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Abstract

Technological advances in device micro- and nano-fabrication over the past
decade has enabled a variety of novel heterojunction device structures to be made.
Among these, magnetic multilayers, superconductor/normal metal junctions and
carbon nanotubes exhibit a rich variety of features, with the potential for future
generations of electronic devices with improved sensitivity and higher packing
density. The modeling of such structures in a flexible and accurate way, with a
predictive capability is a formidable theoretical challenge.

In this thesis I will present a very general numerical technique to compute
transport properties of heterogeneous systems, which can be used together with
accurate spd tight-binding Hamiltonians or simpler models. I will then apply this
technique to several transport problems in the mesoscopic regime.

Firstly I will review the material dependence of CPP GMR in perfect crys-
talline magnetic multilayers, analyze their conductance oscillations and discuss
some preliminary results of magnetic tunneling junctions. In the contest of the
conductance oscillations I will introduce a simple Kronig-Penney model which
gives a full understanding of the relevant periods involved in the oscillations. I
will then present a simple model, which can be used to study disordered mag-
netic systems and the cross-over from ballistic to diffusive transport. This model
explains recent experiments on CPP GMR, which cannot be understood within
the usual Boltzmann transport framework. Then I will present results for super-
conducting/normal metal and for superconducting/multilayer junctions. In the
case of multilayers I will show that in both the ballistic and diffusive regimes the
GMR is expected to vanish if a superconducting contact is added and go on to
show why this is not the case in practice. Finally I will present features of ballistic
transport in multiwall carbon nanotubes and show how the inter-tube interaction
can, not only block some of the scattering channels but also re-distribute non-
uniformly the current across the tubes. The results explain an old open question
concerning ballistic transport in Carbon nanotubes.
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Questa cost vana presunzione d’intendere il tutto non puo avere principio altro che
dal non avere inteso mai nulla, perché, quando altri avesse esperimentato una volta
sola a intender perfettamente una cosa sola e avesse gustato veramente come é fatto il

sapere, conoscerebbe come dell’infinita dell’altre cose niuna ne intende.

Galileo Galilei
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The vain effrontery of understanding every thing can only be due to not understanding
anything. because if one has experienced for only one time the full understanding of
one thing only and has enjoyed the pleasure of the knowledge, he would know how big

is the universe of things which he does not understand.

Galileo Galilei

From “Dialogo Sopra i due Massimi Sistemi del Mondo”
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1 Introduction
1.1 The Spin Transport Era

Since 1988 with the discovery of the Giant Magnetoresistance (GMR) in metallic mag-
netic multilayers (1, 2] a revolution in the world of electronics has begun. GMR is the
drastic change of the resistance of a multilayer composed of alternating magnetic and
non-magnetic layers when a strong magnetic field is applied. This effect is the result
of a change in the magnetic configuration of the multilayer. In fact the thickness of
the non-magnetic layers can be tuned in such a way that the exchange coupling be-
tween magnetic layers through the non-magnetic layer makes adjacent magnetizations
antiparallel [3, 4, 5, 6]. This results in a global antiferromagnetic (AF) configuration of
the multilayer. If a magnetic field strong enough to rotate the magnetizations toward
the field direction is applied, a ferromagnetic (FM) configuration may be achieved. This
latter configuration turns out to possess a lower resistance, with the relative difference
being larger than 100%.

The impact of this discovery was enormous, particularly for two reasons. First it
paved the way for a new generation of devices and sensors with sensitivity far beyond
the existing structures based on conventional anisotropic magnetoresistance (AMR).
Secondly it brought the “spin” to the attention of the scientific community as a possible
degree of freedom to use in electronics {7]. The first aspect has been largely explored.
At present magnetometers based on GMR elements have been produced [8, 9] and in
the catalogues of the major computer manufacturers [10] it is possible to find high
density hard-disks with reading heads based on GMR. The second aspect generated
a renewed interest in the transport properties of magnetic systems and in the subtle
interplay between spin and transport. Although the initial problem of, whether GMR
was a surface or a bulk effect has not been completely solved, it was clear from the very
beginning that a fundamental ingredient for GMR to occur was the total, or at least
partial spin-polarization of the current in a ferromagnetic metal. The original idea of
Mott [11] of the current as two independent spin-fluids, and the pioneering work of
Tedrow and Meservey (for a review see reference [12]) on the spin-polarization of the
current in transition metals have been rediscovered and GMR is now regarded as a new

fundamental tool.



The earlier GMR experiments (1, 2] have been conducted with the so-called current
in the planes configuration (CIP) in which the current flows in the plane of the layers
and in which the resistance is measured with a conventional four-probe technique. In
these experiments the typical cross sections are of the order of 1 mm? and the transport
is mainly diffusive. A further important breakthrough was the possibility to study the
transport of a multilayer with the current flowing perpendicular to the planes (CPP
GMR). This has been achieved either by using superconducting contacts [13] or by
shaping the samples to very small cross sections [14]. In these experiments the elec-
trons have to cross the entire multilayer over distances smaller than 1 ym. The spin
filtering is more effective and the transport is largely phase-coherent. Estimates of the
spin-polarization of the conductance were made and material specific modeling became
possible (for a large review on CPP G)\IR see (15, 16]). Despite the indisputable success
of the CPP G)IR either as scientific tool and as building block for devices, it presents
some disadvantages. Firstly, since the resistances involved are rather small there is
the need to grow samples comprising many layers and to measure the resistance with
sophisticated techniques. Secondly it is difficult to magnetically decouple the layers,
large magnetic fields are needed and complex micromagnetic effects are unavoidable.
Both these complications create severe limitations to possible applications. Moreover
the complexity of the system (large number of interfaces often with different quality,
presence of superconducting contacts, non-homogeneous disorder due to the confine-
ment, non-homogeneous distribution of the current across the cross-section) makes the
polarization of an individual magnetic layer a quite indirect quantity and difficult to

infer.

To overcome both these problems a new kind of device has been introduced, namely
the tunnel spin valve [17, 18]. In this case only two magnetic layers with different
coercive fields are employed. They are separated by an insulator and the different
magnetic configurations (the FM and the AF) can be obtained by applying a magnetic
field with variable intensity. This results in a tunneling magnetoresistance effect (TMR)
analogous to that measured in GMR experiments. Because of the presence of only two
magnetic lavers this device gives a direct information on the spin-polarization of the
current through the barrier. Nevertheless in this case the current is a tunneling current,
whose polarization may differ from the one of the direct current measured with GMR
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experiments. In particular the tunneling current is related to the DOS at the Fermi
energy [17] while the direct current is also strongly dependent on the dispersion of the
bands. Furthermore the insulator used is often non-crystalline and tunneling through
impurity states in the barrier is important [19, 20]. Finally very recently it has been
shown [21] that TMR junctions made by different insulators but the same magnetic
materials possess different spin-polarizations, which may differ even in the sign. The
importance of this result is twofold. On the one hand it shows that the definition of
spin-polarization of the current is not unique and depends on the system measured, on
the other hand it makes clear that to make reliable predictions real material modeling

is needed.

Another attempt to measure the spin-polarization of magnetic metals has been
recently done using ballistic Ferromagnet/Superconductor junctions [22]. In such a
case the quantity measured is the suppression of Andreev reflection [23] due to the
ferromagnetism. The magnitude of the spin-polarization can be measured but not its
sign. Typically the measured spin-polarization is not completely consistent with the
one measured with other methods (GMR or TMR). This highlights the intrinsic impos-
sibility to isolate the measurement of the spin-polarization of an individual magnetic
metal from the measurement of the spin-polarization of the whole structure in which
it is embedded. In particular in the case of ballistic F/S junctions the transport is
completely phase-coherent and the definition of the spin-polarization of an individual

layer becomes meaningless.

From this brief overview it is clear that, despite the fact that spin-transport is not
a new field, it continues to provide interesting problems and issues. To understand
most of the present experiments (particularly with the continuous shrinking of the
dimensions) both a phase-coherent description of the transport and an accurate material
modeling capability is fundamental. Moreover a new generation of materials like carbon
nanotubes and magnetic semiconductors is opening new and almost unexplored fields,

where theoretical modeling can drive new experiments.

The main aim of this thesis therefore is to study and understand the main mech-
anisms governing the spin-transport in various metallic magnetic nanostructures, to
develop the capability of making predictions of the fundamental material characteris-
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tics, and to predict and design new structures with novel properties. To this end I have
developed a very flexible numerical calculation technique with which to study trans-
port properties. I will concentrate the attention solely on two-probe measurements
and phase coherent systems. The technique is based on the Landauer-Biittiker formal-
ism [24], that will be briefly reviewed in the next section, and is capable to deal both
with realistic material-specific svstems and with more simple models. The first give
important insights into the material properties and the second provide a more trans-
parent understanding of the main phenomena. I will present the main results obtained
by either numerical simulations and simple models, keeping continuous contact both
with experiments and other theoretical models. From this work a complete picture of
the spin-polarized transport in different structure will emerge and novel effects will be

predicted.

1.2 Landauer-Buttiker Formalism

One of the purposes of this thesis is to relate the transport properties of a magnetic
syvstem to its electronic structure. To this aim it is useful to map the transport calcu-
lation onto a scattering problem, then to solve the scattering problem including both
band structures and structural details. Furthermore, since most of the measurements
involving mesoscopic magnetic junctions are carried out at low bias and temperature,
the Landauer-Biittiker [24, 25, 26] formalism is the most appropriate theoretical ground
on which to build up a scattering theory. I this section I will briefly introduce the main
idea of such a formalism. The final result will be a formula that relates the conductance
of a system comprising a scattering region attached to two semi-infinite crystalline leads
to the S matrix of the correspondent scattering problem.

Consider the situation of figure 1.1 for a mono-dimensional system (I will later
generalize the problem to higher dimensions). A scattering region is connected to
two semi-infinite crystalline leads. The fundamental assumption is that the two leads
inject completely non-correlated electrons into the scattering region (the leads act as
a thermal bath). This means that the phases between the electrons that enter the
scattering region do not possess any relation.

Moreover suppose the chemical potentials of the two leads to be respectively pu,
and pp with (g — pg) = 0% (zero-bias limit and current flowing from left to right).

4
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Figure 1.1: Scattering region connected to semi-infinite crystalline leads. An electron carrying unit
flux is transmitted with probability T and reflected with probability R (T + R = 1).

The current I emitted from the left lead is therefore

on

I=ev <6_E) (11 — p2) (1.1)

where e is the electronic charge, v is the group velocity and dn/JF the density of states.
Since On/0E = 0n/dk - 0k/OE = On/0k - 1/vh and in one dimension dn/dk = 1/27
the equation (1.1) can be written as

e

I
h

(1 = p2) (1.2)

From the (1.2). by considering the relation between the difference in chemical potential
Ay and the bias voltage AV = eAy, the conductance (I' = I/AV") of the system is
easily evaluated

F =T = _GO ) (13)

where the quantum conductance Gy = 2e%/h has been introduced. Finally, since each
carrier has a finite probability T to be transmitted and to be reflected R (with T+ R =
1) by the scattering region sandwiched between the two leads, the total net current
flowing from the left to the right lead is

I=3ST(p - )——e—z—TAV (1.4)
=73 Hi M—h . :

The equation (1.4) is the famous Landauer-Biittiker formula [24, 25, 26] which relates
the conductance of a system to its scattering probability. Note that in the case of a
perfectly transmitting scattering region equation (1.4) reduces to equation (1.2). Note
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also that equation (1.4) is for a single-spin system, in the case of spin-degeneracy this
should be multiplied by a factor 2.

The above result may be generalized to the case of many scattering channels. To
this aim consider the same physical situation of before, with the only exception that the
number of independent scattering channels in the leads is N. This takes into account
for the degrees of freedom in the plane transverse to the direction of the current. The
scattering channels, independent in the leads, may be scattered into each other in
the scattering region. For instance, an electron propagating in the i-th channel in the
left-hand side lead has a probability to be transmitted into the j-th channel of the right-
hand side lead equal to T}; = |t;;|?, where ¢ is the transmission matrix. To extend the
formalism valid in one dimension to the multichannel case the following assumptions
are made. The electrons injected from the left-hand side lead feel the same chemical
potential y;, and in the same way the electrons collected at the right-hand side lead feel
the same chemical potential pus < p;. An electron coming from the scattering region
and absorbed from the leads is instantaneously thermalized. The incident electrons
have no phase-relation and hence they are incoherent. Under these assumptions the
current injected into the leads in the j-th scattering channel is ev;(On;/0FE) (11 — p2)-
The density of state is given by On;/0F = 1/2rhv;, and this means that the current fed
into the j-th channel is independent of the group velocity v;. The current transmitted
from the j-th channel to the i-th channel is (e/h)T;;(;; — p2) and the total current is
obtained by summing over all the incoming and outgoing channels. This leads to a
total conductance

e2 N e2
F=—>3T,;==-Trtt. (1.3)
h 5 h

In the second equality I have introduced the transmission matrix ¢ which is related with

s:(’; jﬁ), (16)

with 7 the reflection matrix and ¢’ and r' the same quantities for electron approaching

the S matrix through the relation

from the right. The equation (1.5) expresses the conductance of a scattering region
sandwiched between to semi-infinite crystalline leads solely in terms of the S matrix of
the system. This fundamental result is valid in general and forms a fundamental link
with the scattering theory I will develop in the next chapter.
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1.3 Thesis Outline

This thesis is organized as follows. In Chapter 2 I will present a general scattering
technique based on tight-binding Hamiltonians to calculate the transport coeflicients
in a two-probe measurement. I will provide, together with a general approach, a simple
example where the calculation can be carried out explicitly. The central result of the
technique is a semi-analytic formula which allows the direct calculation of the surface
Green functions for semi-infinite leads. The treatment is very general and does not

refer to any particular tight-binding models.

In Chapter 3 I will apply such a technique to the calculation of the conductance
and the GMR ratio of magnetic multilayers and tunneling spin valves. I will use an spd
tight-binding Hamiltonian with parameters fitted from ab initio calculations. As far as
GMR is concerned I will analyze the dependence of the GMR ratio from the materials
forming the multilayers and identify the main sources of scattering. The results are
presented for Co and Ni as magnetic materials and a large number of 3d, 4d and 5d
transition metals as non-magnetic materials. From this analysis some prescriptions on
how to maximize the GMR ratio will be given. As far as tunneling spin valves are
concerned, the main result will be to show that in the case of a disorder-free barrier
the polarization of the tunneling current through the junction depends strongly on the
material characteristics of the insulator. This result will shed some light on a long-
living debate on how to measure the polarization of a magnetic material. I will come
back on this point in Chapter 6, when discussing Ferromagnet /Superconductor ballistic
junctions. Most of the material presented in Chapter 2 and Chapter 3 can be found in

reference [27].

In Chapter 4 I will discuss the problem of conductance oscillations in transition
metal multilayers. The calculation is motivated by a controversial experiment [28] in
which the resistance of a multilayer oscillates as a function of the layer thicknesses
with periods extending over many monolayers. The experiments have been carried
out in the CIP geometry and I will make some predictions regarding analogous new
experiments in the CPP geometry. First I will approach the problem using the realistic
spd tight-binding Hamiltonian and then I will consider a simpler effective mass model.
The main advantage of the latter is that it provides a full understanding of the nature

7



of .he oscillations and a complete analytic treatment is possible. Finally I will extend
the effective mass approach to re-interpret the results obtained in Chapter 3, namely
the dependence of the GMR ratio on the material characteristics. In this last part it
will be clear what the role of the very different Fermi surfaces of the materials forming
the multilayer is and a two-band model will emerge as the minimal model to capture
all the phenomenology of transport in transition metal multilayers. Part of the results
of Chapter 4 have been published in references [29, 30, 31].

All the calculations presented in the first four chapters deal with disorder-free sys-
tems, where translational invariance is always satisfied. In Chapter 5 I will introduce
disorder and discuss its effects. Since the spd-Hamiltonian in the case of disorder leads
immediately to unmanageably large matrices, I will introduce a simpler model, namely
a two-band simple-cubic tight-binding model. Several kinds of disorder are introduced,
including random on-site potentials, lattice distortions, vacancies and impurities. More-
over in the case of narrow multilayered wires [32] the effects of cross-section fluctuations
and confinement will be considered. From a more technical point of view I will discuss
the implementations of the scattering technique in the case of disorder and introduce
a “diagrammatic” scheme (“decimation diagrams”) for the treatment of the scattering
region. From this chapter two main results will emerge. First I will be able to describe
the crossover between the ballistic, diffusive and localized regime of the conductance in
magnetic multilavers. Secondly I will show in which limit a fully diffusive approach to
transport, based onto the Boltzmann equation [33, 34|, breaks down. This last result
is very important to the interpretation of very recent experiments [33, 36] in which an
extremely long electronic mean free path requires a phase-coherent description of the
transport. Some of the results of this chapter are published in references [37, 38].

Chapter 6 is focused on the introduction of superconducting contacts in two-probe
GMR experiments and on the description of ballistic Normal/Superconductor (N/S)
and Ferromagnet/Superconductor (F/S) junctions. The main result of considering
superconducting contacts in a two-probe GMR experiment is to completely suppress
the spin-polarization of the current, resulting in a vanishing GMR ratio. This dramatic
suppression raises interesting questions regarding existing experiments, where the role
of disorder and spin-flip scattering will turn out to be crucial. Finally ballistic N/S and
F/S junctions will be considered. As well as tunneling spin valves they are an important
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probe into the spin-polarization of the current in ferromagnetic transition metals, and
therefore an accurate model is of interest. I will show that a detailed description of
the Fermi surfaces of both the normal and the superconductor metal can reproduce the
typical I-1” curves found in experiments in the case of N/S junctions. Conversely the
inclusion of spin-flip and of enhanced magnetic moment at the interface is fundamental
to a description of the F/S junctions. Some of the results can be found in references
(39, 40].

The final chapter lies somewhat outside the structure of the previous work. I will
consider transport in carbon nanotubes where to-date only one experiment has shown
spin-polarized transport [41]. Most of the chapter will be devoted to the calculation
of the transport properties of multi-wall nanotubes, where the inter-tube interaction
may change completely the transport properties [42, 43] with respect to individual
isolated tubes. This result explains a recent experiment in which multi-wall nanotubes
show conductances respectively of 1/2 and 1 quantum conductance [44]. From a more
technical point of view I will introduce a way to deal with a periodic system in which
the hopping matrix between adjacent cells is singular. The use of the “decimation
diagrams™ will be very useful to give prescriptions on how to construct the unit cell
and how to make the contacts with the scattering region. Important considerations
on the distribution of the chemical potential across the structure and the efficiency of
the electrons feeding from the reservoirs will also be discussed. Finally I will consider
the possibility of the injection of spin-polarized electrons into carbon nanotubes by
contacting the tubes with magnetic metals. The interplay between the spin-asymmetric
Fermi surface of a magnetic metal and the point-like Fermi surface of a carbon nanotube
can make spin-injection possible. Moreover the absence of disorder at microscopic
level and of an efficient spin-flip process in carbon nanotubes are very promising for
long-living spin states, with possible applications in magnetoelectronics and quantum

computation. Finally in Chapter 8 I will make some conclusions.



2 A New Scattering Technique
2.1 A Simple example

In the introduction I pointed out that the great advantage of the Landauer-Biittiker
approach to transport [25, 26] is to map the calculation of the conductance onto a
scattering problem. This is strictly valid in the limit of small bias and temperature, a
condition that is matched in a typical MR experiment. In this chapter I will develop a
novel technique to evaluate the transport coefficients of a heterostructure described by
a tight-binding model. The technique is general and can deal with multi-orbital models
with a large number of degrees of freedom.

In a scattering problem the important elements are the asymptotic wave-functions
far from the scattering region (“quantum channels” in the Landauer-Biittiker formal-
ism) and the scattering potential. Information regarding the value of the wave-function
within the scattering region are not important, because the asymptotic states deter-
mine the current. Therefore it is natural to divide the calculation of the S matrix
into three fundamental steps: 1) the calculation of the asymptotic states in the leads,
2) the construction of an effective coupling matrix between the surfaces of the leads
(the scattering potential), 3) the evaluation of the S matrix. From a numerical point
of view it is convenient to decouple the first and the second stages, because the same
leads can be used with different scatterers, saving the computation time of re-evaluating
the asymptotic states. This point will be more clear in Chapter 5, when disorder will
require a large ensemble average and hence the evaluation of the S matrix for many

scatterers.

Before going to a detailed analysis of the general scattering technique, I present
a simple example in which the main ideas are introduced. Consider two semi-infinite
linear chains described by a tight-binding model with one degree of freedom per atomic
site (see figure 2.1). The on-site energy of the left- (right-) hand side linear chain is set
to zero (€o) and the hopping is 4, (72). Note that setting one of the on-site energies to
zero is completely general because the system is invariant under a total energy shift.
The left-hand side chain is terminated at the atomic position ! = 0 and the right-hand
side chain starts at the position [ = 1. The chains are coupled with a coupling element
Q.
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Figure 2.1: Linear tight-binding chains connected through the hopping «. eo and 0 are the values of
the on-site energies and 71 and 72 the hopping parameters.

For an infinite chain with on-site energy eo and hopping 7 it is easy to show that
the wave-function is simply a plane-wave with momentum k given by the tight-binding

dispersion relation

E =¢e0+ 27cosk, 2.1

with E the energy. In a scattering problem it useful to consider the retarded Green
functions instead of the wave-functions. For the above infinite linear chain it is easy to

show that the retarded Green function is simply (see for example reference [45])

eik\j-1\
e-TST - (2"2)
with v the group velocity given by
dE .
hy = —= —27sink. 2.3)
ok

The equation (2.2) describes the Green function of an infinite system. In the scattering
problem one is interested in knowing how an electron approaches the scattering region,
therefore one requires the Green function for a semi-infinite system evaluated at the
terminating surface. It is possible to compute this from the retarded Green function
for the double-infinite system of equation (2.2) and by using the appropriate boundary
conditions. Suppose the infinite system is terminated at the position i = z0 —1 in such
a way that the site i = iQis absent. Therefore the Green function gji with source at
i = I < io must vanish forj = i0 (ie the plane-waves are approaching the boundaries
from the left). This is achieved by adding to the expression in equation (2.2) the

following wave-function
p—ik(j—2io+l)

=— nsr- 24)

and notingthat addinga wave-function to a Green function results ina new Green

function withthe samecausality. Finally the surface Greenfunction can beobtained



by taking the value of g + % at the boundary of the scattering region j = = ig — 1
oik
Gig-1ip-1 = — . (2.5)

~

!
An identical expression can be derived for the surface Green function of a semi-infinite
linear chain starting at i = i; and extending to infinite to the right. Going back to the
initial problem, the surface Green function for two chains facing through the sites i = 0
and 2 = 1 but decoupled (a = 0) is simply

tk
eh g
g = ( z]l 3_'51) R (26)

72
with obvious notation for k; and k. Note that g has vanishing off-diagonal terms,
which reflects the fact that the two chains are decoupled.

Let us now switch on the coupling a between the two chains. This can be easily

done by solving the Dyson equation
G=(9"-1)", (2.7)

where G is the new surface Green function for the two coupled chains and V' isa 2 x 2
matrix with a in the off-diagonal positions and zero elsewhere. In the present example

with a little algebra one obtains

1 e k24 @
G — ) — 02 ( /2 —l'kl,. ) . (2.8)

Y1ype ki tk: a ey

Before continuing with this pedagogic example it is useful to summarize the struc-
ture of the calculation done so far. The starting point was to evaluate the surface
Green function for two decoupled leads. This has been achieved by considering an in-
finite system and by using the appropriate boundary conditions. Then the total Green
function for the coupled leads has been calculated by solving the Dyson equation. The
coupling between the lead surfaces enters into the calculation only at this point. This
approach is still valid in the case in which the scattering region extends over many
atomic planes and includes a large number of degrees of freedom. In fact I will show in
the following sections that it is always possible to reduce the Hamiltonian describing
the scattering region to an effective coupling matrix Heg between the surfaces of the
leads. In a general case such a matrix will also include diagonal terms which represent

the self-coupling within the surfaces.

12



The remaining task is to extract from the total Green function G the S matrix.
First note that the general wave-function for an electron approaching the scattering

region from the left has the form

ikl i
511}2 + ,,1?/26 b 1<0
Y= . , (2.9)
—Loetkl 1>
Y2

where the transmission t and reflection r coefficients are introduced and where the

. . N ikl . . .
incoming wave-function 51,}2 has been normalized in order to carry unit flux (open

scattering channel). This last convention guarantees the unitarity of the S matrix |¢|2+
|r|? = 1. The final step is to project the total Green function G over the wave-function
of equation (2.9). It is possible to show (see Appendix C) that the projector that
projects the retarded Green function for an infinite system over the unitary flux wave-

function 5‘72’ projects also the total Green function G over the (2.9). Such projector

is easily calculated through the relation

9P = =5 for 12, (2.10)

and is simply

P(j) = et/ . (2.11)

Now I can now use P(j) to extract t and r. In fact by applying P(j) to G;; and by

taking the limit { — 0 I obtain

GooP(0) = # + ;1’;7 : (2.12)
from which the reflection coefficient is easily calculated
r = GooP(0)v,'? — 1. (2.13)
In the same way the transmission coefficient is simply
t = G1oP(0)vy! 22 (2.14)

Note that the same technique can be used to calculate ¢t and r for electrons incoming
the scattering region from the right.

To conclude this section I want to summarize the calculation scheme presented in
this example. First I calculated the Green function for an infinite system and from it

13



derived the surface Green function for the corresponding semi-infinite leads by using
the appropriate boundary conditions. Secondly I switched on the interaction between
the leads by solving the Dyson equation with a given coupling matrix between the two
lead surfaces. Finally I calculated the S matrix by introducing a projector that maps
the total Green function onto the total scattered wave-function. The advantage of this
technique is twofold. On the one hand the calculation of the Green function for the
infinite system enables us to obtain useful information regarding the leads (density of
state, conductance) and on the other the scattering region is treated separately and
added to the leads only before evaluating the S matrix. As noted above this latter
aspect is particularly useful in the case in which a large number of computations of
different scatterers with the same leads are needed.

In the following sections I will generalize this approach (previously introduced in

the case of cubic lattice [46]) to an arbitrary tight-binding Hamiltonian.

2.2 Structure of the Green Functions

In this section I discuss the general structure of the Green function that I will use
for calculating the S matrix. To do so consider a two-dimensional nearest-neighbour
simple-cubic model with a tight-binding Hamiltonian. The system is briefly sketched
in figure 2.2. Consider z to be the direction of the transport and z the transverse
direction. Let the system be infinite in the direction of transport and consist of M
atomic sites in the transverse direction. I assign as before the on-site energy to be e,
and the hopping between nearest neighbours .
The Green function for such a system can be shown to be

A ik?(E)|z-2|
2 nmw nmw (e
o [ nm N / 2.15
92,22, 7) E(M+1)S”‘(M+1")S"’(M+1I) v

n=1

where k7 (E) is the longitudinal momentum that satisfies the dispersion law

nm
— e, + 27 kD E] , 2.16
E e+2,[cos(M+1)+cos "(E) (2.16)
and v?(FE) is the group velocity
OE(K}) _, » .
—5}? = hvz (E) . (217)
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Figure 2.2: 2D Simple cubic lattice.

Since (2.15) will be the starting point for the construction of a more general Green
function in the next section, it is important to understand its structure. The expression
of equation (2.15) can be schematically written

kT (E)]|2—2']

¢ 3 (') . (2.18)

AL
zyr; 2 1) =) 3(x)———e—
g( 7‘1‘ ,1 ) Z (‘L‘) lhl'?(E) n

n=1
g(z.r: 2", ") consists of the sum of all the allowed plane-waves e**(£)* (with A7(E)’s
both real and imaginary) weighted with the corresponding transverse wave-function
3 (r) of momentum A} (A = n7 /(M + 1) in the present case) with k*(E) defined by

the generalized dispersion relation

E = E(K!', k). (2.19)

. .. . . o, s . . hHE):
Since the transport is in the z direction it is easy to identify the plane-waves 87@—)

with the scattering channels defined in the previous section. Note that in the case of
a one-dimensional linear chain the equation (2.18) reduces to the expression given by
equation (2.2), where the 3’s are only numbers.

The possible scattering channels can be divided into four classes. The left-moving
open scattering channels /m (right-moving open scattering channels rm) are propagating
states (k7 is a real number) having negative (positive) group velocity. Similarly the left-
decayving closed scattering channels Id (right-decaying closed scattering channels rd) are
states whose wave-functions have a real exponential decay. with k7 possessing a negative
(positive) imaginary part. Note that in the case in which time-reversal symmetry is
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valid, the number of left- and right-moving scattering channels must be the same, as
well as the number of left- and right-decaying scattering channels. Schematic pictures

of all the scattering channels is given in figure 2.3.

1d rd

A VA VAV IRV VD

Im 7! rm

Figure 2.3: Green function structure. Im (rm) denotes the left- (right-) moving channels, Id (rd the
left- (right-) decaying channels.

Clearly there are Af scattering channels and the retarded Green function of equation
(2.13) is obtained by by summing up the channels, either left- and right-moving and
left- and right-decaying, with their relative transverse wave-components. This structure
is the starting point for a more general approach that will be presented in the remaining

sections of this chapter.

2.3 General Surface Green Function

In this section I present the first step of a general scattering technique, namely the
construction of the surface Green function of the arbitrary crystalline leads. An impor-
tant feature of this section is that the Green function will be defined by a semi-analytic
formula, which avoids the adding of an infinitesimal imaginary part to the energy. As
explained in the first section of this chapter, to compute the Green function for a semi-
infinite crystalline lead of finite cross-section I first calculate the Green function of a
doubly infinite system and then derive the semi-infinite case by applying the boundary
conditions at the end of the lead. To this end, consider the doubly infinite system
shown in figure 2.4.

If z is the direction of transport, the system comprises a periodic sequence of slices,
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Figure 2.4: Infinite system formed from periodically repeated slices. Hy describes the interaction
within a slice and H; describes the coupling between adjacent slices.

described by an intra-slice matrix Hy and coupled by a nearest neighbour inter-slice
hopping matrix H;. The nature of the slices need not be specified at this stage. They
can describe a single atom in an atomic chain (as in the example of the introduction), an
atomic plane or a more complex cell. For such a general system, the total Hamiltonian
H can be written as an infinite matrix of the form

/..

H, H, 0

.. H, Hy H 0 .. .. ..
H = 0 H_1 Ho H1 0 y (220)

0 0 H.,, Hy, H 0

where Hy is Hermitian and H_; = H!. The Schrédinger equation for this system is of

the form

Howz + Hl‘(;}z+1 + H——lwz—l = sz ’ (221)

where 1", is a column vector corresponding to the slice at the position z with z an integer
measured in units of inter-slice distance. Let the quantum numbers corresponding to the
degrees of freedom within a slice be p = 1,2, ..., M and the corresponding components
of ¢, be ¥*. For example in an spd tight-binding Hamiltonian, these enumerate the
atomic sites within the slice and the valence orbitals (spd) at a site, while in the example
at the beginning of this chapter 4 = 1 and ¥, = ¢* is a c-number. The Schrédinger

equation may then be solved by introducing the Bloch state,

¥, = ny e iigy (2.22)

1!

where ¢, is a normalized M-component column vector and n,lc/L ? an arbitrary constant.
Note that throughout all the thesis I will use the symbol “L” to indicate the direction
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of the current and the symbol “||” to label the transverse plane. Substituting (2.22)

into the equation (2.21) gives
(Ho+ Hie™* + H_je™+ — E) ¢ = 0. (2.23)

The task is now to compute the Green function g of such a system, for all real energies,
using the general Green function structure discussed in the previous section. For a given
energy E, the first goal is to determine all possible values (both real and complex) of

the wave-vectors k; by solving the secular equation
det(Hy+ Hiyx+ H_;/x - E)=0, (2.24)

where x = e*+. Note that the equation (2.24) reduces to the well known formulae of
equations (2.1) and (2.16) respectively for a linear chain, and for a two-dimensional
simple-cubic lattice.

In contrast to conventional band-theory, where the problem is to compute the A
values of E for a given (real) choice of k,, my aim is to compute the complex roots
x of the polynomial (2.24) for a given (real) choice of E (remember that both open
and closed scattering channels enter in the definition of the Green function). Consider
first the case where H, is not singular. Note that for real &, conventional band-theory
vields 1/ energy bands E,(k ), n = 1,...,M, with E (k. + 27) = Ep(k1). As a
consequence, for a given choice of E, to each real solution &, = k, for which the group

velocity
e — 10E(k)
*Thook

is positive (right-moving channel), there exists a second solution k; = k for which the

(2.25)

group velocity

_ L9E()

is negative (left-moving channel). In the simplest case, where H; = H_,, one finds
k = —k. I also note that to each solution k; the Hermitian conjugate of (2.23) shows
that k% is also a solution. Hence to each right-decaying solution k possessing a positive
imaginary part, there is a left-decaying solution k with a negative imaginary part. For
the purpose of constructing the Green function, this suggests dividing the roots of (2.23)
into two sets: the first set of .\/ wave-vectors labeled k; (I = 1,..., M) correspond to
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right-moving and right-decaying plane-waves and the second set labeled k; (I = 1, ..., M)
correspond to left-moving and left-decaying plane-waves.

Although the solutions to (2.24) can be found using a root tracking algorithm, for
numerical purposes it is more convenient to map (2.23) onto an equivalent eigenvalue

problem by introducing the matrix H

-l _ -1
H:( Bt =) - H-‘) , (2.27)

where 7 is the A/ dimensional identity matrix. The eigenvalues of H are the 2]/ roots
e'*1, e* and the upper M components of the eigenvectors of H are the corresponding
eigenvectors ¢, ¢g,. It is clear that in the case in which H, is singular, the matrix H
is not defined. Since H; describes the coupling between unit cells, it can be singular
if some of the degrees of freedom of adjacent cells are not coupled. Furthermore it
can also be singular if there is “over-coupling” between cells. Suppose one considers a
two-dimensional simple-cubic lattice with one degree of freedom per site. Consider an
infinite strip two atomic site wide. If the coupling extends to second nearest neighbours
and is the same for the first and the second nearest neighbors, then H; is a 2 x 2 matrix
in which all the elements are the same, therefore it is a singular matrix. Nevertheless
in most of the practical cases H, is not singular. or can be reduced to a non-singular
matrix. In fact it is possible to remove the singularities of H; with a procedure com-
pletely analogous to the one used for computing the effective coupling matrix of the
scatterer. \ore details of this procedure are given in Chapter 7. where dealing with
carbon nanotubes.

