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days after treatments and were sensitive to medium and low dose levels after 6 and 

11 days respectively. Individual narrow wavebands in the regions R706-R 708 and 

R711-R 717 were consistent and performed in a similar manner. These wavelengths 

displayed a significant change in reflectance after 6 days for the high dose level and 

after 11 days for the medium and low levels. R750, Rsso and R950 did not show a 

consistent significant change in spectral reflectance at any dose level.

Table 4.6 S en sitiv ity  an a ly s is  o f  se lec ted  ind iv idual narrow  w a veb an d s and spectral in d ice s  

across varied  d o se  le v e ls  o f  o il p o llu tio n  over  tim e. U n sh a d ed  areas d ep ict e ither  

in co n s is ten cy  or co n sisten t but not sign ifican t w h ile  shad ed  areas d ep ict a s ig n ifica n t  

d ifferen ce  that occu rs after treatm ent and rem ains co n sisten t across at least tw o  sam p le  d ays, 

un til the end  o f  the experim ent. *, ** , * * * T im e  w h en  v isu a l stress sy m p to m s w ere  o b serv ed  

in  lo w , m ed iu m  and h igh  d o se  le v e ls , resp ective ly .

W a v e len g th s
(n m ) T reatm ents

T im e  (D a y s)

0 2  4  (}*** 9  1 4 *

R450 C ontrol L ow
M ed iu m
H igh _ _ _ _ _

R550 C ontrol L ow
M ed iu m
H igh

JJJjjJIII
R650

R705

R 7O6

R 7O8

R 7IO

R 7II

C ontrol L ow
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H igh

C ontrol L ow
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H igh

C ontrol L ow
M ed iu m
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M ed iu m
H igh

C ontrol L ow
M ed iu m
H igh

C ontrol L ow
M ed iu m
H igh

1 1



R7 1 2 Control Low
Medium
High

R7 1 4 Contro Low
Medium
High

R716 Contro Low
Medium
High

R717 Contro Low
Medium
High

R750 Contro Low
Medium
High

R850 Contro Low
Medium
High

R,950 Contro Low
Medium
High

R530/R440 Contro Low
Medium
High

R685/R440 Contro Low
Medium
High

R740/R440 Contro Low
Medium
High

R685/R530 Contro Low
Medium
High

R740/R530 Contro Low
Medium
High

R760/R695 Contro Low
Medium
High

R750/R700 Contro Low
Medium
High

R715/R705 Contro Low
Medium
High

R740/R685 Contro Low
Medium
High

R755/R716 Control Low
Medium
High
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Medium
High

Control Low
Medium 

_________ High

The simple spectral index R530/R440 lacked consistent sensitivity in medium 

and high dose levels. However, it showed a consistent significant difference between 

spectral reflectance o f the controls and the low dose level at the later stage. R.685 /R440 

was consistent in sensitivity throughout the experiment. It was sensitive to both 

medium and high levels after 2  days o f treatment but was not sensitive to the low 

dose level. Both R740 /R440 and R685 /R530 were not consistent in sensitivity until after 

6  days when they became significantly different to the medium and high dose levels 

but not to the low dose level. The result showed that R740 /R 530 was very consistent in 

sensitivity with significant difference between spectral reflectance o f the control and 

the high, medium, and low dose levels after 2, 4, and 6  days o f treatments 

respectively. R76o /R-695, R750 /R700, and R715 /R705 had similar responses, with 

consistent sensitivity to high and medium dose levels after 2  days o f stress initiation 

and after 9 days for the low level, except R7i5 /R 705 that showed consistent sensitivity 

to medium dose level after 4 days. R74o /R 685 showed consistent significant difference 

between the controls and high, medium, and low dose levels after 2, 4, and 11 days 

respectively.

R755 /R716 was consistent throughout the experiment and showed significant 

change in spectral reflectance 2  days after treatments in high and medium levels and 

6  days in low. Thus, it is most sensitive to all dose levels when compared with other 

simple spectral indices and individual narrow wavebands that were tested. The 

normalised difference spectral ratio (R920-R655)/ (R920+R655) showed consistent
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sensitivity to medium and high dose levels only. It showed significant difference 

between spectral reflectance o f the controls and the high and medium dose levels 2 

and 4 days after treatments respectively. Similarly, (R755-R7 i6)/(R755~̂ R7 i6) also had 

consistent sensitivity throughout the experiment and showed a significant difference 

between spectral reflectance o f the controls and the high and medium dose levels 2 

days after stress initiation and 4 days to the low dose level. When the sensitivity of 

the normalised-difference spectral index (R755-R7 i6)/(R755+R7 i6) was compared with 

that o f other tested spectral indices including the simple spectral index R 755 /R 716, 

(R755-R716)/(R755+R 716) was found to be the most sensitive index in monitoring maize 

response to refined oil pollution. Moreover the index (R755-R7 i6)/(R755+R7 i6) has a 

strong polynomial relationship with photosynthesis (Figure 4. 11).

y = -O.OOx2 + 0.03x + 0.08
0.35 ■

r2 = 0.90

0.25 ■

0.15 ■

0.05 ■

155 10
Photosynthesis (pmol nr2 s 1)

Figure 4.11 R elation sh ip  b etw een  p h o to sy n th esis  and in d ex  (R 755-R7i6)/(R755+R7i6)-

The REP was consistent in sensitivity to all levels o f pollution (Table 4.7.). It 

displayed a significant change in reflectance 2  days after treatments for the high and
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medium dose levels and 9 days after for the low level. The amplitude was consistent 

in sensitivity but showed no significant difference between reflectance o f the controls 

and the dose levels (data not shown). The sensitivity o f the first o f the double peaks 

was consistent only to the low dose level 6 days after treatments.

Table 4.7 Sensitivity analysis o f the red-edge features across varied dose levels o f  oil 

pollution over time. Unshaded areas depict either inconsistency or consistency but not 

significant while shaded areas depict a significant difference that occurs after treatment and 

remains consistent across at least two sample days, until the end o f the experiment. *, **, 

***Time when visual stress symptoms were observed in low, medium and high dose levels, 

respectively.

Time (Days)

Red-edge features Treatments 0 2 4 5*** 9 j]* *

REP Control Low
Medium
High iiiiig 1 111!

Amplitude Control Low
Medium
High

Position o f the 
first o f the 
double peaks (nm)

Control Low
Medium
High mml! jjJ!

Position o f the 
second o f the 
double peaks (nm)

Control Low
Medium
High

Distance between 
the positions o f the 
double peaks (nm)

Control Low
Medium
High H i

The position of the second o f the double peaks was consistently sensitive to 

low dose level throughout the experiment and 4 days after treatments to high and 

medium levels. However, there was no significant difference between the positions 

o f the second o f the double peaks o f the controls and the dose levels. The distance 

between the positions of the double peaks was consistent in sensitivity to low dose 

level 6 days after treatments when there was a significant difference between the
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distance separating the positions of the double peaks o f the controls and the dose 

level. The distance between the positions o f the double peaks was not consistent to 

high and medium dose levels.

Two features known as the ‘double peaks’ were found within the red-edge 

region o f the first derivative in both control and treated plants (Figure 4.12a-d). A 

change in steepness or sharpness o f the peaks o f the two features was observed over 

time. The change introduces either a shift o f the red-edge to the longer wavelengths 

or to the shorter wavelengths. At the early stage o f the experiment, there was a gentle 

peak in the first o f the double features and a steep peak in the second feature. As time 

progresses, the shape o f the red-edge changes as the first o f  the double features 

increased in steepness while gradually shifting towards the shorter wavelengths in 

both treated and control plants. The extent o f the red-edge region was computed and 

interestingly, it was found that the time (after day 11) the extent o f the red-edge 

region o f the controls had a rapid decrease corresponded with the time their REP 

shifted to longer wavelengths. These observations explain that the extent o f the red- 

edge region in both stressed and unstressed plants generally decreased with time, as 

the leaves mature.
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At the later stages, there was a sudden shift o f the red-edge to longer 

wavelengths as the steepness of the first peak decreased in the control plants (Figure 

4. 12a). The time of the sudden shift corresponded with the time o f a decrease in 

reflectance at approximately 750 nm (see Figure 4.10) as mentioned earlier in section 

4.3.6. The steepness o f the second o f the double peaks was not affected in the control 

plants throughout the experiment. In treated plants, the steepness o f the first peak 

increased and consistently shifted towards the shorter wavelengths while the 

steepness o f the second peak decreased. This resulted to the development o f a single 

peak towards the shorter wavelengths as the steepness o f the second peaks 

diminishes (Figure 4. 12b - d).

As can be seen in Figure 4.13, there was a consistent shift to shorter 

wavelengths o f the first peak position in the red-edge region o f  the first derivative o f 

the treated plants when compared to the controls. The rate o f shifts o f the first peak 

position in the red-edge region o f the first derivative o f the treated plants was dose 

dependent. The statistical analysis revealed that the medium and high levels 

significantly shift to shorter wavelengths from day 2 onwards when compared to the 

control. However, the low level shifted to longer wavelengths from day 6 until day 

14 when it shifted back to shorter wavelengths. The medium and high levels had the 

greatest shift thus, there was no significant difference between these two dose levels 

throughout the experiment. By the end o f the experiment, there was a total shift to 

longer wavelengths in the first peak position in the red-edge region o f  the first 

derivative o f the control and low dose by 12 nm and 5 nm, respectively. However, 

the medium and high dose levels had a total shift to shorter wavelengths by 

approximately 4 nm and 6 nm, respectively.
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Figure 4.13 Temporal change in position of first peak in red-edge region of the first 

derivative in maize. Treatments are denoted by the key, n = 8.

The shifts in the position of the second peak o f the double features were not 

consistent in all treatments, compared to the controls (data not shown). The second o f 

the double features was not found in treatments except at the early stage. As stress 

progressed, the feature diminished and thus, may not be an effective technique for 

early detection o f oil-induced stress. Furthermore, the position o f the feature was 

prominent in the controls throughout the experiment and there was no significant 

difference in the position o f second of the double peaks in the controls and 

treatments at any time (p = 0.05).

The REP generally shifts towards the shorter wavelength in both control and 

treated plants (Figure 4. 14.). At the end o f the experiment, there was a total shift o f 

7nm, 22nm, 28nm, and 30nm to shorter wavelengths for the controls and the low, 

medium, and high dose levels, respectively. The trend o f shift followed order o f
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tieatment and was consistent in all dose levels except in control where there was a 

sudden shift to longer wavelengths at later stage. Again, this corresponds with the 

time o f sudden shift of the red-edge to longer wavelengths as the steepness o f the 

first peak decreased in first derivative reflectance and the time when there was 

decrease in reflectance spectra at approximately 705 nm as mentioned earlier.
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High
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-40-

CL

-80
14 16121086420

Time (days)

Figure 4.14 Temporal change in REP of control and treated maize. Treatments are denoted 

by the key. Error bars = 1 x SD, n = 8.

There was a significant difference in the REP o f the control and the medium 

and high dose levels throughout the experiment (n = 80, p = 0.000 < 0.05) and no 

significant difference for the low dose level (n -  80, p = 0.596 > 0.05) until after 9 

days o f treatment (n = 80, p = 0.006 < 0.05). Statistics showed a strong relationship 

between the REP and measured physiological properties (Figure 4. 15.). There was a 

decrease in the amplitude of the red edge position o f treated plants as dose level 

increased. The differences in amplitude o f the red edge position o f the control and
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treated plants were not significant at any time (n = 80, p = 1.000 > 0.05) o f the 

experiment.
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Figure 4.15 Relationship between the REP and measured physiological properties: a) 

photosynthesis; b) transpiration; c) stomatal conductance.

4.4.6 Thermal imaging

The average leaf temperature o f the control and treated plants fluctuated 

throughout the experiment. The average temperature o f the treatments did not follow 

a definite pattern through the experiment. The temperature continued to rise and fall

relative to control (Figure 4.16.). Statistics did not show significant differences
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between the average temperature of the controls and treatments (n = 56, p = 0.999, 

0.248, 0.782 > 0.05). The thermal index (Ic) o f treated plants consistently fell below 

the control plant throughout the experimental period (Figure 4.17.). There was a 

moderate linear relationship between I q and stomatal conductance (Figure 4. 18).
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Figure 4.16 Temporal changes in leaf absolute temperature of treated and control plants. 

Treatments are denoted by the key. Error bars = 1 x SD, n = 8.
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Figure 4.17 Temporal changes of thermal index (IG) of treated and control plants. 

Treatments are denoted by the key. Error bars = 1 x SD, n = 8.
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Figure 4.18 Relationship between thermal index (/G) and stomatal conductance.
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4.5 Discussion

Visible stress symptoms such as leaf and stem chlorosis, dryness, and growth 

impairment were observed in all the dose levels of pollution. For samples exposed to 

high level o f  pollutants, symptoms were first observed after 6 days. For samples 

exposed to a medium or low level, symptoms were first observed after 11 and 14 

days, respectively. Earlier studies using a wide range o f plant species and stresses 

discovered the first visual signs at different times such as 6, 7, 8, 14, 15, 30 days 

after inducement (Schollenberger, 1930; Arthur et al., 1985; Pysek and Pysek, 1989; 

Ketel, 1996; Smith et al., 2004a; Smith et al., 2005). These variations suggest that 

the time o f first visible stress symptom is a function o f plant species, type and degree 

o f stress. Symptoms at all dose levels started mildly by affecting only a few leaves 

and gradually becoming severe by spreading over all the leaves. The visible stress 

symptoms progressed in a way similar to that observed in oilseed rape leaves 

affected by natural gas elevation in the soil and other stresses (Smith et al., 2005).

There was a general and significant change in the spectral reflectance o f 

treated plants. Generally, the reflectance spectra increased in the visible and 

decreased in the NIR regions o f the spectrum. A decrease in the NIR reflectance is 

similar to the results of Pickerill and Malthus (1998) and Smith et al. (2005). 

Pickerill and Malthus (1998) found that the NIR reflectance was lower for wheat 

crops growing over the leaks from rural aqueducts than the surrounding canopy due 

to the reduced plant biomass and the presence o f standing water and wetter soil. 

However, Smith et al. (2004a) found that argon-treated barley showed a significant 

increase in the NIR. It is known that a number o f factors such as the size o f the cells, 

the number o f cell layers and the thickness o f the leaf mesophyll influence NIR 

reflectance. Maize and barley presumably have a similar leaf internal structure as
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monocotyledons, thus, reflectance ditferences exhibited by the two plant species may 

be associated with the extent of damage in the leaf internal structure. The effects of 

the stressors on the leaf internal structure may have varied due to their different 

chemical compositions. Differences in the NIR response could also be related to their 

different surface characteristics such as hairs/waxes and moisture content. The leaf o f 

a monocotyledon is more compacted with fewer air spaces (Gausman, 1985) 

consequently, these have lower NIR reflectance. In this case, the air spaces may have 

further been closed-up by oil if  oil is being transported from the roots to the leaves or 

the cellular turgor and leaf structure may have deteriorated due to indirect effects o f 

the oil on the plant water relations. In a field experiment that investigated the 

physical and chemical effects of oils on mangrove, it was found that the 

concentrations o f hydrocarbons in leaves increased with increasing oil application to 

the sediments, although the effects varied in the different species (Suprayogi and 

Murray, 1999).

Significant spectral reflectance change was found mainly in the red-edge 

region o f the spectrum particularly across 650nm to 720nm. A study by Carter 

(1993) found that increased reflectance in the 685 to 700nm wavelengths range was 

constantly sensitive to different stresses across species. Changes in the spectral 

reflectance were not significant towards the longer wavelengths o f the near-infrared, 

particularly at the early stage and as dose levels decreased. Carter (1993) found that 

the infrared reflectance shorter than 1400 nm was comparatively unresponsive to 

stress. This suggests that the spectral reflectance at the longer wavelengths may not 

be a good diagnostic measure for monitoring oil pollution in leaves. Individual 

narrow wavebands around R70o were more consistent in sensitivity than those around 

R65o and the shorter wavelengths. While wavebands around 700 nm could show
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significant changes in spectral reflectance at all dose levels, those around 650 nm 

only responded significantly to higher dose levels. Similarly, the blue (R450) and 

green (R550) only responded significantly to higher dose levels o f pollution at the 

later stages o f the experiment. The NIR (R750, Rsso, R950) did not perform very well 

in their response to oil pollution irrespective o f the dose level.

The red and green waveband ratio R685/R 530 significantly increased as stress 

progressed and was sensitive to medium and high treatments at later stages o f the 

experiment but not to the low dose level. This observation was similar to findings o f 

Smith et al. (2005) where the ratio increased rapidly in the gas and herbicide-stressed 

plants. This could be related to increases in reflectance in the strong chlorophyll 

absorption region due to a decrease in pigment contents and high reflectance in the 

green region resulting from a weaker absorption o f the pigments. A stable and high 

sensitivity shown by the simple ratios that ranged between R715 -  760 and R695 -  R 716 

concurred with the findings o f (Tarpley et al., 2000). Tarpley et al. (2000) noted that 

a combination o f the red-edge measure with a waveband o f high reflectance in the 

NIR region could improve precision and accuracy in predicting cotton leaf nitrogen 

concentrations. The normalised difference ratio (R755-R7i6)/(R755+R7i6) that 

combined these two wavebands was highly sensitive in terms o f temporal change and 

consistency in sensitivity. This index showed a significant change 2 days after 

treatments in high and medium dose levels whereas stress symptoms were visually 

shown only 6 and 11 days after for the high and medium dose levels respectively. 

While this index showed changes after 4 days for the low dose level, stress 

symptoms were seen visually some 14 days after stress initiation. Coops et al. 

(2003); Goel et al. (2003); Ferri et al. (2004); Zhao et al. (2005) when working on a
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single crop type/species recognised the superiority and efficiency o f a normalised 

difference ratio that employs just two narrow wavebands.

A consistent and significant shift o f the REP to shorter wavelengths in treated 

plants showed that this was a reliable spectral parameter for early detection o f oil- 

induced stress. The shift o f the REP was strongly related to a decrease in 

photosynthesis and thus, chlorophyll contents and other biochemical concentrations. 

Rock et al. (1988) showed that the REP o f foliage stress o f spruce trees caused by air 

pollution shifted to shorter wavelengths. Other physiological factors like the stomatal 

conductance and transpiration may have influenced the REP in some way given the 

correlation found in the regression analysis. A study showed that the REP is 

dependent not only on chlorophyll content, but also on additional effects such as leaf 

developmental stage, leaf layering or stacking and leaf water content (Horler et a l,

1983). Early shift o f the REP to shorter wavelengths after contamination indicates its 

potentials for early stress detection. Interestingly, this might not be true in all cases 

because the REP of the controls also made early shifts to shorter wavelengths. 

However, as stress persists, the control suddenly shifted to longer wavelength while 

treated plants maintained shifts to shorter wavelength.

Similarly, Smith et al. (2004a) found that the position o f the red-edge moved 

to longer wavelengths for control bean plants as they matured, but not for treated 

plants. Leaf developmental stage is likely to be a suitable argument in case o f  various 

shifts o f the REP in control given variation in plant age during the period o f spectral 

measurements. Plant leaves in their early immature and later senescent phases are 

associated with low concentrations o f pigments (Blackburn, 2007). Furthermore, past 

studies showed that the red-edge shifts associated with phenological crop
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development were towards longer wavelengths as chlorophyll concentration 

increased with crop maturity (Horler et a l, 1983; Miller et a l, 1991).

The results indicate that the REP is a valuable technique not only for early 

stress detection at varied levels of oil pollution but also for long term stress 

monitoring owing to its continuous and significant shifts to shorter wavelengths 

found at the early and later stages in treated plants. Several studies found a shift to 

shorter wavelengths o f the REP by natural vegetation with low chlorophyll content 

due to long term stress (Lang et a l, 1985a, 1985b; Crawford, 1986; Reid, 1988; 

McCoy et a l, 1989; Cwick et a l, 1995; De Oliveria and Crosta, 1996).

The amplitude o f the first derivative reflectance in the region o f the red edge 

showed no significant increase or decrease in treated plants. Although there was the 

tendency for the amplitude to be either minimally changed or to decrease, with only 

low treatment showing pronounced increment at later stages o f the experiment. 

Smith et a l  (2004a) found similar results where changes in the amplitude o f the first 

derivative at the position o f the red-edge was not consistent, and could either 

increase or decrease relative to the control. The inconsistency could be related to a 

variation in steepness of the double peaks which either increases or decreases. 

Change in steepness of one of the double peaks tends to affect the other in the 

opposite way. This was observed particularly in treated plants where the steepness o f 

the first o f the double peaks increased with a decrease in the second peak. It is 

recognized that the absorption features o f pigments and other biochemical 

constituents overlap (Blackburn, 2007), and variation in amplitude may have resulted 

from change in the ratio of chlorophyll a and b contents o f the leaf.

An increase in the steepness of the first o f the double peaks also causes a shift 

o f  the red-edge to shorter wavelengths. This may be attributed to a possible
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narrowing of the strong chlorophyll absorption feature due to a decreased amount o f 

chlorophyll. When the steepness o f the second peak increased, there tends to be shift 

o f  the red-edge to longer wavelengths. This was observed in control plants at the 

later stages o f the experiment which corresponds with the time when there was a 

sudden shift o f the REP to longer wavelengths and a sharp decrease in reflectance at 

high chlorophyll absorption wavelengths. This implies that the positions o f the 

double features could serve as possible indicators of oil stress. Llewellyn and Curran 

(1999) found that the dominance o f the shorter wavelength feature indicated 

grasslands with high levels o f soil contamination whereas the longer wavelength 

feature indicated lower levels o f contamination. Thus, dominance o f the first peak 

means low chlorophyll content whereas dominance o f the second peak corresponds 

with high chlorophyll levels (Lamb et a l, 2002). These findings help in 

understanding the behavioral pattern o f the first and second o f the double features in 

first derivative recorded in the present experiment. The positions o f the first o f the 

double peaks performed as well as the distance between the double features and both 

were superior to visual observations as early stress indicators.

