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Abstract

Spatio-temporal variability in rainfall and wet-canopy evaporation within a 
small catchment recovering from selective tropical forestry

Kawi Bidin

Within tropical rainforest environments, rainfall pattern and canopy structure regulates the 

partitioning of water into wet-canopy evaporation and sub-canopy rainfall. These interrelated 

process then moderate atmospheric water vapour, plant water availability, runoff pathways and soil 

erosion. Forestry impacts on these atmospheric processes may, therefore, impact on a cascade of 

other environmental processes. This study, conducted within a 4 km2 experimental catchment in the 

interior of Northeast Borneo, that was recovering from selective timber harvesting, sought to 

identify the spatial and temporal structure of the local rainfall, and the impact of forestry on wet- 

canopy evaporation and lumped, water-balance components. A total of 450 throughfall gauges, 50 

raingauges and 40 stemflow gauges were installed and digitally surveyed within the catchment, 

mostly within a 0.44 km2 tributary area. Data from these instruments were then supported by those 

from rainfall recorders and river gauges, and an enumeration of the vegetation patchwork present at 

8 -years post-logging.

Several approaches of statistical modelling were applied, and indicated that the rainfall during the 

1997/8 drought-year was (1) highly localised in space, even for regions dominated by convective 

rainfall, (2 ) strongly moderated by the local undulating topography, with marked seasonal 

(monsoon) changes, and (3) delivered primarily as regular, short duration events of low intensity 

rainfall. The visually classified patchwork of canopy types (supported by a series of biophysical 

measurements), showed significant differences in rates of wet-canopy evaporation. Smaller
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quantities of sub-canopy rainfall were observed beneath the disturbed patches of vegetation, in 

comparison to those beneath undisturbed remnants of primary rainforest. This may have been 

caused by (i) a greater rate of wet-canopy evaporation, due to enhanced atmospheric turbulence 

and/or higher surface leaf densities, or (ii) disturbed forest blocks receiving less gross rainfall, due 

to sheltering by the higher undisturbed canopies. Modelling of the 8 -year post-logging water 

balance data, indicated that both seasonal and inter-annual cycles (related to the El NTno Southern 

Oscillation) strongly affected the rainfall (P), riverflow (Q) and P-Q’ dynamics. On removal of 

these cyclical components, the analysis indicated that there was no evidence of a change in 

evapotranspiration (strictly P-Q*) with the 8-years of forest regeneration.

Some of these results were unexpected, and underlined the need for a new emphasis on ’canopy 

hydrology’ within rainforests managed for development and conservation.
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Chapter 1

Introduction

... Tropical rain forests can be a sustained source of timber, renewed by re-growth after 

felling, so long as (and it is a vital proviso) man works within the limits of their natural 

dynamics' ... (Whitmore, 1990).

1.1. Importance of rainfall and wet-canopy evaporation studies within 
the humid tropics

The rainfall received by the catchment soils is the most fundamental hydrological 

quantity, as it is this that regulates (a) plant water availability (Black, 1996; Walsh,

1996), (b) transpiration losses to the atmosphere (Eschenbach et al., 1988; Whitehead 

and Kelliher, 1991), (c) the relative importance of each runoff pathway (Kirkby, 1978, 

1988; Elsenbeer and Cassel, 1990), (d) the rate of soil erosion and mass movement 

(Douglas, 1977; Douglas et a l ,  1999), (e) the flashiness of rivers and catchment water 

yield patterns (Shaw, 1988; Bruijnzeel, 1990), and (f) the water resources potential of 

rivers (Shaw, 1988). The quantity of water received by the ground surface is itself 

moderated by (1) the character of the gross rainfall, and (2) the rate of wet-canopy 

evaporation (or 'interception loss') from vegetation surfaces above the ground.

W ithin tropical latitudes (± 23°), the hydrological impact of local variations in the 

temporal and spatial character of rainfall has received little research attention 

(Molicova and Hubert, 1994; Lyons and Bonell, 1992). Similarly, an understanding of 

the rates of wet-canopy evaporation is not complete within the humid tropics (Dykes,
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1997), with the studies that do exist showing large differences not fully explained by 

deterministic theory (Bonell and Balek, 1993).

Given the high rate of vegetation change within the humid tropics, largely as a result of 

human activities (Pinard, 1995), there is an urgent need to understand the spatio- 

temporal patterns and dynamics of local rainfall and evaporation phenomena, and 

critically, the impact of our activities on these. Given that evaporative water transfer to 

the upper atmosphere within the humid tropics plays a significant role in the regulation 

of temperate climates, then there may be a wider significance for studies on tropical 

rainfall and evaporation. Current efforts to develop more ’sustainable’ practices of 

forestry within the humid tropics, urgently demand research on rainfall and evaporation 

processes within model/example catchments (Douglas, 1999).

1.2. Research issues related to rainfall and wet-canopy evaporation 
within the humid tropics

W hile the nature of the spatio-temporal variability of rainfall across large regions of the 

humid tropics has been described (e.g., Lyons and Bonell, 1992; Bonell and Balek, 

1993; Kripalani and Kulkami, 1997), data on variations over the scales of the 0.1 to 10 

km 2 experimental catchment are, however, very sparse within the humid tropics (Bonell 

and Balek, 1993; Molicova and Hubert, 1994).

Spatial variability in rainfall over the scale of 0.1 to 10 km 2 may be important within 

the humid tropics for (a) understanding the distribution of drought stress, which itself 

affects the distribution of tree species (Ashton, 1964), (b) accurate modelling of 

rainfall-runoff behaviour (cf. Shah et al., 1996; Chappell et al., 1999), and (c) in the 

understanding of environmental differences between ecological monitoring plots 

distributed throughout a study region (e.g., Ashton, 1964, Chapter 6 ). How localised

2
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are the rainstorms will also be important to the extent and intensity of raingauge 

networks (Hersfield, 1965).

It is often assumed that rainstorms within the humid tropics are predominantly of high 

intensity and short duration, however, examination of the few studies that do exist, 

suggests that average intensities and durations are very variable across the region 

(Bonell and Balek, 1993). Perhaps, the largest contrasts occur between the equatorial 

tropics (e.g., Borneo - Sulawasi, West Africa, Amazonia) and those regions affected by 

tropical cyclones (e.g., Philippines - East Asia - South Asia, S.W. Pacific - N.E. 

Australia, Central America - Caribbean). This may have important implications for the 

spatial variations in rainfall-runoff dynamics across the tropics.

The development of tropical forests (a) as managed ’natural forests’or (b) by conversion 

to forest plantations, agricultural uses and urban settlements continues at a very high 

rate (Marshall, 1992). The popular view is that removal of the forest leads to a 

depletion of the water resources available in rivers. The scientific evidence from water 

balance studies undertaken within experimental catchments (0.1-10 km2) generally 

contradicts this view, indicating that water yields increase following tree removal 

(Bruijnzeel, 1990, 1996). Some uncertainty does, however, remain even in the scientific 

community, about the impacts of (a) removing cloud forest, given the forest’s ’cloud- 

stripping’ capabilities (Bruijnzeel and Hamilton, 2000), and (b) ’selective forestry’ 

where vigorous growth of pioneer-trees is encouraged. As ever, the uncertainties relate 

to a dearth of good catchment studies within such areas. Identifying why a water 

balance may change (notably through separate changes in the wet-canopy evaporation 

and transpiration components) is particularly difficult for a selectively managed forest, 

given the extreme heterogeneity of the vegetation cover that is produced (Tangki, In 

prep.). Worse still, there a few studies that fully document the characteristics of all

3
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vegetation components within terrain managed for selective forestry (Pinard et al., 

2000). W ithout a sound understanding of the component impacts of selective forestry 

on water yield, it becomes very difficult to justify detailed protocols for the ’sustainable’ 

management of tropical forests; sustainable in terms of timber production and 

environmental conditions.

1.3. Aims of this study

Given the outstanding research issues surrounding the spatio-temporal characteristics of 

rainfall and wet-canopy evaporation within tropical forests, identified in the previous 

section, this study focused on a small (i.e., 4 km2) experimental catchment within 

equatorial Borneo, that was covered by selectively-managed natural forest.

The catchment is the drainage area of the Sapat Kalisun river (Figure 1.1). This river 

drains into the River Segama, which itself flows to the Northeastern coast of Sabah, 

Malaysian Borneo, where it enters the Sulu Sea. The catchment is located within a 

block of commercial forest - the Ulu Segama Forest Reserve, which itself lies within 

the 9,728 km2 Yayasan Sabah timber concession. This concession is managed by the 

Forestry Upstream Division (Rakyat Berjaya Sdn Bhd.) for long-term commercial 

forestry and environmental conservation (e.g., 438 km2 Danum Valley Conservation 

Area and 390 km2 Maliau Basin Conservation Area). Within the Ulu Segama Forest 

Reserve, the Sapat Kalisun Experimental Catchment lies within the 1998 and 1989 

logging coupes (Greer et al., 1996). Timber haulage road construction on the northern 

divide of the Sapat Kalisun Catchment, followed by roadside clearance to maintain road 

trafficability (M atahari clearance5) and then selective logging took place during 1988 

and 1989.
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Figure 1.1: The study area within the Ulu Segama Forest Reserve of Sabah, Malaysia.
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Detailed monitoring of rainfall and wet-canopy evaporation processes took place over 

the water-year 1 May 1997 to 30th April 1998, some eight years post forestry 

activities. Identifiable vegetation growth had taken place over these eight years 

(Douglas et a l ,  1995; Tangki, in preparation). An intensive network of 450 raingauges 

was installed beneath the range of vegetation canopies observed within the region, 

together with 40 stemflow collars and 50 storage raingauges within large canopy 

openings. Measurements from these gauges were supplemented by continued 

monitoring and analysis of the data from a network of rainfall recorders installed during 

earlier projects (see Douglas et a l ,  1992; Chappell et a l ,  1999).

The 0.44 km2 Baru Experimental Catchment lies within the Northwest corner of the 

Sapat Kalisun catchment (Figure 1.1). This area was more intensively monitored in 

comparison to other parts of the Sapat Kalisun catchment, and also provided data on 

riverflows and hence catchment water balance for this study.

This site and its monitoring network, allowed the project to address the following key 

aims:

1. How is gross rainfall spatially distributed across a small equatorial catchment, do 

the patterns change with time, and what are the possible causes?

2. W hat are the characteristics of the rainstorms within a small equatorial catchment 

within the interior of Borneo Island, and do these change with season?

3. Do the different patches of vegetation seen within a region recovering from the first 

episode of selective forestry have different rates of net rainfall {i.e., sub-canopy 

rainfall) and wet-canopy evaporation?

6
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4. Does the natural recovery of the forest and terrain since selective harvesting have a 

significant impact on the water yield, when set against the impacts of natural 

climatic fluctuations?

To answer these key aims, two further aims were required. These constituent aims were 

(a) what are the errors associated with the rainfall measurement, so that meaningful 

spatial rainfall patterns could be identified? and (b) can the complex patchwork of 

selectively managed forest be classified to allow representative plots to be established 

for wet-canopy evaporation studies ?

The study was undertaken during the 1997/8 water year, which turned out to be a severe 

drought associated with a trough in the El Nino Southern Oscillation (ENSO; Chappell 

et al., 1998). The results of the study are, therefore expected to be more representative 

of the situation during ENSO troughs or other drought periods, than for very wet years.

1.4. Thesis structure

The thesis has been prepared as series of journal papers, each with some introductory 

material, though it is intended there is a logical progression through the series of 

chapters/papers presented with each chapter building on the former.

Chapter 2 begins by developing a classification of the vegetation cover with the 44 

hectare Baru Experimental Catchment, and then tests this classification by looking to 

see if the biophysical characteristics of the principal vegetation elements within each 

class can be differentiated. This work is an essential precursor to the sampling of the 

region’s forest for net-rainfall and wet-canopy evaporation.

The raingauges used to assess the spatial patterns of gross rainfall within the Sapat 

Kalisun Experimental Catchment, and the net rainfall and wet-canopy evaporation
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within one of its sub-catchments (i.e, the Baru Experimental Catchment) were designed 

specifically for the project. The aim was to minimise the costs of manufacture, while 

not losing too much accuracy in the catch. Chapter 3, therefore, details the results of a 

series of tests designed to assess the magnitude and source of any losses in accuracy 

associated with using a simplified raingauge design rather than commercially built 

raingauges. This quality assurance was required to ensure that the data on (a) the spatial 

patterns of gross rainfall, and (b) the differences in wet-canopy evaporation between 

different vegetation types was not over-interpreted.

Chapter 4 directly addressed the first key aim of the thesis - How is gross rainfall 

spatially distributed across a small equatorial catchment, do the patterns change with 

time, and what are the possible causes?

Chapter 5 then went on to examine the short-term, temporal dynamics in the gross 

rainfall, thus addressing the second key aim of the thesis - what are the characteristics 

of the rainstorms within a small equatorial catchment within the interior of Borneo 

Island, and do these change with season? This work sought to complement the analysis 

of the longer-term temporal dynamics in the rainfall at the same locality presented in 

Chappell et a l  (2001). This paper was indeed, based upon data and interpretations 

collected as part of this thesis.

Following an understanding of (a) errors in the gross and net rainfall catch, (b) the 

spatial patterns in the gross rainfall, and (c) nature of the vegetation patterns, the thesis 

then goes on to address the spatial variations in the net-precipitation and wet-canopy 

evaporation. This section of the thesis - chapter 6 , therefore, addresses the third key aim 

of the thesis - do the different patches of vegetation seen within a region recovering 

from the first episode of selective forestry have different rates of net rainfall (i.e., sub­

canopy rainfall) and wet-canopy evaporation?
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Given that the study was undertaken some eight years after the cessation of selective 

timber harvesting, it was considered important to understand if the regeneration of the 

forest and other forms of vegetation over this period had had a significant effect on the 

riverflow and evapotranspiration. Chapter 7, therefore, applied a new Data-Based- 

Mechanistic (DBM) approach, known at the Dynamic Harmonic Regression (DHR) 

model (Young et al., 1999) to the rainfall (P) and riverflow (Q) data for the Baru 

Experimental Catchment. Where catchment leakage (i.e., exchange of subsurface flows 

across the catchment divides) and inter-annual storage are minimal, the annual 

difference between rainfall and riverflow (i.e., P-Q) equates to the total evaporation or 

’evapotranspiration’ from a catchment. Thus the P-Q data-series was also modelled to 

see if inter-annual changes not associated with a dynamic climate (notably changing 

rainfall input) could be identified. Such changes, if they can be observed, might be 

changes in the loss of water by transpiration or wet-canopy evaporation with forest re­

growth. As changes in the amount of water received by the ground surface (i.e., net 

rainfall after wet-canopy evaporation changes) may change with forest re-growth, and 

the amount of water running over logging tracks may change as new vegetation 

establishes (Douglas et al., 1995), then the rainfall-runoff flashiness of the catchment 

may change with time. This was, therefore, also addressed within Chapter 7 using a 

Tuydrograph separation technique’ (Hewlett and Hibbert, 1967) implemented using an 

approach developed by Bidin and Greer (1997).

The final chapter of the thesis (Chapter 8 ) attempts to bring together the main findings 

of the thesis, draws tentative implications for forestry management and makes 

suggestions for new avenues of research that are needed.
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Chapter 2

Classification of a 44 ha region of selectively-managed 
tropical forest for evaporation studies

To be submitted as Bidin, K., and Chappell, N.A., Classification of a 44 ha region of selectively- 
managed tropical forest for evaporation studies, Journal of Tropical Forest Science.

The mosaic of vegetation left after the first cycle of selective-logging of a Natural 

Forest within the humid tropics is highly heterogeneous. This chapter presents a new 

qualitative classification of the major elements of this vegetation patchwork within an 

area of lowland dipterocarp forest in Sabah, Malaysian Borneo. The six vegetation 

categories that can be clearly identified from their visual canopy characteristics are 

examined to see if they can distinguish using measurable biophysical characteristics. It 

can be seen that the different patches of vegetation cover that visually characterise 

selectively-managed lowland forest could identified on the basis of differences in 

either tree density, tree basal area, estimated biomass, vine density or canopy 

complexity (Shannon diversity index). Given that there are identifiable differences 

between the canopy patches within a selectively-managed forest, characterisation and 

subsequent stratified sampling becomes essential to studies that seek to estimate 

regional rates of wet-canopy evaporation.
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2.1. Introduction

A major physical factor controlling rainfall interception process and wet-canopy 

evaporation is the ’forest structure’, which includes the vegetation distribution, canopy 

density, and surface characteristics of the intercepting surfaces (Waterloo et al., 1999). 

Disturbance of the forest structure as a result of ’selective timber harvesting’, is 

therefore, expected to affect the rate of sub-canopy rainfall and wet-canopy 

evaporation, and as consequence rainfall-runoff behaviour and water resources 

(Bonell and Balek, 1993). Despite this, characteristics of the forest-cum-terrain within 

selectively-managed areas of tropical forest are rarely presented (Pinard, 1995; 

Nussbaum et a l ,  1995). This study, therefore, makes a useful contribution to a field 

with only limited published information.

2.2. Study site

This study was conducted within the 44 ha area of logged-over forest within the Baru 

Experimental Catchment, a tributary area of the Sapat Kalisun Experimental 

Catchment (Figure 2.1). The study area is approximately 2-km away from the Danum 

Valley Field Centre (DVFC) at 5°01’ North and 117°48.75’ East, and lies within the 

1989 logging coupe (known as 'Coupe 89') of the 'Ulu Segama Forest Reserve'. This 

commercial forestry area is within the Yayasan Sabah timber concession of the 

Malaysian State of Sabah, Borneo Island. The area has been subject of intensive sub­

canopy rainfall and wet-canopy evaporation studies (Chapter 6 ).
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Figure 2.1. Location of the 44 ha Baru Experimental Catchment within the Sapat Kalisun 
Experimental Catchment, Sabah, Malaysian Borneo.
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The study area was selectively logged in 1989 using both bulldozers and high-lead 

cable yarding systems (Conway, 1982) which left a complex and heterogeneous 

structure of regenerating forest patches, areas of Protection Forest and areas of highly 

damaged forest. The average volume of timber extracted from the area was 79.9 m3ha-' 

(Moura-Costa and Karolus, 1992). For the whole Sabah, an average of 8-15 trees per

3 1ha (giving 50-120 m ha' of timber) are felled by the selective-logging method, of 

which the Dipterocarpaceae family make up 90% of the total volume (Sabah Forestry 

Department, 1989).

This study aims to (i) apply a new classification to land-cover zones within an area of 

selectively-managed, lowland dipterocarp forest. It then seeks to (ii) examine the 

botanical characteristics of those zones containing climax or pioneer trees. The 

objective of this aspect of the work is the evaluation of the classification system 

suggested. Lastly the study, (iii) provides an estimate of the spatial extent of each of 

the land-cover classes.

2.3. Classification of selectively-logged tropical forest

Classification of all elements of vegetation cover within selectively-logged terrain is 

important for the regional estimation of sub-canopy rainfall and wet-canopy 

evaporation. Even in an undisturbed domain, rain forest has far from a uniform, 

unbroken canopy (Richards, 1952). Whitmore (1978) states that tropical forest 

consists of a mosaic of structural units each one at a different stage of development. 

For simplicity, this continuum of developmental stages in the forest growth cycle in 

undisturbed natural forest can be arbitrarily subdivided into gap, building, and mature 

phases. Such a subdivision has provided a convenient basis for the analysis of the 

structure of undisturbed forest in the vicinity of DVFC (Brown, 1990). Activities
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associated with Selective Forestry Management (SFM) within the Ulu Segama region 

and elsewhere in the tropics have, however, left an even more heterogeneous 

landscape requiring a different approach to classification of the whole vegetation 

cover (Nussbaum et al., 1995).

An understanding of the forestry practices undertaken close to DVFC and more 

widely within the Ulu Segama Forest Reserve, suggests that six distinct categories of 

vegetation-terrain classes can be identified visually. Blocks of undisturbed forest 

canopy are found within selectively-managed forest, particularly in areas of 

Protection Forest’ adjacent to rivers and very steep slopes (Nik et al., 1997). Where 

direct or indirect disruption of a forest block during logging is relatively modest or 

regeneration is rapid, then the canopy may still be dominated by mature climax trees. 

This category could be described as ’moderately impacted forest canopy’. Within 

natural forests affected by selective harvesting, even those so called ’sustainable’ or 

’reduced-impact’ practices, have some areas of very high impact. Some of these areas

(i) continue to support some climax trees, but often these are draped in vines, others 

are colonised largely by (ii) Macaranga spp pioneer trees, or (iii) shrubs and herbs, 

while some areas remain as (iv) bare ground or support only grass. Areas of ’vine- 

covered forest canopy’ are typical in areas close to high-lead yarding operations 

(Conway, 1982). Macaranga forest canopy areas are found along timber haulage 

roads, and on some landslides. Areas supporting shrubs and vines, here defined as 

'sprawler-covered canopy gaps’, are areas of local clearance only supporting plants of 

less than five metres in height. Areas of bare ground and grass are defined as 'canopy 

gaps' and are found in areas of former skid trails (used by tracked, bulldozer skidders), 

log landing areas and timber haulage roads (c f  Conway, 1982). In summary, the six 

categories are:
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( 1) undisturbed forest canopy (Figure 2.2),

(2 ) moderately impacted forest canopy (Figure 2.3),

(3) vine-covered forest canopy (Figure 2.4),

(4) Macaranga forest canopy (Figure 2.5),

(5) sprawler-covered canopy gap (Figure 2.6), and

(6 ) canopy gap (Figure 2.7).

Figure 2.2: Undisturbed forest canopy (canopy category 1) in the Danum Valley Conservation 
Area, 1 km Northwest of the Danum Valley Field Centre.

15



Chapter 2: C lassification o f  a 4 4  ha region o f  selectively-m anaged tropical forest for evaporation studies

Figure 2.3: Moderately impacted forest canopy (canopy category 2) close to raingauge R3 
within the Baru Experimental Catchment

Figure 2.4: Vine-covered forest canopy (canopy category 3). A small area of vine-covered 
canopy (centre right) is present near to the wall surrounding raingauge number 5 (centre left) 
within the Baru Experimental Catchment.
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Figure 2.5: Macaranga forest canopy (canopy category 4). The photograph shows an area 
dominated by Macaranga spp. pioneer trees on the Northeastern slopes of Bukit Atur (A tur 
H ill’), just to the Northeast of the Sapat Kalisun Experimental Catchment.

Figure 2.6: Sprawler-covered canopy gap (canopy category 5). The photograph shows the 
sprawler-covered canopy gap that surrounds raingauge tower number 6 within the Baru 
Experimental Catchment.
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Figure 2.7: A canopy gap on top of Bukit Atur (canopy category 6). Bukit Atur (A tur H ill1) is 
in the foreground, and the old radiotelephone building on its summit can be seen within the 
large, bare canopy gap. The double peaked hill on the horizon is Mount Danum.