To construct the retarded Green function g,,. of the doubly infinite system, note
that except at z = 2, g is simply a wave-function and hence must have the form

IA=I1 ¢kleik1(z—~2')w’tl 2 Z 2
o = ) (2.28)
gl 22

where the AM-component vectors wy, and wj, are to be determined. At this point it
is important to observe that the structure of the Green function of equation (2.28) is
identical to the one discussed in the previous section, and that the vectors ¢, and wy
(equivalent to 3, and ;) include all the degrees of freedom of the transverse direction.
Since g, is retarded both in z and 2/, it satisfies the Green function equation corre-

sponding to (2.21) and is continuous at the point z = z’' (see Appendix A for a detailed
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calculation), one obtains

I, by ehte- 3] -
gz = ._ - . (229)
X, oGy

e
v
N\

IN
N\

The matrix V is defined by
M o o
V= ; H_, [o‘k,e"k'(p'};l - (25;;.,6—"“9‘5}”] , (2.30)
and the set of vectors (f);'q ((5{,) are the duals of the set ¢y, (&), defined by

&}, 0k, = OL B, = Oin , (2.31)

from which follows the completeness conditions
M ) M N
> ook =D oroL =T. (2.32)
=1 =1

Equation (2.29) is the retarded Green function for a doubly infinite system. For a
semi-infinite lead, this must be modified to satisfy the boundary conditions at the end
of the lead. Consider first the left lead, which extends to z = —oc and terminates at
2 = zo — 1. such that the position of the first missing slice is z = 29. To satisfy the

boundary condition that the Green function must vanish at z = 25. one must subtract

from the right hand side of (2.29) a wave-function of the form
M _
A2 20) =) op, €% Ap(2', 20) (2.33)
Ih

where A (2, 29) is a complex matrix, determined from the condition that the Green

function vanishes at zg, which yields

Az(zls ZO) = Az’(z’ ZO) =

M

ikn(z—20) 4 iki(z0—2") 71 -1
> Op, e CTIGL gy e gL Y
Lh=1

(2.34)

For the purpose of computing the scattering matrix, I will require the Green function
of the semi-infinite left-lead §,, (20) = g.»» — A:(2, 20) evaluated on the surface of the
/

lead, namely at z = 2’ = z; — 1. Note that in contrast with the Green’s function
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of a doubly infinite lead, which depends only on the difference between z and z’, the
Green’s function § of a semi-infinite lead for arbitrary z, 2’ is also a function of the
position zp of the first missing slice bevond the termination point of the lead. Writing

9L = Y(z0-1)(z0—1)(20) yields for this surface Green function

= [ Tone G oud | v 25
Lh

Similarly on the surface of the right lead, which extends to z = +oc, the corresponding

surface Green function is

gr =

I- g Orpe oL o ek &,Iq} v, (2.36)
which has been obtained by subtracting from g the following wave-function

Az (2 20) = Ay (2, 20) =

A _ o~
I; ¢kh€lkh(5_20)01.h o"_clelkl(zo—z )(Dltclv—l ,
yh=1
(2.37)

and considering gr = g(zo+1)(z0+1)(20) (20 + 1 is the position of the first slice of the right
lead).

The expressions (2.35) and (2.36), when used in conjunction with (2.27) form a
versatile method of determining lead Green functions, without the need to perform k-
space integrals or a contour integration. As a consequence of translational invariance of
the doubly infinite system, the surface Green functions are independent of the position
of the surface 2. Furthermore as noted below, in the case of different vectors ¢
corresponding to the same real k-vector k, the current operator is not diagonal. Hence
it is convenient to perform a unitary rotation in such a degenerate sub-space to ensure
the unitarity of the S-matrix. I will discuss in more details such a point in the section

regarding the S matrix and in Appendix B.

2.4 The effective Hamiltonian of the scattering region

I have shown in the introduction that given the coupling matrix between the surfaces of
the external leads, the Green function of the scatterer plus leads can be computed via
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Dyson’s equation. Generally the scattering region is not simply described by a coupling
matrix between surfaces, but is a complex Hamiltonian involving all the degrees of
freedom of the scatterer. Therefore it is useful to develop a method that transforms
such a detailed Hamiltonian into an effective coupling matrix between the two surfaces.
For structures, which possess a quasi-one dimensional geometry and a Hamiltonian
which is block tri-diagonal, this can be achieved by projecting out the internal degrees
of freedom of the scatterer. In the literature, depending on the context or details
of implementation, this procedure is sometimes referred to as “the recursive Green
function technique” or “the decimation method”, but is no more than an efficient
implementation of Gaussian elimination.

Consider a scatterer composed on .\ — 21/ degrees of freedom. Then the Hamilto-
nian for the scatter plus semi-infinite leads is of the form H = H; + Hg + H, where Hp,
Hp, are the Hamiltonians of the left and right isolated leads and H a N x N Hamil-
tonian describing the scattering region and any additional couplings involving surface
sites of the leads induced by the presence of the scatterer. The aim of the decimation
(i.e. recursive Green function) method is to successively eliminate the internal degrees
of freedom of the scatterer, which I'label 7, 7 = 1,2...., N =2/, to vield a (2M/)x(21[)
effective Hamiltonian H.q. After eliminating the degree of freedom i = 1, H is reduced
toa (N —1)x(.V — 1) matrix with elements

(1) ~ Huf{u

st A (2.38)

Repeating this procedure [ times one obtains the “decimated” Hamiltonian at [-th order

(1=1) g (1-1)
ﬂ_b_ , (2.39)

HO = gt-v 4
i ij E - Hl(ll-l)

and after N — 2A/ such steps, an effective Hamiltonian Heg = H¥~2M of the form

vt = 55 ")

In this expression, H} (E) (Hg(FE)) describes intra-surface couplings involving degrees
of freedom belonging to the surface of the left- (right-) hand side lead and H[z(F) =
Hp, (E)! describes the effective coupling between the surfaces of the left-hand side and

the right-hand side leads.
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Since the effective Hamiltonian is energy dependent, this procedure is particularly
useful when one wishes to compute the Green function at a given energy. It is also
very efficient in the presence of short range interactions, because only matrix elements
involving degrees of freedom coupled to the decimated one, are redefined. This latter
aspect is very useful in the case that the scatterer has some periodicity and allows clever
numerical optimizations. More about this will be discussed in the case of disordered
multilayers in Chapter 5.

Since the problem now involves only (21/)x(2Mf) matrices, it is straightforward
to obtain the surface Green function for the whole system (i.e. the scattering region

attached to semi-infinite leads) by solving Dyson’s equation

G(E) = [9(E)™" = Hea(E)] ™, (2.41)
where
_(9(E) 0
9(E) = ( 0 gn(E) ) : (2.42)

with g; and gg given by equations (2.35) and (2.36).

2.5 The S matrix and the transport coefficients

To extract the transport coefficients from the Green function, I generalize the method
described in reference [47] (in particular see A.26 of [47]) to the case of non-orthogonal
scattering channels. The same method has been used in the introduction of this chapter
to calculate the S matrix for two linear chains. For a system of Hamiltonian H,
the S matrix is defined to connect incoming to outgoing propagating states in the
external leads (see equation (1.6)). If k, (k') are real incoming (outgoing) wave-vectors
of energy F, then an incident plane-wave in one of the leads, with longitudinal wave-
vector k, will scatter into outgoing plane-waves k' with amplitudes sy (E, H). If all
plane-waves are normalized to unit flux, (by dividing by the square-root of their group
velocities) then provided the plane-wave basis diagonalizes the current operator in the
leads, the outgoing flux along channel k' is |syx(E, H)|? and S will be unitary. If H
is real, then S will be symmetric, but more generally time reversal symmetry implies
spk(E,H) = sy (E, H*). For convenience, if k, k' belong to the left (right) lead, then
I define reflection coefficients via 7, = Sgi (Tx = Swx), whereas if k, k' belong to
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left and right leads respectively (right and left leads respectively) I define transmission
coeficients tyx = sprr (tre = Skik)-
To extract the transport coefficients, consider the probability current for an electron

in the Bloch state (2.22)
Jk =Nk, Vg, (2.43)

where ny is the probability of finding an electron in a slice and vy, is the corresponding

group velocity. It follows that the vector

1 .
Y, = ﬁe””m , (2.44)

is normalized to unit flux. To compute the group velocity note that if |¢x) is an

eigenstate (2.20), whose projection onto slice z is v,, then

0
o5 Vel H V) =

St o=

Ve =

;_16% (6L (Ho + Hie™ + H_1e™™*) ¢] = (2.43)
= %(ﬁ;{: (Hleik - H—le_ik) B ’
(2.46)

where the last step follows from equation (2.23) and normalization of ¢.

It can be shown that the states (2.44) diagonalize the current operator only if
they correspond to distinct k values. In the case of degenerate k’s, the current is in
general non-diagonal. Nevertheless it is always possible to define a rotation in the
degenerate subspace for which the current operator is diagonal and in what follows,
when a degeneracy is encountered, I assume that such a rotation has been performed

(see Appendix B). With this convention, the current carried by a state of the form

eik[z

Y. =) q \/ﬁ‘bkl ; (2.47)

l

is simply ¥, |a/|?.
It is now straightforward to generalize the analysis of [47] (and of paragraph 2.1) to
the case of non-orthogonal scattering channels. Consider first a doubly infinite periodic
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structure, whose Green function is given by equation (2.29). For z > 2/, acting on g,/

from the right with the following projector

(2.48)

yields the normalized plane-wave (2.44). Similarly by acting on the Green function
9:2(20) of a semi-infinite left-lead terminating at z,, one obtains for z > 2/, zp > z, an
eigenstate of a semi-infinite lead arising from a normalized incident wave along channel
k;. Note that the projector introduced through the (2.48) is the generalization of the
one defined in the simple example at the beginning of this chapter. In Appendix C I will
formally show that the projector that projects the Green function for a double infinite
system onto its corresponding wave-function, projects also the total Green function.
Thus the operator P;(z') and its left-moving counterpart P;(2') allow one to project-
out wave-functions from the Green function of a given structure. For example, following
the same procedure of the introduction, if G,,» is the retarded Green function for a
scattering region sandwiched between two perfect leads whose surfaces are located at
the points z = 0 and z = L, then for 2’ < 0, the projected wave-function is of the form
Ok + T Bk igr, 0

U, = , (2.49)

Zh _t\/%_eikhzékh < Z L

IN

where 14 = 73, 4,» th = i,k are reflection and transmission coefficients associated

with an incoming state from the left. In particular for z = L, 2’ = 0, one obtains

t .
Y ﬁe’khb% = GLoP(0), (2.50)
h

¢thLOV¢k,\/—l —tkal (2.51)

where I used the definition of the dual vector ¢ given in equation (2.31). With the

and hence

same method one evaluates all the other elements of the S matrix

th = d’k GOLV¢E,‘/ heikal (2.52)

Th = ¢k (GooV - I)‘bk,\/—l‘ (2.53)
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) - ]
T = 0k, (GLLV — T)oy, T’f : (2.54)

Since the right-hand sides of (2.51-2.54) involve only the surface Green function of
equation (2.41) the transport coefficients are determined. Moreover, since the above
analysis is valid for any choice of the Hamiltonians Hy and H,, this approach is com-

pletely general.
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3 The Material-Dependence of GMR and TMR
3.1 Introduction

The aim of this chapter is to analyze the dependence of GMR and T)MR on the materials
composing respectively a multilayer and a spin-tunneling junction. I will focus attention
solely on the case in which the current flows perpendicular to plane of the layers (CPP),
where the full power of the scattering technique developed in the previous chapter can
be used.

Consider first the case of CPP GMR. The main difference with respect to its CIP
counterpart is twofold. On the one hand there is the fact that an electron must cross
the whole structure before being collected at the leads, and on the other hand the di-
mensions on which the transport occurs are mesoscopic, the typical multilaver length
being smaller than 1ym. This means that, particularly at low temperature, the trans-
port is largely phase coherent. Despite the evidence of such an important aspect, early
theoretical work was based on spin-dependent scattering at interfaces and/or magnetic
impurities and completely neglected quantum interference [48]. In 1995 Schep, Kelly
and Bauer [49, 50] challenged this conventional picture and showed that for Co/Cu
multilavers large values of GMR (of order 120%) exist even in absence of impurity scat-
tering. Their calculations are based on local density functional theory and the Sharvin
resistance of a small constriction formed from a pure crystalline magnetic multilayer is
calculated. Since then several methods have been used to take into account the con-
tributions of realistic band structures in CPP G)IR. These includes ab initio density
functional methods [51, 52] and tight-binding methods [53, 54]. The use of the second
is also motivated by the possibility to deal with disordered systems, even if some severe
limitations are still present (see also the introduction to Chapter 3). Despite the avail-
ability of numerical techniques able to deal with realistic band structures, very little
theoretical work has been done to study systematically the dependence of GMR on the
materials forming the multilayers. The aim of this chapter is to fill this gap and to
provide some prescriptions on how to build multilayers showing large GMR [27].

From an experimental point of view Co/Cu (35, 56, 57. 58] and Fe/Cr [14, 59] are
the most largely studied multilayered systems and also the ones that present the largest
effect. Part of the success of these two systems is due to the fact that multilayers may

27



be deposited in relatively simple conditions, producing samples of good quality with
small inter-diffusion at the interface. As far as the magnetic materials are concerned,
\i has been also employed in conjunction with non-magnetic materials with fcc lattice
structure [60, 61, 62], but to date all the measurements have been conducted with the
CIP configuration and only a small GMR ratio has been found. This is believed to be
related to the smaller exchange field of Ni with respect to Co. Moreover Ni has been
also employed in forming alloys [63, 64, 65]. This is useful in dual magnetic element
multilayers in which one wants to engineer the coercive fields of the different materials.
One of the more widely-used alloys is NiggFeyy which grows with an fcc lattice onto
Cu. NiggFeyo/Cu multilayers have been successfully grown [64, 65] with a quite large
CPP GMR. The limitation of these systems seems to be the large spin-flip scattering
in the alloy and at the interfaces between the alloy and Cu. As far as the non-magnetic
metals are concerned Ag has been used in conjunction with Co [13, 66, 67] showing
quite large CPP GMR. In contrast other heavy elements like Rh [68, 69], Ru [70], Au
[71] and Ir [72, 73] possess very small GMR. even if at present the only measurement
carried out are in the CIP configuration (with the only exception of reference [71]). The
absence of large GMR in these materials is believed to be connected with the usually
large inter-diffusion at the interfaces resulting in large spin-flip scattering, and for some
materials in a poor antiferromagnetic alignment in zero magnetic field. In this chapter
I will perform a systematic study of disorder-free Co/A and Ni/A multilayers, where
A is a 3d, 4d an 5d transition metal with fcc lattice structure and analyze the optimal
conditions for GMR. From this analysis it will be clear that the different alignment
between the band structures of the magnetic and non-magnetic metals forming the

multilayer may result in very different spin-polarizations of the current and GMR.

Turning the attention to TMR, the main difference with respect to GMR is that the
current involved is a tunneling current. From the point of view of the scattering theory
this means that not only the match between the asymptotic wave-functions through
the scattering region is important, but also how these wave-functions decay within the
tunneling barrier. Early theoretical work on magneto-tunneling attributed the degree
of polarization of a tunneling junction either to the different spin-dependent DOS of the

magnetic leads [17], or to the different Fermi wave-vectors of the two spin-bands [74].
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These models were based on a free electron model in the effective mass approximation.
In a more realistic description of real metals the details of the band structure are impor-
tant and deviations from the simple theories may be found. Realistic band structures
have been introduced in the calculation of the tunneling current either through ab initio
density functional methods [75, 76, 77] or through tight-binding models [78, 79]. These
calculations give rise to a controversy regarding the actual polarization of a tunneling
Jjunction and on the relevant factors which affect the tunneling. The common starting
point is that for Co the polarization of the s-electrons at the Fermi energy is positive,
while for the d-electrons it is negative. Therefore, if the barrier acts selectively on
the s- and d-electrons, different polarizations of the tunneling junction are expected.
MacLaren and co-workers, using a KKR Green function approach to the tunneling
transport [76], have found that the polarization of a Co-based tunneling junction is
positive for several insulators and concluded that it is always positive. Their argument
is based on the fact that the decay of the wave-function within the barrier is faster
if the wave-function has a strong d-component with respect to the case in which the
wave-function has a large s-component. In contrast Tsymbal [78] and Wang [77] in-
dependently have found that the polarization may be changed by changing the kind
of coupling between the magnetic electrodes and the tunneling barrier. For instance
Tsvmbal showed that in a Co-based tunneling junction with an s-insulator, the po-
larization is positive if one considers only sso coupling at the interface and becomes

negative if sdo is also included.

In the last paragraph of this chapter I will consider a Cu/Co/INS/Co/Cu junction
(INS is an insulator) described by spd tight-binding Hamiltonian and show that, if the
thickness of the insulator is large enough the polarization of the junction is negative,
otherwise it is positive. This highlights the transition between a regime in which direct
transport and tunneling co-exist to one involving pure tunneling. An important feature
of the calculation is that in the pure tunneling regime the transmission coefficient for the
minority electrons shows sharp resonances at certain ks in the 2D transverse Brillouin
zone. Resonances can be reproduced with a simple effective-mass model with parabolic
band, even if the position of the resonances in the 2D Brillouin zone is a characteristic
of the realistic band structure used. All the calculations deal with ballistic transport
and disorder-free junctions and important aspects like impurity- {19}, phonon- and
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magnon-assisted tunneling [80] have been neglected.

In all the calculations of the following sections the magnitude of the GMR and

TMR effect is measured by means of the MR ratio defined as

_ F1I:‘.\'l + FILTM - QPI\lF

MR
2T 3k

, (3.1)

where I'g,, is the conductance of a given spin channel ¢ in the ferromagnetic (FM)
configuration and ' is the corresponding conductance (for either spin) in the anti-
ferromagnetic (AF) state. In the equation (3.1) it is implicitly assumed the current is
carried by two decoupled spin-fluids [11]. In what follows I also assume a perfect match
at the interface between the fcc lattices of the different materials. This assumption is
particularly good in the case of Co, Cu, and Ni which possess almost identical lattice
constants. I will consider crystalline systems with smooth interfaces, where & is a good
quantum number. The Hamiltonian can then be diagonalized in the Bloch basis k| to
vield a spin-dependent conductance

[7=3 Ik = % Y T(ky) (3.2)

ky Ky

where the sum over k| is extended over the two-dimensional Brillouin zone in the case
of infinite cross section and over the allowed discrete k)’s in the case of finite cross

section.

3.2 Tight-Binding Model: Slater-Koster Parameterization

In this paragraph I will introduce the parameterization I have used to produce the tight-
binding Hamiltonian describing real materials. The method is based on the famous
Slater-Koster Local Combination of Atomic Orbitals (LCAQO) method in the two-centre
approximation [81]. The general idea of the tight-binding method is to reproduce the
band structure of real materials using a minimal number of parameters, which can
be either directly calculated or simply fitted. The main advantage of this method is
that usually the number of parameters necessary to capture the main features of the
band structure is quite small. This allows one to deal with disordered systems and
to perform molecular dynamics simulations, both of which are hardly accessible using
more fundamental methods.
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Consider a generic Hamiltonian H for a crystal. The Slater-Koster method involves
expanding such an Hamiltonian in an atomic orbital basis using only a small number
of orbitals. Let ¢,(r — R;) be an atomic orbital located on an atom at the position R;
with a quantum number n. The main purpose of the LCAO method is to express the
Hamiltonian H in term of Bloch states formed from the atomic orbital basis, namely

states of the form
ta(r) =Y *Rig,(r — Ry, (3.3)
R;

where R; spans the atoms in equivalent positions in all the unit cells of the crystal.
The approximate solution of the periodic potential problem defined by the Hamiltonian
H can be set up as follows. First take a finite set of atomic orbitals on each of the
atoms of the unit cell (going up in energy from the lowest one). Secondly construct
Bloch sums of the kind of equation (3.3). Finally for a given k-vector, set up a wave
function consisting of a linear combination of these Bloch sums and calculate the matrix
elements between the states given by the equation (3.3).

This procedure has immediately a complication. The problem is that the Bloch
sums of equation (3.3) are not orthogonal each other. The reason is that atomic orbitals
belonging to different atoms are not orthogonal. Even though the construction of a
tight-binding model using non-orthogonal basis is possible [82], it is more convenient to
set up a new orthogonal atomic orbital basis. This can be done systematically by the
Lowdin method [83]. In what follows I assume that such an orthogonalization procedure
has always been performed and I consider the new orthogonal basis ¢,. It is important
to note that these new Lowdin functions (o, possess the same symmetry properties as
the atomic orbitals ¢, from which they were derived. For instance, if I start with a p,
atomic orbital and construct the orthogonalized atomic orbitals according to Léwdin’s
prescription, I will find that the orthogonalized atomic orbital formed from p, and from
contributions of other orbitals on adjacent atoms, will still have the symmetry of a p,
function.

I can now build up Bloch sums using these Léwdin’s functions
1 kR,
Un(r) = —=) e MHp,(r-Ry), (3.4)
=75

where I have assumed to have only one atom in the unit cell, and where the sum
runs over the N available unit cells. The next step is to find the matrix elements

31



corresponding to the states v,,, namely
1 :
— k- (R;—R; A% 4 =
H,», = N S e (Ri—Ri) o /yn(r —Ri)Hopn(r — R;) dl”. (3.3)
RiR;
One of the two sums in equation (3.5) can be eliminated using translational symmetry

giving rise to a factor /V and to the final equation
Hypm =3 ™% x /%(r —~R)Hep(r) dV . (3.6)
R

The structure of the (3.6) is very simple and H,,, does involve only atomic orbitals be-
longing to atoms in neighbouring positions. Nevertheless the calculation of the integral
may be extremely difficult and the number of matrix elements H,,, may be very large.
This is because, first one has to find the orthogonalized Lowdin’s functions ¢, and
secondly because a linear combination of integral of the form [ ¢:(r — R)H ¢, (r) dV
must be calculated. Therefore it is convenient to approximate (3.6) and express all the
matrix elements H,,, by means of a small set of parameters.

First of all it is important to note that, despite the fact that the Lowdin’s functions
are not atomic orbitals, it is reasonable to expect that the integral (3.6) will vanish
unless the two atoms are close enough so that their orbitals overlap to an appreciable
extent. A general procedure is to arbitrary set to zero the matrix elements involving
atoms with a distance larger than some fixed cut-off distance. This will result in
considering first nearest neighbours. first and second nearest neighbours, first, second
and third nearest neighbours, and so on, depending on the cut-off distance. It is clear
that the larger is the number of neighbours, the better the tight-binding Hamiltonian
will reproduce the correct band structure. Unfortunately an interaction extending to
a large number of neighbours will result in an Hamiltonian with a large number of
parameters. In all the calculations presented in this thesis I will always consider first
nearest neighbours coupling.

A further simplification can be to consider only atomic orbitals whose energy is
somewhere near that of the energy bands one is interested in. For a 3d transition
metal for instance, if one is only interested in the description of the conduction and the
valence band, it is reasonable to consider the 3d, 4s and 4p orbitals and disregard the
rest. In the same way I will consider only 4d, 5s and 5p, and 3d, 6s and 6p, respectively
for 4d and 5d transition metals.
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Finally note that the integral of equation (3.6) involves a Lowdin’s function ¢}, (r —
R) located on an atom at the position R, another Léwdin’s function ¢, (r) located
at the origin, and a spherical potential function, given by the potential part of the
Hamiltonian, located on a third atom. In other words the integral of equation (3.6)
is a three-center integral. A useful simplification is to disregard three-center integrals
and to retain in the equation (3.6) the sum of the spherical potentials located only on
the two atoms on which the atomic orbitals are located. Thus the integral becomes
similar to the type which one should have in a diatomic molecule. If one considers
the vector R; — Ry, stretching from one atom to the other, to be an axis like that of a
diatomic molecule, it is possible to express each of the functions ¢ as a sum of functions
quantized with respect to that axis. Then to set up the integral of equation (3.6) one
needs contributions consisting of a product of an atomic orbital located at R;, another
atomic orbital located at R; and a spherical potential centered on the two atoms. Let
the direction of the the vector R; — R, be specified by the direction cosines I, m,n.
With this notation the integral denoted with E, 3(I.m,n) is the integral between the
functions ¢, and g. For instance E; (I, m,n) is the integral between the function
@z with a p;-like symmetry, and the d-function ¢,, with a symmetry zy. Therefore
this particular integral can be written approximately as the sum of two integrals: that
between a po orbital on the first atom and a do orbital on the second, and that between
a pr orbital on the first atom and a dn orbital on the second. As a matter of notation
the first of these is indicated like pdo and the second like pdn. With this notation the
first index labels the atomic orbital of the first atom, the second index the atomic orbital
of the second atom and the third index the angular momentum of the bond formed
between the two atoms measured along their axis. The above mentioned integral for
instance turns out to be E,,(l,m,n) = v/3*m(pdo) + m(1 — 20?)(pdn). The full
parameterization in the two-center limit is provided in the original Slater-Koster paper

of reference [81].

Finally the approximated Hamiltonian can be written as
H = ZE’ el Cai + 3 EY Bcﬂacm , (3.7)
] i,5,a8
where a and 3 label the two orbitals and ¢, j denote the atomic sites. E,, is the on-site
energy and E:,’ﬂ the hopping energy between the orbital a at the position i and the
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orbital 3 at the position j. cl; and ca; are respectively the creation and annihilation
operator for an electron in the orbital a at the atomic position i. In what follows I
will always consider spd-Hamiltonians with nine degrees of freedom per atomic site
and first nearest neighbours coupling. According to the Slater-Koster parameterization
I need thirteen parameters to define one single material, namely one on-site energy
per atomic orbital (E;, E, and Ey) and ten hopping parameters (sso, spo, sdo, ppo,
pp7, pdo, pdm, ddo, ddw and ddd). Note that the dependence on the lattice constant
is included in the definition of the thirteen parameters, since they are defined with
respect to the vector joining the two atoms forming the bond. The parameters used in
the simulations are obtained by fitting the band structures calculated with plane-wave
local density functional theory and are tabulated [84]. The only exception is for Co,
Cu and Pb where I have performed a new fit in order to better reproduce the features
around the Fermi surface (more about this will be discussed in Chapter 6 and in the
Appendix D). As a matter of convention I always shift all the on-site energies in order
to have the Fermi energy equal to zero (Ef = 0eV). Finally the ferromagnetism is taken
into account by introducing a shift in the on-site energy between the d-orbitals of the
up and down spin sub-bands. This simple model can reproduce the correct magnetic

moment and the correct DOS at the Fermi energy.

3.3 GMR for disorder-free systems

Using the technique developed in the previous chapter I have studied the transport
properties of multilayers formed from Co and Ni as magnetic materials and several 3d,
4d and 3d transition metals as non-magnetic materials. All of these metals possess
fcc lattice structure with the following lattice constants (Table 3.1). It is clear that
Co, Ni and Cu have a good lattice match, while for the other metals the lattice mis-
match is large and may introduce strain, defects and inter-diffusion at the interfaces.
All these sources of disorder generate additional scattering, which is neglected in the
present calculations. A fully realistic description of an interface involving metals with
very different lattice constants requires ab initio methods implemented with molecular
dvnamics approach which is bevond the aim of this thesis. Nevertheless I will show
that large values of the GMR ratio can be obtained, in agreement with the largest ex-
perimental values, which suggests that CPP GMR is a bulk effect, whose main features
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| Metal Lattice Constant (A)
Co 3.95
Ni 3.52
Cu 3.61
Ag 4.09
Pd 3.89
Au 4.08
Pt 3.92
Rh 3.80
Ir 3.84
Pb 4.95
Al 2.70

Table 3.1: Lattice constants of the metals considered in the calculation. Note that Co, Ni and Cu
present very similar lattice constants.

are contained in a ballistic quantum description of the conductance with an accurate
band structure. In what follows the hopping parameters at the heterojunctions between
different materials are assigned to be the geometric mean of the pure metal values. This
is a standard, widely-used [33, 54] procedure for estimating the hopping between unlike
elements in a heterojunction. It is worth noting that different averaging procedures
used to obtain the hopping coefficients in the heterojunctions yield small changes in
the calculated conductances of the multilayers. Nonetheless, a more realistic approach
to the heterojunctions between different metals. based on ab initio calculations and
molecular dvnamics, would be useful to clarifv the role of coupling across the interfaces

in such structures.

3.3.1 Density of electronic states and conductance of pure metals

I begin my analysis by examining the DOS and conductance of pure metals. Since the
Hamiltonians include spd hybridization, the atomic orbital states are not eigenstates of
the system. Nevertheless to understand the relative role of the angular symmetry on
inter-band and intra-band scattering, it is useful to project the DOS and conductance
onto an atomic orbital basis. I will label as an s-like electron and simply call s-electron
(and similarly for the p- and d-electrons) an electron whose s-component |{(s|¢))|? of
the wave function |y) is much larger than the p- and d-components. The DOS p for
pure materials are calculated by evaluating the retarded Green function for an infinite
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system at the same point

P(E)=3 Trg«(£,*]]) .
n*

The DOS’s for the two spin sub-bands of Co and Ni are very similar (see figure 3.1). As
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d-DOS —  d-DOS
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Figure 3.1: DOS for pure Co (a) and Ni (b). The vertical line denotes the position of £p that is chosen
to be 0 eV.

in all the d-transition metals, the DOS is formed from a localized d-band embedded in a
broad nearly parabolic sp-band. The width of the bands is roughly the same in Co and
Ni, as well as the position of the majority band with respect to the Fermi energy. In
both materials, the Fermi energy lies just above the edge of the majority d-band, while
the minority band is almost rigidly shifted with respect to the majority band towards
higher energies, the shift being larger in Co than in Ni. In both the minority bands
of Co and Ni the Fermi energy lies well within the d-band and the DOS is completely
dominated by d-electrons. A rough estimate of the mismatch between the minority
d-bands of Co and Ni can be obtained from the on-site energies of the d-electrons in
the minority band. As shown in the tables in Appendix D, the difference between the
on-site energies of the d minority electrons in Co and Ni is about 0.7¢V and corresponds
to the relative shift of the bands.
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The conductance of pure Co and Ni is determined solely by the DOS. For majority
electrons at the Fermi energy, the current is carried by the s-, p- and d-electrons, which
give almost equal contributions. On the other hand the current carried by minority
electrons is completely dominated by the d-electrons, with the contributions from s-
and p-clectrons being no larger than 10%. If one neglects the relative shift in energies of
the minority bands, the Ni and Co conductances possess the same qualitative features
and since the effective mass is proportional to the inverse of the band width, one finds
that the current carried by majority electrons is formed from a mixture of light s-
and p-electrons and heavy d-electrons, whereas the minority-electron current is carried
almost entirely by heavy d-electrons. As an example in figure 3.2 I show the partial
conductance as a function of energy for pure Co and Ni, where the partial conductance

is defined as the projection of the total conductance over the atomic orbital basis. Now
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Figure 3.2: Conductance as a function of energy for pure Co (a) and Ni (b). The vertical line denotes
the position of Ep that is chosen to be 0 eV.

consider the non-magnetic 3d, 4d and 5d transition metals with fee lattices. A glance
at the DOS of these materials reveals four types of band structure: i) the DOS closely
matches the DOS of the majority spin sub-band of Co and Ni (e.g. Cu and Au), ii)
the DOS has only sp-components at the Fermi energy, with the d-component highly
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suppressed (as in Ag), iii) the DOS is composed of an almost pure d-component at
the Fermi energy (e.g. for Pd, Pt, Rh and Ir), iv) the DOS shows a VE-dependence,
typical of free electron-like metals (Al and Pb).

Examples of each of these cases are given in figures 3.3, 3.4, 3.5 and 3.6, which show

the DOS of Cu, Ag and Pd and Al together with their corresponding conductances.
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Figure 3.3: DOS (a) and Conductance (b) as a function of energy for pure Cu. The vertical line
denotes the position of Ep that is chosen to be 0 eV.
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Figure 3.4: DOS (a) and Conductance (b) as a function of energy for pure Ag. The vertical line
denotes the position of Ep that is chosen to be 0 eV.

For ballistic structures, in absence of defects and impurities, the mismatch between
the bands of the magnetic and non-magnetic metals forming the multilayer is the key

feature which determines the conductance. Moreover, although the positions of the
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Figure 3.5: DOS (a) and Conductance (b) as a function of energy for pure Pd. The vertical line
denotes the position of Ep that is chosen to be 0 eV.
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Figure 3.6: DOS (a) and Conductance (b) as a function of energy for pure Al. The vertical line denotes
the position of Ep that is chosen to be 0 eV.
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s- and p-bands are the same for both spins, for d-electrons the two spin sub-bands
possess a different mismatch at the interface and this mismatch largely determines
the magnitude of CPP GMR. This first source of scattering that arises from potential
steps can be reasonably described in terms of a single-band model with Kronig-Penney
potential [29] (more of this will be discuss in the following chapter).

In addition to the above generic features, the on-site energies of the s-bands of Au,
Pt, Ir, Pb and Al are small compared with those of Ni and Co. In the multilayers
formed with these elements, this may induce strong scattering also of the s-electrons,
resulting in a strong suppression of the s-electron contribution to the total conductance.