Leaf temperature fluctuated as stress progressed irrespective o f dose level and 

did not differ significantly between treated and control plants. Similarly, a field 

experimental study o f herbicide-induced stress in a mixed stand o f  5 year old loblolly 

pine (Pinus taeda L.) and slash pine (Pinus elliottii Engelm) did not show a 

significant difference in canopy temperatures between the treated and control plots 

(Carter et al., 1996). The study attributed this to a coupling o f leaf temperatures with 

air temperature, and an equalization of temperatures among treatments due to wind 

and environmental moisture. Grant et al. (2006) detected no significant differences 

between the leaf temperature o f grapevine subjected to water stress and those well
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ted with water. This was related to greater environmental variation inevitable in an 

experiment with relatively large plants across a greenhouse. This may well explain 

the inconsistency in thermal responses observed in this study.

The consistent decrease in the thermal index (/c) o f treated plants as 

percentage o f  control is likely to be responding to the reduction in the transpiration 

and stomatal conductance of treated plants. This implies that Iq is a more sensitive 

parameter for quantifying plant stress induced by oil pollution than ordinary leaf 

temperature. Theoretically, I q is expected to be linearly related to stomatal 

conductance (Jones, 1999) and this was the case in the present study. Tilling et al. 

(2007) found that nitrogen treatments had no effect on canopy temperature o f field 

grown wheat. Generally, the influence o f nitrogen treatments on canopy temperature 

was minor compared with the effect o f water treatment. Several workers have 

successfully applied techniques of thermography to monitor water stress, across a 

wide range o f species in controlled environments and field conditions (Leinonen and 

Jones, 2004; Cohen et al., 2005; Grant et a l, 2007; Moller et al., 2007;). Thus, most 

applications o f thermal imaging have related to monitoring plant responses to water 

deficit stress (Jones, 2004). Greater levels o f confidence have been established about 

thermal techniques for acquiring accurate information about plant water status than 

any other stresses. With regard to the present experiment, to explore if  the 

inconsistency in absolute temperature o f treated plants was mainly due to effects o f 

variations in environmental conditions and/or instrumental error or mere insensitivity 

to oil pollution, there is the need to measure and compare plant thermal responses to 

both water and oil-induced stress within a more constrained environment. This could 

be achieved by taking measurements in a dark room where only an artificial source 

o f illumination is provided.
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From these results, it has been shown that spectral reflectance is a more 

sensitive and reliable parameter for detection of refined oil-induced stress in maize 

than the visual observations and thermal responses. Significant changes in spectral 

reflectance were detected at all dose levels before visual stress signs were seen. 

W hile there was consistent and significant changes in spectral reflectance 

particularly around 700 nm, changes in absolute temperature were neither consistent 

nor significant. However, the Iq showed potential in detecting oil pollution in maize.

4.6 Conclusion

There was a very strong positive relationship between reflectance spectra and 

the physiological parameters. These include: a strong positive linear relationship 

between the reflectance at several individual narrow wavebands and photosynthesis, 

a strong positive linear relationship between (R755-R7i6)/(R755+R7 i6) and 

photosynthesis, and a strong positive linear relationship between the REP and 

photosynthesis. These results suggested that the spectral reflectance o f leaves has 

potential in detection of oil pollution. A stronger positive linear relationship between 

the last two factors (i.e. REP and (R755-R7 i6)/(R755+R7 i6)) and photosynthesis can be 

valuable indicators for early detection of oil pollution irrespective o f the intensity o f 

pollution. Results from thermal response suggest that while the absolute leaf 

temperature has minimal potential for detecting oil pollution in plants, thermal index 

I g is promising. While the REP was superior to visual observations and other red- 

edge features, the normalised-difference spectral indices that combines a waveband 

in the red-edge with one of high reflectance in the NIR region: (R755- 

R 716)/(R 755+R 715) performed best comparatively to all the tested diagnostic stress
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indicators viz the individual narrow wavebands, the simple ratios, the red-edge 

features, and the visible stress symptoms.

In terms of time and consistency, (R755-R716)/(R755+R7i6) was found to be 

optimal for early detection of oil-induced stress at varied levels o f pollution. 

Therefore, its application could enhance precision and accuracy for early detection o f 

oil pollution via plant stress responses. Further studies plan to test the capability o f 

this approach for early detection and discrimination between oil- and water related 

stress such as waterlogging and water deficit in plants as both are important naturally 

occurring stress factors. Thus, the next chapter deals with detection and 

discrimination o f stress in bean (.Phaseolus vulgaris ‘Tendergreen ’) caused by oil 

pollution and waterlogging using spectral and thermal remote sensing.
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Chapter 5*

DETECTION AND DISCRIMINATION OF STRESS IN BEAN (Phaseolus 

vulgaris 'Tendergreen1) CAUSED BY OIL POLLUTION AND

WATERLOGGING USING SPECTRAL AND THERMAL RESPONSES

5.1 Introduction

Waterlogging is known as one o f the important natural stresses affecting 

plants. It can cause stress in plants by displacing the oxygen in soil by filling the soil 

spaces with water and thus limiting oxygen supply to roots and preventing carbon 

dioxide from diffusing away (Smith, 2004a). Gases such as 0 2 and C 0 2 diffuse very 

slowly in water (Gibbs and Greenway, 2003) thus; replacement o f these gases from 

the surface is slower. Removal of gaseous products produced in the waterlogged soil 

will also be slower through the water and there may be a build-up o f toxic chemicals 

that could have an effect on the plants (Smith, 2004a). For example, Godwin and 

Mercer (1983) noted that ethylene concentrations are known to increase in 

waterlogged soils and this has deleterious effects on plant growth causing inhibition 

o f  root growth, allowing the invasion of decay organisms. Since a major function o f  

roots is supplying plants with water and nutrients (Lynch, 1995), waterlogging has a 

subsequent effect on the above-ground parts o f a plant as they are unable to obtain 

enough water and nutrients through the roots.

A number of studies have sought to understand the effects o f waterlogging in 

plants. Manabu et al. (1999) found that the growth of tropical forage legumes called 

Urb. cv. Siratro. decreased with long periods o f waterlogging treatment when

* Part o f  this chapter has been published in Proceedings o f the Arts, Science and Applications o f 
Reflectance Spectroscopy Symposium, Boulder, Colorado, USA. 23-25' February, 2010.
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compared with controls. While studying the effects o f waterlogging on root systems 

o f soybean Morita et al. (2004) discovered that waterlogging prohibits the growth o f 

the taproot and its lateral roots. It has been noted that few plants will survive 

prolonged periods in ground saturated with water unless they have special roots that 

are adapted to acquire oxygen in waterlogged conditions (The Royal Horticulture 

Society, 2009).

Since waterlogging can instigate malfunctioning o f the root, it is expected 

that such conditions could result in reflectance changes commonly related to plant 

stress, such as increased reflectance in the chlorophyll and water absorption regions 

(Carter, 1993; Lichtenhaler et al., 1996). Indeed, some studies have shown that 

waterlogging can be detected in plants using changes in reflectance spectra. 

Anderson and Perry (1996) found that flooded trees in wetland areas showed 

elevated reflectance at 550 nm and in the NIR at 770 nm when compared to non­

flooded trees. Pickering and Malthus (1998) worked on a small leak from an 

aqueduct, which showed severe waterlogging o f the soil and vegetation within the 

area was stunted, yellow and sparse. The centre o f the leak had a higher visible 

reflectance and lower NIR reflectance compared to the surrounding unstressed 

vegetation. Smith et al. (2004a) found that soil oxygen displacement by waterlogging 

caused a significant increase in reflectance in the visible between 508- 654nm and in 

the red-edge region between 692-742nm with little change in the NIR in bean. The 

REP o f the waterlogged bean shifted towards shorter wavelengths compared to the 

controls.

Although there is evidence in the effectiveness o f spectral reflectance for 

detecting plant stress caused by waterlogging, there is a poor understanding o f the 

capabilities o f spectral and thermal remote sensing for discriminating between oil



pollution and waterlogging stresses. Furthermore, in the previous chapter (4) spectral 

and thermal responses of plants were identified that are o f value for early detection 

o f stress caused by oil pollution alone. It is now important to determine whether 

remote sensing can be used for the detection and discrimination o f concomitant oil 

and waterlogging stresses. Thus, this chapter investigates the spectral and thermal 

responses o f bean (Phaseolus vulgaris ‘Tendergreen ’) plants subjected to three stress 

regimes: oil pollution, waterlogging and the combination o f oil pollution and 

waterlogging. Bean is used as model specie as it is economically important and 

forms a major source o f protein particularly in developing countries like Nigeria 

where oil pollution o f farmlands is common. It also provided a compact, dense 

canopy which is amenable to growth, manipulation and measurement at the canopy 

scale in laboratory conditions. The crop is widely grown in other parts o f the world 

such as countries o f Central and South America, and Central and East Africa where 

animal protein is limited and beans are consumed in large quantities (Shellie-Dessert 

and Bliss, 1991).

The objective was to identify the optimum set o f responses which could be 

used for early, non-destructive quantification and discrimination o f each o f these two 

stresses.

5.2. Methods

The methodology described in chapter 3 was adopted in this experiment 

except that canopy thermal images were acquired in a darkroom (provided with an 

artificial illumination (see chapter 3, section 3.5) mounted in a fixed position at nadir 

70cm away from each canopy to be measured), with the camera positioned at nadir
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75cm above the plant canopy. Thirty two well established plants were selected for 

treatment. Four treatments, comprised of eight replicates, were established namely: 

control, oil, waterlogging and a combination o f oil and waterlogging.

A GER 1500 Spectroradiometer (Geophysical & Environmental Research 

Corp., Millbrook, NY) already described in chapter three (section 3.5) was used to 

acquire reflectance spectra o f treated and control plants. In this experiment, the 

instrument was positioned at nadir 20cm above the plant canopy, giving a FOV o f 

approximately 3cm diameter and the light source was at a 45° zenith angle. Eight 

spectral measurements were captured for each plant canopy by making small 

movements to the position and rotation of the pot between each measurement. Leaf 

pigments and water content were not measured in this experiment.

Spectral indices were generated from the individual narrow wavebands by 

means o f  ratioing all possible two-band combinations. The optimal index found in 

the results o f chapter four was also added into the analysis.

5.3 Results

5.3.1 Visual stress observations

Stress symptoms were first visually observed in plants on day 8 for oil and 

the combined oil and waterlogging treatments and on day 10 for waterlogging 

treatment (alone). Symptoms worsened with time and included leaf chlorosis, rolling 

and wilting, the thinning o f canopies and slower growth (figure 5.0). The control 

plants did not show visual stress symptoms.
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Oil+Waterlogging Waterlogging Control

Figure 5.0 Visual stress symptoms in bean caused by oil pollution, waterlogging and 

combined oil and waterlogging at the end o f the experiment. No visual stress symptoms were 

observed in the controls.

5.3.2 Photosynthesis

Treated plants showed a decline in photo synthetic activity as can be seen in 

Figure 5.1. The statistical analysis revealed that from day 2 onwards, all o f the 

treatments showed a reduction in photosynthesis, compared to the controls. 

Whenever oil was involved in the treatment, there was a significantly larger 

reduction in photosynthesis than for waterlogging alone. Thus, oil and oil and 

waterlogging treatments showed the greatest reduction in photosynthesis, but there 

was no significant difference between these two treatments throughout the 

experiment. By the end of the experiment, there was a total reduction in the
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photosynthetic activities of treated plants by 42% for waterlogging and 100% for oil 

and the combination of oil and waterlogging, relative to the controls.
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Figure 5.1 Effects of treatment on photosynthesis in bean over the course of the experiment. 

Treatments are denoted by the key. Error bars = 1 x SD, n = 8.

5.3.3 Transpiration

As shown in Figure 5.2, the rate o f transpiration for all treated plants 

decreased relative to controls, showing similar responses to photosynthetic activities. 

From day 2 onwards, all of the treatments showed a reduction in transpiration, 

compared to the controls. Again, whenever oil was involved in the treatment, there 

was a significantly larger reduction in transpiration than for waterlogging alone. 

Thus, oil and oil and waterlogging treatments showed the greatest reduction in 

transpiration, but there was no significant difference between these two treatments 

throughout the experiment. By the end of the experiment, there was a total reduction
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in transpiration rate of treated plants by approximately 29%, 88%, and 93% for

waterlogging, oil and the combination of oil and waterlogging, relative to the 

controls, respectively.

6 8 10 12 

Tirre(days)

------• ------ Control
distress
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------ 0 — - O'l-HAMeriog stress

Figure 5.2 Effects of treatment on transpiration in bean over the course of the experiment. 

Treatments are denoted by the key. Error bars = 1 x SD, n = 8.

5.3.4 Stomatal conductance

There was a general decrease in stomatal conductance o f treated plants as can 

be seen in Figure 5.3. Again, from day 2 onwards, all o f the treatments showed a 

reduction in stomatal conductance, compared to the controls. Similarly, whenever oil 

was involved in the treatment, there was a significantly larger reduction in stomatal 

conductance than for waterlogging alone. Thus, oil and oil and waterlogging 

treatments showed the greatest reduction in stomatal conductance, but there was no 

significant difference between these two treatments throughout the experiment. By
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the end o f the experiment, there was a total reduction in stomatal conductance o f 

treated plant by 33%, 92%, and 94% for waterlogging, oil and the combination o f oil 

and waterlogging, relative to the controls, respectively.
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Figure 5.3 Effects of treatment on stomatal conductance in bean over the course of the 

experiment. Treatments are denoted by the key. Error bars = 1 x SD, n = 8.

5.3.5 Spectral Reflectance

5.3.5.1 Visible and NIR reflectance

Looking at mean spectra obtained at day 14 (Figure 5.4), it can be seen that 

there was a general increase in reflectance in the visible region and a decrease in the 

N IR in response to all treatments relative to the control. Oil treated plants showed the 

highest increment in the visible region except between 570 to 700 nm, where plants 

treated with the combination of oil and waterlogging showed the highest increment.
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While a significant increase in reflectance of waterlogged plants were found in a few 

wavebands such as between 536 nm to 572 nm and between 698 nm to 716 nm, a 

significant increase in reflectance of plants treated with oil and the combination o f oil 

and waterlogging was found in nearly all wavebands in the visible and red edge 

regions. The reduction in NIR reflectance was greatest for plants treated with the 

combination o f oil and waterlogging, and at day 14 this difference was statistically 

significant. For those plants treated with oil and with waterlogging, the differences in 

N IR reflectance at the end o f the experiment were not statistically significant.
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Figure 5.4 Mean reflectance spectra of control and treated bean 14 days after treatment. 

Treatments are denoted by the key, n = 80.

5.3.5.2 Spectral indices

In order to identify optimal spectral indices for early and consistent detection

of plant responses to the treatments, ANOVA was performed using reflectance in

individual narrow wavebands, simple ratios and normalized difference ratios of

narrow wavebands, for each day of the experiment. The results o f this analysis are
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shown in Table 5.0, where the order of the indices presented in the table indicates the 

overall level of performance. As can be seen the ratio R .673/R 545  showed a statistically 

significant response to oil and waterlogging treatments on day 2 o f the experiment, 

and a significant response to the combination of oil and waterlogging on day 4. 

Several other indices showed equally rapid responses to the individual oil and 

waterlogging treatments but slightly slower responses to the combined treatment.

Table 5.0 S en sitiv ity  an a ly s is o f  n ove l and ex is tin g  spectral in d ices in con tro l and treated  

plants ov er  tim e. U nshaded  =  no sign ifican t d ifference; Shaded =  s ig n ifica n t d ifferen ce . 

* T im e  w h en  v is ib le  stress sym p tom s w ere ob served  in w a ter lo g g in g  treatm ent a lo n e , ** tim e  

w h en  v is ib le  stress sym p tom s w ere ob served  in o il and the co m b in ed  o il and w a ter lo g g in g  

treatm ent.

R 673/R 545 C ontrol O il stress
W aterlog stress 

O il+ W aterlog  stress

R673/R631 C ontrol O il stress 
W aterlog stress  

O il+ W aterlog  stress

R 5 4 5 / R 4 4 5  C ontrol O il stress
W aterlog stress 

O il+ W aterlog  stress

( R 7 5 5 - R 7 i 6 ) /  C ontrol O il stress  
( R 7 5 5 + R 7 i 6 )  W aterlog stress

O il+ W aterlog  stress

R 826/R 545 C ontrol O il stress
W aterlog stress 

O il+ W aterlog  stress

R977/R545 C ontrol O il stress
W aterlog stress 

O il+ W aterlog  stress

R 631/R 445 C ontrol O il stress
W aterlog stress 

O il+ W aterlog  stress

W a v e len g th s
(n m ) T reatm ents

R826/R631 C ontrol O il stress  
W aterlog stress 

O il+ W aterlog  stress

T im e (D a y s)
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R977/R-631 Control Oil stress 
Waterlog stress 

Oil+Waterlog stress
R-673/R445 Control Oil stress 

Waterlog stress 
Oil+Waterlog stress

R631/R545 Control Oil stress 
Waterlog stress 

Oil+Waterlog stress
R,631 Control Oil stress 

Waterlog stress 
Oil+Waterlog stress

R826/R445 Control Oil stress 
Waterlog stress 

Oil+Waterlog stress
R 9 7 7 / R 4 4 5 Control Oil stress 

Waterlog stress 
Oil+Waterlog stress

R826/R673 Control Oil stress 
Waterlog stress 

Oil+Waterlog stress

R977/R673 Control Oil stress 
Waterlog stress 

Oil+Waterlog stress

R,673 Control Oil stress 
Waterlog stress 

Oil+Waterlog stress

R977/R826 Control Oil stress 
Waterlog stress 

Oil+Waterlog stress

R445 Control Oil stress 
Waterlog stress 

Oi 1+Waterlog stress

R545 Control Oil stress 
Waterlog stress 

Oi 1+Waterlog stress

R826 Control Oil stress 
Waterlog stress 

Oil+Waterlog stress

R.977 Control Oil stress 
Waterlog stress 

Oil+Waterlog stress

S.3.5.3 Red-edge features

B oth  the treated  and control p lants show ed single peaks in  the first derivative 

o f  re flectance in the red-edge region o f  the spectrum , as show n in F igure 5.5 fo r
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mean spectra at the end of the experiment. Figure 5.6 shows the changes in REP for 

the different treatments over the course of the experiment. As shown in Table 5.1 the 

differences in REP become significantly different on day 8 for the oil and combined 

oil and waterlogging treatments and on day 10 for the waterlogging alone. By the end 

o f the experiment, there was a total shift of 5 nm, 12 nm, and 16 nm to shorter 

wavelengths for the waterlogging, oil, and the combined oil and waterlogging treated 

plants, relative to the control (Figure 5.6). There was some variation in the amplitude 

o f the first derivative in the red edge region, as shown in Figure 5.5. Flowever, such 

changes were not statistically significant at any point of the experiment (Table 5.1).

11 Control 

 Oil

 Waterlogged

 Oil+Waterlogged

0.5

780760740720700

Wavelength (nm)-0.5

Figure 5.5 First derivative of reflectance of control and treated bean 14 days after treatment. 

Treatments are denoted by the key.
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Figure 5.6 T em poral change in REP o f  control and treated bean. T reatm ents are d en oted  by  

th e  k ey . Error bars =  1 x  SD , n =  8 .

Table 5.1 S en sitiv ity  an a lysis o f  the red -edge features o f  control and treated p lants o v er  

tim e . U n sh ad ed  =  no sign ifican t d ifference; Shaded =  sig n ifica n t d ifferen ce . * T im e w h en  

v is ib le  stress sym p tom s w ere observed  in w a ter logg in g  treatm ent a lon e , * * tim e w h en  v is ib le  

stress sy m p to m s w ere ob served  in o il and the com b in ed  o il and w a ter lo g g in g  treatm ent.

T im e (D a y s)

R ed -ed g e
featu res 1 0 *T reatm ents

C ontrol O il stress 
W aterlog stress 

O il+ W aterlog  stress

R EP (n m )

C ontrol O il stress 
W aterlog stress 

O il+ W aterlog  stress

A m p litu d e
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5.3.6 Thermal imaging

As shown in Figure 5.7, the canopy temperature o f treated plants was higher 

than the controls from day 2 of the experiment onwards for the oil and combined oil 

and waterlogging treatments. Plants exposed to waterlogging stress showed a less 

systematic response in terms of absolute canopy temperature, with significantly 

higher temperatures than controls only occurring on certain days part way through 

the experiment. Figure 5.8 shows that the treated plants showed a systematic 

decrease in IG relative to the controls from day 2 onwards. This effect was consistent 

across all types of treatment. It was apparent that IG of the waterlogged plants 

decrease to a lesser extent than that of the oil and combined oil and waterlogging 

treatments. The sensitivities of absolute temperature o f the canopy and IG that 

occurred in bean due to oil, waterlogging and combined oil and waterlogging stress 

and the timing o f the responses is given in Table 5.2. This demonstrates the 

consistent sensitivity of temperature and IG to treatments that involved oil, but the 

lack o f a consistent response to waterlogging alone.
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Figure 5.7 Temporal changes in canopy absolute temperature of treated and control plants. 

