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Abstract
Technological advances in device micro- and nano-fabrication over the past 

decade has enabled a variety of novel heterojunction device structures to be made. 
Among these, magnetic multilayers, superconductor/normal metal junctions and 
carbon nanotubes exhibit a rich variety of features, with the potential for future 
generations of electronic devices with improved sensitivity and higher packing 
density. The modeling of such structures in a flexible and accurate way, with a 
predictive capability is a formidable theoretical challenge.

In this thesis I will present a very general numerical technique to compute 
transport properties of heterogeneous systems, which can be used together with 
accurate spd tight-binding Hamiltonians or simpler models. I will then apply this 
technique to several transport problems in the mesoscopic regime.

Firstly I will review the material dependence of CPP GMR in perfect crys­
talline magnetic multilayers, analyze their conductance oscillations and discuss 
some preliminary results of magnetic tunneling junctions. In the contest of the 
conductance oscillations I will introduce a simple Kronig-Penney model which 
gives a full understanding of the relevant periods involved in the oscillations. I 
will then present a simple model, which can be used to study disordered mag­
netic systems and the cross-over from ballistic to diffusive transport. This model 
explains recent experiments on CPP GMR, which cannot be understood within 
the usual Boltzmann transport framework. Then I will present results for super­
conducting/normal metal and for superconducting/multilayer junctions. In the 
case of multilayers I will show that in both the ballistic and diffusive regimes the 
GMR is expected to vanish if a superconducting contact is added and go on to 
show why this is not the case in practice. Finally I will present features of ballistic 
transport in multiwall carbon nanotubes and show how the inter-tube interaction 
can, not only block some of the scattering channels but also re-distribute non- 
uniformly the current across the tubes. The results explain an old open question 
concerning ballistic transport in Carbon nanotubes.
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1 Introduction

1.1 The Spin Transport Era

Since 1988 with the discovery of the Giant Magnetoresistance (GMR) in metallic mag­

netic multilayers [1, 2] a revolution in the world of electronics has begun. GMR is the 

drastic change of the resistance of a multilayer composed of alternating magnetic and 

non-magnetic layers when a strong magnetic field is applied. This effect is the result 

of a change in the magnetic configuration of the multilayer. In fact the thickness of 

the non-magnetic layers can be tuned in such a way that the exchange coupling be­

tween magnetic layers through the non-magnetic layer makes adjacent magnetizations 

antiparallel [3, 4, 5, 6]. This results in a global antiferromagnetic (AF) configuration of 

the multilayer. If a magnetic field strong enough to rotate the magnetizations toward 

the field direction is applied, a ferromagnetic (FM) configuration may be achieved. This 

latter configuration turns out to possess a lower resistance, with the relative difference 

being larger than 100%.

The impact of this discovery was enormous, particularly for two reasons. First it 

paved the way for a new generation of devices and sensors with sensitivity far beyond 

the existing structures based on conventional anisotropic magnetoresistance (AMR). 

Secondly it brought the "spin” to the attention of the scientific community as a possible 

degree of freedom to use in electronics [7]. The first aspect has been largely explored. 

At present magnetometers based on GMR elements have been produced [8 , 9] and in 

the catalogues of the major computer manufacturers [10] it is possible to find high 

density hard-disks with reading heads based on GMR. The second aspect generated 

a renewed interest in the transport properties of magnetic systems and in the subtle 

interplay between spin and transport. Although the initial problem of, whether GMR 

was a surface or a bulk effect has not been completely solved, it was clear from the very 

beginning that a fundamental ingredient for GMR to occur was the total, or at least 

partial spin-polarization of the current in a ferromagnetic metal. The original idea of 

Mott [11] of the current as two independent spin-fluids, and the pioneering work of 

Tedrow and Meservev (for a review see reference [12]) on the spin-polarization of the 

current in transition metals have been rediscovered and GMR is now regarded as a new 

fundamental tool.
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The earlier GMR experiments [1, 2] have been conducted with the so-called current 

in the planes configuration (CIP) in which the current flows in the plane of the layers 

and in which the resistance is measured with a conventional four-probe technique. In 

these experiments the typical cross sections are of the order of 1 mm2 and the transport 

is mainly diffusive. A further important breakthrough was the possibility to study the 

transport of a multilayer with the current flowing perpendicular to the planes (CPP 

GMR). This has been achieved either by using superconducting contacts [13] or by 

shaping the samples to very small cross sections [14]. In these experiments the elec­

trons have to cross the entire multilayer over distances smaller than 1 ^/m. The spin 

filtering is more effective and the transport is largely phase-coherent. Estimates of the 

spin-polarization of the conductance were made and material specific modeling became 

possible (for a large review on CPP GMR see [15, 16]). Despite the indisputable success 

of the CPP GMR either as scientific tool and as building block for devices, it presents 

some disadvantages. Firstly, since the resistances involved are rather small there is 

the need to grow samples comprising many layers and to measure the resistance with 

sophisticated techniques. Secondly it is difficult to magnetically decouple the layers, 

large magnetic fields are needed and complex micromagnetic effects are unavoidable. 

Both these complications create severe limitations to possible applications. Moreover 

the complexity of the system (large number of interfaces often with different quality, 

presence of superconducting contacts, non-homogeneous disorder due to the confine­

ment, non-homogeneous distribution of the current across the cross-section) makes the 

polarization of an individual magnetic layer a quite indirect quantity and difficult to 

infer.

To overcome both these problems a new kind of device has been introduced, namely 

the tunnel spin valve [17, 18]. In this case only two magnetic layers with different 

coercive fields are employed. They are separated by an insulator and the different 

magnetic configurations (the FM and the AF) can be obtained by applying a magnetic 

field with variable intensity. This results in a tunneling magnetoresistance effect (TMR) 

analogous to that measured in GMR experiments. Because of the presence of only two 

magnetic layers this device gives a direct information on the spin-polarization of the 

current through the barrier. Nevertheless in this case the current is a tunneling current, 

whose polarization may differ from the one of the direct current measured with GMR



experiments. In particular the tunneling current is related to the DOS at the Fermi 

energy [17] while the direct current is also strongly dependent on the dispersion of the 

bands. Furthermore the insulator used is often non-crystalline and tunneling through 

impurity states in the barrier is important [19, 20]. Finally very recently it has been 

shown [21] that TMR junctions made by different insulators but the same magnetic 

materials possess different spin-polarizations, which may differ even in the sign. The 

importance of this result is twofold. On the one hand it shows that the definition of 

spin-polarization of the current is not unique and depends on the system measured, on 

the other hand it makes clear that to make reliable predictions real material modeling 

is needed.

Another attem pt to measure the spin-polarization of magnetic metals has been 

recently done using ballistic Ferromagnet/Superconductor junctions [22]. In such a 

case the quantity measured is the suppression of Andreev reflection [23] due to the 

ferromagnetism. The magnitude of the spin-polarization can be measured but not its 

sign. Typically the measured spin-polarization is not completely consistent with the 

one measured with other methods (GMR or TMR). This highlights the intrinsic impos­

sibility to isolate the measurement of the spin-polarization of an individual magnetic 

metal from the measurement of the spin-polarization of the whole structure in which 

it is embedded. In particular in the case of ballistic F/S junctions the transport is 

completely phase-coherent and the definition of the spin-polarization of an individual 

layer becomes meaningless.

From this brief overview it is clear that, despite the fact that spin-transport is not 

a new field, it continues to provide interesting problems and issues. To understand 

most of the present experiments (particularly with the continuous shrinking of the 

dimensions) both a phase-coherent description of the transport and an accurate material 

modeling capability is fundamental. Moreover a new generation of materials like carbon 

nanotubes and magnetic semiconductors is opening new and almost unexplored fields, 

where theoretical modeling can drive new experiments.

The main aim of this thesis therefore is to study and understand the main mech­

anisms governing the spin-transport in various metallic magnetic nanostructures, to 

develop the capability of making predictions of the fundamental material characters-



tics, and to predict and design new structures with novel properties. To this end I have 

developed a very flexible numerical calculation technique with which to study trans­

port properties. I will concentrate the attention solely on two-probe measurements 

and phase coherent systems. The technique is based on the Landauer-Biittiker formal­

ism [24], that will be briefly reviewed in the next section, and is capable to deal both 

with realistic material-specific systems and with more simple models. The first give 

important insights into the material properties and the second provide a more trans­

parent understanding of the main phenomena. I will present the main results obtained 

by either numerical simulations and simple models, keeping continuous contact both 

with experiments and other theoretical models. From this work a complete picture of 

the spin-polarized transport in different structure will emerge and novel effects will be 

predicted.

1.2 Landauer-Biittiker Formalism

One of the purposes of this thesis is to relate the transport properties of a magnetic 

system to its electronic structure. To this aim it is useful to map the transport calcu­

lation onto a scattering problem, then to solve the scattering problem including both 

band structures and structural details. Furthermore, since most of the measurements 

involving mesoscopic magnetic junctions are carried out at low bias and temperature, 

the Landauer-Biittiker [24, 25, 26] formalism is the most appropriate theoretical ground 

on which to build up a scattering theory. I this section I will briefly introduce the main 

idea of such a formalism. The final result will be a formula that relates the conductance 

of a system comprising a scattering region attached to two semi-infinite crystalline leads 

to the S  matrix of the correspondent scattering problem.