2.4. Forest inventory sampling

A combination of helicopter-based aerial photography taken in 1995 (e.g., Figure 2.2 

to 2.7) and ground-based observations of the forest canopy in the Baru Experimental 

Catchment was used to identify the location of replicate plots characterising canopy 

categories 1 to 4, i.e., those categories containing large trees. Species enumeration and 

biophysical properties of each of these categories were then measured in four 

randomly located replicate plots, each 100 m2 in area. The location of these plots is 

shown in Figure 2.8. These sampling areas were supplemented with sampling along a 

750 m long by 3 m wide transect crossing the Baru Catchment (Figure 2.8).
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Figure 2.8: The 44 ha Baru Experimental Catchment showing the biophysical sampling plots

The girth (gbh) of all trees > 2 cm in diameter (dbh) was recorded, and all trees > 5 cm 

dbh (15.5 cm gbh) were identified. These measurements also allowed estimation of 

the local forest diversity, density, basal area, and timber biomass. Biodiversity was 

estimated using the Shannon Diversity Index (Pielou, 1977). The estimate of the 

timber biomass (dry weight) was derived from:

Biomass (kg) = [exp (-2.134 + 2.530 * ln(dbh))] (2.1)

where dbh is the tree diameter breast height in cm (Brown, 1997). This equation is 

based on the average ’moist tropical tree species’, so large uncertainties are likely, 

particularly for the Macaranga pioneer species of category 4.
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Figure 2.9: An aerial photograph showing the vegetation cover of all but the Eastern sector of 
the Baru Experimental Catchment. Sub-catchment areas are shown with white lines, with the 
stream gauging locations shown with an X)’ symbol.

2.5. Botanical characteristics of each canopy category

T he abundance o f specific  tree fam ilies and genera, together w ith the tree density , 

basal area, and b iom ass are all canopy characteristics that are likely  to affect the rate 

o f sub-canopy  rainfall and evaporation.

2.5.1. Botanical diversity

A t fam ily  level, E uphorb iaceae and D ip terocarpaceae trees dom inated  the 44 ha B aru 

C atchm en t area. E uphorb iaceae m ade up the h ighest percen tag e  o f the tree density  

w ith in  each o f the canopy categories 1, 2, 4, and the transect accoun ting  for 35.6% , 

24 .1% , 79 .1% , and 23.3%  respectively . D ip terocarpaceae becam e m ost dom inan t only
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in category 3, the vine-covered forest, with 16.3% abundance, followed by 

Euphorbiaceae at 10.5% (Table 2.1). These results are comparable with those of 

Hussin (1994) who reported that Dipterocarpaceae, Euphorbiaceae, Meliaceae, and 

Lauraceae accounted for 45.5% of the trees from the 44 dominant families within the 

whole ’Coupe 89’ of the Ulu Segama Forest Reserve. There is, however, a slight 

difference, in that there is a higher percentage of Euphorbiaceae found in the present 

study, possibly resulting from continued regeneration of the selectively-logged forest 

since 1993. Within undisturbed natural forest adjacent to the study area enumeration 

of two 4 ha plots indicated that Euphorbiaceae is similarly dominant, followed by 

Dipterocarpaceae, Annonaceae, Lauraceae, and Meliaceae (Newbery et a l ,  1992).

The vine-covered forest plots (category 3) are distinct from the undisturbed and 

moderately impacted forest, by having double the proportion (22%) of vines. The 

Macaranga forest canopy (category 4) is distinguished by the 79% abundance of 

Maraganga spp trees.

The blocks of Macaranga spp forest are characterised by a relatively low diversity 

index (Table 2.1). In contrast, the moderately-impacted and vine-covered canopies 

(categories 2 and 3) have greater Shannon diversity indices than the remnant blocks of 

undisturbed forest. This result is consistent with other enumeration studies within the 

Ulu Segama Forest Reserve (Tangki, In prep.) and elsewhere in the tropics (Urdabe, 

1995; Uuttera et a l ,  2000). Critically, the increased in local canopy complexity 

following disturbance may indicate that local variability in sub-canopy rainfall and 

evaporation may increase above that in the undisturbed forest.
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2.5.2. Tree density

Within canopy categories 1, 2, and 3 the density of trees with a gbh > 10 cm (Table 

2.2) are all comparable to the 2,248 trees ha ' 1 measured by Newbery et al. (1992) in 

nearby undisturbed forest. The 699 trees ha ' 1 with a gbh > 30 cm in the undisturbed 

forest (category 1) of the Baru Catchment is also comparable with studies undertaken 

in similar forest blocks throughout Borneo. For example, a density of 608 trees ha ' 1 

was observed at Sepilok, Sabah (Nicholson, 1965), 628 trees ha ' 1 at Andalau, Brunei 

(Ashton, 1964), and 739 trees ha ' 1 at Mulu, Sarawak (Proctor et a l., 1983).

The tree density within areas dominated by the pioneer trees {Macaranga spp., canopy 

category 4) is, in contrast, considerably lower at 1,825 trees ha ' 1 (Table 2.2) than that 

within canopies 1, 2 and 3. Such a large difference in tree density may, therefore, 

affect the potential for rainfall interception and the resultant wet-canopy evaporation.
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Table 2.1: Percentages with actual tree numbers (in brackets) of the most abundant trees at 
family and genus level for each canopy category. The top five abundance within each canopy 
is in bold.

C anopy category* 1 2 3 4 Transect

Family

A nnonaceae 0 (0 ) 6.9 (4) 4.7 (4) 0 (0 ) 1.8 (6)

D illen eaceae 0 (0 ) 0 (0 ) 1-2(1) 0 (0 ) 0.6 (2)

D ipterocarpaceae 17.8 (13) 12.1 (7) 16.3 (14) 1.2(1) 19.7 (65)

Euphorbiaceae 35.6 (26) 24.1 (14) 10.5 (9) 79.1 (68) 23.3 (77)

Lauraceae 2.7 (2) 5.2 (3) 4.7 (4) 2.3 (2) 5.8 (19)

L egum inosae 2.7 (2) 0 (0 ) 3.5 (3) 2.3 (2) 2.1 (7)

M eliaceae 2.7 (2) 5.2 (3) 7.0 (6) 0 (0 ) 5.8 (19)

M oraceae 0 (0 ) 0 (0 ) 0 (0 ) 3.5 (3) 0.6 (2)

M yristieaceae 4.1(3) 0 (0 ) 0 (0 ) 0 (0 ) 0 (0 )

M yrtaceae 9.6 (7) 5.2 (3) 7.0 (6) 1.2(1) 4.5 (15)

P olyga laceae 1.4(1) 6.9 (4) 0 (0 ) 1.2(1) 3 .0 (10)

R ubiaceae 0 (0 ) 1.7(1) 0 (0 ) 3.5 (3) 0.9 (3)

T iliaceae 2.7 (2) 5.2 (3) 2.3 (2) 1 .2(1) 4.5 (15)

V in es @ 9.6 (7) 10.3 (6) 22.1 (19) 2.3 (2) +

D iversity  Indexs 2.0 2.5 2.6 1.6 2.8
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Cont.’d..

Genus

Aglaia 2.7 (2) 3.4 (2) 5.8 (5) 0 (0 ) 5.8 (19)

Aporusa 2.7 (2) 5.2(3) 1.2(1) 0 (0 ) 3 .9 (13 )

Dehassia 2.7 (2) 5.2(3) 3.5 (3) 2.3 (2) 3.3 (11)

Ficus 0 (0 ) 0 (0 ) 0 (0 ) 3.5 (3) 0 .3 (1 )

Hopea 5.5 (4) 0 (0 ) 8.1 (7) 0 (0 ) 11.2 (37)

Knema 6.8 (5) 3.4 (2) 2.3 (2) 0 (0 ) 0.6 (2)

Koilodepas 15.1 (11) 0 (0 ) 2.3 (2) 0 (0 ) 0 (0 )

Macaranga 0 (0 ) 0 (0 ) 0 (0 ) 79.1 (68) 7.9 (26)

Mallotus 13.7 (10) 8.6 (5) 4.7 (4) 0 (0 ) 7.9 (26)

Palaguim 4.1 (3) 0 (0 ) 0 (0 ) 0 (0 ) 0 (0 )

Shorea 6.8 (5) 1.7(1) 5.8 (5) 1.2(1) 6.1 (20)

Vatica 4.1 (3) 5.2 (3) 2.3 (2) 0 (0 ) 1 .2(4)

Vines@ 8.2 (6) 10.3 (6) 22.1 (19) 2.3 (2) +

Xanthophyllum 1.4(1) 6.9 (4) 0.0 (0) 1 .2(1) 3 .0 (10 )

Zyzygium 9.6 (7) 5.2 (3) 7.0 (6) 1.2(1) 4.5 (15)

D iversity  Indexs 2.6 3.0 3.0 1.0 3.5

Notes:

* Trees/vegetations in canopy category 5 was not identified. 

+ Vines were abundant but no measurement been taken.

@ Includes all type of lianas and climbers species. 

s Shannon diversity index (Pielou, 1977)
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T able 2.2: Tree density in number o f  tree ha'1 for different canopy categories in Baru 
Catchm ent. V alu es in brackets are coeffic ient o f  variation (CV% ) from  4  replicate plots o f  
each  canopy category. The non-parametric, M ann-W hitney U -test w as used  to estim ate  
sign ifican ce o f  m ean difference. Canopy categories 5 and 6 do not contain trees, so are not 
show n.

gbh (cm)

Canopy Category Transect

1 2 3 4

6 - 1 0 1325 1350 1380 325 na

1 0 - 3 0 1735 1725 1880 925 1074

>  10 2434 2200 2380 1500 1532

> 3 0 699 475 500
575

458

>  100 241 250 180
50

162

Total* 3759 (20.0) 3550(7.5) 3760 (39.2) 1825 (13.5) 1532++

2
O  total* 565504 70756 2172676 60516 -

Vines 554 (82.0) 775 (54.1) 1700 (50.3) 50 (150) na

Mean difference2 ns

Mean difference3 ns ns

Mean difference 4 PcO.001 PcO.001 ns

Notes:

na Not measured

ns Not significant at P < 0.1

2 level o f significance of the difference between mean total canopy category 2 and mean total canopy 1 
(4 replicates)

3 level o f significance of the difference between mean total canopy category 3 and mean total canopy 1 
and 2 (4 replicates)

4 level o f significance o f the difference between mean total canopy category 4 and mean total canopy 1, 
2, and 3 (4 replicates)

+ not including vines

++ not including vines and gbh class 6 - 1 0  cm
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2.5.3. Basal area

The 58.3 m ha basal area of trees with gbh > 30 cm within the undisturbed forest 

canopy (category 1) of the Baru catchment (Table 2.3) was found to be slightly larger 

than that observed by other studies undertaken on Borneo Island. For example, the 35 

m2ha_1 of Asthon (1964), the 43 m2ha_1 of Kamarudin (1986) and the 27 m 2ha 'J of 

Newbery et al. (1992) and the 31-35 m2ha_1 of Tangki (In prep.). This greater basal 

area was measured in plots within 100 m of the main Bam Catchment stream. The 

greater likelihood of wetter soils in such downslope areas may have resulted in larger 

trees (c f  Newbery et al., 1996).

T able 2.3: Tree basal area in m 2ha_1 for different canopy categories in B am  Catchm ent. V alues  
in brackets are C oefficient o f  Variation (CV% ) from  4  replicate p lots o f  each canopy  
category. T he non-parametric, M ann-W hitney U -test w as used  to estim ate sign ifican ce o f  
m ean difference.

C anopy C ategory Transect

gbh (cm) 1 2 3 4

6 - 1 0 0.6 0.6 0.7 0.2 na

1 0 - 3 0 4.6 3.9 4.8 2.9 3.5

> 3 0 58.3 12.8 8.7 0° 00 14.9

>  100 53.1 9.9 5.1 2.2 11.5

Total* 63.5 (88.2) 17.4 (44.2) 14.1 (42.9) 11.9 (9.1) 18.4'

_2
O  total+ 3136 59 36 1

Vines 0.5 1.0 1.6 0.1 na

Mean difference2 ns

Mean difference3 P < 0 .1 ns

Mean difference4 ns P < 0.05 ns
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Cont.’d...

Notes:

na Not measured

ns Not significant at P < 0.1

2 level of significance of the difference between mean total canopy category 2 and mean total canopy 1 
(4 replicates)

3 level of significance of the difference between mean total canopy category 3 and mean total canopy 1 
and 2 (4 replicates)

4 level of significance of the difference between mean total canopy category 4 and mean total canopy 1, 
2, and 3 (4 replicates)

+ not including vines

++ not including vines and gbh class 6 -  10 cm

W ithin the disturbed canopy categories, the total basal area of trees is much lower

than that in the undisturbed forest (Table 2.3). The average basal area for canopy

2 1categories 2, 3, 4, and along the transect is, however, comparable with the 9 m ha' 

found by Tangki (In prep.) within nearby areas of selectively-logged forest.

2.5.4. Estimated biomass

The timber biomass for trees with gbh > 30 cm within the undisturbed forest plots is 

809 t ha ' 1 (Table 2.4), and is higher than the 349-506 t ha ' 1 observed by Tangki (In 

prep.) within nearby plots of undisturbed forest. The range in biomass of 78-249 t ha"1 

within the disturbed blocks of forest is, as expected, lower than that in the undisturbed 

forest, but is comparable with the average value of 174 t ha ' 1 for logging coupes 

within the Ulu Segama Forest Reserve found by Tangki (In prep.). Biomass within the 

logging Ulu Segama coupes logged by reduced-impact methods was, however, higher 

at 291-4001 ha ' 1 (Pinard, 1995).
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Table 2.4: Tree biomass (in t ha'1) for different canopy categories in Baru Catchment. Values 
in brackets are coefficient of variation (CV%) from 4 replicate plots of each canopy category. 
The non-parametric, Mann-Whitney U-test was used to estimate significance of mean 
difference.

gbh (cm) Canopy Category Transect

1 2 3 4

6 - 1 0 1.6 1.6 1.7 0.4 na

1 0 - 3 0 18.6 15.1 19.3 12.3 14.9

>  30 809.2 97.8 57.0 60.2 145.5

>  100 779.6 80.4 36.6 21.0 125.8^

T otaf 829.4 (104.6) 114.5 (59.8) 78 .0(55 .9) 72.9 (22.4) 160.3

t t̂otal"*" 867.6 68.5 43.6 16.3 -

_2
O  total+ 752730 4692 1901 266

Total Vines 1.8 3.9 5.0 0.2 na

Mean difference 2 ns

Mean difference3 P < 0 .1 ns

Mean difference4 ns P < 0.1 ns

Notes:

na Not measured

ns Not significant at P < 0.1

2 level o f significance of the difference between mean total canopy category 2 and mean total canopy 1 
(4 replicates)

3 level o f significance o f the difference between mean total canopy category 3 and mean total canopy 1 
and 2 (4 replicates)

4 level o f significance o f the difference between mean total canopy category 4 and mean total canopy 1, 
2, and 3 (4 replicates)

+ not including vines

++ not including vines and gbh class 6 - 1 0  cm
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2.6. Estimated spatial extent of each canopy category

The estimated area occupied by each canopy category was derived by combining an 

examination of the aerial photographs of the Baru Catchment, taken from heights of 

50 m to over 1000 m above the forest, with several years of experience of working 

throughout the catchment. Table 2.5 shows the spatial extent of each category. The 

18% of the catchment remaining in undisturbed forest blocks is very similar to that 

qualitatively estimated by Nussbaum et a l  (1995) within Coupe 8 8  and 89. The 

Nussbaum et al. (1995) estimate of 30% of the Coupe 8 8  and 89 being occupied by 

log-landings and skid trails (haulage roads were not defined) is, however, larger than 

the areas defined as bare ground (category 6 ) and low vegetation (category 5 ) within 

the Baru catchment, and the category 5 canopy includes areas other than old log- 

landings and skid trails. Such differences are probably due to the large variations in 

harvesting impact over distances of several kilometres.

Table 2.5: Contribution of each canopy category within the 44 ha Baru Experimental 
Catchment, Ulu Segama Forest Reserve, Sabah, Malaysia

Spatial extent of each canopy category

1 2 3 4 5 6

Best estimate (%) 18 25 30 10 10 7

Likely uncertain 
range (%)

± 3 ± 3 ± 5 ± 4 ± 3 ± 2
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2.7. Conclusions

The 44 hectare area of selectively-managed forest that comprises the Baru 

Experimental Catchment has been qualitatively classified into the six categories of: 

( 1) undisturbed forest canopy, (2 ) moderately impacted forest canopy, (3 ) vine- 

covered forest canopy, (4) Macaranga forest canopy, (5) sprawler-covered canopy 

gap, and (6 ) canopy gap. Statistical analysis indicates that these categories, easily 

distinguishable from visual characteristics of their respective canopies, can be 

objectively identified using biophysical data.

The remnants of undisturbed forest canopy (canopy 1), which occupy 18 ± 3 % of the

catchment, can be separated on the basis of their much higher tree basal area (i.e., »

30 m 2 h a '1) and estimated biomass (i.e., »  300 t ha '1). The density of vines might be

able to be used to separated the ’moderately impacted forest canopy’ (canopy category

2) from the ’vine-covered forest canopy’ (canopy category 3). Within the areas

2 1categorised as ’vine-covered forest canopy’ the basal area of vines »  1.0 m ha' . The 

patches of forest dominated by Macaranga spp. (i.e., 79 % of all tree genera), that 

occupy 1 0  ±  4  % of the catchment, have a characteristically low canopy complexity 

(i.e., Shannon diversity index of «  2.0) and tree density (i.e., «  300 t h a '1). After 

some eight years following the first (and only) harvesting activity, 17 ± 4 % of the 

catchment remains without pioneer or climax trees (larger than saplings). As a result, 

these areas (canopy category 5 and 6 ) are easily distinguishable from the categories 1, 

2, 3, and 4.

Given that the visual differences in the six canopy categories defined are supported by 

measurable differences in the biophysical properties, each canopy may intercept, store
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and release different quantity rainfall, and thereby result in different rates of wet- 

canopy evaporation (Chapter 6 ).
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Chapter 3

Errors with simple storage raingauges under tropical 
forest conditions

To be submitted as Bidin, K., Chappell, N.A. and Dalimin, M.N. Errors with a simple storage 
rainagauges under tropical forest conditions. Singapore Journal o f  Tropical Geography.

Sub-canopy rainfall {i.e., throughfall and stemflow) within rainforests, particularly 

those affected by selective harvesting, is highly heterogeneous, and requires very large 

numbers of gauges for accurate assessment. If a raingauge can be designed that is easy 

and inexpensive to build, yet does not significantly affect the accuracy of catch, then 

this would be of considerable value to studies addressing the spatial variability of 

rainfall, throughfall and wet-canopy evaporation within such tropical forest 

environments. This chapter presents the design of an inexpensive, storage raingauge 

that was used for studies on rainfall and evaporation variability (Chapters 4, 5, 6 ). Tests 

to identify the source and magnitude of the catch error were undertaken within an area 

of selectively-managed rainforest in Malaysian Borneo.

With the typical weekly or storm-based sampling associated with wet-canopy 

evaporation studies, errors due to gauge evaporation, gauge wetting and volumetric 

recording were seen to be very small (i.e, -0.54 %, -0.198 % and ± 0.025 %, 

respectively), as was the difference (-0 .1 1 0  %) between the catch from these gauges 

and that of adjacent, commercially available raingauges. W hile the study incorporated 

only limited testing, such results indicate that catch errors with the simple raingauge 

design presented, remain within the 5 % error expected of commercial, storage 

raingauges.
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3.1. Introduction

Studies addressing the local spatial variability of rainfall and wet-canopy evaporation in 

forested catchment require large numbers of rain-gauges and throughfall-gauges for 

accurate statistical quantification of the patterns and rates. If commercially available 

raingauges are required, then costs can be restrictive. An alternative solution is the self­

construction of simple raingauges. As these are not likely to be built to the same 

exacting standards as commercial gauges, then robust error analysis is required to 

ensure that the increase in catch uncertainties have not become too large. It is worth 

noting, that raingauge errors are rarely quantified even in the most well supported 

studies of interception processes (e.g. Asdak et al., 1998b).

This chapter, therefore, aims to describe the design of a simple storage raingauge used 

for measurement of gross- and net- rainfall within a region of equatorial rainfall in 

Malaysian Borneo (Chapter 6 ). The chapter then seeks to identify the catch errors 

associated with using the gauges within this environment and to propagate these errors 

to give a final uncertainty value. Such compound uncertainty estimates are required to 

prevent over-interpretation of maps of the local variability of rainfall (Chapter 4).

3.2. Design of a simple storage raingauge

The principal components of any storage raingauge are the collecting funnel and 

storage container (Winter, 1955). In this study, a 4-litre cylindrical plastic bottle, with 

the base removed, was used as funnel and 5-litre carbouy used as a storage container 

(Figures 3.1 and 3.2). The gauge was sat on the ground surface, and a metal stake 

driven 0.25 m into the ground to keep it vertical.
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The funnel had a fall of 24 cm between the orifice and the base to reduce out-splash, 

and the orifice collected rainfall at a height of 5 4  cm above ground level to reduce in­

splash (Struzer et al., 1968). The orifice area is 180 cm2. For comparison, the UK 

Meteorological Office Mark II standard gauge, as used by many meteorological 

departments throughout the world, has an orifice height of 30 cm above the ground, a 

funnel drop of 14.5 cm and an orifice area of 127 cm2. As the dimensions of the simple 

gauge are larger than these, the simple gauge maybe less sensitive to in- and out- splash 

errors.

At the base of the funnel of the simple gauge, two 5 mm diameter holes (cf. Winter, 

1955) channel the water into storage container. Their small size should help to reduce 

evaporation losses (Golubec, 1960). Additionally, the storage vessel of the raingauge is 

painted white to increase the albedo, and hence reduce the evaporation potential. The 

storage container can store the equivalent of about 280 mm depth of rainfall. As the 

greatest rainfall recorded at site (1986-2000) is 170 mm, the storage should be 

sufficient for daily sampling.
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15.14 cm

4 -litr e  cy lin d r ica l 
p la s tic  b o ttle

Funnel
2 4  cm

2 x 5  m m  h o le s

O rig in a l ca p  o f  
5 -liter  carb ou y  h ea ted  

on to  top  o f  p la stic  b o tt le

Storage container
(2 7 8  m m  eq u iv a len t ca p a c ity )

5 -lite r  carb ou y

3 0  cm

Figure 3.1: Schematic diagram of the simple storage raingauge tested within this study
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Figure 3.2. Photograph of the simple storage raingauge tested within this study

3.3. Test conditions

The experiments were conducted at the vicinity of the Danum Valley Field Centre 

(DVFC) in the Malaysian state of Sabah on the Northeastern coast of Borneo Island 

(5o01’ North and 117°48.75’ East). The annual average rainfall totals recorded at the 

DVFC meteorological station (1986-2000) is 2,764 mm, with standard deviation of 466 

mm. The two principal Southeast Asian monsoon wind directions in this part of Eastern 

Sabah -  the Southwest monsoon (May-October) and Northeast monsoon (November- 

April) both deliver relatively similar totals (Chappell et al., 2001; Chapter 5). The 

average daily maximum and minimum temperatures recorded at this site are 30.9 °C
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and 22.5 C, respectively. The average relative humidity at 8 am is 94.5% and at 2  pm 

72% (Marsh and Greer, 1992).