Treatments are denoted by the key. Error bars = 1 x SD, n = 8.
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T able 5.2 Sensitivity analysis o f the thermal properties o f control and treated plants over 

time. Unshaded — no significant difference; Shaded = significant difference. *Time when 

visible stress symptoms were observed in waterlogging treatment alone, **time when visible 

stress symptoms were observed in oil and the combined oil and waterlogging treatment.

Absolute
temperature
(°C)

Control Oil stress 
Waterlog stress 

Oil+Waterlog stress
Control Oil stress 

Waterlog stress 
Oil+Waterlog stress

Thermo­
graphy T reatments

5.4 Discussion

A ll treatm ents significantly reduced the photosyn thetic  activ ity , tran sp ira tio n  

and  stom atal conductance o f  bean and these reductions w ere g reatest w hen  oil w as 

invo lved  in the treatm ent. W hile previous w ork has not investigated  the com bination  

o f  oil and w aterlogging stresses, the findings in this study are in accordance w ith  

stud ies that have investigated the effects o f  w aterlogging  on p lan t physio logy . 

Several studies have found that w aterlogged conditions sign ifican tly  reduce the 

pho tosyn thetic  rates o f  a w ide range o f  p lant species such as o ilseed  rape, ben tg rass 

and  barley  (B aldock et al., 1987; D orm aar, 1988; Z hou and L in  1995; Y ordanova et 

al. , 2005). A  recent study has reported that the m ore com m on response to flood ing  is 

partia l stom ata closure w ithin the first few  hours o f  treatm ent (Y ordanova et al.,

2005) but, the response o f  stom ata after a p ro longed  exposure to w aterlogg ing  

rem ains uncertain. B radford and Y ang (1981) reported  that decreased  le a f  w ater 

po ten tia l ( ¥ )  does not alw ays accom pany flooding injury; even in  m ost cases (T )  

rem ains unaffected  or increases in flooded plants. This suggests that a decrease in  the
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photosynthetic rate of bean by waterlogging treatment observed in the present 

experiment may be as a result of non-stomatal factors, such as soil oxygen depletion. 

Similar observations were made by Bradford (1983) who reported that the 

photosynthetic rate of flooded tomato plants remained constant or declined at high 

intercellular CO2 concentrations. The author attributed this to non-stomatal 

(biochemical) factors, such as an inability for Ribulose-l,5-bisphosphate (RuBP) 

regeneration in the Calvin cycle. Indeed, it has been demonstrated that prolonged 

flooding causes root injuries that restrict photosynthetic capacity by altering the 

biochemical reactions of photosynthesis (Yordanova et al., 2005).

Many investigations on waterlogging have focused on the short term effects 

on plants. For example, Else et al. (2001) found that soil flooding reduced stomatal 

conductance, transpiration, CO2 uptake and leaf elongation in Ricinus communis 

within 2-6 h. Zang and Zang (1994) found that in pea plants, stomata begin to close 

in the first few hours of flooding with a parallel decrease in transpiration and 

stomatal conductance (Jackson and Hall, 1987). Yordanova et al. (2005) investigated 

the impact o f short-term soil flooding on stomatal function and morphology and on 

leaf gas exchange in barley leaves. The study found that flooding o f barley plants for 

a short time (2 - 24 h) decreased transpiration and stomatal conductance. The result 

obtained in this study were based on the response o f prolonged waterlogging 

conditions o f up to 2 weeks rather than a short-term effect, nevertheless a significant 

physiological effect was observed on the second sampling occasion, 2 days after the

start o f the experiment.

In the present study, whenever oil is present in the treatment, there was a 

greater impact on plant physiological rates than with the waterlogging treatment 

alone. As indicated in chapter 4, oil pollution can have detrimental effects on plants,
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tin ough a multitude of different mechanisms, such as soil oxygen depletion, reduced 

water uptake and toxic effects (Rowell, 1977; De Song 1980; Jong, 1980; 

Schumacher, 1996; Noomen et al., 2003; Wyszkowski et a l, 2004). In the case o f oil 

pollution, soil oxygen is further reduced by an increase in demand for oxygen 

brought about by the activities of oil-decomposing micro-organisms (Gudin and 

Syratt, 1975) which may not occur in waterlogged conditions. Furthermore, oil 

reduces the available nitrogen content of the soil (Sojka et al., 1975; Jong, 1980) 

which results from consumption of all available nitrogen by bacteria and fungi 

growing on a hydrocarbon medium thus, restricting the uptake o f these elements by 

plants (Malachowska-Jutsz et al., 1997; Xu and Johnson, 1997). These effects are 

exacerbated by depression in ammonification and nitrification processes triggered by 

inhibition in the conversion of mineral and organic nitrogen compounds in soil by 

petroleum derived compounds (Iwanow et a l, 1994; Amadi et al., 1996). Finally, 

studies have shown that oil can have toxic effects on plants by penetrating into 

plants/leaf tissue and consequently damaging cellular integrity and preventing leaf 

and shoot regeneration (Webb, 1994; Pezeshki et a l ,  1995; Pezeshki et a l ,  2000). 

This combination of effects from oil may well explain the greater impact o f 

treatments involving oil than the waterlogging, found in the present study.

Substantial changes in spectral reflectance were observed in relation to all of 

the treatments used in the present experiment. Waterlogging produced a significant 

increase in reflectance in the visible in a region centred on 550nm and a second 

region centred on 715nm. This concurs with the findings o f Anderson and Perry 

(1996) where reflectance of trees was elevated at 550 n m a s a  result o f flooding in 

wetland areas. 550 nm and 715nm are regions o f weak absorption by total 

chlorophyll (Zwiggelaar, 1998). As has been observed previously, reflectance is



more sensitive to high concentrations of pigments at wavelengths where the 

absorption coefficients o f pigments are low (Jacquemoud and Baret, 1990; Yamada 

and Fujimara, 1991). Hence, the reflectance changes observed indicate that 

waterlogging caused a small decrease in chlorophyll but that overall concentrations 

remained high.

Furthermore, the wavelength ranges (centred on 550 and 715nm) where there 

was an increase in reflectance in waterlogging treated plants falls within the region 

(from 508 to 654 nm and 692 to 742 nm) where Smith et al. (2004a) found a 

significant increase in reflectance in dwarf bean (Phaseolus vulgaris) treated with 

waterlogging. However, in barley Smith et al. (2004a) found that waterlogging stress 

caused a significant decrease in reflectance across a wider wavelength range from 

496 to 744 nm. The differences in the spectral responses o f bean and barley could be 

attributed to their different genetic, biochemical or structural characteristics, as 

dicotyledon and monocotyledon species, respectively. In the present experiment it 

was found that the changes in spectral reflectance of bean treated with oil and the 

combination o f oil and waterlogging occurred over a broad region within the visible 

spectrum. This was similar to the findings of Smith et al. (2004a) for barley exposed 

to waterlogging. This suggests that wavelength ranges 493 to 534 nm and 573 to 697 

nm may serve as good indicators for discriminating between bean and barley when 

stressed with waterlogging and for discriminating between stresses induced by oil 

and waterlogging in bean. However, this needs further investigation probably on 

diverse plant species under varied environmental stress conditions; when the stability 

and dynamics of these spectral regions can be ascertained.

Various single stresses have been found to cause minimal reflectance change 

in the NIR. Smith et al. (2004a) found a small change in the NIR reflectance in bean
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and barley treated with waterlogging. In the present study there was no significant 

reflectance difference in the wavelength ranges 723 to 1050 nm and between 717 to 

1050 nm in plants treated with oil and waterlogging respectively. However, plants 

treated with a combination of oil and waterlogging showed significant reflectance 

differences in the wavelength ranges 739 to 1050 nm. This suggests that multiple 

stresses such as the combination of oil and waterlogging expectedly may have done 

greater damage to the leaf cellular structure of bean than just a single stress factor.

Results from the sensitivity analysis indicated that narrowband spectral ratio 

indices were more sensitive in discriminating subtle signs o f stress arising from oil 

pollution, waterlogging and the combined treatment, when compared with red-edge 

features and thermal stress indices. Based on consistency and time o f detection, a 

simple reflectance ratio R673/R545 that combined wavebands in the red and green 

regions performed best. This ratio exploits those regions o f the visible which 

correspond with the absorption maxima and minima o f chlorophyll.

In the present experiment all treatments resulted in plants showing single 

peaks in the first derivative of reflectance in the red-edge region o f the spectrum. In a 

similar way, single peaks were observed by Smith et al. (2004a) for bean treated with 

different stresses such as waterlogging, natural gas and argon. On the contrary, Smith 

et al. (2004a) found double peaks in barley treated with the same stresses as bean. It 

has been suggested that differences between bean and barley in the shape o f the peak 

that defines the red edge may be related to the different leaf structures of 

monocotyledons and dicotyledons (Smith at al., 2004a). The study noted that the 

internal structure of mono- and dicotyledons differs and that in dicotyledons, the 

upper and lower epidermises are separated by the spongy mesophyll containing many 

air spaces. The leaf of a monocotyledon is more compacted with fewer air spaces



(Gausman, 1985). Since the spongy mesophyll in a leaf o f dicotyledons is more 

developed with many air spaces than the leaf of monocotyledons, their reflectance is 

generally higher than those of monocotyledons (Gausman, 1985; Guyot, 1990) and 

thus, allows more light scattering between the cell walls (Smith at al., 2004a). Since 

the red edge is influenced by low reflectance caused by strong chlorophyll absorption 

in the red region and high reflectance in the NIR caused by leaf cellular structure, 

differences in reflectance due to leaf structure may affect the shape o f the peak o f the 

red edge in the first derivative in this region (Smith at al., 2004a).

The REP o f bean which is defined by the wavelength o f the single peak in the 

first derivative spectrum appears to be a stable indicator o f stress induced by the 

three types o f treatment in bean, but only in the later stages o f impact. In the present 

study, the REP shifted significantly towards shorter wavelengths for the plants 

treated with oil and the combination of oil and waterlogging on day 8 and for the 

waterlogged plants on day 10. This concurs with the previous findings presented in 

chapter 4 where the REP of maize treated with oil shifted towards the shorter 

wavelengths. Previous investigations have found that the REP shifted towards the 

shorter wavelengths as plants became stressed (Lang et al., 1985a, 1985b; Crawford, 

1986; Reid, 1988; McCoy et a l, 1989; Cwick et a l, 1995; De Oliveria and Crosta, 

1996). The amplitude of the first derivative o f reflectance for the treated plants was 

at no time significantly different to that o f the control plants. Soil oxygen 

displacement was found to cause inconsistent change in the magnitude o f the first 

derivative at the position of the red edge in bean and barley, which either increase or 

decrease relative to the control (Smith et al., 2004a). As may have been the case in 

the present study, the change was attributed not only to the decreasing amount o f



total chlorophyll but also to change in the ratio of chlorophyll a to chlorophyll b in 

the exposed plants.

The absolute temperature of the canopy of bean under all treatments was 

higher than the controls. This differs from the findings in chapter 4, where the leaf 

temperature o f maize treated with oil fluctuated as stress progressed and did not 

differ significantly from that of control plants. It was suggested in chapter 4 that the 

inconsistency may have resulted from irregularities in the ambient temperature o f the 

glasshouse that occurred at different times of measurement. Previous investigations 

o f plant stress detection in the field using changes in canopy temperatures (as 

discussed in section 4.5) have experienced some limitations due to the effects of 

variation in air temperature, wind and environmental moisture. Greater 

environmental variation inevitable in an experiment with relatively large plants 

across a greenhouse was another identified setback. In the present study, 

thermography was undertaken in a more controlled environment (dark room) where a 

consistent source of illumination was used, ensuring that leaf temperature was a 

useful indicator of stress.

The sensitivity of the absolute canopy temperature o f bean was significant 

soon after oil treatment and about 6 days after the combined oil and waterlogged 

treatments. Poor immiscibility between oil and water may have delayed the 

downward flux of oil and penetration into the plant root zone which may have 

delayed the effect of the combined oil and waterlogged stress in bean. The absolute 

canopy temperature was not consistently sensitive to waterlogging stress in bean and 

this can be explained by the smaller response o f transpiration and stomatal 

conductance to waterlogging than to the treatments involving oil.
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The Iq of plants treated with oil and combined oil and waterlogging was 

consistently lower than those of the controls. As stated earlier, the Iq is theoretically 

proportional to the stomatal conductance thus, is likely to be responding to the 

reduction in stomatal conductance caused by oil. In chapter 4, the I q  was identified as 

a potentially valuable index for early detection of oil pollution in maize. Similarly to 

the absolute canopy temperature, the I q  changed significantly soon after oil treatment 

and 6 days after the combined oil and waterlogged treatments. Again, the poor 

immiscibility between oil and water may have caused the slower response to the 

combined oil and waterlogged stress. The Iq  was not consistently sensitive to 

waterlogging in bean, which is again explicable in terms o f the reduced response of 

transpiration and stomatal conductance to waterlogging as opposed to treatments 

involving oil.

5.5 Conclusion

The spectral reflectance and thermal properties o f bean effectively 

distinguished subtle signs of stress induced by oil pollution and waterlogging. There 

was a significant increase in reflectance across the visible region for plants treated 

with oil and combined oil and waterlogging. However, for plants treated with 

waterlogging alone, there was only a significant increase in reflectance in two 

specific regions centred on 550nm and 715nm. Hence, it was deduced that these 

waveband regions could serve as good indices for discriminating between stress 

symptoms arising from oil or combined oil and waterlogging and those arising from 

waterlogging alone. NIR reflectance could be used to discriminate between stress 

induced in bean by single and multiple factors as it was found that the combined oil



and waterlogging treatment caused a significant decrease in NIR reflectance while 

the individual oil and waterlogging treatments did not invoke such a response.

Among various spectral and thermal indices tested for detecting stress 

symptoms caused by oil and waterlogging, a simple ratio o f reflectance that 

combined narrow wavebands in the green and red regions (R673/R 545) was most 

sensitive. The REP was sensitive to oil and waterlogged induced stress in bean but 

only at later stages of impact. While the canopy absolute temperature and the thermal 

index (7g) were good indicators of developing oil and combined oil and waterlogging 

stress in bean, they were poor indicators of stress caused by waterlogging. Thus, by 

combining spectral and thermal information, oil-induced stress could be 

discriminated from waterlogging. In addition to waterlogging, the other major form 

o f water-related stress which plants experience is that o f water deficit. In the next 

chapter, we will investigate the performances and stability o f thermal and spectral 

remote sensing for distinguishing between oil pollution and water deficit.

133



Chapter 6*

EXPLOITING SPECTRAL AND THERMAL RESPONSES OF MAIZE (Zea 

mays L.) FOR EARLY DETECTION AND DISCRIMINATION OF 

STRESSES CAUSED BY OIL POLLUTION AND W ATER DEFICIT

6.1 Introduction

Water is essential for plant metabolism, and any limitation in its availability 

affects almost all plant functions, including the assimilation and partitioning of 

carbon (Deng et al., 1990; Onillon et al., 1995). Under field conditions, crops are 

exposed to a wide range of abiotic, biotic and anthropogenic stress inducing factors 

within the growth environment, which consequently alter their physiological and 

biochemical functioning. Oil pollution has been noted as one o f the major causes o f 

environmental degradation and can arise from spills o f crude and refined oil in 

aquatic and terrestrial environments (Ogboghodo et al., 2004). In regions where oil is 

extracted and refined, plants are vulnerable to oil pollution due to leakages from 

pipelines and other facilities. For example, in developing countries such as Nigeria, 

where oil pipelines crisscross the country passing through different land surfaces 

such as swampy and dry terrain, oil pollution regularly affects subsistence crops and 

natural vegetation growing across a range of hydrological settings from wetlands 

through to arid environments. Hence, any single plant may be simultaneously 

exposed to both oil and water stress and we need a means o f discriminating between 

the two.

* Part o f  this chapter has been published in Proceedings o f  the Remote Sensing and Photogrammetry 
Society (RSPsoc) Annual Conference, Leicester, United Kingdom, 8 -1 1th September 2009.
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Recent studies have shown that petroleum toxicity conditions in plants are 

known to alter leaf pigmentation properties and cause changes in the reflectance 

spectrum (Rosso et al., 2005) that can be detected before symptoms can be observed 

visually (Carter et al., 1996). Indeed, reflectance measurements can be useful for 

detecting a wide range of vegetation changes associated with various factors 

affecting plant growth and productivity. However, similar spectral responses result 

from different stresses which make it difficult to discriminate between these factors. 

For example, Smith et al. (2005) found that in oilseed rape (.Brassica napus), there 

was no difference between the spectral reflectance pattern of plants stressed via 

elevated concentration of natural gas and those stressed via herbicide application. 

Likewise, several other studies have suggested that it may not be possible to 

distinguish between different causes of stress using spectral remote sensing alone 

(Carter, 1993; Massoni et al., 1996; Smith et a l., 2005).

Recent applications of thermal imaging techniques have shown that water 

stress can be detected through an increase in leaf temperature as a result o f stomatal 

closure in response to soil drying during a water deficit (Jones, 1999; Grant et al.,

2006). Using such techniques, Olga et al. (2007) were able to distinguish between 

irrigated and non-irrigated grapevine canopies, and even between different deficit 

irrigation treatments. When leaf or canopy photosynthesis is compromised due to 

stress, stomatal conductance is expected to decrease because o f a decrease in demand 

for atmospheric C 0 2 (Farquhar and Sharkey, 1982). If transpiration is restricted due 

to stomatal closure, leaf temperatures will increase (Nobel, 1991; Pezeshki and 

DeLaune, 1993) because of less cooling by transpired water as it evaporates from the 

leaf surfaces. Thus, changes in leaf temperature may occur as a direct effect o f soil

135



water deficit or as an indirect consequence of a decrease in photosynthesis that may 

result from a range of different types of stress.

Hence, while spectral and thermal sensing individually may be inadequate for 

discriminating the effects of different types of stress in plants, the combination o f the 

two techniques may hold promise. Indeed, as reported in Chapter 5, it was found that 

spectral and thermal sensing can effectively distinguish between stress induced by oil 

pollution and waterlogging in bean (Phaseolus vulgaris ‘Tendergreen’). The 

combined effect of oil pollution and water deficit (the more widespread form o f 

water-related stress) now needs to be addressed. Hence, the objective o f the present 

study was to explore the physiological/biochemical basis o f thermal and spectral 

properties o f maize crops for the early detection and discrimination between oil 

contamination and water deficit.

6.2 Methods

In this experiment, four treatments comprising ten replicates were 

established, namely: control, oil, water deficit and the combination o f oil and water 

deficit. Canopy thermal images were acquired in a darkroom (with an artificial 

illumination provided by a halogen lamp (see chapter 3, section 3.5). The light 

source was mounted in a fixed position at nadir 70cm away from each leaf to be 

measured. The camera was positioned at nadir 75cm above the plant canopy. An 

ASD FieldSpec® Pro Spectroradiometer (Boulder, CO 80301 USA) already described 

in chapter 3, section 3.5 was used for all reflectance measurements. Ten spectral 

measurements were captured per leaf for each of the 10 replicates per treatment.
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6.3 Results

6.3.1 Physiological and biochemical responses to treatm ents

6.3.1.1 Visual stress symptoms

Stress sym ptom s w ere first v isually  observed in p lan ts on  day 8 fo r w a te r 

defic it (alone) and the com bined oil and w ater deficit treatm ents and on  day 11 fo r 

oil po llu tion  treatm ent (alone). Sym ptom s w orsened  w ith  tim e and included  le a f  

ch lo rosis, ro lling  and w ilting, the thinning o f  canopies and slow er grow th  (F igure 

6.0). T he control plants did not show  visual stress sym ptom s bu t had  fully  m atu red  

by the end o f  the experim ent.

C ontrol

O il+w ater deficitW ater deficit

Figure 6.0 Visual stress symptoms in maize leaves caused by oil pollution, water deficit and 

combined oil and water deficit at the end of the experiment. No visual stress symptoms were 

observed in the controls.
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6.3.1.2 Photosynthesis

Treated plants showed a decline in photosynthetic activity as can be seen in 

Figure 6.1. The statistical analysis revealed that before visual stress symptoms were 

observed, photosynthesis showed a significant reduction (on day 4) in the plants 

treated with water deficit and combined oil pollution and water deficit, compared to 

the controls (see Table 6.0 on page 141). However, for plants treated with oil 

pollution alone, a significant reduction in photosynthesis occurred on the same day as 

visual stress symptoms. Whenever water deficit was involved in the treatment, there 

is a significantly larger reduction in photosynthesis than for oil treatment alone. 

Thus, plants treated with water deficit and combined oil and water deficit showed the 

greatest reduction in photosynthesis, but there was no significant difference in 

photosynthesis between these two treatments throughout the experiment. 

Photosynthetic activity ceased on day 8 for the plants treated with water deficit and 

combined oil and water deficit, while photosynthesis ended on day 18 for the plants 

treated with oil alone.
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Figure 6.1 Effects of oil contamination of soil, water deficit and combined oil contamination 

and water deficit on photosynthetic activities of maize over time. Treatments are denoted by 

the key. Bars = 1 x SE, n = 10.

6.3.1.3 Transpiration

As shown in Figure 6.2, the rate o f transpiration for all treated plants 

decreased relative to the controls, showing similar responses to photosynthetic 

activities. Before visual stress symptoms were observed, all o f the treatments showed 

a significant reduction in transpiration, compared to the controls (see Table 6.0 on 

page 141). Again, whenever water was involved in the treatment, there was a 

significantly larger reduction in transpiration than for oil treatment alone. Thus, 

water and oil and water deficit treatments showed relatively the greatest reduction in 

transpiration, but there was no significant difference between these two treatments 

throughout the experiment. By the end of the experiment, there was a total reduction
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in transpiration rate of treated plants by 94%, 92% and 66% relative to the controls, 

for water deficit, the combined oil and water deficit, and oil pollution alone, 

respectively.