Figures 3.3, 3.4, 3.5 and 3.6, show how these four distinct DOS characteristics
are reflected in the conductances of the normal metals and give rise to four different
scenarios for charge transport: i) the contributions to the current at the Fermi energy
from s-. p- and d-electrons are almost equal (e.g. in Cu and Au), ii) the current at
the Fermi energy has a strong sp-character (e.g. in Ag), iii) the current at the Fermi
energyv has a strong d-character (e.g. Pd, Pt, Rh and Ir), iv) the current at the Fermi
energy is dominated by electrons with a parabolic dispersion and scales linearly with
respect to the energy (Al and Pb).

These different characteristics of the current carriers in the non-magnetic metals
give rise to another important source of interface scattering. Since the majority spins in
the magnetic metals are mainly sp-electrons with light effective mass and the minority
spins are d-electrons with heavy effective mass, it is clear that, depending on the choice
of non-magnetic metal, different spin-dependent inter-band scattering must occur at
the interfaces. For example in the Co/Ag system, a majority spin propagates in Co
as a mixture of s-, p-, and d-electrons, whereas in Ag it has mainly an sp-character.
This means that an electron in the Ag, whose spin is in the same direction of the
magnetization, can enter Co as an sp-electron without the need for strong inter-band
scattering. On the other hand, if its spin points in the opposite direction, it will undergo
inter-band scattering because in the minority band the electron must propagate as a
d-electron. Note that this second source of scattering has primarily to do with the very
different dispersion relations of the sp-electrons with respect to the d- electrons. This
feature is hardly describable by a single-band model and a more sophisticate approach
is needed. In this thesis I will introduce two models capable to capture this aspect. The
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first is a parabolic model with different spin- and material-dependent effective masses
[30], and the second is a simple-cubic two-band tight-binding model [37].

The above observations suggest that the kev mechanisms affecting transport are i)
a strong band mismatch and ii) a strong inter-band scattering, reflecting respectively
large step potentials and different dispersions. The best GMR multilayers must be able
to maximize the electron propagation in one of the two spin-bands and to minimize it in
the another. To achieve this result, the high conduction spin-band should have a small
band mismatch and weak inter-band scattering at the heterojunctions, while the low
conduction band should have a large band mismatch and strong inter-band scattering.
Note that at this stage there are no general predictions on the total polarization of a
multilayer, being dependent on the band structure details of both the magnetic and

non-magnetic materials and their match.

3.3.2 Comparison between Co-based and Ni-based multilayers

To clarifv how the spin-polarization of the magnetic material affects the properties of
the GMR multilayers, I begin by examining GMR in Cu-based multilayers, in which
the magnetic metals are either Ni or Co. All the multilayvers consist of ten bilayers
of the form A/Cu where A is Co or Ni, attached to two semi-infinite Cu leads (i.e.
Cu/[Co/Cu]x10/Cu and Cu/[Ni/Cu]x19/Cu). The Fermi energy is fixed by the semi-
infinite leads which is taken as zero. After calculating the different spin conductances
in the ferromagnetic and antiferromagnetic configurations, the GMR ratio is obtained
from equation (3.1). In all the calculations the current flows in the (110) crystalline
direction and the structures are translationally invariant within the layers. Below I
consider 8100 ky points (90 x 90) in the plane of the layers. I have estimated that the
GMR ratio calculated with 2 x 10* k; points on average differs by ~ 3%, from that

calculated using 8100 k) points (foa(sgfl);((;i\;g(leoﬂ ~ 3%). Since the oscillations of

the GMR ratio with respect to the layer thicknesses are larger than 3%, the choice of
8100 k; points allows investigation of the oscillating behaviour of the conductance and
the GMR, and is a good compromise between the accuracy of the calculation and the
required computer time. Initially I fix the magnetic layer thickness to 5 atomic planes
(AP). and calculate the conductance and GMR as a function of the Cu layer thickness.

I normalize the conductance by dividing it by the conductance of a single spin in
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the pure metallic leads, which is a natural choice for the present work. For the results
shown in figure 3.7 this means that the normalization factor is one half of the total
Cu conductance, because of spin degeneracy. In this case the conductances of different
multilayers are independent of the number of open channels in the leads and can be

compared directly. From Figure 3.7 it is clear that the Co based multilayers possess
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Figure 3.7: GMR and spin conductance for Co/Cu and Ni/Cu systems as a function of the Cu layers
thickness. The first graph is the GMR, the second is the conductance for the Co/Cu system normalized
to the conductance of pure Cu and the third is the conductance of the Ni/Cu system with the same
normalization.

larger GMR ratios. In the ferromagnetic configuration, the majority electrons possess
high conductances in both cases, reflecting the good match between the majority bands
of Co and Ni, and the Cu band. Moreover the better match of the s and p majority
bands of Ni with Cu, compared with those of Co, gives rise to a slightly higher conduc-
tance in majority channel for Ni than for Co. A similar argument explains the difference
in the conductances of the minority channel. As one can see from the table in Appendix
D, the minority d-band of Ni has a better match to Cu than that of Co, as indicated
by the difference in the on-site energies of about 0.7 eV. Hence for the minority band,
the interface scattering between Co/Cu is greater than for Ni/Cu. In the antiferro-
magnetic configuration, both spins undergo the same scattering sequence, belonging
alternately to the majority and to the minority bands. The total spin conductance in
the antiferromagnetic configuration is found to be close to that of the minority band
in the ferromagnetic configuration, because the minority band mismatch is larger than
the majority band, and dominates the scattering.

The ratio R between the conductance T of the AF configuration and of the minority
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band in the F) configuration (R = I'Y¢/Tky) is ~ 0.6 for Co/Cu and ~ 0.9 for Ni/Cu.
This difference can be understood by modeling the interface scattering through the
step potential discussed previously, whose magnitude is equal to the band mismatch
[29]. The effective scattering potential in the antiferromagnetic configuration will be
a sequence of high steps (for minority band) and low steps (for majority band) with
respect to a common reference.

The calculated R ratios arise because the perturbation of the minority steps, due to
the majority steps, is smaller in Ni/Cu than in Co/Cu. From this analysis the splitting
between the two spin sub-bands in the magnetic materials is the crucial parameter lead-
ing to large GMR ratios and, since such splitting is larger in Co than in Ni, Co emerges
as a natural candidate for high GMR ratio multilayers. Note that highest possible val-
ues of GMR can probably be achieved with the use of half-metallic ferromagnets with
100% spin polarization of electrons [80, 83].

Having examined the dependence of transport properties on the normal-metal layer
thickness, I now examine the dependence on the magnetic-layer thickness. For a fixed
Cu laver-thickness of 5 atomic planes, figure 3.8 shows results for Co/Cu and Ni/Cu
multilayers. A key result in this figure is that for thin magnetic layers, GMR in both
Ni/Cu and Co/Cu multilayers is suppressed. This can be understood in term of an
effective scattering potential. The large off-sets between the minority d-bands of the
different materials create an effective barrier in the d-band, for channels with high
transverse momentum kj. When the width of such a barrier is small, tunneling across
the magnetic metal within the d-band is possible, and this results in an enhancement of
the conductance in the minority spin channel and hence in a reduction of GMR. Thus
I predict a lower limit of approximately 4 atomic planes (~ 10A) to the magnetic-layer
thickness, in order to achieve the highest possible GMR ratio. In what follows I will

only consider thicknesses larger than this value.

3.3.3 Dependence of GMR on non-magnetic spacer material

I now consider the dependence of GMR on the choice of non-magnetic material in Co-
and Ni-based multilayers. In all calculations with Co I fix the Co thickness either
at 3 or 10 atomic planes and in the calculations with Ni only at 10 atomic planes.
The thickness of the non-magnetic layers always varies from 1 to 40 atomic planes.
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Figure 3.8: GMR and spin conductance for Co/Cu and Ni/Cu systems as a function of Co and Ni
layers thicknesses. The first graph is the GMR, the second is the conductance for the Co/Cu system
normalized to the conductance of pure Cu and the third is the conductance of the Ni/Cu system with
the same normalization.

The material in the external leads is the same non-magnetic material used for the
multilayers (e.g. Ag in Co/Ag multilayers). Tables 3.2 and 3.3 show the average value
of the GMR ratio and the root mean square amplitude of oscillation around such value
(A) for Co-based and Ni-based multilayers. To highlight the fact that GMR is an
oscillatory function of the normal-metal thickness with an amplitude which decreases
with increasing thickness, the tables also show the mean square oscillation calculated for
non-magnetic metal layers thicknesses between 1-10 (Al). In the tables the subscripts
indicate the number of atomic planes of the magnetic material layers. From the tables
some general considerations can be made. The first important aspect is that the Co-
based multilayers always present a GMR larger than their Ni-based counterparts. This
confirms the result of the previous paragraph obtained for Cu and extends it to all the
transition metals examined. It is important to note that the difference between Co/A
and Ni/A multilayers is large when A belongs to the first two classes of non-magnetic
materials (the ones represented by Cu, and Ag respectively), and is quite small when
A is a d-conductor (ie Pd, Pt, Rh and Ir). Finally when A is a parabolic-like metal
(Pb and Al) the GMR ratio is quite large for both Co-based and Ni-based multilayers,
but also the oscillations are very large. The reasons for all these differences will be
more clear when I present the conductances for the above multilayers in the different

magnetic configurations.
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Multilayer | GMR (%) A(%) | A1 (%) | A/GMR (%) | A1/GMR (%)
Co;/Cu 183.7 10.0 12.4 5.4 6.7
Cos/Ag 153.7 9.5 13.1 6.1 85
Co;/Pd 102.0 13.9 16.7 13.7 13.4
Co; /Pt 104.1 10.9 15.6 10.5 15.0
Cos/Au 98.8 20.4 33.6 20.6 34.0
Co;/Rh 142.6 9.9 10.2 6.9 7.1
Co;/Ir 143.6 12.8 14.4 8.9 10.1
Co;/Pb 124.0 29.1 32.2 23.5 42.1
Co; /Al 197.6 35.8 60.6 18.2 30.6
Co;0/Cu 150.7 9.2 9.2 6.1 6.1
Coyo/Ag 131.0 7.6 5.3 5.8 4.1
Co,o/Pd 165.2 31.1 32.2 18.8 19.4
Co,o /Pt 175.7 14.8 21.1 8.4 12.5
Coyo/Au 138.8 20.1 26.4 14.5 17.8
Co,o/Rh 171.9 15.1 18.7 8.7 10.9
Coyo/Ir 175.4 13.6 16.0 77 9.1
Coyo/Pb 154.7 25.2 10.9 16.3 26.1
Co;o/Al 169.6 35.7 56.4 21.1 33.3

Table 3.2: GMR ratio and GMR oscillations for different Co-based metallic multilayers.

Multilayer | GMR (%) | A (%) | AL (%) | A/GMR (%) | A1/GMR (%)
Nio/Cu 29.1 2.9 3.3 10.1 11.3
Nio/Ag 35.8 2.8 2.0 7.9 5.6
Nio/Pd 100.2 10.8 16.2 10.8 16.2
Nio/Pt 943 10.6 184 11.2 19.5
Nio/Au 26.9 33 41 12.37 15.2
Nio/Rh 131.3 6.4 6.7 49 5.1
Nio/Ir 107.3 6.0 53 5.6 49
Nio/Pb 978 12.1 10.9 124 11.1
Ni /Al 107.7 19.7 29.4 18.3 273

Table 3.3: GMR ratio and GMR oscillations for different Ni-based metallic multilayers.




It is clear from table 3.2 that the GMR ratios depend quite sensitively on the mul-
tilayer geometry, i.e. on the layer thicknesses. This can be seen both from the values
of A and from the fact that the GMR for Co thickness fixed at 5 atomic planes is
generally larger than that obtained for a Co thickness of 10 atomic planes, with a rel-
ative difference up to 30%. As examples, figure 3.9 shows plots of the GMR ratio as a
function of the non-magnetic metal layer thickness for the Co/Ag and Co/Pd systems.

Nevertheless in all the cases (excluding Au, Al and Pb) the oscillations are small corn-

200
Co/Ag
Co/Pd
150
100

Non-Magnetic Layers Thickness (AP)

Figure 3.9: GMR as a function of the non-magnetic metal layer thickness for Co/Ag and Co/Pd. The
horizontal lines denote the position of the average GMR.

pared to the long range oscillations observed experimentally [56, 86], suggesting that an
additional contribution must be considered. This is most likely to arise from a periodic
deviation from a perfect antiferromagnetic configuration, the possibility of which is ne-
glected in the calculations. It is important to point out that perfect antiferromagnetic
alignment of the multilayer in zero magnetic field is a consequence of the exchange
coupling of the adjacent magnetic layers through the non-magnetic layer. The strength
and phase of such coupling depends critically on the Fermi surface of the non-magnetic
metal [3, 4, 5, 6]. To the best of my knowledge few experimental data are available for

46



the d-conductor multilayers Co/Pd and Co/Pt, for which the antiferromagnetic con-
figuration may not be achievable. Nevertheless, even in the case that the exchange
coupling is very weak, in a spin valve system an antiferromagnetic configuration can be
always obtained by tuning the coercive fields of the different magnetic layers. This is
achieved for instance by an appropriate choice of the spin valve geometry, or by using
some magnetization pinning technique. Hence the theoretical predictions on Co/Pd

and Co/Pt multilayers can in principle be tested in the spin valves.

The above results for the GMR ratio hide the material dependence of the elec-
trical conductance and with a view to comparing these with their band structures, I
now present results for the conductances of the different spin channels and of the AF
configuration. In the tables 3.4, 3.5 and 3.6 I present the conductance (I'), the mean
conductance oscillation (AT'), their ratio (AI'/I"), the maximum of the conductance os-
cillations (Almay) and its ratio with the mean conductance (Al . /), respectively for
the majority electrons in the ferromagnetic configuration, the minority electrons in the
ferromagnetic configuration, and both spins in the antiferromagnetic configuration, for
Co-based multilayers. All conductances are normalized to the single-spin conductance
of the non-magnetic-metal leads. This allows comparison with the different scattering
properties arising from the electronic structure of the multilavers independently of the
material of the leads. It is possible to extract the values of the conductance per unit
area in units of Q7 'm~2 by multiplving the conductances given by the following con-
version factors f: fc, = 0.61-10" Q7'm=2, fo, = 0.45-10'5 Q" 'm~2, fa, = 0.47-10"
QO 'm™2, fpq = 0.73-10"° Q" 'm~2, fp, = 0.83-10" Q"'m~2, frp, = 1.18-10 Q~'m~2
fir = 0.97-10" Q'm~2, fa; = 1.49- 10" Q" 'm~2%, fp, = 0.52-10'® Q~'m~2. Note
that the absolute values of conductance per unit area are consistent with ab initio
calculations for infinite superlattices in the ballistic regime [49, 50]. The tables 3.4-
3.6 illustrate that, with some exceptions, materials belonging to the same class have
similar normalized conductances. For Cu and Ag the majority (minority) band is a
high (low) transmission band, leading to a large GMR ratio for such materials. The
majority bands of these two materials match that of Co and there is little interband
scattering (even less in Ag where the electrons at the Fermi energy are completely sp).
By contrast, the minority carriers are subject to a large scattering potential due to the
difference between the on-site energies of the d-band. They are also subject to large
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inter-band scattering because of almost pure d-character of the minority carriers in Co.
The presence of an high transmission band together with a low transmission one is the

reason for the large GMR in those systems.

Multilayer T AT AT/T (%) AT max AT 1max/T (%)
Co;o/Cu | 0.59 |[5.33-1073 0.90 1.06 - 1072 1.81
Cop/Ag | 0.63 [4.37-1073 0.69 1.31-1072 2.06
Coy/Pd | 0.33 [889-107° 2.67 2.05-1072 6.14
Coy/Pt | 0.37 |5.02-1073 1.37 1.25-1072 3.41
Cojo/Au | 0.24 [1.05-1072 4.42 3.69-1072 15.53
Co;/Rh | 0.17 [6.13-1073 3.61 2.63- 1072 15.47
Coy/Ir | 017 [9.91-1073 5.73 1.00-1072 23.17
Co,o/Pb | 0.15 [6.90-107° 4.54 1.56 - 1072 10.30
Coio/Al | 0.12 [1.07-1072 9.26 4.64-1072 40.17

Table 3.4: Conductance and conductance oscillations for different Co-based metallic multilayers: ma-
jority band. The conductance of each multilayer is normalized to the conductance of the corresponding
non-magnetic metal, which composes the leads.

Multilayer T AT AT/T (%) AT max AT 1max/T (%)
Co,o/Cu | 032 [1.08-1073 3.38 2.82-1072 8.80
Co0/Ag | 0.32 [1.75-1072 5.54 5.73-1072 18.15
Coyo/Pd | 0.16 [ 1.56-1072 9.78 3.50- 1072 21.14
Co,o/Pt | 0.19 [9.02-1073 4.71 2.63-107° 13.73
Co;o/Au | 0.16 [9.60-1073 5.95 2.34-1072 14.53
Co;,o/Rh | 025 [6.36-1073 2.50 1.60-1072 6.29
Coy/Ir 0.31 [8.46-107° 2.75 3.41-1072 11.14
Co,o/Pb | 0.17 [866-107° 4.95 1.97-107? 11.24
Coo/Al | 0.16 [1.49-1077 9.08 7.55-1072 45.98

Table 3.5: Conductance and conductance oscillations for different Co-based metallic multilayers: mi-
nority band. The conductance of each multilayer is normalized to the conductance of the corresponding
non-magnetic metal, which composes the leads.

Turning the attention to the d-conductors it is easy to note that Pd and Pt have
almost identical behaviour, which differs from the behaviour of Rh and Ir. The general
feature of all the d-conductors is that the conductances in the majority spin band
are highly suppressed with respect to the case of Ag and Cu. The on-site energies
of the majority band of Co, Pd, Pt, Rh and Ir are roughly the same, ensuring a
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Multilayer r AT AT/T (%) AT max AT ax /T (%)
Co,y/Cu 0.18 6.40 - 1073 3.51 1.62-1072 8.94
Coo/Ag 0.21 5.10-1073 2.46 1.06-1072 5.17
Co,o/Pd [9.41-107%2]1.09-1072 11.62 3.15-107% 33.45
Coyo/Pt 0.10 4.77-10°° 4.69 1.43- 1072 14.12
Cojo/Au |840-107216.95-107° 8.27 1.66 - 102 19.77
Coy/Rh [781-1072]4.14-1073 5.30 8.76 - 1073 11.21
Coo/Ir [ 8.73-1072 [ 4.75-1073 5.43 1.59- 1072 18.30
Co,o/Pb |6.47-107216.29 1073 9.72 2.04-1072 31.50
Coy/Al [528-1072[8.01-107° 15.15 3.05-1072 57.80

Table 3.6: Conductance and conductance oscillations for different Co-based metallic multilayers: AF
configuration. The conductance of each multilayer is normalized to the conductance of the correspond-
ing non-magnetic metal, which composes the leads.

good band match. Nevertheless, the width of the d-majority band of Co is associated
with hybridization of s-, p-, and d-electrons, while the d-conductor bands are only d-
like. Hence, a strong inter-band scattering is present in the majority band of Co/Pd.
Co/Pt, Co/Rh and Co/Ir superlattices. As far as the minority bands are concerned,
the behaviour of Pd and Pt is quite different from that of Rh and Ir. Co/Pt and
Co/Pd multilayers present a small conductance in the minority band, while it is quite
large in Co/Rh and Co/Ir multilayers. This leads to the remarkable fact that the spin
polarization of the carriers has opposite sign in Co/Pd and Co/Pt than in Co/Rh and
Co/Ir. The spin-polarization is usually defined as

_ [y — Thu

= X (3.9)
I‘I‘.\I + F%’.\l

where I'? is the spin ¢ conductance. For the above materials, the spin-polarizations are
Pcospa = 0.33, Pcospr = 0.32, Poorn = —0.20 and Peoyir = —0.28. This result is quite
important because it shows that the spin-polarization of a multilayer does not depend
solely on the spin-polarization of the magnetic layers, but is a general property of the
whole structure. The reason of the different conductances in the minority bands of
multilayers formed from d-conductors is in the details of the band structure. In general
one would expect the minority band to be an high transmission band in d-conductor
based multilayers. Nevertheless the position of the Fermi energy with respect to the
band center of the d-band is quite different in the different materials. In the minority
band of Co, Rh and Ir (see figure 3.10 for Rh and Ir) the Fermi energy is well within
the d-band and in particular it lies to the left of the large peak in the density of states
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at the d-band edge. On the contrary the Fermi energy in Pd and Pt lies to the right
of the d-band edge. This means that the curvature of the d-band at the Fermi energy
is very different for Rh and Ir and for Pd and Pt. This explains the differences in

the conductances. The multilayers formed from the parabolic-like conductors and from

Total DOS Total DOS
s-DOS s-DOS
p-DOS p-DOS
d-DOS d-DOS
9 7 [ 3 o 1 3 5
Energy (eV) Energy (eV)

Figure 3.10: Partial DOS for Ir (a) and Rh (b). Note the position of the Fermi energy with respect to
the peak of the d-band.

Au lie somewhat outside the above picture. All the conductances are usually quite
small (particularly for Pb and Al) and the oscillations are very large. This is not
surprising if one considers the tight-binding parameters used. Both the on-site energies
and the hopping integrals of Au, Al and Pb are quite different with respect to Co. This
leads to large scattering potentials and therefore to large oscillations. Two important
aspects must be pointed out. First the large difference between hopping parameters can
break down the geometric mean approximation that I have used to describe an interface
between different materials. Secondly Co/Au, Co/Al and Co/Pb are multilayers formed
from materials with quite large lattice mismatch. In reality the interfaces are likely to
present a large amount of defects and a more realistic description would be useful.
Attention is now turned to the Ni-based multilayers. The conductances for all
the multilayers are presented in the tables 3.7, 3.8 and 3.9, where I used the same

normalization as before.
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Multilayer T AT AT/T (%) AT max AT max/T (%)
Nijg/Cu | 0.66 |[4.26-1073 0.64 9.51-1073 1.43
Nijo/Ag | 069 [5.81.1073 0.84 2.27-1072 3.27
Nijo/Pd | 026 |9.26-1073 3.51 2.16- 1072 8.19
Ni,o/Pt 0.28 |6.01-1073 2.15 1.88-1072 6.74
Nij/Au | 064 [835-107° 1.31 2.80 - 1072 4.41
Niyo/Rh | 0.18 [4.38-10° 2.53 1.31-1072 7.27
Nio/Ir 0.19 [ 7.76-1073 3.93 3.43-1072 17.37
Nijo/Pb | 014 [6.25-1073 4.43 1.19-1072 8.5
Nijo/Al | 0.13 |1.04-1072 7.87 3.50-1072 26.46

Table 3.7: Conductance and conductance oscillations for different Ni-based metallic multilayers: ma-
jority band. The conductance of each multilayer is normalized to the conductance of the corresponding
non-magnetic metal, which composes the leads.

Multilayer r AT AT/T (%) AT max ATl max/T (%)
Nip/Cu | 047 [835-107° 1.78 2.07-1072 4.42
Nijo/Ag | 043 [9.32-1073 2.15 3.14-1072 7.23
Nijo/Pd | 054 [2.75-1072 5.07 7.81-1072 14.40
Ni,o/Pt | 052 [2.15-1072 4.15 5.35- 1072 10.36
Nijo/Au | 049 |7.96-107° 1.62 2.51-10* 5.10
Nijo/Rh | 051 |[8.26-10~° 1.62 1.96-107° 3.84
Nijo/Ir 049 |7.90-10°° 1.59 2.76 - 102 5.57
Ni,o/Pb | 0.16 |9.07-1073 5.51 2.71-1072 16.49
Nij/Al | 0.11 [9.29-1073 8.67 3.61-102 33.69

Table 3.8: Conductance and conductance oscillations for different Ni-based metallic multilayers: mi-
nority band. The conductance of each multilayer is normalized to the conductance of the corresponding
non-magnetic metal, which composes the leads.

Multilayer T AT AT/T (%) AT max AT max/T (%)
Ni g /Cu 0.44 8.07-1073 1.84 1.88-1072 4.30
Ni,o/Ag 0.42 8.18-1077 1.97 2.19-1072 5.28
Ni,o/Pd 0.20 6.18-1073 3.07 1.81-1072 8.98
Ni, o /Pt 0.20 6.16-1073 3.00 2.73-1072 13.34
Nio/Au 0.44 7.95-1073 1.79 2271072 5.11
Ni;o/Rh 0.15 3.87-1073 2.59 7.84-107° 5.25
Nio/Ir 0.17 4.47-1073 2.67 1.51-10°2 9.06
Ni,o/Pb |7.74-1072[5.04-10~° 6.51 1.36-1072 17.55
Niyo/Al |5.83-1072|7.61-10~° 13.06 2.59-1072 44.40

Table 3.9: Conductance and conductance oscillations for different Ni-based metallic multilayers: AF
configuration. The conductance of each multilayer is normalized to the conductance of the correspond-
ing non-magnetic metal, which composes the leads.
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Most of the features of Co-based multilayers can also be found in Ni-based multilayers.
From the tables it is very clear that the conductances for the Ni-based multilavers
are generally higher than the conductances for their Co-based counterparts. This is
particularly true for the majority band of Ni/Cu, Ni/Ag and Ni/Au and for the minority
band of Ni/Pd, Ni/Pt, Ni/Ir and Ni/Rh. Moreover in the case of Ni/Cu, Ni/Ag and
Ni/Au also the conductance of the minority band is quite large giving rise to a small
spin-polarization (Pxj/cy = 0.17, Pxijag = 0.23, Pxijay = 0.13) and consequently to
small a GMR ratio (see table 3.2). In the case of d-conductors Ni/Pd and Ni/Pt have
the same spin-polarization as Ni/Rh and Ni/Ir and in all the four cases it is negative
(Pxispa = —0.34, Pxjpy = —0.30, Pxirn = —0.48, P\iyie = —0.43). This reflects the
fact that in the minority band of Ni the Fermi energy lies exactly at the peak of the
d-region of the DOS (close to the band edge). Therefore the dispersion of the d-band is
not largely different from that of both Pd, Pt and Rh, Ir. This is an important result
and suggests that Ni can be used in conjunction with d-conductors to form multilayers
with large GMR ratio. Finélly one can note that also in the case of Ni, multilayers
formed from Al and Pb present low conductances and large oscillations. The same

considerations made for Co-based multilayers are still valid.

To conclude this section I will discuss the relevance of the present calculations to
experiments. The results obtained for Co/Cu and Co/Ag multilayers are well consis-
tent with the largest experimental values for CPP G)MR [13, 58, 67] and also with
ab initio calculations [49, 50]. This result is surprisingly good if one considers that
in actual multilayers a perfect antiferromagnetic configuration is difficult to achieve
[87]. Nevertheless it is important to bear in mind that the calculations are for ballistic
disorder-free systems and that the disorder can alter the present picture. The effect of

disorder will be discussed in the Chapter 3.

CPP GMR measurements exist also for Co/Au point contacts [71] where one ex-
pects to reproduce closely the results obtained from a ballistic calculation. Nevertheless
in such a measurement the point contacts vield I/V curves which are typical of a diffu-
sive regime. Moreover the system appears granular with the presence of paramagnetic
clusters. All this information suggests that in such a system inelastic scattering domi-
nates, and therefore the conductance regime is very far from ballistic.
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As far as multilayers based on d-conductors are concerned very little experimental
work has been done {69, 72, 86] and none in the CPP configuration or with Ni. On the
theoretical side ab initio transport calculations have been carried out [68]. The GMR
ratios found for Co/Pd and Co/Rh are smaller than the ones computed here. The
reason is that in reference [68] very thin magnetic layers are considered and therefore
the spin filtering is not efficient (see the dependence of GMR on the magnetic layers
thickness of figure 3.8). More experimental work on multilayers based on d-conductors,

particularly built with Ni as magnetic materials would be welcome.

3.4 TMR

In this last section I will discuss some preliminary calculations on tunneling junctions.
My aim is to show that the scattering technique developed in the previous chapters
is able to deal with a tunneling problem and to show that a realistic description of
ballistic tunnel junctions may be given. The structure I want to simulate is a Co-
based tunnel junction attached to two semi-infinite crystalline Cu leads, namely the
structure Cu/Co/I.\'S/Co/Cu, where INS denotes the insulator. The magnetizations of
the Co lavers may have either a perfect ferromagnetic or antiferromagnetic alignment.
Note that the presence of the Cu leads reproduces correctly. the typical experimental
situation in which the magnetic layers do not form the electrical contacts.

I used for Cu and Co the same parameterization used for the case of GMR, while
for INS I have taken the parameterization shown in the tables of Appendix D (see
figure 3.11). For all the simulations I considered perfect translational invariance in the
transverse plane and used 150 x 150 kj-points in the 2D Brillouin zone. An important
problem that one has to face when calculating the tunneling current is that, due to
the small value of the transmission coefficient, the violation of the unitarity of the S
matrix due to numerical errors may be of the same order of the transmission coefficient
itself. If this happens the error in the calculated tunneling current is larger than the
current itself and the calculation is meaningless. To avoid this problem I performed the
following test. For each kj-point I compared the transmission coefficient T'(k;) with

;’V(k”) - R(k||) - T(k”)!,

the following measurement of violation of unitarity 6(k;) =
where R(k) and N (k) are respectively the reflection coefficient and the number of open
scattering channels. In the case § > 1/10T Irejected the corresponding T. Surprisingly
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Figure 3.11: Partial DOS (a) and partial conductance (b) for the fee insulator used in the calculation.
The vertical line denotes the position of the Fermi energy.

the conductance obtained with this procedure differs by less than 1% with respect
to the conductance calculated keeping all the transmission coefficients. This means
that the transmission coefficients which significantly contribute to the conductance are

calculated with good accuracy.

In figure 3.12 I present the different spin conductances for a junction in which the
thickness of the first Co layer is fixed to 50 atomic planes, the thickness of the insulator
is respectively 1,2, and 3 atomic planes and the thickness of the second Co layer is
varied between 5 and 55 atomic planes. In the antiferromagnetic case I present either
the majority or the minority electrons (with respect to the magnetization of the first Co
layer), which show very similar conductances even if the oscillating patterns are quite
different. The most important feature of figure 3.12 is that, on the one hand when
the thickness of the insulator is one atomic plane the conductance in the ferromagnetic
configuration is dominated by the majority electrons with a polarization of Pi = 0.34
(the subscript labels the INS thickness), on the other hand when the INS thickness is
larger than one atomic plane, the minority electrons dominate the conductance with
polarizations ——0.33 and P3 = -0.7. The polarization for one atomic plane of INS
is close to the polarization found for Co/Cu multilayers (PcO/cu = 0-30) and, since the
conductance is large (the normalized conductance is T = 0.45 for the majority spins), I
conclude that the transport is mainly via direct current and the tunneling component

is very suppressed.
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Figure 3.12: Conductance for Cu/Co/INS/Co/Cu tunneling junction. The thickness of INS is 1 (a),
2 (b) and 3 (¢) atomic planes. In the AF configuration the spin-direction is given with respect to the
first Co layer.

The situation when the thickness of the insulator is larger than one atomic plane
is very different. In such a case the transmission is generally very small and decays
exponentially with the INS thickness (as expected from the elementary tunneling the-
ory). In figure 3.13 I present the normalized transmission coefficient for the majority
and minority spins as a function of the thickness of the insulator and the corresponding
spin-polarization of the tunneling junction. Note that while the transmission coefficient
decays exponentially (the scale is logarithmic) the polarization first increases (becomes

more negative) and finally saturates at a value close to -1 for thick barriers. This effect

10 0.5

10 0.0

-0.5

o 1 6 7 Ho
INS Thickness (AP) INS Thickness (AP)

Figure 3.13: Transmission coefficient (a) and polarization (b) of Cu/Co/INS/Co/Cu tunneling junc-
tions as a function of INS thickness. The thickness of the right-hand side Co layer is varied from 1AP
to S5AP and each point corresponds to the average value over these thicknesses.
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can be understood by considering the standard theory of tunneling through a rectan-
gular barrier with the effective mass approximation and parabolic bands. The usual
textbook expression for the transmission coefficient of two free electron normal metals
of effective mass my separated by a rectangular barrier of height U, with an effective

mass mj is simply
1

T(ky) = , 3.10
0 = T sl (3.10)
where the quasi-momentum ¢(k) into the insulator is
1 -
aky) = +\/2mi(Us = E¢) + K} , (3.11)

and the coefficient A(k)

1(ky) [lemi(Uo — Eg) + 2m{mx Ep — ki (mf + mf{.)r (3.12)
Aky) = — . :
4m?m2 [2meF - kﬁ] [2m1(U0 - Ep) — kﬁ]

The total conductance is simply given by the sum of all the transmission coefficients
T(ky) over the 2D transverse Brillouin zone. The important point of equation (3.10)
is that the decay of the transmission coefficient with the insulator thickness [ is solely
determined by the quasi-momentum ¢. In the present case this vields to the well known
fact that the transmission is largest at the I' point and decays exponentially far away
from it (note that in the parabolic case the quasi-momentum ¢ is a function only of
kﬁ). Moreover if one introduces an exchange field between the two spin sub-bands it is
easy to show that this will affect only A(k;) but not g(k;). In the limit of thick barriers

sinh?[q(ky)!] o e~21® 1! and the equation (3.10) becomes simply
T (ky) = A° (k)" - e 20kt (3.13)

where I introduced the index o to indicate the spin. Finally the polarization of the
junction is obtained by using the equation (3.9)

i [At(Ry) — AT(Ry)]

P = S ATy + ARy

(3.14)

The key point of the equation (3.14) is that the polarization is independent of the
thickness of the barrier and this reflects the fact the the same decaying factor e=24(xi)!
is present both for the majority and the minority spin-current.
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Nevertheless the model considered is highly ideal and the band structure of real
transition metals can be very different from parabolic. The crucial point is that in
general the quasi-momentum ¢ can be a complicated function of kj, which depends on
the insulator. In particular g can be different for electrons with different atomic orbital
components. Note that different values of ¢ for different atomic orbital components
means that there are different effective barriers for different bands. For instance one
can imagine the situation in which ¢ for electrons with a strong s-component is larger
than ¢ for electrons with a strong d-component. In this case of a thick enough barrier the
contribution to the current will come mainly from the d-electrons and consequently it
will be given by the d-electrons only. Moreover the polarization will change by changing
the barrier thickness because the cancellation of the exponential terms, vielding the
equation (3.14), will not occur. Finally for very thick barriers the polarization will
saturate to either the value 1 or -1, depending on which of the two spin-electrons has
the largest exponential decay. This last result is crucial because it means that for
disorder-free tunnel junctions the polarization increases with the barrier thickness and
it is complete for very thick barriers. Therefore I predict that for large disorder-free
barriers the TMR ratio of a tunneling junction is either +00 or —oo. Nevertheless it
is also important to note that if the barrier is disordered, tunneling through localized
states in the barrier is possible. This process may be largely spin-independent [19, 20]
resulting in a global reduction of the polarization of the junction.