DVFC lies within the Brassey Range of hills in Eastern Sabah, where the highest peak, 

M ount Danum, is at 1,093 m a.s.l. (Marsh and Greer, 1992). M ount Danum is 

approximately 12.5 km Southwest of DVFC.

The natural vegetation within the DVFC region is ‘lowland, evergreen dipterocarp’ 

forest, with the upper canopy being dominated by Parashorea malaanonan, P. 

tomentella (both white Seraya), Shorea johorensis (Red Seraya) and Rubroshorea spp. 

(Marsh and Greer, 1992). These trees stand at height up to 70 m. Some commercial 

trees were, however, selectively removed from the region East of DVFC.

This study has sought to quantify the errors associated with the use of more than 450 of 

these simple storage gauges within the Sapat Kalisun Experimental Catchment adjacent 

to DVFC (Chapters 4 and 6 ).

3.4. Component errors

3.4.1. Effect of storage container evaporation

Many studies of wet-canopy evaporation {e.g. Lloyd and Marques 1988; Wong 1991; 

Asdak et a l ,  1998) involve the emptying of net rainfall collected on a weekly basis. In 

hot climates there is the concern that some of the collected rainfall may evaporate from 

the storage container between capture and measurement (Kurtyka, 1953; Gill, 1960; 

Goodrich et al., 1995). An experiment was undertaken with two simple storage gauges 

over the 5-month period from 1st November 1997 to 30th March 1998.
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Both gauges were emptied at 8 am every day. One gauge was then left empty for 

subsequent catches, while exactly 1000 cm3 was added to the second gauge. A volume 

of 1000 cm 3 is the equivalent to 5.56 mm depth of rainfall, the average daily rainfall 

recorded over the monitoring period November 1997 to March 1998. The average rate 

of evaporative loss over the same monitoring period was 3.60 mm.

During this same period, a nearby UK Meteorological Office Mark II raingauge 

recorded 657.6 mm of rainfall. The resultant percent error (8bias) is therefore:

100
— 3.6mm 
657.6mm

= -0.547% [3.1]

As this period, was one of the driest on record, as a result of the particularly severe 

1997/98 ENSO drought (Chappell et al., 2001), this percent error may be larger than for 

a wet year. This figure is, however, smaller than the -1%  to -1.5%  evaporation error 

recorded by Gill (1960) in tropical conditions.

The small evaporation losses from the simple gauge in this study are probably the result 

of the small diameter of hole connecting the funnel to the storage collector. An 

evaporation rate over the same period for a 0.7 m diameter evaporation pan amounted 

to 190.3 mm. Thus, the simple gauge evaporated only 1/35 of the rate of an evaporation 

pan.

3.4.2. Effect of funnel and storage container wetting

Goodrich et a l  (1995) states that for catch totals equivalent to only a few millimetre of 

rainfall, the adhesive effect of rainfall on the collector walls can be an area of concern. 

An experiment where exactly 1000 cm3 of water was poured into and then out of the 

simple gauge then undertaken to see the recovery rate. An average of 2 cm3 of water,
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equivalent to 0.011 mm of rainfall caught by the gauge, was not recovered. The average 

recording volume for the simple gauge during the studies described in Chapters 4 and 6  

{i.e., November 1997 to March 1998) was 5.56 mm. Thus the percentage bias error

(Tbias ) due to raingauge wetting was, therefore:

100 0.011mm
5.56mm

= -0.198% [3.2]

3.4.3. Effects of error in volumetric recording

A 250 cm plastic measuring cylinder was used to measure the rainfall stored within the 

simple storage raingauges. The volume within this cylinder could be visually measured 

to ± 0.25 cm3. As the typical sampling volume is 1000 cm3, this gives a percent 

precision error ( 8 prec ision ) of :

100
+ 0.25mm3 
1000mm3

= ±0.025% [3.3]

3.4.4. Compound error from evaporation, wetting and measurement

As the error associated with the measurement of the stored water (Section 3.4.3) is 

independent of the losses due to evaporation (Section 3.4.1) and losses due to surface 

wetting (Section 3.4.2), the errors can be added in quadrature (Taylor, 1982; Chappell 

andTem an, 1997):

EW M  = ^ (± 0 .0 2 5  )2 + (—0.547 )2 + (-0 .1 9 8
[3.4]

The total uncertainty (EWM) derived from the evaporation, wetting and measuring- 

cylinder errors identified is ± 0.582%.
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3.5. Comparison with commercial raingauges

In addition to errors associated with the effect of evaporation from the storage 

container, wetting of raingauge surfaces, and measuring cylinder errors, the simple 

storage raingauges will be subject to associated with un-level raingauge orifices, and 

local turbulence at the orifice. The increase in catch error resultant from using the 

simple storage gauges rather than commercial (storage) raingauges were assessed in a 

further experiment.

Ten simple raingauges were used to derive a direct measurement of the total or 

compound catch error (etotai)- These gauges were installed about 10 m from the 3- 

standard gauges comprising of (i) a UK Meteorological Office M KII storage gauge, (ii) 

a siphoning-tank raingauge equipped with a chart recorder, and (iii) a second 

siphoning-tank raingauge where the siphoning mechanism had been replaced by a 

storage tank. All raingauges were measured daily throughout October 1997. A 250 ml 

measuring cylinder was used to measure the rainwater volume collected by the simple 

raingauges.

The arithmetic mean rainfall within October 1997 was 145.47 mm for the commercial 

raingauges and 145.31 mm for the simple storage gauges (Table 3.1). This short-term 

experiment, therefore, gave a total error (etotai) of:

100
(145.31mm -145.47 mm) 

145.47 mm
= -0.110% [3.6]

for the simple storage gauges against commercial gauges. For the catches greater than 

2 0  mm, the coefficient of variation amongst the commercial gauges ranged from 0 .8  to

2.8 %, while the simple gauge had a slightly larger uncertainty of 2.0 to 5.0 % (Table
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3.1). Uncertainties in daily catches greater than 2 0  mm, therefore, have less than the 5 

% which is consistent with the figures noted by Helvey and Patric (1965).

As expected, the errors for very small rainfall catches of a few millimetres per day are 

high, but decline exponentially (Figure 3.3), similar to the trend reported by Hutchinson 

(1969).

T able 3.1: Com parison o f  catches by 3 com m ercial raingauges w ith those o f  10 sim ple storage 
gauges for raindays by O ctober 1997.

DATE

S im p le storage gauges (N  = 10) C om m ercial gauges (N = 3)

Mean SD (mm) CV (%) Mean SD (mm) CV (%)

4/10/97 0.89 0.20 22.46 1.13 0.35 30.99

6/10/97 49.32 1.81 3.66 48.83 0.40 0.83

7/10/97 5.91 0.20 3.44 5.83 0.25 4.31

9/10/97 1.57 0.25 15.93 1.73 0.31 17.63

11/10/97 10.71 0.46 4.28 10.97 0.31 2.79

16/10/97 9.93 0.51 5.12 11.13 1.04 9.35

19/10/97 21.66 1.08 4.97 20.67 0.45 2.18

23/10/97 21.33 0.43 2.02 20.80 0.56 2.68

24/10/97 9.31 0.54 5.77 9.40 0.26 2.81

26/10/97 9.76 0.44 4.51 9.67 0.64 6.57

28/10/97 4.91 0.36 7.27 5.30 0.36 6.80

Total 145.31 2.68 1.85 145.47 3.07 2.11

Notes:

SD -  standard deviation 

CV -coefficient of variation 

N -  number of gauges
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35 - O Simple storage gauge (N = 10)

30 -

+ Commercial gauge (N = 3)
25 -

^  20 -
- -Simple storage gauge

15 -

Commercial gauge10 -

0 10 20 30 40 50 60

Mean daily rainfall (mm)

Figure 3.3: D aily  rainfall catches sh ow ing the effect o f  rainfall s ize  on the variation.

3.6. Conclusions

The simple raingauge design presented, based on the use of two inexpensive plastic 

bottles, did not give large catch errors when tested for evaporation losses {i.e., only - 

0.54 % error per month), inner-surface wetting errors (i.e., only -0.198 % error with 

weekly sampling) or volumetric recording (i.e., ± 0.025 % error with sampling). Catch 

differences between these gauges and standard raingauges (e.g., UK Meteorological 

Office Mark II gauge) were similarly small, at -0.110 % additional error, over a month’s 

sampling. W hile more extensive testing needs to be undertaken with this simple 

raingauge design, the evidence so far suggests that weekly or storm-based catches from 

these gauges do not have significantly larger errors than the < 5 % error expected of 

commercially-built storage raingauges.
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Dynamic spatial pattern of rainfall within a 4-km2 tropical 
catchment

To be submitted as Bidin, K., Chappell, N.A., Dalimin, M.N. and Sinun, W. Dynamic spatial pattern of 
rainfall within a 4-km 2 tropical catchment. A gricultural and F orest M eteorology.

An understanding of the spatial variability of rainfall at the scale of the 0.1 to 10 km2 

experimental catchment, particularly where rainfall is predominantly convective in 

nature, is essential for accurate rainfall-runoff modelling. With the increasing desire to 

model the impacts of land-use change on the behaviour of tropical catchments, comes a 

need for an understanding of magnitude and causes of local variations in rainfall.

This study analyses the spatial variability of rainfall across a network of 46 raingauges 

within a 4 km 2 rainforest catchment within the interior of Northeastern Borneo. 

Rainfall-runoff and sediment production and transport studies are taking place within 

the same area.

The inter-gauge correlation analysis undertaken shows that the region experiences a 

very high degree of rainfall variability, even when compared with other areas strongly 

affected by convective rainfall activity. Spatial structure is, however, apparent within 

the rainfall patterns when correlations between topographic variables of altitude and 

aspect are undertaken. Moreover, the patterns change dramatically from the Southwest 

monsoon (May-October) to the Northeast monsoon (November-April) as the dominant 

winds reverse. Physical interpretation of the rainfall patterns is only achieved with the
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aid of a conceptual model of wind field within undulating terrain of the area. Indeed, 

the work should be extended with the application of a numerical model to the local 

wind fields within the area.

4.1. Introduction

Increasing research efforts in both temperate and tropical environments are directed 

towards the topographic controls on eco-hydrological processes. Topography can exert 

a strong control on the patterns of soil moisture and the locations of returning 

subsurface water. Indeed, several catchment rainfall-runoff models, notably 

Topog_SBM and TOPMODEL, have been developed as a result of these empirical 

observations, and have been recently applied to data for tropical catchments (Chappell 

et al., 1998b; Vertessy and Elsenbeer, 1999). The topographic control on soil moisture 

has also been shown to impact on tropical plant ecology, with some tree species 

preferring dry ridge top locations and others wetter streamside areas (Ashton, 1964; 

Newbery et al., 1996). Clearly, if the topographic affect on the amount of rainfall 

received is significant at the scale of these modelling or ecological studies, then the 

spatial controls on the rainfall pattern must be characterised in order to separate them 

from the controls on the re-distribution of subsurface water.

As many hydrological and ecological research programmes, such as interception 

studies, are undertaken within experimental plots of a few metres square replicated over 

a region of a few hectares or square kilometres (e.g. Wong, 1991), then such studies 

would also benefit from an understanding of the local control of the rainfall pattern.

This study examines the spatial variability in rainfall over a network of 51 storage 

gauges sited within the 4-km2 Sapat Kalisun Experimental Catchment (Figure 4.1). This 

catchment is within a region, centred on the Danum Valley Field Centre (DVFC),

44



Chapter 4. Dynam ic spatial pattern o f  rainfall within a 4-km 2 tropical catchment

which is a focus for research on hydrological flows, erosion, plant ecology and 

physiology. These research programs would greatly benefit from a greater 

understanding of rainfall pattern.

4.2. Experimental region

The Sapat Kalisun Experimental Catchment (ca. 4°58 N and 117°48E) is located 

approximately 50 km west from the Eastern coast of Sabah, Malaysian Borneo 

(Chappell et al., 2001). Outflows from the Sapat Kalisun Experimental Catchment enter 

the River Segama, in its headwater reaches. This major river then drains to the Sulu Sea 

off the Northeast coast of Sabah.
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4.2.1. Climate

The average annual rainfall total recorded at the DVFC meteorological station (1986- 

1999) is 2,712 mm, with standard deviation of 435 mm. The two principal Southeast 

Asian monsoon wind directions -  the Southwest monsoon (May-October) and 

Northeast monsoon (November-April) both deliver relatively similar totals in this part 

of Sabah (Chappell et al., 2001; Table 4.2). Air temperatures and relative humidity is 

also measured at the DVFC meteorological station, which is located in a large forest 

clearing by the River Segama. The average daily maximum and minimum temperatures 

recorded at this site are 30.9 °C and 22.5 °C, respectively. The average relative 

humidity at 8 am is 94.5% and at 2 pm 72% (Marsh and Greer, 1992).

4.2.2. Topography

The Sapat Kalisun Experimental Catchment lies within the Brassey Range of hills in 

Eastern Sabah, where the highest peak, Mount Danum, is at 1093 m a.s.l. (Marsh and 

Greer, 1992). Mount Danum (or ‘Gunung Danum’) is approximately 19.5 km 

Southwest of the centre of the Sapat Kalisun Catchment. The altitudinal range within 

Sapat Kalisun Experimental Catchment itself is 132 to 436 m, the highest point being 

the summit of Atur Hill or ‘Bukit Atur’ (Figure 4.1).

4.2.3. Vegetation

The natural vegetation within the Sapat Kalisun Catchment is ‘lowland, evergreen 

dipterocarp’ forest, with the upper canopy being dominated by Parashorea 

malaanonan, P. tomentella (both White Seraya), Shorea johorensis (Red Seraya) and 

Rubroshorea spp. (Marsh and Greer, 1992). Some commercial trees were, however, 

selectively removed from the Sapat Kalisun Experimental Catchment during the period 

1988-89 (Greer et a l ,  1995) and from its Southwest comer in the early 1980s (Waidi
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Sinun pers. comm). This commercial forestry activity has left a mosaic of land cover 

(Chapter 2). As a consequence, the canopy surface and its properties such as albedo are 

very uneven, thereby potentially affecting local wind fields and evaporative transfers.

4.3. Raingauge network and sampling

A total of 51 storage raingauges were installed within the 4-km 2 Sapat Kalisun 

Experimental Catchment. The gauges were designed specifically for the project, and the 

point measurement errors for storm rainfalls evaluated and found to be < 5 % (Chapter 

3). The records from five of these gauges were not used, due to regular damage by 

elephant and wild boar. Most of the gauges were located along forestry haulage roads, 

typically at a distance of 250 to 400 m apart. The large canopy opening (typically with 

a minimum width of 20-40 m) along the roads minimised the sheltering effects of the 

forest canopy. Fifteen of the raingauges were clustered within the 44 ha Baru 

Experimental Catchment (equivalent to 1 gauge for every 3 ha), a tributary area for 

Sapat Kalisun (Figure 4.1) that has been subject to intensive hydrological and erosion 

studies (e.g. Douglas et al., 1992 & 1999; Greer et al., 1995; Chappell et al., 1998ab, 

1999). The precise location of all of these gauges was measured using a Total Station, 

which is a combined electronic theodolite and laser distance system (Leica TC400). 

Closed-loop traverses were used to both quantify and minimise the errors. The 

minimum slope distance amongst the gauges in a pair was 17 m, the average was 1.52 

km and maximum 3.3 km.

The gauges were monitored every 11 days on average throughout the water year 1st 

May 1997 to 30th April 1998. This period was in fact the driest 12-months period on 

record (1986-1999), being strongly affected by the regionally extensive 1997/98 

drought related to the El Nino-Southern Oscillation or 'ENSO' (Kane, 1999).
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A UK Meteorological Office Mark II (storage) raingauge is located at the DVFC, 

approximately 2-km Southeast of the centre of Sapat Kalisun Experimental Catchment. 

The daily rainfall totals, recorded at this site since 1986, will be used to place the Sapat 

Kalisun Experimental Catchment within the long-term (i.e., inter-annual) setting. 

Rainfall intensity data-series derived from a siphoning-tank raingauge and eight 

datalogged, tipping-bucket raingauges (RG on Figure 4.1) are also available for Sapat 

Kalisun Experimental Catchment (see e.g., Chappell et al., 1999), though these data are 

not analysed within this Chapter.

4.4. Location-independent spatial variability

During the water-year 1st May 1997 to 30th April 1998, the DVFC raingauge recorded

1.520.7 mm precipitation. This figure is 1.7 percent more than the average rainfall of

1.495.8 mm recorded across the 46 reliable gauges within the Sapat Kalisun 

Experimental Catchment (Table 4.1). With the DVFC rainfall total being only 42.3 

percent of the normal rainfall over 1986-1998 period, then the patterns in the statistical 

and spatial distribution of rainfall may be representative only of those patterns 

associated with an ENSO drought.
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Table 4.1: Descriptive statistics of rainfall totals for individual time of measurements and 
periods of monitoring. The ‘paired two samples for mean’ of the South-west and North-east 
monsoons totals was significant in different at P < 0.001 (t=10, df = 32).

Sampling
Period
(Days)

N d Sampling
Day

£(m m ) Min (mm) Max (mm) a  (mm) CV% Gv ( m m )

13 1 13/05/97 8.2 3.6 12.9 2.3 27.6 0.3

7 6 20/05/97 113.9 83.8 158.3 18.5 16.3 2.8

6 2 26/05/97 10.7 4.9 22.3 4.4 41.3 0.7

6 1 01/06/97 22.4 4.9 37.2 8.7 38.9 1.5

17 3 18/06/97 10.3 0.4 27.0 7.9 77.3 1.2

8 4 26/06/97 35.6 12.4 63.5 13.1 36.7 1.9

12 6 08//07/97 73.2 0.4 96.7 15.1 20.7 2.4

3 2 11/07/97 54.0 27.8 120.1 22.7 42.0 3.4

10 5 21/07/97 89.1 60.8 119.1 14.9 16.7 2.2

5 2 26/07/97 14.6 0.4 25.0 4.8 32.6 0.7

4 2 30/07/97 24.0 13.8 41.6 6.6 27.4 1.0

12 4 11/08/97 51.8 18.5 98.9 19.9 38.3 3.0

8 4 19/08/97 26.8 13.2 44.0 7.9 29.5 1.2

18 3 06/09/97 54.2 31.8 80.3 12.7 23.4 1.9

7 2 13/09/97 26.9 13.9 43.4 5.7 21.2 0.8

4 3 17/09/97 14.1 3.6 36.8 7.7 54.5 1.2

6 2 23/09/97 84.7 40.8 128.6 28.6 33.7 4.3

13 5 06/10/97 46.1 33.9 63.7 7.6 16.5 1.1

2 2 08/10/97 17.4 5.8 27.3 5.8 33.5 0.9

13 5 21/10/97 48.4 33.2 61.5 5.9 12.1 0.9

15 7 05/11/97 49.2 29.9 69.7 10.1 20.4 1.5

6 5 11/11/97 93.0 75.8 122.4 12.2 13.2 1.8

16 nc 27/11/97 40.8 29.0 59.4 6.3 15.4 0.9

12 nc 09/12/97 63.3 45.6 104.4 10.4 16.4 1.5

7 nc 16/12/97 18.1 6.6 29.7 6.1 33.8 0.9

6 nc 22/12/97 20.4 14.7 26.4 2.8 13.8 0.4

14 nc 05/01/98 68.4 49.0 95.1 10.7 15.6 1.6

7 nc 12/01/98 12.1 6.0 22.3 2.7 21.9 0.4

29 nc 10/02/98 98.6 64.8 139.6 17.4 17.6 2.6

15 nc 25/02/98 85.1 48.9 108.5 13.2 15.5 2.0

16 nc 13/03/98 60.4 27.7 90.7 18.7 31.0 2.8

29 nc 11/04/98 60.0 40.3 72.0 5.9 9.9 0.9

19 nc 30/04/98 . 14.9 6.7 24.7 4.9 32.7 0.7

A v era g e 45.8 25.8 68.9 10.4 27.2 1.6

Periods of S o u th w est m o n so o n 860.3 669.0 1098.4 103.8 12.1 15.5

Monitoring N o rth ea st m o n so o n 635.1 555.7 770.2 55.3 8.7 8.2

C alen d ar year 1495.8 1300.9 1726.6 92.5 6.2 13.8

Notes:
nc — not counted Nd — number o f  dsily events in dutu. ^ = meun cutch
CV% = Coefficient o f  variation a  = Std. Deviation CTy = Std Error
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The data distribution of storm-based rainfall totals across Sapat Kalisun Experimental 

Catchment is seen to be Guassian for both 6 -month and 12-month integration periods 

(Figure 4.2). The catchment-average rainfall totals for the Southwest monsoon were, 

however, seen to be statistically different (P < 0.001) to those for the Northeast 

monsoon of the 1997/98 water-year (Table 4.1). In contrast, there is no statistical 

difference (P < 0.1) in the DVFC-gauge rainfall total between the two 6 -month periods 

if all of the 13-year records from May 1986 to April 1998 are examined (Table 4.2). It 

may be concluded, therefore, that in this region of North-eastern Borneo the proportion 

of the annual rainfall appearing within each monsoon may change dramatically from 

year to year, and that one monsoon is not consistently wetter than the other.
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Figure 4.2: Box-and-whisker plots (Wrinkler and Hays, 1975) of the statistical distribution of 6 - 
month and 12-month rainfall totals during the Southwest monsoon (1 May 1997 to 31 October 
1997), Northeast monsoon (1 November 1997 to 30 April 1998) and water year 1 May 1997 -  
30 April 1998.

The coefficient of variation (CV) for the rainfall totals in Sapat Kalisun Experimental 

Catchment varies between the 6 -month integration periods. The Southwest monsoon 

has a CV of 12.1 percent, while the Northeast monsoon has a CV of only 8.7 percent
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(Table 4.1). The large CV for Southwest monsoon also can be seen in the larger range, 

with the highest catch of 1,098.4 mm (OP17) receiving 64.2 percent more rainfall than 

the lowest catch of 669.0 mm at gauge OP25. The CV over the whole year is 6 .2  

percent (Table 4.1). The greater relative variation in gauge catches over the Southwest 

monsoon may reflect either (i) a greater proportion of the rainfall falling in localised 

cells of meso-scale convective systems, or (ii) stronger local topographic forcing with 

the winds arriving from a South-westerly direction.