-A—

— Control
• Oil stress 

Vteter stress
-  Oil+V\Mer stress

0 2 4 6  8  10 12 14 16 18 20

Time (days)

Figure 6.2 Effects of oil contamination, water deficit and the combined oil and water deficit 
on transpiration of maize, over time. Treatments are denoted by the key. Bars = 1 x SE, n = 
10 .

6.3.1.4 Stomatal conductance

There was a general decrease in stomatal conductance o f treated plants as can 

be seen in Figure 6.3. Again, before visual stress symptoms were observed, all o f the 

treatments showed a significant reduction in stomatal conductance, compared to the 

controls (see Table 6.0 on page 141). Similarly, whenever water was involved in the 

treatment, there is a significantly larger reduction in stomatal conductance than for 

oil treatment alone. Thus, water and oil and water deficit treatments showed the 

greatest reduction in stomatal conductance, but there was no significant difference

between these two treatments throughout the experiment. By the end of the
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experiment, there was a total reduction in stomatal conductance o f treated plants by 

96%, 96% and 58% relative to the controls, for water deficit, the combined oil and 

water deficit, and oil pollution alone, respectively.

140

o  1 2 0 -

Contrd 
Gl stress 
V\Mer stress 
OiHV\fater stress

8 0 -

2 0 -

(Z)
18 2 014 1612106 82 40

Time (days)

Figure 6.3 Effects of oil contamination, water deficit and the combined oil and water deficit 

on stomatal conductance of maize, over time. Treatments are denoted by the key. Bars = 1 x 

SE, n = 10.
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Table 6.0 Results o f ANOVA tests demonstrating when there were significant differences in 

the physiological and biochemical properties between the treated and control plants, over the 

course ol the experiment. Unshaded = no significant difference; Shaded = significant 

difference. *Time when visible stress symptoms were observed in oil treatment alone, 

**time when visible stress symptoms were observed in water deficit and the combined oil 

and water deficit treatment.

Properties 
Photosynthesis 
(pmol m '2 s '1)

Transpiration 
(pmol m '2 s '1)

Stomatal 
conductance 
(pmol m~2 s '1) 
Total
chlorophyll
(Pg cm~2) 
Carotenoids 
(pg cm '2)

Leaf water 
content(g)

 Treatments
Control Oil stress

Water stress
 Oil+Water stress
Control Oil stress

Water stress
 Oil+Water stress
Control Oil stress

Water stress 
Oil+Water stress 

Control Oil stress
Water stress 

Oil+Water stress 
Control Oil stress

Water stress 
Oil+Water stress 

Control Oil stress
Water stress 

Oil+Water stress

Time (Days)

6.3.1.5 L eaf total chlorophyll

There was a general decrease in total chlorophyll conten t over the course o f

the experim ent in p lants treated w ith oil, as can be seen in  F igure 6.4. B efore v isual

stress sym ptom s w ere observed, p lants treated w ith  oil and com bined  oil and w ater

defic it show ed a significant reduction in total chlorophyll conten t (on  day 6),

com pared  to the controls (see Table 6.0). H ow ever, no significant reduction  in to tal

ch lo rophy ll content w as observed in p lants treated  w ith  w ater deficit th roughout the

experim ent. This im plies that the significant reduction  in total ch lo ro p h y ll'w as only

observed  w henever oil w as involved in  the treatm ent. Thus, oil and oil and w ater
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deficit treatments showed a reduction in total chlorophyll content, but there was no 

significant difference between these two treatments throughout the experiment. By 

the end o f the experiment, there was a total reduction in total chlorophyll content of 

treated plants by approximately 63% and 74% for oil and the combined oil pollution 

and water deficit, respectively.
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140 -

Control 
Oil stress 
V\feter stress 
Oil+V\fefer stressoo
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o  40-

12 14 16 18 2 08 1062 40

Time (days)

Figure 6.4 Effects of oil contamination of soil, water deficit and combination of oil and 

water deficit on total chlorophyll contents of maize. Treatments are denoted by the key. Bars 

= 1 xSE, n  = 5.

6.3.1.6 Carotenoids

The carotenoid content of the treated plants did not change systematically 

through the experiment (Figure 6.5). While the carotenoid content o f plants treated 

with water deficit and combined oil pollution and water deficit fluctuated relative to 

the controls, the carotenoid content of the plants treated with oil pollution alone
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remained largely unchanged. The carotenoid content o f all the treated plants was not 

significant to the controls at any time during the experiment (Table 6.0).
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Time (days)

Figure 6.5 Effects of oil contamination, water deficit and the combined oil and water deficit 

on carotenoid content of maize. Treatments are denoted by the key. Bars = 1 x SE, n = 5.

6.3.1.7 Leaf water content

The leaf water content of all the treated plants decreased as stress progressed 

(Figure 6.6). However, the rate of reduction was relatively slow at the early stage o f 

the experiment and faster at the later stage. Thus, the leaf water content o f all the 

treated plants became significantly lower than that of the controls 8 days after 

treatments (see Table 6.0). The leaf water content of plants treated with a 

combination of oil and water deficit reduced at the fastest rate, followed by those 

treated with water deficit alone and then oil pollution alone. By the end o f the 

experiment, there was a total reduction in leaf water content by 57%, 39% and 38%
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relative to the controls for plants treated with the combined oil and water deficit, with 

water deficit alone and with oil alone, respectively.
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Figure 6.6 Effects of oil contamination, water deficit and the combined oil and water deficit 

on leaf water content of maize over time. Treatments are denoted by the key. Bars = 1 x SE, 

n = 5.

6.3.2 Interrelationships between physiological and biochemical variables

A moderate polynomial relationship was found between total chlorophyll and 

photosynthetic activities of maize leaves (Figure 6.7). The leaf water content also 

had a moderate polynomial relationship with both transpiration and stomatal 

conductance (see Figures 6.8 and 6.9), respectively; however, there was no 

correlation between the carotenoid and total chlorophyll. The physiological rates 

were intercorrelated, as expected, as photosynthesis yielded a strong linear 

relationship with transpiration (R2 = 0.74) and stomatal conductance (R2 = 0.91) and
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there was also a strong linear relationship between transpiration and stomatal 

conductance (R2 = 0.90) (data not shown).

y = 0.02x2 - 0.32x -1.03

r2 = 0.60

15 ■

=L

-10
40 45

Total chlorophyll (pg cnrr2)

Figure 6.7 Relationships between total chlorophyll content and photosynthetic activities of 

maize, n = 32 (mean values per treatment, per sampling occasion).
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Figure 6.8 Relationships between transpiration and leaf water content of maize, n = 32.
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Figure 6.9 Relationships between stomatal conductance and leaf water content of maize, n = 

32.
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6.3.3 Responses of spectral reflectance to treatments

Looking at the mean spectra obtained at the end o f the experiment (Figure 

6.10), it can be seen that the leaf reflectance at all wavebands was higher in all the 

treated plants when compared to the controls. In the visible region, spectral 

reflectance of plants treated with oil and the combined oil and water deficit was 

higher than those treated with water deficit alone. However, in the NIR and SWIR 

regions, the reflectance of plants treated with water deficit alone and the combined 

oil and water pollution were higher than those treated with oil alone. The major 

reflectance differences were found between 513 and 760nm and 1380 and 1910nm, 

but the differences varied according to the type o f treatment. T-tests were conducted 

to determine whether differences in spectral reflectance were statistically different 

between treatments. The results showed that in the regions 513 to 639nm and 680 to 

722nm, the spectral reflectance of plants treated with oil alone and the combined oil 

and water deficit were significantly higher than those treated with water deficit alone 

(P<  0 .05). However, in the region 1387 to 1536nm, the spectral reflectance o f plants 

treated with water deficit alone and the combined oil and water deficit were 

significantly higher than those treated with oil pollution alone (p < 0.05).
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Figure 6.10 Mean reflectance spectra of treated and control leaves 18 days after treatment. 

Treatments as denoted by the key, n = 100.

6.3.3.1 Relationships between spectral reflectance and physiological and 

biochemical variables

Using data across all treated and control plants, it was found that there was a 

strong negative relationship between the photosynthetic activity and spectral 

reflectance in the visible region (Figure 6.11). Maximum correlations were found in 

the green and red regions, precisely at 528nm (r = - 0.71) and 715nm (r = - 0.74) 

respectively. Across the NIR and SWIR only weak relationships were found for 

photosynthetic activity.
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Figure 6.11 Correlogram showing the variation with wavelength in the correlation between 

the photosynthetic activity of maize and spectral reflectance, n = 32.

The relationships between transpiration and reflectance were similar to those 

for photosynthesis across the spectrum (Figure 6.12). There was a strong negative 

relationship between the transpiration rate and spectral reflectance in the visible 

region. Maximum correlations were found in the green and red regions, precisely at 

520nm (r = - 0.69) and 715nm (r = - 0.71), respectively. Across the NIR and SWIR 

only weak relationships were found for transpiration.
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Figure 6.12 Correlogram showing the variation with wavelength in the correlation between 

the transpiration rate of maize and spectral reflectance, n = 32.

The relationships between stomatal conductance and reflectance were similar 

to those for photosynthesis and transpiration across the spectrum (Figure 6.13). There 

was a strong negative relationship between the stomatal conductance and spectral 

reflectance in the visible region. Maximum correlations were found in the green and 

red regions, precisely at 524nm (r = - 0.67) and 715nm (r = - 0.71), respectively. 

Across the NIR and SWIR only weak relationships were found for stomatal 

conductance.
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Figure 6.13 Correlogram showing the variation with wavelength in the correlation between 

the stomatal conductance of maize and spectral reflectance, n = 32.

As can be seen in Figure 6.14, there was a strong negative relationship 

between the leaf total chlorophyll content and spectral reflectance in the visible 

region. Again, maximum correlations were found in the green and red regions, 

precisely at 538nm (r = - 0.93) and 708nm (r = - 0.93), respectively. A weak 

relationship was found across the NIR and SWIR.
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Figure 6.14 Correlogram showing the variation with wavelength in the correlation between 

the leaf chlorophyll content of maize and spectral reflectance, n = 32.

Carotenoids were largely uncorrelated with reflectance across most 

wavelengths, though there were some weak relationships in certain regions (Figure 

6.15). The highest correlations were found in the blue region (between 401nm and 

488nm) and SWIR (between 1131nm and 2093nm) with the waveband 430nm 

having the highest correlation (r = - 0.38). The weakest relationship was found in the 

N IR region at the waveband 736nm.
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Figure 6.15 Correlogram showing the variation with wavelength in the correlation between 

the leaf carotenoid content of maize and spectral reflectance, n = 32.

Interestingly, the relationships between leaf water content and reflectance 

were similar to those for total chlorophyll across the spectrum (Figure 6.16). Hence, 

parts o f the spectrum in the SWIR that have been found previously to be sensitive to 

water content variations (e.g. Gao and Goetz, 1994)) were found to be largely 

uncorrelated with leaf water content in the present study (r = < - 0.29). However, 

there was a strong negative relationship between the reflectance and leaf water 

content in the green and red regions with the largest correlations at 500nm (r = - 

0.80) and 726nm (r = - 0.78), respectively. The NIR is highly correlated with leaf 

water content with the maximum precisely 900nm (r = - 0.73). As we move towards 

the SWIR, correlations decrease and a minimum correlation was found at 1926nm (r 

=  0 .00).
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Figure 6.16 Correlogram showing the variation with wavelength in the correlation between 

the leaf water content of maize and spectral reflectance, n = 32.

6.3.3.2 Relationships between spectral indices and biochemical variables

Table 6.1 shows the correlations between a number o f spectral indices and 

biochemical variables. Using these results an optimal spectral index which provided 

the highest correlation with each variable was selected for further analysis. The best 

indices and their r values are indicated in bold.
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Table 6.1 Summary of the correlation coefficients (r) between the spectral reflectance 

indices and measured physiological/biochemical parameters.

Biochemicals

estimated

Spectral indices r References

Total chlorophyll (R 7 5 5 -R 7 16) / (R 7 5 5 + R 7 16) 0.940 From chapter 4
(fig cm'2) R673/R545 From chapter 5

R550/R850 -0.920 Schepers et al., (1996)

(R 790-R 720)/(R 790+R 720) 0.947 Barnes et al., (2000)

(R75O -R445)/(705+ R 445) 0.810 Sims and Gamon (2003)

(R 75O -R445)/(R 705-R 445) 0.947 Sims and Gamon (2002)

(R 75O -R 720)/(R 700-R 670) 0.940 Le Maire et al. (2004)

S
’

O 00 -0.930 New

R1330/R708 0.930 New

( R l 330- R 708) / ( R l 330+ R 708) -0.940 New

R8O0/R7O8 0.930 New

R 538 -0.930 New

R1330/R538 -0.940 New

(R 1 33O -R 538)/(R l330+ R 538) 0.949 New

Carotenoids (pg cm'2) R 80o /R 470 0.350 Blackburn (1998)

( R 800- R 47o ) /(  R 800+ R 470) 0.340 Blackburn (1998)

R t 30 -0.380 New

R736/R43O 0.410 New

( R 736“R 43o)/(R 736+ R 430) 0.420 New

R8O0/R43O 0.400 New

Leaf water content (g) (R g 58- R l  240)/( R 858+ R l  24o) -0.080 Gao, (1996); Zarco-Tejada 

et al., (2003)

Fensholt and Sandholt,

( R 858“R l  640) / ( R 858+ R l  64o) 0.010 (2003)

R9OO -0.730 New

R l 926/ R 900 0.060 New

( R l 926" R 900) / (  R l 926+ R 900) 0.040 New

R8O0/R9OO 0.060 New

Correlations are significant atp<  0.05.
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As can be seen in Figure 6.17, there was a strong positive linear relationship 

between normalised difference ratio (Ri330-R538)/(Ri330-R538) and total chlorophyll. 

While there was a poor relationship between the normalised difference ratio (R736- 

R43o)/(R736+R43o) and carotenoid (figure 6.18), the individual narrow waveband R900 

had a moderate relationship with leaf water content (Figure 6.19).

y= 0.01x + 0.100.55 ■

r* = 0.92

8 0.45 ■

0.35 ■

0.25 ■

0.15
4540

Total chlorophyll (pg cm’2)

Figure 6.17 Relationships between (Ri330-R538)/(Ri330+R538) and total chlorophyll content of 

maize, n = 32.
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Figure 6.18 Relationships between (R736-R43o)/(R736+R43o) and carotenoid content of maize, 

n = 32.
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6.3.3.3 Temporal response of optimal spectral indices

As can be seen in Figure 6.20, the optimal chlorophyll index (R1330- 

R-538)/(Ri330+R538) decreased in treated plants as stress progressed. Before visual 

stress symptoms were observed, the index significantly reduced for plants treated 

with oil and combined oil and water deficit (on day 6), compared to the controls (see 

Table 6.2). However, no significant reduction in the index was observed in plants 

treated with water deficit throughout the experiment. This implies that a significant 

reduction in (Ri330-R538)/(Ri330+R538) was only observed whenever oil was involved 

in the treatment. Thus, oil and oil and water deficit treatments showed a reduction in 

(Ri330-R538)/(Ri330+R538), but there was no significant difference between these two 

treatments throughout the experiment. By the end of the experiment, there was a total 

reduction o f the index of treated plants by approximately 44% and 42% for oil and 

the combined oil pollution and water deficit, respectively.
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Figure 6.20 Change in (Ri33o-R538)/(Ri33o+R538) with time. Treatments are denoted by the 
key. Bars = 1 x SE, n = 10.
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The optimal carotenoid index (R736-R43o)/(R736+R43o) decreased in treated 

plants as stress progressed (Figure 6.21). Before visual stress symptoms were 

observed, the index had significantly decreased in plants treated with combined oil 

and water deficit (on day 6), compared to the controls (see Table 6.2). The index did 

not decrease systematically in treated plants although this was more pronounced in 

plants treated with oil alone. No significant change was found between treatments 

throughout the experiment but only in some days between oil treated plants and the 

combined oil and water deficit. By the end of the experiment, there was a total 

reduction of the index of treated plants by approximately 11% for oil and the 

combined oil pollution and water deficit, and 8% for the water deficit.
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Figure 6.21 Change in (R736-R43o)/(R736+R43o) with time. Treatments are denoted by the key. 

Bars = 1 x SE, n = 10.

As can seen in Figure 6.22, the optimal leaf water content index R90o 

increased in treated plants as stress progressed. Before visual stress symptoms were
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observed, the index significantly increased in plants treated with oil alone (on day 8), 

compared to the controls (see Table 6.2). A significant increment of the index was 

observed in plants treated with water deficit and the combined oil and water deficit 

only at the later stage of the experiment. The highest increment was found in plants 

treated with the combined oil and water deficit, followed by oil (alone) and then the 

water deficit (alone). By the end of the experiment, there was a total increment o f the 

index o f treated plants by approximately 20%, 17% and 12% for the combined oil 

pollution and water deficit, oil pollution alone and water deficit alone, respectively.
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Figure 6.22 Change in R900 with time. Treatments are denoted by the key. Bars -  1 x SE, n -  

10.
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Table 6.2 Results of ANOVA tests demonstrating when there were significant differences 

between the changes in the spectral and thermal properties o f treated and control plants, over 

the course o f the experiment. Unshaded = no significant difference; Shaded = significant 

difference. *Time when visible stress symptoms were observed in oil treatment alone, 

**time when visible stress symptoms were observed in water deficit and the combined oil 

and water deficit treatment.

Stress indices Treatments
(R l3 3 0 -R 5 3 8 ) / (R l3 3 0 + R 5 3 8 ) Control Oil stress

Water stress 
Oil+Water stress

(R 7 3 6 -R 4 3 0 )/(R 736+ R 430) Control Oil stress
Water stress 

Oil+Water stress
R,■900 Control Oil stress

Water stress 
Oil+Water stress

Absolute temperature
(°C)

Control Oil stress
Water stress 

Oil+Water stress

In Control Oil stress
Water stress 

Oil+Water stress

6.3.4 Therm ography

A s can be seen in Figure 6.23, the absolute le a f  tem peratures o f  trea ted  plan ts 

increased  relative to the control. The statistical analysis revealed  that before visual 

stress sym ptom s w ere observed, lea f  absolute tem peratures show ed a sign ifican t 

increase (on day 4) in the plants treated w ith  w ater deficit and com bined  oil po llu tion  

and w ater deficit, com pared to the controls (see Table 6.2). H ow ever, for p lan ts 

trea ted  w ith  oil po llu tion alone, a significant rise in le a f  absolute tem peratu re 

occurred  on the sam e day as visual stress sym ptom s. O ver the course o f  the 

experim ent there w ere no consistent differences betw een the p lants trea ted  w ith  oil, 

w ater deficit or their com bination.
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Figure 6.23 Effects of oil contamination, water deficit and the combined oil and water 

deficit on the absolute temperature of maize leaves over time. Treatments are denoted by the 

key. Bars = 1 x SE, n = 10.

The thermal index (IG) of the treated plants was significantly reduced by 

treatments when compared with the control plants (Figure 6.24). The reduction was 

significant 6 days before the visual stress symptoms were observed in plants treated 

with the combined oil and water deficit (Table 6.2). For plants treated with water 

deficit (alone) and oil pollution (alone), a significant reduction in IG was observed 

four days before visual stress symptoms, but this difference was not consistent on the 

following sampling occasion. From the point when visual symptoms were observed, 

Ig was significantly lower for the plants treated with water deficit (alone) and oil 

pollution (alone) than the controls, until the end of the experiment. Similar to leaf 

absolute temperature o f treated plants, there were no consistent differences in IG 

between the plants treated with oil, water deficit or their combination, over the
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course of the experiment. A moderate linear relationship was found between the Ig 

and stomatal conductance as can be seen in Figure 6.25.
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Figure 6.24 Effects of oil contamination, water deficit and the combined oil and water 

deficit on the thermal index (/G) of maize leaves over time. Treatments are denoted by the 

key. Bars = 1 x SE, n = 10.
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Figure 6.25 Relationships between the stomatal conductance and thermal index (IG), n = 32. 

6.4 Discussion

A wide range of plant stresses have been reported to cause visible stress 

symptoms such as leaf chlorosis, etiolation, wilting, thinning o f canopies and 

decreased growth in plants (Rosso et al., 2005; Smith et al., 2005). In the present 

study, while similar visual stress symptoms were observed in treated plants, no visual 

stress symptoms were observed in control plants. Similar observations were also 

made in previous studies presented in earlier chapters. The visual stress symptoms 

started mildly by affecting a few leaves and then gradually increased to affect the 

whole plant. The result of the present study showed that physiological responses (that 

is, photosynthetic activities, transpiration and stomatal conductance) o f maize plants 

were similar irrespective of the type of treatment.
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For all of the physiological variables, plants treated with water deficit alone 

and the combined oil and water deficit responded at a faster rate than those treated 

with oil pollution. A recent study found that when irrigation was withheld to induce 

severe soil drying, gas exchange decreased and then stopped in three Mediterranean 

cedar species: Cedrus atlantica, C. Brevifolia and C. Libani (Ladjal et al., 2007). An 

empirical study by Ray and Sinclair (1998) found that the overriding factor 

determining transpirational response in maize (Zea mays L.) and soyabean (Glycine 

max L.) to drought stress was soil dryness. A recent study attributed reduced 

transpiration in plants to soil water limitation as well-irrigated crops can usually 

supply enough water to the leaves to satisfy transpiration demand (Tilling et al., 

2007). In the present study, treatments may have reduced soil water needed to sustain 

transpiration processes and thus, can explain the decrease in transpiration rates of 

plants. When transpiration is restricted due to lack o f water, stomata closure is 

induced resulting in less water evaporating from the leaf surface (Jackson, 1986). 