Consider the situation of figure 1.1 for a mono-dimensional system (I will later 

generalize the problem to higher dimensions). A scattering region is connected to 

two semi-infinite crystalline leads. The fundamental assumption is that the two leads 

inject completely non-correlated electrons into the scattering region (the leads act as 

a thermal bath). This means that the phases between the electrons that enter the 

scattering region do not possess any relation.

Moreover suppose the chemical potentials of the two leads to be respectively fi\ 

and fi2 with (/q -  /x2) —► 0+ (zero-bias limit and current flowing from left to right).

4



Figure 1.1: Scattering region connected to semi-infinite crystalline leads. An electron carrying unit 
flux is transmitted with probability T and reflected with probability R (T + R = 1).

The current I  emitted from the left lead is therefore

1 = eV (f̂ ) /̂/J ~ ̂
where e is the electronic charge, v is the group velocity and d n /d E  the density of states. 

Since d n /d E  = dn /dk  • d k /d E  =  dn/dk  • 1/vh and in one dimension dn /dk  =  1/27T 

the equation (1.1) can be written as

1 = 1 ^  1 - / - 2) .  (1-2)

From the (1.2). by considering the relation between the difference in chemical potential 

A// and the bias voltage AVr = eA fi, the conductance (T = //A T )  of the system is 

easily evaluated

r  =  ?  =  ^ '  (L3) 

where the quantum conductance Go =  2e2/h  has been introduced. Finally, since each 

carrier has a finite probability T  to be transmitted and to be reflected R  (with T  +  R =

1) by the scattering region sandwiched between the two leads, the total net current 

flowing from the left to the right lead is

/  =  ^ T (Ml -  ,/2) =  j T A V  . (1.4)

The equation (1.4) is the famous Landauer-Biittiker formula [24, 25, 26] which relates 

the conductance of a system to its scattering probability. Xote that in the case of a 

perfectly transmitting scattering region equation (1.4) reduces to equation (1.2). Xote
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also that equation (1.4) is for a single-spin system, in the case of spin-degeneracy this 

should be multiplied by a factor 2.

The above result may be generalized to the case of many scattering channels. To 

this aim consider the same physical situation of before, with the only exception that the 

number of independent scattering channels in the leads is N.  This takes into account 

for the degrees of freedom in the plane transverse to the direction of the current. The 

scattering channels, independent in the leads, may be scattered into each other in 

the scattering region. For instance, an electron propagating in the i-th channel in the 

left-hand side lead has a probability to be transmitted into the j-th channel of the right- 

hand side lead equal to 7}* =  \tji\2, where t is the transmission matrix. To extend the 

formalism valid in one dimension to the multichannel case the following assumptions 

are made. The electrons injected from the left-hand side lead feel the same chemical 

potential /zl5 and in the same way the electrons collected at the right-hand side lead feel 

the same chemical potential < H\. An electron coming from the scattering region 

and absorbed from the leads is instantaneously thermalized. The incident electrons 

have no phase-relation and hence they are incoherent. Under these assumptions the 

current injected into the leads in the j-th scattering channel is eVj(drij/dE)(fi 1 — /i2). 

The density of state is given by drij/dE  =  1/27ihvj, and this means that the current fed 

into the j-th channel is independent of the group velocity vj. The current transmitted 

from the j-th channel to the i-th channel is (e/h)Tjj(ni — //2) and the total current is 

obtained by summing over all the incoming and outgoing channels. This leads to a 

total conductance

In the second equality I have introduced the transmission matrix t which is related with 

the S  matrix through the relation

with r the reflection matrix and t' and r' the same quantities for electron approaching 

from the right. The equation (1.5) expresses the conductance of a scattering region 

sandwiched between to semi-infinite crystalline leads solely in terms of the 5  matrix of 

the system. This fundamental result is valid in general and forms a fundamental link 

with the scattering theory I will develop in the next chapter.

(1.5)

( 1.6 )
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1.3 T hesis O utline

This thesis is organized as follows. In Chapter 2 I will present a general scattering 

technique based on tight-binding Hamiltonians to calculate the transport coefficients 

in a two-probe measurement. I will provide, together with a general approach, a simple 

example where the calculation can be carried out explicitly. The central result of the 

technique is a semi-analytic formula which allows the direct calculation of the surface 

Green functions for semi-infinite leads. The treatment is very general and does not 

refer to any particular tight-binding models.

In Chapter 3 I will apply such a technique to the calculation of the conductance 

and the GMR ratio of magnetic multilayers and tunneling spin valves. I will use an spd 

tight-binding Hamiltonian with parameters fitted from ab initio calculations. As far as 

GMR is concerned I will analyze the dependence of the GMR ratio from the materials 

forming the multilayers and identify the main sources of scattering. The results are 

presented for Co and Xi as magnetic materials and a large number of 3d, 4d and bd 

transition metals as non-magnetic materials. From this analysis some prescriptions on 

how to maximize the GMR ratio will be given. As far as tunneling spin valves are 

concerned, the main result will be to show that in the case of a disorder-free barrier 

the polarization of the tunneling current through the junction depends strongly on the 

material characteristics of the insulator. This result will shed some light on a long- 

living debate on how to measure the polarization of a magnetic material. I will come 

back on this point in Chapter 6 , when discussing Ferromagnet/Superconductor ballistic 

junctions. Most of the material presented in Chapter 2 and Chapter 3 can be found in 

reference [27].

In Chapter 4 I will discuss the problem of conductance oscillations in transition 

metal multilayers. The calculation is motivated by a controversial experiment [28] in 

which the resistance of a multilayer oscillates as a function of the layer thicknesses 

with periods extending over many monolayers. The experiments have been carried 

out in the CIP geometry and I will make some predictions regarding analogous new 

experiments in the CPP geometry. First I will approach the problem using the realistic 

spd tight-binding Hamiltonian and then I will consider a simpler effective mass model. 

The main advantage of the latter is that it provides a full understanding of the nature

7



of .he oscillations and a complete analytic treatment is possible. Finally I will extend 

the effective mass approach to re-interpret the results obtained in Chapter 3, namely 

the dependence of the GMR ratio on the material characteristics. In this last part it 

will be clear what the role of the very different Fermi surfaces of the materials forming 

the multilayer is and a two-band model will emerge as the minimal model to capture 

all the phenomenology of transport in transition metal multilayers. Part of the results 

of Chapter 4 have been published in references [29, 30, 31].

All the calculations presented in the first four chapters deal with disorder-free sys­

tems, where translational invariance is always satisfied. In Chapter 5 I will introduce 

disorder and discuss its effects. Since the spd-Hamiltonian in the case of disorder leads 

immediately to unmanageably large matrices, I will introduce a simpler model, namely 

a two-band simple-cubic tight-binding model. Several kinds of disorder are introduced, 

including random on-site potentials, lattice distortions, vacancies and impurities. More­

over in the case of narrow multilayered wires [32] the effects of cross-section fluctuations 

and confinement will be considered. From a more technical point of view I will discuss 

the implementations of the scattering technique in the case of disorder and introduce 

a “diagrammatic” scheme ( “decimation diagrams”) for the treatment of the scattering 

region. From this chapter two main results will emerge. First I will be able to describe 

the crossover between the ballistic, diffusive and localized regime of the conductance in 

magnetic multilayers. Secondly I will show in which limit a fully diffusive approach to 

transport, based onto the Boltzmann equation [33, 34], breaks down. This last result 

is very important to the interpretation of very recent experiments [35, 36] in which an 

extremely long electronic mean free path requires a phase-coherent description of the 

transport. Some of the results of this chapter are published in references [37, 38].

Chapter 6 is focused on the introduction of superconducting contacts in two-probe 

GMR experiments and on the description of ballistic Normal/Superconductor (N/S) 

and Ferromagnet/Superconductor (F/S) junctions. The main result of considering 

superconducting contacts in a two-probe GMR experiment is to completely suppress 

the spin-polarization of the current, resulting in a vanishing GMR ratio. This dramatic 

suppression raises interesting questions regarding existing experiments, where the role 

of disorder and spin-flip scattering will turn out to be crucial. Finally ballistic N/S and 

F /S  junctions will be considered. As well as tunneling spin valves they are an important

8



probe into the rpin-polarization of the current in ferromagnetic transition metals, and 

therefore an accurate model is of interest. I will show that a detailed description of 

the Fermi surfaces of both the normal and the superconductor metal can reproduce the 

typical I -V  curves found in experiments in the case of X/S junctions. Conversely the 

inclusion of spin-flip and of enhanced magnetic moment at the interface is fundamental 

to a description of the F /S  junctions. Some of the results can be found in references 

[39, 40).