T able 4.2: S eason al rainfall totals for D V FC  study area from  M ay 1986 to April 1998

Years South-w est North-east M ay - Apr 

(water year)

86/87 962.5 1124.7 2087.2

87/88 1080.7 1733.3 2814

88/89 1134.3 1685.2 2819.5

89/90 1728.4 1153.6 2882

90/91 1596.55 1088.7 2685.25

91/92 1308.95 931.9 2240.85

92/93 1616 1384 3000

93/94 1113 1609.5 2722.5

94/95 1179.9 1470.1 2650

95/96 1969.9 1821.2 3791.1

96/97 1324.7 1112 2436.7

97/98* 857.5 663.2 1520.7

M ean 1322.7 1314.8 2637.5

a  (mm) 322.7 342.8 527.9

CV (%) 24.4 26.1 20.0

Gy (mm) 93.1 99.0 152.4

Notes:
* Study period CV = Coefficient o f variation
a  = Std. Deviation Gy =  Std error o f mean
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As the sampling period reduces between 2 and 29 days, then the variations in the 

rainfall catch across the Sapat Kalisun Catchment increase to an average of 27.2% 

(Table 4.1). Just considering the stochastic nature of the development of individual 

cumulus clouds in a region, then averaging over progressively larger periods will 

indeed be expected to remove some of the variability. The large range in the variability 

of 10 to 70% CV for different 2-29 days periods is in part related to variation in the size 

of rain event within each period (Figure 4.3). Smaller events tend to be more localised, 

and hence give a higher spatial variability (Hutchinson, 1969, 1970; Goodrich et al., 

1995). Clearly, this has implications for the number of raingauges required to 

characterise the average rainfall over a catchment to a pre-determined level of accuracy.
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Figure 4.3: The relative measurement error estimates (coefficient of variation, CV%) as a 
function of event sizes of Sapat Kalisun Experimental Catchment rainfalls. This relationship is 
comparable to the data of Goodrich et a l (1995). Values shown on the individual data points 
are number of daily events contained in the data respectively.
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Figure 4.4 shows that the reduction in the standard error with the addition of raingauges 

to a network is greater for a 6 -month period, than for a single daily event (e.g. 23 

September 1997). Thus, more raingauges must be added to a network to have the same 

effect on constraining uncertainty, if event-based or weekly sampling is undertaken.
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Figure 4.4: Uncertainties in rainfall measurement produced by different number of gauges 
showing the clear reduction from (a) daily total on 23/09/1997 (two events) to (b) 6 -month total 
from 1 May 1997 to 31 Oct 1997. The gauges selected as a purely random sampling. The 
standard error decreases as the number of sample increases as suggested by Taylor (1982) 
apparent for both data periods.
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The large variation in the rainfall totals within the small 4-km 2 study area are 

comparable to those in other recent studies with convective rainfall (e.g. Maimer, 1992; 

Goodrich et al., 1995). For example, Maimer (1992) observed a maximum difference in 

annual point rainfall of almost 1 0 0 0  mm amongst 1 2 -gauges within small catchments of 

3.4 to 18.2 ha in the Southwestern Sabah. Similarly, Goodrich (1990) reported that two 

rain gauges approximately 300 m apart often provided significantly different estimates 

of rainfall depth and intensity in a region characterised by convective thunderstorms. 

Further, they noted that rainfall-runoff models were very sensitive to this small-scale 

variability in rainfall. Goodrich et al. (1995) and Faures et al. (1995) also noted 

catchment model sensitivity to rainfall variability.

4.5. Location-dependent spatial variability: distance effects

Geostatistical analysis shows that many environmental variables become more 

dissimilar as distance between sampling point increases (Myers, 1997; Ashraf et al., 

1997). The correlation between all combinations of raingauge pairs (Cr) was, therefore, 

calculated using:

and Sxy is the sample covariance, Sx and Sy are the sample standard deviations for 

variable X and Y respectively and n is number of samples (McPherson, 1990). This 

spatial autocorrelation is examined for the rainfall for each raingauge over all events in 

the 1 2 -month study period, and because the coefficient of variation for the two 

monsoons are different, for events in these two separate periods also. The results are

C r = — -  
SxSy

[4.1]

where [4.2]
i=l
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shown within Figure 4.5. A linear model can be fitted to the inter-gauge correlation for 

separation distances of between 0.017 and 3.3 km. It can be seen from Figure 4.5 that 

rainfall totals remain much more similar with increasing gauge separation during the 

Northeast monsoon, in comparison to the Southwest monsoon. This may mean that 

rainfall during the Southwest monsoon in Northeast Borneo is more localised or 

‘patchy’ than that in the Northeast monsoon. This greater variability of rainfall during 

the Southwest monsoon could be caused by (1) a greater proportion of events with 

smaller rainfall totals or (2) the interaction of the South-westerly wind direction with 

the local topography with the Sapat Kalisun Catchment.

Against correlation-distance functions for other regions with convective rainfall the 

Sapat Kalisun data show relatively steep relationships (Figure 4.6). Thus, the rainfall 

variability across the Sapat Kalisun Catchment is highly localised even for regions of 

the globe dominated by convective rainfall.
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(D) for different periods of monitoring. Equations and r2 of the relationships in brackets are
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Figure 4.6: Inter-station (gauge) correlation (Cr) against distance between gauges for different 
regions with convective rainfall (after Sharon, 1972; Jackson, 1978) and comparison with the 
present study in East Sabah (Sapat Kalisun Experimental Catchment). Number of gauge pairs 
(n) is given in the legend.

A simple measure of the degree localisation of rainfall is the distance where the inter­

gauge correlation Cr = 0.9 (Hershfield, 1965; Hendrick and Comer, 1970; Hutchinson, 

1972). For the 12-month of 1 May 1997 to 30 April 1998 the separation distance within 

the Sapat Kalisun where Cr = 0.9 is 1.155 km (Table 4.3). This is again indicates a high 

degree of localisation relative to other areas of convective rainfall (Table 4.4). The lag 

distance at which Cr = 0.9 for the Southwest and Northeast monsoon periods is 1.059 

km and 1.119 km respectively. Similar seasonal variations in spatial correlation 

function have been observed elsewhere {e.g. Stol, 1972; Jackson, 1978; Duchon et a l., 

1995).
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Table 4.3: Values of inter-gauge correlation (Cr), percentage of gauge pairs having Cr values > 
0.90, and distance between gauges in pair (D) from the regression lines when C ^ 9 for different 
period of rainfall measurements across Sapat Kalisun Catchment.

Data periods l st6-months 
(South west monsoon)

2nd 6-months 
(North-east monsoon)

12-months 
(May 97 - Apr 98)

Mean Cr 0.865 0.920 0.874

Coeff. o f variation Cr (%) 8.90 5.87 8.24

% Cr > 0.90 42 71 41

Distance (km) at Cr0 9 1.059 1.119 1.155

Table 4.4: Distance (D) for Cr 0.9 and Cr for D = 10 km of for inter-gauge 
in different climatic regions. All values estimated (re-analysed) from the C 
lines or equations reported by the individual authors.

correlation estimates 
r -distance regression

Type of data/event D at Cr0s1 Cr at 10 km Site / Region Source

Largest summer storm 0.75 0.06 Walnut Gulch, Arizona Sharon (1972)

Individual events 1.00 0.25 Central Florida Duchon et al. (1995)

Largest summer storm 1.05 0.46 Coshocton, Ohio Sharon (1972)

Summer, air mass storm 4.95 0.75 East Central Illinois Sharon (1972)

Daily convective events 5.48 0.83 South-eastern N.England Sharon (1974)

Monthly totals 3.00 0.62 Ruvu Basin, Tanzania Jackson (1974)

Totals o f one to seven 
daily events

1.15 0.27 Danum Valley, Malaysia This study
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4.6. Location-dependent spatial variability: relief and aspect.

Where winds drive air over topographic obstacles, where relief maybe as low as 50 m 

and stratiform conditions exist, the rainfall will be enhanced (Bergeson, 1964; Barry, 

1981; Bradley et al., 1997). Monsoonal changes in wind direction may, therefore, result 

in different sides of topographic obstacles receiving the greater rainfall. Aspect will 

also effect rainfall, with east facing slopes being heated more, giving greater uplift and 

hence greater rainfall just downwind (Barry, 1981). The shape or profile of obstacles 

will also effect the location of the rainfall enhancement. W here air is forced to rise 

quickly up steep slopes, then rainfall may be enhanced on the windward side. Where 

only gentle slopes are encountered, then the weak uplift may give rise to rainfall just 

over the hill (Thielen, 1994). To assess the relief effect on the rainfall across the Sapat 

Kalisun Catchment rainfall totals are independently correlated with altitude and then 

with aspect.

By splitting the rainfall totals into averages for each monsoon period, it can be seen that 

during the Southwest monsoon rainfall is positively correlated with altitude but 

negatively correlated during the Northeast monsoon (Figure 4.7). Rainfall 

measurements on the large topographic obstacle of Atur Hill or T3ukit A tur’ (Figure 

4.11) appear to show a different distribution. The pattern simplifies if the Bukit Atur 

(BA) raingauges are excluded from the analysis (Figure 4.7). If single storms are 

examined, then positive correlations are again seen for most storms within the 

Southwest monsoon, and negative correlations for most storms within the Northeast 

monsoon. Figure 4.8 shows the correlation for storm on the 18 June 1997 (Southwest 

monsoon) and 13 March 1998 (Northeast monsoon). As expected, the strength of the 

altitude:rainfall correlation increases if a single event is examined.
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X Southwest o  Northeast
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r  iooo -

P = 2.214E + 314.59 
(R2 = 0.4663)

900 -

800 - BA Gauges
700 - 

600 -
P = -0.21 IE + 689.62 

R2 = 0.0417
P = -0.88E + 84£ 
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Figure 4.7: Altitudinal effects on spatial rainfall showing also the possible influence of local 
relief on the distribution of 6 -month rainfall totals represented each monsoon. The R2 in 
brackets are when gauges in Bukit Atur (BA) excluded in the regression analysis. The dashed 
regression line is when BA gauges included in the catch-elevation relationship.

o  13/03/98 (Northeast) X 18/6/97 (Southwest)

100

160 210 260 310 360 410 460

Elevation above sea level, E (m)

Figure 4.8: Altitudinal effects on spatial rainfall showing also the possible influence of local 
relief on the rainfall distribution for different periods of measurement. The regression analyses 
exclude gauges in Bukit Atur (BA).
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As there is no direct mechanism whereby decreasing altitude enhances rainfall in the 

Northeast monsoon, the correlation with altitude are likely to be caused by a more 

complex topographic effect than simple relief or altitude forcing.

The effect of aspect on rainfall distribution was analysed by correlation with the 

bearing for each monsoon period (Table 4.5, Figure 4.9 a, b, c, and d). It can be seen 

that during the Southwest monsoon, rainfall increases in an Easterly and North-easterly 

direction (Figure 4.9 b & c), while during the Northeast monsoon rainfall increases in 

northerly and north-westerly directions (Figure 4.9 a & d). Explanation of such 

phenomena is not achieved with correlation of the independent topographic effects, but 

requires discussion of the whole regional structure.

Table 4.5: B asic statistics o f  regression analysis for integration periods o f  rainfall totals against 
their relative d irections (n=46) sh ow ing the mark changes in the rainfall distribution trends 
b etw een  the tw o m onsoon  periods.

D irections
South-w est m onsoon N orth-east m onsoon

P level Trend r2 P level Trend r2

Easting 0.001 +ve 0.51 0.001 -ve 0.23

North-easting 0.001 +ve 0.26 Ns* -ve 0.13

Northing Ns -ve 0.04 0.01 +ve 0.20

North-west 0.001 -ve 0.46 0.001 +ve 0.50

Notes:
Ns -  not significant
Ns* - significant at P < 0.01 when BA gauges excluded
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Figure 4.9: Rainfall delivered within the Southwest and Northeast monsoon periods as a 
function of their relative bearing as shown
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4.7. Location-dependent spatial variability: conceptual model of 
topographic controls

Figures 4.10 and 4.11 show the raingauge location and rainfall catch proportional to 

symbol diameters for the Southwest and Northeast monsoons respectively. There is 

clearly some similarity in catch recorded by adjacent gauges. These same data are then 

plotted over the underlying regional topography (Figures 4.12 and 4.13). During the 

Southwest monsoon, the winds over the region are predominantly from a Southwest 

direction. There will be a funnelling of winds northwards along the Segama Valley (to 

the East of Rhino Ridge in Figure 4.12).

Rainfall (Southwest monsoon)
3.5

c 2 . 5

4.53 3.5
True East (m)

2.5

Figure 4.10: Point rainfall totals proportional to symbol diameter during the Southwest 
monsoon.
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Rainfall (Northeast monsoon)
3.5

^ 2 . 5

3.5 4 4.52.5 3 51.5 2
True East (m)

Figure 4.11: Point rainfall totals proportional to symbol diameter during the Northeast 
monsoon.

These winds are then expected to lift air up the steep Southwest facing slopes of the 

high point of Bukit Atur (Figure 4.12). This strong uplift, in an area of conditional 

instability (Mclllveen, pers. comm.), may explain the high precipitation recorded on 

these Southwest facing slopes of Bukit Atur. The small rainfall catch on the Southwest 

facing slopes of the Barn catchment (Figure 4.12) might be caused by a weak clockwise 

airflow within the valley to the North of the Sapat Kalisun (Theilen, 1994).
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Weak (slow) 
and dry

Bukit Atur

j rj  v :
3 2 5
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Ridge/' f

Sapat 
Kali sun

DVFC

Southwest A
m on^arK  1 / 4

Rhino

Figure 4.12: The possible wind field during Southwest monsoon over the study region. The 
circles are proportional to the rainfall totals.

During the Northeast monsoon the strong uplift generated as air is pushed up the 

Northeast facing slopes of Bukit Atur is likely to generate high rainfall in this area. The 

resultant drier air that descends over the hill is likely to give less rainfall. Less rainfall 

is indeed observed on the Southwest facing slopes of Bukit Atur during the Northwest 

monsoon (Figure 4.13). The reduced wind velocity of a further component of the air 

being pushed around Bukit Atur would also be expected to give rise to reduced rainfall 

west of Bukit Atur. It may be that some of the air is forced around the Northern slopes 

of Bukit Atur is then lifted weakly over the small hill comprising the headwaters of the 

Baru catchment (Figures 4.1 and 4.13). Weak uplift may explain the elevated rainfall 

just over the hill of the Baru headwater (Theilen, 1994).
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Northeast
monsoon

Bukit Atur

Sapat
Kaljsunf  - 3 2 5

Elephant 
, Ridge^ ”

Dry air ' ,
Often rain on 
upwind /S id e '

/  r
DVFC

Figure 4.13: The likely wind field during Northeast monsoon over the study region. The circles 
are proportional to the rainfall totals.

4.8. Conclusions

This study was undertaken within a region experiencing summer and winter monsoons 

(Southwest and Northeast monsoons, respectively) delivering similar rainfall totals, as 

seen at other equatorial regions (Shaw, 1988). The 4 km 2 study catchment was within 

the interior of Borneo, in an area of undulating topography, and that received most of 

its rainfall in the mid afternoon (i.e., typical of a climatic system dominated by local 

convective storms). These conditions seem to have given rise to very large spatial 

variability or localisation’ in rainfall. This variability is seen within the simple range of 

rainfall catches and in the large loss of inter-gauge correlation (Cr) with distance. This 

variability is even high when compared against other areas with convective activity. For 

example, the distance at which the Cr falls to 0.9 is only 1.155 km within the Sapat
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Kalisun Catchment, against 4.95 km within Central Illinois (Sharon, 1972) and 3.00 km 

in the Ruvu Basin, Tanzania (Jackson, 1994). This rainfall localisation is particularly 

apparent during the Southwest monsoon, perhaps where more of the rainfall is 

delivered in local convective systems, rather than the meso-scale ’stratiform’ systems 

that the region also experiences (Chapter 5).

Strong correlations are seen between each season’s rainfall and both the altitude and 

bearing, though the physical explanation requires at least a conceptual understanding of 

the local wind fields within region incorporating the Sapat Kalisun Catchment. This 

means that a raingauge spacing of even one gauge per 1.155 km (i.e., where Cr = 0.9) 

may not capture the important topographic controls, that change dramatically from the 

Southwest to the Northeast monsoon, on rainfall totals.

Further geostatistical analysis, leading to a kriged rainfall map, is currently being 

undertaken, as this may help explain the patterns of rainfall. This is, however, not 

trivial given the significant role of the topography in generating ’deterministic drift’ 

within the variogram (Chappell et al., 2001), which must be removed (i.e., modelled) 

before the true stochastic nature of the variogram can be accurate characterised. The 

application of a numerical model of the wind fields (e.g., Theilen, 1994) in the 10-30 

km2 region about the Sapat Kalisun Catchment, would aid in this analysis, and would 

test the conceptual wind fields postulated in this chapter. Assurance in the modelling of 

wind fields would really need measurements of the vertical profile of the atmosphere 

about the Danum Valley area.
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Chapter 5

Characteristics of rain-events at an inland locality in 
Northeastern Borneo, Malaysia.

To be submitted as Bidin, K., Chappell, N.A., Douglas, I. and Walsh, R.P.D. Characteristics of rain- 
events at an inland locality in Northeastern Borneo, Malaysia. Agricultural and Forest M eteorology.

Understanding the intensity and duration of tropical rain-events is important to the rate 

and timing of wet-canopy evaporation, the suppression of transpiration, the generation 

of infiltration-excess overland flow and hence to erosion, and to the overall catchment 

responsiveness. Despite this central role, few studies have addressed the characteristics 

of equatorial rainstorms. This study analyses rainfall data for the region in the vicinity 

of the 4 km Sapat Kalisun Experimental Catchment in the interior of Northeastern 

Borneo, collected at sampling frequencies from 1-minute to one day.

The work clearly shows that most rainfall within this inland, forested area is received 

during regular short duration events (< 15 minutes) that have a low intensity (i.e., < 10 

mm hr ' 1 equivalent, sampled at 5-minute interval). The rainfall appears localised, with 

significant losses in inter-gauge correlations being observable in minutes in the case of 

the typical mid-afternoon, convective events. This suggests that a dense raingauge 

network, sampled at a high temporal intensity, is required for accurate rainfall-runoff 

modelling, and given the lack of rainfalls exceeding soil infiltration rates, the local 

riverflow flashiness more likely governed by quick subsurface responses.



Chapter 5. Characteristics o f  rain-events at an inland locality  in Northeastern Borneo, M alaysia

5.1. Introduction

The characteristics of rain-events regulate shallow water-table fluctuation (Bidin et a l ,  

1993), river responsiveness (Bidin, 1995), the rate and distribution of soil erosion 

(Douglas et a l ,  1999), and the rate of wet-canopy evaporation (Lloyd, 1990; Asdak et 

a l ,  1998ab; Schellekens et a l ,  1999; Chappell et a l ,  2001). Maimer (1990, 1992), 

Douglas and Bidin (1994), Greer et a l  (1995), Goodrich et a l  (1995) and Greer et a l  

(1998) have attributed temporal variation in geomorphic activity to the temporal 

dynamics of rainfall. Longer-term temporal variations in rainfall, including (i) annual 

seasonality, (ii) inter-annual cycles, and (iii) ‘long-term’ drift, have already been shown 

to affect riverflow and sediment behaviour within the interior of Borneo (Douglas et a l ,  

1999; Chappell et a l ,  2001). Within this study, the short-term or 'within storm' 

variations are characterised for the same region.

5.2. Research site and instrumentation

This study was carried out within the vicinity of the Danum Valley Field Centre 

(DVFC) region in the Ulu Segama Forest Reserve of Sabah, in the interior of Malaysian 

Borneo (Figure 5 .lab).

The 13-year average annual rainfall recorded at the DVFC meteorological station 

(1986-1999) is 2,712 mm, with a standard deviation of 435 mm. Using 12 years of the 

records, the Southwest monsoon (Apr-Oct) produced an average of 1323 mm rainfall 

per 6 -months, while the Northeast monsoon (Nov-Mar) produced an average of 1315 

mm rainfall per 6 -months. All but one of the raingauges used within the study were 

located within the 4-km2 Sapat Kalisun Experimental Catchment (Figure 5.1b). 

Raingauges were sited at ground-surface altitudes of between 132 and 436 m.
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South China Sea

equator

Kota Kinabalu
Sandakan

Lahad Datu

Mount Silam
Sabah DVFC

Tawau

Figure 5.1a. The location of the Danum Valley Field Centre within Northeastern Borneo, 
Southeast Asia (adapted from Chappell et al., 2001)

The rainfall data were collected by the 8 existing recording raingauges (Casella tipping 

bucket mechanism, attached to a Technolog data-logger) and a UK Meteorological 

Office Mark II storage gauge. All gauges were installed in large canopy openings not 

less than 40 m in diameter. Further, all gauges were geo-referenced by surveying in 

closed-loop traverses using an electronic theodolite. Tipping buckets were set to tip on 

receipt of 0 .2  mm of rainfall.

5.3. Diurnal distribution of rainfall per season

The diurnal distribution of gross rainfall averaged over a 3-year period (1995-1997) at 

the K M 63’ raingauge (Figure 5.1b) was presented by Chappell et a l ,  (2001).
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Figure 5.1b: The study area within the Ulu Segama Forest Reserve of Sabah, M alaysia showing 
the location of recording raingauges installed within the Sapat Kalisun and Baru Experimental 
Catchments and a MKII storage gauge installed in the DVFC M eteorological Station.

Seasonal changes in this diurnal pattern at this same raingauge are presented here using 

three water-years from 1 May 1995 to 30 April 1998 (Figure 5.2). The graphical 

summary of 2-hour rainfall for each monsoon period (Figure 5.2) clearly shows a very 

strong diurnal cycle. The higher percentage of rainfall generally occurred in the mid 

afternoon. This is probably as a result of localised convective rainfall events from 

clouds developed by solar heating through the day (Batan, 1979). Figures 5.2 also 

shows that there are greater morning rainfalls during the Northeast monsoon in 

comparison to the Southwest monsoon. This may be the result of greater amounts of
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rainfall from meso-scale stratiform systems in the Northeast monsoon. The simple 

unimodal diurnal cycle appears to be disrupted during the November 1997 - March 

1998 period (Northeast monsoon) at the trough of the El Nino-Southern Oscillation or 

E N SO ’ cycle (cf. Chappell et a l ,  2001).

5.4. Seasonal distribution of rain hours

Five minute sampled rainfall data were used to show those hours with or without 

rainfall (Figure 5.3). These data summarised in Table 5.1, show that the proportion of 

hours on record that received rainfall was less than 5 percent, with the Southwest 

monsoon having slightly fewer rain-hours than the Northwest monsoon. This would 

again be consistent with a greater presence of stratiform rainfalls during the Northeast 

monsoon.

During the ’April - October 1997’ and ’November 1997 - May 1998’ monsoons that 

occurred during the ENSO drought less than 2 percent of the hour periods had rainfall 

(Table 5.1) In all periods, intensities < 10 mm hr ' 1 sampled on 5-minute periods 

dominated the time-series (Table 5.2). Clearly, this contradicts the popular perception 

that most rainfall within tropical regions has a high intensity.
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Table 5.1: Total hours of actual rainfall at KM 63 site near DVFC. The rainy hours are 
comparable for the south-west (SW) and north-east (NE) monsoons for each annual season.