Not surprisingly similar responses were found for transpiration and stomatal 

conductance in the present study and this is explained by the strong linear 

relationship found between transpiration and stomatal conductance.

Maize plants treated with oil pollution alone also experienced a reduction in 

both the transpiration and stomatal conductance. It is known that oil can reduce water 

uptake by wheat (Jong, 1980) and thus, oil may have indirectly caused a reduction in 

transpiration and stomatal conductance in maize. It was observed that the 

physiological properties of plants treated with oil alone reduced at a slower rate than 

those treated with water deficit and the combined oil and water deficit. The different 

method of stress application used can explain this situation. For oil treatment, a 

single application was made while water deficit stress was instigated by continuously
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decreasing the amount of water plants may require for growth. Consequently, oil 

treatment affected plant physiology at a slower rate compared to water deficit which 

rapidly decreases plant physiology.

The total chlorophyll content of plants treated with oil pollution decreased 

significantly in contrast with those treated with water deficit alone. A significant 

change in total chlorophyll content of plants treated with oil occurred before visual 

stress symptoms were observed. This is in contrast with total chlorophyll content of 

plants treated with water deficit which at no time showed a significant change. This 

implies that by quantifying the total chlorophyll content, plant stress caused by oil 

pollution can be detected early and also could be discriminated from water deficit 

stress. The reduction in total chlorophyll content of plants treated with oil may 

possibly be attributed to the toxic effects of oil as it destroys cell membranes. Indeed, 

previous studies have found that oil can penetrate plants/leaf tissue and consequently, 

destroy cellular integrity, and prevent leaf and shoot regeneration (Webb, 1994; 

Pezeshki et a l ,  1995; Pezeshki et al., 2000). Earlier work has also noted that changes 

in chlorophyll content can be caused not only by water stress but also by the 

phenological status of the plant, atmospheric pollution, nutrient deficiency, toxicity, 

plant diseases, and radiation stress (Larcher, 1995). However, several studies have 

shown that chlorophyll does not always relate to water content. In a temperate forest, 

no correlation was found between the chlorophyll and water content for five different 

species (Gond et al., 1999). It was reported that while the chlorophyll concentration 

decreases in autumn due to the phenological status of the plant in some of the 

species, the water content remained constant (Gond et al., 1999).

In the present study, while the photosynthetic activities of plants treated with 

water deficit reduced significantly, their total chlorophyll content did not change
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significantly. The result obtained in this study concurs with the findings of Maracci 

et al., (1991) where maize (Zea mays L.) subjected to drought stress experienced 

some disturbances in the photosynthetic functioning of the plant without a change in 

the pigment concentration. Maracci et al. (1991) reported that while the chlorophyll 

concentration remains unchanged, the net photo synthetic activity o f the maize plants 

decreases with increasing water deficiency. Earlier works also found that the 

stomatal closure reduces leaf photosynthesis because of restricted entry o f CO2 

through stomatal pores (Pezeshki and DeLaune, 1993; Webb, 1994; Pezeshki et al., 

1995). Furthermore, water stress may cause closure of leaf stomata and a reduction in 

CO2 supply (Jackson and Ezra 1995). This evidence can explain the findings 

concerning the disruption in photosynthetic activities o f plants treated with water 

deficit which may be attributed to stomatal closure and/or accumulation of internal 

CO2 rather than a decrease in chlorophyll content. Thus, this suggests that the 

photosynthetic response of plants treated with water deficit may indicate indirect 

effects of a reduction in transpiration and stomatal conductance rather than a 

reduction in photosynthetic pigments.

It is known that carotenoids generally decline less quickly than chlorophyll 

(Sims and Gamon, 2002), perhaps due to its role as a photoprotective pigment 

(Demming-Adams and Adams, 1996; Hartel and Grimm, 1998). Additionally, it has 

been found that the concentrations of carotenoids are usually high enough in stressed 

leaves that absorption in the 400 to 500nm range remains similar to that in healthy 

leaves (Merzlyak et al., 1999). These concepts possibly explain the inconsistency 

and insignificant change in carotenoid content of treated plants in the present study. 

The few occasions where carotenoid content of treated plants were higher than those 

o f the control, may possibly be attributed to the damaging effect of the stresses.
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Interestingly from the results, there is an indication that carotenoids were able to 

perform the photoprotective function irrespective of stress type.

The reduction in leaf water content of treated plants was not significant until 

8 days after treatment. This concurs with Beaumont (1995) who found that the water 

content o f sunflower leaves did not change much due to moderate water stress since 

the plant tried to maintain a level compatible with its basic functioning. Past studies 

indicate that a reduction in transpiration helps to conserve available water (Larcher, 

1995), as does the stomatal conductance as explained earlier in this section. Thus, the 

insignificant change in leaf water content of the treated plants identified at the early 

stage o f plant stress may be attributed to plant water conservation mechanisms as 

both transpiration and stomatal conductance are reduced. A significant change in leaf 

water content did not occur until the later stage of the experiment when plants 

perhaps could no longer conserve water. At that point, visual stress symptoms caused 

by oil pollution, water deficit and the combined oil and water were manifest.

The results of the present study indicated that spectral reflectances o f treated 

plants were sensitive to various stresses and this conforms to the findings of 

numerous studies that used a wide range of plant stresses such as water logging, 

natural gas, nutrient stress, heavy metal toxicity and soil oxygen deficiency 

(Woolley, 1971; Horler et a l, 1983; Milton et a l, 1989; Carter, 1993; Carter and 

Miller, 1994; Anderson and Perry, 1996; Noomen et a l,  2003; Smith et al., 2004). It 

has long been known that stress generally increases reflectance in the visible region 

due to a decrease in the dominant absorption features such as the photosynthetic 

pigments. Thus, light reflected by vegetation in the visible region o f the spectrum is 

predominantly influenced by the presence of chlorophyll pigments in the leaf tissues 

(Haboudane et a l,  2002). Similar to the result of this study, Carter (1993) noted that

169



foi individual leaves; increased reflectance at visible wavelengths (400 — 700nm) is 

generally the most consistent response to stress within the 400 -  2500nm range.

Expectedly, the relationships between photosynthesis, total chlorophyll and 

carotenoids of treated plants and reflectance were strongest in the visible region. The 

sensitivity o f other physiological and biochemical variables such as the leaf water 

content, transpiration and stomatal conductance were expected to be found at the 

other regions of the spectrum (Ceccato et al., 2001). On the contrary, their 

relationships with reflectance were also found to be strongest in the visible region. 

The reason for this may be due to the interrelationship found between the leaf water 

content and total chlorophyll and the fact that the total chlorophyll was changing 

over a much wider range (86%) than leaf water content (57%). Thus indirect 

relationships were observed between water content reflectance in the visible region.

The NIR reflectance is influenced principally by the internal cell structure of 

the leaf (Ceccato et al., 2001; Tilling et al., 2007). Well-hydrated, healthy spongy 

mesophyll cells strongly reflect infrared wavelengths (Gates et al., 1965). Leaf turgor 

is associated with cellular growth and function (Graeff and Claupein, 2007). When 

turgor becomes zero under strong water deficiency, the cells collapse and the leaf 

wilts. Turgor can be maintained by cell wall hardening during the development o f a 

water deficit. While cell wall hardening helps to sustain turgor, it impedes cell 

growth. Structural changes in the arrangement of the spongy mesophyll structure, as 

described by Ripple (1986) and Boyer et al. (1988), may occur as a consequence o f a 

loss o f cell turgor pressure and this has implications for leaf reflectance. As the leaf 

internal structure may have deteriorated due to a reduction in transpiration and 

stomatal conductance, other factors may have biased the relationship that was found 

between the transpiration/stomatal conductance and reflectance in the NIR and
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SWIR regions such as the leaf dry matter content. Additionally, the leaf internal 

structure which Ceccato et al. (2001) found to have the greatest influence for 

reflectance at 1600nm may have added to the weak relationships found in the SWIR.

Similar to the results found in the present study, Woolley (1971), Bowman 

(1989), Carter et al. (1989) and Graeff and Claupein (2007) also found that 

reflectance tends to increase in the 400 -  1300nm region, when water is lost from a 

leaf. The reason for the increase of reflectance in the 400 -  1300nm region has been 

inferred as the changing of the internal structure of the leaf besides water loss 

(Sinclair et al., 1971; Gausman and Allen, 1973; Graeff and Claupein, 2007). In the 

visible wavelengths, absorption by leaf water content is weak and changes in 

reflectance resulting directly from leaf water loss will not be directly detectable 

(Danson and Aldakheel 2000). This concurs with the results o f this study as 

reflectance in the visible region by plants treated with water deficit alone was 

insignificant when compared to those treated with oil or the combined oil and water 

deficit. Furthermore, the incidental increase in reflectance in the visible region by 

plants treated with water deficit may be attributed indirectly to the apparent stomata 

closure and consequential reduction in C 0 2 supply. Similarly, earlier workers noted 

that closure of leaf stomata and a reduction in C 0 2 supply may lead to increased 

visible reflectance (Jackson and Ezra, 1995).

For individual leaves, there is normally a negative relationship between the 

leaf water content and reflectance in the near and middle infrared wavelengths 

(Danson et al., 1992; Aldakheel and Danson, 1997). This concurs with our 

correlation in the NIR region but disagrees with the ones in the visible and the SWIR 

regions where correlations were strongest and weakest respectively. These studies 

attributed the strong relationships as a direct function of the absorption
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characteristics of water, which dominate the spectral response of vegetation in that 

region. The weak correlation found between reflectance and the leaf water content in 

the SWIR region may be due to other factors influencing reflectance at that region 

such as the leaf dry matter and the leaf internal structure (Ceccato et al., 2001). An 

empirical study by Cheng et al. (2006) found that at the leaf scale, changes in dry 

matter content produced more errors in water content than other leaf biochemical 

properties. Studies have reported extensive influences caused by both dry matter 

content and leaf internal structure parameter on reflectance in the NIR and SWIR 

regions simulated by the PROSPECT leaf reflectance model (Ceccato et al., 2001; 

Bacour et al., 2002). A study by Cheng et al., (2006) demonstrated that more 

significant changes in leaf reflectance are introduced by changes in leaf dry matter 

than by leaf internal structure. Therefore, the correlation between reflectance and the 

leaf water content in the SWIR region may have been further complicated by 

variations in the leaf dry matter content. However, the strong correlation found 

between reflectance and the leaf water content in the visible region may indirectly be 

related to the influence of strong absorption by the chlorophylls and carotenoid at 

that spectral region as discussed previously in this section.

Based on the spectral indices tested, additional evidence was found about the 

relationships between reflectance and the measured physiological/biochemical 

variables. A normalized-difference spectral indices (Ri330-R538)/(Ri330+R538) that 

combined a waveband in the green with one in the NIR region had a strong 

relationship with total chlorophyll content. Several studies have shown similar results 

where the leaf reflectance values around 580 and 700nm wavelengths were closely 

related with leaf chlorophyll level (Jacquemoud and Baret, 1990; Daughtry et a l,  

2000; Carter and Spiering, 2002; Zhao et a l,  2003). Thus, earlier studies noted that
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the green-peak and red-edge spectral regions are generally critical for the detection 

o f plant stress (Schepers et al., 1996; Carter and Knapp, 2001). Furthermore, an 

empirical study by Zhao et al. (2005) found that among other reflectance ratios, the 

one that combined reflectance values in the green or red regions with one in the NIR 

had the strongest relationship with chlorophyll concentrations in cotton (Gossypium 

hirsutum  L.). Additionally, the index significantly decreased in plants treated with oil 

and the combined oil and water deficit before visual stress symptoms were observed 

when compared with the control. On the contrary, the index did not show significant 

change in plants treated with water deficit alone when compared with the control.

The weak relationships found in the present study between the carotenoid 

spectral indices and carotenoid concentration concurs with the findings of Blackburn 

(1998b). While identifying the optimum wavebands for pigment indices using leaves 

o f four different deciduous tree species at different phenological stage, the author 

found no relationships between carotenoid specific simple/normalised difference 

ratios and carotenoids concentration. The result was attributed to the effects of 

convolution of carotenoid absorption maxima with other pigments. This may 

possibly be the case in the present study a stronger relationship was also found 

between chlorophylls and reflectance (R = - 0.49) in the same region where 

carotenoid absorption maxima was found (see figure 6.14). This may also be 

responsible for the significant decrease of the carotenoids index (R736- 

R43o)/(R736+R43o) of treated plants when compared with the controls. Previous work 

noted that chlorophyll has strong absorption peaks not only in the red regions o f the 

spectrum but also in the blue region where its absorption peak overlaps with the 

absorbance of the carotenoid (Sims and Gamon, 2002). However, results from 

further work undertaken by Blackburn (1998a) show much better relationships
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between carotenoid specific simple/normalised difference ratios and carotenoid 

concentration in bracken (Pteridium aquilinum) canopy. The author attributed this to 

an increased range o f carotenoid concentrations per unit area used in the canopy 

scale experiment compared to the deciduous tree leaves study.

Regarding thermal responses o f leaves to treatments, the consistent increase 

in the absolute temperatures of the treated plants in relation to the controls is likely to 

be due to the reduction in the transpiration and stomatal conductance o f treated 

plants. The early significant difference found between the absolute leaf temperatures 

o f plants treated with water deficit and the combined oil and water deficit treated 

plants and control plants as presented in Table 6.3 show that, a change in the absolute 

temperature of the leaf in response to stress may be useful for early detection of 

water deficit stress in plant. However, the results indicate that absolute leaf 

temperature may only be useful for detecting plant stress caused by oil pollution after 

a prolonged period of stress. The inconsistent and insignificant differences found 

between the absolute temperature of plants subjected to different types of treatment 

indicates the limitation in this remotely-sensed parameter in predicting accurately the 

type o f stress affecting the plants i.e. it is difficult to discriminate between oil and 

water deficit stress. Therefore, prior knowledge about the type o f stress affecting 

plant may be required for accurate detection of stress using the leaf absolute 

temperature. The response in absolute temperature to treatments in this study differ 

from that found in chapter four where no significant difference was found between 

the leaf absolute temperature of the treated plants and the control. One possible 

explanation to this is that, unlike in chapter four where, environmental variation may 

have influenced absolute leaf temperatures (which is inevitable in an experiment with 

relatively large plants distributed across a greenhouse), in this study, thermal
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measurements were undertaken in a more confined environment (dark room) where 

environmental variation was minimal.

Generally, the results show that the thermal index (Ig) can detect oil pollution 

and water deficit stress in maize. Similar to the leaf absolute temperature, the 

consistent decrease in the thermal index (Ig) o f treated plants as percentage o f control 

is likely to be responding to the reduction in the transpiration and stomatal 

conductance of treated plants. The time of response of the Ig to treatments suggests 

that the Ig may be useful for early detection of stress caused by the combined oil and 

water deficit. However, this is not the case for plants treated with oil alone and water 

deficit alone, as their Ig was found to be consistently and significantly different from 

the control on the same day as visible stress symptoms. Like the leaf absolute 

temperature, it may be difficult to accurately predict the type of stress affecting the 

plant due to inconsistency and insignificant differences found between the Ig o f the 

plants exposed to different types of treatment. Again, this suggests that there may be 

the need for prior knowledge of stress affecting plants before accurate discrimination 

can be achieved using the Ig. The relationships found between the stomatal 

conductance and the Ig in this chapter was similar to that found in chapter four, 

although an exponential relationship was found in the present study. The difference 

between the form of the relationship may be attributed to the use of larger dataset, 

incorporating a wider range of values in this study compared to the previous study.

In summary, by using spectral reflectance in chlorophyll absorption bands 

particularly in the regions 513 to 639nm and 680 to 722nm, it was possible to 

discriminate between oil and water deficit stress in maize as reflectance associated 

with oil pollution was significantly higher than that associated with water deficit in 

these wavebands. Also, the water absorption wavebands in the regions 1387 to
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1536nm can be used to discriminate between oil and water deficit stress in maize as 

reflectance associated with water stress was significantly higher than that associated 

with oil pollution in this wavebands. Additionally, while the chlorophyll index 

(Ri330-R538)/(Ri330+R538) can detect oil-related stress but not water deficit stress, the 

leaf absolute temperature can detect water deficit and Iq can detect combined oil and 

water deficit stress in maize, respectively. This suggests that the combination of 

hyperspectral and thermal remote sensing can not only detect oil and water deficit 

stress in maize before visual stress symptoms manifest, but also can effectively 

discriminate between the two stresses.

6.5 Conclusion

The results of this study indicate that the concept of measuring leaf spectral 

reflectance and thermal responses for early detection and discrimination between oil 

and water deficit stresses in plant is sound. It was demonstrated that hyperspectral 

remote sensing can accurately measure the chlorophyll concentration in leaves. This 

study shows that oil pollution adversely affects leaf chlorophyll content and 

therefore, plant stress caused by oil pollution can be detected remotely. Remote 

sensing of carotenoid concentration alone is not sufficient both for early detection 

and discrimination between oil pollution and water deficit stress. However, it can 

provide additional information about plant stress particularly as carotenoids maintain 

some degree o f stability while chlorophyll content is decreasing. Hyperspectral 

remote sensing may not be suitable for assessment of stress in maize caused by water 

deficit alone. This is because plants may show signs of stress including reduced 

evapotranspiration without experiencing a reduction in chlorophyll content.
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However, results show that chlorophyll index (Ri33o-R538)/(Ri330TR538) can detect oil 

related stress before visual stress symptoms are observed.

Interestingly, thermography appears to have some potential in this regard. 

While changes in leaf absolute temperature can indicate water deficit stress in maize 

prior to visual stress symptoms, it may be difficult to discriminate between oil and 

water deficit stress using this measure. Indirect measurement of the stomatal 

conductance using Iq has potential in pre-visual detection of stress caused by the 

combined oil and water deficit but, again, this lacks the ability to discriminate 

between oil and water deficit stress. Thus, the findings suggest that the combination 

o f hyperspectral and thermal remote sensing has potential in the early detection and 

discrimination between oil and water deficit stress in maize. The results obtained in 

this study were based entirely on single leaf measurements of leaves that experienced 

rapid and severe responses to stress. Therefore, in the next chapter, the robustness of 

this approach shall be tested on a different species both at leaf and canopy scales.
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Chapter 7*

ASSESSING THE PERFORMANCE AND STABILITY OF SPECTRAL AND  

THERMAL RESPONSES IN BEAN (.Phaseolus vulgaris ‘Tendergreen ’) 

TREATED WITH OIL AND WATER DEFICIT AT LEAF AND CANOPY  

SCALES

7.1 Introduction

In chapter 6, it was found that the combination of hyperspectral and thermal 

remote sensing has potential in the early detection and discrimination between oil 

and water deficit stress in maize. Thus, there is the need to test the robustness and 

extendibility of this technique using different plant species and measuring both at 

leaf and canopy scales. The leaf is a basic and often predominant element in a plant 

and thus, the estimation o f its biochemical contents is very meaningful in ecological 

studies (Shi et al., 2005). Several studies have noted that the absolute and relative 

concentrations of pigments dictate the photo synthetic potential of a leaf and provide 

valuable information about the physiological status o f plants (Blackburn, 1998a; 

Sims and Gamon, 2002; Gitelson et al., 2003). On the other hand, plant canopies are 

structured to maximize canopy photosynthesis under a given irradiance regime 

(Monsi and Saeki, 1953). Essentially, the plant canopy plays an important role in the 

exchange o f water, energy and greenhouse gases between vegetation and the 

atmosphere (Blackburn, 1998b). These processes are dependant on leaf biochemistry 

such as chlorophyll, nitrogen concentrations and leaf hydration state (Asner, 1998). 

Thus, information about leaf biochemistry could help predict these processes at the

* Part o f  this chapter has been published in Proceedings o f  the Remote Sensing and Photogrammetry 
Society (RSPsoc) Annual Conference, Leicester, United Kingdom, 8 -11th September 2009.
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canopy scale (Sobhan, 2007). Additionally, previous investigations have noted that 

canopy reflectance primarily depends on foliar spectral properties (Gates et al., 1965; 

Boochs et a l,  1990; Yoder and Pettigrew-Crosby, 1995; Blackburn, 1998b).

Scaling of leaf optical properties to the canopy level is not straightforward 

due to a number o f factors. There is non-uniformity in the distribution o f chemical 

constituents across a given leaf surface and, in turn, across various leaves within a 

plant canopy (Yoder and Pettigrew-Crosby, 1995). This is due to the organisation of 

cells and organelles as most proteins and all chlorophylls are packed into chloroplast 

that migrate and clump, depending on the light environment (Yoder and Pettigrew- 

Crosby, 1995). Furthermore, the non-uniformity can lead to differential absorbance 

and reflectance across a leaf surface just as non-uniform vegetation results in 

variations in optical properties across a landscape. There are several other factors 

which control canopy reflectance including the LAI, soil background, canopy 

structure and/or architecture. Interestingly, most of these factors can be controlled in 

the laboratory; yet, most laboratory studies about the use o f optical reflectance in 

response to specific stressors are limited to the leaf scale. Currently, there is a poor 

understanding as to whether plant stress detected at the leaf scale can translate to the 

canopy. Accurate quantitative estimates of biochemical properties o f vegetation 

canopies are important applications of remote sensing for terrestrial ecology (Gao 

and Goetz, 1995). In real systems, most ecological applications of remote sensing are 

at a large scale where data are acquired at the canopy level. For this reason, further 

work is needed that extends remote sensing of plant stress from leaf scale

measurements to the canopy.