To prove that g can be a non-trivial function of & in figure 3.14 and 3.15 I show
the transmission coefficient T'(k,, k,) for the Cu/Co/INS/Co/Cu junction as a function
of k; and ky in the first Brillouin zone, respectively for the majority and minority spin.

The two distributions of T in the Brillouin zone look very different. On the one hand
the one for majority spins shows spherical symmetry around the I" point, highlighting
a quasi-parabolic behaviour. On the other hand the distribution for the minority spins
shows a remarkable resonant signature of the intricate band structure of the d-band
at the Fermi energy. This very different behaviour of the transmission coefficient is a
property of the insulator that therefore affects in a crucial way the polarization of the
junction.

To conclude this section I want to compare the result obtained above with other
existing theories. In particular Tsymbal and Pettifor [78] showed that the polarization
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Figure 3.14: T(kx,ky) for Cu/Co/INS/Co/Cu tunneling junction: majority spins.
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Figure 3.15: T(kx,ky) for. Cu/Co/INS/Co/Cu tunneling junction: minority spins.
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can be changed by varying the coupling between the insulator and the magnetic elec-
trodes while keeping constant the parameters of the insulator itself. In that case the
barrier is not changed and the decay of the wave-function within the barrier will not
vary. Nevertheless by changing the coupling between the magnetic electrodes and the
barrier, the local density of state at the surface of the barrier is changed. This results
in a change of the polarization of the electrons approaching the barrier, or at least of
that fraction which possesses high transmission through the barrier. The polarization
of the whole junction will therefore be changed, because the polarization of the injected
electrons is changed. In the language of the simple-parabolic model this corresponds

to a change of A(ky).
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4 Conductance Oscillations
4.1 Introduction

One of the results of the previous chapter was that the spin-conductance and the GMR
ratio are oscillating functions of the thickness of the layers forming the multilayer.
These oscillations are larger when large scattering is present even if they cannot take
into account the large-amplitude long-period oscillations of GMR found in experiments.
These latter are due to a periodic variation of the exchange coupling between adjacent
magnetic layers, which results in the absence of the antiferromagnetic alignment of the
multilayer for certain layers thicknesses. The magnetic configuration in zero magnetic
field will not always be antiferromagnetic and the corresponding conductance will not
be that of the antiferromagnetic configuration. In the extreme case in which in zero
magnetic field a ferromagnetic configuration is present instead of an antiferromagnetic
one, the GMR ratio will vanish. Therefore the oscillations of the GMR ratio only reflect
the fact that for some layer thicknesses the antiferromagnetic configuration does not
exist.

Recently a new set of measurements on Ni/Co [88, 89, 90, 91] multilayers re-
vealed the possibility of long-period oscillations of the conductance of a different origin,
whereas, measurements on Ag/Pd [91], Ag/Au and Ag/Cu [92] multilayers have not
shown any long-period oscillations. On the one hand, the Ag based multilayers are
entirely non-magnetic. On the other, the Ni/Co multilayers were measured in high
magnetic field, far above the coercive field of the structure, which rules out magnetic
misalignment between magnetic layers as source of the oscillations. In these experi-
ments, all the measurements were conducted with the current in plane (CIP) configu-
ration and to-date, no measurements have been carried out in the CPP configuration.

One of the possible explanations of such puzzling experiments is the formation of
quantum wells in all or only few of the bands due to the multilayer structure. The
quantum well theory has been used in the past for describing the oscillations of the
exchange coupling [5, 6, 93], and to correlate such oscillations with the oscillations of
the CPP conductance [94, 95]. All the calculations have been carried out by considering
a trilaver because in this case the treatment is simplified and analytic calculations can
be carried out. The central result of this approach is that the conductance and the
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exchange coupling oscillate with periods that depend only on the Fermi surface of the
materials involved, the superlattice structure being neglected.

In this chapter I will study in detail the oscillations of the conductance in a multi-
layer and show that the oscillation periods are not only a function of the Fermi surface
of the materials forming the multilayer, but also a function of the geometry of the
multilayer. The calculations are carried out in the CPP configuration where at present
no experimental data exist and predictions for future experiments will be made. First
I will calculate the conductance for disorder-free Ni/Co and Ag/Pd multilayers, where
the layer thickness fluctuates randomly. This will provide quantitative description of
the conductance fluctuations in the CPP geometry for real multilayers.

Secondly I will introduce a free electron model within the effective mass approxi-
mation and Kronig-Penney potential. This simple model has the advantage of giving
a clear interpretation of the numerical results and provides a simple expression for the
relevant oscillation periods. The long period oscillations of the conductance will emerge
to be the result of beating between the Fermi wave-vector and a class of wave-vectors
characteristic of the superlattice structure. A completely analytic description of the
system and a formula to calculate the conductance will be given.

Finally, leaving the problem of the oscillations, I will use the simple model to re-
discuss the material dependence of GMR and in particular on the different dispersion
relations between different materials. Even in this case the model gives a good quali-
tative understanding of the general mechanism leading to the scattering, even though
it will not capture all the details of the transition metals. This leads to a better model

which will be developed in the next chapter.

4.2 Real Material Simulations

In this section I consider the conductance of Ni/Co and Ag/Pd multilayers in the
CPP configuration. I use the same tight-binding parameterization used in the previous
chapter [84] and assume that in the case of Ni/Co a perfect ferromagnetic alignment of
both Co and Ni is achieved. Furthermore I consider complete translational invariance
and completely clean interfaces. Note that this assumption is particularly good in the
case of Co and Ni which do not mix at the interface, but breaks down in the case of Ag
and Pd which are quite miscible [91]. The conductance is therefore given by summing
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up the spin-dependent, kj-dependent transmission coefficients T7(k) as indicated in
equation (3.2). In what follows, I employ as in the previous chapter 8100 k-points,
which is sufficient to render effects due to the finite number of kj-points negligible
compared with the oscillations of interest.

The same analysis used in Chapter 3 to interpret the conductance results in term of
band structures mismatch can also be used here. It should be noted that the majority
bands of Ni and Co are dominated by sp-electrons and are closely aligned (see figure
3.1). On the other hand the minority bands are d-like and possess a relative shift in
energy of about 0.7 eV. Hence one expects a large contribution to the conductance
from the majority channel and a small contribution from the minority channel. For
the same reason the oscillations of the conductance are expected to be larger in the
minority spin sub-bands than in the majority.

For Ag/Pd the situation is qualitatively different (see figures 3.4 and 3.5), because
at the Fermi energy the DOS of Ag is dominated by sp-electrons, while in Pd it is
dominated by d-electrons. As a consequence one expects at the interfaces, together
with a scattering potential in the d-band, a strong inter-band scattering. In summary,
despite the scattering mechanisms at the interface looking different, both Ni/Co and
Ag/Pd multilavers are constituted by two metals whose band match gives rise to an
effective periodic scattering potential.

Following reference [54, 96], I consider a pseudorandom layer arrangement, in which
a finite A/B multilayer, attached to semi-infinite leads of material A, possesses B-layers
of fixed thickness /g and A-layers of random thicknesses /4 which are allowed to fluctuate
by +1 atomic planes (AP) around a mean value [ (with equal probability for Iy, [y +1).
In all the following simulations, I consider multilayers consisting of 10 A /B bilayers and
for each lg show results for the average conductance of 10 random configurations of the
A-layers.

For Ni/Co and Ag/Pd respectively, figures 4.1 and 4.2 show the mean conductance
as a function of /g, along with error bars for the standard deviation of the mean o,,.
While o,, is smaller than the underlying conductance fluctuations, it should be noted
that this is not the case for the standard deviation o in the distribution of the individual
conductances, which for an ensemble of m realization satisfies 0., = o/\/m, where
m = 10 for figures 4.1 and 4.2. For small m, o is of the order of the conductance
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Figure 4.1: Conductance of Ni/Co multilayers as a function of the Ni thickness. The Co thickness is
10 atomic planes. The inset shows the two spin conductances on the same scale with the upper plot
for majority spin and the lower for minority spin. The error bars correspond to the root-mean-square
deviation of the mean.

oscillations themself, thereby masking any underlying trend. In experiments involving
a large number n of bilayers. such that the total length | = n(ly + [g) is larger than
the phase braking length l, (due to incoherent scattering processes), the sample may
be viewed as comprising [/l, samples in series and therefore the total resistance is
the sum of [/, statistically independent resistances. This suggests that multilayers
with a large number of bilayers are needed in order to detect reproducible conductance
oscillations, as pointed out in several experiments [88, 89, 90, 91]. The figures suggest
the presence of long-period oscillations on a scale greater than the atomic spacing,
with amplitudes not exceeding 25% of the mean conductance, though the period does
not seem constant. Moreover the Ni/Co system shows smaller oscillations than the
Ag/Pd system, and despite the fact that the conductance of the majority spin channel
is almost double that of the minority, the oscillations arise predominantly from the
minority spins, where the scattering is strongest. This is consistent with the scattering
mechanisms pointed out in the previous chapter. Although the results of figures 4.1 and
4.2 are important because represent a quantitative calculation involving real materials,
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Figure 4.2: Conductance of Ag/Pd multilayers as a function of the Pd thickness with an average Ag
thickness of 5 atomic planes.

in order to understand how quantum interference of the conduction electron wave-
functions might give rise to long period oscillations. it useful to develop a simple model

which capture most of the relevant physics. This is done in the next section.

4.3 Effective Mass Model and Conductance for an Infinite Sys-
tem

The model consists in a 3D free-electrons gas with parabolic band, effective mass and
Kronig-Penney potential [97]. The potential is along the z-direction only (the direction
of the current in the CPP configuration) and describes the off-sets between the bottom
of the bands of different materials. The masses of the different materials are allowed
to be different reflecting the different band dispersions. For instance, if one wants to
describe a d-conductor (Pd) in contact with an sp-conductor (Ag), two parabolic bands
with respectively large and small effective masses will be considered. The Hamiltonian

for such a system can be written as

RR[VE, 0 1 9 .
() = —— z — — | +179(z2). .
B () 2 | m*(z) * 5z m*(z) 0z +17() (41)




where V2 is the 2D I aplacian. Since the structure considered possesses translational
invariance in the z-y directions, the spin-dependent Kronig-Penney potential 177(z)
and the effective mass m*(z) are functions of z only. Consequently the problem can be
mapped onto a kj-dependent 1D problem, whose Hamiltonian is
H(z;ky) = —ﬁi~—1—i+m+l""(z). (4.2)
For each k| and spin o, an eigenstate at the Fermi energy contributes e?/h to the con-
ductance of this infinite periodic structure. The open scattering channels of the Hamil-
tonian (4.2) can be found with an ordinary transfer matrix technique (see Appendix
E). Nevertheless in the case in which the effective mass is constant, the calculations can
be carried out analytically and a good description of the relevant oscillation periods
can be given. It is therefore useful to introduce a general formula for the conductance
(more precisely for the conductance per unit area) of an infinite system in the case in
which the Schrédinger equation can be solved by separating the variables. This is the
case of the Hamiltonian of equation (4.1) when m*(2) = m*.
The starting point is the Landauer-Biittiker formula for an infinite system. In this

case there is no reflection and the total conductance is

2
I'= }—N(EF) : (4.3)
)

where .V(EFf) is the total number of open channels at the Fermi energy. Suppose the
total energyv can be written as a sum of a transverse component Ej and a component
along the direction z of the transport E,. The total number of open channels at the
Fermi energy is simply the number of states of the form e*+? whose corresponding

energies F, satisfy the relation
E, =Er-E, (4.4)

for some allowed E). If the potential is periodic along z the states e**+7 will form one
dimensional bands E, and the number of open channels will be the number of states
satisfving the equation (4.3) with E| belonging to one of the bands

;’V(EF) = Z ‘,Vn y (45)

n
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where N, is the number of open channels corresponding to the n-th band and the sum
runs over all the occupied bands up to the Fermi energy. The number of states between

an energy window E; and E, + dE ;| within an allowed band is simply given by
dNn = p(E))dE) = p(Er — E1)dE , (4.6)

where p is the two-dimensional density of state in the plane orthogonal to z (this can be
substituted by a one-dimensional density of states if one deals with a two-dimensional
transport problem). Given (4.6), the total conductance can be easily evaluated

r=2% /E T"M" dEp(Er — E), (4.7)

n
where the sum spans all the occupied n-bands, E, is the position of the bottom of the
n-th band and A, is the correspondent band width. The expression (4.7) is completely
general and can be applied to every system in which the energy can be written in the
form of equation (4.4).

In the free-electron case introduced above the equation (4.7) can be further sim-
plified. In fact for a system with finite cross section 4 = L x L and with periodic

boundary conditions the two-dimensional density of states is simply

dN _ 27 Am*
dE~  h? '

(4.8)

with m* the effective mass. Note that the two-dimensional DOS does not depend on the
energy. Therefore the integral of equation (4.7) is trivial and the conductance assumes

the following expression

2me’m* A
r = T ; An - (4.9)

Note that in the case of an infinite system also in the transverse direction I' diverges
because A — oo. It is possible to eliminate such a divergence by defining the conduc-
tance per unit area ['/A (note that this is proportional to the normalized conductance
used throughout the first chapters).

It is also important to note that in this simple case the problem of calculating
the conductance is mapped onto the problem of calculating the total bandwidth of a
one-dimensional periodic potential. In the next section I will use the formula (4.9)
to evaluate the conductance of an infinite multilayer and to calculate the oscillation

periods.
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4.4 The Oscillation Periods

In the previous section I have shown that the calculation of the conductance in a three-
dimensional infinite multilayer consists of evaluating the total bandwidth up to the

Fermi energy of the mono-dimensional problem defined by the Hamiltonian

N

Ho(z) = —

Consider an infinite superlattice composed of materials A and B, with layer-thicknesses
ly and lg (Iy + g = L). The correspondent Kronig-Penney potential assumes values
V =1, (Er > V,) in the metal A and V" = 0 in the metal B. The Hamiltonian (4.10)

yvields immediately the Kroning-Penney secular equation

(ka + kg)?
kakg

with ky(E) = /2m*(E = 1,)/h and kg(E) = v2m*E/h. Based on this expression,

I now argue that the bandwidths exhibit several periods of oscillation as the layer

cos(k; L) = cos(kals + kpl) — sin(kaly) sin(kplp), (4.11)

thicknesses are varied.
To describe Ni/Co (Ag/Pd) multilayers, I vary the thickness of metal B keeping
fixed the thickness of metal A. To understand the oscillatory behaviour of the band-

widths, note that equation (4.11) cannot be satisfied at energies for which
k.\(E)L\ + kB(E)lB =mm, (412)

where m is an integer. Hence at E' = Ef and fixed [4, successive bandgaps appear at
the Fermi energy Ef when g changes by

g i mh m=IEm . (4.13)

= m=
B kB(EF) V2m*Ef

Equation (4.13) introduces the first period of oscillation IE. The second period corre-

sponds to the presence of narrow gaps below the Fermi energy. From equations (4.11)
and (4.12) narrow bandgaps appear at the energies

(n) _ h27r2n2

=——7+1V .
EA Qm‘l?\ + (228 ] (4 14)
whenever the lengths lg equal
h
QP (4.13)
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This last result can be easily proved as follows. Consider a general choice of ky(E)l,

and kg(FE)lg which satisfies the equation (4.12)
k:\(E)lA =mn + (D , (416)
ks(E)lg = —¢, (4.17)

with 0 < ¢ < 7. By substituting the equations (4.16) and (4.17) into the equation

(4.12) one obtains

(ka + kg)?
kakg

where the sign “+” (“-”) corresponds to even (odd) m. It is now clear that narrow

cos(k L) = +£1 £ sin?(¢) , (4.18)

gaps are obtained when the second term of the left-hand side of the equation (4.18) is

small. This occurs when ¢ = n'w, which vields the relation

kaly =nmw (4.19)

and the condition (4.14). The total bandwidth A and hence the conductance per unit of
area (4.9) are oscillating functions with periods (§ and the lg‘)’s. All these periods are of
order Ay (ie few A), but beating between them can give rise to long-period oscillations.
It is important to note that the Fermi period is defined only through the Fermi energy,
while the periods lg’) depend critically on the superlattice geometry. In particular,
because the energies corresponding to periods (4.15) depend on 1/l3 and must not

exceed the Fermi energy, the number of 13’

s depends on the thickness of the metal
A. If I, is large, a large number of Ig') periods will be present and the beating pattern
will be complex. On the other hand, if [, is small, few lg’)’s will be present, giving rise
to a simple beating pattern. A numerical evaluation of the equation (4.9) is shown in
figure 4.3. For the chosen parameter in this plot, I expect only one lg') and clear beats
are observed, with period 21821E/(18) — [E). Since the I§" periods are characteristic of
the superlattice structure I predict that the period of the long oscillations can be set
by choosing the appropriate superlattice geometry. Of course in a real superlattice,
the B-metal thickness can only be changed in units of the inter-atomic spacing. The
solid dots in figure 4.3 highlight the conductance associated with such a discrete set of
thicknesses.

The above dependence of oscillations on the multilayer structure is missed by a

trilayer quantum well approach to conductance oscillations and GMR (93], where only
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Figure 4.3: Conductance per unit area in the effective mass approximation. The parameters are Ef =
10eV. 1, = 6eV, m* = 0.5MeV, Iy, = 8A. The dots correspond to the conductance calculated at integer

values of the lattice spacing of Ni. The vertical lines show the beating period lpear = 21:;)15/ (l;sl - Ig).

two periods have been identified. The first of these pFS depends on the extremal Fermi
surface radius of the spacer forming the well, and in the parabolic band approximation
corresponds exactly to the period /5. The second period p® depends on the cut-off of
the sum over the ks, and in the parabolic approximation, on the energy difference
between the Fermi energy and the step potential 1;,. In the superlattice description
given, this period is replaced by the class of periods I, which are a function of the
superlattice structure itself. This structural dependence of the oscillation periods is the
key to understanding the apparent non-reproducibility of the long period oscillations
from sample to sample, observed in some of the experiments [92]. It may be shown that
these beating features are preserved when a more realistic material-dependent effective

mass is used and therefore may be considered general.

Bearing in mind that the above analysis describes the CPP configuration, I can
also speculate on the absence of the oscillations in other recent experiments [92, 91].
Ag/Cu [92] exhibits very good phase separation between the different metals and hence
it should be a good candidate for observing conductance oscillations. However the band
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match between Ag and Cu is very good, resulting in a very small scattering potential
at the interface. In the effective mass approach this means a very small step potential
1, with respect to the Fermi energy. A large number of periods lgl) will be present and
the beats will be difficult to detect. The same argument is valid for Ag/Au [92]. In
addition the high miscibility of Ag and Au results in dirty interfaces. Ag/Pd [91] is in
theory a good candidate to show conductance oscillations because of the large mismatch
between the Ag and Pd bands. Unfortunately interdiffusion at the interface is difficult
to avoid and the elastic mean free path will be quite short. Finally, note that for Ni/Co
(88, 89, 90, 91, 92], the majority band reproduces roughly the situation of Ag/Cu,
while the scattering in the minority band is quite large. According to the effective
mass model the minority band will possess a low conductance with large oscillations,
while the conductance of the majority band will be large and the oscillations small.
This is precisely what I obtain from the material specific tight-binding calculations.
The absence of oscillations found in reference [92] for Ni/Co multilayers may be due
to the diffusive nature of the multilayers. In fact in such experiments the resistances
involved are about five times larger than the ones of references [88, 89, 90, 91], and
the mean free path is much shorter. This suggests that the transport is not only non-
ballistic, but also that the absolute error in the resistance measurements may become
comparable to the observed magnitude of the oscillations.

This concludes the part of this chapter concerning the conductance oscillations. In
the next section I will revisit the dependence of the GMR on the materials forming the

multilaver by using the effective mass model.

4.5 The role of the effective mass

In this section I extend the effective mass model to the case of different effective masses

for different materials and consider an infinite multilayer described by the Hamiltonian

(4.1). Note that the kinetic operator possesses the following term 8%"1_1(2)% which
ensures the Hamiltonian to be hermitian. In the case of a multilayer composed of
different materials the effective mass m*(z) can be a step function assuming the values
mY% and mj} respectively in the metal A and B. Whether or not this model is well-
founded and the consequent envelope-function approximated wave-function represents

the real wave-function is a matter of debate [99]. There is more or less general agreement
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that this approximation is valid in the case in which the Fermi wave-length is much
larger than the typical interface region between different materials (p - k theory [100]).
This is the case of semiconductors. In the case of metals the typical Fermi wave-
lengths are of the order of the lattice spacing and questions on the validity of such an
approximation are legitimate. I do not want to enter into this debate and I will use the
above model only as phenomenological model to understand some general features of
the transport of metallic multilayers. At the end of this paragraph it will be clear that
a free-electron model is too crude to account for some features of the transport.

The conductance is calculated using the general transfer matrix technique presented
in Appendix E. The problem one has to face is to select correctly the parameters for
the Kronig-Penney potential and the effective masses. In what follows I assume that
the bottom of the band of the non-magnetic material A (say Cu) is 0e\" and the Fermi
energy is 7eV. The remaining parameters to set are the Kronig-Penney potential for
the two spin-bands of the magnetic material (say Co) "? and 1"+, the spin-dependent
effective masses in Co m' and m*, and the effective mass in Cu m. I leave m to be
a free parameter. This is because I want to study the dependence of the conductivity
and the GMR on the dispersion of the non-magnetic material. The only parameters
left are therefore the ones regarding Co. The criterion I adopted was to reproduce the
correct DOS at the Fermi energy p?(Er) = pr and the integrated DOS up to the Fermi
energy .\’ of Co, calculated with the spd tight-binding model. In a free electron model

these two quantities are respectively
p(E) = z=V2E (4.20)
h’m?

and 295

Ef m3 2 2V2 3/2

N= E = —E¢". 4.21
| pB)E = 55 R (4.21)
From the tight-binding model I obtain the following estimates pr/pk = 6.3 and NV/NT =

0.94, which vield the relations (Eg—V*+)/(Ep—VT) ~ 0.15 and m*/m" ~ 6.4. These two

equations can be solved for several choices of V¥, V1, m* and m'. I performed several
calculations aimed at reproducing the normalized conductances of Co/Cu multilayers.
One of the typical results is presented in figure 4.4 where the conductances of the two
spins and the antiferromagnetic configuration, and the consequent GMR are plotted
as a function of the Cu effective mass. Figure 4.4 presents some interesting features.
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Figure 4.4: Conductance per channel in the effective mass approximation. The parameters are Ep =
7eV, Vr = 1.9eV, = 6.4eV, mT= 16 me, = 2 me, with m e the electron mass.

Assume the “true” effective mass of Cu is the one which maximizes the GMR, i.e. it
is about 1.4 me. If the effective mass of the non-magnetic metal decreases from the
value of Cu, all the spin conductances increase, but the GMR decreases. This reflects
correctly the behaviour of Co/Ag with respect to Co/Cu, where the presence of a full
sp-like band at the Fermi energy is simulated by an Ag effective mass lighter than that
of Cu. On the other hand if one moves the non-magnetic metal effective mass towards
large effective masses, all the conductances decrease. Moreover, because an increase of
the effective mass results in an improved band match of the minority band with the
non-magnetic band, and in a degraded match of the majority band, the majority spin
conductance turns out to decrease faster. This gives rise to a decreasing of the GMR.
Pd and Pt show this situation, and the d-like behaviour at the Fermi energy can be
simulated by a large effective mass.

Therefore this qualitative behaviour seems to reproduce correctly the results ob-
tained with the spd tight-binding model for Co-based multilayers. Nevertheless there
are two problems. First the spin-dependent effective mass for Co assumes very large
values that, despite the fact they should include the large curvature of the d-band, seem
largely non-realistic. Secondly the conductance of the antiferromagnetic configuration
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is almost coincident with the conductance of the minority spins in the ferromagnetic
configuration for all the values of the effective mass of Cu. This reflects directly the
fact that the model is only single-band and inter-band scattering cannot be described.

This last problem can be somehow solved by assuming a further mismatch between

the spin-effective mass of Co. In fact the effective Al potential of the total Hamiltonian

(4-2)
+ (4.22)

h2k2
comprises a kinetic part and a true potential part Va(z). It is possible to choose

the spin-dependent potential Va and the spin-dependent effective mass m*a in such a
way that the kinetic part of U(z) dominates the majority electrons and the potential
part dominates the minority. In the antiferromagnetic configuration, this will result
in two different sources of scattering for electrons moving into regions with different
magnetizations. In figure 4.5 I plot the conductance and the GMR for one of these

possible choices of parameters. It is interesting to note that now the antiferromagnetic
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Figure 4.5: Conductance per channel in the effective mass approximation. The parameters are Ep =
7eV, V¥ = 1.9eV, V = 6.4eV, mI'= 28 me, m! = 1.4 me, with me the electron mass. Note that the
large difference between mTand m/ yields the conductance in the AF configuration to be smaller than
the conductances in both spin-channels in the FM configuration.

conductance is lower than the conductance for the minority spins in the ferromagnetic
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alignment. Nevertheless the parameters and in particular the effective masses are very
large.

To conclude, although a single-band model provides a good qualitative description
of the spin-conductance in magnetic multilayers, it leads to unrealistic parameters. This
suggests that a realistic minimal model must include two bands with different disper-
sions and possible hybridation. This model can describe both a scattering potential

and inter-band scattering.



5 GMR, Disorder and the Breakdown of the Boltz-
mann Description

5.1 Introduction

In the previous chapters I have considered disorder-free systems with translational
invariance in the direction orthogonal to the current. The main aim of this chapter is
to investigate the effects of breaking this hypothesis and to study how disorder affects
the spin transport. This is particularly relevant for magnetic systems produced with
non-MBE techniques, where structural defects or impurities are largely present. In
particular in magnetic multilayers made by electrodeposition techniques [32, 101, 102]
the quality of the interfaces is not as good as in the MBE-made counterparts and
large interdiffusion between the multilayer constituents is present. Moreover, because
of the dual bath technique usually employed. the magnetic layers are contaminated by
non-magnetic impurities with concentration as large as 15%. Nevertheless, despite all
these sources of disorder, such disordered multilayers show large GMR ratios sometimes
larger than 100%. It is therefore natural to ask what are the effects of disorder on spin-
transport.

On the theoretical side two fundamentally different approaches have been used to
describe CPP GMR in disordered systems. The first assumes that all the transport
is diffusive and is based on the semi-classical Boltzmann's equation within the relax-
ation time approximation. This model has been developed by Valet and Fert [33, 34],
and has the great advantage that the same formalism describes both CIP and CPP
experiments. It identifies the characteristic lengths of the problem and can include the
effects of disorder into the definition of the spin ¢ dependent mean free path A, and
the spin diffusion length li. Moreover it can be extended to describe the temperature
dependence of GMR [102]. In the limit that the spin diffusion length is much larger
than the layer thicknesses (infinite spin diffusion length limit), this model reduces to
a classical two current resistor network, in which additional spin-dependent scatter-
ing at the interfaces is considered. The resistor network model has been used since
the early davs of CPP GMR by the Michigan State University group [66], and de-
scribes most of the experimental data. The parameters of the model are the magnetic
(non-magnetic) metal resistivity p%; (p%), the spin asymmetry parameter ;3 introduced
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through the spin-dependent resistivity of the magnetic metal py;y = 2p3([1 — (+)2], the
magnetic/normal metal interface resistance per unit area r; and the interface scattering
spin asymmetry v introduced through the spin-dependent interface resistance per unit
area 1) = 2rp[1 — (+)7)- A good fit of the parameters has been shown to be possible,
and the same values can fit reasonably well both the CIP and the CPP data [66]. The
limitation of such a model is that it neglects the band structure of the system, and all
the parameters are phenomenological. An extension of the model to include band struc-
ture has been made recently [51, 52], implementing the above transport theory within
the framework of density functional theory in the local spin density approximation.
In this calculation, the scattering due to impurities is treated quantum mechanically,
while transport is described semi-classically using the Boltzmann equation. The same
method has been previously used to describe the spin-polarization of the current in di-
luted Ni- [103] and Co- [104] alloys. The polarization is generally reproduced correctly
for light impurities, while the absence of spin-orbit interaction seems to be a strong
limitation in the case of heavy impurities.

The second theoretical approach to CPP G)MR in disordered systems is based on
the quantum theory of scattering. Full ab initio calculations based on density functional
theory [49, 50] in this case cannot be used because of the massive computer overheads.
Tight-binding methods are more promising even if the use of accurate spd Hamiltonians
leads quickly to unmanageably large matrices. The only calculations carried out to date
involve either infinite superlattices in the diffusive regime [53] where small unit cells
can be used, or finite superlattices in which disorder is introduced without breaking
translational symmetry in the direction perpendicular to the current [29, 54]. In the
latter case the system is an effective quasi 1D system, whereas real multilayers are 3D
systems with roughness at the interfaces which breaks translational invariance.

From this short overview it is clear that with exception of references [29, 54] the
transport in disordered magnetic multilayers is always assumed to be diffusive. The
main expectation from this assumption is that interference effects can be neglected and
that transport is completely local. As a consequence of this assumption both the spin-
polarization of the current and the GMR do not change with the length of the systems.
This picture is generally consistent with experiments. Nevertheless very recently it
has been shown [35, 36, 105] that in magnetic multilayers the GMR increases with
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the number of magnetic/non-magnetic layers period, and depends critically on the
order of the layers. Although in the case of reference [36] these data are explained
by considering a very short spin-diffusion length, this argument is hardly applicable
to the experiments of references [35, 105] where the use of MBE-grown Co/Cu and
Co/Cu/Fe/Cu multilayers assure long spin-diffusion lengths. These results suggest
that the relevant length scale for CPP GMR is not only the spin-diffusion length but
also the elastic mean free path, and that non-local contributions to the conductance
are important. For these reasons the strictly local description of the transport based on
the Boltzmann’s equation is not valid and a quantum approach to transport is needed.

The aim of the present chapter is twofold. First I will study three-dimensional
GMR multilayers and investigate the effect of disorder on the spin-transport in both the
ballistic and diffusive regimes and the crossover between them. Secondly I will present
a few examples in which the resistor network model is clearly violated and a phase
coherent theory of transport is needed. To address these problems I consider a reduced
tight-binding model with two degrees of freedom (s-d) per atomic site. I use the same
technique as in Chapter 2 to compute the zero-bias zero-temperature conductance in
the framework of the Landauer-Biittiker formalism. The calculation is optimized such
that it scales sub-linearly with the multilayer length. This is crucial to study phase
coherent transport in long but finite multilayers, where a large ensemble average is also
needed. Several models of disorder are introduced in order to mirﬁic defects, impurities,
vacancies and lattice imperfections. In the case of electrodeposition-made multilayered
nanowires [32, 101, 102] where the phase breaking length is comparable with the wire
cross-section, I also consider the effects of rough boundaries and confinement.

The main result of this analysis is to show that phase coherent transport in disor-
dered magnetic multilayers may give rise to behaviours not describable by the Boltz-
mann approach and I will discuss the relevance of these “non-diffusive” effects in several
new experiments [35, 36, 105]. Most of the results of this chapter have been published
already in references [37, 38].

The chapter is organized as follows: in the next section I will describe an imple-
mentation of the numerical scattering technique capable of handling large systems and
performing efficient averages over large ensembles. In this section I introduce a “dia-
grammatic” approach to decimation, which will also be useful in Chapter 7 to describe
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carbon nanotubes. In the section 3.3 I discuss a two s-d band model which is the
minimal Hamiltonian capable of capturing inter-band scattering and reproducing the
correct density of state of transition metals. Then I present the main results of this
chapter and discuss the effect of different sources of disorder. Finally I consider ex-
amples where a phase coherent approach to transport gives rise to completely different
results with respect to the resistor network model. It will be clear that this approach
is more appropriate for describing new experiments where the elastic mean free path

may be very long.

5.2 Implementation of decimation in the case of disorder: “Dec-
imation Diagrams”

The numerical technique used in the present calculation is entirely equivalent to that
presented in Chapter 2 and reference [27]. Here I want only to discuss some numerical
optimizations which are useful in the case of disordered systems. I always consider
finite disordered multilayers sandwiched between two semi-infinite perfectly crystalline
leads. With this setup all the disorder is included into the scattering region. Therefore
the only difference to the completely disorder-free case is that one needs to decimate
a region where the matrices describing the atomic planes are different. Nevertheless,
since I want to consider arbitrary long disordered multilavers and perform averages
over a large number of ensembles, it is crucial to optimize the decimation technique.
This is achieved by recalling that the decimation technique, in the case of nearest
neighbour coupling, only redefines the matrix element coupled with the decimated one.