Period
----------- 1 995 /96 -— ........-

Rainy hours % wet spell1

------------ 1996/97-------------

Rainy hours % wet spell1

------------ 1997/98-------------

Rainy hours % wet spell1

SW 158.7 3.59 142.4 3.23 81.7 1.85

NE 187.3 4.27 152.1 3.50 81.9 1.89

Total 346 294.5 163.6

N o tes:

1 P er cen ta g e  du ration  o f  w e t sp e lls  o v e r  th e  m o n ito r in g  p er iod s resp e c tiv e ly

Table 5.2: Rainy hours for different intensity classes over the 1995/96 to 1997/98 monitoring 
periods. Values in bracket are percentage duration of wet spells over each period.

Five minutes 
intensity 
(mmhr'1)

1995/96 1996/97 1997/98

SW NE SW NE SW NE

2.4< I >10 119.5 (2.71) 160.8 (3.64) 110.2 (2.49) 127.1 (2.88) 59.8 (1.35) 68.3 (1.55)

10< I >20 16.1 (0.36) 12.8 (0.29) 14.3 (0.32) 11.3 (0.26) 8.4 (0.19) 7.0 (0.16)

20< I >30 9.2 (0.21) 5.8 (0.13) 6.3 (0.14) 5.8 (0.13) 4.5 (0.1) 2.4 (0.05)

30< I >40 4.3 (0.10) 4.1 (0.09) 3.8 (0.08) 2.9 (0.07) 2.2 (0.05) 1.1 (0.02)

40< I >50 2.4 (0.05) 1.7 (0.04) 2.4 (0.05) 2.0 (0.05) 1.6 (0.04) 1.5 (0.03)

50< I >60 3.0 (0.07) 1.2 (0.03) 2.3 (0.05) 0.9 (0.02) 2.1 (0.05) 0.8 (0.02)

60< I >70 1.3 (0.03) 0.3 (0.01) 1.0 (0.02) 0.8 (0.02) 1.5 (0.03) 0.4 (0.01)

70< I >80 0.8 (0.02) 0.4 (0.01) 0.4 (0.01) 0.5 (0.01) 1.0 (0.02) 0.1 (0.00)

80< I >90 1.1 (0.02) 0.2 (0.00) 0.4 (0.01) 0.4 (0.01) 0.3 (0.01) 0.0 (0.00)

90< I >100 0.4 (0.01) - (0.00) 0.7 (0.02) 0.3 (0.01) 0.0 (0.00) 0.0 (0.00)

100< I >110 0.3 (0.01) - (0.00) 0.3 (0.01) 0.1 (0.00) 0.2 (0.00) 0.1 (0.00)

110< I >120 0.2 (0.00) - (0.00) 0.4 (0.01) - (0.00) 0.1 (0.00) 0.0 (0.00)

120< I >130 - (0.00) - (0.00) 0.1 (0.00) - (0.00) 0.0 (0.00) 0.0 (0.00)

130< I >140 - (0.00) - (0.00) 0.1 (0.00) - (0.00) 0.0 (0.00) 0.1 (0.00)

140< I >150 - (0.00) - (0.00) - (0.00) - (0.00) 0.1 (0.00) 0.1 (0.00)

>150 0.1 (0.00) - (0.00) - (0.00) - (0.00) 0.0 (0.00) 0.0 (0.00)

Totals 158.7 (3.6) 187.3 (4.2) 142.4 3.2 152.1 3.5 81.7 1.85 81.9 (FB9)
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Figure 5.2. Diurnal distribution of rainfall for different monsoon period recorded at KM63 site.
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Figure 5 .3 . Presence and absence o f  rain events at K M 63 near D V FC  within the period from  1 
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rain recorded, and each row represents a different day.
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5.5. Rainfall intensity and duration

The rainfall intensity and storm duration for all 3-calendar years of rain-events 

monitored at the ’KM 63’ gauge were analysed.

5.5.1. Rain-event intensity

Figure 5.4 shows that 5-minute intensities rarely exceeded 100 mm hr ' 1 equivalent and 

most of the 5-minute intensities were below 10 mm hr ' 1 (Table 5.3). Only on 26- 

occasions over the three year period (May 95 to April 1998) was a 5-minute intensity 

equal or above 100 mmhr ' 1 recorded. This observation is consistent with the analysis of 

Sherlock (1997) for the same study region, which found that the 5-minute rainfall 

intensities in excess of 100 mm hr ' 1 had a return-period of 139.6 days.

Table 5.4 shows that no events were recorded with an average intensity of greater than 

50 mm hr ' 1 sustained for more than 25 minutes. Indeed, over the 3-calendar years only 

two extreme events occurring on the 24 October 1995 and 16 January 1996 (Douglas et 

a l ,  1999) had an average of 50 mmhr' 1 sustained for 25-minutes. During all other 

periods, 50 mmhr ' 1 equivalent intensities were not sustained for more than 1 0 -minutes 

(Table 5.4).
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rainfall intensity recorded at Site KM63.
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Table 5.3. Frequency of 5-minute events occurring at different intensity classes over the 
1995/96 to 1997/98 monitoring period. Values in bracket are percentage frequency of 
occurrence.

F ive  m inutes 
intensity  
(m m hr'1)

1995/96 1996/97 1997/98

SW NE SW NE SW NE

2.4< I >10 1434 (75.3) 1929 (85.8) 1322 (77.4) 1525 (83.6) 717 (73.2) 820 (83.4)

10< I >20 193 (10.1) 153 (6.8) 171 (10.0) 136 (7.5) 101 (10.3) 84 (8.5)

20< I >30 110 (5.8) 70 (3.1) 75 (4.4) 70 (3.8) 54 (5.5) 29 (3.0)

30< I >40 52 (2.7) 49 (2.2) 45 (2.6) 35 (1.9) 26 (2.7) 13 (1.3)

40< I >50 29 (1.5) 21 (0.9) 29 (1.7) 24 (1.3) 19 (1.9) 18 (1.8)

50< I >60 36 (1.9) 14 (0.6) 27 (1.6) 11 (0.6) 25 (2.6) 10 (1.0)

60< I >70 16 (0.8) 4 (0.2) 12 (0.7) 9 (0.5) 18 (1.8) 5 (0.5)

70< I >80 9 (0.5) 5 (0.2) 5 (0.3) 6 (0.3) 12 (1.2) 1 (0.1)

80< I >90 13 (0.7) 2 (0.1) 5 (0.3) 5 (0.3) 4 (0.4) - (0.0)

90< I >100 5 (0.3) - (0.0) 8 (0.5) 3 (0.2) - (0.0) - (0.0)

100< I >110 4 (0.2) - (0.0) 3 (0.2) 1 (0.1) 2 (0.2) 1 (0.1)

110< I >120 2 (0.1) - (0.0) 5 (0.3) - (0.0) 1 (0.1) - (0.0)

120< I >130 - (0.0) - (0.0) 1 (0.1) - (0.0) - (0.0) - (0.0)

130< I >140 - (0.0) - (0.0) 1 (0.1) - (0.0) - (0.0) 1 (0.1)

140< I >150 - (0.0) - (0.0) - (0.0) - (0.0) 1 (0.1) 1 (0.1)

>150 1 (0.1) 1 (0.0) - (0.0) - (0.0) - (0.0) - (0.0)

Totals 1904 (100) 2248 (100) 1709 (100) 1825 (100) 980 (100) 983 (100)

Table 5.4: Occurrence/frequency of a high intensity events (50 mmhr' 1 and above) sustained for 
the given duration at Site KM63 for the Southwest (SW) and Northeast (NE) monsoon periods.

Duration (minutes) 10 15 2 0 25

Data period SW NE SW NE SW NE SW NE

1995/96 7 2 - - - - 1 -

1996/97 3 2 - - - - 1 -

1997/98 1 1 - - - - - -
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Generally, the more intense rainfalls are seen within the Southwest monsoon (Figure 

5.4, Table 5.4). Further, a greater proportion of the total rainfall delivered by high 

intensity events is seen within the Southwest monsoon (Figure 5.5).
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Figure 5.5: Percentages of rainfall delivered at given intensity classes for 5 minutes time steps 
within each data period (shown in each graph) at Site KM63.
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5.5.2. Storm duration

F or the analysis o f  storm  duration , storm  events w ere delim ited  by periods o f 20 

m inu tes or m ore w ithou t a ra ingauge tip (i.e., > 0 .2 m m  rainfall). T he  dura tion  o f all 

storm  even ts recorded  at the ’K M 6 3 ’ gauge during  the N o v e m b e r 1997 - M ay 1998’ and 

’A pril - O c tober 1998’ periods delim ited  by this criterion  w as then defined . T hese data  

are sum m arised  in F igure 5.6.
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Figure 5.6: Rainfall events storm duration for different monsoon periods as indicated in each 
graph recorded at Site Km63.

8 1



Chapter 5. Characteristics o f  rain-events at an inland locality  in Northeastern Borneo, M alaysia

During the ’November 1997 - May 1998’drought period (Northeast monsoon), 78 % of 

all events lasted for less than 15 minutes, in comparison to 52 % of all events in the 

April-October 1997’ period (Southwest monsoon). Almost all rainfall is delivered 

within the first 80-100 minutes of each event (Figure 5.6).

5.6. Spatial variation of daily rainfall incidence

The spatial variation of raindays recorded by 9 raingauges within a region of less than 

10 km 2 (Figure 5.1b) were analysed for the 12-month period 1 May 1997 to 30 April 

1998.

Table 5.5 shows that the frequency of dry days is comparable for gauges in the centre 

of the region, but ranges from 161 to 217 days in the East and W est respectively. 

Spatial variation in the number of wet days with a particular rainfall total was seen to 

increase as daily total increased (Table 5.5).

Figures 5.7 and 5.8 show that recording a ‘wet’ day at one site whilst recording a ‘dry’ 

day at the other site ( ‘wet but dry’) was a common phenomenon within the 1 0 -km 

study area. For example, over the 365-days of monitoring there were 36 occasions 

where wet-days (daily total more than 1 mm) were recorded at Bukir Atur (BA) while 

no rainfall (strictly < 0 .2  mm rainfall required to tip the raingauge mechanism) was 

observed at DVFC, only 4.7-km to the South. Wet days were recorded at BA for 17% 

of the total number of dry-days at DVFC. Similarly about 22% of the annual rainfall 

recorded at BA occurred when DVFC was completely dry (Figure 5.7b). On ten 

occasions when DVFC was dry, BA had daily totals greater than 10 mm (Table 5.6). 

However, the ‘wet and dry’ phenomenon seems to be unusual for gauges less than 1-km 

apart, as within the Baru Catchment (Figures 5.8 and 5.9; Table 5.7). Figure 5.9, while
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somewhat heteroscedasic {i.e., unequal variance along the trendline), shows how the 

number of wet and dry’ days significantly increased as the distance between gauges 

increased (r2 = 0.6649, P < 0.001).

Table 5.5: Frequency (n) of dry and wet days for 9-rainfall monitoring sites within ca. 10-km2 
area (12-month data from 1 may 97 - April 98). Daily totals equal to or more than 0.2 mm 
considered as a wet day. Rainfall totals over the 12-months monitoring period also shown.

Site
Dry days Wet days for daily totals sizes

Annual 
Totals (mm)

n ! % 0.2 <> 5 mm > 5 mm >10 mm > 25 mm > 50 mm

Site 6 196 | 53.7 100 69 40 12 2 1317.9
Site 5 196 | 53.7 100 67 42 12 5 1344.8

Site 4 190 | 52.1 106 68 43 15 5 1405.4

Site 3 201 | 55.1 93 71 44 15 5 1445.8

Site 1 194 | 53.2 112 57 34 14 2 1198.2

SEG. 196 | 53.7 103 65 44 12 3 1307.8

Km63 190 | 52.1 100 73 40 20 4 1566.0

B.Atur 161 | 44.1 129 74 46 10 3 1342.2

DVFC 217 | 59.5 73 72 47 19 3 1524.5

Average 193.4 | 53.0 101.8 68.4 42.2 14.3 3.6 1383.6

Stdev 14.6 | 14.9 5.2 3.9 3.4 1.2 114.6

CV% 7.6 | 14.7 7.6 9.2 23.4 34.8 8.3
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Table 5.6: Frequency of rain-days recorded at particular sites (daily totals > 1 mm) compared to 
DVFC site when reported completely dry (daily totals < 0.2 mm). Percentages of rain-days 
(>lmm) over number of dry-days at DVFC are also given.

Wet Site Distance (km) 
from DVFC >10mm

Number of rain-days 

>5mm >1mm
%1mm

Site 6 2.087 4 8 19 9.26

Site 5 2.072 4 8 18 9.26

Site 4 1.834 3 6 18 8.33

Site 3 1.663 4 9 20 8.33

Site 1 1.809 3 6 18 9.26

SEG. 1.93 4 8 20 8.33

Km63 1.781 3 9 20 8.8

B. Atur 4.684 10 16 36 16.67

Table 5.7: Frequency of rain-days recorded at particular sites (daily totals > 1 mm) compared to 
Site 5 when reported completely dry (daily totals < 0.2 mm). Percentages of rain-days (>lmm) 
over number of dry-days at Site 5 are also given.

Wet Site Distance (km)
Number of rain-days

%1mm
from Site 5 >10mm >5mm >1mm

Site 4 0.342 0 0 0 0

Site 3 0.459 0 0 0 0

Site 6 0.491 0 0 1 0.51

SEG. 0.516 0 0 0 0

Site 1 0.545 0 0 0 0

Km63 1.571 0 0 3 1.53

DVFC 2.072 3 6 14 7.14

B. Atur 2.833 5 8 15 7.65
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Figure 5.7: Wet spells for given location when dry at DVFC (1 May 1997 to 30 April 1998) (a) 
frequency of daily totals where at least 1 mm was recorded (b) annual percentage of rainfall 
total delivered at individual sites while dry at DVFC. Values in brackets are the distances of 
wet site from DVFC site.
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Figure 5.8: Wet spells for given location when dry at Site 5 (1 May 1997 to 30 April 1998) (a) 
frequency of daily totals where at least 1 mm was recorded (b) annual percentage of rainfall 
total delivered at individual sites while dry at Site 5. Values in brackets are the distances of wet 
site from Site 5.
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Figure 5.9: Relationship between number of recorded wet days (daily totals >1 mm) at 
particular sites when neighbouring sites were completely dry (daily total < 0 .2  mm) and the 
distance between sites. The data presented is for all sites given in Table 5.2 and 5.3 for the wet 
sites when either DVFC, Bukit Atur, or Site 5 was dry (1 May 1997 to 30 April 1998)

5.7. Modelling inter-gauge correlation within the Sapat Kalisun 
Catchment

Cross-correlation (May and Julien, 1990) between four raingauges within the Sapat 

Kalisun catchment (i.e., raingauges K M 63’, B .A tur’, ’Site 6 ’, and ’Site 5 s) was 

undertaken for two example storms. The objective of this analysis was to identify the 

correlation between pairs of rainfall time-series. The rainfall rate r at raingauge location 

Gi, is a function of space and time (r(Gi,t)), thus the cross-correlation is given by:

[5.1]
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where p r is the correlation coefficient at lag y  tk is the kth time step, ^  is a rainfall 

indicator, n is the record length at zero lag, r is the mean of the time series and S' is the 

biased estimate of the standard deviation. The rainfall indicator (8k) is designed to 

suppress long periods with no rainfall. It is equal to 0 when both rates are 0, and 1 in 

other cases (Messaoud and Pointin, 1989; Goodrich e ta l ,  1995).

Each time-series was compared to the other three time-series giving nine pairs (NB. 

only 6  pairs are shown in Figures 5.10 and 5.11). The distance between each gauge was 

between 0.5 and 3.2 km. Two example events selected, included one relatively high 

intensity, convective event observed on the 11 July 1997, and one low intensity, long 

duration event, classified as a ’stratiform event’ (Messaoud and Pointin, 1989) observed 

on 18 May 1997. The convective event selected lasted from as short as 72-minutes 

recorded at B.Atur to 200-minutes at KM63. The rainfall total for this event ranged 

from 65 mm at KM63 raingauge to 41 mm at Site 6  and only 6  mm at B.Atur. The 

selected stratiform event lasted 269 to 278-minutes. Rainfall depths of this single event 

ranged from 46 mm at KM63 gauge to 52 mm at B.Atur gauge. This storm was the 

longest single event recorded during 1 May 1997 to 30 April 1998 period.

Correlograms of cross-correlation coefficient and lag time were computed and plotted 

for each gauge pair for rainfall integrated over time-steps of 1, 5, and 15 minutes. This 

transformation effectively produces a new time series with a different temporal 

resolution (May and Julien, 1990).

It was found that the time distribution pattern analysis for the convective rain event is 

best described by a 1-minute event data series. A longer time resolution produced 

unreliable correlogram model due to the short duration of these events (McCuen and 

Snyder, 1986). McCuen and Snyder (1986) recommend that the magnitude of lag (f)
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should be limited to about 10% of the record length (n) at p 0. Once y  exceeds this 

empirical limit, the correlograms may begin to oscillate. For the present analysis, a 

maximum lag time of 30 time-steps (i.e., 30-minutes or 2 hours 30-minutes) was 

chosen, and the correlograms are presented in Figure 5.10 and 5.10

Excluding pairs with B.Atur, the 1-minute correlograms for the convective event have 

sharp peaks (Figure 5.10) in comparison to those of the stratiform event (Figure 5.11). 

This indicates that the convective events are of shorter duration and smaller spatial 

extent. A longer sampling interval (i.e., lag time) of 5-minutes is required to identify 

the loss of correlation between gauge pairs during the stratiform event (Figure 5.11). 

Therefore, accurate assessment of the spatial pattern of rainfall during convective 

events requires a greater temporal sampling frequency in comparison to stratiform 

events.

The shift in the peak of the convective event correlograms that include the B.Atur 

raingauge indicates either (i) rainfall over Bukit Atur is produced by a different cloud to 

that over KM63, Sites 5 and 6  within the centre of the catchment, and that this cloud 

releases rainfall 20-30 minutes after that in the centre of the catchment, or (ii) a local 

cumulus cloud over centre of the Sapat Kalisun Catchment is moved towards Bukit 

Atur with an airflow from the Southwest at a rate of approximately 3 km per 25 

minutes.
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Figure 5.10: Correlograms for the site pairs for the 1-minute interval convective event on 8 July 
1997 (in the Southwest monsoon). Site locations are shown in top left of each graph.
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Figure 5.11: Correlograms for the site pairs for the ‘stratiform’ event on 18 May 1997 showing 
both 1-minute and 5-minute recording intervals. Site locations are shown in top left of each 
graph.
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5.8. Conclusions

This inland, equatorial location appears to receive most of its rainfall in low intensity 

{i.e., < 10 mm h r 1 equivalent, sampled at 5-minute interval) events. Even the two 

extreme events sampled during the 3-year analysis period, only maintained 50 mm hr ' 1 

intensities (from 5-minute sampled data) for 25 minutes. Such a rainfall regime is 

clearly very different that that seen within regions experiencing tropical cyclones {i.e., 

Philippines - East Asia - South Asia, S.W. Pacific - N.E. Australia, Central America - 

Caribbean, see Bonell and Balek, 1993). Given that near-surface permeabilities have a 

geometric mean of about 500 mm hr ' 1 over most of the Sapat Kalisun Catchment and 

surrounding region (Chappell et al., 1998a), large quantities of infiltration-excess 

overland flow are not expected, with most rainfall entering the soil as Chappell et al. 

(1999) concluded.

Storm durations (where storms are separated by > 20 minutes without 0.2 mm of 

rainfall) are typically short, particularly during the 1997/8 Northeast monsoon, where 

78 % of all rainfall was delivered within events of less than 15 minutes duration. Such a 

situation would be consistent with that most rainfall is delivered in localised (Chapter 

4) mid-afternoon events that have developed through the morning. The typical short 

duration of the events is may explain the flashiness of the river hydrographs monitored 

within the Baru catchment tributary of the Sapat Kalisun (Bidin, 1995; Chappell et a l,  

1999).

The localised nature of the rain-events within the Sapat Kalisun Catchment (Chapter 4) 

can be seen in the temporal pattern of the rainfall incidence. Raingauges that are less 

than 1 km apart, tend to experience rainfall on the same days. As gauge spacing 

increases to 2  - 4  km apart, then rainfall is not received on the same days for some 15-
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30 days in the year. Loss of inter-gauge correlation is most strongly seen during the 

mid-afternoon convective events, where temporal inter-gauge correlation falls off in 

minutes even for gauges a few hundred metres apart. In contrast, stratiform events 

maintain their temporal inter-gauge correlation perhaps by a factor 5 more slowly. The 

short duration and localised nature of the convective events within the Sapat Kalisun 

Catchment, therefore, demand not only a dense raingauge network, but also a high 

temporal sampling intensity. Indeed, Chappell et al. (1999) found that they needed a 5- 

minute sampling intensity to model the rainfall-runoff characteristics within a tributary 

of the Sapat Kalisun.
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Chapter 6

Sub-canopy rainfall and wet-canopy evaporation in a 
selectively-logged rainforest, Sabah, Malaysia

To be submitted as Bidin, K., Chappell, N.A., Douglas, I. and Walsh, R.P.D. Sub-canopy rainfall and 
wet-copy evaporation in a selectively-logged rainforest, Sabah, Malaysia. Journal o f  Hydrology.

Understanding the impact of the selective removal of trees from a tropical rainforest on 

the rate of wet-canopy evaporation and transpiration is critical to the assessment of the 

impact of so called ’sustainable forestry’ on local climate, and the water resources 

potential of rivers. Accurate quantification of the changes in the wet-canopy 

evaporation component is, however, difficult given the extreme heterogeneity of the 

vegetation patchwork produced by commercial, selective logging (Chapter 2).

In order to address this issue for an area of lowland dipterocarp forest, selectively- 

logged some eight years prior to the study, a network of 450 throughfall gauges, plus 22 

gross rainfall and 40 stemflow gauges, was installed within the 44 hectare Baru 

Experimental Catchment (Sabah, Malaysian Borneo). Most of these gauges were 

located randomly within plots, themselves stratified according to the six canopy classes 

identified in Chapter 2.

The results showed that more rainfall reached the forest floor beneath the undisturbed 

remnants of rainforest (i.e., the protected areas), than those patches of canopy subject to 

light or heavy impact. This may have been because the disturbed forest patches had a 

higher rate of wet-canopy evaporation (i.e., 1 2  - 18 % of gross rainfall) in comparison
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to the undisturbed remnants {i.e., 1 % o f gross rainfall). Alternatively, the difference 

may, at least in part, have been caused by the lower disturbed patches of vegetation 

being sheltered by the undisturbed forest remnants, leading to the receipt of less rainfall 

on their canopy surfaces.

6.1. Introduction

W et-canopy evaporation (Ewc) is the vapourisation of rainfall from wetted vegetation 

surfaces, and is an important component of the water budget of tropical catchments 

(Bruijnzeel, 1990; Black, 1996). Despite this, there is a dearth of studies on the impact 

of selective commercial forestry on rates and patterns of wet-canopy evaporation from 

tropical forests (Asdak et al. 1998b). This study, therefore, aims to quantify the rates of 

wet-canopy evaporation and the remaining component of rainfall that reaches the 

ground as throughfall and stemflow (also called ’sub-canopy rainfall5) within a lowland 

diperterocarp rainforest recovering from selective forestry.