The previous chapter (6) demonstrated the potential o f the spectral and 

thermal responses of leaves for early detection and discrimination between oil and
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water deficit stress in maize. In order to understand whether this approach can 

become useful in ecological studies, there is the need to ensure that the approach is 

generalisable across scales and species. Therefore, this study investigates the relative 

merits o f spectral and thermal approaches for early detection and discrimination 

between oil and water deficit stress in bean (Phaseolus vulgaris ‘Tendergreen ’) at 

both leaf and canopy scales.

This study aimed to assess and compare the stability of spectral and thermal 

properties o f plants for detecting oil and water deficit stress, irrespective o f other 

possible factors that may influence these changes at the canopy scale. The objective 

was to investigate whether spectral and thermal features o f plants would transpose 

from leaf to canopy in their response to oil and water deficit stress. The comparison 

was made based on the sensitivities and temporal changes o f remotely-sensed 

responses at leaf and canopy scales.

7.2 Methods

In this experiment, four treatments comprising ten replicates were 

established, namely: control, oil, water deficit and combination of oil and water 

deficit. Leaf and canopy thermal images were acquired in a darkroom (provided with 

an artificial illumination (see chapter 3, section 3.5) mounted in a fixed position at 

nadir 70cm away from each leaf and canopy to be measured). The camera was 

positioned at nadir 75cm above the plant leaf and canopy. Reflectance measurements 

were made using an ASD FieldSpec® Pro Spectroradiometer (Boulder, CO 80301 

USA; described in chapter 3, section 3.5.). Ten spectral measurements were captured 

per leaf and plant canopy for each of the 10 replicates per treatment.
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7.3 Results

7.3.1 Physiological and biochemical responses to treatm ents

7.3.1.1 Visual stress symptoms

Stress sym ptom s w ere first visually  observed in p lants on day 6 for w ater 

defic it (alone) and the com bined oil and w ater deficit treatm ents and on day 9 fo r oil 

p o llu tion  trea tm ent (alone). V isually, the grow th and developm ent in the bean  w ere 

adversely  affected by all treatm ents. Sym ptom s w orsened w ith  tim e and included  

le a f  chlorosis (F igure 7.0), w ilting and the th inn ing  o f  canopies (F igure 7.1). N o 

v isual stress sym ptom s w ere observed in  control p lants and they  had fully  m atured  

by  the end o f  the experim ent.

Oil+Water deficitWater deficitControl

Figure 7.0 Visual stress symptoms in bean leaves caused by oil pollution, water deficit and 

combined oil and water deficit at the end o f the experiment. No visual stress symptoms were 

observed in the controls.
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Oil+Water deficit Water deficit Control

Figure 7.1 Visual stress symptoms in bean canopies caused by oil pollution, water deficit 

and combined oil and water deficit at the end o f the experiment. No visual stress symptoms 

were observed in the controls.

7.3.1.2 Photosynthesis

T reated plants show ed a decline in photo synthetic activ ity  as can be seen in

F igure 7.2. The statistical analysis revealed that before stress sym ptom s w ere

observed  visually , photosynthesis show ed a significant reduction  (on day 4 and 6) in

the p lants treated w ith  the com bined oil pollu tion  and w ater deficit and oil po llu tion

alone com pared  to the controls, respectively  (see Table 7.0). H ow ever, for p lants

treated  w ith  w ater deficit alone, a significant reduction  in photosynthesis occurred  on

the sam e day as visual stress sym ptom s. W henever oil po llu tion  w as involved in the

treatm ent, there was a significantly  larger reduction  in  photosynthesis than  for w ater

defic it treatm ent alone. Thus, plants treated  w ith  oil and com bined oil and w ater

defic it show ed the greatest reduction in photosynthesis, but there w as no significan t
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difference in photosynthesis between these two treatments throughout the 

experiment. Photosynthetic activity ceased on day 9 for the plants treated with oil 

and combined oil and water deficit, while photosynthesis ended on day 16 for the 

plants treated with water deficit alone.

300

g  200-
I

100

g  -100-

-200
10 12 14 16 18 206 80 2 4

Time (days)

------ • ------ Control
. . .  . . distress
--------------4 — V\feter stress
— - 0 ----- OiHV\feter stress

Figure 7.2 Effects of oil contamination of soil, water deficit and combined oil contamination 

and water deficit on photosynthetic activities of bean over the course of the experiment. 

Treatments are denoted by the key. Error bars = 1 x SD, n = 10.

7.3.1.3 Transpiration

As shown in Figure 7.3, the rate o f transpiration for all treated plants 

decreased relative to controls, showing similar responses to photosynthetic activities. 

Before visual stress symptoms were observed, all o f the treatments showed a 

significant reduction in transpiration, compared to the controls (see Table 7.0). All 

treatments showed similar responses in transpiration and there was no significant
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difference between treatments throughout the experiment. By the end o f the 

experiment, there was a total reduction in transpiration rate o f treated plants by 

approximately 90%, 88% and 84% for water deficit, oil and the combination o f oil 

and water deficit, relative to the controls, respectively.

160

c/5
(N
£
1  60- 
rL

§  40-

-20
10 12 14 16 18 2 06 82 4

Time (days)

------ • ------ Control
Oil stress

------A — V\feter stress
------ 0 ----- Oil+\Afeter stress

Figure 7.3 Effects of oil contamination, water deficit and the combined oil and water deficit 

on transpiration of bean, over time. Treatments are denoted by the key. Bars = 1 x SD, n = 

10 .

7.3.1.4 Stomatal conductance

There was a general decrease in stomatal conductance of treated plants as can 

be seen in Figure 7.4. Again, before visual stress symptoms were observed, all of the 

treatments showed a significant reduction in stomatal conductance, compared to the 

controls (see Table 7.0). All treatments showed similar responses in stomatal 

conductance and there was no significant difference between treatments throughout
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the experiment. By the end of the experiment, there was a total reduction in stomatal 

conductance of treated plants by approximately 98% 93% and 91%, for water deficit, 

oil and the combination of oil and water deficit, relative to the controls, respectively.

Vn 140 si

— Control 
Oil stress 
V\feter stress

-  OihV\fater stress

0  2 4 6  8  10 12 14 16 18 20

Time (days)

Figure 7.4 Effects of oil contamination, water deficit and the combined oil and water deficit 

on stomatal conductance of bean, over time. Treatments are denoted by the key. Bars = 1 x 

SD ,n=  10.
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Table 7.0 Results o f ANOVA tests demonstrating when there were significant differences in 

the physiological and biochemical properties between the treated and control plants, over the 

course o f the experiment. Unshaded = no significant difference; Shaded = significant 

difference. *Time when visible stress symptoms were observed in oil treatment alone, 

**time when visible stress symptoms were observed in water deficit and the combined oil 

and water deficit treatment.

 Properties

Photosynthesis 
(pmol n f2 s"1)

Transpiration 
(pmol m '2 s '1)

Stomatal 
conductance 
(pmol m~2 s '1) 
Total chlorophyll 
(pg cm '2)

Carotenoids 
(pg cm '2)

Leaf water content 
(g)

Treatments 
Control Oil stress 

Water stress 
Oil+Water stress 

Control Oil stress 
Water stress 

Oil+Water stress 
Control Oil stress 

Water stress 
Oil+Water stress 

Control Oil stress 
Water stress 

Oil+Water stress
Control Oil stress 

Water stress 
Oil+Water stress 

Control Oil stress 
Water stress 

Oil+Water stress

Time

7.3.1.5 L eaf total chlorophyll

There w as a general decrease in total chlorophyll content o f  trea ted  p lants as 

can be seen in Figure 7.5. B efore visual stress sym ptom s w ere observed, p lants 

trea ted  w ith  oil and com bined oil and w ater deficit show ed a significant reduction  in 

to tal chlorophyll content (on day 4), com pared to the contro ls (see Table 7.1). 

H ow ever, no significant reduction in total chlorophyll content w as observed  in p lants 

trea ted  w ith  w ater deficit until the later stage o f  the experim ent w hen visual stress 

sym ptom s have m anifested. This im plies that oil treatm ent had a greater im pact on
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total chlorophyll content of plants than water deficit treatment. Thus, there was no 

significant difference between oil and combined oil and water deficit treatments 

throughout the experiment. By the end of the experiment, there was a total reduction 

in total chlorophyll content of treated plants by 57%, 51% and 31% for the 

combination of oil and water deficit, oil and water deficit alone, relative to the 

controls, respectively.
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•
-A-
“ O'

— Control
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-  Oil-fV\feter stress

Tims (days)

Figure 7.5 Effects of oil contamination of soil, water deficit and combination of oil and 

water deficit on total chlorophyll contents of bean. Treatments are denoted by the key. Bars 

= 1 x SD, n = 5.

7.3.1.6 Carotenoids

The carotenoid content of the treated plants did not change systematically 

through the experiment (Figure 7.6). The carotenoid content of all the treated plants 

fluctuated relative to the controls. The carotenoid content o f all the treated plants was
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not significantly different to the controls at any time during the experiment (Table 

7.0).
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Figure 7.6 Effects of oil contamination, water deficit and the combined oil and water deficit 

on carotenoid content of bean. Treatments are denoted by the key. Bars = 1 x SD, n = 5.

7.3.1.7 Leaf water content

The leaf water content of all the treated plants decreased as stress progressed 

(Figure 7.7). However, the rate of reduction was relatively slow at the early stage of 

the experiment and faster at the later stages. There was a significant reduction in leaf 

water content of plants treated with water deficit and the combined oil and water 

deficit on day 12 and on day 16 for oil treatment, relative to controls (see Table 6.1). 

The leaf water content of plants treated with a combination of oil and water deficit 

reduced at the fastest rate, followed by those treated with water deficit alone and then 

oil pollution alone. By the end of the experiment, there was a total reduction in leaf
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water content by 71%, 50% and 49% relative to the controls for plants treated with 

the combined oil and water deficit, with water deficit alone and with oil alone, 

respectively.

120

2  100
Control 
Oil stress 
V\feter stress 
aW/VHer stress

oo

40-

0 6 8 10 12 14 16 18 2 02 4

Time (days)

Figure 7.7 Figure 6.5 Effects of oil contamination, water deficit and the combined oil and 

water deficit on leaf water content of bean over time. Treatments are denoted by the key. 

Bars = 1 x SD, n = 5.

7.3.2 Interrelationships between physiological and biochemical variables

A strong polynomial relationship was found between total chlorophyll and 

photosynthetic activities of bean leaves (Figure 7.8). The leaf water content also had 

a strong logarithmic relationship with both transpiration and stomatal conductance 

(see Figures 7.9 and 7.10), respectively; however, there was no correlation between 

the carotenoid and total chlorophyll concentrations. The physiological rates were 

intercorrelated, as expected, as photosynthesis yielded a strong linear relationship
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with transpiration (R^ = 0.75) and stomatal conductance (R2 = 0.85) and there was 

also a strong linear relationship between transpiration and stomatal conductance (R2 

= 0.89) (data not shown).

16

14
y = 0.03x2 - 0.94x + 8.38

r2 = 0.7212

10

3 .

8

6

4

2

0
5040302010

Total chlorophyll (pg cnr2)

Figure 7.8 Relationships between total chlorophyll content and photosynthetic activities of 

bean, n = 32 (mean values per treatment, per sampling occasion).
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Figure 7.9 Relationships between transpiration and leaf water content of bean, n = 32.
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Figure 7.10 Relationships between stomatal conductance and leaf water content of bean, n = 

32.
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7.3.3 Responses of spectral reflectance to treatments

Looking at the mean spectra obtained at the end o f the experiment (Figures 

7.11 and 7.12), it can be seen that for all treatments, the leaf and canopy reflectance 

was higher in the visible and SWIR regions and lower in the NIR when compared 

with the controls, except in the SWIR where canopy reflectance o f plants treated 

with water deficit alone was not significantly higher than the controls. Also in the 

visible region, the leaf and canopy reflectance spectra o f plants treated with water 

deficit alone were not distinctly higher than the controls.

Major reflectance differences were found across the whole spectrum except 

in the visible region where there was no distinct spectral reflectance difference 

between plants treated with water deficit (alone) and the controls. T-tests were 

conducted to determine whether differences in spectral reflectance were statistically 

significant between treatments and controls. The results showed that there was a 

significant difference in reflectance of each of the stresses in relation to the controls 

across the spectrum except in the region between 601nm -  700nm where the spectral 

reflectance of plants treated with water deficit alone did not significantly differ from 

the controls (p < 0.05).
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Figure 7.11 Mean reflectance spectra of treated and control bean leaves 18 days after 

treatment. Treatments are denoted by the key, n = 100.

■■■ Control
 distress
 Water stress
—— Oil+Water stress
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Wavelength (nm)

Figure 7.12 Mean reflectance spectra of treated and control bean canopies 18 days after 

treatment. Note: Oil stress spectral is hidden by the combination o f oil and water stress 

spectral. Treatments are denoted by the key, n — 100.
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7.3.3.1 Relationships between leaf spectral reflectance and physiological and 

biochemical variables

Using data across all treated and control plants, it was found that there was a 

moderate negative relationship between the photo synthetic activity and leaf spectral 

reflectance in the visible (Figure 7.13). Maximum correlations were found in the blue 

and red-edge regions, precisely at 469nm (r = - 0.69) and 753nm (r = 0.79) 

respectively. In the NIR and SWIR, a strong positive and moderate negative 

relationships were observed, with the highest correlations occurring precisely at 

858nm (r = 0.83) and 2106nm (r = - 0.68), respectively.

0.8

0.6

-0.6

- 0.8

Wavelength (nm)

Figure 7.13 C orrelogram  sh ow in g  the variation w ith  w a v e len g th  in  the correlation  b etw een  

th e  p h otosyn th etic  activ ity  o f  bean and spectral reflectan ce at the le a f  sca le , n 32 .

The relationships between transpiration and leaf reflectance were similar to 

those for photosynthesis across the spectrum. There was a moderate negative 

relationship between the transpiration rate and leaf spectral reflectance in the visible 

(Figure 7.14). Maximum correlations were found in the blue and red-edge regions,
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precisely at 473nm (r - 0.64) and 745nm (r -  0.72), respectively. In the NIR and 

SWIR, a strong positive and moderate negative relationships were observed, with the 

highest correlations occurring precisely at 1041nm (r = 0.77) and 1510nm or 2138nm 

(r = - 0.68), respectively.
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Figure 7.14 Correlogram showing the variation with wavelength in the correlation between 

the transpiration rate of bean and spectral reflectance at the leaf scale, n = 32.

The relationship between stomatal conductance and leaf reflectance were 

similar to those for photosynthesis and transpiration across the spectrum. There was a 

moderate negative relationship between the stomatal conductance and leaf spectral 

reflectance in the visible (Figure 7.15). Maximum correlations were found in the blue 

and red-edge regions, precisely at 465nm (r — - 0.61) and 755nm (r — 0.72), 

respectively. In the NIR and SWIR, strong positive and moderate negative 

relationships were observed, with the highest correlations occurring precisely at 

890nm (r = 0.75) and 2271nm (r = - 0.61), respectively.
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Figure 7.15 Correlogram showing the variation with wavelength in the correlation between 

the stomatal conductance of bean and spectral reflectance at the leaf scale, n = 32.

As can be seen in Figure 7.16, there was a strong negative relationship 

between the total chlorophyll content and leaf reflectance in the visible spectrum. 

Maximum correlations were found in the green and red regions, precisely at 576nm 

(r = - 0.83) and 606nm (r = - 0.83), respectively. In the NIR and SWIR, strong 

positive and moderate negative relationships were observed, with the highest 

correlations occurring precisely at 778nm (r = 0.83) and 1496nm (r = - 0.80), 

respectively.
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Figure 7.16 Correlogram showing the variation with wavelength in the correlation between 

the leaf chlorophyll content o f bean and spectral reflectance at the leaf scale, n = 32.

Carotenoids were largely uncorrelated with leaf reflectance across 

wavelengths, though there were some weak relationships in certain regions (Figure 

7.17). The best correlations were found in the visible region between 488nm and 

520nm and NIR (between 746nm and 1336nm) with the waveband 513nm having the

highest correlation (r = 0.31).
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Figure 7.17 Correlogram showing the variation with wavelength in the correlation between 
the leaf carotenoid content o f bean and spectral reflectance at the leaf scale, n = 32.
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For the leaf water content, a strong negative relationship was found between 

the leaf water content and leaf spectral reflectance in the visible region (Figure 7.18). 

Maximum correlations were found in the visible region (between 432nm and 700nm) 

precisely at 481nm (r = - 0.70). In the NIR, the leaf water content and spectral 

reflectance correlated best at 865nm (r = 0.81). A maximum correlation was found in 

the SWIR, precisely at 1498nm or 2098nm (r = - 0.67).
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Figure 7.18 Correlogram showing the variation with wavelength in the correlation between 

the leaf water content o f bean and spectral reflectance at the leaf scale, n = 32.

7.3.3.2 Relationships between spectral indices and biochemical variables

Table 7.1 shows the correlations between a number of spectral indices and 

biochemical variables. Using these results an optimal spectral index which provided 

the highest correlation with each variable was selected for further analysis. The best 

indices and their r values are indicated in bold.
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Table 7.1 Summaiy of the correlation coefficients (r) between the leaf spectral reflectance 

indices and measured physiological/biochemical parameters.

Biochemicals estimated Spectral indices r References

Total chlorophyll (pg cm'2) (R755-R716)/(R 7 5 5 + R 7 16) 0.68 From chapter 4

R 673/R 545 -0.36 From chapter 5

( R l 330- R 538) / ( R l 330+ R 538) 0.82 From chapter 6

R 550/ R 850 -0.85 Schepers et al., (1996)

(R 79O -R 720)/(R 790+ R 720) 0.60 Barnes et al., (2000)

(R75O -R445)/(705+ R 445) 0.79 Sims and Gamon (2003)

' (R75O-R445)/(R7O5-R445) 0.72 Sims and Gamon (2002)

(R 75O -R 720)/(R 700-R 670) 0.72 Le Maire et al. (2004)

R 606 -0.83 New

R7I6/R6O6 -0.84 New

R l 316/ R 606 -0.89 New

( R l 316"R 606) / New

( R l 316+ R 606) 0.86

R8O0/R6O6 -0.90 New

R 576 -0.83 New

R7I6/R576 0.85 New

( R i  316 -R 5 7 6 )/(R i 316+ 0.86 New

R576) New

R800/R576 0.87

Carotenoids (pg cm'2) (R 736-R 430)/(R 736+R 430) -0.06 From chapter 6

R800/R470 -0.17 Blackburn (1998)

( R 800_R 47o )/(  R 800+ R 47o) -0.16 Blackburn (1998)

R4I5/R685 -0.36 Read et al., (2002)

R 520 0.30 New

R 726/ R 520 -0.31 New

(R 726-R 520)/(R 726+ R 520) -0.26 New

R8O0/R52O -0.36 New

Leaf water content (g) R 900 0.80 From chapter 6

(R g 58- R l  240)/( R 858+ R l  24o) 0.67 Gao, (1996); Zarco- 

Tejada et al., (2003)

( R 858" R l64o ) / (R 858"^ R l64o) 0.75
Fensholt and Sandholt,
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(2003)

^8 6 5 0.81 New

R 2098 -0.67 New

R l 498 -0.67 New

R l 323/ R 865 -0.67 New

R1323/R2098 0.74 New

R l 323/ R l 498 0.76 New

Correlations are significant atp<  0.05.

As can be seen in Figure 7.19, there was a strong positive curvilinear 

relationship between simple ratio Rsoo-R606 and total chlorophyll. While there was a 

poor relationship between simple ratio R.800/R520 and carotenoids (Figure 7.20), the 

individual narrow waveband Rs65 had a moderate relationship with leaf water content 

(Figure 7.21).
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Figure 7.19 R elation sh ip s b etw een  le a f  ch lorop h yll in d ex  R 800/R 6O6 and total ch lorop h y ll 

con ten t o f  bean at le a f  sca le , n =  32.
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Figure 7.20 Relationships between leaf carotenoids index R800/R520 and carotenoid content 

of bean at leaf scale, n = 32.
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Figure 7.21 Relationships between leaf water content index R865 and water content of bean 

at leaf scale, n = 32.
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7.3.3.3 Temporal response of optimal spectral indices

Having identified, in the previous section, the spectral indices which had the 

highest correlations with biochemical concentrations at the leaf scale, the temporal 

responses o f those spectra indices to different treatments were examined at both leaf 

and canopy scales. The temporal changes in the optimal chlorophyll spectral index 

R-800/R 606 at leaf and canopy scales are shown in Figures 7.22 and 7.23 respectively. 

As can be seen in Figure 7.22, at the leaf scale the index R8oo/R606 decreased in 

treated plants as stress progressed. Before visual stress symptoms were observed, the 

index significantly decreased for plants treated with combined oil and water deficit 

(on day 2), compared to the controls (see Table 7.2). However, while a significant 

reduction in the index was observed in plants treated with oil pollution alone on the 

same day as visual stress symptoms (on day 9), reduction of the index in plants 

treated with water deficit alone was not significant throughout the experiment, 

compared to the controls. This implies that significant reduction in R800/R606 was 

consistently observed only whenever oil was involved in the treatment. By the end 

o f the experiment, there was a total reduction of the index o f treated plants by 47%, 

40% and 12% for the combined oil and water deficit, oil pollution and water deficit, 

respectively.
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Figure 7.22 Change in simple reflectance ratio Rgoo/R606 of bean leaves. Treatments are 

denoted by the key. Bars = 1 x SD, n = 100.