The final chapter lies somewhat outside the structure of the previous work. I will 

consider transport in carbon nanotubes where to-date only one experiment has shown 

spin-polarized transport [41]. Most of the chapter will be devoted to the calculation 

of the transport properties of multi-wall nanotubes, where the inter-tube interaction 

may change completely the transport properties [42, 43] with respect to individual 

isolated tubes. This result explains a recent experiment in which multi-wall nanotubes 

show conductances respectively of 1/2 and 1 quantum conductance [44]. From a more 

technical point of view I will introduce a way to deal with a periodic system in which 

the hopping matrix between adjacent cells is singular. The use of the “decimation 

diagrams" will be very useful to give prescriptions on how to construct the unit cell 

and how to make the contacts with the scattering region. Important considerations 

on the distribution of the chemical potential across the structure and the efficiency of 

the electrons feeding from the reservoirs will also be discussed. Finally I will consider 

the possibility of the injection of spin-polarized electrons into carbon nanotubes by 

contacting the tubes with magnetic metals. The interplay between the spin-asymmetric 

Fermi surface of a magnetic metal and the point-like Fermi surface of a carbon nanotube 

can make spin-injection possible. Moreover the absence of disorder at microscopic 

level and of an efficient spin-flip process in carbon nanotubes are very promising for 

long-living spin states, with possible applications in magnetoelectronics and quantum 

computation. Finally in Chapter 8 I will make some conclusions.

9



2 A N ew  Scattering Technique

2.1 A Sim ple exam ple

In the introduction I pointed out that the great advantage of the Landauer-Biittiker 

approach to transport [25, 26] is to map the calculation of the conductance onto a 

scattering problem. This is strictly valid in the limit of small bias and temperature, a 

condition that is matched in a typical MR experiment. In this chapter I will develop a 

novel technique to evaluate the transport coefficients of a heterostructure described by 

a tight-binding model. The technique is general and can deal with multi-orbital models 

with a large number of degrees of freedom.

In a scattering problem the important elements are the asymptotic wave-functions 

far from the scattering region ( “quantum channels” in the Landauer-Biittiker formal­

ism) and the scattering potential. Information regarding the value of the wave-function 

within the scattering region are not important, because the asymptotic states deter­

mine the current. Therefore it is natural to divide the calculation of the S  matrix 

into three fundamental steps: 1) the calculation of the asymptotic states in the leads,

2) the construction of an effective coupling matrix between the surfaces of the leads 

(the scattering potential), 3) the evaluation of the S  matrix. From a numerical point 

of view it is convenient to decouple the first and the second stages, because the same 

leads can be used with different scatterers, saving the computation time of re-evaluating 

the asymptotic states. This point will be more clear in Chapter 5, when disorder will 

require a large ensemble average and hence the evaluation of the S  matrix for many 

scatterers.

Before going to a detailed analysis of the general scattering technique, I present 

a simple example in which the main ideas are introduced. Consider two semi-infinite 

linear chains described by a tight-binding model with one degree of freedom per atomic 

site (see figure 2.1). The on-site energy of the left- (right-) hand side linear chain is set 

to zero (f0) and the hopping is 71 (72). Xote that setting one of the on-site energies to 

zero is completely general because the system is invariant under a total energy shift. 

The left-hand side chain is terminated at the atomic position I = 0 and the right-hand 

side chain starts at the position / =  1. The chains are coupled with a coupling element

Q.
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Figure 2 .1: L inear tight-b inding chains connected th rough the hopping a .  eo and 0 are the values of 
the on-site energies and  71 and 72 the hopping param eters.

For an infinite chain w ith on-site energy eo and hopping 7  it is easy to show th a t 

the wave-function is sim ply a plane-wave with m om entum  k given by the tight-binding 

dispersion relation

E  =  eo +  2 7  cos k , (2.1)

w ith E  the  energy. In a scattering  problem  it useful to consider the retarded  Green 

functions instead of the wave-functions. For the above infinite linear chain it is easy to 

show th a t the retarded  Green function is sim ply (see for exam ple reference [45])

eik\j-l\

• - T S T -  (2'2)

w ith v the group velocity given by

dE
hv =  —— =  —2 7  sin k . (2.3)

ok

The equation (2.2) describes the Green function of an infinite system . In the scattering 

problem  one is interested in knowing how an electron approaches the scattering  region, 

therefore one requires the Green function for a sem i-infinite system  evaluated at the 

term inating  surface. It is possible to  com pute this from the retarded  Green function 

for the double-infinite system  of equation (2 .2 ) and by using the appropriate  boundary 

conditions. Suppose the infinite system  is term inated  a t the position i =  z0 — 1 in such 

a way th a t the site i =  iQ is absent. Therefore the Green function gji w ith source at 

i =  I <  io m ust vanish for j  =  i0 (ie the plane-waves are approaching the boundaries 

from the left). This is achieved by adding to  the expression in equation (2.2) the 

following wave-function
p —ik( j—2io+l)

= — n s r -  (2-4)
and noting th a t  adding a wave-function to a Green function results in a new Green

function w ith the same causality. Finally the surface Green function can be obtained



by taking the value o f g -+- xp at the boundary of the scattering region j  =  I =  io — 1

An identical expression can be derived for the surface Green function of a semi-infinite 

linear chain starting at i =  i0 and extending to infinite to the right. Going back to the

with obvious notation for ki and k2. Note that g has vanishing off-diagonal terms, 

which reflects the fact that the two chains are decoupled.

Let us now switch on the coupling a between the two chains. This can be easily 

done by solving the Dyson equation

where G is the new surface Green function for the two coupled chains and V is a 2 x 2 

matrix with a  in the off-diagonal positions and zero elsewhere. In the present example 

with a little algebra one obtains

Before continuing with this pedagogic example it is useful to summarize the struc­

ture of the calculation done so far. The starting point was to evaluate the surface 

Green function for two decoupled leads. This has been achieved by considering an in­

finite system and by using the appropriate boundary conditions. Then the total Green 

function for the coupled leads has been calculated by solving the Dyson equation. The 

coupling between the lead surfaces enters into the calculation only at this point. This 

approach is still valid in the case in which the scattering region extends over many 

atomic planes and includes a large number of degrees of freedom. In fact I will show in 

the following sections that it is always possible to reduce the Hamiltonian describing 

the scattering region to an effective coupling matrix Heff between the surfaces of the 

leads. In a general case such a matrix will also include diagonal terms which represent 

the self-coupling within the surfaces.

9io~ 1 ,*o — 1
7

(2.5)

initial problem, the surface Green function for two chains facing through the sites 2 =  0 

and i =  1 but decoupled (a = 0) is simply

( 2 .6 )

G = (g- l - \ T l , (2.7)

( 2 .8 )



The remaining task is to extract from the total Green function G the 5  matrix. 

First note that the general wave-function for an electron approaching the scattering 

region from the left has the form

/ <  0
(2.9)

- I >  1V2

where the transmission t and reflection r coefficients are introduced and where the 

incoming wave-function has been normalized in order to carry unit flux (open 

scattering channel). This last convention guarantees the unitarity of the S  matrix |£|2 +

|r |2 =  1. The final step is to project the total Green function G over the wave-function

of equation (2.9). It is possible to show (see Appendix C) that the projector that 

projects the retarded Green function for an infinite system over the unitary flux wave- 

function projects also the total Green function G over the (2.9). Such projector 

is easily calculated through the relation
ikl

= ^  for < * } ,  (2-10)

and is simply

P(j)  = ieikjv l/2 . (2.11)

Now I can now use P(j)  to extract t and r. In fact by applying P(j)  to Gij and by

taking the limit / —> 0 I obtain

G„0P (0) =  ^  +  ^ ,  (2.12)

from which the reflection coefficient is easily calculated

r =  G00P (0)DI1/2 - l .  (2.13)

In the same way the transmission coefficient is simply

t =  G WP(0)t>21/2e - ‘*J . (2.14)

Note that the same technique can be used to calculate t and r for electrons incoming 

the scattering region from the right.

To conclude this section I want to summarize the calculation scheme presented in 

this example. First I calculated the Green function for an infinite system and from it
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derived the surface Green function for the corresponding semi-infinite leads by using 

the appropriate boundary conditions. Secondly I switched on the interaction between 

the leads by solving the Dyson equation with a given coupling matrix between the two 

lead surfaces. Finally I calculated the S  matrix by introducing a projector that maps 

the total Green function onto the total scattered wave-function. The advantage of this 

technique is twofold. On the one hand the calculation of the Green function for the 

infinite system enables us to obtain useful information regarding the leads (density of 

state, conductance) and on the other the scattering region is treated separately and 

added to the leads only before evaluating the 5 matrix. As noted above this latter 

aspect is particularly useful in the case in which a large number of computations of 

different scatterers with the same leads are needed.

In the following sections I will generalize this approach (previously introduced in 

the case of cubic lattice [46]) to an arbitrary tight-binding Hamiltonian.

2.2 Structure o f the Green Functions

In this section I discuss the general structure of the Green function that I will use 

for calculating the S  matrix. To do so consider a two-dimensional nearest-neighbour 

simple-cubic model with a tight-binding Hamiltonian. The system is briefly sketched 

in figure 2 .2. Consider z to be the direction of the transport and x  the transverse 

direction. Let the system be infinite in the direction of transport and consist of M  

atomic sites in the transverse direction. I assign as before the on-site energy to be e0, 

and the hopping between nearest neighbours 7 .