6.2. Research site

The study area is 44 ha Barn Experimental Catchment, situated near the Danum Valley 

Field Centre (DVFC) in the Malaysian state of Sabah, Northeast Borneo (Figure 6.1). 

The catchment has an undulating terrain with an altitudinal range of 70 m.

The area was selectively logged in early 1989 using bulldozers and high-lead yarding, 

leaving the complex structure of regenerating forest patches, areas of protection forest 

and areas of highly damaged forest. The ’forest mosaic’ within the Baru Catchment has 

been classified into six categories depending on the level of forest disturbance and 

recovery rate (Chapter 2).
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The study period 1 May 1997 to 30 April 1998 coincided with the 1997/98 El Nino- 

Southern Oscillation (ENSO) drought. Not suprisingly the recorded 1520 mm of 

rainfall during this period was the smallest on record at the DVFC meteorological 

station from 1986-1999 (Figure 6.1). The longer-term average annual rainfall being 

2638 mm.

6.3. Sampling / instrumentation network

The sampling network for this study includes a distribution of raingauges within 

canopy openings (min diameter of openings was 40 m), and throughfall and stemflow 

gauges to measure the rainfall penetrating the forest canopy.

6.3.1. Rainfall measurement

The raingauges installed within the 44 ha Baru Experimental Catchment are a subset of 

the larger network of raingauges within the 4-km2 Sapat Kalisun Experimental 

Catchment (Chapter 4). There are 22 raingauges within openings in the Baru 

Catchment, comprising the 16 simple storage raingauges (Chapter 3), and six tipping- 

bucket raingauges (Figure 6.1).

6.3.2. Throughfall measurement

Sub-canopy rainfall or net rainfall refers to the volume of rainfall that reaches the forest 

floor and comprises 'direct throughfall' (i.e., rainfall that falls through canopy gaps), 

'leaf drip throughfall' and 'stemflow'. In this study the direct throughfall and leaf drip 

throughfall was measured together using 450 simple storage raingauges (Chapter 3; 

Figure 6.1).
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Figure 6.1: The 44 ha Bam Experimental Catchment (5° 01’ N and 117° 48.75’ E) showing the 
location of sub-canopy rainfall (throughfall and stemflow) sampling plots within canopy 
categories 1, 2, 3, 4, and 5. The cylinders represent the raingauges installed in the open canopy 
to measure gross rainfall (canopy category 6). See Section 2.3 for canopy classification.
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Most of the throughfall gauges were located within plots beneath clearly defined

’canopy categories’. These are (i) undisturbed forest canopy (category 1), (ii)

moderately impacted forest canopy (category 2 ), (iii) vine-covered forest canopy

(category 3), (iv) Macaranga spp pioneer tree canopy (category 4), and (v) sprawler-

covered canopy gap (category 5; see Chapter 2). Eighty to 85 gauges were installed in

each of the canopy categories 1, 2, 3, and 4 (Chapter 3). Only 20 gauges were installed

beneath the ’sprawlers’ of canopy category 5. The locations of sites for throughfall

measurement beneath all canopy categories were located close to the five existing

recording rain gauges within the Baru Catchment (Figure 6.1). Two clusters (plots) of

gauges (i.e., 40 to 45 gauges in each plot, except in canopy category 5) were installed

for each canopy category (Figure 6.1). Plots were selected randomly within each of the

2 2stratified canopy categories, with the plot sizes ranging from 1 0 0  m to 2 0 0  m .

Additional throughfall measurements were made with 105 gauges installed within 

mixed canopy categories found along two transects (North-South and East-W est) across 

the Baru Experimental Catchment (Figure 6.1). Collectors were located approximately 

every 20 m along the 650 m ’North-South transect’ and every 10 metres approximately 

along the 720 m East-W est transect’.

The clusters of gauges within canopy categories 1, 2, 3, 4, and 5 were installed 

randomly at a fixed position beneath the forest canopies. Once installed, the location of 

all gauges within the region was surveyed using an electronic theodolite. The gauges 

were secured firmly in a 10-cm deep pit to keep them fixed and upright. Gauge 

relocation was not applied for three reasons. Firstly, the research involved a large 

number of gauges (typically 80 per canopy type), therefore, provided sufficient 

replication of experimental conditions (Hurlbert, 1984). Secondly, the forest canopies 

were recovering from selective logging, so throughfall characteristics may have
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changed with time (cf. Wong, 1991). Thirdly, geostatistical analysis of the long-term 

throughfall data was to be attempted, which requires a fixed location.

6.3.3. Stemflow measurement

Exactly 40 trees and lianas were measured for stemflow. For canopy categories 1 , 2, 3, 

and 4, eight trees and two lianas were measured for stemflow (Figure 6.1). The trees 

and lianas were selected randomly within each plot. Stemflow 'collars’ were used to 

measure the stemflow. These collars were shaped out of aluminium plate, supported by 

1-cm nails and sealed with a marine adhesive ('Mastik'). Silicon sealant was used to 

repair any leakage of the collars throughout the study period. Most stemflows were then 

collected volumetrically, though one gauge was continuously monitored with a 

datalogged 3-litre tipping-bucket device.

The total stemflow for the trees sampled is scaled to the whole plot using a survey of 

the basal area of all trees within each plot, i.e.:

TA SV
Total stemflo w(mm) = ----- X ------

PA SA
[6.1]

where TA = Total tree basal area in plot (m2)

PA = Area of the plot (m2)

SV = Total stemflow volume collected from all sampling trees (mm )

S A = Total basal area of sampling trees (mm2)

(After Wong, 1991).
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6.4. Spatial variability of throughfall

The spatial variability of the throughfall within each canopy category and between 

different canopy categories was examined.

6.4.1. Cumulative throughfall at each gauge

Figure 6.2 shows the cumulative catch in throughfall measured at each of 20 collectors 

located along the East-West transect (Figure 6.1). Some sub-canopy gauges collect 

considerably more than the average gross rainfall for the catchment, due to some 

gauges being located beneath ’drip points’ where branches and leaves have focused the 

intercepted rainfall (e.g. Rutter, 1963; Anderson et al., 1969; Lloyd et al., 1988; Black, 

1991; Herwitz and Slye, 1992). Additionally, some of the cumulative curves cross, 

which indicates that the canopy characteristics change with time, due to perhaps 

movement by wind, growth of vines, branch fall etc.
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Figure 6.2: Throughfall mass curves for 20 gauges in the East-West transect, Baru 
Experimental Catchment.
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6.4.2. Throughfall variability within each canopy classes

Within each canopy category, the coefficient of variation (CV) in annual throughfall 

catch ranged from 16.2% for canopy category 1 to 30% in canopy category 5 (Table

6.1). The standard error in the catch was, however, small due to the large number of 

gauges used. The standard error can be seen to reduce exponentially as the number of 

randomly sampled gauges increases (Figure 6.3), comparable with that observed by 

Lloyd and Marques (1988). There were significant variations between the different 

canopy categories. For example, category 1, the undisturbed forest, only required 10 

gauges to constrain the uncertainty (i.e., standard error) to 5 %, compared with 20, 30, 

16, and 35 gauges for canopy categories 2, 3, 4, and 5 respectively (Figure 6.3). The 

highly heterogeneous transects required 40 gauges for 5 % sampling uncertainty. The 

pattern of throughfall along the East-West Transect across Baru Catchment is shown in 

Figure 6.4. The different number of gauges required to constrain uncertainty to 5 % for 

different canopy covers suggests that throughfall in logged-over forest was much more 

variable than in remnants of undisturbed forest. Canopy category 5 was the most 

variable, followed by categories 3, 2, and 4 respectively. The lowest uncertainty for the 

disturbed forest blocks was for canopy 4, due to the fact that almost 80 % of the trees 

within the plot were Macaranga spp. pioneer trees.

Over the year, the standard errors in throughfall catches were only 1.8 %, 2.6 %, 3.3 %, 

2.0 %, 7.1 %, and 2.7 % for canopy categories 1, 2, 3, 4, 5, and the transects 

respectively (Table 6.1).
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Table 6.1: Sub-canopy and gross rainfall (Can. 6) o f  the five  canopy categories and transects in 
B am  Catchm ent during 12-m onths period o f  m onitoring 1 M ay 1997 to 30 A pril 1998. The 
non-param etric, M ann-W hitney U -test was used to estim ate sign ifican ce o f  m ean d ifference.

Canopy Category
np _ a

1 2 3 4 5
Transects

Gross rainfall (Pg) -  canopy 6
N 3 3 6 8 2 22
Total (mm) 1398.0 1431.0 1417.7 1417.9 1453.3 1413.0
a  (mm) 138.6 22.7 58.4 94.5 19.2 100.1
CV% 9.9 1.6 4.1 6.7 1.3 7.1
a x (mm) 80.0 13.1 23.9 33.4 13.6 21.3
Diff. in mean1 - ns ns ns ns ns

Net rainfall (Pnet)

Throughfall
N 80 80 80 85 20 105
Total (mm) 1285.9 1150.2 1157.1 1241.9 1205.6 1201.3
o  (mm) 208.0 262.5 340.0 234.2 383.3 335.0
CV% 16.2 22.8 29.4 18.9 30.0 27.9
Ox (mm) 23.3 29.4 38.0 25.4 85.7 32.9
Diff. in mean2 P < 0.001
Diff. in mean3 P < 0.001 ns
Diff. in mean4 P < 0 . 1 P < 0 . 1 P<0.05
Diff. in mean5 ns ns ns ns
Diff. in mean6 ns ns ns ns ns
%Tfall (%) 92.0 80.4 81.6 87.6 83.0 85.0

Stemflow
N 10 10 10 10 - -
Total (mm) 15.0 27.0 14.0 5.9 14.0* 15.5**
o x (mm) 2.4 6.2 4.6 1.9 3.8* 3.8**
%Sflow (mm) 1.1 1.9 1.0 0.4 1.0 1.1

Pnet total (mm) 1300.9 1177.2 1171.1 1247.8 1219.6 1216.8

a x total (mm) 25.6 35.6 42.6 27.3 89.5 36.6

Com parison o f gross and net rainfall

Diff. mean (Pg vs Pnet) P < 0 . 1 P<0.05 P<0.005 P<0.05 ns P<0.05
Pg - Pnet (mm) 97.1 253.8 246.6 170.1 233.7 196.2

Ocompound (mm) 249.9 263.5 344.9 252.5 383.8 349.6

Diff. Pg -  Pnet2 P < 0.05
Diff. Pg -  Pnet3 P<0.001 ns
Diff. Pg -  Pnet4 ns ns P<0.05
Diff. Pg -  Pnet5 ns ns ns ns
Diff. Pg -  Pnet6 ns ns ns ns ns

%Pnet (% ) 93.1±7.5 82.3±3.1 82.6±4.4 88.0±4.2 83.9±6.9 86.1+3.9

Tfallgauges > Pg (%)7 28.8 13.8 20.6 23.1 20 34.7
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Cont.’d ...

N o tes:
1 le v e l o f  s ig n if ic a n c e  d if fe re n c e  a g a in st c a n o p y  ca teg o ry  1
2 le v e l  o f  s ig n if ic a n c e  d if fe re n c e  a ga in st c a n o p y  c a teg o ry  2
3 le v e l  o f  s ig n if ic a n c e  d if fe re n c e  a ga in st c a n o p y  c a teg o ry  3
4 le v e l o f  s ig n if ic a n c e  d if fe re n c e  aga in st ca n o p y  ca teg o ry  4
5 le v e l  o f  s ig n if ic a n c e  d if fe re n c e  aga in st c a n o p y  ca teg o ry  5
6 le v e l o f  s ig n if ic a n c e  d if fe re n c e  aga in st transect ca n o p y
7 th rou gh fa ll g a u g es  record ed  rainfall to ta ls  m ore  than g ro ss  ra in fa lls  
ns n o t s ig n if ica n t at P  <  0.1
* e s t im a ted  v a lu e  -  a ssu m ed  as that o f  c a n o p y  c a te g o ry  3 (co rre sp o n d in g  error m ean  o f  c a n o p y  1 - 4 )  
** e s t im a te d  v a lu e  -  a ssu m ed  as an a v era g e  o f  ca n o p y  ca te g o ry  1 to 4  (a lso  co rre sp o n d in g  error)

The percentage of throughfall catches that exceeded the gross rainfall were 28 %, 14 %, 

20.6 %, 23 %, 20 %, and 35 % for canopy categories 1, 2, 3, 4, 5, and the transects, 

respectively (Table 6.1). This was consistent with the 29 % for undisturbed Amazon 

rainforest (Lloyd and Marques, 1988), but larger than the 13 % observed by Wong 

(1991) during the wet period 1989/90 at Danum Valley.

104



Chapter 6. Sub-canopy rainfall and w et-canopy evaporation in a se lectively -logged  rainforest, Sabah, M alaysia

15.0
Canopy category 1

12.5

SP/o = 15.032ft0-502810.0
R2 = 0.92o

® 7.5
to-o
S 5-° 55

2.5

0.0
0 10 20 30 40 50 60 70 80 90 100

15.0
Canopy Catogery 2

12.5

SP/o = 19.013N°-442310.0 R2 = 0.9338

7.5

5.0

2.5

0.0
0 10 20 30 40 50 60 70 80 90 100

Number of gauges, N Number of gauges, N

15.0 

12.5

10.0

7.5 

5.0

2.5 

0.0

u
Canopy category 3

: \  SE% = 27.456N0-5011
R2 = 0.9392

0 10 20 30 40 50 60 70 80 90 10C
Number of gauges, N

15.0
Canopy category 4

12.5

SP/o = 20.915N°-5252
10.0 R2 = 0.9646p

® 7.5
CO

§ 5.0
55

2.5

0.0
0 10 20 30 40 50 60 70 80 90 100

Number of gauges, N

15.0
EW-Transect

12.5

SE% =47.412N°-6105>8 10.0
2

|  7.5

5.0
55

2.5

0.0
0 10 20 30 40 50 60 70 80 90 100

15.0
Canopy category 5

12.5

SE% = 49.285N°-6476vPC- 10.0 = 0.9135p
a)

t , 7.5
to

X>
cto 5.0
55

2.5

0.0
0 10 20 30 40 50 60 70 80 90 100

Number of gauges, N Number of gauges, N

Figure 6.3: Uncertainty in throughfall measurement produced by different number of gauges 
under different canopy categories. An arrow on each plot shown the standard error in catch 
where 2 0  raingauges to be used under that particular canopy category.
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Figure 6.4: Throughfall totals for the period 1 May 1997 to 30 April 1998 along the East-West 
Transect of collectors in the Baru Catchment. Gross rainfall was measured by single gauges at 
each end of the transect.

6.4.3. Difference in annual throughfall between the canopy types

No statistically significant differences were observed between plots of the same canopy 

category (Table 6.1). In contrast, the differences in mean catch of canopy category 1, 

the undisturbed forest, and both canopy 2 (moderately impacted forest) and canopy 3 

(vine-covered, highly disturbed forest) were highly significant (P < 0.001). Canopy 

category 3 was also significantly different to canopy 4 (Macaranga spp trees) (P < 

0.05). On average, canopy 1 allowed 1286 mm of rainfall to reach the forest floor 

compared with 1150 mm, 1157 mm, 1242 mm, 1206 mm, and 1201 mm for canopies 2, 

3, 4, 5, and the transects, respectively. These figures suggest that disturbed canopies 

allowed less rainfall penetration than undisturbed canopies. There are several possible 

reasons why less rainfall reaches the forest beneath disturbed canopies of selectively
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logged lowland forest. These relate to possible differences in: (i) gross rainfall

intercepted by the canopy, and (ii) canopy surface characteristics.

(i) Gross rainfall intercepted by canopy: The higher canopies of virgin forest 

patches of forest within selectively logged forest may shelter the lower 

disturbed canopies, and hence lead to reduced rainfalls received in the lower 

disturbed forest patches (Hayes and Kittredge, 1949; Aldridge, 1975; Ford and 

Deans, 1978; Barry and Chorley, 1982 p300; Herwitz and Slye, 1992). Herwitz 

and Slye (1992) termed the process ’the differential interception of inclined 

rainfall’ and produced a model to illustrate the process within their tropical 

rainforest in Queensland. Ford and Deans (1978) explained that when rain falls 

at an angle, the leading shoots at the top of a canopy tree present a greater 

intercepting area than its vertically projected crown area. Thus if patches of 

undisturbed forest canopy receive more gross rainfall, then greater throughfall 

volumes would be expected if wet-canopy evaporation rates with the same or 

smaller then those of the disturbed forest patches.

(ii) Canopy-surface characteristics: There are two aspects of canopy surface that 

may have attributed to lower throughfall in disturbed canopy. Firstly, qualitative 

field observation shows that there is an increased density of leaves on the outer 

surfaces of the disturbed upper canopy, as a result of the expansion of the 

woody climbers. This outer surface experiences the highest temperatures and 

rates of net radiation, thus may be subject to higher rates of potential Ewc. 

Additionally, some of the disturbed canopy appeared to contain more dead leaf 

and woody matter, turning parts of the canopy a darker colour and hence 

reducing the albedo. The increased leaf density and reduced albedo in this part 

of the canopy may, therefore, have had a disproportionate effect on the whole
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canopy Ewc. Secondly, selective removed of the upper canopy trees during the 

logging operations increases the roughness of the forest surface. This could 

increase the ‘atmospheric conductance’ and lead to a net increase in evaporation 

rate (Dingman, 1994; John Gash, pers. Comm.). Indeed, Klaassen et al. (1996) 

found that windspeed tended to increase around forest gaps, generating more 

turbulence, thus promoting Ewc.

Amongst the canopies in disturbed forest, canopy category 4 {Macaranga spp trees) 

recorded significantly higher throughfall {i.e., P < 0.1 and P < 0.05 relative to canopies 

2 and 3, respectively). This is probably because the Macaranga spp trees at Danum 

have a very open canopy structure and low leaf area index (LAI, cf. Pitman, 1989) 

allowing much rainfall to penetrate. Additionally, the smooth bark of the Macaranga 

spp trees will not promote storage and subsequent evaporation from the tree trunk (cf. 

Herwitz, 1985).

6.5. Variations in stemflow between different canopy types

Uncertainties in sampling and calculation of stemflow are usually very high (Lloyd and 

Marques, 1988), though it normally constitutes only a very small proportion of sub­

canopy rainfall. These small, but highly focused inputs can, however, becomes 

significant, for local erosion and mineral leaching (Herwitz, 1993) and in the 

moderation of local water stress (Navar, 1993).

The annual totals of stemflow for each of the canopy categories 1, 2, 3, and 4 were 15 

mm, 27 mm, 14 mm, and 6  mm respectively (Table 6.1). The very low stemflow 

beneath canopy 4 was expected, due to the branching architecture of the Macaranga 

spp. and the sparsity of vines within these forest blocks. The highest stemflow rates
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observed were beneath canopy 2 where there was a higher proportion of Aporusa & 

Mallotus spp. trees which have small branching angles (Chapter 2).

The stemflow expressed as a proportion of gross rainfall was 1.1 %, 1.9 %, 1.0 %, and 

0.4 % for canopy categories 1, 2, 3, and 4 respectively (Table 6.1). The 1.1 % stemflow 

within the undisturbed forest remnants (canopy category 1) was slightly smaller than 

the 1.8 % reported by Lloyd and Marques (1988), 1.9 % by Sinun et al. (1992), and 1.4 

% by Asdak et a l  (1998b). This may be due to the fact that this study was undertaken 

during an ENSO drought.

6.6. Estimation of wet-canopy evaporation

Subtracting the combined throughfall and stemflow totals from local measurements of 

gross rainfall gave annual wet-canopy evaporation (Ewc) percentages of 7 %, 18 %, 17 

%, 12 %, 16 %, and 14 % from the canopy categories 1, 2, 3, 4, 5, and the transects, 

respectively (Table 6.1).

An estimate of the catchment-average Ewc was calculated by weighting the canopy- 

specific rates by the estimated proportions of the catchment covered by that canopy 

type (cf. Chapter 2). This gave an average Ewc for the Barn Catchment of 13.6 % (Table

6.2). Encouragingly, this rate is comparable with that from the mixed canopies along 

the two transects within the Baru catchment (Table 6.3).
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Table 6.2: Upscaling wet-canopy evaporation (Ewc) from proportional contributions of each 
canopy category (Chapter 2) during different periods of monitoring in Baru catchment. See 
Table 6.1 for statistical details in the estimates.

Canopy category Baru
total

%Ewcd1 2 3 4 5 6 (Open)

Area propb 0.182±0.04 0.248+0.03 0.300±0.03 0.102±0.03 0.098±0.03 0.0710.03 110.18

SW-monsoon 

Ewc (%)a 

Area weighted0

8.4

1.5

16.1

4.0

21.6

6.5

12.2

1.2

17.0

1.7

-

14.9

NE-monsoon

Ewc (% f 5.2 19.6 12.6 11.8 14.9 -

Area weighted0 0.9 4.9 3.8 1.2 1.5 - 12.3

12-months

Ewc (%T 7 18 17 12 16 -

Area weighted0 1.3 4.5 5.1 1.2 1.6 - 13.6

Notes:

a Ewc as a proportion o f gross rainfall for individual canopy categories

b area occupied by individual canopy categories as a proportion o f Baru catchment area

c Ewc of each canopy multiplied by the proportional area occupied by that category, including area only 
uncertainty

d upscaled value from contributions of each canopy category.
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T able 6.3: M ixes o f  disturbed and undisturbed forest m osaics E wc rates representing Baru 
C atchm ent m easured by different com binations o f  throughfall gauges, sh ow in g  no significant 
different in the values. H ow ever the upscaled value o f  Ewc is slightly low er, as this approach 
considered  the area covered  by roads and gaps, producing 0% E wc.

M easurem ent o f  throughfall and 
calculation  approach

N o. gauges
A nnual

Rainfall
(mm)

Sub-canopy 
rainfall (mm)

E
J-'WC

(%)

1- Arithmetic mean of gauges in transects 
across catchment 105 (s) 1413 1217 13.9

2- Arithmetic mean of gauges in plots of
different canopy categories regardless of the 
area covered by each canopy

345 (s) 1424 1225 14.0

3- Ewc values from plots o f different canopy
categories considering of proportional areas 
covered by each canopy

345 (s) 1424 1230 13.6

4- Arithmetic mean of gauges in 1 & 2 
regardless o f the area covered by each canopy

450 (s) 1422 1223 14.0

6.6.1. Rate of wet-canopy evaporation within undisturbed lowland rainforest

The Ewc value of 7 % for undisturbed forest blocks in this study is amongst the lowest 

rates for tropical rainforests (Table 6.4) but within range of reliable values defined 

Bruijnzeel (1990). If one considers the errors with some other studies (Lloyd et al. 