Table 7.2 Results o f ANOVA tests demonstrating when there were significant differences 

between the changes in the spectral and thermal properties of treated and control plants, over 

the couise o f the experiment. Unshaded = no significant difference; Shaded = significant 

difference. *Time when visible stress symptoms were observed in oil treatment alone, 

time when visible stress symptoms were observed in water deficit and the combined oil 

and water deficit treatment.

Canopy_Rgoo/R606 Control Oil stress 
Water stress 

Oil+Water stress
Leaf R sno/R800 '  *'-520 Control Oil stress 

Water stress 
Oil+Water stress

Canopy_R8oo/R52o Control Oil stress 
Water stress 

Oil+Water stress
Leaf_R865 Control Oil stress 

Water stress 
Oil+Water stress

Canopy_Rg65 Control Oil stress 
Water stress 

Oil+Water stress
Leaf absolute Control Oil stress 
temperature (°C) Water stress

Oil+Water stress
Canopy absolute Control Oil stress
temperature (°C) Water stress

Oil+Water stress
Leaf I q Control Oil stress 

Water stress 
Oil+Water stress

Canopy Iq Control Oil stress 
Water stress 

Oil+Water stress

Leaf Rson/R,800 '  1^606 Control Oil stress 
Water stress 

Oil+Water stress

Time (Days)

Stress indices Treatments

A t the canopy scale, it was observed that change in the chlorophyll spectral 

index  R 8oo/R606 differed from  that at the lea f scale. A s can be seen in F igure 7.23, 

there w as inconsistency in the change o f  the ratio for all the treated plants at the early
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stage of the experiment. However, at a later stage, while the ratio increased in plants 

treated with water deficit alone, the oil and combined oil and water deficit treatments 

decreased rapidly, relative to the control. The response is reflected in Table 7.3, 

where the statistical analysis showed a significant reduction in the ratio for plants 

treated with oil and the combined oil and water deficit, relative to the control. The 

ratio increased significantly in plants treated with water deficit alone, relative to the 

control. By the end of the experiment, there was a total reduction of the index of 

treated plants by 30% for oil and the combined oil and total increment for water 

deficit by 4%.
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Figure 7.23 Change in simple reflectance ratio Rgoo/R606 of bean canopy. Treatments are 

denoted by the key. Bars = 1 x SD, n = 100.

At the leaf scale, the optimal carotenoid spectral index R.800/R520 decreased in 

treated plants as stress progressed (Figure 7.24). Before visual stress symptoms were 

observed, the index had significantly decreased in plants treated with oil and
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combined oil and water deficit (on day 4 and 2, respectively), compared to the 

controls (see Table 7.3). However, the reduction was not consistent in these treated 

plants until day 9 and remained so until the end of the experiment. The ratio did not 

change significantly from the control for plants treated with water deficit alone until 

16 days after treatment. By the end of the experiment, there was a total reduction of 

the index o f treated plants by 25%, 20% and 6% for the combined oil and water 

deficit, oil pollution and water deficit, respectively.

On the contrary, the ratio of all the treated plants increased relative to the 

control at the canopy scale, except on day 4 where the ratio decreased (Figure 7.25). 

Before visual stress symptoms were observed, the index had significantly increased 

in plants treated with combined oil and water deficit and oil pollution alone (on days 

2 and 6, respectively), compared to the controls (see Table 7.3). The ratio was not 

consistent in plants treated with combined oil and water deficit until day 6 when the 

ratio increased in all the treated plants. By the end o f the experiment, there was a 

total increment of the index of treated plants by 26%, 11% and 7% for water deficit 

alone, the combined oil and water deficit, and oil pollution alone, respectively.
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Figure 7.24 Change in simple ratio R800/R520 of bean leaves. Treatments are denoted by the 

key. Bars = 1 x SD, n = 100.
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Figure 7.25 Change in simple reflectance ratio R800/R520 of bean canopies. Treatments are 

denoted by the key. Bars = 1 x SD, n — 100.
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As can be seen in Figure 7.26, at the leaf scale the optimal leaf water content 

spectral index R.865 reduced in treated plants as stress progressed, except on day 2 

when the index increased in all the treated plants. Before visual stress symptoms 

were observed, the index significantly reduced in plants treated with water deficit 

alone (on day 2), compared to the controls (see Table 7.3), although the reduction 

was not consistent throughout the experiment. Statistical analysis showed that there 

was a significant reduction in the index for plants treated with oil and combined oil 

and water deficit (on day 9) which remained consistent until the end o f the 

experiment. The rate of reduction was similar in all the treated plants thus, no 

significant difference was found between the treatments. By the end of the 

experiment, there was a total reduction of the index of treated plants by 10%, 8% and 

6% for the combined oil and water deficit, oil pollution alone and water deficit alone, 

respectively.

Similarly, at the canopy scale, the index decreased in all the treated plants as 

can be seen in Figure 7.27. Statistical analysis showed that before visual stress 

symptoms were observed, the index had reduced (on day 4) in plants treated with 

water deficit alone (Table 7.3). A significant reduction of the index was observed in 

plants treated with oil and the combined oil and water deficit only on the same day as 

visual stress symptoms. By the end of the experiment, there was a total reduction of 

the index o f treated plants by 27%, 18% and 17% for water deficit, the combined oil 

and water deficit alone and oil pollution alone, respectively.
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Figure 7.26 Change in mean reflectance of individual narrow waveband Rg65 of bean leaves. 
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Figure 7.27 Change in mean reflectance of individual narrow waveband Rses of bean 

canopy. Treatments are denoted by the key. Bars = 1 x SD, n = 100.
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7.3.4 Thermography

As shown in Figure 7.28, the absolute temperatures of treated plants 

increased relative to the controls, at the leaf scale. The statistical analysis revealed 

that before visual stress symptoms were observed, leaf absolute temperatures showed 

a significant increase (on day 2) in the plants treated with oil and combined oil and 

water deficit, compared to the controls (see Table 7.3). For plants treated with water 

deficit alone, a significant rise in leaf absolute temperature occurred on day 4, before 

visual stress symptoms were observed. Over the course o f the experiment there were 

no consistent differences between the plants treated with oil, water deficit or their 

combination. The response of canopy temperature was similar to the absolute leaf 

temperature as can be seen from Figure 7.29. The statistical analysis also yielded the 

same results at both scales, except for plants treated with water deficit alone which 

had a significant rise in canopy temperature on day 2, before visual stress symptoms 

were observed (Table 7.3). Like the leaf absolute temperature, there were no 

consistent differences between the plants canopies treated with oil, water deficit or 

their combination over the course of the experiment.
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Figure 7.28 Effects of oil contamination of soil, water deficit and the combined oil and 

water deficit on the absolute temperature of bean leaves over time. Treatments are denoted 

by the key. Bars = 1 x SE, n = 10.
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Figure 7.29 Effects of oil contamination of soil, water deficit and combination of oil and 

water deficit on the absolute temperature of bean canopy over time. Treatments are denoted 

by the key. Bars = 1 x SE, n = 10.
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The thermal index (Iq )  of the treated plants was significantly reduced by 

treatments when compared with the control plants, at the leaf scale (Figure 7.30). 

The reduction was significant 3 days before the visual stress symptoms were 

observed in plants treated with oil alone (Table 7.3). For plants treated with water 

deficit (alone) and the combined oil and water deficit, a significant reduction o f I q  of 

the leaves was observed on the same day as visual stress symptoms. Similar to leaf 

absolute temperature of treated plants, there were no consistent differences in leaf Iq  

between the plants treated with oil, water deficit or their combination, over the 

course of the experiment. The responses of the Iq  of plant canopies were similar to 

the I q  of leaves (Figure 7.31). From the statistics, the major difference found was that 

the reduction was significant at an earlier stage for the canopies (day 2) after 

treatment (Table 7.3). A strong curvilinear relationship was found between the I q  and 

stomatal conductance at the leaf scale, as can be seen in Figure 7.32.
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Figure 7.30 Effects of oil contamination of soil, water deficit and combination of oil and 
water deficit on the thermal index (IG) of bean leaves over time. Treatments are denoted by 
the key. Bars = 1 x SE, n = 10.
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Figure 7.31 Effects of oil contamination of soil, water deficit and combination of oil and 

water deficit on the thermal index (IG) of bean canopy over time. Treatments are denoted by 

the key. Bars = 1 x SE, n = 10.
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7.4 Discussion

Similar to findings in previous chapters, treatments adversely affected bean 

growth and development. While treatments caused leaf chlorosis and wilting in bean 

plants, no visual stress symptoms were observed in the controls. Symptoms in all 

treated plants started mildly by affecting only a few leaves and then gradually spread 

over all the leaves. As reported in previous chapters, a wide range o f plant stresses 

have been found to cause various visible stress symptoms (Rosso et a l,  2005; Smith 

et al., 2005).

The photo synthetic activities, transpiration and stomatal conductance o f bean 

leaves were adversely affected by all treatments. The effects of oil pollution on 

plants including soil oxygen depletion, reduced water uptake and toxic effects have 

been documented and discussed in previous chapters. Indeed, studies found that 

accumulation of oil in the soil lead to the death of Spartina alterniflora plants (Krebs 

and Tanner, 1981; Alexander and Webb, 1987) and that the leaves of the same plant 

died after some days of oil contamination (Pezeshki et a l ,  1995). Also, it has been 

found that oil pollution reduces plant transpiration and carbon fixation which 

increases plant mortality (Pezeshki and Delaune, 1993). Furthermore, a recent study 

found that when irrigation was withheld to induce severe soil drying, gas exchange 

decreased and then stopped in three Mediterranean cedar species: Cedrus atlantica, 

C. Brevifolia and C. Libani (Ladjal et al., 2007). When soil oxygen required for the 

correct functioning of plant roots (Smith, 2002) is depleted due to oil pollution 

(Noomen et al., 2003), plant growth is inhibited and leaves undergo chlorosis, 

dehydration and death. This can explain the reduction in photosynthetic activities of 

plants treated with oil pollution in the present study.
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It has been noted that accumulation of oil in the soil can increase the CO2 

concentration in the soil (Hillel, 1998) and can also reduce water uptake by plants 

(Jong, 1980). Work by Smith (2002) noted that water absorption by plants may be 

inhibited after long periods of anaerobis and thus, can reduce transpiration and 

instigate stomatal closure. Furthermore, it has been found that stomatal closure 

restricts entry of CO2 into plant leaves and consequently reduces leaf photosynthesis 

(Webb, 1994; Pezeshki et al., 1995). Reduction in transpiration has also been 

attributed to soil water limitation (Tilling et al., 2007). Thus, this evidence and the 

strong positive relationships found between these variables in the present study, can 

explain the reduction in physiological properties of treated plants found in response 

to both oil and water treatments in this investigation.

Treatments significantly reduced the total foliar chlorophyll content although 

a greater impact was found in plants treated with oil and the combined oil and water 

deficit than water deficit treatment alone. As an important photosynthetic pigment, 

reduction in total chlorophyll concentration may further explain the reduction in 

photosynthetic activities of treated plants as a strong positive correlation was found 

between the two variables. In chapter 5, it was found that whenever oil was present 

in the treatment, there was a greater impact on bean physiological rates than with the 

waterlogging treatment alone. This is similar to the result of the present study where 

treatments involving oil had greater impact on bean physiological rates and total 

chlorophyll contents than with the water deficit treatment alone. This was possibly 

attributed to a combination of effects from oil such as toxicity, soil oxygen depletion

and reduced water uptake.

However, in chapter 6, it was found that whenever water deficit was present

in the treatment, there was a greater impact on maize physiological rates than with
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the oil treatment alone. In maize and sunflower, it was found that soil drying results 

in the increase of synthesis of abscisic acid (ABA) which moves in the transpiration 

stream to the shoots to inhibit stomatal opening and leaf growth (Zhang et al., 1987; 

Zhang and Davies, 1989, 1990a). An increase in ABA quantitatively accounts for the 

reduction in stomatal conductance and restriction of leaf growth (Zhang and Davies, 

1990a, 1990b). The concentration of ABA was also found to increase in the roots of 

two cultivars o f Phaseolus vulgaris L. (cv. Cacahuate-72 and Michoacan-12A3) in 

the first 10cm of unwatered soil (Trejo and Davies, 1991). Furthermore, the increase 

progressed to deeper roots in accordance with soil dehydration. This concurs with the 

early findings by Walton et al. (1976) where, dehydration increased the ABA 

concentration in roots of Phaseolus vulgaris L. Trejo and Davies (1991) used large 

soil columns to promote a gradual drying of the soil from the top to the bottom. 

Drying o f the soil caused stomata closure in Phaseolus vulgaris L. even though there 

was no reduction in total water potential ( ¥ w) or turgor potential (T p) o f the shoots 

because the roots of the plants had reached about 50cm in depth by the time the first 

10 or 20cm of the soil showed a significant reduction in water content. Even though 

the first layers of soil showed a considerable reduction in water content, the roots at 

50cm, where there is plenty of water available, can supply enough water to the aerial 

part o f the plant to keep the (Tw) in the leaves at a considerable value to that of well- 

watered plants (Davies et al., 1990). These findings suggest that ABA concentration 

can increase in plants due to soil dehydration irrespective of species.

Therefore, the discrepancies found between the physiological responses of 

maize and bean to water deficit treatments in the present experiment and that 

reported in chapter 6, may be attributable to the use of the same pot size and soil 

volume in both experiments. Maize plants grew much larger, developing larger roots
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and stems than bean. Thus, in chapter 6, the multiple effects o f plant size including 

leaf size, roots and stems may have increased demand for water needed for growth 

by maize compared to the bean plants used in chapter 5 and in the present study. In 

addition, water deficit treatment may have also reduced the total water potential (TV) 

or turgor potential (Tp) of the maize shoots as the roots were deeper and stronger 

than those o f bean. Indeed, while reviewing cellular and molecular responses to 

water deficit, and their influence on plant dehydration tolerance, workers found that 

the responses o f plants to drought vary greatly depending on species and stress 

severity (Mullet and Whitsitt, 1996).

The photoprotective function of carotenoids as explained in chapter 6, may 

possibly explain the inconsistency and insignificant changes in carotenoid content of 

treated plants found in the present study. Thus, despite the large variations in 

reflectance in response to treatment, leaf carotenoid content was largely uncorrelated 

with reflectance across the whole spectrum. The reduction in leaf water content o f 

treated plants was not significant until 12 days after treatment for both water deficit 

and combined oil and water deficit and 16 days for the oil pollution alone. As 

explained in chapter 6, reduction in transpiration helps to conserve available water in 

plants (Larcher, 1995), as does the stomatal conductance. Thus, the insignificant 

change in leaf water content of the treated plants found at the early stage o f plant 

stress in the present study may be attributed to the reduction in both transpiration and 

stomatal conductance at this stage.

An earlier study found that the water content per unit area o f sunflower did 

not change much due to moderate water stress since the plant tried to maintain a level 

compatible with its basic functioning (Beaumont, 1995). An empirical study by Trejo 

and Davies (1991) found an early reduction in stomatal conductance in young
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seedlings o f two cultivars o f Phaseolus vulgaris L. (cv. Cacahuate-72 and 

Michoacan-12A3) in response to soil drying when the water supply to the soil was 

withheld. It was noted that the stomata o f these plants started to close before any leaf 

water deficit could be detected. The cultivar Cacahuate-72 showed a significant 

reduction in stomatal conductance by day 3, while the cultivar Michoacan-12A3 

showed a significant reduction in this variable only by day 5 after treatment. This is 

similar to the result o f the present study where a reduction in stomatal conductance 

became significant 4 days after treatment with water deficit alone and 2 days after oil 

and combined oil and water deficit treatments.

Substantial changes in spectral reflectance were observed in relation to all of 

the treatments used in the present experiment. The results show that treatments 

increased leaf and canopy reflectance both in the visible and SWIR (except in the 

regions between 601 and 700nm where the spectral reflectance o f plants treated with 

water deficit alone was not significant compared with the control) and decreased in 

the NIR for all treatments. The result o f the present study is similar to the findings of 

previous workers who investigated the spectral responses o f a wide range o f plant 

species to different stressors. Smith et al. (2004a) found that the reflectance spectra 

o f vegetation exposed to high concentrations o f natural gas in the soil increased in 

the visible and decreased in the near infrared.

As noted earlier, while the visible region is principally influenced by the 

photo synthetic pigments, the NIR and SWIR are heavily influenced by the internal 

cell structure o f the leaf and water in plant tissue respectively (Gausman et a l, 1970; 

Gausman, 1985; Bowman, 1989; Ceccato et al., 2001; Ceccato et a l, 2002; Tilling et 

al., 2007). In the present study a strong negative relationship was found between the 

total chlorophyll and visible reflectance. The most pronounced reflectance difference
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found between leaf and canopy scales was that water deficit impacted the NIR more 

at the canopy scale than at the leaf scale and vice versa in the SWIR. This suggests 

that factors such as variation in leaf age as typically found in a plant canopy and leaf 

wilting may have also affected the internal structure o f canopies resulting in a greater 

change in NIR reflectance found at the canopy scale. However, such changes appear 

not to have affected canopy SWIR reflectance, which remains low as the plant 

tissues continue to contain sufficient water content to absorb most incident SWIR 

radiation.

As discussed in chapter 6, Aldakheel and Danson (1997) and Danson et al. 

(1992) noted that for individual leaves, there is normally a negative relationship 

between the leaf water content and reflectance in the near and SWIR wavelengths. 

This concurs with our correlation in the SWIR region but disagrees with the finding 

in the NIR regions where leaf water content correlated positively with reflectance. 

The strong negative relationships were attributed to water absorption, which 

dominates the spectral response o f vegetation in those regions. A strong positive 

relationship between NIR reflectance and leaf water content found in the present 

study may be attributed to leaf structural changes. It has been noted earlier that NIR 

is strongly affected by the size o f the cells, the number o f cell layers and the 

thickness o f the leaf mesophyll. In dicotyledons, the upper and lower epidermises are 

separated by the spongy mesophyll containing many spaces (Smith et a l., 2004a). 

Leaves o f dicotyledons generally have higher reflectance than monocotyledons 

because the spongy mesophyll is more developed (Gausman, 1985; Guyot, 1990) and 

allows more light scattering between the cell walls (Smith et al., 2004a). In the 

present study, treatments may have damaged the spongy mesophyll thus, reducing 

light scattering which may have caused lower NIR reflectance in treated plants.
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Thus, a strong positive relationship was found between the leaf water content and 

reflectance in the NIR region.

The response o f leaf and canopy absolute temperature to treatments in the 

present study concurs with that in chapter 6. The consistent increase in absolute 

temperatures o f the treated plants in relation to controls is likely to be due to the 

reduction in the transpiration and stomatal conductance o f treated plants. The 

increase in leaf and canopy absolute temperatures o f the treated plants were 

significant before visual stress symptoms were observed suggesting that it can be 

useful in the early detection of oil pollution, the combined oil and water deficit and 

water deficit. As explained in chapter 6, the inconsistent and insignificant differences 

found between the leaf absolute temperature o f plants subjected to different types of 

treatment indicates the limitation in this remotely-sensed parameter in predicting 

accurately the type o f stress affecting the plants i.e. it is difficult to discriminate 

between oil and water deficit stress. The results show that the thermal index (Ig)  can 

detect oil pollution and the combined oil and water deficit in bean. Similar to the leaf 

absolute temperature, the consistent decrease in the thermal index (Ig)  of treated 

plants as a percentage of control is likely to be responding to the reduction in the 

transpiration and stomatal conductance o f treated plants. While the Ig  significantly 

decreased in plants treated with oil pollution alone before visual stress symptoms 

were observed, the combined oil and water deficit and water deficit were observed 

the same day as visual stress symptoms. This suggests that in the present study, the 

index I g  can be useful in the early detection o f oil pollution in bean. However, it may 

be difficult to discriminate between oil pollution and water deficit using Ig  due to 

inconsistency and insignificant differences found between the indexes o f plants 

subjected to different types of treatment.
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In order to understand whether spectral and thermal properties o f plants 

translate from leaf to canopy scale, the temporal responses, sensitivity and 

relationships between the optimal indices and biochemical properties were examined 

at both the leaf and canopy scales. The total chlorophyll index R800/R 606 was 

consistently sensitive to oil and combined oil and water deficit and detected the 

combined oil and water deficit stress prior to visual stress symptoms. While the 

index was sensitive to oil pollution on the same day as visual stress symptoms, no 

consistent sensitivity was observed for water deficit. This was not the case at the 

canopy scale as the index was consistently sensitive to all treatments but only at the 

later stages o f the experiment. This suggests that while the index has potential for 

early detection o f stress caused by combined oil and water deficit at the leaf scale, it 

can only translate at the canopy scale at the later stage o f oil pollution, water deficit 

and combined oil and water deficit. While a strong positive relationship was found 

between the index and total chlorophyll content at the leaf scale (r2 = 0.92), a 

moderate relationship was found at the canopy scale (r = 0.66).

At the leaf scale, the carotenoids spectral index was sensitive to oil and the 

combined oil and water deficit before visual stress symptoms were observed. 