For instance in the decimated Hamiltonian at [-th order

BY = B+ T (51
only the matrix elements coupled to the element H,(,l_l) of the (! — 1)-th order Hamil-
tonian are redefined. Consider now a disordered multilayer composed of alternating
magnetic (M) and non-magnetic (N) layers of thicknesses ty; and tx respectively. Sup-
pose that the multilayer consists of u repeated (N/M/N/M) units, that I call double
bilayers. Since I consider only short range interactions, it is possible to decimate the
Hamiltonian of the whole multilayer by building up the following intermediate Hamil-
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tonian

VY  Hy  Himi 0
Hgyi Hp; Vo 0
Hy=| .. 0 V¢ Huyyy Hergen 0 o oo | (5.2)

0 0 Hrig+y Hrasy Vo O
where Hp; (Hpg;) describes the coupling within the left- (right-) hand surfaces of the
i-th cell (N/M/N/M) (i=1,..,u), Hyg; (Hry; = H{Ri) describes the coupling between

the left and right surfaces of the i-th cell, and 1j is the “bare” coupling between the
first right-hand atomic plane of the i-th cell and the first left-hand atomic plane of the
(41)-th cell, which is assumed to be the same for every cell (this last condition is easily
satisfied if the first left-hand and the last right-hand atomic plane of every (N/M/N/\)
cell is disorder-free). Equation (3.2) suggests a very convenient implementation in which
multilayers consisting of p (N/M/N/M) cells are built using the following procedure.
Firstly one decimates a certain number v, of cells (N/M/N/M) in which disorder is
introduced evervwhere except in the first and last atomic plane. Secondly the matrix
H,; of equation (5.2) is built, choosing randomly the order of the u (N/M/N/M) cells.
Finally the matrix Hy; is further decimated to vield the coupling matrices between the
lead surfaces Heg(E) of equation (2.40), which has the structure

In this expression, H} (E) (Hy(F)) describes intra-surface couplings involving degrees
of freedom belonging to the surface of the left- (right-) hand side lead and H{x(E) =
H{x(E)! describes the effective coupling between the surfaces of the left-hand side and
the right-hand side leads. Note that p” possible different multilayers can be built from
a set of v disordered unit cells, and that the computation time scales as the number
of (N/M/N/M) cells and not as the total length of the scatterer. This procedure can
be further optimized, for instance by building ' new cells (N/M/N/M)x2, and using
these to form the multilayers.

To conclude this section it is instructive and useful to introduce a “diagrammatic”
wayv to describe the decimation procedure. Consider as an example figure 5.1. In
the figure I represent an atomic plane described by the intra-plane matrix 4o by a
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Figure 5.1: “Decimation diagrams”.

vertical line labeled with the index AO0. The coupling between different atomic planes
is represented by horizontal lines with different shapes for different coupling matrices,
which are denoted with Greek letters. For instance the quadri-layer of figure 5.1a
consists of four atomic planes described by the matrices A0, B0, Co and D 0respectively,
and coupled by mean of the matrices a, j3 and 7. The Hamiltonian describing this

structure is a block-trigonal matrix H of the form

(A0 a 0 0\
a* Bo P 0
H = 5.4
0 Co 7 (5-4)

V0 0 7f £0)

Suppose now that one decimates all the degrees of freedom of the atomic plane labelled
with Bo (I denote the decimation with a red cross over the plane to eliminate). Figure
5.1b shows the result of such a decimation. On the one hand the in-plane matrices of
the layers adjacent to Be have been redefined (Ai and C| respectively) as well as the
coupling between the two. On the other hand the atomic plane Do and the interaction
between D0 and Co are not redefined because they are decoupled from B@. Therefore

the new matrix describing the right-hand side of figure 5.1b is

/ Ai 6 0\
H= 5% & 7 = (5.5)
A0 Tf A/
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As a matter of notation the symbol describing the renormalized inter-plane interaction
is the composition between the symbols describing the previous interactions with the
decimated plane. The symbol of the interaction with the left-hand side plane is on
top of that of the right-hand side plane as indicated in figure 5.1b. By continuing
the decimation one obtains the final “decimated” system described in figure 5.1c. Two
important aspects must be stressed. First the final inter-plane coupling does not depend
on the order with which the layers are decimated. Secondly the redefined in-plane
matrices are sensitive to the position of the decimated atomic planes. In general a new
redefined in-plane matrix is different if the decimation is performed on the adjacent
left-hand side atomic plane or on the adjacent right-hand side atomic plane. This
difference will be crucial in the description of carbon nanotubes in Chapter 7.
Finally according to the scheme presented, the decimation of a disordered (N/M/N/M)

cell is shown in figure 5.2. Note that in this case the coupling between adjacent

(N/M/N/M) cells (terminal coupling symbols) is not redefined.

A0 B0 Co Do Mo NO

Figure 5.2: Scheme of the decimation of a (N/M/N/M) cell. Note that the coupling between adjacent
cells is not redefined.

5.3 The two-band model and the models for disorder

The technique for computing transport properties, is based on a three dimensional
tight-binding model with nearest neighbour couplings on a simple cubic lattice and
two degrees of freedom (s-d) per atomic site. I have chosen this simple model because
it provides a good description of the density of state of transition metals and of the
inter-band scattering, and at the same time allows disordered unit cells to be dealt
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with. The general spin-cr-dependent Hamiltonian is

» ' =£ s (5.6)
i *J,a/3

where a and /? label the two orbitals (which for convenience we call s and d), i,j
denote the atomic sites and a the spin. ef(Tis the on-site energy which can be written
as ef = €+ ah5ad with h the exchange energy and @ = —1 (a = +1) for majority
(minority) spins. In equation (5.6), y°fa = jf? is the hopping between the orbitals
a and f3 at sites i and j, and (c?) is the annihilation (creation) operator for an
electron at the atomic site i in an orbital @ with a spin a. h vanishes in the non-
magnetic metal, and is zero ifi and j do not correspond to nearest neighbour sites.
Hybridization between the s and d orbitals is taken into account by the non-vanishing
term j sd- 1 consider two orbitals per site in order to give an appropriate description of
the density of states of transition metals and to take into account inter-band scattering
occurring at interfaces between different materials. The DOS of a transition metals, as
discussed extensively in Chapter 3, consists of narrow bands (mainly d-like) embedded
in broader bands (mainly sp-like). This feature can be reproduced in the two-band
model, as shown in figure 5.3, where I present the DOS and the partial conductance

for a set of parameters corresponding to copper. Following the discussion of Chapter 3
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Figure 5.3: DOS (a) and partial conductance (b) obtained for the two-band model. The parameters
used are the ones corresponding to Cu in the Table 5.1. The vertical line denotes the position of the
Fermi energy used in the calculation.

I note that the position of the Fermi energy with respect to the edge of the d-band
largely determines the transport properties of pure transition metals. For instance the
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current in silver is carried almost entirely by light effective mass sp-electrons with a
small DOS, while in the minority band of Co or Ni it is carried by heavy d-electrons
with a large DOS. The hybridization at the Fermi energy can also be important and
for instance in copper the current consists of an equal mixture of sp- and d-electrons.
In the analysis of Chapter 3 I have identified the large inter-band scattering as one
of the main sources of GMR. In particular it has been shown that due to inter-band
scattering the conductance of a multilayer in the antiferromagnetic configuration is
always smaller than both spin conductances in the ferromagnetic configuration. It is
possible to capture this feature by choosing the parameters of the two-band model to
yield conductances as close as possible to those obtained for the full spd model (see
Chapter 3 and reference [27]). In the case of a heterojunction, like for the spd model,
the hopping parameters between different materials are chosen to be the geometric
mean of the hopping elements of the bulk materials. The parameters for Cu and Co

and FeV are presented in Table 5.1. In figure 5.4 I show the corresponding normalized

Material | ¢ (eV) | eq (eV) | sso (eV) | dd(o,7,6) (eV) | sdo (eV) | h (eV)
Cu -7.8 -4.0 -2.7 -0.85 1.1 0.0
Co -4.6 -2.0 -2.7 -0.85 0.9 1.6
FeV -4.6 3.25 -2.7 -0.95 1.1 1.75

Table 5.1: Parameters used in the calculations.

(to the total number of open scattering channels in the leads) spin-conductances for
Co/Cu multilayers attached to semi-infinite Cu leads as a function of the Cu layer
thickness. Note that as a consequence of inter-band scattering the conductance in the
antiferromagnetic configuration is always the smallest, a feature which is not present in
a simple single-band model. The results of figure 5.4 are indeed not very different from
the ones presented in figure 3.7 for the accurate spd tight-binding Hamiltonian. The
main difference between the two is the largest conductance in the minority spin and in
the antiferromagnetic alignment for the simple two band model. This is related to the
different degeneracy of the s- (no degeneracy) and d-band (fivefold degeneracy), which
is neglected in the simple two band model. 1 believe that this simple two-band model
is the minimal model capable of describing in a semi-quantitative way the behaviour of
transition metals. It includes the correct DOS and the possibility of scattering electrons
between high dispersion (s) and low dispersion bands (d).
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Figure 5.4: Conductances normalized to the number of open channels for Co/Cu multilayers with Cu
semi-infinite leads as a function of the Cu layers thickness. This gives rise to a GMR of about 60%.
This results should be compared with those of figure 3.7 obtained for an accurate spd tight-binding
Hamiltonian.

Figure 5.5 shows the different models of disorder analyzed below. The simplest
model was introduced by Anderson within the framework of the localization theory
[106] and consists of adding a random potential ¥ to each on-site energy, with a uniform

distribution of width W (-W/2 < V < W/2), centered on V = 0

a=atv. &)

This generic model of disorder can yield arbitrary mean free paths and significant
spin-asymmetry in the conductance. To obtain a more realistic description of disorder
I also consider the role of lattice distortions, which are known to be present at the
interfaces between materials with different lattice constants. Moreover in the case of
electrodeposited nanowires, contamination by impurities is unavoidable, and lattice
distortions occur in the vicinity of such point defects. In what follows I model lattice
distortions by scaling the hopping parameters between nearest neighbours. It has been
proposed [107] and confirmed numerically [84] that the following scaling law for the

tight-binding hopping 7°" is valid

7%« = T .(1 + §)-(it«t« , (5.8)
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where g 5 is the hopping element for atoms «t the equilibrium positions 7y, o and 8
are the angular momenta of the orbitals forming the bond, and ér is the displacement
from the equilibrium position relative to ry (6r = Ar/ry with Ar the displacement
from the equilibrium position). Hence the s-s hopping scales as (1 + d7)~!, the d-d as
(14 0r)~° and the s-d as (1 + 6r)~3. Note that it has been recently proved [108] that
in 3d transition metals contaminated with 3d and 4sp impurities the variation of the
nearest neighbour distance in the proximity of an impurity never exceeds ~ 5%, which
is within the limit of validity of equation (5.8). In the following I will consider uniform
distributions of lattice displacements with zero mean.

As mentioned above, in electrodeposited GMR nanowires, because of the dual-bath
deposition technique, the magnetic layers are contaminated by non-magnetic impurities
up to 15% in concentration [109], while a negligible concentration of magnetic impurity
atoms is present in the non-magnetic lavers. To describe this feature I have intro-
duced non-magnetic impurities in the magnetic layers of the multilayer. An impurity
is modeled by substituting a magnetic ion by a non-magnetic ion (ie Cu instead of Co
for the materials considered) at an atomic site. The on-site energy of the impurity
is assumed to be the same of the bulk material forming the impurity (ie bulk Cu for
Cu impurities), and the hopping tight-binding parameters depend on the type of sites
surrounding the impurity. I do not introduce correlation between impurities and hence
there are no clustering effects. Although this model is quite primitive and does not take
into account perturbations of atoms in the proximity of the impurity, density functional
calculations [103, 104] have shown that a good estimate of the resistivity of transition
metal alloys in the low concentration limit is possible by considering only perturbations
of the first nearest neighbours of the impurity. This suggests that this simple model
should give a correct qualitative description of a 3d impurity in 3d transition metals.

As a third source of disorder I have considered the possibility of vacancies. A va-
cancy is introduced simply by setting an on-site energy to a large number (10%eV in the
present case), with all the hoppings to nearest neighbours set to zero. I do not consider
aggregation of vacancies and assume a uniform distribution across the whole multilayer.
Finally T model cross-section fluctuations of GMR nanowires by examining a wire of
finite cross-section which is not repeated periodically in the transverse direction and
mimics the fluctuations along the wire by introducing vacancies in the first monolayer
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at the wire surface.

(c)

Figure 5.5: Schematic illustration of the disorder models considered: (a) vacancy. (b) vacancy at the
boundary of the cell (cross-section fluctuation). (¢) impurity (with hopping parameters the geometrie
mean of those for bulk and the impurity). (d) lattice distortion.

Ini all the calculations with disorder. T consider finite cross-sections involving 5 x 5
atomic sites. which 1 repeat periodically using up to 100 & -points in the 2D Brillouin
zone. In the case of cross-section fluctuations I compute the ensemble-averaged conduc-
tance of wires with finite cross-sections as large as 13 x 15 atomic sites. It is important
to note that in sputtered or NIBE multilayvers the tvpical cross-sections vary between
1ym? and Imm?. which is several times larger than the typical phase breaking length
[ph- On the other hand in the case of electrodeposited nanowires the diameter of the
wires is usually between 20nm and 90nm. but several wires are measured at the same
times thereby vielding the mean conductance of an array of phase coherent nanowires.

cach with a cross-section of the order of lf)h.

5.4 Results and Discussion

5.4.1 Disorder-induced enhancement of the spin-polarization of the current

In this section I consider effects produced by Anderson-tvpe disorder. impurities and
lattice distortions. Despite the fact that the disorder in each of these cases is spin-
independent the effect on transport is spin-dependent.  In order to investigate the
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different conductance regimes that may occur and their dependence ot the magnetic
state of the system it is convenient to consider as a scaling quantity the average spin
conductance (I'?) multiplied by the total multilayver length L and divided by the number
of open scattering channels in the leads. I define the resulting “reduced” conductance

g by means of the equation
h (I'7)

N
€* Nopen

6-

L, (5.9)

where the number of open channels in the leads Nypen in the case of a finite system
is proportional to the multilaver cross-section. In the ballistic limit g increases lin-
early with a coefficient proportional to the conductance per unit area, in the diffusive
(metallic) limit g is constant, and in the localized regime g decays as g x exp(—L/§)
with & the localization length [110, 111]. Consider first the case of a random on-site

potential. For Co/Cu multilayers with a width of disorder 11" = 0.6eV’, figure 5.6 shows

800 ® FM Majority
| +FM Minority
600 o AF

= 400

200
0
30 ' o
o0 |
oO
20 | oc® :
o
oy oo
10 + ddfﬁndo .
(b)
b OO
0 oo N 1 "
0 1000 2000 3000

Total Length (AP)

Figure 5.6: Reduced conductance g7 and spin asymmetry 7 = gg_\l/gt-_\1 as a function of the multilayer
length for Cu/Co multilayers with random on-site potential. The random potential has a normal
distribution of width 0.6e\, and the layer thicknesses are t¢y = 8AP and t¢, = 13AP. Each point
corresponds to a cell Co/Cu/Co/Cu of total thickness 46AP.
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the quantity g for the two spin sub-bands in the F)M and AF configurations along
with the ratio = gly;/gf\- These results were obtained for a cross-section of 5 x 3
atoms, and layer thicknesses of tc, = 8 atomic planes (AP) and tc, = 15AP. In figure
5.6 the standard deviation of the mean is negligible on the scale of the symbols, and
each point corresponds to an additional Cu/Co double bilayer. From the figure it is
immediately clear that the spin-asymmetry of g (ie of the conductance) is increased
by the disorder, which as a consequence of the band structure, turns out to be more
effective in the minority band and in the AF configuration. In fact the disorder has the
effect of spreading the DOS beyond the band edge, but does not affect the center of the
band. The relevant quantity is the disorder strength defined as the ratio r, between
the width of the distribution of random potentials and the band width r, = 11"/7,. For
the set of parameters chosen the disorder strength of the s- and d-band is respectively
rq = 0.7 and r; = 0.22. Since the current in the majority band of the F\I configuration
is carried mostly by s-electrons, for which the disorder strength is weak, the majority
spin sub-band will not be strongly affected by the disorder. In contrast in the minority
band and in both bands in the AF configuration, the current is carried by d-electrons,

for which the scattering due to disorder is strong.

A second remarkable result is that in the FM configuration the almost ballistic
majority electrons can co-exist with diffusive minority carriers. In the regime of phase
coherent transport the definition of spin-dependent mean free paths for individual mate-
rials within the multilayer is not meaningful, and one must consider the spin-dependent
mean free path for the whole multilayered structure. Hence I introduce the elastic mean
free path for the majority (minority) spin sub-band in the FM configuration ALy, (Ahy)
and for both spins in the AF configuration A\s. This is defined as the length at which
the corresponding conductance curve g(L) changes from linear to constant (ie the length
L* corresponding to the crossing point between the curve g(L) and the tangent to g in
the region where g is constant). For the calculation in figure 5.6 it is possible to estimate
ALy > 3000AP, Ay, ~ 500AP and AYp ~ 1000AP. All of these results are obtained at
zero temperature and voltage. At finite temperature, when the phase breaking length
lpn is shorter than the elastic mean free path, [, becomes the relevant length scale. The
svstem can be considered as a series of phase coherent scatterers of length [, added in
series through reservoirs [113]. The scattering properties of such a structure are solely
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determined by elastic transport up to a length [,,.

Turning now the attention to GMR, it is clear from figure 5.6 and the definition
of the GMR ratio (3.1) that enhanced spin asymmetry will increase the GMR ratio
because of the high transmission in the majority band. In figure 5.7 I present the GMR
ratio as a function of the total multilayer length for different values of the width of the
distribution of the random potential. From the figure it is possible to conclude that
GMR strongly increases as a function of the disorder strength and that this is due to
the increasing of the spin polarization of the conductance. Note also that the standard
deviation of the mean GMR increases as a function of disorder and of the multilayer
length. This is due to the approaching of the AF conductance to the localized regime,

in which the fluctuations are expected to be large. The results of figures 5.7 seem
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Figure 5.7: GMR as a function of the total multilayer length for different values of the on-site random
potential. The layer thicknesses are tc, = 8AP and t¢, = 15AP and each point corresponds to a cell
Co/Cu/Co/Cu of total thickness 46AP.

to be in contradiction with the published results of Tsymbal and Pettifor [53, 112].
In that case an analogous kind of disorder was employed together with an accurate
spd tight-binding model, and the GMR ratio turned out to decrease with increasing
disorder. They calculated the conductance for an infinite diffusive system using a
small disordered unit cell in the direction of the current, namely a Cos/Cuy cell (the
subscripts indicate the number of atomic planes). To check this apparent contradiction
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I have calculated the conductances and the GMR ratio for a Cos/Cus/Cos/Cus unit cell
attached to pure crystalline Cu leads. Apart from the resistances of the interfaces with
the leads, the conductance for this system is proportional to the conductance calculated
in reference [53] and figure 5.8 shows that the GMR ratio for such a short system does
indeed decrease with disorder strength. This shows that for small cells, when the mean
free path is much longer than the cell itself, the increase of all the resistances is not fully
compensated by an increase of their spin-asymmetry, and this gives rise to a decrease
of GMR. In contrast for thicker layers, provided the transport remains phase coherent.
asymmetry builds up with increasing L and the resulting GMR ratio increases.

Consider now the effect produced by Cu impurities in the Co layers and by lattice
distortions. The main features of both these kinds of disorder are very similar to the case
of a random on-site potential: the GMIR ratio increases as a function of disorder because
of an increase in spin-asymmetry. Again the quantity g behaves quasi-ballistically for
small lengths, followed by a diffusive region and finally by a localized regime. The
mean free path at any disorder turns out to be longer for the majority spins in the F\I
configuration and the co-existence of ballistic majority electrons with diffusive minority
electrons is still possible. This means that even in these cases spin-independent disorder
produces spin-dependent effects. Similar arguments to the one used for the on-site
random potential can be applied. In fact, in the case of impurities, we note from
Table 5.1 that the alignment between the majority band of Co and the conduction
band of Cu is better than that of the minority band of Co. Hence impurities are
less effective in the majority band than in the minority. For lattice distortions, it is
important to observe that the scaling of the hopping coefficients with the displacement
from the equilibrium position is more severe for the d orbitals (see equation (5.8)).
Since the current in the majority band is s-like while in the minority band and in the
AF configuration it is d-like, this different scaling will result in larger disorder-induced
scattering for the minority channel and for the AF configuration. Figure 5.9 shows
the reduced conductances g for all the the spins in the case of uniform distributions
of lattice displacements with different widths. From the figures I can conclude that:
i) the spin-conductance asymmetry increases with increasing disorder ii) all the mean
free paths decrease, iii) the contrast between gﬁ.\, and gI—f\i increases with disorder.

I wish to conclude this section with some final remarks about length scales involved.
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Figure 5.8: GMR and reduced spin conductances as a function of the width 1" of the normal distribu-
tion of on-site random potentials for a single Co/Cu/Co/Cu cell with Co and Cu thicknesses of 5AP.
In this case, according with the results of reference {53] the GMR ratio decreases with the disorder
strength. This is due to a general reduction of the mean free paths, which is not compensated by the
enhancement of the spin-asymmetry of the conductance.
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Figure 5.9: Reduced spin conductances g for different width of a normal distribution of lattice distor-
tion: (a) ér = 0. (b) ér = 0.02%, (c) dr = 0.03%, (d) dr = 0.05%. The symbols e () represent the
majority (minority) spins in the FM configuration. and x the AF configuration. The layer thicknesses
are tcy, = 8AP and tc, = 13AP and each point corresponds to a cell Co/Cu/Co/Cu of total thickness
46AP. Note the different vertical scales for the different disorders.
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As mentioned above, since one is dealing with phase coherent transport, the concept
of mean free path within the individual layers loses meaning. and one can only speak
about the spin-dependent mean free path of the whole multilayer (ie Aby;, Abyy and ARE).
Nevertheless, if the mean free paths of both the spin sub-bands in the FM configuration
extend over a length scale comparable with the cell Co/Cu (Ahyy, Abyy ~ tco + tcu), the

mean free path of the AF configuration is simply given by

1 4

M = A—F“JFT’\& : (5.10)
and a resistor network approach becomes valid at the length scale of the Co/Cu cell. 1
have checked this prediction by calculating the G)IR ratio as a function of the number
of double bilayers for multilayers with different Co layer thicknesses but the same
concentration of impurities (8%). By increasing the Co thickness one can cross over
from a regime in which the resistor network is not valid at the scale of the bilayer
thickness to a regime in which the resistances of bilayers add in series. In the first case
the GMR ratio will increase as the number of bilayers increases and in the second one
expects a constant GMR. The result for a Co thicknesses of respectively 150AP, 50AP
and 15AP is presented in figure 5.10. Note that for a phase-coherent structure the
increase of GMR with the number of bilayers is different from the increase of GMR in
diffusive systems when the total multilayer length is kept constant (as predicted by the
Boltzmann approach [33] and observed experimentally [66, 101, 102]). In the latter case
the effect is due to an interplay between the resistances of the different materials while
in the former it is due to an increase of the spin asymmetry of the current. It is crucial
to observe that the second effect is strictly connected with the non-local nature of the
transport in high-quality magnetic multilayers. To date a massive increase of the GMR
ratio with the number of bilayers has been observed in the CIP configuration [114, 115],
while a systematic study of this effect in the CPP configuration is still lacking, although

there is some evidence of a similar trend [35, 105] (see also last section of this chapter).

5.4.2 Reduction of mean free path

In this section I consider the effect of vacancies and cross-section fluctuations and their
interplay with the other sources of disorder discussed in the previous section. I recall
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Figure 5.10: GMR as a function of the number of double bilayers for an impurity concentration of 8%.
The Cu thickness is fixed to 8AP and the Co thickness is varied in order to show the crossover from
a phase coherent regime to a regime in which a resistor network model is valid. Note that in the case
of tco =150AP the GMR is almost independent of the total multilayer length.

that cross-section fluctuations are modeled as vacancies with a distribution concen-
trated at the boundaries of a finite cross-section multilayer (see figure 5.5). Hence it is
natural to expect the qualitative behaviour of vacancies and cross-section fluctuations
to be the same. As main feature these sources of disorder do not act on the two spin
sub-bands in a selective way and produce only a small spin asvmmetry. The largest
effect is to drastically reduce the elastic mean free paths of all the spins. In figure
3.11 I present the reduced spin-conductances g7, the spin asymmetry n and the GMR
ratio for a Co/Cu multilayer (tc, = 8AP, tc, = 15AP) with a vacancy concentration of
1%. The results obtained for cross-section fluctuations are very similar and presented
in figure 5.12. Figures 5.11 and 5.12 show that (in contrast with figure 5.6b) the spin
asymmetry of the conductance is not greatly enhanced by the presence of vacancies
and cross section fluctuations. For instance in the case of vacancies with the parame-
ters used in the present simulation 7 varies from 1.6 to 3.5 for multilayers with a total
thickness ranging from 46 to 3000 atomic planes. In contrast for the case of a random
on-site potential of 0.6e\” figure 5.6 shows that n varies from 2 to about 30 for the
same range of multilayer lengths. Moreover it is important to note that in the case of a
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Figure 5.11: Effects of vacancies on Co/Cu multilayers. Figure (a) shows the reduced spin conductance
for majority spin in the FM configuration (e), for minority spins in the FM configuration (O), and
for the AF configuration (x). Figure {b) shows the spin asymmetry of the conductance and figure
(¢) the GMR. The horizontal line of (b) represents the average spin asymmetry of the conductance
for the clean system. In figure (c) the symbols () represent the system with vacancies and the solid
line the disorder-free system. The vacancy concentration is 1% and the thicknesses are tc, =8AP and
tco =15AP.
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random on-site potential the spir asymmetry of the current is always larger than in the
disorder-free case. In contrast, when vacancies are present, the spin asymmetry of the
current is smaller than the disorder-free case for short multilayers and becomes larger
for longer multilayers. From figure 5.11 one can see that the crossover length (that I
denote [.,), defined as the length at which 7 for a system with vacancies equalizes 7
for the disorder-free case, is comparable with the mean free path of the minority spins
in the FM configuration and of the AF configuration. It is important to note that the
reduction of all the mean free paths with respect to both the vacancy concentration and
the cross-section fluctuations is very severe. The reduced spin conductances g exhibit
quasi-ballistic behaviour for lengths up to I, and an almost localized behaviour for
lengths larger than [... The diffusive region is strongly suppressed and there is a small
difference between all the spin-dependent elastic mean free paths. The spin asymme-
try of the current can be enhanced by increasing the vacancy concentration, but this
produces a further decreasing of the mean free paths and a further suppression of the
diffusive region, resulting in a global reduction of GMR for lengths shorter than /..
For lengths longer than I, GMR is enhanced and this is due to the approach of gyF
to the localized regime. To date there is no evidence of localization effects in metallic
magnetic multilayers and I believe that the results shown here are currently important
only for lengths shorter than l;. To summarize, the main effects of vacancies are, on
the one hand to reduce the spin asymmetry of the current for lengths shorter than [,
and to enhance it for lengths larger than /., and on the other to reduce drastically the
mean free paths for all the spins in both magnetic configurations. The crossover length
is comparable with the mean free path of the minority spin in the F\I configuration and
GMR is always reduced in the limit of quasi-ballistic transport. The qualitative results
obtained for vacancies are broadly mirrored by those of cross-section fluctuations as
it can be seen by comparing figure 5.11 and 5.12. Nevertheless some differences must
be discussed. The simulations with cross-section fluctuations have been carried out
with a finite cross-section, whereas for the case of vacancies I have considered a wire
repeated periodically in the transverse direction. When cross-section fluctuations are
introduced, the disorder-induced scattering scales as P/S x 1/L with P the perimeter,
S the area of the cross-section and L = v/S. This introduces a new length scale, namely

the cross-section linear dimension ls = V'S. If this length is shorter than the mean free
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Figure 5.12: Effects of cross-section fluctuations on Co/Cu multilayers. Figure (a) shows the reduced
spin conductance for majority spin in the FM configuration (e), for minority spins in the FM configu-
ration (O), and for the AF configuration (x). Figure (b) shows the spin asymmetry of the conductance
and figure (c) the GMR. The horizontal line of (b) represents the average spin asymmetry of the con-
ductance for the clean system. In figure (c) the symbols O represent the system with cross section
fluctuations and the solid line the disorder-free system. The cross section fluctuation concentration is
5% and the thicknesses are tc, =8AP and tc, =15AP. The cross section in this calculation is 10 x 10
atomic sites.
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paths, then a reduction of GMR will take place for the same reasons as in the case of
vacancies, whereas if the mean free paths are shorter than [, the effect of the cross-
section fluctuations will be weak and no further reduction of the GMR will take place.
Unfortunately, even with the optimized technique presented in the previous section it
is very difficult to investigate the limit A < ls. I have performed simulations with
cross-sections up to 15x15 atomic sites, which is far below this limit, and have found
no important deviations from the case of vacancies. A cross-section of 15x15 atomic
sites corresponds to P/S of 0.26a;' with a, the lattice constant. This is comparable
with the values of experiments [32, 101, 102] which can be estimated to range between
0.005a;' and 0.025a;!. This suggests that the disorder strength in the present simu-
lations is larger than the experimental values and that the effects of the cross-section
fluctuations on GMR nanowires should be weak. On the other hand the model used for
cross-section fluctuations involves only the first monolayer at the boundaries while in
real systems the roughness extends over several monolayers. Moreover long range cor-
related surface roughness along the wires is likely to be present in real systems because
of the structure of the nano-holes in which the wires are deposited. All these effects
may result in a drastic enhancement of the disorder strength due to surface roughness

and therefore a reduction of GMR.

A key result of the above simulations is that the reduction of GMR due to vacan-
cies and cross-section-fluctuations may be compensated by a large increase of the spin
asymmetry of the conductance. To address this issue I have performed simulations
with both vacancies and non-magnetic impurities in the magnetic layvers. The G)R
ratios and spin asymmetries of the conductances are presented in figure 5.13 for Co/Cu
multilayers with different impurities and vacancies concentrations. The figures show
very clearly that competing effects due to impurities and vacancies can give rise to large
values of GMR even for very disordered systems. The same value of GMR obtained in
presence of impurities and vacancies can be obtained for a system with only impurities,
but at a lower concentration. The fundamental difference between the two cases is that
when impurities and vacancies co-exist, all the mean free paths are very small and the
large GMR is solely due to the large spin asvmmetry of the current. In this limit,
despite the GMR ratio is large, a description of spin-transport based on the resistor
network model is possible. More about this will be presented in the next section.
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Figure 5.13: Competition between vacancies and impurities. Figure (a) shows the GMR ratio for
Co/Cu multilayers with only impurities (o), only vacancies (+) and impurities and vacancies together
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are t¢, =8AP and t¢, =15AP.
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5.5 Breakdown of the resistor model

In the introduction of this chapter I pointed out that one of the most successful models
to describe CPP GMR in magnetic multilayers is the resistor network model, which
can be derived from the Boltzmann’s equation in the limit of infinite spin-diffusion
length. Two important and central predictions of this model are that the CPP GMR
ratio is independent of the number of bilayers in the case that the total multilayer
length is not constrained to be constant, and furthermore is independent of the order
of the magnetic layers in the case of different magnetic species. These two predictions
arise directly from the fact that the transport is assumed to be local, which in the
framework of quantum transport means that the phase breaking length is shorter than
the layer thicknesses. An apparent violation of the first prediction has been observed in
CIP and CPP measurements [35, 105, 114, 115], and of the second prediction in CPP

measurements [35, 36, 103].

The aim of this section is to provide a quantitative description of the breakdown of
the resistor model in diffusive CPP multilayers in the limit of infinite spin-relaxation
length. To illustrate this breakdown, consider a multilayer consisting of two indepen-
dent building blocks, namely a (N/M) and a (N/)M') bilayer, where M and M’ represent
magnetic lavers of different materials or of the same material but with different thick-
nesses and N represents normal metal ‘spacer’ lavers. This is the experimental setup
of references [35, 36, 105]. From an experimental point of view M and M’ must pos-
sess different coercive fields, in order to allow AF alignment. In the case of references
[36, 105] this is achieved by considering Co and respectively NigsFeq layers with Ag
as non-magnetic spacer (reference [36]), and Fe layers with Cu as non-magnetic spacer
(reference [105]). On the contrary in the case of reference [35] all the magnetic lay-
ers are made from Co (with Cu as spacer) but with different thicknesses (respectively
Inm and 6nm). Two kinds of multilayer can be deposited. The first, that I call type
I (“interleaved” in the notation of reference [103]), consists of a (N/M/N/N')x 1 se-
quence where the species M and M’ are separated by an N layer and the group of four
layers is repeated p times. The second, that I call type II (“separated”), consists of
a (N/M)xu(N/M')x i sequence, where the multilayers (N/M)xu and (N/M')xpy are
arranged in series. If the coercive fields of M (Hjs) and M’ (H,p) are different (eg
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Hyr < Hpp) and if N is long enough to decouple adjacent magnetic layers, the AF
configuration can be achieved in both type I and type II multilayers by applying a
magnetic field H whose intensity is Hyy < H < Hyy. The AF configuration is topolog-
ically different in the two cases, because in type I multilayers it consists of AF alignment
of adjacent magnetic layers (conventional AF alignment), while in type II multilayers
it consists of the AF alignment between the (N/M)xu and (N/M')xu portions of the
multilayer, within which the alignment is parallel (see figure 5.14a and figure 5.14c). In
other words the magnetization profile for the two types of multilayers is very different.
This is not the case of the FM configuration, where the type I and type II differs only
because of the different kind of layers M and M’ (see figure 5.14b and figure 5.14d).
From the point of view of a resistor network description of transport, the two types
of multilayers are equivalent, because they possess the same number of magnetic and
non-magnetic layers, and the same number of N/M and N/M' interfaces. Hence the
GMR ratio must be the same. In contrast the GMR ratio of type I multilayers is
found experimentally to be larger than that of type II multilayers [35, 36, 105], and
the difference between the two GMR ratios increases with the number of bilayers. In
reference [36] this effect is attributed to loss of coherence due to the short spin-diffusion
length of permalloy. This explanation is not however applicable to the case of reference
(35, 105] because of the well-known long spin-diffusion length of MBE-deposited Co
and Fe. Moreover, in such a case the GMR ratio of both type I and type II multilayers
increases with the number of bilayers, which again lies outside the resistor network

model.