The Green function for such a system can be shown to be

1 ' 4^  f  2 \  ■ f  n7[ \  ■ (  n7r A e,7:"{E)|2" r/| ,0 1 ^9 (*, * ; * , * )  =  ! :  { j ^ )  sm x )  sm ( — * j  , (2.1o)

where k*(E) is the longitudinal momentum that satisfies the dispersion law

E  = €0 + 27 

and r ” (E) is the group velocity

cos
G \7 T i ) +C0S*"(£ )] ’ (2'16)

d E ^ = h v ? ( E ) .  (2.17)

14



Figure 2.2: 2D Simple cubic lattice.

Since (2.15) will be the starting point for the construction of a more general Green 

function in the next section, it is important to understand its structure. The expression 

of equation (2.15) can be schematically written

M  i k ? ( E ) \ : - z ' \

g ( z , x : z \ r ' )  =  £  3n(x) nlFr - U * ' )  • ( 2 - 1 8 )

; , = i  inv: \£,)

g(z. .r: z '. .r') consists of the sum of all the allowed plane-waves clk^ E ẑ (with k”(EYs 

l)oth real and imaginary) weighted with the corresponding transverse wave-function 

dn(.r) of momentum k” (k™ = nir/(M +  1) in the present case) with k”(E) defined by 

the generalized dispersion relation

E  = E ( k l k * )  . (2.19)

Since the transport is in the z direction it is easy to identify the plane-waves 

with the scattering channels defined in the previous section. Xote that in the case of 

a one-dimensional linear chain the equation (2.18) reduces to the expression given by 

equation (2.2), where the Q's are only numbers.

The possible scattering channels can be divided into four classes. The left-moving 

open scattering channels Im (right-moving open scattering channels rm) are propagating 

states (knz is a real number) having negative (positive) group velocity. Similarly the left- 

decaying closed scattering channels Id (right-decaying closed scattering channels rd) are 

states whose wave-functions have a real exponential decay, with /r" possessing a negative* 

(positive) imaginary part. Xote that in the case in which time-reversal symmetry is



valid, the number of left- and right-moving scattering channels must be the same, as 

well as the number of left- and right-decaying scattering channels. Schematic pictures 

of all the scattering channels is given in figure '2.3.

lm z1 rm
Figure 2.3: Green function structure, lm (rm) denotes the left- (right-) moving channels, Id (rd the 
left- (right-) decaying channels.

Clearly there are M  scattering channels and the retarded Green function of equation 

(2.15) is obtained by by summing up the channels, either left- and right-moving and 

left- and right-decaying, with their relative transverse wave-components. This structure 

is the starting point for a more general approach that will be presented in the remaining 

sections of this chapter.

2.3 G eneral Surface G reen Function

In this section I present the first step of a general scattering technique, namely the 

construction of the surface Green function of the arbitrary crystalline leads. An impor­

tant feature of this section is that the Green function will be defined by a semi-analytic 

formula, which avoids the adding of an infinitesimal imaginary part to the energy. As 

explained in the first section of this chapter, to compute the Green function for a semi­

infinite crystalline lead of finite cross-section I first calculate the Green function of a 

doubly infinite system and then derive the semi-infinite case by applying the boundary 

conditions at the end of the lead. To this end, consider the doubly infinite system 

shown in figure 2.4.

If 2 is the direction of transport, the system comprises a periodic sequence of slices,
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H,
Ho

H, H!
Ho Ho

H,

Figure 2.4: Infinite system formed from periodically repeated slices. Ho describes the interaction 
within a slice and H\  describes the coupling between adjacent slices.

described by an intra-slice matrix Ho and coupled by a nearest neighbour inter-slice 

hopping matrix H\. The nature of the slices need not be specified at this stage. They 

can describe a single atom in an atomic chain (as in the example of the introduction), an 

atomic plane or a more complex cell. For such a general system, the total Hamiltonian 

H  can be written as an infinite matrix of the form

/
H0 Hx 0

H =
H_ i Ho Hx 0

0 H —x Ho H x 0
0 0 H-x Hq Hx 0

( 2 .20)

v ...........................................................................

where Hq is Hermitian and H-\  = H\.  The Schrodinger equation for this system is of 

the form

HoVz +  H\ijz+i + H - i0 r- i =  Eipz , (2-21)

where is a column vector corresponding to the slice at the position z with z an integer 

measured in units of inter-slice distance. Let the quantum numbers corresponding to the 

degrees of freedom within a slice be p = 1, 2 , . . . ,  M  and the corresponding components 

of ipz be ip%. For example in an spd tight-binding Hamiltonian, these enumerate the 

atomic sites within the slice and the valence orbitals (spd) at a site, while in the example 

at the beginning of this chapter p =  1 and ipz = is a c-number. The Schrodinger 

equation may then be solved by introducing the Bloch state,

ipz = nk^ e lk^z4>kx , (2 .22 )

1 /2where is a normalized M-component column vector and nk' an arbitrary constant. 

Note that throughout all the thesis I will use the symbol “J_” to indicate the direction

17



of the current and the symbol “||” to label the transverse plane. Substituting (2.22) 

into the equation (2 .21) gives

(Ho + H ieik± + -  E) <j>k± = 0 . (2.23)

The task is now to compute the Green function g of such a system, for all real energies, 

using the general Green function structure discussed in the previous section. For a given 

energy E , the first goal is to determine all possible values (both real and complex) of 

the wave-vectors kj_ by solving the secular equation

det(ff0 +  H lX +  H . i /x  - E )  = 0 , (2.24)

where \  — e'k±• Note that the equation (2.24) reduces to the well known formulae of 

equations (2 .1) and (2.16) respectively for a linear chain, and for a two-dimensional 

simple-cubic lattice.

In contrast to conventional band-theory, where the problem is to compute the M  

values of E  for a given (real) choice of k±, my aim is to compute the complex roots 

X of the polynomial (2.24) for a given (real) choice of E  (remember that both open 

and closed scattering channels enter in the definition of the Green function). Consider 

first the case where H i is not singular. Note that for real k±, conventional band-theory 

yields M  energy bands En(k±), ji =  1 with En(k± -1- 27r) =  En(k±). As a

consequence, for a given choice of E, to each real solution k± = k, for which the group 

velocitv

* - i T
is positive (right-moving channel), there exists a second solution A:_l =  A: for which the 

group velocity

1 d E { k )  (2 2 6 ) 
Vl = h ^ r  (2-26)

is negative (left-moving channel). In the simplest case, where Hi =  / /_ i, one finds 

k =  — k. I also note that to each solution k± the Hermitian conjugate of (2.23) shows 

that k*± is also a solution. Hence to each right-decaying solution k possessing a positive 

imaginary part, there is a left-decaying solution k with a negative imaginary part. For 

the purpose of constructing the Green function, this suggests dividing the roots of (2.23) 

into two sets: the first set of M  wave-vectors labeled ki (I =  1 correspond to
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right-moving and right-decaying plane-waves and the second set labeled kt (I = I,..., M)  

correspond to left-moving and left-decaying plane-waves.

Although the solutions to (2.24) can be found using a root tracking algorithm, for 

numerical purposes it is more convenient to map (2.23) onto an equivalent eigenvalue 

problem by introducing the matrix W

where 1  is the M  dimensional identity matrix. The eigenvalues of % are the 2M  roots

eigenvectors 0^. It is clear that in the case in which H i is singular, the matrix W. 

is not defined. Since Hi describes the coupling between unit cells, it can be singular 

if some of the degrees of freedom of adjacent cells are not coupled. Furthermore it

two-dimensional simple-cubic lattice with one degree of freedom per site. Consider an 

infinite strip two atomic site wide. If the coupling extends to second nearest neighbours 

and is the same for the first and the second nearest neighbors, then Hi is a 2 x 2 matrix 

in which all the elements are the same, therefore it is a singular matrix. Nevertheless 

in most of the practical cases Hi is not singular, or can be reduced to a non-singular 

matrix. In fact it is possible to remove the singularities of Hi with a procedure com­

pletely analogous to the one used for computing the effective coupling matrix of the 

scatterer. More details of this procedure are given in Chapter 7, where dealing with 

carbon nanotubes.

To construct the retarded Green function gzz> of the doubly infinite system, note 

that except at 2 =  z', g is simply a wave-function and hence must have the form

where the ^/-component vectors w*, and are to be determined. At this point it 

is important to observe that the structure of the Green function of equation (2.28) is 

identical to the one discussed in the previous section, and that the vectors 0 * and w* 

(equivalent to fin and /3*) include all the degrees of freedom of the transverse direction. 