1988), then the rate is comparable to the 9 % for undisturbed Amazonian terra firma 

rainforest reported by Lloyd and Marques (1988) and the 11 % reported for Kalimantan 

rainforest by Asdak et al. (1998b). These uncertainties include (a) the ±1 % reported 

standard errors, (b) admissions of gauge overflows during extreme events (cf. Asdak et 

al., 1998b), and (c) the distance between throughfall collectors and the rainguages 

measuring gross rainfall (cf Lloyd, 1990). Given that this study was undertaken during 

an ENSO drought year, differences may have resulted from this longer-term temporal 

cyclicity (Chappell et a l ,  2001). The smaller annual rainfall is probably associated with
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less rainfall being delivered as wind-driven, inclined rainfalls (Herwitz, 1985; Herwitz 

and Slye, 1992, 1995) giving reduced potential for wet-canopy evaporation. Tsukamoto 

and Ishigaki (1989) have also reported increased Ewc with increased gross rainfall. 

Indeed, Table 6.2 shows that the slightly smaller rates of Ewc were observed during the 

Northeast monsoon, in comparison to the Southwest monsoon, and Chapter 5 shows 

that the Northeast monsoon had typically lower rainfall intensities.

Table 6.4: Pertinent studies presenting annual rates of Ewc measured in undisturbed secondary 
rainforest.

Reference Location No. gauges .........annual.
Rainfall

(mm)
Ewc
(%)

Calder et a l, 1986 West Java 2 b (s) 2850 21

Walsh, 1987 Dominica nkd 5204 27

Lloyd et al., 1988 Amazon 36 (m) 2805 9

Kasran, 1989 West Malaysia (central) 4a (s) 3786 27

Sinun et a l, 1992 East Sabah 40 (m) 2824 17

Asdak et a l, 1998 Central Kalimantan 50 (m) 2199 11

Current study East Sabah 80 (s) 1398 T

Notes:

a 0.7 m2 trough 
b plastic sheet 
d not known 
s stationary 
m moved
+ undisturbed patches with logged-over forest
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6.6.2. Effect of selective forestry on wet-canopy evaporation

Depending on the integration procedure, the catchment-average Ewc for the Baru 

catchment ranges from 13.6-14.0 % of the incident rainfall (Table 6.5). This rate is 

comparable with those observed by Asdak et al. (1998b) for the ‘closed canopy’ logged 

forest at their Kalimantan site, and for the disturbed lowland forest at Bukit Tarek in 

Peninsular Malaysia (Yusop, 1996). There is, however, considerable variability in the 

rates reported for disturbed tropical forests.

Table 6.5: Pertinent studies presenting annual rates of Ewc measured in disturbed secondary 
rainforest.

Reference Location No. gauges .........annual.
Rainfall

(mm)
E-L /wc

(%)

Nik et al., 1979 West Malaysia (central) l l a (s) nkd 27

Scatena, 1990 Puerto Rico 22 (m) 5745 39

Yusop, 1996 West Malaysia (central) nkd 2723 13

Asdak et a l ,  1998 Central Kalimantan 50 (m) 3563 15**

Current study East Sabah 265 (s) 1427 13.6-
14.0

Notes:
a 0.7 m2 trough 
d not known 
s stationary 
m moved
** Arithmetic mean of 3 different disturbed canopy types (excluding open canopy) provided by the 
authors.
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6.7. Conclusions

The 1997/8 water-year studied, turned out to be a severe ENSO drought. During this 

period, the remnants of undisturbed lowland dipterocarp forest studied allowed 9 3 .1  ± 

7.5 % of the rainfall through the canopy to the ground, giving wet-canopy evaporation 

rate of approximately 7 % of gross rainfall. This figure is towards the lower end of the 

range of wet-canopy evaporation rates observed for undisturbed tropical forests. The 

low rate may relate to the expected lack of storminess during the 1997/8 drought 

(Chapter 5).

Selective harvesting of the forest generated patches of moderately-impacted forest 

(canopy category 2 ) and more heavily damaged areas, now with the remnant climax 

trees covered by vines (canopy category 3). Much smaller volumes of sub-canopy 

rainfall were observed below these forest patches (i.e., 82.3 ± 3.1 % and 82.6 ± 4.4 % 

respectively). This result could be explained by (1) these (on average) lower forest 

canopies receiving less incoming rainfall due to sheltering by the undisturbed remnants, 

or (2) the changed canopy surface characteristics. The surfaces of the disturbed 

canopies often have a greater surface density of leaves, which may have a 

disproportionate effect on rates of wet-canopy evaporation. Further, the more uneven 

surface of the disturbed canopy patches may increase atmospheric turbulence and thus 

increase the rate of evaporation. These two phenomena may also account for the 

unexpectedly high estimates of wet-canopy evaporation from the areas of sprawlers and 

shrubs (canopy category 5).

Taking into account the area covered by the six canopy categories (Chapter 2), the 

catchment-wide estimate for wet-canopy evaporation from the selectively-managed 

forest (following eight years of recovery) was 13.6 % of the gross rainfall. This figure
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was almost identical to the 14.0 % wet-canopy evaporation rate calculated from the two 

transects of mixed canopy types. The study, therefore, suggests that the rate of wet- 

canopy evaporation may significantly increase as a result of selective logging. It is then 

becomes important to know whether these extra losses are offset by reductions in the 

rate of transpiration, and also to know what is the resultant impact on the water yield of 

the river (Chapter 7).
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Chapter 7

Water-yield and riverflow responsiveness of a 44 ha 
catchment recovering from selective tropical forestry

Preliminary analysis o f an 8-year water-balance record is presented as only one other such record 
associated with the effects o f the first episode of selective tropical forestry (see Abdul Rahim Nik and 
Yusop, 1994) is available in the literature. A new research project to complete the quality assurance of 
these data (QAA) is, however, required before substantial conclusions based upon these data could be 
published within a journal article.

The impact of commercial, selective forestry on the water balance is a key concern for 

those trying to assess anthropogenically-induced changes to the tropical climate or the 

water resources of rivers. Despite this fundamental importance, there are very few 

water balance studies undertaken within tropical catchments following a single 

selective harvesting period. The problem is confounded further in the Southeast Asian 

tropics by the recent acknowledgement of the impact of natural cycles in the climate 

associated with the El Nino Southern Oscillation (ENSO). Such natural cycles may 

have a significant effect on the purely natural dynamics of the evaporative losses, as 

reflected in the rainfall minus riverflow (P-Q) data.

W ithin this study, we use a new and very robust method of separating the effects of 

natural cycles from those long-term drifts in the P-Q data that may be caused by 

forestry impacts on the canopy processes. This method utilises the Dynamic Harmonic 

Regression (DHR) model of Young et al. (1999). The data were collected for a 44 ha 

catchment in Borneo during the year of forest disturbance to over eight years post 

forestry activities. As a further measure of the potential impact of the recovering 

vegetation of the riverflow, through for example, the growth of vegetation on logging
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trails and its impact on overland-flow generation (Douglas et al. , 1995), an index of the 

flashiness of the catchment response was examined.

The results indicate that while (a) catchment responsiveness changes with forest / 

terrain recovery, and that (b) P-Q changes in response to seasonal and inter-annual 

cycles in the rainfall, the P-Q and hence total evaporation, has not changed significantly 

in the eight years following selective logging. It is imperative that this study continues 

to see if and when vegetation recovery significantly impacts on the total evaporation 

and water yield.

7.1. Introduction

There are very few rainfall-runoff records for tropical catchments recovering from 

catchment-wide, selective timber harvesting (Bruijnzeel, 1990; Yusop, 1996). This 

means that the impact of sustainable (i.e., non-clearfell) forms of forestry on river 

flashiness and water yield are still debated (Bruijnzeel, 1990; Chappell et a l ,  2000).

This study presents an analysis of (a) monthly rainfall and riverflow data for a small 

tropical catchment for an 8 -year period following selective-logging activities in 1988/9, 

and (b) four separate years of daily riverflow data for the same catchment. River 

flashiness is characterised by the Hewlett and Hibbert (1967) ’quickflow’ index, 

estimated from the stream hydrograph using a method developed by Bidin and Greer 

(1997). A wet year (1990) and a dry year (1992) shortly after logging are compared 

with the response of another wet year (1995) and a dry year (1997/8) latter in the 

succession of forest recovery. The Dynamic Harmonic Regression (DHR) model 

(Young et al., 2000) is used to separate the annual seasonality and inter-annual cycles 

from the longer-term drift in evapo-transpiration, strictly rainfall minus discharge (P- 

Q), that may result from the recovery in the selectively logged forest.
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7.2. Catchment characteristics

The 44 ha Baru Experimental Catchment is in the Danum Valley area of the Ulu 

Segama Forest Reserve, Sabah, Malaysian Borneo (4°58’ N and 117° 48 ’E). The 

average annual rainfall (1986-1999) received at the nearby Danum Valley Field Centre 

(DVFC) meteorological station is 2,712 mm, but varies with the impact of the El Nino 

Southern Oscillation (ENSO) from, for example, 1,520.7 mm in the 1997/8 drought 

year (where the water-year is from the 1 May - 30 April) to 3,791 mm in 1995/6 

(Chapter 4 and 5).

The catchment is within a melange geological unit which comprises of siltstones, 

sandstones, cherts, spilites, and tuffs (Leong, 1974; Gasim et al., 1988). Soils are 

dominated by Haplic Alisols (Chappell et a l ,  1999). The catchment, like the region, 

has an undulating topography with altitude ranging from 120 to 250 m. The slopes 

around the catchment divide are approximately 18-25°, declining generally to 10° near 

the main stream, but with short slopes of up to 45° where outcrops of sandstone and tuff 

occur. Indeed, there is a high density of ephemeral channels in the region, which when 

incorporated with the perennial stream channels, give a very high drainage density of 

20 km km ' 2 (Walsh and Bidin, 1995). This density is even higher if the skidder trails 

and gullies created during logging are considered.

The Baru Catchment was selectively logged in 1988/9 and the encompassing logging 

coupe experienced a timber extraction rate of 79.9 m 3ha_1 (Moura Costa and Karolus, 

1992). A highly heterogeneous mosaic of remnant forest and forest disturbed to 

different degrees was left in the area (Chapter 5). Some recovery in the forest (Tangki, 

In prep.) and erosional processes (Douglas et al., 1995, 1999) has been observed in the 

years following the timber harvesting.

118



Chapter 7. Water-yield and riverflow responsiveness for a 44 ha catchment recovering from selective tropical forestry

7.3. Rainfall and riverflow monitoring

Rainfall was measured by a siphoning-tank raingauge (1988-1992) and a data-logged, 

tipping bucket raingauge (1992-) installed in a large roadside clearing. The site is 

known as ’KM 63’ (Chapters 4 and 5). This gauge, located at an approximately 1 km 

from the Baru gauging structure, was used to measure the rainfall for this study for the 

water years 1988/89 to 1996/97.

The gauging station known as B aru ’ was established in June 1988 just before the 

commercial selective logging took place (Douglas et a l ,  1992; Greer et al., 1995). 

During the period 1988-1992, a horizontal float gauge (Ott) was used to record a 

continuous trace of water level with weekly charts (scale 1:10). The charts were 

digitized on a Summagraphics digitizing tablet and Sigma Scan digitizer. From early 

1992, a digital shaft encoder and Newlog datalogger (Technolog) was used to measure 

the water-levels. During the period 1988 to early 1996, a natural rock section was used 

to provide the hydraulic drop. This section was regularly rated with current metering 

and dilution gauging (Chappell et a l ,  1999). A 120° thin-plate V-notch weir, pinned 

into the solid bedrock and built to a height of 2  m with zinc plate and concrete retaining 

was used for 1996 onwards. The author was involved in monitoring flows at this river 

station from 1989.

For this preliminary analysis mean daily rainfall was calculated only from a single 

raingauge, and the mean daily overflows were calculated by applying the rating 

equation to mean daily water-level data. A further project could undertake a much more 

accurate assessment of the water-balance data by using a combination of (a) the new 

understanding of the spatial variability of the rainfall over the local region (Chapter 4),
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and (b) by a detailed Quality Assurance Analysis (QAA) of the chart and datalogged 

water-level records plus application of the rating equation to the sub-hourly digital data.

7.4. Long-term P-Q dynamics

Over the water-years 1988/9 to 1996/7, the annual percentage of rainfall that does not 

appear as riverflow within the Baru ranges from 30 to 73 percent (Table 7.1). If the 

catchment is assumed to be watertight (see Bruijnzeel, 1990) and the storage tends to 

zero after one year (Gregory and Walling, 1973), this P -Q ’ value would equate to the 

annual evapotranspiration.

The range in annual evapotranspiration (as estimated by P-QO of 865 mm (1995/6) to 

1904 mm (1992/3). For all but the water-year 1995/6, the range of 1,371 - 1,904 mm is 

comparable to that recorded by other studies in the tropics (Table 7.2; see also 

Bruijnzeel, 1990). The low P -Q ’ percentage for 1995/6 may relate to the high 

proportion of extreme rainstorms that occurred in this water-year, which has given rise 

to a larger effect of error due to the approximate rating of the high flows within this 

preliminary analysis.

T able 7.1: W ater-year (1st M ay - 30 th A pril) variations in rainfall (P), stream flow  (Q ), and 
evapotranspiration (P-Q ) totals for the Baru Catchm ent.

Period P (m m ) Q (m m ) P-Q  (m m ) P-Q/P%

1989/90 2802.80 1316.65 1486.15 53

1990/91 2548.90 875.74 1673.16 66

1991/92 2127.90 756.57 1371.33 64

1992/93 2763.10 858.71 1904.39 69

1993 /94 2575.20 846.35 1728.85 67

1994/95 2446.90 988.94 1457.96 60

1995/96 2915.00 2050.31 864.69 30

1996/97 2434.30 663.64 1770.66 73
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T able 7.2: Estim ated annual evapotranspiration (ET) estim ates from  som e tropical forest areas.

Catchment region Catchment area (ha) ET (mm) Source

Java, Indonesia Microclimate study 1,481 Calder et al. (1986)

West Sabah, Malaysia 3 .4 -1 8 .2 1,540 Maimer (1992)

Central Amazon 23.4 1,120 Lesack (1993)

Central Amazon 130 1,493 Leopoldo et al. (1995)

East Sabah, Malaysia 44 1,510 This study

To examine whether the inter-annual dynamics in P-Q are attributable to changes in the 

re-growth of the selectively logged forest (even within such a preliminary study), the 

effects of the climatic dynamics must be identified. Such climatic cycles may have a 

significant impact on the short and long term behaviour of the water balance (Chappell 

et a l ,  2000, 2 0 0 1 ).

W ithin this study, the strength of seasonal climatic cycles and the possibility that 

longer-term cycles related to phenomena such as ENSO could be affecting the P-Q 

data-series was assessed by applying the recently developed Dynamic Harmonic 

Regression (DHR) model of Young et a l  (1999). This model was applied to the 

monthly, rainfall (P), riverflow (Q) as well as the P-Q data to allow greater explanation. 

Data for the eight-year and seven-month period from August 1988 to February 1997 

inclusive are used for this analysis.

Changes in the longer-term P-Q (called the ’drift0, perhaps related to changes in the 

evaporative losses from the forest, will be identifiable once inter-annual cycles 

(associated with physical phenomena) are removed.
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The model was then used to identify (separately) within-year or ’seasonal’ cycles (St). 

Additionally, by combining these seasonal cycles, with the inter-annual cycles and the 

drift, a model of the rainfall, the riverflow and the P-Q data is produced and the level of 

explanation (’efficiency5) quantified.

The Dynamic Harmonic Regression (DHR) model is a recursive interpolation, 

extrapolation and smoothing algorithm for non-stationary time-series (Young 1998; 

Young et al., 1999). The DHR model identifies three components in the time-series, 

i.e.,

where U(t) is the observed rainfall, riverflow or P-Q time-series, Tt is the trend which 

includes (a) the ’drift’ in long-term average data and (b) the inter-annual cycles, St is the 

periodic component related to annual and intra-annual seasonality, and et is the white

where aiit and bitt are the Time-Variable-Parameters (TVPs) of the model, R is the 

number of seasonal components, and ox are the set of frequencies chosen by reference 

to the spectral properties of the time-series. Optimisation of the TVPs was achieved by 

first estimating the Noise-Variance-Ratio (NVR) of the TVPs. This is achieved in the 

frequency domain by fitting the logarithmic pseudo-spectrum of the DHR model to the 

estimated logarithmic AutoRegressive (AR) spectrum of the observed rainfall series. 

Once NVR  parameters are optimised, a single run of two recursive algorithms, the 

Kalman Filter and Fixed-Interval-Smoothing equations provide estimates of the various 

components (Young, 1998; Young et al., 1999). This approach results in relatively high

U ( t )  ~ T t + S t + e t [7.1]

noise. The St term is further defined as:

R

[7.2]
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NVRs (about 1x102) that ensures a good model optimisation to the main seasonal 

components (i.e., those with longest periodicity) observed within the spectra plot 

(Figure 7.1)
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Figure 7 .1 . Spectral p lots o f  the w ithin-year or ’season al’ com ponents (broken line) and the 
D H R  m odel results (so lid  line) for (a) rainfall, (b) riverflow  and (c) P-Q  o f  the B am  
Experim ental Catchm ent. The x-ordinate is in m onths and the y-ordinate is lo g ,0 power.
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The efficiency of model in predicting all of the components of the rainfall, riverflow 

and P-Q time-series (using the high NVRs) is 83 %, 8 6  % and 79 % respectively 

(Figures 7.2, 7.3 and 7.4).

Model fit: P00000  Rt2=0.83
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trend
uncertainty (SD)
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Figure 7.2. Observed rainfall time-series for the Baru Experimental Catchment (..*..) and DHR- 
modelled rainfall time-series (-) together with the uncertainty band (± one standard deviation in 
grey shading). The trend comprising the inter-annual cycles and drift is also shown (—). The x- 
ordinate is the year, and the y-ordinate is the monthly rainfall (mm).
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Model fit: Q00000 Rt2=0.86
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Figure 7.3. Observed riverflow time-series for the Baru Experimental Catchment (..»..) and 
DHR-modelled rainfall time-series (-) together with the uncertainty band (± one standard 
deviation in grey shading). The trend comprising the inter-annual cycles and drift is also shown 
(—).The x-ordinate is the year, and the y-ordinate is the monthly rainfall (mm).
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Model fit: PQ0000 Rt2=0.79

data
model
trend
uncertainty (SD)

250

200

150

1 0 0

50

1989 1990 1991 1992 1993 1994 1995 1996 1997

Figure 7.4. Observed rainfall-riverflow (P-Q) time-series for the Baru Experimental Catchment 
(..*..) and DHR-modelled rainfall time-series (-) together with the uncertainty band (± one 
standard deviation in grey shading). The trend comprising the inter-annual cycles and drift is 
also shown (— ).The x-ordinate is the year, and the y-ordinate is the monthly rainfall (mm).
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It can be seen from Figures 7.2, 7.3 and 7.4, that the model efficiency is good (i.e., the 

modelled time-series (solid line) closely matches the observed time-series (dotted line), 

but also that the uncertainty (shaded area) is high relative to the dominant cyclicity. 

This is not surprising given that the dominant seasonal cyclicity (i.e., 12 months) is not 

that pronounced (relative to the other within-year cycles) within the spectral plots 

(Figure 7.1). The lack of a strong seasonal cycle within the rainfall (which would 

propagate to the rainfall and P-Q data-series) is consistent with the Baru Experimental 

Catchment being located only 5 degrees north of the Equator. Equatorial regions are 

know to exhibit little seasonality in their rainfall totals (Pettersen, 1958). Indeed, 

examination of the observed or modelled rainfall time-series in Figure 7.2 shows that it 

is very difficult to identify which troughs or peaks are leading to the 1 2 -month seasonal 

cycle. The tendency for relatively small rainfall totals in April (Figure 7.2, Chappell et 

al., 2 0 0 1 ) is probably the main determinant.

The estimated trend component (i.e., the broken line in Figures 7.2, 7.3 and 7.4) was 

then split into a very slowly changing drift and the inter-annual cyclic component by 

selecting a much smaller NVR  of 1x105 (Young, 1998; Young et al., 1999). The 

resultant inter-annual cycle, together with the model uncertainty in the rainfall, 

riverflow and P-Q is shown in Figure 7.5. Relative to the uncertainty bands, the 

riverflow time-series (Figure 7.5b) shows a very clear peak in 1989 and at the end of 

1995. These peaks coincide with the so-called ’La N ina’ peak on the ENSO cycle 

observed in Insular South East Asia (Wolter and Timlin, 1998). The ENSO cycles are 

not as clear in the rainfall (Figure 7.5a) and P-Q data (Figure 7.5c), partly as a result of 

the shortness of the data-series giving large uncertainties over the initial few months of 

the simulation.
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Figure 7.5. Inter-annual cyclicity observable within the time-series of (a) rainfall, (b) riverflow 
and (c) P-Q when the trend is modelled with a low NVR  of lx lO '5. The uncertainty (± one 
standard deviation) is shown with a broken line.The x-ordinate is in years, and the y-ordinate is 
the monthly totals normalised by the mean (mm).
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The increase in the P-Q from 1996 to 1997 (figure 7.5c) probably results from the 

differences in the observed flows during the water-year 1995/6, which probably results 

from the approximation of the calibration of the river-levels to overflows noted earlier.

The drift component of the rainfall, riverflow and P-Q, that was separated from the 

trend, is presented in Figure 7.6, 7.7 and 7.8, respectively.
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Figure 7.6. Longer-term drift in the DHR model of the Baru catchment rainfall time-series 
when the trend is modelled with a low NVR  of lx l0 '5. The uncertainty (± one standard 
deviation) is shown with a broken line. The x-ordinate is in years, and the y-ordinate is the 
monthly totals (mm).

129



Chapter 7. Water-yield and riverflow responsiveness for a 44  ha catchment recovering from selective tropical forestry

Q00000
400

Drift
Drift SD350

300

250

200

150

1 0 0

50

1989 1990 1991 1992 1993 1994 1995 1996 1997

Figure 7.7. Longer-term drift in the DHR model of the Baru catchment riverflow time-series 

when the trend is modelled with a low NVR  of lx lO '5. The uncertainty (± one standard 

deviation) is shown with a broken line. The x-ordinate is in years, and the y-ordinate is the 

monthly totals (mm).
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Figure 7.8. Longer-term drift in the DHR model of the Bam catchment P-Q time-series when 

the trend is modelled with a low NVR  of lx lO '5. The uncertainty (± one standard deviation) is 

shown with a broken line. The x-ordinate is in years, and the y-ordinate is the monthly totals 

(mm).
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Taking into account the uncertainties in the data and the modelling, it is clear that no 

marked drift is apparent within the rainfall, riverflow and P-Q time-series. This is partly 

because of the short period of data available for the modelling (i.e., 8 -years), which 

means that it is difficult to set an appropriate NVR to separate out meaningful inter­

annual cycles. Thus it is possible, that some of the drift may have been ’removed’ to 

form part of the inter-annual cycle. It is clearly important to continue the water-balance 

measurements to allow a stronger basis for the separation of the drift and inter-annual 

components. Clearly, more reliable modelling and hence more robust conclusions 

might be able to me made, if future research could undertake a more detailed quality 

assurance of the water-balance data.