In this section I demonstrate that a description which incorporates phase-coherent
transport over long length scales can account for such experiments. To illustrate this
I have simulated type I and type II multilayers using a Co/Cu system with different
thicknesses for the Co layers, namely tc, = 10AP, tc, = 10AP, ¢, = 40AP. The
model I used is the two band-model discussed in this chapter with random on-site
potentials to mimic generic disorder and to study the difference between type I and
type II multilayers in different transport regimes. In the present calculation I consider
disordered cubic supercells containing 100 atoms in the plane perpendicular to the
current, and as many atomic planes as the total length of the multilayer. Such supercells
are repeated periodically in the irreducible 2D Brillouin zone using 100 k-points. I
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Figure 5.14: AF and F) configuration for type I and type II multilayers described in the text. Figures
(a) and (c) refer to the AF configuration in the case of thick and thin Co layers with different coercive
fields. Figures (b) and (d) are the corresponding F)M configurations. The black blocks represent Cu,
the white Co and the arrows indicate the direction of the magnetizations. Note that in the case of
figure (c) the AF alignment occurs between the two halves of the multilayer.

checked the convergency of the calculation with respect to both disorder and cell size.
Conductance per channel did not change by more than a few percent for cells containing
more than 20 atoms and, due to the weak disorder considered. larger ensembles were not
needed. In figure 5.15 I present the mean GMR ratio for tvpe I (type II) multilayers
GMR; (GMRy;) and the difference between the GMR ratios of type I and type Il
multilavers AGMR=GMR;-GMRy;, as a function of x4 for different values of the on-site
random potential. The average has been taken over 10 different random configurations
except for very strong disorder where I have considered 60 random configurations. In
the figure I display the standard deviation of the mean only for AGMR because for
GMR; and GMRy; it is negligible on the scale of the symbols. It is clear that tyvpe
I multilayers possess a larger GMR ratio than type II multilayers, and that both the
GMR ratios and their difference increase for large . These features are in agreement
with experiments [35. 36. 105] and cannot be explained within the resistor network
model of CPP GMR. The increase of the GMR ratio as a function of the number of
bilavers is a consequence of enhancement of the spin asymmetry of the current due
to disorder. as I discussed in the previous section. In fact I recall that. even though
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Figure 5.15: GMR for type I (a) and type II (b) multilayers, and AGMR (c) in the case of thin (10AP)
and thick (40AP) Co layers, as a function of the number of double bilayers Co/Cu/Co/Cu for different
values of disorder. The symbols represent respectively W = 0 (e), W = 0.3eV (O), W = 0.6eV (x),

W = 1.5eV (©). As an example the calculated mean free paths for W = 0.6eV are IF,{,T > 4000AP,
10 = 1300AP, 1{1™ = 1800AP, )T > 4000AP, Iy} * = 1700AP, I\ ™ = 2300AP.
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the Anderson potential is spin-independent it is more effective on the d-band than on
the s-band, because the former possesses a smaller bandwidth. Since the minority
spin sub-band is dominated by the d-electrons and the majority by the s-electrons,
the disorder will suppress the conductance more strongly in the minority band than
in the majority. Moreover, since transport is phase-coherent, the asymmetry builds
up with the length, resulting in a length-dependent increase of the GMR ratio. These
features are shown in figure 5.16, where I present the reduced conductance g for both
the multilayers and different values of disorder. It is important to note that, with
the only exception of the disorder-free case, the g’s of type I and type II multilayers
are very similar in the FM configuration while they are rather different in the AF
configuration. In the FM configuration in fact the conductance is largely dominated by
the majority electrons, while in the AF configuration both the spin-electrons give the
same contribution. Moreover the majority electrons undergo weak scattering either at
the Co/Cu interfaces and due to disorder, while the opposite is the case for the minority
electrons. Therefore the majority electrons and consequently the conductance in the
FM configuration are not very sensitive to the order of the layers. In contrast in the
AF configuration the conductance of type I multilayers is smaller than the one of type
IT multilayers and this is what gives rise to the different GMR ratios. The different
GMR ratios of type I and type II multilavers are a consequence of the inter-band
scattering, which occurs whenever an electron phase-coherently crosses a region where
two magnetic layers have AF magnetizations. This occurs in each (N/M/N/M') cell for
tyvpe I multilayvers, while only in the central cell for type II multilayer (see figure 5.14a
and 5.14c). Hence the contribution to the conductance in the AF alignment due to
inter-band scattering is smaller in type I than in type II multilayers, as shown in figure
5.16. Eventually when the elastic mean free path is comparable with a single Co/Cu
cell one expects the resistor model to become valid. To illustrate this feature, figure
5.15 shows that in the case of very large disorder (W = 1.5eV), AGMR vanishes within
a standard deviation. In this regime the mean free path for the minority spins and
the AF configuration is smaller than 100AP, while the mean free path of the majority
spins is still large (~ 1000AP). This means that the resistor model is applicable only
to the minority spins and to the AF configuration and that a phase-coherent approach

is needed for the majority spins. Nevertheless, as pointed out above, the conductance
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Figure 5.16: Reduced conductance ¢ for type I and type II multilayers, in the case of thin (10AP) and
thick (40AP) Co layers, as a function of the number of double bilayers Co/Cu/Co/Cu for different
values of disorder: (a) w — 0, (b) w = 0.3eV, (¢c) w = 0.6eV and (d) w = 1.5¢V. The upper plots
(o symbol) represent the AF configuration while the bottom plots (+ symbol) the FM configuration.
Black and red symbols axe for type I and type II multilayers respectively.
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of the majority spins is only weakly dependent on the order of the lavers. For these
reasons, although the individual GMR ratios of type I and type II multilayers are still
increasing with the number of bi-lavers. their difference vanishes. Figure 5.16 shows
very clearly this point. If one considers the highly disordered limit (11" = 1.5eV"), from
figure 5.16d it is easy to see that the reduced conductance is the same for type I and type
IT multilayers in both the FAl and AF configurations. This eliminates any difference
between the two kinds of geometry and therefore the two GMR ratios become equal.
As a second example in which the dependence of the GMR ratio on disorder changes

when the multilaver geometry is varied, consider the system sketched in figure 5.17. In
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Figure 5.17: AF and F)MI configuration for tvpe I and type II multilayers of the second example
described in the text. Figures (a) and (¢) refer to the AF configurations, figures (b) and (d) are
the corresponding FM configurations. The black blocks represent Cu, the white Co and the hatched
Fe:aVog. The arrows indicate the direction of the magnetizations.

() (d)

this case M and M’ are different materials chosen in such a way that the minority
(majority) band of M possesses a good alignment with the majority (minority) band
of N\I". NMoreover the thickness of the N lavers has been chosen in order to allow an AF
alignment of the magnetizations of adjacent magnetic lavers in both type I and tyvpe I
multilavers. In this case both tvpe I and type II multilayers exhibit conventional F\
and AF alignments. but their potential profile is quite different. In figure 5.18 [ present
a schematic view of the potential profiles for tvpe I and type II multilavers for both the
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spins in the FM and AF configuration. A high barrier corresponds to large scattering
and a small barrier corresponds to weak scattering. The dashed line represents the
effective potential for material M and and the continuous line for material M'. Figure
5.18 illustrates that type I multilayers possess a high transmission spin-channel in the

AF alignment, and hence the resulting GMR ratio will be negative. In contrast type
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Figure 5.18: Heuristic scattering profiles for type I (a) and type II (b) multilayers of the second example
discussed in the text. The dashed and continuous lines represent respectively scattering potentials of
material M and M.

IT multilayers do not possess a high transmission channel (there are large barriers for
all spins in both the FM and AF configuration) and the sign of the GMR ratio will
depend on details of the band structure of M and M’'. Consider the effects of disorder on
these two kinds of multilayers. Using the same heuristic arguments as above one should
expect that the GMR ratio of type I multilayers will increase (become more negative)
as disorder increases, in the case of disorder that changes the spin asymmetry of the
current. This is a consequence of the fact that, in common with the conventional single-
magnetic element, one of the spin sub-bands in the AF alignment is dominated by weak
scattering s-electrons (small barrier), which are only weakly affected by disorder. It
is clear that this system is entirely equivalent to conventional single-magnetic element
multilayers discussed above. In contrast for type II multilayers there are no spin sub-
bands entirely dominated by the weak scattering (small barriers) s-electrons, and all
spins in either the FM and AF configuration will undergo scattering by the same number
of high barriers. In this case the effect of disorder will be to increase all the resistances
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and this will resuit in a suppression of GMR. Moreover it is important to note that
in the completely diffusive regime, where the resistances of the different materials may
be added in series, the GMR ratio will vanish if R ~ Rig,ﬂ, where RV is the
spin-dependent resistance of the material A. To verify this prediction I have simulated
both type I and type II multilayers using the parameters corresponding to Co and
Fe7,Vog respectively for M and M’, and corresponding to Cu for N, taken from table
5.1. This choice was motivated by the fact that a reverse CPP-GMR has been obtained
for (Fe7Vos/Cu/Co/Cu)x p multilayers [116, 117]. The GMR ratio for type I and type
IT multilayers is shown in figure 5.19, which illustrates the remarkable result that the
GMR ratio of type I multilayers increases with disorder, while for type II structures
it decreases. As explained above this is due to an enhanced asymmetry between the
condactances in the FM and AF alignment for type I multilayers, and to a global
increase of all the resistances for type II multilayvers. As far as I know there are no
experimental studies of the consequences of the geometry-dependent effect described
above, and further investigation will be of interest, in order to clarify the role of the

disorder in magnetic multilayers.

200

Total Length L (AP)

Figure 5.19: Different geometry-induced behaviour of the GMR ratio as a function of disorder in
multilayers composed of Co and Fe;;Vag. In this case all the layer thicknesses are fixed at 10AP.
The open (closed) symbols represent type I (type II) multilayers discussed in the text. The circles
are the disorder free case, squares and diamonds are for random on-site potentials of 0.6eV and 1.2eV
respectively.
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6 GMR with Superconducting Contacts and F'S Junc-
tions

6.1 Introduction

In previous chapters I have considered spin-transport in a typical two-probe measure-
ment, in which the current/voltage probes are made by ordinary non-magnetic tran-
sition metals. The aim of this chapter is to complete this analysis by considering the
effects of superconducting contacts. This is relevant for understanding the transport of
spin-polarized systems in contact with superconductors and the réle of spin-flip scat-
tering at the interface. The use of superconducting contacts will also highlight the need
for a better understanding of the transport across Ferromagnet /Superconductor (F/S)

ballistic junctions, which will be considered in the last section of this chapter.

Turn the attention to the case of two probe GMR measurements using supercon-
ducting contacts. The interest of these systems is twofold. On the one hand super-
conducting contacts have been always used by the group at Michigan State Univer-
sity [13] to achieved a uniform distribution of the current across the cross-section of
the magnetic multilayers, and to perform squid measurements of the resistance. On
the other hand, at a fundamental level, new physics associated with such structures
arises from the proximity of two electronic ground states with different correlations
(ferromagnetism and superconductivity), which can reveal novel scattering processes
not apparent in the separate materials. The basic feature of the transport in ferromag-
netic/superconductor and ferromagnetic-multilayer/superconductor systems is that the
current is spin-polarized in the magnetic material, but it is not spin-polarized in the
superconductor. Below the superconducting gap the current is solely determined by
Andreev reflection [23], which involves electrons and holes with different spin orienta-
tions. In view of the spin-imbalance in a ferromagnet due to the exchange field, one
may expect that Andreev reflection will be generally suppressed in the case of F/S
Junctions [118]. Moreover, since the Andreev reflection is a spin-polarized process, one
may also expect a severe suppression of the GMR ratio when superconducting contacts
are considered. Despite these important features past theoretical treatments of GMR
have always neglected the presence of Andreev reflection at the leads. In this chapter I
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will fill this gap and consider the GMR of ¢ magnetic multilayer in which one contact
is a superconductor and the other is a normal metal. This situation corresponds to the
case in which the phase breaking length is shorter than the entire multilayer length.
The analysis, carried out by considering both the realistic spd tight-binding model
and the two-band model, will show the surprising result that the GMR is completely
suppressed by the presence of a superconducting contact. Such a result, completely
in contradiction with the measurements at Michigan State University, opens impor-
tant questions on the nature of the interfaces with the superconductor. Agreement
with experiments is achieved by postulating a large amount of spin-flip scattering at
the surface of the superconducting contact. This appears to be consistent with recent

experimental observations [119].

A better understanding of these issues can be achieved by considering ballistic
N/S and F/S junctions. Recent nano-fabrication technology enables N/S and F/S
ballistic point contacts to be made [22, 120, 121]. Transport in these structures has
been shown to be ballistic and therefore its description is directly accessible by the
calculation technique developed so far. I calculate the transport properties of several
junctions and found that the I-1" curve can be reproduced very accurately in the case
of N/S (ie Cu/Pb) junctions, while this is not the case of F/S (ie Co/Pb) junctions.
In particular the calculations underestimate the sub-gap conductance at very small
bias. Possible sources of this discrepancy are the neglecting of spin-flip scattering and
the local enhancement of the magnitude of the magnetization at the F/S interface.
Several scenarios will be considered and a consistent picture of the spin dynamics of

F/S heterojunctions will be given.

6.2 GMR and Superconducting Contacts

As pointed out in the introduction, although superconducting contacts have been
largely employed in CPP GMR measurements [13], a complete theoretical description
has never been given. In this chapter I will address this problem and show that as
superconductivity is induced in one of the contacts (eg by lowering the temperature)
CPP GMIR is largely suppressed. The suppression is total in the case of diffusive and
ballistic systems, even though for the latter case the GMR ratio is very sensitive to the
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multilayer geometry and small GMR (either positive and negative) can be found. In an
intermediate regime, when the majority spins are quasi-ballistic and the minority are
diffusive, the GMR ratio can be different from zero. Nevertheless I will show that the
GMR possesses an upper bound of 100% and larger GMR ratios cannot be achieved.
This is strongly in contradiction with most of the experiments, where GMR ratios much

larger than such a value have been found. Before going to describe the calculations and

@

Figure ¢ .1: Schematic picture of N/N (a) and N/S (b) junctions and relative scattering processes. Note
that the Andreev reflection is a spin-flip process, where the spin direction of the incoming electron
and the reflected hole axe opposite.

the results, I will briefly introduce the basic modification of the transport theory in the
case of superconductivity. Consider for example a junction between a normal metal
and a superconductor (N/S junction), as sketched in figure 6.1. In the case in which
superconductivity is switched off, this reduces to a junction between two normal met-
als (N/N junction), whose conductance Rnn is simply given by the Landauer-Biittiker

formula [24, 25, 26]
(6.1)
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where T° = Tr t°t°!, with ¢° the multi-channel transmission matrix for the spin 0. In
this case every electron with spin o crossing the interface with a transmission amplitude
T° gives a contribution %T “ to the conductance. When one of the normal metal is
replaced by a superconductor the situation is drastically different. In fact, because of
the presence of the superconducting gap, free electrons with an energy E < A (A is
the superconducting gap) cannot propagate within the superconductor. Nevertheless
electrons can propagate in the superconductor in form of Cooper pairs, giving rise to a
non-vanishing sub-gap conductance for the N/S junction. The pairing process respon-
sible for sub-gap transport through an N/S junction is known as Andreev reflection
[23] and is schematically represented in figure 6.1b. Andreev reflection consists in the
reflection of an electron into a hole with the same momentum and opposite group ve-
locity (all the components are reflected). \loreover, because of the opposite spins of
the two electrons forming the Cooper pair, the incoming electron and the reflected hole
possess opposite spin directions. Therefore in the superconducting state, equation (6.1)
is replaced by the current-voltage relations derived in [123], and re-derived in [47, 124],

which in the absence of quasi-particle transmission through the superconductor vields

4€?
FNS = _Ra . (62)
h
where R, = r,r! is the Andreev reflection coefficient, which is independent on the

spin o of the incident quasi-particle (for a general review on transport in mesoscopic
superconducting heterostructures see reference [125]).

For what follows it is important to note that the Andreev reflection is a process
which does not conserve spin and in which the two spin-bands are coupled. This reflects
the fact that the supercurrent in the superconductor is not spin-polarized. Therefore
when a superconductor is brought into contact with a material in which the current
is spin-polarized, one expects extra resistance at the interface [118, 126, 127} and the
presence of depolarizing effects. Since the GMR in magnetic multilayers is an effect
which arises from the spin-polarization of the current, it is reasonable to expect strong
modifications by adding superconducting contacts.

To understand the réle of superconducting contacts on the CPP GMR consider first
the case of ballistic transport in which there is no disorder within the layers, nor at the
interface. I have used the same spd tight-binding Hamiltonian introduced in Chapter 3,
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with parameters corresponding to Cu, Co and Pb. Superconductivity is introduced by
doubling the Hilbert space in order to take into account the degrees of freedom of the
holes, and by coupling electrons and holes with the superconducting order parameter
A. A assumes the value of the superconducting gap in bulk Pb (Apb =1.331-10-3 ¢eV).

The resulting Bogoliubov-De Gennes [128] Hamiltonian has the form

Hi 0 A 0o\
0 0 -A
A* 0 -Ht 0

1 o —A* 0 )

where HQ is the spin-dependent Hamiltonian describing the normal state and A = A xX
with X the unit matrix. Note that if one considers the spd tight-binding model, the
Hamiltonian HQQ is a (36 M) x (36M) matrix, with M the number of atoms in the unit
cell.

The system simulated consists in a Co/Cu multilayer with the Co and Cu layers
respectively of 7 and 10 atomic planes, and in which the Co/Cu period is repeated 10
times. Such a structure is attached on one side to a Cu lead and on the other to a Pb

lead. I represent such a system with the notation Cu/[Co7/Cuio]xio/Pb. Figure 6.2a

0.6
130
(b) (c)
NN PPE— FM FM
NS N S — AF
80
0.2
30
-20
Cu Thickness (AP) Cu Thickness (AP) Cu Thickness (AP)

Figure 6.2: GMR ratio (a) and conductance in the FM and AF configurations (b and c) for the
disorder-free system Cu/[Co7/Cuio]xio/Pb. NN refers to the case in which Pb is in the normal state,
NS to the case in which Pb is in the superconducting state, (b) shows the conductances in the NN
case and (c¢) in the NS case. Note the dramatic suppression of the spin-polarization of the current
when superconductivity is introduced.
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shows results for the GMR ratio in the normal and superconducting states as a function
of the Cu thickness, obtained by summing over 5-103 k| points, and clearly demonstrates
a dramatic superconductivity-induced suppression of GMR. Figure 6.2b and 6.2c show
results for the individual conductances per open channel and demonstrate that the
GMR ratio suppression arises because T'LY is drastically reduced compared with TXY
and equals TRE.

To understand this effect, consider the simplest model of spin-dependent bound-
ary scattering shown in figure 6.3, namely the Kronig-Penney potential introduced in
Chapter 4. In the limit of delta-function ferromagnetic layers, it reduces to the model
used to describe the N/F/S experiment of [22]. Fig 6.3a (6.3b) shows a cartoon of a
majority (minority) spin, scattering from a series of potential barriers in successive FM
aligned layers. Since the minority spins see the higher barrier, one expects T}iM < T,.IM.
Figures 6.3c and 6.3d show the scattering potentials for anti-ferromagnetically aligned
layers, for which T}p = Tip < Ty;. For such an ideal structure, GMR arises from the
fact that Ty, > Ty and Thp. In the presence of a single superconducting contact this
picture is drastically changed. For ferromagnetically aligned layers, figure 6.3e shows
an incident majority electron scattering from a series of low barriers, which Andreev
reflects as a minority hole and then scatters from a series of high barriers (figure 6.3f).
The reverse process occurs for an incident minority electron, illustrating the rigorous
result that the Andreev reflection coefficient is spin-independent. Figures 6.3g and 6.3h
illustrate Andreev reflection in the anti-aligned state. The crucial point illustrated by
these sketches is that in presence of a S contact for both the aligned (figures 6.3e and
6.3f) and anti-aligned (figures 6.3g and 6.3h) states the quasi-particle scatters from N
(=4 in the figures) high barriers and N (=4) low barriers and therefore, one expects
TEM ~ I'4E. Of course the rigorous results of figure 6.2, obtained using an spd Hamil-
tonian with 36 orbitals per atomic site (spdx2 for spin x2 for particle-hole degrees of
freedom) go far beyond this heuristic argument, nevertheless the figure clearly shows
that the reduction of the GMR ratio in entirely due to the suppression of the high
transmission majority channel in the ferromagnetic configuration.

Having shown that GMR is suppressed by adding a superconducting contact in the
case of perfectly crystalline systems, it is reasonable to ask if this effect survives in
presence of disorder. Despite the use of the highly efficient recursive Green’s function
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Figure 6.3: Cartoon of the different scattering processes. Figures (a), (b), (c) and (d) describes the
transmission of spin electrons e™¥) in a NN system. Figures (e), (f), (g) and (h) describe the NS case.
Note that in the FM case a majority (minority) spin electron e' (e*) is Andreev reflected as a minority
(majority) hole A* (h?). In the antiferromagnetic (AF) case the path of the incoming electrons and
out-coming holes is identical for both spins. The total number of large barriers is the same in the AF

and FM case, and this produces GMR suppression.
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technique to exactly evaluate the scattering matrix of a multilayer, currently available
computing resources restrict such a calculation to systems with translational invariance
parallel to the planes. To demonstrate that the suppression of CPP GMR is a generic
feature of N/F/S hybrids and to study the effect of elastic impurity scattering, I now
examine the reduced two band (s-d) model introduced in the previous chapter with a
Hamiltonian matrix

- HO-h A

- 6.4
HBG a* em - h (6.4)

In this model HO+h is the spin-Hamiltonian for the normal system with A the exchange
coupling, and A = AX with A the superconducting order parameter. The tight-binding
parameters are the ones presented in table 5.1 for Cu and Co and the superconducting
gap is assumed to be A = 10-3eV. I consider as a model of disorder the simple An-
derson model of Chapter 5 with a uniform distribution of random potential with width

W =0.6eV. Figure 6.4 shows results for the GMR ratios in the normal and supercon-
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Figure 6.4: GMR (a) and reduced spin conductances g of Cu/Co multilayers calculated with the s-d two
bands model, in the case of normal contacts (b) and with one N contact replaced by a superconducting
(c) contact. The Co and Cu thicknesses are fixed and are respectively 15 and s atomic planes. Every
point on the graph corresponds to an additional double bilayer Co/Cu/Co/Cu. The on-site energy
fluctuates randomly according with a uniform distribution of width w = 0.6, and the error bars are
the standard deviation ofthe mean over 10 random configurations. The unit cell is a square with 5x5
atomic sites, and I consider 25 fc-points in the Brillouin zone. The horizontal line denotes GM R=0.

ducting case and demonstrates that the suppression of CPP GMR by superconductivity
survives in the presence of disorder. The same argument used for completely ballistic
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multilayers can be also used in the present case. If one assumes that all the transport
is diffusive on the length scale of the individual layer thickness, the resistor network
model can be applied. The cartoon of figure 6.3 can be re-interpreted by substituting
the scattering potential with resistances in series, and elementary circuit analysis shows
immediately that the GMR vanishes.

I have investigated a broad range of disorders and system sizes and find GMR
suppression induced by superconductivity in all cases even though for some particular
choices the suppression is not complete. As an example figure 6.5 shows the GMR ratio
for a disorder with a uniform distribution of random potential of width 1/ =0.4eV. In
this case while the transport of the minority spins is almost diffusive, the one of the
majority spins is quasi-ballistic. If one assumes the picture in which an N/S system
can be mapped onto an equivalent N/N system with double size [129], it is clear that
the difference between the conductances in the ferromagnetic and antiferromagnetic
configuration is entirely equivalent to the difference between the conductances in the
antiferromagnetic configuration of type I and type II multilayers of the first example
discussed in the previous chapter in the section 5.5. Since these two conductances are
different one expects the GMR in the N/S case not to vanish completely. Nevertheless
I can use a simple heuristic argument to show that in the N /S case the GMR cannot
be larger than 100%. Consider in fact the equivalent N /N system of double length and

use the resistor network model. In term of resistances the GMR ratio is simply

Rap
MR=—"-1, 6.5
Rpy (6:5)

with Ry (Rar) the resistance of the ferromagnetic (antiferromagnetic) configuration.
Suppose now that the resistance arising from the Andreev reflection can be written
simply by adding in series the resistance of the incoming electron and outgoing hole

(equivalent NN system). The GMR ratio becomes

MR = —T—QTA—Fl— -1, (6.6)

TeM t TFM
with 77 the spin-dependent resistance of the multilayer. Since T}M < TaF < rlﬁM one can
immediately conclude that the GMR ratio in the case of superconducting contacts has
an upper bound of 100%. This last result is still not consistent with the experiments of
Michigan State University which show GMR ratio up to 150%. It is therefore clear that
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Figure 6.5: GMR of Cu/Co multilayers calculated with the s-¢ two bands model, in the case of normal
contacts and with one N contact replaced by a superconducting contact. The Co and Cu thicknesses
are fixed and are respectively 15 and 8 atomic planes. Every point on the graph corresponds to an
additional double bilayer Co/Cu/Co/Cu. The on-site energy fluctuates randomly according with a
uniform distribution of width w = 0.4, and the error bars are the standard deviation of the mean
over 10 random configurations. The unit cell is a square with 5x 5 atomic sites, and I consider 25
fc—points in the Brillouin zone. The horizontal line denotes GM R=0.

some extra mechanism at the interface between the multilayer and the superconductor
must occur. Here I propose that spin-flip at the interfaces can account for such a
discrepancy. Consider in fact the cartoon of figure 6.6, where now I describe the
Andreev reflection in presence of spin-flip at the interface. If a majority electron is
Andreev reflected and spin-flipped, the corresponding outgoing hole will possess an up
spin, and therefore propagate in the majority band. In this way the high transmission
majority band is restored and the GMR ratio will not be suppressed. It is important to
note that in this case the electrons responsible for the GMR signal are the ones which
undergo to spin-flip at the interface. This situation is exactly opposite to the case in
which no superconductors are present. The experimental study of the GMR in samples
in which the superconductivity of the contacts can be switched on and off arbitrarily,
is of great interest in order to to confirm this prediction. In the next section I will show
that spin-flip at the interface may be considered also to explain the characteristic I-V

curve of ballistic F/S junctions.
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Figure 6.6: Cartoon of Andreev reflection in presence of spin-flip at the N/S interface. Figures (a-
d) describe the FM configuration and figures (e-f) the AF configuration. Note that a majority spin
electron is reflected like a majority spin hole, if spin-flip occurs at the interface (figures a and b). This
produces high transmission in the majority spin-channel and therefore large GMR.
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6.3 NS Ballistic Junctions

In the last twenty years the measurement of the spin-polarization of the current in
ferromagnetic metals raised up some confusion due to the misleading idea of compar-
ing polarization values inferred from different experiments. In particular the direct
comparison of the polarization obtained from tunneling junctions and from devices
where the direct current is measured shows very different results. The key point of all
these measurements is that the quantity which is measured is the spin-polarization of a
complicate structure, usually involving several different materials and interfaces. I have
shown in the previous chapters that, when transport is phase-coherent, all the structure
is important and the measured polarization may change simply as a result of chang-
ing the non-magnetic elements of the structure. For instance in magnetic multilayers
based on Ni, the spin-polarization of the current in the ferromagnetic configuration
may be switched from positive to negative, by using Pd (P\i/pa = —0.34) instead of
Cu (Pxi/cy = 0.17) as non-magnetic metal. Therefore the quantity to compare directly
with experiments is the spin-polarization of the current of the specific device.

One recent and successful way to obtain information on the spin polarization of a
svstem is by using ballistic F/S junctions and by measuring the change of the conduc-
tance due to the switching on of the superconductivity [22, 120, 121). In the typical
experimental setup a small constriction (usually 30nm long and 3-10nm thick) is made
between a superconducting metal and another metal that can be either ferromagnetic
or normal. The system is then cooled below the critical temperature for the supercon-
ductor and the I-1" curve at small biases is measured. As a reference usually also the
I-V curve for the equivalent F/N junction is measured at the same temperature. This
is achieved by applying a magnetic field higher than the critical field of the supercon-
ductor. The quantity which is of interest is the normalized conductance g(V') (not to
be confused with the reduced conductance g defined in Chapter 5) as a function of the

bias voltage V'

g(V) = FFS(";)F:(E)FN(V) ’

where T'rs(17) (Tpx(V)) is the measured differential conductance for the F/S (F/N)

6.7)

junction. Experimentally, although the individual conductances fluctuate from sample
to sample by up to one order of magnitude, the quantity g(1”) is constant. This is
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a demonstration that the transport is ballistic and that the fluctuations of the con-
ductance depend only on the size of the constriction (which can vary from sample to
sample). Finally a fit of g(V') is performed by using a modification of the Blonder-
Tinkham-Klapwijk theory [130] with spin-dependent delta-like scattering at the inter-
face, and hence the polarization is evaluated. Usually a remarkable good agreement
with the experimental data is achieved particularly in the low bias region, where the

fit is focused.

This kind of experiments is easily accessible to the scattering technique developed
in this thesis. I have reproduced the I-1" curves found in the experiments in order
to obtain some informations on the scattering processes at the F/S interfaces. It is
important to note that with the only exception of the superconducting gap (which
is assumed to be the one of the bulk superconductor) there are not free parameters
because all the tight-binding coefficients are fixed by an accurate fitting of the band
structure for the bulk materials. Since g(1”) is measured for small bias, it is important
to have a very accurate fit of the band structure in a narrow energy region close to the
Fermi energy. I have performed such a fit for Cu, Co and Pb (the superconductor used
in the references [22, 120]) by using a modified version of a fitting routine included
in the tight-binding package OXON [131]. Details of this fitting procedure and the

resulting band structures are discussed in appendix D.

The calculation of the conductance in the F/S and F/N cases uses the same tech-
nique of the previous section and of Chapter 2. Here I considered perfectly translational
invariance across the entire structure (which means perfect lattice match at the inter-
face) and I have taken only 30 x 30 kj-vectors in the transverse Brillouin zone, which
gives roughly the same number of transverse modes of a constriction with a diameter
of 10nm. I have consider Cu/Pb and Co/Pb constrictions and the hopping between
different materials is, as usual, the geometric mean of the hoppings of the bulk materi-
als. I calculate the conductance as a function of the energy I'(E') and then integrate in
order to obtain the differential conductance at finite temperature. This last quantity

respectively for the F/S and F/N case is calculated as follows [130]

(_%%) Tes(E)dE , (6.8)
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where fj is the Fermi distribution. This is obtained by assuming that the effect of the
temperature and the bias is only to change the occupation of the reservoir according
to the Fermi distribution.

The calculated I-V curve for Cu/Pb is shown in figure 6.7 together with the experi-

mental data from reference [22]. The agreement is surprisingly good particularly for low
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Figure 6.7: I-V curve for a Cu/Pb ballistic junction at 4.2°K. The solid line represents the calculated
curve and the squares the experimental data from reference [22]. Note that the agreement is remarkably
good particularly at low bias.

bias. Note that the experimental data show a negative g(1") for large biases which is in
contradiction with the elementary expectation of g(1”) ~ 0 for el” > A. Nevertheless
this seems to be consistent with the experimental error on the determination of g(V’)
[132] and therefore the agreement of the theoretical curve may be considered almost
perfect over the whole voltage range. Better agreement can be obtained by reducing the
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superconducting gap A below the bulk value for Pb. This is reasonable if one considers
that in the constriction region size effects can suppress the superconductivity.

This surprisingly good agreement indicates that the scattering technique is the
appropriate description of this kind of structures. In particular it is important to point
Qout that, at least for the case of Cu/Pb, an accurate description of the hopping at the
interface seems not to be crucial and all the transport is largely determined by the
bulk band structures of the constituent materials. Since the lattice mismatch between
Cu and Pb is very similar to the one between Co and Pb, one may expect that the
same good agreement can be found also for Co/Pb interfaces. Figure 6.8 shows the I-V
curve for a Co/Pb junction, where it is easy to see that such an expectation is largely
not satisfied. In particular at zero bias the normalized conductance g(1") is negative,

which is the result of a strong under-estimation of I'rg with respect to the experiments.

It is quite unlikely that such a disagreement is related with a very different quality of
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Figure 6.8: I-V curve for a Co/Pb ballistic junction at 4.2°K. The solid line represents the calculated
curve and the squares the experimental data from reference [22]. Note that at low bias the calculated
curve presents a g(V') value with an opposite sign with respect to what found in experiments.

the junction in the the Co/Pb case with respect to Cu/Pb or to a bad fit of the band
structure of Co, and therefore this must be connected with the magnetic state. One
possible explanation is to postulate large spin-flip scattering at the interface. Like Nb
in the case of the contacts for GMR measurements, Pb is a heavy material and spin-
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orbit scattering can be large. Spin-orbit scattering is not a spin-conserving process
and therefore induces spin-flip at the interface. This. as explained in the previous
section, restores the high transmission in the majority channel. giving rise to a global
enhancement of the conductance. Note that this process can be also present in the case
of Cu/Pb junctions (because due solely to Pb) without producing any change of the
resistance.

Another possibility is to assume an enhancement of the magnetization at the in-
terface as recently found by several groups for different materials [69, 133]. If this
enhancement is present, the band structure will be locally distorted and a better match
between the Fermi surfaces of electrons with different spins is possible. This creates
a global enhancement of the conductance in the F/S case and eventually g(17) can be
positive at low bias. Figure 6.9 shows I'rx(0) and I'gg(0) for Co/Pb as a function of the
exchange coupling h of the first Co monolayer at the interface with Pb. It is clear that
for a small range of exchange coupling ¢g(0) can indeed be positive with a maximum
obtained for an exchange coupling of h = 1.85e\" (the bulk value is h ~ 0.9e\"). The
I-1" curve corresponding to h = 1.6e\’ is presented in figure 6.10 and shows that good
agreement with experiments can be achieved. This is the central result of this section
because it shows that I-17 curves similar to the experimental ones can be obtained by
making a detailed prediction of the materials characteristic of the F/S interface.