Since gzz> is retarded both in 2 and z', it satisfies the Green function equation corre­

sponding to (2.21) and is continuous at the point z = z' (see Appendix A for a detailed

(2.27)

eifc/, eik, an(j tjjg Upper M  components of the eigenvectors of H  are the corresponding

can also be singular if there is “over-coupling” between cells. Suppose one considers a

9zz> =  < (2.28)
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calculation), one obtains

E,Ai i  V - '  z < z1
9zz> =  s (2.29)

The matrix V is defined by

V =  £  H-,  [0 , , e - 'S l ,  -  <t>h e ~ H \ ,] , (2.30)
f=l

and the set of vectors ^  ) are the duals of the set <j>kf {<f)kl), defined by

= blh , (2.31)

from which follows the completeness conditions

M  M

= = 1 .  (2.32)
/ = 1  ( = 1

Equation (2.29) is the retarded Green function for a doubly infinite system. For a 

semi-infinite lead, this must be modified to satisfy the boundary conditions at the end 

of the lead. Consider first the left lead, which extends to 2 =  —oc and terminates at

z = zo — 1. such that the position of the first missing slice is z =  z0. To satisfy the

boundary condition that the Green function must vanish at z = Zq. one must subtract 

from the right hand side of (2.29) a wave-function of the form

M

X(z ' ,Zo)  =  5 > t>ef*‘2Aw(*',.so) , (2.33)
l h

where A/j/fz', 20) is a complex matrix, determined from the condition that the Green 

function vanishes at zo, which yields

A 2(z',Z0) =  A*/(z,Z0) =

l , h = l

(2.34)

For the purpose of computing the scattering matrix, I will require the Green function 

of the semi-infinite left-lead gzz>{zo) =  gzz> — A z(z',zo) evaluated on the surface of the 

lead, namely at z =  z' =  z0 — 1- Note that in contrast with the Green’s function
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of a doubly infinite lead, which depends only on the difference between 2 and 2', the 

Green’s function g of a semi-infinite lead for arbitrary 2, z' is also a function of the 

position zq of the first missing slice beyond the termination point of the lead. Writing 

9l  = 9(zo-\)(z0-\)(zo) yields for this surface Green function

i - T . K e ikhj>hl,h
V-1 (2.35)

Similarly on the surface of the right lead, which extends to 2 =  +oc, the corresponding 

surface Green function is

9 R =
l,h

v-1, (2.36)

which has been obtained by subtracting from g the following wave-function

Z q )  = AZ'(z, Z q )  =

M 

/,/i=1
(2.37)

and considering gR = <7(*0+i)(Zo+i)(2o) (zq -I- 1 is the position of the first slice of the right 

lead).

The expressions (2.35) and (2.36), when used in conjunction with (2.27) form a 

versatile method of determining lead Green functions, without the need to perform k- 

space integrals or a contour integration. As a consequence of translational invariance of 

the doubly infinite system, the surface Green functions are independent of the position 

of the surface 20. Furthermore as noted below, in the case of different vectors fa  

corresponding to the same real A:-vector k , the current operator is not diagonal. Hence 

it is convenient to perform a unitary rotation in such a degenerate sub-space to ensure 

the unitarity of the 5-matrix. I will discuss in more details such a point in the section 

regarding the 5  matrix and in Appendix B.

2.4 The effective H am iltonian o f the scattering region

I have shown in the introduction that given the coupling matrix between the surfaces of 

the external leads, the Green function of the scatterer plus leads can be computed via
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Dyson's equation. Generally the scattering region is not simply described by a coupling 

matrix between surfaces, but is a complex Hamiltonian involving all the degrees of 

freedom of the scatterer. Therefore it is useful to develop a method that transforms 

such a detailed Hamiltonian into an effective coupling matrix between the two surfaces. 

For structures, which possess a quasi-one dimensional geometry and a Hamiltonian 

which is block tri-diagonal, this can be achieved by projecting out the internal degrees 

of freedom of the scatterer. In the literature, depending on the context or details 

of implementation, this procedure is sometimes referred to as “the recursive Green 

function technique” or “the decimation method” , but is no more than an efficient 

implementation of Gaussian elimination.

Consider a scatterer composed on *V — 2M  degrees of freedom. Then the Hamilto­

nian for the scatter plus semi-infinite leads is of the form H  =  Hi~\- H r + H,  where Hi,  

H r are the Hamiltonians of the left and right isolated leads and H  a Ar x N  Hamil­

tonian describing the scattering region and any additional couplings involving surface 

sites of the leads induced by the presence of the scatterer. The aim of the decimation 

(i.e. recursive Green function) method is to successively eliminate the internal degrees 

of freedom of the scatterer, which I label i, i = 1,2...., N  — 2M,  to yield a (2i\/) x (2M)  

effective Hamiltonian Heff. After eliminating the degree of freedom i =  1, H  is reduced 

to a (X  — l)x(*Y — 1) matrix with elements

In this expression, H l(E)  (Hr (E)) describes intra-surface couplings involving degrees 

of freedom belonging to the surface of the left- (right-) hand side lead and H£R(E) =

E - H u
(2.38)

Repeating this procedure I times one obtains the “decimated” Hamiltonian at Z-th order

(2.39)

and after N  — 2M  such steps, an effective Hamiltonian H& = H N 2A/ of the form

He«(E) (2.40)

H ^ E ) '  describes the effective coupling between the surfaces of the left-hand side and 

the right-hand side leads.
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Since the effective Hamiltonian is energy dependent, this procedure is particularly 

useful when one wishes to compute the Green function at a given energy. It is also 

very efficient in the presence of short range interactions, because only matrix elements 

involving degrees of freedom coupled to the decimated one, are redefined. This latter 

aspect is very useful in the case that the scatterer has some periodicity and allows clever 

numerical optimizations. More about this will be discussed in the case of disordered 

multilayers in Chapter 5.

Since the problem now involves only (2M)x(2M)  matrices, it is straightforward 

to obtain the surface Green function for the whole system (i.e. the scattering region 

attached to semi-infinite leads) by solving Dyson’s equation

with gL and gR given by equations (2.35) and (2.36).

2.5 The S  m atrix and the transport coefficients

To extract the transport coefficients from the Green function, I generalize the method

scattering channels. The same method has been used in the introduction of this chapter 

to calculate the S  matrix for two linear chains. For a system of Hamiltonian / / ,  

the S  matrix is defined to connect incoming to outgoing propagating states in the 

external leads (see equation (1.6)). If k, (k') are real incoming (outgoing) wave-vectors 

of energy E,  then an incident plane-wave in one of the leads, with longitudinal wave- 

vector k, will scatter into outgoing plane-waves k' with amplitudes Sk>k(E,H). If all 

plane-waves are normalized to unit flux, (by dividing by the square-root of their group 

velocities) then provided the plane-wave basis diagonalizes the current operator in the 

leads, the outgoing flux along channel k' is \sk>k(E, H )\2 and S  will be unitary. If H  

is real, then S  will be symmetric, but more generally time reversal symmetry implies 

sk>k{E,H) = Skk'{E, H*). For convenience, if k ,k '  belong to the left (right) lead, then 

I define reflection coefficients via tv* =  Sk’k (f'k’k =  sk’k), whereas if k ,k '  belong to

(2.41)

where

(2.42)

described in reference [47] (in particular see A.26 of [47]) to the case of non-orthogonal
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left and right leads respectively (right and left leads respectively) I define transmission 

coefficients tk>k =  Sk'k {t'k>k = sk'k)-

To extract the transport coefficients, consider the probability current for an electron 

in the Bloch state (2.22)

Jk = nk±vk± , (2.43)

where nk± is the probability of finding an electron in a slice and Vk± is the corresponding 

group velocity. It follows that the vector

&  =  , (2.44)

is normalized to unit flux. To compute the group velocity note that if |^jt) is an

eigenstate (2.20), whose projection onto slice z \s iftz, then

=  =

= ~  [ 4  (Ho + H xe‘k +  H . , e - ik) 0k] =  (2.45)

=  (H,e ik -  H . te - ik) 4>k

(2.46)

where the last step follows from equation (2.23) and normalization of <j)*.

It can be shown that the states (2.44) diagonalize the current operator only if 

they correspond to distinct k values. In the case of degenerate fc’s, the current is in 

general non-diagonal. Nevertheless it is always possible to define a rotation in the 

degenerate subspace for which the current operator is diagonal and in what follows, 

when a degeneracy is encountered, I assume that such a rotation has been performed 

(see Appendix B). With this convention, the current carried by a state of the form

“7=^*1 ’ (2-47)
i v* i

is simply |az|2.

It is now straightforward to generalize the analysis of [47] (and of paragraph 2.1) to 

the case of non-orthogonal scattering channels. Consider first a doubly infinite periodic
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structure, whose Green function is given by equation (2.29). For 2 > 2', acting on gzz> 

from the right with the following projector

P,(z') = V<i>kl^ L  , (2.48)

yields the normalized plane-wave (2.44). Similarly by acting on the Green function 

9zz'{z0) of a semi-infinite left-lead terminating at 20, one obtains for 2 > 2', z0 > 2, an 

eigenstate of a semi-infinite lead arising from a normalized incident wave along channel 

k[. Note that the projector introduced through the (2.48) is the generalization of the 

one defined in the simple example at the beginning of this chapter. In Appendix C I will 

formally show that the projector that projects the Green function for a double infinite 

system onto its corresponding wave-function, projects also the total Green function.