If the lack of a consistent drift in the P-Q is, however, real then it might indicate that 

changes in the evapotranspirational losses does not change significantly with only 8 - 

years of forest recovery from the first episode of selective logging. Such a conclusion 

would be consistent with the results of the only other study undertaken over several 

years following the first episode of selective tropical logging. The authors of this study 

(Abdul Rahim Nik and Zulkifli, 1994) concluded that many years of forest regrowth 

following the harvesting year was required to significantly alter the forest structure and 

hence evapotranspiration.

W hile it remains unclear as to whether the monthly water-balance has been affected by 

a possible terrain and/or vegetation recovery following selective harvesting, there 

remains the possibility that the riverflow hydrograph shows signs of change with such 

recovery.
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7.5. Catchment responsiveness

To understand the temporal dynamics of river hydrograph in relation to (i) natural 

climatic variations and (ii) terrain/vegetation recovery from selective logging, the 

riverflow record was separated into ‘stormflow' (QSF) and 'baseflow' (QBf) components. 

The inclined line method of Hewlett and Hibbert (1967) within a spreadsheet-based 

solution (Bidin and Greer, 1997) was used. Flashy catchments have a high stormflow 

proportion (e.g., Qsf/Q% = 50 %) or a low baseflow proportion, while damped river 

responses are characterised with small stormflow proportion (e.g., Qsf/Q% = 5 %) or a 

high baseflow proportion. Hydrograph separation is used as it provides an objective 

way of comparing the 'flashiness' of different catchments or different time periods using 

a single number. Within this study, no physical interpretation of the pathways giving 

rise to the area under the hydrograph described as 'stormflow' is implied.

The construction and use of 'skidder trails' within rainforests (i.e., the tracks used to 

drag timber towards the haulage lorries) may increase the proportion of water that 

reaches the rivers by the infiltration-excess overland flow pathway. The flashy nature of 

this pathway may then increase the flashiness of the rivers. Douglas et al. (1995) have 

shown that in the years following rainforest logging, the growth of grasses on skidder 

trails leads to a reduction in the proportion of rainfall that generates infiltration-excess 

overland flows locally on these tracks. If indeed the local impacts of track construction 

and use can be seen within the riverflow records, then these impacts may reduce in the 

years following the activity. To assess this question, two pairs of years '1990 plus 1992' 

and '1995 plus 1997/8' were selected for study, as they were one plus three years and 

six plus eight years, respectively, post track construction. Pairs of years were chosen to 

account for the differences in the climate. The years 1992 and 1997/8 relate to El Nino
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Southern Oscillation (ENSO) drought years (Chappell et al., 2001), while 1990 and 

1995 were ’wet years’ (Table 7.1).

Table 7.3: Comparison of some water balance components representing ‘wet’ water years of 
1990 (just after logging period) and 1995 showing the relative increased baseflow runoff (Q bf) 
as the forest regenerated. The 1992 and 1997/98 ENSO drought years components are also 
shown, but cannot be directly compared because of the difference in annual rainfall. Significant 
differences in the mean values were identified using the non-parametric, Mann-Whitney U-test 
based.

1990 1992 1995 1997/8

wet year dry year wet year dry year

(mm) %P (mm) %P (mm) %P (mm) %P

Rainfall (P) 2534.8 

Stream runoff (Q) 901.0 35.5 

Stormflow (Qsf) 539.2 21.3 

Baseflow (Q bf) 361.8 14.3

2222.3

542.3 24.4 

270.9 12.2

271.4 12.2

2709.1 

1458.5 55.1 

469.3 17.3 

989.2 36.5

1562.8

259.6 16.6 

108.9 7.0

150.7 9.6

Q sf/Q%  59.8 50.0 31.5 41.9

Q bf/Q%  40.2 50.0 68.5 58.1

G 2 monthly P 19577.2 9983.0 7473.0 5242.9

CV% in P 5.5 4.5 3.2 4.6

a 2 monthly Q 7538.5 1523.9 6143.7 437.3

G 2 monthly Qsf 2738.7 523.6 1292.5 133.4

G 2 monthly Q Bf 1449.9 293.5 2507.3 268.3

1 Diff. in mean 1990 vs 1995 P Ns

2Diff. in mean 1990 vs 1995 Q P < 0 . 1

3 Diff. in mean 1990 vs 1995 Qsf Ns

4 Diff. in mean 1990 vs 1995 Qbf P < 0 . 0 1

1 Diff. in mean 1992 vs 1997/8 P P < 0 . 1

2 Diff. in mean 1992 vs 1997/8 Q P < 0 . 1

3 Diff. in mean 1992 vs 1997/8 QSf P < 0 . 1

4 Diff. in mean 1992 vs 1997/8 QBF P < 0.05

Notes:

1 Level of significance of difference between rainfall (P) monthly means
2 Level of significance of difference between total stream runoff (Q) monthly means
3 Level of significance of difference between stormflow runoff (QSf) monthly means
4 Level of significance of difference between baseflow runoff (QBf) monthly means 
ns Not significant at P < 0.1
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The results of the hydrograph separation analysis (Table 7.3) show that the baseflow 

component of the hydrograph increases over time from one wet-year to later wet-year 

(1990 to 1995), and from a dry-year to a latter dry-year (1992 to 1997/8). These 

changes were seen to be statistically significant when tested with a M ann-Whitney U- 

test (Table 7.3). This change may be physically important, given that the Barn has a 

flashy regime (Qbf/Q% = 40-68 %), similar or larger than that of some other small 

catchments in the tropics (Table 7.4).

Table 7.4: Comparison of stormflow and baseflow proportions of some small tropical rainforest 
catchments.

Tropical location Catchment 
area (ha)

Qsf/Q% Qbf/Q% Source

Baru 1990 (Malaysia) 44 60 40 This study

Barn 1992 " 44 50 50 it

Baru 1995 " 44 31 69 M

Baru 1997/8 " 44 42 58 ii

W8S5 1991/2 " 170 51 49 Bidin & Greer (1997)

Queensland (Australia) 26 47 53 Bonell & Gilmour (1978)

Dominica (W. Indies) 12 2 1 0 -2 0 80-90 Walsh (1980)

Amazon (S America) 130 9 91 Leopoldo et al. (1995)

These limited analyses (only four years) may suggest that the flashiness of the 

catchment is reducing slightly, perhaps a result of reducing infiltration-excess flow 

components concomitant with the re-vegetation of the skidder trails and haulage roads. 

As with the preliminary water-balance analyses, the results are tentative and await a 

more robust QAA of the riverflow data.
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7.6. Conclusions

The hydrograph separation analysis clearly shows that the Bam Experimental 

Catchment has a very flashy rainfall-runoff regime (i.e., stormflow percent ranges from 

32 % to 60 %), in part as a result of the short-duration of the storm-events (Chapter 5). 

Moreover, it shows that the index may be changing over the period of forest 

regeneration, and that the changes may as much associated with the stage of 

regeneration as the inter-annual changes in the climate.

In some contrast, though the conclusions are tentative awaiting more robust QAA of the 

riverflow data in particular, P-Q data does not appear to show a systematic change with 

years following the harvesting activities. This result is, however, consistent with the 

results of the only other study undertaken over several years following the first episode 

of selective tropical logging (Abdul Rahim Nik and Zulkifli, 1994). The experimental 

catchment used by Abdul Rahim Nik and Yusop (1994) was inundated following 

reservoir construction shortly after their study. It is, therefore, very important that the 

rainfall and riverflow monitoring within the Bam Experimental Catchment continue for 

many more years to see if changes in the vegetation eventually have a significant 

impact on the evapotranspiration. Clearly, it would be helpful to re-establish the wet- 

canopy evaporation studies within the same catchment (Chapter 6 ) at a latter date, and 

to establish long-term transpiration studies, as this may allow future P-Q to be 

interpreted. W ithout doubt, long-term water balance studies are urgently required in 

managed forests, both natural forests and plantations, elsewhere within the tropics.

Lastly, the reliability of both the hydrograph separation and water-balance analyses 

relies on the use high quality data-series. There is therefore the need for further research
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explicitly addressing the QAA of the existing Baru riverflow data, but also the rainfall 

data in light of the conclusions of Chapter 4.
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Chapter 8

Conclusions and recommendations

The success of the study in meeting the aims identified in Chapter 1 are first 

addressed. The recommendations for further study are then identified.

8.1. First aim

The first aim of the study asked How is gross rainfall spatially distributed across a 

small equatorial catchment, do the patterns change with time, and what are the 

possible causes?

Before addressing this aim specifically, it was important to examine the constituent 

aim 'what are the errors associated with the rainfall measurement?’

The spatial variability in gross rainfall and net rainfall within this study was monitored 

using a dense network of simple storage raingauges that utilised two inexpensive 

plastic bottles. Analysis presented in Chapter 3 showed that this design did not give 

large catch errors when tested for evaporation losses {i.e., only -0.54 % error per 

month), inner-surface wetting errors (i.e., only -0.198 % error with weekly sampling) 

or volumetric recording (i.e., ±  0.025 % error with sampling). Catch differences 

between these gauges and standard raingauges (e.g., UK Meteorological Office Mark 

II gauge) were similarly small, at -0.110 % additional error, over a month's sampling. 

While more extensive testing needs to be undertaken with this simple raingauge 

design, the evidence so far suggests that weekly or storm-based catches from these
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gauges do not have significantly larger errors than the < 5  % error expected of 

commercially-built storage raingauges. As a result we felt justified in their use for the 

rainfall and wet-canopy evaporation studies.

The rainfall study was undertaken within a region experiencing summer and winter 

monsoons (Southwest and Northeast monsoons, respectively) delivering similar 

rainfall totals, as seen at other equatorial regions (Shaw, 1988). The 4 km 2 study 

catchment was within the interior of Borneo, in an area of undulating topography, and 

that received most of its rainfall in the mid afternoon (i.e., typical of a climatic system 

dominated by local convective storms). These conditions seem to have given rise to 

very large spatial variability or localisation’ in rainfall. This variability was seen 

within the simple range of rainfall catches and in the large loss of inter-gauge 

correlation (Cr) with distance. This variability was even high when compared against 

other areas with convective activity. For example, the distance at which the Cr falls to 

0.9 was only 1.155 km within the Sapat Kalisun Catchment, against 4.95 km within 

Central Illinois (Sharon, 1972) and 3.00 km in the Ruvu Basin, Tanzania (Jackson, 

1994). This rainfall localisation was particularly apparent during the Southwest 

monsoon, perhaps where more of the rainfall is delivered in local convective systems, 

rather than the meso-scale ’stratiform’ systems that the region also experiences 

(Chapter 5).

Strong correlations were seen between each season’s rainfall and both the altitude and 

bearing, though the physical explanation required at least a conceptual understanding 

of the local wind fields within region incorporating the Sapat Kalisun Catchment. This 

means that a raingauge spacing of even one gauge per 1.155 km (i.e., where Cr = 0.9) 

may not capture the important topographic controls, that change dramatically from the 

Southwest to the Northeast monsoon, on rainfall totals.
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8.2. Second aim

The second aim of the study asked What are the characteristics of the rainstorms 

within a small equatorial catchment within the interior of Borneo Island, and do these 

change with season?

The inland location of equatorial Borneo that was under investigation appeared to 

receive most of its rainfall in low intensity (i.e., < 1 0  mm h r'1 equivalent, sampled at 

5-minute interval) events. Even the two extreme events sampled during the 3-year 

analysis period, only maintained 50 mm h r '1 intensities (from 5-minute sampled data) 

for 25 minutes. Such a rainfall regime is clearly very different that that seen within 

regions experiencing tropical cyclones (i.e., Philippines - East Asia - South Asia, S.W. 

Pacific - N.E. Australia, Central America - Caribbean, see Bonell and Balek, 1993). 

Given that near-surface permeabilities have a geometric mean of about 500 mm hr'1 

over most of the Sapat Kalisun Catchment and surrounding region (Chappell et al., 

1998a), large quantities of infiltration-excess overland flow are not expected, with 

most rainfall entering the soil as Chappell et al. (1999) concluded.

Storm durations (where storms are separated by > 20 minutes without 0.2 mm of 

rainfall) were typically short, particularly during the 1997/8 Northeast monsoon, 

where 78 % of all rainfall was delivered within events of less than 15 minutes 

duration. Such as situation would be consistent with that where most rainfall is 

delivered in localised (see Chapter 4) mid-afternoon events that have developed 

through the morning. The typical short duration of the events may explain the 

flashiness of the river hydrographs monitored within the Baru catchment tributary of 

the Sapat Kalisun (Bidin, 1995; Chappell et al., 1999).
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The localised nature of the rain-events within the Sapat Kalisun Catchment (Chapter 

4) was seen in the temporal pattern of the rainfall incidence. Raingauges that were less 

than 1 km apart tended to experience rainfall on the same days. As gauge spacing 

increased to 2 - 4 km apart, then rainfall was not received on the same days for some 

15-30 days in the year. Loss of inter-gauge correlation was most strongly seen during 

the mid-afternoon convective events, where temporal inter-gauge correlation fell off 

in minutes even for gauges a few hundred metres apart. In contrast, stratiform events 

loose their temporal inter-gauge correlation perhaps by a factor 5 more slowly. The 

short duration and localised nature of the convective events within the Sapat Kalisun 

Catchment, therefore, demand not only a dense raingauge network, but also a high 

temporal sampling intensity. Indeed, Chappell et a l  (1999) found that they needed a 

5-minute sampling intensity to model the rainfall-runoff characteristics within a 

tributary of the Sapat Kalisun.

8.3. Third aim

The third aim of the study asked Do the different patches of vegetation seen within a 

region recovering from the first episode of selective forestry have different rates of net 

rainfall (i.e.. sub-canopv rainfalll and wet-canopv evaporation?

Before addressing this aim specifically, it was important to examine the constituent 

aim ’can the complex patchwork of selectively-managed forest be classified to allow 

representative plots to be established for wet-canopy evaporation studies?’

The 44 hectare area of selectively-managed forest that comprises the Baru 

Experimental Catchment was first qualitatively classified into the six categories of: (1) 

undisturbed forest canopy, (2) moderately impacted forest canopy, (3) vine-covered
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forest canopy, (4) Macaranga  forest canopy, (5) sprawler-covered canopy gap, and (6) 

canopy gap. Statistical analysis then indicated that these categories, easily 

distinguishable from visual characteristics of their respective canopies, could be 

objectively identified using biophysical data.

The remnants of undisturbed forest canopy (canopy 1), which occupy 18 ± 3 % of the 

catchment, could be separated on the basis of their much higher tree basal area {i.e., 

»  30 m 2 ha '1) and estimated biomass {i.e., »  300 t ha '1). The density of vines could 

perhaps have been used to separate ’moderately impacted forest canopy’ (canopy 

category 2) from the ’vine-covered forest canopy’ (canopy category 3). W ithin the 

areas categorised as ’vine-covered forest canopy’ the basal area of vines was »  1.0 m 

ha'1. The patches of forest dominated by Macaranga  spp. {i.e., 79 % of all tree 

genera), that occupy 10 ± 4 % of the catchment, had a characteristically low canopy 

complexity {i.e., Shannon diversity index of «  2.0) and tree density {i.e., «  300 t ha' 

!). After some eight years following the first (and only) harvesting activity, 17 ± 4 % 

of the catchment remained without pioneer or climax trees (larger than saplings). As a 

result, these areas (canopy category 5 and 6) were easily distinguishable from the 

categories 1, 2, 3, and 4.

Given that the visual differences in the six canopy categories defined are supported by 

measurable differences in the biophysical properties, each canopy was expected to 

intercept, store and release different quantities rainfall, and thereby result in different 

rates of wet-canopy evaporation (Chapter 6).

The 1997/8 water-year studied, turned out to be a severe ENSO drought. During this 

period, the remnants of undisturbed lowland dipterocarp forest studied allowed 93.1 ± 

7.5 % of the rainfall through the canopy to the ground, giving a wet-canopy
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evaporation rate of approximately 7 % of gross rainfall. This figure was towards the 

lower end of the range of wet-canopy evaporation rates observed for undisturbed 

tropical forests. The low rate may relate to the expected lack of ’storminess’ during the 

1997/8 drought (Chapter 5).

Selective harvesting of the forest generated patches of moderately-impacted forest 

(canopy category 2) and more heavily damaged areas, now with the remnant climax 

trees covered by vines (canopy category 3). Much smaller volumes of sub-canopy 

rainfall were observed below these forest patches (i.e., 82.3 ± 3.1 % and 82.6 ± 4.4 % 

respectively). This result could be explained by (1) these (on average) lower forest 

canopies receiving less incoming rainfall due to sheltering by the undisturbed 

remnants, or (2) the changed canopy surface characteristics. The surface of the 

disturbed canopies often has a greater surface density of leaves, which may have a 

disproportionate effect on rates of wet-canopy evaporation. Further, the more uneven 

surface of the disturbed canopy patches may increase atmospheric turbulence and thus 

increase the rate of evaporation. These two phenomena may also account for the 

unexpectedly high estimates of wet-canopy evaporation from the areas of sprawlers 

and shrubs (canopy category 5).

Taking into account the area covered by the six canopy categories (Chapter 2), the 

catchment-wide estimate for wet-canopy evaporation from the selectively-managed 

forest (following eight years of recovery) was 13.6 % of the gross rainfall. This figure 

was almost identical to the 14.0 % wet-canopy evaporation rate calculated from the 

two transects of mixed canopy types. The study, therefore, suggests that the rate of 

wet-canopy evaporation may significantly increase as a result of selective logging.
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8.4. Fourth aim

The fourth aim of the study asked Does the natural recovery of the forest and terrain 

since selective harvesting have a significant impact on the water yield, when set 

against the impacts of natural climatic fluctuations?

The hydrograph separation analysis showed that the Baru Experimental Catchment 

has a very flashy rainfall-runoff regime {i.e., stormflow percent ranges from 32 % to 

60 %), in part as a result of the short-duration of the storm-events (Chapter 5). 

Moreover, it showed that the index may be changing over the period of forest 

regeneration, and that the changes may as much associated with the stage of 

regeneration as the inter-annual changes in the climate.

In some contrast, though the conclusions are tentative awaiting more robust QAA of 

the riverflow data in particular, P-Q data does not appear to show a systematic change 

with years following the harvesting activities. This result is, however, consistent with 

the results of the only other study undertaken over several years following the first 

episode of selective tropical logging (Abdul Rahim Nik and Zulkifli, 1994). The 

experimental catchment used by Abdul Rahim Nik and Yusop (1994) was inundated 

following reservoir construction shortly after their study. It is, therefore, very 

important that the rainfall and riverflow monitoring within the Baru Experimental 

Catchment continue for many more years to see if changes in the vegetation 

eventually have a significant impact on the evapotranspiration. Clearly, it would be 

helpful to re-establish the wet-canopy evaporation studies within the same catchment 

(see Chapter 6) at a latter date, and to establish long-term transpiration studies, as this 

may allow future P-Q to be interpreted. W ithout doubt, long-term water balance
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studies are urgently required in managed forests, both natural forests and plantations, 

elsewhere within the tropics.

Lastly, the reliability of both the hydrograph separation and water-balance analyses 

relies on the use high quality data-series. There is therefore the need for further 

research explicitly addressing the QAA of the existing Baru riverflow data, but also 

the rainfall data in light of the conclusions of Chapter 4.

8.5. Recommendations for further research

A series of 6 recommendations for further avenues of ecohydrological research have 

arisen out of this study.

(1) More extensive testing of the errors of raingauges used to measure gross and net 

rainfall is required. This is particularly important for wet-canopy evaporation 

studies where rates are derived by dividing a small value (i.e., gross rainfall minus 

net rainfall) by a large value (i.e., gross rainfall) where the net rainfall is highly 

variable. These errors should always be propagated to give uncertainties in the 

final wet-canopy evaporation estimates.

(2) The analysis of the spatial variability in the rainfall within the 4 km Sapat Kalisun 

Experimental Catchment should be taken further. Further geostatistical analysis, 

leading to a kriged rainfall map, is currently being undertaken, as this may help 

explain the patterns of rainfall. This is, however, not trivial given the significant 

role of the topography in generating ’deterministic drift’ within the variogram 

(Chappell et al., 2001), which must be removed (i.e., modelled) before the true 

stochastic nature of the variogram can be accurate characterised. The application 

of a numerical model of the wind fields (e.g., Theilen, 1994) in the 10-30 km2
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region about the Sapat Kalisun Catchment, would aid in this analysis, and would 

test the conceptual wind fields postulated in chapter 4. Assurance in the modelling 

of wind fields would really need measurements of the vertical profile of the 

atmosphere about the Danum Valley area.

(3) The intensively sampled rainfall data for the Sapat Kalisun Experiment Catchment 

could be used as the basis for the establishment of a model that predicts the 

temporal sequence of rainfall incidence. Such a model, known as a ’weather 

generator’ (Coe and Stern, 1982), would be very helpful in generating realistic 

future rainfall series. Such synthetic data may be used to forecast future rainfall- 

runoff scenarios given changes to catchment properties.

(4) Understanding how much of the rainfall seen at the inland locality of the Sapat 

Kalisun Catchment is derived from local forest evaporation, and how much from 

the greater northern Borneo region (perhaps from the Western Pacific during the 

Northeast monsoon) may give greater understanding of spatio-temporal dynamics 

of the local rainfall phenomena and the role of local evaporation in these 

processes. Chemical signatures may be able to be used to attempt this separation 

process (Douglas, pers. comm. 1990).

(5) This study has focused on the spatial variations in wet-canopy evaporation within 

a selectively-logged forest. It would be very helpful to establish a parallel study 

that sought to establish differences in the transpiration rates between the various 

canopy types observed within selectively-logged terrain. Such work might begin 

with small-scale measurements screening of individual tree species using 

porometers and sapflow gauges.
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(6) The selectively-logged catchment study of Abdul Rahim Nik and Yusop (1994), 

showed that the initial forestry activity lead to a reduction the P-Q in the 

harvesting year, that was sustained for further 6 years. This catchment was 

however inundated following reservoir construction shortly after their study. It is, 

therefore, very important that the rainfall and riverflow monitoring within the Baru 

Experimental Catchment continue for many more years to see if regrowth of the 

climax vegetation eventually increases the evapotranspiration losses. Clearly, it 

would be helpful to re-establish the wet-canopy evaporation studies within the 

same catchment (Chapter 6) at a latter date (and to establish long-term 

transpiration studies, noted earlier), as this may allow future P-Q to be interpreted. 

W ithout doubt, long-term water balance studies are urgently required in other 

managed forests (both natural and plantations) elsewhere within the tropics.

It is hoped that this work makes a contribution to the fundamental physical behaviour 

of rainfall and wet-canopy evaporation within a lowland rainforest, and to the debate 

surrounding the impact of selective forestry on the hydroclimatic system.
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