In summary I have shown that the description of ballistic N/S and F/S junctions
is a powerful tool for the understanding of the scattering processes occurring at the
interfaces. The scattering technique gives excellent agreement with the experimental
data in the case of N/S junctions, but largely under-estimate the conductance in the case
of F/S junctions. This may be due to the presence of spin-flip scattering, consistently
with GMR measurements, or to a strong local distortion of the band structure of the
magnetic metal. A completely self-consistent description of the interface can solve this

ambiguity and give a complete solution of this fascinating problem.
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Figure 6.9: I'rn(0) and I'rs(0) at 4.2°K for a Co/Pb ballistic junction as a function of the exchange
coupling of the first Co monolayer at the interface with Pb. Note that for a small window of exchange
coupling I'rx(0) < I'rs(0) and therefore g(0) > 0.
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Figure 6.10: I-V curve for a Co/Pb ballistic junction at 4.2°K when a monolayer with an exchange

energy of h = 1.6eV is added at the F/S interface. The solid line represents the calculated curve and
the squares the experimental data from reference [22].

126



7 Carbon Nanotubes
7.1 Introduction

In this chapter I will concentrate on a new class of materials which in the last ten years
raised up great enthusiasm for their amazing mechanical and electronical properties,
namely carbon nanotubes. Carbon nanotubes [134, 135, 136] are narrow seamless
graphitic cylinders, which show an unusual combination of a nanometer-size diameter
and millimeter-size length. This topology, combined with the absence of defects on a
macroscopic scale, gives rise to uncommon electronic properties of individual single-wall
nanotubes (137, 138], which depending on their diameter and chirality, can be either
metallic, semiconducting or insulating [139, 140, 141].

Here I will focus attention only on metallic narotubes and in particular on the
so-called “armchair” nanotubes. An armchair nanotube is a graphite tube in which the
hexagon rows are parallel to the tube axis. If n is the number of carbon dimers along
the nanotube circumference the tube will be labeled as (n,n) nanotube. One of the
most important properties of the armchair nanotubes is that they behave like a mono-
dimensional metal and this is directly connected with their structure. The electronic
wave-length in fact is quantized around the circumference of the tube because of the
periodic boundary conditions. This gives rise to mini-bands along the tube axis and the
tube is metallic or insulating whether or not one or more mini-bands cross the Fermi
energy. In the case of armchair nanotubes two mini-bands along the tube axis cross
the Fermi energy [142, 143, 144], therefore, according to scattering theory [24], the
conductance is expected to be 2Gy, where Gy = 2e?/h ~ (12.9 kQ)~! is the quantum
conductance. Direct evidence of the de-localization of the wave function along the tube
axis has been already shown {145, 146], while a direct measurement of the conductance
quantization for single-wall nanotubes is still missing (for an introduction to electronic
transport in carbon nanotubes see reference [147]).

The situation for multi-wall nanotubes is rather different. A multi-wall nanotube
consists of several single-wall nanotubes inside one another, forming a structure remi-
niscent of a “Russian doll”. A section of a double-wall (5,5)@(10,10) armchair nanotube
is presented in figure 7.1. Recent measurements [44] of the conductance in multi-wall
nanotubes have raised a significant controversy due to the observation of unexpected
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Figure 7.1: Section of a (5,5)@(10,10) “armchair” nanotube.

conductance values and of ballistic transport at temperatures far above room tempera-
ture. In these experiments several multi-wall nanotubes are glued to a gold tip, which
acts as the first electrode, with a colloidal silver paint. The second electrode is made by
a copper bowl containing mercury, which provides a gentle contact with the nanotube.
The tip is lowered into the mercury and the two-probe conductance is measured as a
function of the immersion depth of the tubes into the mercury. The main feature of the
experiments is that at room temperature the conductance shows a step-like dependence
on the immersion depth, with a value of 0.5 Gy for low immersion and 1Gy when the
tip is further lowered. The value of 0.5 Gy usually persists for small immersion depths
(< 40nm) and is completely absent in some samples, while the value 1 Gy is found
for very long immersion depths, up to 0.5um. Nevertheless some anomalies have been

found with conductances of 0.5 Gy lasting for more than 500nm [44].

While the ballistic behaviour up to high temperature can be explained by the
almost complete absence of backward scattering [148], the presence of such conductance
values is still not completely understood. In the absence of inter-tube interactions, if
one assumes that m of the nanotubes forming the multi-wall nanotube are metallic
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and in contact with both the electrodes, then a conductance of 2mGj is expected for
the multi-wall nanotube. This means that even in the extreme case in which only one
tube is metallic and in contact with the electrodes a conductance of 2G, must be
measured. Therefore the values 0.5G, and 1Gy are largely unexpected. One possible
explanation, provided by the authors of the experiments, is that only the outermost
tube is responsible for the transport and that the anomalous conductance is the result
of scattering to impurities. Nevertheless both these hypotheses may be challenged.
The first is based on the assumption that, since mercury does not wet the innermost
tubes, it does not provide an efficient electrical contact with the innermost part of the
multi-wall nanotube. This may not be the case because the interaction between the
different walls may be large and the motion of electrons across the structure efficient.
As far as the second hypothesis is concerned, it has been shown recently [149] that
disorder averages over the tube’s circumference, leading to an electron mean free path
that increases with the nanotube diameter. Therefore single impurities affect transport
only weakly, particularly in the nanotube forming the outermost shell, which has the

largest diameter.

In this chapter I address these puzzling measurements and show that the structural
properties of multi-wall nanotubes can explain their peculiar transport. The electronic
band structure of multi-wall carbon nanotubes [150, 151, 152|, as well as single-wall
ropes [153, 154] is now well documented. More recently, it has been shown that pseudo-
gaps form near the Fermi level in multi-wall nanotubes [152] due to inter-wall coupling,
similar to the pseudo-gap formation in single-wall nanotube ropes [153, 154]. Here I
demonstrate that the unexpected transport properties of multi-wall nanotubes arise
from the inter-wall interaction. This interaction may not only block some of the quan-
tum conductance channels, but also redistribute the current non-uniformly over the
individual tubes. When only the outermost tube is in contact with one of the volt-
age/current electrodes, then this forms a preferred current path and, because of inter-
tube interaction, the conductance of the whole system will typically be smaller than

2G).

The chapter is organized as follows. In the next section I will briefly describe how
to calculate the transport in infinite armchair single-wall and multi-wall nanotubes.
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Since the unit cell must include two atomic planes the hopping matrix turns out to be
singular, and a special trick must be used to solve the dispersion equation and built up
the retarded Green’s function. I will illustrate this procedure by using the decimation
diagrams introduced in Chapter 5.

In the following section I will discuss the transport in infinite multi-wall nanotubes
and understand which are the effects of the inter-tube interaction both on the disper- |
sion and on the wave-function of the tube. Then I present the results for transport
of inhomogeneous multi-wall nanotubes, giving an explanation of the experiments of
reference [44]. In this part I will consider different scenarios regarding the structure of
the electrical contacts.

Finally I will extend the analysis given in the previous sections for the zero-
temperature limit to room temperature, in the limit in which the multi-walled scattering
region is replaced by a continuous of states. In this classical limit, if only the outer-
most tube forms an electrical contact with the metallic electrodes, the conductance is
expected to be 1Gy. A reduction of this value is expected in the case in which there is
strong scattering between the single-walled and the multi-walled regions.

The last section is dedicated to the investigation of possible spin injection in carbon
nanotubes. At present very few studies has been made both theoretical and experimen-
tal [41]. Nevertheless the absence of spin-mixing scattering and the low dimension of
the tubes paves the way for the injection of spin-electrons into carbon nanotubes with
extremely long spin life-time. This may open new hopes for spin-filtering devices and
maybe quantum computation.

Most of the material of this section has been already published in references [42, 43].

7.2 Singularity of H;

In this section I describe a trick necessary to calculate the retarded Green’s functions of
the carbon nanotubes. In this case two atomic planes must be included in the unit cell
and therefore the matrix H; is singular. As indicated in Chapter 2, this is a problem
since the dispersion relation expressed by equation (2.27) is not well defined.

The tight-binding parameterization of carbon nanotubes is determined by ab initio
calculations for simpler structures [155]. The electronic structure and superconducting
properties of the doped Cgg solid [156], the opening of a pseudo-gap near the Fermi
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level in a rope consisting of (10,10) nanotubes [154] and in (3,5)@(10,10) double-wall
nanotubes [152] are some of the problems successfully tackled by this technique. The
band structure energy functional is augmented by pairwise interactions describing both
the closed-shell interatomic repulsion and the long-range attractive van der Waals in-
teraction. This reproduces correctly the interlayer distance and the C33 modulus of
graphite. Independent checks of this approach can be carried out by realizing that
the translation and rotation of individual tubes are closely related to the shear motion
of graphite. One expects that the energy barriers in tubes lie close to the graphite
value which, due to the smaller unit cell, is easily accessible to ab initio calculations
(157, 158].

For infinite nanotubes, both single-wall and multi-wall, the unit cell that I have
used comprises two atomic planes. This is because two adjacent planes are identical
but rotated by 7/n degrees where n is the coordination number of the tube. Therefore

the matrices Hy and H; are respectively of the form

_( Hy H
Hy = ( H{T H(')’ ) : (71)
0 0
Hl - ( Hi/ 0 ) . (72)

The previous expressions describe a system in which the inequivalent atomic planes
are described by the matrices Hj and Hy, and Hj describes the coupling between the
H{ plane and the H{ plane, while H{ describes the coupling between the H{ plane
and the H{ plane. Such a structure can be represented by the decimation diagrams
of figure 7.2. In order to obtain a non-singular matrix A, I have decided to use the
decimation technique introduced in Chapter 2 for the scatterer. The main idea in fact
is to decimate all the degrees of freedom of the unit cell which are not coupled with
degrees of freedom of the next unit cell and hence to define a new non-singular H,
matrix. For this purpose consider the figure 7.2. The procedure consists in decimating
all the planes described by H| yielding a new intra-plane matrix Hj and a new inter-
plane matrix H}. Note that the new matrices Hj and H} have dimension which is a
half of the dimension of the starting matrices Hy and H; of equations (7.1) and (7.2).
In performing this procedure one should be careful to decimate the Hy planes both on
the left- and on the right-hand side of H| in order to obtain a new periodic structure.
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Figure 7.2: Decimation diagrams for the carbon nanotubes unit cell. This procedure enables to
construct a non-singular coupling matrix H x.
The rules to perform such a decimation are illustrated in figure 7.4a and 7.4b where
the new matrices HQ and H* are defined. Note that the new structure defined by these
new matrices is periodic and that the coupling matrix H{ is non-singular.

Finally special attention must be used when a finite scatterer is attached to semi-
infinite carbon nanotubes described by the new matrices HQ and H* To illustrate
this point consider the decimation diagrams of figure 7.3 where I take two semi-infinite

nanotubes attached to a scattering region. The aim is to describe the two semi-infinite

11
H HO Ho H H
H, Hx Hi Hx Hx Hi Hi Hi Hi Hi
HO Ho HO
*AAA/N-AAATANAATA]) rvA/A |A\nnfl|/\A /\j|/\A A A
Hi Hi Hi Hi Hi Hi Hi H* H* H*

Figure 7.3: Decimation diagrams for two semi-infinite carbon nanotubes attached to a finite scattering
region (also a carbon nanotube). The purpose is to describe the semi-infinite parts by the renormalized
matrices # ¢ and # * and the finite part by the “bare” matrices # o, # o, Hf and H ".

nanotubes by the new matrices HQo and H{ and a finite middle region (the one included
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in the blue box) by the “bare” matrices H'0, H o, Hf and H"”. The important point is
that when the tube is semi-infinite translational symmetry is evidently broken. Suppose
one decimates all the planes described by Hg in the left-hand side (right-hand side)
semi-infinite region. This will yield to the new matrices Hg and H* with the exception
of the last plane before the finite region (the first plane after the finite region), where
the decimation has occurred only on the left-hand side (right-hand side). Such a plane
is therefore described by a matrix which is in general different from Hg, H'q and Ho. |
call this matrix Hq if the decimation has occurred in the left-hand side plane and H”" if
the decimation has occurred in the right-hand side plane. These new matrices are the
ones which must be used to attach finite scattering regions to semi-infinite nanotubes.
I illustrate this point in figure 7.3 by using the decimation diagrams. In the figure the
upper part describes the structure and the position of the planes to decimate, and the

lower part the result of the decimation.

To conclude in figure 7.4 I summarize all the decimation rules introduced in this

section.

(a) ©)

HO HO HO HO ifo Ho 'n,
* L N d-
(b) (d)

H, HO HO HnH, H,
— ANV H K =

Ho Hi H ~Hx

Figure 7.4: Summary of all the decimation rules introduced in this section: (a) new on-site matrix
H o, (b) new non-singular coupling matrix #*, (c) last left-hand side matrix of the left-hand side lead
H o, (d) first right-hand side matrix of the right-hand side lead # o-
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7.3 Conductance in infinite multi-wall nanotubes

For an homogeneous system the total transmission coefficient T'(E) assumes integer
values corresponding to the total number of open scattering channels at the energy
E. For individual (n,n) armchair tubes, this integer is further predicted to be even
[142, 143, 144], with a conductance of 2G, near the Fermi level. As an example, the
results for the conductance G(F) and the density of states of the (10,10) nanotube are

shown in Fig. 7.5. In this section I combine the scattering technique with the procedure

15 T ‘ T

(a)

O 1

E [eV]

Figure 7.5: Single-wall (10,10) nanotube. (a) Local density of states. (b) Conductance as a function
of energy. Note the mono-dimensional character of both the DOS and G(E).

for dealing with singular H; matrices, and introduce the main transport properties of
infinite multi-wall carbon nanotubes. The main feature of an armchair nanotube is its
true mono-dimensional metallic behaviour. Note that the density of state shows mono-
dimensional van Hove singularities which are due to the presence of dispersion-less mini-
bands. This is reflected in the energy-dependent conductance which shows a typical
step-like behaviour. Such steps appear whenever the energy crosses a new mini-band,
and therefore correspond to the van Hove singularities in figure 7.5. It is crucial to note
that in an infinite system every scattering channel gives the same contribution Gy to
the conductance independently from its dispersion and group velocity. The situation

134



is rather different in an inhomogeneous system, where scattering of electrons from
low dispersion to high dispersion bands of different materials, can give rise to strong
backward scattering and therefore to a reduction of the conductance. At the Fermi
energy of an armchair nanotube (in this case F = Er = 3.6eV) only two scattering
channels are present resulting in a conductance 2Gy. This value remains constant in
an energy interval of approximately 1.5eV, above which other mini-bands start to cross
the Fermi energy.

Consider now multi-wall nanotubes. As observed in the introduction, in the absence
of inter-tube interactions, different tubes behave as conductors in parallel and the
conductances are simply additive. Therefore, since the position of the Fermi energy does
not change with the tube diameters one expects a conductance 2mGq for a multi-wall
nanotubes comprising m walls. Note also that the width of the energy region around
the Fermi energv where the conductance is 2Gg, depends only weakly on the tube
diameters. The situation changes drastically when inter-tube interaction is switched
on. In figures 7.6 and 7.7 I present the density of states and the conductance respectively

for a (10,10)Q(15,15) and for a (5,5)€(10,10)Q(15,15) multi-wall nanotube. In the
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Figure 7.6: (a) Local density of states for a double-wall (10,10)@(15,15) nanotube. (b) Conductance
as a function of energy for the same nanotube.

figures I restricted the energy window to the region where the single-wall armchair
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Figure 7.7: (a) Local density of states for a triple-wall (5,5)@(10,10)@(15,15) nanotube. (b) Conduc-
tance as a function of energy for the same nanotube.

nanotubes present conductances of 2Gy. The main feature of both the figures is the
presence of pseudo-gaps [152] which lower the conductance from the expected value
2mGy. In the case of a double-wall nanotube, this results in two regions where the
conductance passes from 4Gy to 2Gy, while in triple-wall nanotube the values 6Gy, 4G
and 2G, are possible. Nevertheless both these results are still not consistent with the
experimental observations of 1Gy and 0.5G, [44].

It is important to note that the presence of energy pseudo-gaps not only lowers the
conductance but also gives rise to two important effects. First it changes drastically
the dispersion of the mini-bands close to the gaps. At the edge of the gaps in fact
the dispersion passes from a linear to an almost dispersion-less parabolic-like structure.
This is shown in figure 7.8 where I present the band structure along the direction of
the tube axis for a double-wall (10,10)@(15,15) nanotube in contrast with the band
structure of a single-wall (15,15) nanotube.

Secondly the amplitude of the wave-function across the nanotubes may not be uni-
formly distributed. Far from the gaps, where the effects of the inter-tube interaction are
weak, the wave-function is expected to have a uniform distribution across the different
walls composing the nanotube. This is what is found in the case of non-interacting
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Figure 7.8: (a) Band structure along the tube axis for a (15,15) nanotube. (b) Band structure along
the tube axis for a (10,10)@(15.15) nanotube.

walls, whereas in the vicinity of a pseudo-gap. the distribution changes dramatically
and the amplitude may be enhanced along some walls and reduced along some others.
To demonstrate this effect in figure 7.9 I present the partial conductance across the two
walls composing a (10,10)@(15,15) nanotube and across the three walls composing a

5,5)@(10,10)@(15,15) nanotube. The partial conductance is defined as the projection
of the total conductance for an infinite multi-wall tube onto the degrees of freedom
describing the individual walls. This is identical to what done for the partial conduc-
tance over the atomic orbitals presented in Chapter 3. From the figure it is very clear
that the amplitude of the wave-function (which is proportional to the partial conduc-
tance) is not uniform across the structure and depends critically on the energy. Both
the change in the dispersion and the non-uniform distribution of the amplitude of the
wave-function across the tubes have drastic effects on the transport of heterogeneous
svstems, because it creates strong inhomogeneities along the structure, and therefore
strong backward scattering. This aspect, which occurs in a multi-wall nanotube when
one of the innermost walls closes, will be discussed in the next section.
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Figure 7.9: Partial conductance of (a) (10,10)@(15,15) and (b) (5,5)@(10,10)@(15,15) nanotube. The
solid line, dotted and dashed lines represent the partial conductance respectively onto the innermost,
the medium (only in the case of (5,5)@(10,10)@(15,15)) and the outermost tube. Note that within the
pseudo-bandgaps the conductance does not distribute uniformly onto the different tubes.

7.4 Transport in inhomogeneous multi-wall nanotubes

In this section I will use the ideas developed above to describe the experiments of
reference [44]. Note that for inhomogeneous systems, where multi-wall nanotubes are
contacted to the voltage/current probes, the conductance quantization in units of 2G,
which I found also for multi-wall nanotube in presence of inter-wall interaction is evi-
dently violated and fractional values of the conductance are allowed. One of the diffi-
culties of the experiments, which use gold as one electrode and mercury as the other, is
that not all the tubes make contact with the electrodes. I have considered two different
scenarios and have found that agreement with the experiments is obtained when one
assumes that only the outermost tube is in contact with the gold electrode, whereas
the number of walls in contact with the mercury depends on the depth at which the
tube is immersed into the liquid. This latter assumption may seem surprising, because
the mercury does not wet the inner tubes. Nevertheless I believe that at equilibrium,
the inter-tube interaction allows a uniform distribution of the chemical potential across

the cross-section of the whole structure and therefore in the linear-response regime,
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the scattering problem reduces to a semi-infinite single-wall nanotube (the one in di-
rect contact with gold) attached to a scattering region in which a variable number of
walls are present (see fig.7.10a). Moreover a close analysis of the inter-tube matrix
elements shows that these are of the same order of magnitude as the intra-wall ones.
This means that electron transport between different walls may be efficient, as well

as the electron feeding of the innermost walls from the electrons reservoirs. Consider
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Figure 7.10: (a) Schematic geometry of the system in which only the outermost tube is contacted with
the gold electrode for different immersion depths. The perfect contact of the outermost tube with
the gold electrode is simulated by considering a semi-infinite single-walled carbon nanotube lead. (b)
Conductance as a function of energy for the system of (a).

first the case in which only the outermost tube makes contact with the gold electrode.
I argue that the step-like dependence of the conductance on the immersion depth is
due to the fact that the scattering region makes contact with the mercury reservoir
via a multi-wall semi-infinite nanotube whose number of walls varies and depends on
the immersion of the structure. For small immersion depths (such as Hgl in fig.7.10a),
only the outermost tube is in contact with mercury, because it is the only one with an
end below the mercury level. A further lowering of the gold tip (to depths such as Hg2
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and Hg3 in figure 7.10a) will sequentially place more inner walls into electrical contact
with the mercury, thereby changing the conductance. Note that the conductance of
such a structure cannot be larger than that of the single-wall nanotube, which is the
only tube in contact with the gold electrode.

In figure 7.10b I present the conductance as a function of energy for the inhomo-
geneous structure described in figure 7.10a. In all three cases, the simulated structure
makes contact with the upper Au reservoir via a (15,15) nanotube, which forms the
upper external lead, whereas the lower external lead contacting the Hg comprises either
a single-, double- or triple-wall nanotube. The solid curve corresponds to a structure
formed from a 200 atomic plane (AP) (~230A) (5,5)@(10,10)@(15,15) triple-wall re-
gion, below which is attached to a 200 AP (10,10)@(15,15) double-wall region. The
ends of the outer (15,13) nanotube are connected to semi-infinite (15,15) nanotubes,
which form the external leads. The dashed curve corresponds to a structure formed
from a 200 AP (5,5)@(10,10)@(15,15) triple-wall region. The upper end of the outer
tube is attached to a semi-infinite (15,15) nanotube, which forms the external lead con-
tacting the Au reservoir. The lower end of the (10,10) and (15,15) nanotubes continues
to infinity, and forms a (10,10)@(15,15) external contact to the Hg reservoir. Finally
the dot-dashed line shows the conductance of a (5,5)@(10,10)@(15,15) nanotube, which
at the lower end makes direct contact with the Hg and at the upper end, the outer tube
continues to infinity, thereby forming a (15,15) external contact to the Au reservoir.
These situations correspond to immersion of the tube into the mercury at positions
Hgl, Hg2 and Hg3 respectively, where either one wall and two walls are in electrical
contact with the mercury.

In all the simulations, the ends of the finite-length tubes are left open and I do
not include capping layers. I believe that the capping layers are not crucial to the
description of the transport properties of inhomogeneous multi-wall nanotubes, since
these are mainly determined by the mis-match of wave-vectors between different regions.
Figure 7.10b shows clearly that in an energy window of about 0.03eV (indicated by
vertical dashed lines), the conductance for the first structure is approximately 0.5G),
while for the latter two is of order 1Go. Note that such energy window is larger than
both the bias used in the experiments and room temperature. This suggests that
these results are quite robust and will survive both at room temperature and moderate
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biases. This remarkable result is in excellent agreement with the recent experiments of
reference [44].

The scattering in such an inhomogeneous structure arises from the reasons pointed
out in the previous section. In the energy window considered in fact the infinite
(3,5)@(10,10)@(15,15) presents a large pseudo-gap with conductance 4Gy. One there-
fore expects that at both the interfaces of the (5,5)@(10,10)@(15,15) region with re-
spectively the (10,10)@(15,15) region and the (15,15) tube, the mismatch of either the
transverse components of the wave-function ¢, and the longitudinal &, -vectors will
be large. This gives rise to the strong suppression of the conduction observed in the
experiments [44]. In figure 7.11 I present the conductance as a function of immersion
depth in mercury for the structure described above. The conductance is calculated at
zero-temperature in the zero bias limit and the energy has been set in the middle of the
marked region of figure 7.10b (3.825eV). For comparison I superimpose the experimen-

tal results of reference [44], which show a very good agreement with the calculation.

G/G,
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Figure 7.11: Conductance G of a multi-wall nanotube as a function of immersion depth 2z in mercury.
Results predicted for the multi-wall nanotube discussed in figure 7.10a, given by the dashed line, are
superimposed on the experimental data of reference [44].

I now consider a second possible scenario, in which three tubes are in direct con-
tact with the gold electrode. In this case the electrons are fed from gold into the
structure directly along all the tubes. This contact can be simulated by a semi-infinite
(5,5)@(10,10)@(15,15) nanotube with uniform chemical potential across the tubes. The
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structure considered is presented in figure 7.12a. In this case the upper bound of the

(a)

Figure 7.12: (a) Schematic geometry of the system in which three tubes tubes are contacted with
the gold electrode for different immersion depths. The perfect contact of the outermost tube with
the gold electrode is simulated by considering a semi-infinite triple-walled carbon nanotube lead. (b)
Conductance as a function of energy for the system of (a).

conductance is no longer fixed by the single-wall tube to be 2G, but can be as large
as 6G, and depends on the number of walls contacting the mercury. In figure 7.12b [
show the conductance as a function of energy respectively for a 200 AP (10,10)@(15,15)
nanotube sandwiched between a (15,15) and a (5,5)@(10,10)@(15,15) nanotube leads,
for (10,10)@(15,15) nanotube lead in contact with a (5,5)@(10,10)@(15,15) nanotube
lead, and for an infinite (5,5)@(10,10)@(15,15) nanotube. This again corresponds to
the different levels of immersion Hgl, Hg2 and Hg3 in (figure 7.12a). Note that in the
case in which the (5,5)@(10,10)@(15,15) nanotube is in direct contact with both the
gold and the mercury electrodes its conductance corresponds to the number of open
scattering channels for the infinite triple-wall system.

Figure 7.12 shows that if all the three tubes are electrically connected to the gold
electrode, a much larger increase in the conductance occurs when a new wall is lowered
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below the mercury level, although this is still smaller than the value of 2G,, obtained
for completely isolated tubes. In this case, corresponding to the different value of the

immersion depth, I expect the conductance to be respectively 1Gy, 2Gy and 4Gj.

The large difference between the transport of the structures in figures 7.10a and
7.12a is therefore crucially dependent on the number of tubes which make a direct
contact with the gold electrode. At the moment a complete description of the nan-
otube/metal interface is not available, and deserves further investigation both experi-

mentally and theoretically.

7.5 Room temperature transport: the classical limit

In this section I will extend the results obtained at zero-temperature for a multi-walled
scattering region with up to three walls, to the case of room temperature and a scatter-
ing region with a large number of walls. I will evaluate the conductance in the classical
limit by using the framework of quantum transport through a quantum dot coupled
to two external contacts. This mimics a single-wall carbon nanotube in which a large
multi-walled region is encapsulated and corresponds to the first scenario discussed in
the previous section. Note that in this case the coupling to the scattering region is not
through a scattering potential like in the typical case of quantum dots, but is given by

the intertube interaction, whose effects have been discussed previously.

Consider first the general expression for the current within the Landauer-Biittiker

formalism (see for example [159])

1= [T(B)A(E) - flE)aE (7.3

where T(F) is the transmission function obtained by summing all the the transmission
probabilities T,,,(E) and fi(E) (f2(E)) is the Fermi function for the contact 1 (2)
which is at the chemical potential y; (p2). All the information regarding the scattering
region and its coupling with the external contacts is included in the definition of the
transmission function. As stated earlier, the scattering region is described as a system
with a large number of discrete energy levels E,, whose widths are smaller than the
typical level spacing. In this limit the transmission function can be written in the
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Lorentzian form [160, 161, 162],

=y I'T(E)TR(E) )
T(E) = ; (E - En)? + (1}}? (E)2FB"‘(E))2 ’ (74)

where I'T*(E) + ' (F) is the linewidth of the m-th resonance and is proportional to the
transmission probability T'(E) from both the left- and right-hand side contacts through
the relation I'(E) = AvT(FE) with v the attempt frequency [163]. Suppose now that
the linewidths are independent on the energy of the resonant states. In this case the
total current through the structure is simply given by

=2y ff EFLF;, ﬁr)) \(E) - h(EYMEdE',  (75)

which can be re-written in the following form by introducing the density of states of

the scattering region Y., 6(E — E,,) = p(F)

26 Z // (E — I;FR < brj);r )2[f1(E) — f2(E)]dEdE" . (7.6)

The integration over E can be performed by taking the low-bias limit in which [f;(E) —
f2(E)] reduces to ——g—é(,ul — i2). The integration over £’ is then simply the integration
of a Lorentzian curve, once p(E) is taken to be constant, py. After both integrations

the conductance G becomes,
2e FLFR
nPT +Th

Finally by using the definition of attempt frequency and the relation between the trans-

G= (7.7)

mission probability and the resonance linewidth, I obtain the expression for the con-

ductance in the classical limit,
-1

G= (GiL + GLR) , (7.8)

where G, (GR) is the conductance of left-hand (right-hand) contact, determined solely

by the transmission into the scattering region. Equation (7.8) expresses the ohmic

conductance of two contacts coupled to a region with a large number of discrete states.

Note that this does not involve any dissipation and the transport is completely ballistic.

I now apply the above formula to the case of the multi-wall nanotube described

earlier. In the case that the contacts are two semi-infinite single-wall carbon nanotubes

with no scattering potential between them and the multi-walled region, then Gp, =
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Gr = 2G and the total conductance is expected to be 1G,. This is the upper bound of
the conductance and is obtained in the case that the transmission from the nanotube
contacts to the multi-walled region is perfect. Nevertheless the non-uniform distribution
of the wave function along the different tubes in the case of multi-walled nanotubes
can generate backward scattering, which in general reduces the transmission. This is
what was found in the previous sections. However the limiting case of GL. = Gr = 2Gj
can be obtained for some energies, when the mixing of the wave-functions belonging to
different tubes is minimal.

Bearing in mind that the results of the previous sections have been obtained at zero
temperature, they seem to suggest that agreement with the experiments is achieved if
only few tubes make contact with the metallic electrodes, and if the transmission from

the nanotube leads to the multi-walled scattering region is not perfect.

7.6 Is spin injection possible?

This last section is dedicated to a different aspect of the physics of carbon nanotubes.
In fact I will briefly investigate the possibility of spin-injection into nanotubes. This is
a completely new field and to date only one experiment [41] conducted on a multi-wall
nanotube sandwiched between two cobalt contacts has shown that the current in a
nanotube can be spin-polarized by proximity with magnetic metals. In this experiment
an hyvsteretic behaviour of the resistance is detected and explained as a spin-valve
effect. From the experimental data the authors estimate (by using the elementary
Julliere theory for spin tunneling {17]) that the spin-diffusion length of the nanotube is
about 130nm. Nevertheless this value can largely underestimate the true spin-diffusion
length of the nanotube, since a paramagnetic region is very likely to be present at the
Co/Nanotube interface, and therefore large spin-flip scattering may be present solely
at the interface.

In this section I am not going to present any calculation, but only to give some
reasons to believe that spin-injection into nanotubes is possible, and that in principle
very large GMR can be obtained. The main idea is based on a paper by Tersoff [164]
in which the contact resistance between a metal and a carbon nanotube is investigated.
Consider first the Fermi surface of an armchair single-wall carbon nanotube. It can be
derived easily from the Fermi surface of a graphite sheet and consists only of two points
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symmetric with respect to the I' point (see figure 7.13). Such a Fermi wave-vector can
be calculated and is simply given by kr = 27/3z, with 2z, = dyv/3/2 and dy the C-
C bond distance (dy=1.42 A). In contrast the Fermi surface of a magnetic transition
metal consists of two spheres with different radii for the different spins. In a simple

free-electron model with exchange field, in which the energy is given by

R°k?
E°=—+0)/2, (7.9)
2m
with 0 = —1 (6 = +1) for majority (minority) spins and A the exchange energy,

the spin-dependent wave-vectors are respectively k. = \/2m(Er + A/2)/k and kb =
F F

\/ 2m(Ep — A/2)/h. The transport through an interface between such a magnetic metal
and the nanotube is determined by the overlap between the corresponding Fermi sur-
faces. Three possible scenarios are possible.

First the Fermi-wave vector of the carbon nanotube is smaller than both kf. and
ki (see figure 7.13a). In this case in the magnetic metal there is always a k-vector that
perfectly matches the Fermi-wave vector of the nanotube for both spins. Therefore
both spins can be injected into the tube and the total resistance will be small and
spin-independent.

Second the Fermi-wave vector of the carbon nanotube is larger than both k% and kg
(see figure 7.13b). In this case there are no available states in the metallic contact whose
wave-vectors match exactly the Fermi wave-vector of the carbon nanotube. Therefore
in the zero-bias zero-temperature limit the resistance is infinite and spin-independent.
Nevertheless as one increases the temperature or/and the bias, transport may be pos-
sible because of inelastic scattering at the interface. In fact electrons can be scattered
out of the Fermi surface into states with large longitudinal momentum. At temper-
ature T the fraction of electrons with energy above Ef is simply proportional to the
Fermi distribution function and is spin-independent. Nevertheless, because of the ex-
change energy, spin-up electrons possess higher total momentum than the spin-down,
and therefore there is a larger probability to find spin-up states with a longitudinal
momentum that matches the one of the nanotube than spin-down states. This gives
a temperature-induced spin-dependent resistance. Hence one should expect that the
increasing of the temperature will largely decreases the resistance for spin-up electrons,
leaving almost unchanged the one for spin-down.
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Finally if the Fermi wave-vector of the carbon nanotube is larger than k% but smaller
than k] (see figure 7.13c), only the majority electrons can enter the nanotube and the
system becomes fully spin-polarized. In this situation a spin-valve structure made by
magnetic contacts and carbon nanotube as spacer is predicted to show an infinite GMR
at zero temperature, similar to the case of the half-metals [80, 85]. The increase of the
temperature will produce a degradation of the polarization because also the spin-down
electrons may occupy high energy states with large longitudinal momentum. Both the
spins can be injected and the spin-polarization depends on the number of occupied
states with longitudinal momentum matching the one of the nanotube.