Thus the operator Pi(z') and its left-moving counterpart Pi(z') allow one to project- 

out wave-functions from the Green function of a given structure. For example, following 

the same procedure of the introduction, if Gzz> is the retarded Green function for a 

scattering region sandwiched between two perfect leads whose surfaces are located at 

the points 2 =  0 and 2 =  L, then for z' < 0, the projected wave-function is of the form

where rhi = r j  thi = tkh,k, are reflection and transmission coefficients associated 

with an incoming state from the left. In particular for z = L, z' = 0, one obtains

vz =  < (2.49)

Y , ^ F = e iiiLK  = GLaP m ,
h \ Vh

(2.50)

and hence

(2.51)

where I used the definition of the dual vector <j> given in equation (2.31). With the 

same method one evaluates all the other elements of the S matrix

(2.52)

(2.53)
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r'u  = 4>l(GLLV - I ) ^ kJ ^ .  (2.54)
n ' y Vi

Since the right-hand sides of (2.51-2.54) involve only the surface Green function of 

equation (2.41) the transport coefficients are determined. Moreover, since the above 

analysis is valid for any choice of the Hamiltonians H0 and H\, this approach is com­

pletely general.
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3 The M aterial-Dependence of GM R and TM R

3.1 Introduction

The aim of this chapter is to analyze the dependence of GMR and TMR on the materials 

composing respectively a multilayer and a spin-tunneling junction. I will focus attention 

solely on the case in which the current flows perpendicular to plane of the layers (CPP), 

where the full power of the scattering technique developed in the previous chapter can 

be used.

Consider first the case of CPP GMR. The main difference with respect to its CIP 

counterpart is twofold. On the one hand there is the fact that an electron must cross 

the whole structure before being collected at the leads, and on the other hand the di­

mensions on which the transport occurs are mesoscopic, the typical multilayer length 

being smaller than l/im. This means that, particularly at low temperature, the trans­

port is largely phase coherent. Despite the evidence of such an important aspect, early 

theoretical work was based on spin-dependent scattering at interfaces and/or magnetic 

impurities and completely neglected quantum interference [48]. In 1995 Schep, Kelly 

and Bauer [49, 50] challenged this conventional picture and showed that for Co/Cu 

multilayers large values of GMR (of order 120%) exist even in absence of impurity scat­

tering. Their calculations are based on local density functional theory and the Sharvin 

resistance of a small constriction formed from a pure crystalline magnetic multilayer is 

calculated. Since then several methods have been used to take into account the con­

tributions of realistic band structures in CPP GMR. These includes ab initio density 

functional methods [51, 52] and tight-binding methods [53, 54]. The use of the second 

is also motivated by the possibility to deal with disordered systems, even if some severe 

limitations are still present (see also the introduction to Chapter 5). Despite the avail­

ability of numerical techniques able to deal with realistic band structures, very little 

theoretical work has been done to study systematically the dependence of GMR on the 

materials forming the multilayers. The aim of this chapter is to fill this gap and to 

provide some prescriptions on how to build multilayers showing large GMR [27].

From an experimental point of view Co/Cu [55, 56, 57. 58] and Fe/Cr [14, 59] are 

the most largely studied multilayered systems and also the ones that present the largest 

effect. Part of the success of these two systems is due to the fact that multilayers may
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be deposited in relatively simple conditions, producing samples of good quality with 

small inter-diffusion at the interface. As far as the magnetic materials are concerned, 

Xi has been also employed in conjunction with non-magnetic materials with fee lattice 

structure [60, 61, 62], but to date all the measurements have been conducted with the 

CIP configuration and only a small GMR ratio has been found. This is believed to be 

related to the smaller exchange field of Xi with respect to Co. Moreover Ni has been 

also employed in forming alloys [63, 64, 65]. This is useful in dual magnetic element 

multilayers in which one wants to engineer the coercive fields of the different materials. 

One of the more widely-used alloys is Xi80Fe2o which grows with an fee lattice onto 

Cu. Xi80Fe2o/Cu multilayers have been successfully grown [64, 65] with a quite large 

CPP GMR. The limitation of these systems seems to be the large spin-flip scattering 

in the alloy and at the interfaces between the alloy and Cu. As far as the non-magnetic 

metals are concerned Ag has been used in conjunction with Co [13, 66, 67] showing 

quite large CPP GMR. In contrast other heavy elements like Rh [68, 69], Ru [70], Au 

[71] and Ir [72, 73] possess very small GMR. even if at present the only measurement 

carried out are in the CIP configuration (with the only exception of reference [71]). The 

absence of large GMR in these materials is believed to be connected with the usually 

large inter-diffusion at the interfaces resulting in large spin-flip scattering, and for some 

materials in a poor antiferromagnetic alignment in zero magnetic field. In this chapter 

I will perform a systematic study of disorder-free Co/A and Xi/A multilayers, where 

A is a 3d, 4d an bd transition metal with fee lattice structure and analyze the optimal 

conditions for GMR. From this analysis it will be clear that the different alignment 

between the band structures of the magnetic and non-magnetic metals forming the 

multilayer may result in very different spin-polarizations of the current and GMR.

Turning the attention to TMR, the main difference with respect to GMR is that the 

current involved is a tunneling current. From the point of view of the scattering theory 

this means that not only the match between the asymptotic wave-functions through 

the scattering region is important, but also how these wave-functions decay within the 

tunneling barrier. Early theoretical work on magneto-tunneling attributed the degree 

of polarization of a tunneling junction either to the different spin-dependent DOS of the 

magnetic leads [17], or to the different Fermi wave-vectors of the two spin-bands [74].
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These models were based on a free electron model in the effective mass approximation. 

In a more realistic description of real metals the details of the band structure are impor­

tant and deviations from the simple theories may be found. Realistic band structures 

have been introduced in the calculation of the tunneling current either through ab initio 

density functional methods [75, 76, 77] or through tight-binding models [78, 79]. These 

calculations give rise to a controversy regarding the actual polarization of a tunneling 

junction and on the relevant factors which affect the tunneling. The common starting 

point is that for Co the polarization of the s-electrons at the Fermi energy is positive, 

while for the d-electrons it is negative. Therefore, if the barrier acts selectively on 

the s- and d-electrons, different polarizations of the tunneling junction are expected. 

MacLaren and co-workers, using a KKR Green function approach to the tunneling 

transport [76], have found that the polarization of a Co-based tunneling junction is 

positive for several insulators and concluded that it is always positive. Their argument 

is based on the fact that the decay of the wave-function within the barrier is faster 

if the wave-function has a strong d-component with respect to the case in which the 

wave-function has a large s-component. In contrast Tsymbal [78] and Wang [77] in­

dependently have found that the polarization may be changed by changing the kind 

of coupling between the magnetic electrodes and the tunneling barrier. For instance 

Tsymbal showed that in a Co-based tunneling junction with an s-insulator, the po­

larization is positive if one considers only sscr coupling at the interface and becomes 

negative if sdcr is also included.

In the last paragraph of this chapter I will consider a Cu/Co/IX S/Co/Cu junction 

(IXS is an insulator) described by spd tight-binding Hamiltonian and show that, if the 

thickness of the insulator is large enough the polarization of the junction is negative, 

otherwise it is positive. This highlights the transition between a regime in which direct 

transport and tunneling co-exist to one involving pure tunneling. An important feature 

of the calculation is that in the pure tunneling regime the transmission coefficient for the 

minority electrons shows sharp resonances at certain k^s  in the 2D transverse Brillouin 

zone. Resonances can be reproduced with a simple effective-mass model with parabolic 

band, even if the position of the resonances in the 2D Brillouin zone is a characteristic 

of the realistic band structure used. All the calculations deal with ballistic transport 

and disorder-free junctions and important aspects like impurity- [19], phonon- and
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magnon-assisted tunneling [80] have been neglected.

In all the calculations of the following sections the magnitude of the GMR and 

TMR effect is measured bv means of the MR ratio defined as

rtv , +  r£ M -  2 rn  
2r n

m r = hM , (3.i)
AF

where r FM is the conductance of a given spin channel o in the ferromagnetic (FM) 

configuration and r ^ F is the corresponding conductance (for either spin) in the anti­

ferromagnetic (AF) state. In the equation (3.1) it is implicitly assumed the current is 

carried by two decoupled spin-fluids [11]. In what follows I also assume a perfect match 

at the interface between the fee lattices of the different materials. This assumption is 

particularly good in the case of Co, Cu, and Xi which possess almost identical lattice 

constants. I will consider crystalline systems with smooth interfaces, where k\\ is a good 

quantum number. The Hamiltonian can then be diagonalized in the Bloch basis k\\ to 

yield a spin-dependent conductance

r" = E r ^ i )  = y ^ r ( i : | | ) , (3.2)
*« ‘n

where the sum over k\\ is extended over the two-dimensional Brillouin zone in the case 

of infinite cross section and over the allowed discrete k \\'s in the case of finite cross 

section.

3.2 T ight-B inding M odel: Slater-K oster Param eterization

In this paragraph I will introduce the parameterization I have used to produce the tight- 

binding Hamiltonian describing real materials. The method is based on the famous 

Slater-Koster Local Combination of Atomic Orbitals (LCAO) method in the two-centre 

approximation [81]. The general idea of the tight-binding method is to reproduce the 

band structure of real materials using a minimal number of parameters, which can 

be either directly calculated or simply fitted. The main advantage of this method is 

that usually the number of parameters necessary to capture the main features of the 

band structure is quite small. This allows one to deal with disordered systems and 

to perform molecular dynamics simulations, both of which are hardly accessible using 

more fundamental methods.
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Consider a generic Hamiltonian H  for a crystal. The Slater-Koster method involves 

expanding such an Hamiltonian in an atomic orbital basis using only a small number 

of orbitals. Let 0n(r — Ri) be an atomic orbital located on an atom at the position Rj 

with a quantum number n. The main purpose of the LCAO method is to express the 

Hamiltonian H  in term of Bloch states formed from the atomic orbital basis, namely 

states of the form

P n ( r) =  -  R s) , (3.3)
R;

where Ri spans the atoms in equivalent positions in all the unit cells of the crystal. 