Although the sensitivity was not consistent until after visual stress symptoms were 

observed. The same observation was made at the canopy scale except that oil 

pollution was detected prior to visual stress symptoms. A better relationship 

(although weak) was found between the index and carotenoids content at the canopy 

scale than at the leaf scale. Based on these findings, it would have been possible to 

translate the use o f this spectral index from leaf to canopy scale but the major 

difference found between the temporal response of the index at the leaf and canopy 

scales hampers this possibility. The differences in the responses o f this index to
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treatment at the leaf and canopy scales could be attributable to a multitude of 

possibly interacting effects related to leaf age, leaf and canopy structure and 

differential carotenoid concentrations throughout the canopy.

The leaf water content spectral index Rg65 showed similar sensitivity to oil 

and combined oil and water deficit at the leaf scale although not before stress 

symptoms were observed. The index was not consistently sensitive to water deficit 

alone. At the canopy scale, the index was consistently sensitive to all treatments and 

responded before visual stress symptoms were observed for oil pollution (alone) and 

water deficit (alone). This suggests that the sensitivity o f the index improved at the 

canopy scale. Based on the results o f the present study, the responses o f both the leaf 

absolute temperature and Iq to treatments o f oil, water deficit and the combined oil 

and water deficit can translate from leaf to canopy scale, and, indeed, in some cases 

their performance improved at the canopy scale.

7.5 Conclusion

The present study confirms that hyperspectral and thermal remote sensing 

have potential for early detection and discrimination between oil and water deficit 

stress in plants. From the results o f the present study, the absolute temperature was 

optimal for early detection o f oil pollution, water deficit and the combination o f oil 

and water deficit stress in bean at the leaf scale. In terms of consistency and time of 

detection, the absolute temperature performed best as it detected oil pollution, the 

combined oil and water deficit and water deficit stresses 7, 4 and 2 days before visual 

stress symptoms were observed, respectively. However, it was difficult to 

discriminate between the oil and water stresses using this index. As found in chapter
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6, for maize leaves absolute temperature was also optimal index for early detection 

o f water deficit and the combined oil and water deficit.

The spectral indices Rgoo/R606 and Rs65 detected oil-related stress but did not 

detect water deficit at the leaf scale. This suggests that these spectral indices have the 

ability to discriminate between oil pollution and water deficit stress. This finding 

concurs with that in chapter 6, where the spectral index (Ri33o-R538)/(Ri330+R538) 

detected oil pollution and the combined oil and water deficit in maize at the leaf scale 

but was unresponsive to water deficit stress alone. In the present chapter, it was 

found that the spectral index R800/R6O6 was sensitive to oil-related stress at both the 

leaf and canopy scale but changes were only detectable at the canopy scale at more 

advanced stages of stress. On the contrary, other indices such as Rsoo/R52o5 Rs65, 

absolute temperature and Ig, were able to detect stress earlier when measured at the 

canopy scale than when measured at the leaf scale. Overall, the study has 

demonstrated that the optimal remotely-sensed index for detection o f oil and water- 

related stresses varies according to the plant species under investigation and the 

effectiveness o f any particular approach varies between leaf and canopy scales.
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Chapter 8

CONCLUSIONS AND FUTURE W ORK  

8.1 Conclusions

This chapter gives a summary o f the research findings, a discussion o f the 

overall contribution o f the thesis in the context o f existing works, and makes 

suggestions for future research priorities. For the accurate monitoring o f plant stress 

caused by oil pollution, there is a need to develop an approach that is sensitive to 

physiological changes prior to visual stress observation. Such an approach needs to 

have the ability to discriminate between oil pollution and other possible concomitant 

stresses such as waterlogging and water deficit. Thus, this study had the primary 

objective o f investigating the potential value of hyperspectral reflectance and thermal 

imaging to detect and quantify plant stress caused by oil pollution along with the 

ability to discriminate between different stresses. In order to achieve this aim, four 

sets o f laboratory experiments were undertaken which tackled four major research 

questions, as reported in chapters 4, 5, 6 and 7. The four questions are answered in 

turn here, using the evidence provided in this study:

8.1.1 What is the optimum remotely-sensed index for early detection of oil- 

induced stress in plants at lethal and sub-lethal levels?

■ There was a significant change in spectral reflectance at lethal and sub lethal 

levels of oil pollution and as early as 4, 9, and 10 days in high, medium and 

low treatments, respectively before visual stress symptoms were seen (e.g. as 

in Table 4.6).
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■ The simple ratios using combinations of narrow wavebands that ranged 

between R715 -  760 and R695 -  R716 were stable and highly sensitive to lethal 

and sub lethal levels o f oil stress in maize.

■ A normalised-difference spectral index that combined a waveband in the red-

edge with one o f high reflectance in the N IR  region: (R755-R7i6)/(R755+R7i5) 

was optimal in pre-visual detection o f oil pollution in maize at lethal and sub- 

lethal levels (see Table 4.6).

■ There was a strong positive linear relationship between (R755- 

R7 i6)/(R755+R7 i6) and photosynthesis (see Figure 4.11).

■ Absolute leaf temperature has minimal potential for detecting oil pollution in 

maize (see Figure 4.16).

■ This study concludes that the application o f hyperspectral remote sensing

using (R755-R716)/(R755 R716) can enhance precision and accuracy for the

early detection o f oil pollution via plant stress response. This indicates that by 

detecting plant stress, hyperspectral remote sensing has considerable potential 

for the timely detection o f oil pollution in the environment.

8.1.2 What is the optimum set of spectral and thermal responses that can be 

used for early, non-destructive quantification and discrimination between oil 

pollution and waterlogging stress in plants?

■ The spectral reflectance and thermal properties o f bean canopies effectively 

distinguished between subtle signs o f stress induced by oil pollution and 

waterlogging.
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■ There was a significant increase in reflectance across the visible region for 

plants treated with oil and a combined oil and waterlogging treatment (see 

Figure 5.4).

■ For plants exposed to waterlogging alone, a significant increase in reflectance 

in two specific regions centred on 550nm and 715nm was observed (see 

Figure 5.4).

■ The study suggests that these waveband regions could serve as good indices 

for discriminating between stress symptoms arising from oil or a combined 

oil and waterlogging treatment and those arising from waterlogging alone.

■ NIR reflectance could be used to discriminate between stress induced in bean 

by single and multiple factors as it was found that the combined oil and 

waterlogging treatment caused a significant decrease in NIR reflectance while 

the individual oil and waterlogging treatments did not invoke such a response 

(see Figure 5.4).

■ A simple ratio o f reflectance that combined narrow wavebands in the green 

and red regions (R673/R 545) was most sensitive in the early detection of stress 

symptoms caused by oil and waterlogging (e.g. as in Table 5.0).

■ The canopy absolute temperature and the thermal index (Iq) were good 

indicators o f developing oil and combined oil and waterlogging stress in 

bean, and poor indicators o f stress caused by waterlogging (see Figure 5.7).

■ The study concludes that by combining spectral and thermal information, oil- 

induced stress could be discriminated from a combined waterlogging stress 

effect.
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8.1.3 What is the optimum set of spectral and thermal responses that can be 

used for early, non-destructive quantification of and discrimination between oil 

pollution and water deficit stress?

■ Hyperspectral remote sensing can accurately measure the pigment 

concentration in plants.

■ Oil pollution adversely affects chlorophyll contents in plants and therefore, 

plant stress caused by oil pollution can be detected remotely (e.g. as in Table 

6.0).

■ Remote sensing of carotenoid concentration alone is not sufficient for early 

detection or discrimination between oil pollution and water deficit stress. 

However, it can provide additional information about plant stress particularly 

as carotenoids maintain some degree o f stability while chlorophyll content 

decreases due to stress (e.g. as in Table 6.0).

■ Hyperspectral remote sensing may not be suitable for early detection o f stress 

in maize caused by water deficit alone.

■ The spectral index (Ri33o-R538)/(Ri330+Rs38) was optimal for the early 

detection o f stress caused by oil pollution in maize (e.g. as in Table 6.1).

■ The leaf absolute temperature was optimal for early detection of stress caused 

by water deficit in maize (e.g. as in Table 6.2).

■ The leaf absolute temperature and Iq lack the ability to discriminate between 

a combined oil and water deficit stress.

■ Thus, the combination o f hyperspectral and thermal remote sensing has 

potential in the early stress detection and discrimination between oil and 

water deficit stress in maize.
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8.1.4 How consistent are the spectral and thermal responses of plants to oil 

and water deficit stress between species and across leaf and canopy scales?

■ This investigation confirms that hyperspectral and thermal remote sensing 

have potential for the early detection and discrimination between oil and 

water deficit stress in plants.

■ Absolute temperature was optimal for early detection of oil pollution, water 

deficit and the combination o f oil and water deficit stress in bean at the leaf 

scale (e.g. as in Table 7.2) while spectral index (Ri33o-R538)/(Ri330+R538) was 

optimal in the early detection o f oil stress in maize at the same scale (e.g. as 

in Table 6.1)..

■ Spectral indices detected oil-related pollution in both maize and bean at the 

leaf scale but did not detect water deficit (e.g. as in Table 6.1 & 7.2, 

respectively). Thus, spectral reflectance has the ability to discriminate 

between oil pollution and water deficit stress in both species.

■ Similar to the maize species, it was difficult to discriminate between oil and

water deficit stress in bean using leaf thermal features (see Figure 7.2).

■ The spectral index Rgoo/R606 was sensitive to oil-related stress at both leaf and

canopy scales, although in the latter, changes were only detectable at more 

advanced stages o f stress (see Figure 7.2).

■ Other indices such as R800/R520, Rs65, absolute temperature and Iq, were able 

to detect stress earlier when measured at the canopy scale than when 

measured at the leaf scale (see Figure 7.2).

■ The study concludes that the optimal remotely-sensed index for detection and 

discrimination between oil and water-related stresses varies according to the 

plant species under investigation and the effectiveness o f any particular
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approach varies between leaf and canopy scales. However, this can be 

surmounted by using a combination of spectral and thermal remote sensing.

8.2 Synthesis of results

Oil pollution, waterlogging and water deficit can cause stresses in plants which 

are detrimental to their physiological function and which result in changes in spectral 

and thermal responses (Figure 8.0). There was a strong relationship between 

physiological parameters and spectral indices. The form o f these relationships was 

similar for different physiological parameters, being asymptotic on most occasions. 

Thus, spectral indices would have limitations in predicting changes to physiological 

parameters beyond certain thresholds, such as 1 mol m ' 2 s' 1 for transpiration, 

indicating that the approach has some limitations. However, the thermal index (Iq) 

showed a linear response to stomatal conductance, and this was consistent across 

species. Thus, this relationship provides a means to support remote sensing strategies 

for the early detection and discrimination of different types o f stress in plants.
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Figure 8.0 Schematic overview of hyperspectral and thermal remote sensing of plant stress 

responses to oil pollution, waterlogging and water deficit.
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8.2.1 Early detection of stress factors

Figure 8.1 summarises the optimal approaches for the early detection of 

individual stresses.

Spectral indices were optimal in pre-visual detection o f oil pollution in maize 

and bean leaves. In particular, a normalised-difference spectral index (R755- 

R7i6)/(R755+R7i6) was optimal in maize and other normalised-difference spectral 

indices such as (Ri33o-R538)/(Ri33o+R538) also worked well. The spectral index (R755- 

R7i6)/(R755+R7i6) performed well in bean, although other indices such as R800/R606 

performed slightly better. The absolute leaf temperature had minimal potential for 

detecting oil pollution in maize. However, canopy absolute temperature and the 

thermal index (Ig)  were good indicators o f oil related stress in bean.

Spectral indices were effective for the early detection o f waterlogging stress 

in bean canopies. The spectral index (R755-R716)/(R755+R716) t h a t  w a s  s e n s i t i v e  to oil 

pollution in maize and bean was also sensitive to waterlogging in bean, which 

indicates that this index is responding to the stress symptoms in plants caused by 

anaerobic conditions within the soil generated by different causes. Other simple 

ratios o f reflectance such as R673/R545, R ^ /R ^i, a n d  R545/R445 w e r e  u s e f u l  for t h e  e a r l y  

detection of waterlogging in b e a n ,  h o w e v e r ,  canopy absolute temperature and the 

thermal index ( Ig)  were insensitive to waterlogging.

Spectral indices lacked the ability for early detection o f stress caused by 

water deficit at the leaf scale in both maize and bean but have some potential in bean 

at the canopy scale. Likewise, the I g  was sensitive to water deficit in bean canopies. 

However, the absolute temperature was sensitive to water deficit irrespective of 

species or scale of measurement.

231



Spectral
indices,
absolute

temperature,

Bean

Leaf Canopy

Maize leaf

Water deficitOil pollution Waterlogging

Bean
canopy

Spectral
indices

Early detection

Absolute
temperature

Maize leaf, bean 
leaf and canopy

Spectral
indices

Spectral
indices

Figure 8.1 Optimal approaches for the early detection of plant stress caused by individual 

agents (oil pollution, waterlogging and water deficit) based on the most rapidly responding 

spectral or thermal index sensitive to the stress.

8.2.2 Discrimination of different stresses

This study has demonstrated that remote sensing approaches could be 

deployed for discriminating between oil pollution, waterlogging and water deficit via 

plant stress responses. In all cases, a combination o f spectral and thermal indices was 

useful for discriminating between different stresses. As Figure 8.2 demonstrates, to
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discriminate between oil pollution and waterlogging in bean canopies, a combination 

o f Iq and spectral information could be used. If  the Iq decreases, then this indicates 

that the stress is caused by oil pollution but if  the Ig does not change and a spectral 

index such as R673/R 543 increases, then the stress is caused by waterlogging. If there 

is no change in the spectral index, then there is neither oil pollution nor waterlogging 

stress. As figures 8.3 and 8.4 demonstrate, to discriminate between oil pollution and 

water deficit a combination o f spectral indices and absolute temperature can be used. 

Indicators o f oil-induced stress are spectral indices such as (R755-R7i6)/(R755+R7i6) or 

(Ri330-R538)/(Ri330+R538) for maize leaves, and R 800/R6O6 for bean leaves. If  these 

indices do not change and the absolute temperature increases, then the stress is 

caused by water deficit. If there is no change in the absolute temperature, then there 

is neither oil pollution nor water deficit stress.

At the canopy scale for beans, a NIR narrow waveband Rg65 responded faster 

to water deficit stress than it did for oil pollution. This suggests that water deficit 

damaged plant cellular and canopy structure more rapidly than the oil pollution and 

thus, may potentially be a good indicator for discriminating between the two stresses. 

Since the spectral indices, absolute temperature and Ig were sensitive to oil pollution 

and water-related stress, additional information, for example concerning changes in 

plant geometrical structure, may be required to improve a way o f discriminating 

between oil pollution and water deficit stress at canopy scale.
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Figure 8.2 Flowchart showing the approach for deploying remote sensing measures for 

discriminating between plant stress caused by oil pollution and waterlogging in bean 

canopies.
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Figure 8.3 Flowchart showing the approach for deploying remote sensing measures for 

discriminating between plant stress caused by oil pollution and water deficit in maize leaves.
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Figure 8.4 Flowchart showing the approach for deploying remote sensing measures for 

discriminating between plant stress caused by oil pollution and waterlogging in bean leaves.

8.3 Summary of contributions

The first contribution o f the thesis is the application o f hyperspectral and 

thermal remote sensing for the detection and non-destructive quantification o f plant 

stress caused by oil pollution. Secondly, it has demonstrated that hyperspectral and 

thermal remote sensing can detect and discriminate between oil pollution, 

waterlogging and water deficit, which are stress agents that can affect plants either 

individually or simultaneously. In most cases, the combination o f these remote 

sensing techniques enhanced the accuracy for discriminating between oil pollution 

and waterlogging or water deficit stress. Since it is possible to detect oil pollution 

before visual signs of stress are observed in plants, this implies that detection of 

anomalous oil concentrations cannot only help to minimise the risks associated with 

oil pollution in the environment but can also lead to discovery of micro-seepage and
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related oil reservoirs. The use o f this technique could help to speed up and improve 

response to an oil spill and could significantly reduce the environmental impact and 

severity o f a spill. It can also help to prioritise effort in clean-up operations in the 

event o f an oil spill and can provide information about protection priorities for the 

affected areas which is one o f the most important elements o f contingency plans.

8.4 Limitations of the study

While this study has shown evidence about the possibility to detect and 

discriminate between plant stresses caused by oil pollution, waterlogging and water 

deficit under controlled environment, there may be issues and problems associated 

with their field-based application. For example, the pot-based experiments did not 

include continuous oiling o f plants that may happen in the field during oil spillage. 

Instead, the study adopted one-time oiling treatment which may not be considered 

truly representative o f conditions that plants would encounter during oil spill events. 

Thus, it may be difficult to translate the general responses o f these plants to oil stress 

in the present experiments as such stress condition may occur at varying intensity 

and duration in field situations. Additionally, other stress factors such as nutrient 

deficiency may also be affecting plants growing in the field at the same time with the 

stresses used in this study.

A slower spectral and thermal response o f plants to stress may be expected in 

field situation because o f possible dilution o f treatments. Plant spectral and thermal 

responses o f pot-based experiment may also vary from the responses obtained in 

field situation due to variation in soil structure on which they grow in the field. For 

pot-based experiments, plants were grown on the same soil type (compost), but in the
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field, plants usually grow on different soil types. In chapter 2, section 2.3.1, it was 

noted that the physical, chemical and geological characteristics o f soil play 

significant roles in the degree o f its vulnerability to an oil spill (Gundlach and Hayes, 

1978). Similarly, Pezeshki et al. (2000) noted that factors such as soil type, soil 

organic matter, size fraction o f soil mineral matter and soil texture play significant 

roles in the fate o f hydrocarbon in the soil. While it may be easier for oil to penetrate 

rapidly within a given soil type (e.g. fine, coarse-grained sand, mixed sand and 

gravel, sheltered rocky and tidal flat and salt marsh and mangrove forest), most of 

the oil will not adhere to, nor penetrate into a compacted soil type.

Furthermore, this study used single crop species and thus, their responses to 

stress may not have adequately represented the type o f stress response plant would 

encounter under field condition. Based on these limitations, this study proposes the 

following future works.

8.5 Future research directions

This research has provided a basis for the study o f plant stress caused by oil 

pollution. It has also shown that oil, waterlogging and water deficit stress in plant can 

be detected, quantified and discriminated using hyperspectral and thermal remote 

sensing. Based on the nature of, and findings in this thesis, the following proposals 

are made:

■ There is a need to test this approach under field conditions since the results o f 

this study were obtained based exclusively on research in the laboratory. This 

will help to establish whether subtle spectral and thermal features relating to 

leaf physiological and biochemical changes in laboratory spectrometry and
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thermography are detectable in spectra and thermography of leaves and plant 

canopies in the field situation. It may be worthwhile to investigate if  the same 

treatment dose o f stresses will have the same effect on plants growing in 

different pot sizes. This will help to ascertain whether plants stress responses 

to various stresses could translate from pot-based laboratory experiment to 

field situation.

■ Under field conditions, factors such as the complexity o f the canopy 

structure, soil background, atmospheric, and illumination variation due to 

sensor-sun geometry have a considerable and specific impact on the 

vegetation spectrum (Delalieux et al., 2008). However, it is possible to 

minimise these effects by combining single-band reflectances into a 

vegetation index that is sensitive to the plant canopy and not to the soil 

(Leblon, 2010). Ratioing allows removal o f the disturbances affecting, in the 

same way, reflectances in each band. Indeed, work remains to be done to 

scale this approach to larger scale remote sensing applications. Atmospheric 

disturbances affect space-borne reflectance measurements; however, this can 

be overcome by calibrating the remote sensing imagery to reflectance 

percentage of the target being measured. Furthermore, other environmental 

and meteorological factors such as wind speed, humidity, cloud, ambient 

temperature and irradiance that may affect thermal measurements in the field 

can be overcome by using wet and dry references (as demonstrated in this 

study). In particular, in order to improve the ability to discriminate between 

oil and water-related stresses at canopy scale, the potential for collecting 

additional information on vegetation canopies such as the structure and 

geometry using LiD AR imagery could be explored.
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■ In order to operationalise the techniques developed in this study, high spatial, 

spectral and temporal resolution airborne or satellite remote sensing is 

required. High spatial resolutions in the order o f one metre or less would be 

required to be able to locate small features such as oil pipelines. If  the 

spectral resolution of the sensor is high in the visible, NIR and SWIR then, 

subtle differences arising from oil pollution and other causes o f plant stress 

such as waterlogging and water deficit could be discriminated. This is 

because information about the general health status of plants is often 

embedded in narrow spectral features. With high temporal resolutions, it may 

be possible to detect oil, waterlogging and water deficit stress in plants before 

stress symptoms are seen. With high resolution remote sensing imagery, it 

may be possible to capture the spatial variations of stress indices proposed in 

this study, map oil, waterlogging and water deficit stresses and develop time 

series of spectral and thermal responses of plants to these stresses.

■ For safety reasons, this study used 15W/40 diesel engine oil (Unipart, 

Crawley, UK) (which is not highly flammable) in all experiments to model 

oil stress in plants. Thus, there may be the need to use crude and/or other 

refined oil products typically stored and transported through pipelines (e.g 

petrol and diesel), to confirm consistency in spectral responses.

■ It is worthwhile to investigate the potential of this approach for the early 

detection, non-destructive quantification and discrimination between oil 

pollution and nutrient deficiency in plants, as some form o f nutrient 

deficiency is prevalent in almost all ecosystems.

■ While single crop species have been used in this study, it is important to 

investigate the possibility o f applying the remotely-sensed approaches for
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monitoring natural vegetation communities. Hence, the use o f a mixture of 

plant species at different growing stages to closely mimic natural vegetation 

communities is proposed for future investigations.
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