Two important aspects must be pointed out. First all these considerations are based
on the assumption of perfectly crystalline systems. This may not be true in reality
and the effects of breaking the translational invariance must be considered. Irom a
qualitative point of view disorder will smear the Fermi surface and eventually produce
some states with large longitudinal momentum. This will improve the conductance
through the nanotube, even if its spin-polarization will be in general dependent on the
nature of disorder. An enhancement of conductance of nanotubes connected to gold
electrodes with increasing disorder has been recently observed experimentally [165].

Second, in contacts made from transition metals the simple parabolic band model
introduced here is largely non-realistic. The details of the band structure can play a
very important réle and the polarization of the current injected into the nanotube will
also depend on the coupling between the nanotube and the metal. Some attempts of
describing realistic nanotube/metal contacts have been recently made [166], although

a fundamental ab initio description is still absent.
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Figure 7.13: Fermi surfaces of an armchair carbon nanotube and of a magnetic transition metal. The
Fermi surface of the nanotube consists in two points Ay = ¢, svmmetric with respect to the I' point.
The Fermi surface of a transition magnetic metal consists of two spheres (for up and down spins)
whose different diameters depend on the exchange field. The three possible scenarios discussed in the
text: (a) ¢ < ki < ki, (b) kf <k < q, (c) kp < g < kf.
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8 Conclusions and Future Work

The discovery of GMR in magnetic metal multilayers [1, 2] has brought the electron
spin to the attention of the scientific community as an important degree of freedom
for electronic devices. Since then, a large amount of work has been done both to
understand the characteristics of spin transport and to fabricate new sensitive devices.
Several systems have been studied, including ferromagnetic multilayers, spin valves,
tunneling junctions and superconductor/ferromagnet junctions. The aim of this thesis
was to study the transport of these various systems and to understand their material
characteristics and dependencies. An efficient scattering technique has been developed,
which makes use of a real space Green’s functions calculation and a “decimation”
algorithm. The use of this technique, in combination with realistic spd tight-binding
models, allowed the investigation of transport in several metallic systems. The main

results of this work are as follows.

I have analysed the material characteristics which give rise to large GMR ratios in
disorder-free syvstems, and identified the main effects of disorder. From this analysis
Co-based multilayers emerge as the best candidates for devices design. The large energy
separation between the two spin sub-bands of Co, much larger than in Ni, is the key el-
ement to understanding this behavior. Nevertheless, it is clear that when the transport
is phase coherent, the whole structure is important and the role of the non-magnetic
metals used is crucial. In particular I have shown that spin-polarization of the current
in a magnetic multilayer can be reversed only by changing the non-magnetic spacer. In
view of this, Ni-based multilayers can also present large GMR ratios, in particular if

d-conductors (Pd, Pt, Rh and Ir) are used as spacers.

Similar results were obtained during the study of magneto-tunneling junctions.
In this case the polarization of the tunneling current was shown to depend on the
material forming the insulator. Moreover, in the case of disorder-free insulators such
a polarization can be either +1 or -1 for very thick barriers and can be reversed by

changing the insulator.

All this suggests that the spin-polarization of a magnetic structure does depend on
all the elements forming the structure and not only on the magnetic elements.
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In magnetic multilayers the GMR ratio and also the spin-conductance are oscillating
functions of the layer thicknesses. I have studied this problem using both the spd tight-
binding model and a simple free-electron like effective mass model with Kronig-Penney
potential to represent band offsets. The main result was to show that the conductance
oscillations depend both on the Fermi surfaces of the materials forming the multilayer

and on the multilayer structure itself.

Disorder was introduced in the calculations by considering a reduced s-d tight-
binding model. Several models of disorder were considered and the competition between
the enhancement of the spin-asymmetry of the conductance, and the reduction of the
mean free path due to disorder were analyzed. \loreover the coherent approach to
transport, going beyond the largely emploved resistor network model, enabled recent
experiments, in which the GMR ratio changes when the order of the layers is changed.

to be explained.

The interplay between superconductivity and ferromagnetism was also investigated.
I have shown that the use of superconducting contacts in CPP GMR measurements
drastically suppresses GMR. This, in strong contradiction to most of the experiments,
pointed out the role of spin-flip scattering at the interface with the superconductor.
[ have predicted that in the absence of spin-flip scattering at the interface, the GMR
ratio vanishes when superconducting contacts are used. This prediction deserves further

experimental investigation.

With the same technique, realistic F/S and N/S ballistic junctions have been stud-
ied. Detailed I-V" curve were calculated and in some cases the agreement with the
experiments is remarkably good. The main problem with these calculations is that the
results are very sensitive to the interface and hence an accurate model is fundamental.
This is particularly true in the case of materials with very different bulk properties
(lattice spacing, band structure...), and more sophisticated techniques to model the

interface will be welcome.

Finally the transport in Carbon nanotubes was investigated. The great interest in
the electronic properties of Carbon nanotubes is due to their peculiar one-dimensional
properties. These can be used for spin-injection and several other future applications.
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In this thesis I have concentrated on tle transport of multi-wall nanotubes, and inves-
tigated the effects of inter-tube interaction on the transport. An explanation of the
unexpected conductance quantization in units of €?/h is given, solving an old contro-

versy of the physics of nanotubes.

Several aspects deserve further investigation.

The study of the I-V curves of ballistic junctions highlighted the limit of the scat-
tering approach. In the case of heterojunctions made from very different materials a
simple description of the interface is not satisfactory. In this thesis the coupling be-
tween different materials has been taken as the geometric mean of the coupling of the
individual materials. This can be largely improved with a self-consistent description
of the interface including both ab initio methods and molecular dynamics simulations.
Moreover, recently several measurements on ballistic point-contacts made from mag-
netic metals have been carried out [167, 168, 169]. The modeling of these is of great
interest. but tight-binding methods with parameterization based on bulk materials are
not adequate. In a typical point-contact device very few atoms form the contact, the
lattice spacing may be very different from the bulk and the local magnetic moment can
vary from atom to atom. The description of all these aspects deserves a fundamental
approach and a combination of ab initio methods and molecular dynamics simulations
seems to be the most powerful way forward. Finally the same problem is encountered
in the study of metallic contacts with Carbon nanotubes. This is a very important
issue from both the fundamental and device design point of view. A detailed descrip-
tion of the C-Metal bond does not exist at the moment. This is expected to be crucial
for molecular electronics design and to understand the possibility of spin-injection into

carbon nanotubes.

Probably the largest challenge for the future is to transfer the present knowledge
of spin-transport in metallic system to semiconductors. This large field is called “spin-
tronics” [170, 171]. The use of semiconductors presents several advantages. From a
fundamental point of view the electronic properties of semiconductors are much more
controllable than those of metals and manipulations are possible both at the struc-
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tural and electronic level. From the point of view of applications spin-transport in
semiconductors can be readily transfered to present electronic device, which are almost
exclusively based on semiconductors. Several important breakthroughs have already

been made in both these directions.

Hybrid semiconductor-metal devices have been produced. In particular metallic
ferromagnetic thin films can be exchange coupled through semiconductors [172], and
spin-polarized current can be injected into semiconductors by proximity with metallic
magnetic contacts [173]. Nevertheless, hybrid structures are not completely satisfactory.
On the one hand they involve materials with very different resistances and usually the
spin-dependent component is small compared with the spin-independent one. On the
other hand large electric fields at the interfaces can be present. This creates large

spin-flip scattering at the interfaces, reducing the spin-polarization of the current.

The production of magnetic semiconductors based on low-temperature MBE tech-
niques [174, 175] has been demonstrated. (Ga,Mn)As can be deposited with a Curie
temperature of 110°K and this can be used in combination with non-magnetic semi-
conductors to build up future devices. Spin-injection into semiconductors by using
magnetic semiconductors has also been demonstrated [176], opening the way to new

“all-semiconductor” devices.

Finally the spin lifetime in semiconductors has been shown to be very long (~100ns)
[177, 178, 179] and electrons can be drifted over long distances (~100um) without losing
their spin direction [180]. The importance of this result is twofold. On the one hand it
shows that in semiconductors the two spin-fluid picture is largely applicable and that
spin-polarization can be conserved over long distances. This is crucial for constructing
efficient spin-valve-like systems with high sensitivity. On the other hand the long spin
lifetime paves the way for more exotic spin-systems, such as g-bit elements for quantum

computation.

From a theoretical point of view a lot of further work needs to be done. As far
as the materials are concerned the origin of ferromagnetism in diluted magnetic semi-
conductors must be understood. The RKKY interaction seems to be responsible for
ferromagnetism but at present there are no calculations of GaAs doped with Mn. For
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this purpose ab initio calculations are crucial and perhaps tne only reliable way to
fully understand these materials. Transport is also of interest and both tight-binding
methods and simple effective mass models could be used.

Probably the most difficult challenge is the study of the spin dynamics in nor-
mal and magnetic semiconductors [181]. Several mechanisms to explain the spin-
decoherence in semiconductors are known from the early sixties [182] and mainly in-
volve spin-orbit scattering [183, 184] and electron-hole exchange interactions [185]. The
analysis of these models from the viewpoint of the recent experiments involving het-

erostructures and a quantitative approach, is the next big step.

To conclude, I believe that although a great deal of progress has been made in
the past ten yvears towards the comprehension and use of spin dynamics in condensed
matter, our understanding is still insufficient. A major challenge has been set for the
future and only the combination of physics, chemistry, engineering and material science

will enable the spintronics dream to become a viable reality.
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A Explicit Calculation of retarded Green function
for a double infinite system

In this appendix I present the explicit calculation leading to the equation (2.29) for the
Green function of a double infinite svstem. The starting point is the equation (2.28)
S e, 22
gzzl = N : (:\1)
S, el <
with wy and wi two vectors to be determined. The expression of equation (A.1) to be
a Green function must be continuous for z = 2’ and must satisfy the Green equation

[(E - H)g]zz’ = 52:’ . (.\.2)

The first condition vields immediately to the relation

M A
> ¢k1W1Tg, => ¢E,W£1 , (A.3)
=1 =1
while the second gives
M
Z [(E - Ho)oww), + Hioge™w), + H 1op,e Fwl | =1. (A.4)

The task is now to re-write the vectors w’s as a function of the known vectors ¢’s and
their dual ¢’s. First note that by adding and subtracting to the (A.4) the expression
M .

W = z [H_lcﬁkle—Zk’wL] N (‘%5)
=1
it is possible to re-write the (A.4) in the following compact form
ZH_ (o™ w], — dge®wl | = -1, (A.6)
=1
where the definition of ¢ of equation (2.23) has been used. Now consider the continuity

equation (A.3) and multiply the left-hand side by the dual vector ngh and the right-hand

side by (;7),-%. It vields respectively to two expressions that relate wy to wg

M
Z [¢kh(pkl AI] = WIh ’ (A~7)

=

1

[qg;’ehqbklw,tl] = W}c,, . (A.8)

1

..
Il
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If now one substitutes the equations (A.7) and (A.8) into the equation (A.6) and uses
the continuity equation (A.3), the following fundamental relation is obtained

M M

>3 Hoy[gne e], — spe Mol | opwh =1, (A.9)

=1 j=1

from which it follows immediately
M . ‘o -1y o
[; H_,; ((%6—1 "G, — ¢E,e‘lk1¢,;l)] = ; ¢l'c,-w£j = Jz_l ¢kjw,tj . (A.10)

In the second equality of the equation (A.10) I have used the continuity equation (A.3).
Note that the equation (A.10) expresses explicitly the vectors w’s in term of the known
quantities o, ¢ and H_,. Therefore w’s may be computed by simply multiplying the

(A.10) for the correct dual vectors. By doing so I obtain

W"gh = &]Ehv—l N (.‘Xl].)

wl =of V. (A.12)

with V the operator defined in Chapter 2
M o o
V = Z H_l [ékle_lklézl - ¢}Ele—lkl¢}~l] . (.%13)
=1
The equation (A.13) concludes the demonstration. In fact by substituting the expres-
sions for w; and wy, into the starting Ansatz (A.1), one obtains the final expression for
the Green function of an infinite system
M) e gl vt 2 > 2
Gz — - - . (A14)
SM ppettgl vt 2 <y
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B Current Operator and the Rotation in the De-
generate Space

I this appendix I discuss the construction of the current operator and the rotation
needed to diagonalize it in the case in which the vectors ¢;’s are degenerate. Let start
by considering the current matrix at the position z. It can be easily expressed as the

time derivative of the density matrix at the same point z

Tult) = (00 (B.1)

where v, (t) is the value of the time-dependent wave-function at the position z satisfving

the time-dependent Schrédinger equation

0 , , /
Zaﬂ)z(t) = Hyv.(t) + Hy.41(t) + H_129. 1 (2) - (B.2)

By explicitly evaluating the time derivative in equation (B.1), and by using the Schrédinger
equation and its complex conjugate, the current matrix can be written in the following

transparent form

jz = \70 + jz~1——>z + Jz+1—>: s (B3)

where Jy. J.—1-. and J,41_,, are defined respectively as

Jo = —i [Hov:tf — v.vlHol (B.4)
Tecim: = —1 [H—IL’)z—lwi - Uzwi—lHl} ) (B5)
jz+l—>z = -1 [lez+lwi - ¢z¢1+1H—1] . (B6)

In the calculation of the relations above I simplified the time-dependent component
of the wave-function and expressed the current matrix by mean of the column vectors
introduced in Chapter 2 through the time-independent Schrdodinger equation (2.21).
Note that J, does depend only on the value of the wave-function at the position z,
while J,_,_, and J,+1-. depend also respectively on its value at the position z — 1
and z+ 1. Now evaluate the expectation value of the current by taking the trace of the

current matrix. It is easy to show that

Jz =Tr Jz =dJm1n: + Jz+1—>z s (B?)
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with
Jz—l-—)z =1 [L/)ZH—lwz—l - 'wz_lHl'L)z] =23 (UIH-lll/‘z_l) 5 (BS)
Jestoe = =i [V Hiteny — v How] = —23 (o How) (B.9)

In the calculation of the equations (B.8) and (B.9) I used the circular property of the
trace Tr AB = Tr BA. Note that the expectation value of J; vanishes. The relations
(B.8) and (B.9) have a clear interpretation. J,_,_,, and J,;,-,, represent the current
matrices for electrons propagating respectively to the right (right-moving) and to the
left (left-moving). Note that in the case of a translational-invariant system v, can be

written in the Bloch form of equation (2.22)

v, = ny*e* oy . (B.10)

If now one substitutes the (B.10) into the (B.8-B.9) it is easy to show that J, = 0 as
expected from the translational invariance.

The final part of this appendix is dedicated to show that the states of the form
U, = n,lc/Qe“‘"zdbk diagonalize the current. As anticipated in the Chapter 2 this is not
strictly valid in the case of different ¢, corresponding to the same k. Nevertheless in
such a case I will show that there is always a rotation in the degenerate space that
diagonalizes the current.

Consider for instance the right-moving current (all the following arguments can be

applied to the left-moving counterpart), and a Bloch state
v, = ey, (B.11)
1

and calculate the expectation value of the current for such a state. It easy to show that

this yields to the equation

Jooioe = =iy aag (o}, Hoagne™ — 6], Higre™] = 1> oo (6], (H_1e™ — Hyee) oy
! ! (B.12)

If one now assumes that the off-diagonal matrix elements vanish (¢;’s diagonalize the

current), then the states (B.11) diagonalize the current and curry unitary flux if the

normalization constant is taken to be

1
L= — . . : (B.13)
V11/2 ! [—zq&L(H-le_'k’ — Hyetkt) gy, |1/2
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with v defining the group velocity. Note that the states (B.11) with the normalization
constant (B.13) are the ones introduced in Chapter 2, which guarantee the unitarity of
the S matrix.

The final step is to demonstrate that 1), = e**¢, diagonalizes the current. To
achieve this, consider the Schrédinger equation evaluated on such a Bloch state and its
complex conjugate

(E - HO) ¢k, = (H1€ik’ + H—1€_ik1) ¢k1 ) (B~14)
Sk, (E — Ho) = gl (Hie™ + H_e™™) . (B.15)

By multiplying the first equation by d),tl, to the left and the second by ¢, to the right

one obtains the relation
of, Hoore ™ + ol Hiope™ = oL H_16p,e™™ + o} H e . (B.16)

The (B.16) is identically satisfied if k; = ki, also if ¢y, # &, . This occurs when one or
more wave-vectors k; are degenerate (ie there are many ¢y,’s for the same k;). In the

case this does not happen few algebraic manipulations yield to the relation
8k, Ho10p,e”™ = ol Hidpe™ . (B.17)

The last equality shows the cancellation of the off-diagonal terms in the expression of
the expectation value of the right-going current (B.12). This means that in the case in
which there is no degeneracy in k, the states ¢, diagonalize the current. Nevertheless
in the case in which degeneracy is present one can perform a unitary rotation in the
degenerate space and construct a new basis (v in which the current is diagonal. To
show explicitly how to obtain this rotation consider a set of vectors ¢ (u=1,....,N)

corresponding to the same wave vector & and construct the “reduced” N x NN current

matrix, whose matrix elements are
(JR)i; = 6L [i(H_1e7* — Hie™))o] . (B.18)

Since H_, = H, the “reduced current” is an hermitian matrix. Therefore it has always
a diagonal form. Moreover the transformation matrix &/ which diagonalizes J®, is a
unitary matrix. If D is the diagonal form of J® I can write such a unitary transformation
as
D=Uu'J*Uu. (B.19)
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It follows that the transformation U also transforms the basis ¢} into a “rotated” basis
¢k which diagonalize the current (note that the “reduced current” is simply the total
current introduced above calculated onto a subset of the total Hilbert Space). By

evaluating the equation (B.19) the explicit definition of ¢} is obtained

N NV
o= ol (B.20)
=1

The equation (B.20) completes the demonstration.

In this appendix I have shown that the Bloch states 1), = e***¢, diagonalize the
current in the case the vectors ¢, are not degenerate in k. Moreover in the case in
which this condition is not satisfied it is always possible to perform a rotation in the

degenerate space and to obtain a new set of vectors ¢ in which the current is diagonal.
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C Projector of the Retarded Green function onto
the corresponding Wave-function

In this appendix I want to show that the projector that maps the retarded Green
function for the double infinite system on the corresponding wave-function projects also
the total retarded Green function (system = scatterer + leads) on the corresponding

total-wave function. Consider the total Hamiltonian
H = Hy + Hscar » (Cl)

where Hj describes the leads and H,,; describes the scattering region. The Schrodinger
equation and the Green equation for the leads (without any scattering region) are
respectively

(E = Ho)¢o =0, (C.2)

with go the Green function, E the energy and Z the identity matrix. The corresponding

equations for the whole system (scatterer + leads) are
[E - (HO + Hscat)]v =0. (C4)
[E - (HO + Hscat)]G =T. (C5)
Furthermore v, vy and gy, G are related by the respective Dyson equations
V= (I - gOHscat)_le s (CG)
G = (I - gOHscat)—lgo . (C?)
Define now the projector P in such a way that
Yo=go- P. (C.8)

If one now uses the Dyson equation for ¢ (C.6) together with the definition of P, it
follows immediately

¥ = (T - goHscat) '90- P=G - P, (C.9)
where I used the Dyson equation for G (C.7). The equation (C.9) completes the demon-
stration and shows that P also maps G onto .
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D Tight-Binding Parameters and band fit at the
Fermi energy

In this appendix I tabulate all the parameters used throughout the thesis. The first

table corresponds to the on-site energies and the second contains the corresponding

hopping integrals. They are taken from reference [84].

Metal E, (eV) E, (eV) El (eV) E} (eV)
Co 2.931 14.025 -2.23 -0.66
Ni 4.713 11.699 -2.114 -1.374
Cu 2.992 10.594 -2.746 -2.746
Ag 2.986 9.127 -4.65 -4.65
Au 0.329 10.081 -3.82 -3.82
Pd 3.764 11.457 -2.05 -2.05
Pt 1.849 11.523 -2.61 -2.61
Ir 2.844 11.728 -2.211 -2.211
Rh 6.737 11.903 -1.84 -1.84
Pb -8.220 2.146 14.947 14.947
Al -1.868 5.852 15.233 15.233
INS -4.756 3.655 -15.640 -15.640
Table 4.1: On-site energies from reference [84]. INS is a model insulator.
Metal sso spo ppo | pp~w sdo pdo pdrw ddo | ddr« ddé
Co -1.23 | 1.856 | 3.23 |-0.019 | -0.517 | -0.5533 | 0.38 | -0.573 | 0.405 | -0.092
Ni -1.177 | 1.75 | 2.877 | 0.155 | -0.455 | -0.465 | 0.382 | -0.478 | 0.349 | -0.084
Cu -1.02 | 1.578 | 2.679 | 0.258 | -0.421 | -0.449 | 0.245 | -0.354 | 0.245 | -0.054
Ag -0.895 | 1.331 | 2.143 | 0.088 | -0.423 | -0.531 | 0.207 | -0.429 | 0.239 | -0.046
Au -0.909 | 1.323 | 2.431 | -0.224 | -0.642 | -0.871 | 0.258 | -0.676 | 0.357 | -0.062
Pd -1.083 | 1.541 | 2.329 | -0.073 | -0.665 | -0.893 | 0.289 | -0.709 | 0.392 | -0.072
Pt -1.066 | 1.523 | 2.541 | -0.335 | -0.843 | -1.165 | 0.333 | -0.933 | 0.48 | -0.08
Ir -1.163 | 1.65 | 2.548 | -0.408 | -0.987 | -1.376 | 0.383 | -1.144 | 0.573 | -0.092
Rh -1.184 | 1.62 | 2.321 | -0.126 | -0.763 | -1.038 | 0.326 | -0.858 | 0.464 | -0.083
Pb -0.37 | -0.557 | 1.464 | -0.089 | 0.725 | -1.384 | 0.134 | -1.847 | 1.345 | -0.365
Al -0.793 | -1.267 | 2.333 | -0.139 | 1.129 | -2.212 | 0.42 | -2.314 | 1.006 | -0.067
INS 0.068 | -0.129 | 0.110 | 0.0533 | 0.248 | -0.156 | -0.063 | -0.012 | 0.002 | 0.003

Table 4.2: Hopping integrals from reference [84]. INS is a model insulator.

All the tight-binding parameters are expressed in eV’ and the on-site energies are chosen

in order to have the Fermi energy Er = 0eV. In Chapter 6 I used a different set of
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parameters for Co, Cu and Pb. These have been obtained with a fitting algorithm
which allows to accurately fit a specific energy region. In what follows I will discuss
the fitting algorithm and present the computed band structure and the new set of
parameters.

The fitting code used for fitting band structures coming from ab-initio LDA cal-
culations is included in a large tight-binding package called OXON (OXford Order N)
[131]. The code can perform a multi-parameter fit in which all the tight-binding param-
eters can be varied. Alternatively there is the flexibility to perform the fit only varying
smaller subsets of parameters. The inputs for the fitting algorithm are the eigenvalues
E, (k) calculated for arbitrary k-points in the Brillouin zone. Such eigenvalues do not
need to be taken at high symmetry points in the Brillouin zone. Nevertheless it can
be useful to perform the fit at high symmetry points because it allows to check the
correct molteplicity of the bands. This may also improve the convergence of the fit. If
I call the provided eigenvalues E,(k) (the values one wants to fit) the function which

is minimized during the fit is the following

f(Em ':/') = Zan[En(k) - Ec(kv ;7‘)]2 ) (Dl)

—
~

where ¥ is the m-dimensional vector (m = 13 in the case of spd Hamiltonian with
Slater-Koster parameterization [81]) including the fitting parameters (7 =(Eg,E,.Eq,
$80.Spo......)), @, is the weight assigned to the different eigenvalues and E.(k,7¥) are
the computed eigenvalues. At a fixed k-point the bands must be fitted starting from
the lower energy (it is not possible to fit arbitrary taken E(k) points). If one wants to
have a good fit near the Fermi energy the weight must be large for eigenvalues close
to the Fermi energy (~ 1) and small elsewhere. The fit is not unique. The function
f(E,,7), at least for 3d transition metals, possesses a large number of local minima
and the convergence not always is easy to achieve. To avoid falling down into local
minima it is useful to start from an initial set of parameters as close as possible to the
final one. If the starting set is not particularly accurate the fit results to be very long.
In all the fit that I performed I used as starting set of parameters the one tabulated in
reference [84).

The following standard prescription has been followed in all the fits. Firstly I
calculate the band structure by varying only a single parameter every run. This is
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useful to get confidence with the band structure and to understand which are the
branches of the band structure modified by each individual parameter. Usually only
few parameters are important at the Fermi energy and may be useful to fit them
independently. Secondly I performed several multi-parameter fits starting from the
new set obtained during the previous runs. Finally I compared the new band structures
obtained with the ones that I wanted to fit and, if the agreement was not satisfactory.
I performed new multi-parameter fits.

The band structures I used as fitting bands come from LDA calculations, namely
from the Siesta code (Spanish Initiative for Electronic Simulations with Thousands of
Atoms) for Co and Cu, and from reference [84] for Pb. I usually considered 4 symmetry
points (I', L, X, ") in the fcc Brillouin zone, fitting 6 eigenvalues for each points. The
f function is thus evaluated over 24 eigenvalues.

The aim of the fit was to have a good description of the band structure within 4 eV’
around the Fermi energy. The eigenvalues in that energy window are calculated with a
weight o, = 1 and the weight is continuously decreased going toward higher and lower
energy. It has been usually convenient to neglect completely the description of the low
energy branch of the parabolic s-band at the I" point, and to adjust it later by varving
the sso parameter (it does not affect largely the region around the Fermi energy). The
main aspects that I reproduced are the correct curvature of the band and the correct
position of the band crossing at the Fermi energy. Examples of the band structures
for Cu, for the majority band of Co and for Pb are presented in figures D.1, D.2 and
D.3. It is clear that the agreement with the LDA band structures is quite good. The
minority band of Co gives more problems because of the strong d-component and the
presence of almost dispersionless bands at the Fermi energy. I reasonably reproduced
the minority band of Co by making a complete new fit with respect to the majority
band. The majority and the minority bands of Co do not differ only in the different
on-site energy of the d-bands, but all their tight-binding parameters are allowed to be
different. This is justified because I am not interested in properties of the bands at all
energies (ie the total magnetic moment) but only locally in the properties of the Fermi
surface. The new set of parameters are tabulated in the next two tables. Note that
for Pb a good description of the band structure can be obtained allowing a very large

value of E,;. This is consistent with the well known sp-characters of the conduction
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electrons of Pb at the Fermi energy.

TBFIT
LDA

-10

W L 1 X K

Figure D.l: Band Structure for fee Cu. The band obtained with the tight-binding fit (black line) are
compared with the ones obtained with «» initie methods (red line).
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Figure D.2: Band Structure for majority band of fee Co. The band obtained with the tight-binding
fit (black line) are compared with the ones obtained with abs initio methods (red line).
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Figure D.3: Band Structure for fee Pb. The band obtained with the tight-binding fit (black line) are
compared with the ones obtained with «b initio methods (red line).
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Figure D.4: Band Structure for minority band of fee Co. The band obtained with the tight-binding
fit (black line) are compared with the ones obtained with ab initio methods (red line).
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Metal Es (eV) E, (eV) Eq (eV)
Co' 6.652 14.874 -2.388
Co* 5.678 14.015 -0.661
Cu 2.992 10.594 -2.746
Pb -8.461 1.899 23.401
Table 4.3: New on-site energies fitted from eb-initio calculations
Metal Sso spo | ppo | pp7w sdo pdo | pdrm ddo | ddw | ddé
Co' -1.225 | 1.807 | 3.150 | -0.399 | -0.646 | -0.769 | 0.403 | -0.557 | 0.384 | -0.066
Co* -1.303 | 1.904 | 3.074 | -0.702 | -0.608 | -0.702 | 0.318 | -0.507 | 0.325 | -0.087
Cu -1.022 | 1.578 | 2.217 | -0.609 | -0.427 | -0.741 | 0.504 | -0.355 | 0.206 | -0.047
Pb -0.276 | 0.611 | 1.143 | -0.066 | -0.079 | 1.698 | -0.208 | -1.007 | 2.977 | -0.057

Table 4.4: New hopping integrals fitted from ab-initio calculations

168




E General Transfer Matrix Approach to the Band
Structure of an Arbitrary 1D Periodic Potential

In this appendix I introduce an efficient and easy way to calculate the band structure
for an arbitrary periodic Krénig-Penney potential. Consider the periodic potential of
figure E.1 where only a period is plotted. It is composed by four regions respectively
labelled with A, B, C and D. Each region N is characterized by an effective mass mx.

a potential Vy and a length Ix.

A B C D

Figure E.1: Krénig-Penney potential considered in the calculation.

I consider a monodimensional case reminding that in Chapter 4 I have shown that
this is sufficient to describe the conductance for a 3D superlattice. The Hamiltonian

to be considered therefore is

+17(2) . (E.1)

In each of the four regions the wave-function is simply a linear combination of plane-

waves of the form

Un(z) = axe™ ™7 4 bye N2 (E.2)

where the wave-vector ky is simply kx = /2mx(F — Vy)/h and E is the energy. The
total wave-function must be continuous, therefore the wave-functions defined in the
different regions (E.2) must be matched at the interfaces. Moreover the condition of
current conservation across the structure provides the following relation between the
first derivatives

1 diyyy

ms dz
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z2=29 Z=20



where I assumed that the boundary between the region N and A/ is locatad at z = 2.
Note that the condition (E.3) reduces to the usual continuity of the first derivative in
the case the effective masses are the same my = m;;.

The continuity of the wave-function and the condition (E.3) provide six equations

and to completely define the system the two following Bloch conditions must be con-

sidered
Yn(z0 + L) = e yn(20) (E.4)
har ) .
1 dyn _ 1 dyy gl (E.5)
my dz S (Y dz 2=20

where L =[5 + g +Ic+1p is the total length of a period and ¢ is the quasi-momentum.

The resulting eight equations can be written in a convenient matricial form

Mrv=0. (E.6)
The vector v is a column vector
Ca
_ CB
v=1 .. (E.7)
CDp

with

The matrix M is a 4 x 4 block matrix

My ~ Mpgéikla 0 0
0 Mgéikslatin) —Métkellatln) 0
M= 0 0 Mcéikc~(l,\+te+lc) _]\”[Déiko(tA+13+zc)
piaL 0 0 ]\‘{Déiko(lA+lB+lc+lo)
(E.9)
where the following 2 x 2 matrices have been introduced
. 1 1
M, = ( ko _ka ) ; (E.10)
kot
A ere 0
€ al — ( 0 e_ikua ) . (E.ll)

The secular equation for such a system can be explicitly calculated by solving det M =
0. Nevertheless, for numerical purposes it is convenient to map the calculation of the
determinant of M onto an eigenvalue problem involving only 2 x 2 matrices. This can
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be achieved by writing explicitly the equation (E.6) in term of the two-dimensional
column vectors cy and the matrices M, and é=®. The equation (E.6) is therefore
written as a system of four 2 x 2 matricial equations, which can be reduced by recursive

substitution to the equation

[An(In)ac(lc)im(ls)als) — Te* ] ea = 0, (E.12)

where T is the 2 x 2 identity matrix and jia(a) = M,é%2 21! or explicitly

o= (ke EEA). e

The equation (E.12) concludes the demonstration. In fact for a given energy E the
quasi-momentum ¢ can be calculated by calculating the eigenvalues of the following
matrix

S(E) = fip(lp)ic(lc)is(ls)itals) - (E.14)
Such eigenvalues have a form e’ and the dispersion calculated as ¢ = g(E) can be
evaluated for both real and imaginary ¢q. Note that, in complete analogy with respect
to the general solution of the dispersion relation in the tight-binding case (see Chapter
2 in particular equation (2.24)), the dispersion is calculated like ¢ = ¢(E) and not like
in the usual band structure approach E = E(q).

The final result of equation (E.12) can be generalized either to the case of arbitrary
potential and to energies below the barriers (one or many). In the first case it is possible
to divide the system in regions where both the potential and the effective mass are
constant. Suppose these regions are A;, Ay, As, ...... Ax. Following the same procedure
described above I define in every region a matrix iy, (Ix,,) (which depends only on the

effective mass, the potential and the length of such a region) and the dispersion relation

is calculated like in equation (E.12) where this time S(E) is given by the product

S(E) = fray(Iay)-w-fins (Lag)itay (Lay) s, (La,) - (E.15)

Note that if in the region N,, the energy is below the barrier, then kx, — ¢|kx, | and

the matrices jix,, (Ix,,) become simply

| " ] |k tanh(lk\,,.|l\)
i) = coshbsallso) { g isal o, i) ! '

(E.16)
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The expression (E.16) is particularly useful from a computational point of view because
all the eventual large divergences are factorized out of the matrix in the prefactor
cosh(|kx,, |Ix,.)-

Finally the above treatment can be further generalized to the calculation of the S
matrix for a non-periodic potential. I this case the Bloch conditions (E.4-E.5) are no
longer applicable but a relation between the coefficient vectors (E.8) of the first ca,

and the last cy, region of the potential can be calculated
CAaxy = ehikANL]\A'[‘;\l,ﬂAN_l(lAN_l) ....... [LA_Z (ZAZ)AAIAICAI = SI(E:)CA1 s (El?)

where L = Iz, + la, + ...... + la. If now one considers electrons traveling from the
right-hand side to the left-hand side of the potential the transmission ¢ and reflection

coefficient r are defined by the equations

0
Cay = ( ¢ ) ’ (Elg)

CAy = ( 7{ ) s (Elg)

and are related to the matrix elements of the matrix S’ of equation (E.17) through the

relations
S31
P === E.2
TS (E:20)
1
= — . 21
B (2D

Note that also in this case the divergent terms can be factorized out of the matrices.
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