The approximate solution of the periodic potential problem defined by the Hamiltonian 

H  can be set up as follows. First take a finite set of atomic orbitals on each of the 

atoms of the unit cell (going up in energy from the lowest one). Secondly construct 

Bloch sums of the kind of equation (3.3). Finally for a given k-vector, set up a wave 

function consisting of a linear combination of these Bloch sums and calculate the matrix 

elements between the states given by the equation (3 .3).

This procedure has immediately a complication. The problem is that the Bloch 

sums of equation (3.3) are not orthogonal each other. The reason is that atomic orbitals 

belonging to different atoms are not orthogonal. Even though the construction of a 

tight-binding model using non-orthogonal basis is possible [82], it is more convenient to 

set up a new orthogonal atomic orbital basis. This can be done systematically by the 

Lowdin method [83]. In what follows I assume that such an orthogonalization procedure 

has always been performed and I consider the new orthogonal basis ipn. It is important 

to note that these new Lowdin functions ~pn possess the same symmetry properties as 

the atomic orbitals (f>n from which they were derived. For instance, if I start with a px 

atomic orbital and construct the orthogonalized atomic orbitals according to Lowdin’s 

prescription, I will find that the orthogonalized atomic orbital formed from px and from 

contributions of other orbitals on adjacent atoms, will still have the symmetry of a px 

function.

I can now build up Bloch sums using these Lowdin’s functions

^n(r) =  ~ 7 =  Y  etk RW r  -  Ri) , (3.4)

where I have assumed to have only one atom in the unit cell, and where the sum 

runs over the N  available unit cells. The next step is to find the matrix elements
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corresponding to the states xbn, namely

= J ,  E e,k (Ri - Rl> x I  ^ ( r  -  R,)ff*>m(r -  Rj) dV  . (3.5)
R;Rj

One of the two sums in equation (3.5) can be eliminated using translational symmetry 

giving rise to a factor N  and to the final equation

H.n, = 2 > ik R x [?'„(i  -  R ) H ? m(r) dY  . (3.6)
R J

The structure of the (3.6) is very simple and Hnm does involve only atomic orbitals be­

longing to atoms in neighbouring positions. Nevertheless the calculation of the integral 

may be extremely difficult and the number of matrix elements Hnm may be very large. 

This is because, first one has to find the orthogonalized Lowdin’s functions ipn and 

secondly because a linear combination of integral of the form /  0*(r — R ) / /0 m(r) dV  

must be calculated. Therefore it is convenient to approximate (3.6) and express all the 

matrix elements Hnm by means of a small set of parameters.

First of all it is important to note that, despite the fact that the Lowdin’s functions 

are not atomic orbitals, it is reasonable to expect that the integral (3.6) will vanish 

unless the two atoms are close enough so that their orbitals overlap to an appreciable 

extent. A general procedure is to arbitrary set to zero the matrix elements involving 

atoms with a distance larger than some fixed cut-off distance. This will result in 

considering first nearest neighbours, first and second nearest neighbours, first, second 

and third nearest neighbours, and so on, depending on the cut-off distance. It is clear 

that the larger is the number of neighbours, the better the tight-binding Hamiltonian 

will reproduce the correct band structure. Unfortunately an interaction extending to 

a large number of neighbours will result in an Hamiltonian with a large number of 

parameters. In all the calculations presented in this thesis I will always consider first 

nearest neighbours coupling.

A further simplification can be to consider only atomic orbitals whose energy is 

somewhere near that of the energy bands one is interested in. For a 3d transition 

metal for instance, if one is only interested in the description of the conduction and the 

valence band, it is reasonable to consider the 3d, 4s and 4p orbitals and disregard the 

rest. In the same way I will consider only Ad, 5s and op, and 5d, 6s and 6p, respectively 

for Ad and 5d transition metals.
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Finally note that the integral of equation (3.6) involves a Lowdin’s function Pn(T— 

R) located on an atom at the position R , another Lowdin’s function <̂m(r) located 

at the origin, and a spherical potential function, given by the potential part of the 

Hamiltonian, located on a third atom. In other words the integral of equation (3.6) 

is a three-center integral. A useful simplification is to disregard three-center integrals 

and to retain in the equation (3.6) the sum of the spherical potentials located only on 

the two atoms on which the atomic orbitals are located. Thus the integral becomes 

similar to the type which one should have in a diatomic molecule. If one considers 

the vector Rj — Ri, stretching from one atom to the other, to be an axis like that of a 

diatomic molecule, it is possible to express each of the functions p  as a sum of functions 

quantized with respect to that axis. Then to set up the integral of equation (3.6) one 

needs contributions consisting of a product of an atomic orbital located at Ri, another 

atomic orbital located at Rj and a spherical potential centered on the two atoms. Let 

the direction of the the vector Rj — Rj be specified by the direction cosines /, m, n. 

With this notation the integral denoted with Ea%3(l,m,n)  is the integral between the 

functions p a and p/3. For instance Ex x̂y(l ,m,n)  is the integral between the function 

p x with a px-like symmetry, and the d-function pxy with a symmetry xy. Therefore 

this particular integral can be written approximately as the sum of two integrals: that 

between a per orbital on the first atom and a da orbital on the second, and that between 

a p7r orbital on the first atom and a d7r orbital on the second. As a matter of notation 

the first of these is indicated like pda and the second like pd7r. With this notation the 

first index labels the atomic orbital of the first atom, the second index the atomic orbital 

of the second atom and the third index the angular momentum of the bond formed 

between the two atoms measured along their axis. The above mentioned integral for 

instance turns out to be EXtXy(l ,m,n)  = \/3 /2m(pda) +  m (l — 2/2)(pd7r). The full 

parameterization in the two-center limit is provided in the original Slater-Koster paper 

of reference [81].

Finally the approximated Hamiltonian can be written as

H  =  E  E i A i C a  +  E  K ! A / ^ . (3-7)
i,a  i,j,ad

where a  and /3 label the two orbitals and i , j  denote the atomic sites. Eaa is the on-site 

energy and E 1̂  the hopping energy between the orbital a  at the position i and the
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orbital {3 at the position j .  c^  and cai are respectively the creation and annihilation 

operator for an electron in the orbital a  at the atomic position i. In what follows I 

will always consider spd-Hamiltonians with nine degrees of freedom per atomic site 

and first nearest neighbours coupling. According to the Slater-Koster parameterization 

I need thirteen parameters to define one single material, namely one on-site energy 

per atomic orbital (Es, E p and Ed) and ten hopping parameters (sscr, spcr, sdcr, ppa, 

pp?r, pda, pd7r, dda, dd7r and dd<5). Xote that the dependence on the lattice constant 

is included in the definition of the thirteen parameters, since they are defined with 

respect to the vector joining the two atoms forming the bond. The parameters used in 

the simulations are obtained by fitting the band structures calculated with plane-wave 

local density functional theory and are tabulated [84]. The only exception is for Co, 

Cu and Pb where I have performed a new fit in order to better reproduce the features 

around the Fermi surface (more about this will be discussed in Chapter 6 and in the 

Appendix D). As a matter of convention I always shift all the on-site energies in order 

to have the Fermi energy equal to zero (E f =  OeV). Finally the ferromagnetism is taken 

into account by introducing a shift in the on-site energy between the d-orbitals of the 

up and down spin sub-bands. This simple model can reproduce the correct magnetic 

moment and the correct DOS at the Fermi energy.

3.3 G M R  for disorder-free system s

Using the technique developed in the previous chapter I have studied the transport 

properties of multilayers formed from Co and Xi as magnetic materials and several 3d, 

4d and bd transition metals as non-magnetic materials. All of these metals possess 

fee lattice structure with the following lattice constants (Table 3.1). It is clear that 

Co, Xi and Cu have a good lattice match, while for the other metals the lattice mis­

match is large and may introduce strain, defects and inter-diffusion at the interfaces. 

All these sources of disorder generate additional scattering, which is neglected in the 

present calculations. A fully realistic description of an interface involving metals with 

very different lattice constants requires ab initio methods implemented with molecular 

dynamics approach which is beyond the aim of this thesis. Xevertheless I will show 

that large values of the GMR ratio can be obtained, in agreement with the largest ex­

perimental values, which suggests that CPP GMR is a bulk effect, whose main features
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M etal Lattice Constant (A)
Co 3.55
N i 3.52
Cu 3.61
Ag 4.09
Pd 3.89
Au 4.08
P t 3.92
Rh 3.80
Ir 3.84

Pb 4.95
A1 2.70

Table 3.1: Lattice constants of the metals considered in the calculation. Note that Co, Xi and Cu 
present very similar lattice constants.

are contained in a ballistic quantum description of the conductance with an accurate 

band structure. In what follows the hopping parameters at the heterojunctions between 

different materials are assigned to be the geometric mean of the pure metal values. This 

is a standard, widely-used [53, 54] procedure for estimating the hopping between unlike 

elements in a heterojunction. It is worth noting that different averaging procedures 

used to obtain the hopping coefficients in the heterojunctions yield small changes in 

the calculated conductances of the multilayers. Nonetheless, a more realistic approach 

to the heterojunctions between different metals, based on ab initio calculations and 

molecular dynamics, would be useful to clarify the role of coupling across the interfaces 

in such structures.

3.3.1 D ensity  o f electronic states and conductance o f pure m etals

I begin my analysis by examining the DOS and conductance of pure metals. Since the 

Hamiltonians include spd hybridization, the atomic orbital states are not eigenstates of 

the system. Nevertheless to understand the relative role of the angular symmetry on 

inter-band and intra-band scattering, it is useful to project the DOS and conductance 

onto an atomic orbital basis. I will label as an s-like electron and simply call s-electron 

(and similarly for the p- and d-electrons) an electron whose s-component |(s |*/>)|2 of 

the wave function \ip) is much larger than the p- and d-components. The DOS p for 

pure materials are calculated by evaluating the retarded Green function for an infinite
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system at the same point

p ( E ) =  3  T r g « ( £ ,* | |)  . (3.8)
n *»

The D O S’s for the two spin sub-bands of Co and Ni are very sim ilar (see figure 3 .1 ). As
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Figure 3.1: DOS for pure Co (a) and Ni (b). The vertical line denotes the position of E p  th a t is chosen
to be 0 eV.

in all the d -transition  m etals, the DOS is formed from a localized d-band embedded in a 

broad nearly parabolic sp-band. The w idth of the bands is roughly the same in Co and 

Ni, as well as the  position of the m ajority  band with respect to the Fermi energy. In 

both  m aterials, the Fermi energy lies ju s t above the edge of the m ajority  d-band, while 

the m inority  band is alm ost rigidly shifted with respect to the m ajority  band towards 

higher energies, the shift being larger in Co than  in Ni. In bo th  the m inority bands 

of Co and Ni the  Fermi energy lies well w ithin the d-band and the DOS is com pletely 

dom inated  by d-electrons. A rough estim ate of the m ism atch between the m inority 

d-bands of Co and Ni can be obtained from the on-site energies of the d-electrons in 

the  m inority  band. As shown in the tables in A ppendix D, the difference between the 

on-site energies of the d m inority electrons in Co and Ni is abou t 0.7eV and corresponds 

to the relative shift of the  bands.
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The conductance of pure Co and Ni is determ ined solely by the DOS. For m ajority  

electrons a t the Fermi energy, the current is carried by the s-, p- and d-electrons, which 

give alm ost equal contributions. On the other hand the current carried by m inority 

electrons is com pletely dom inated by the d-electrons, w ith the contributions from s- 

and p-electrons being no larger than  10%. If one neglects the relative shift in energies of 

the m inority  bands, the Ni and Co conductances possess the same qualitative features 

and since the effective mass is proportional to the inverse of the band w idth, one finds 

th a t the current carried by m ajority  electrons is formed from a m ixture of light s- 

and p-electrons and heavy d-electrons, whereas the m inority-electron current is carried 

alm ost entirely by heavy d-electrons. As an example in figure 3.2 I show the partial 

conductance as a function of energy for pure Co and Ni, where the partial conductance 

is defined as the projection of the to ta l conductance over the atom ic orb ita l basis. Now
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Figure 3.2: Conductance as a function of energy for pure Co (a) and Ni (b). The vertical line denotes 
the position of Ep that is chosen to be 0 eV.

consider the  non-m agnetic 3d, 4d and 5d transition  m etals w ith fee lattices. A glance 

a t the DOS of these m aterials reveals four types of band structure: i) the  DOS closely 

m atches the DOS of the m ajority  spin sub-band of Co and Ni (e.g. Cu and Au), ii) 

the DOS has only sp-com ponents a t the Fermi energy, w ith the d-com ponent highly
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suppressed (as in Ag), iii) the DOS is composed of an alm ost pure d-com ponent a t 

the Fermi energy (e.g. for Pd, P t, Rh and Ir), iv) the DOS shows a V E - dependence, 

typical of free electron-like m etals (A1 and Pb).

Exam ples of each of these cases are given in figures 3.3, 3.4, 3.5 and 3.6, which show 

the DOS of Cu, Ag and Pd and A1 together with their corresponding conductances.

  Total DOS
  s-D O S
  p-D OS
  d-D O S

-1 0 -6 -2 2 6 10

Total

Energy (eV) Energy (eV)

Figure 3.3: DOS (a) and Conductance (b) as a function of energy for pure Cu. The vertical line 
denotes the position of Ep that is chosen to be 0 eV.
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Figure 3.4: DOS (a) and Conductance (b) as a function of energy for pure Ag. The vertical line 
denotes the position of Ep that is chosen to be 0 eV.

For ballistic structu res, in absence of defects and im purities, the m ism atch between 

the bands of the m agnetic and non-m agnetic m etals form ing the m ultilayer is the key 

feature which determ ines the conductance. Moreover, although the positions of the
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Figure 3.5: DOS (a) and Conductance (b) as a function of energy for pure Pd. The vertical line 
denotes the position of Ep that is chosen to be 0 eV.
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Figure 3.6: DOS (a) and Conductance (b) as a function of energy for pure Al. The vertical line denotes 
the position of Ep that is chosen to be 0 eV.
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s- and p-bands are the same for both spins, for d-electrons the two spin sub-bands 

possess a different mismatch at the interface and this mismatch largely determines 

the magnitude of CPP GMR. This first source of scattering that arises from potential 

steps can be reasonably described in terms of a single-band model with Kronig-Penney 

potential [29] (more of this will be discuss in the following chapter).

In addition to the above generic features, the on-site energies of the s-bands of Au, 

Pt, Ir, Pb and A1 are small compared with those of Xi and Co. In the multilayers 

formed with these elements, this may induce strong scattering also of the 5-electrons, 

resulting in a strong suppression of the s-electron contribution to the total conductance.

Figures 3.3, 3.4, 3.5 and 3.6, show how these four distinct DOS characteristics 

are reflected in the conductances of the normal metals and give rise to four different 

scenarios for charge transport: i) the contributions to the current at the Fermi energy 

from s-. p- and d-electrons are almost equal (e.g. in Cu and Au), ii) the current at 

the Fermi energy has a strong sp-character (e.g. in Ag), iii) the current at the Fermi 

energy has a strong d-character (e.g. Pd, Pt, Rh and Ir), iv) the current at the Fermi 

energy is dominated by electrons with a parabolic dispersion and scales linearly with 

respect to the energy (A1 and Pb).

These different characteristics of the current carriers in the non-magnetic metals 

give rise to another important source of interface scattering. Since the majority spins in 

the magnetic metals are mainly sp-electrons with light effective mass and the minority 

spins are d-electrons with heavy effective mass, it is clear that, depending on the choice 

of non-magnetic metal, different spin-dependent inter-band scattering must occur at 

the interfaces. For example in the Co/Ag system, a majority spin propagates in Co 

as a mixture of s-, p-, and d-electrons, whereas in Ag it has mainly an sp-character. 

This means that an electron in the Ag, whose spin is in the same direction of the 

magnetization, can enter Co as an sp-electron without the need for strong inter-band 

scattering. On the other hand, if its spin points in the opposite direction, it will undergo 

inter-band scattering because in the minority band the electron must propagate as a 

d-electron. Note that this second source of scattering has primarily to do with the very 

different dispersion relations of the sp-electrons with respect to the d- electrons. This 

feature is hardly describable by a single-band model and a more sophisticate approach 

is needed. In this thesis I will introduce two models capable to capture this aspect. The
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first is a parabolic model with different spin- and material-dependent effective masses 

[30], and the second is a simple-cubic two-band tight-binding model [37].

The above observations suggest that the key mechanisms affecting transport are i) 

a strong band mismatch and ii) a strong inter-band scattering, reflecting respectively 

large step potentials and different dispersions. The best GMR multilayers must be able 

to maximize the electron propagation in one of the two spin-bands and to minimize it in 

the another. To achieve this result, the high conduction spin-band should have a small 

band mismatch and weak inter-band scattering at the heterojunctions, while the low 

conduction band should have a large band mismatch and strong inter-band scattering. 

Xote that at this stage there are no general predictions on the total polarization of a 

multilayer, being dependent on the band structure details of both the magnetic and 

non-magnetic materials and their match.

3.3.2 Com parison betw een Co-based and Ni-based multilayers

To clarify how the spin-polarization of the magnetic material affects the properties of 

the GMR multilayers, I begin by examining GMR in Cu-based multilayers, in which 

the magnetic metals are either Xi or Co. All the multilayers consist of ten bilayers 

of the form A/Cu where A is Co or Xi, attached to two semi-infinite Cu leads (i.e. 

Cu/[Co/Cu]xio/Cu and Cu/[Xi/Cu]*io/Cu). The Fermi energy is fixed by the semi- 

infinite leads which is taken as zero. After calculating the different spin conductances 

in the ferromagnetic and antiferromagnetic configurations, the GMR ratio is obtained 

from equation (3.1). In all the calculations the current flows in the (110) crystalline 

direction and the structures are translationally invariant within the layers. Below I 

consider 8100 k\\ points (90 x 90) in the plane of the layers. I have estimated that the 

GMR ratio calculated with 2 x 104 k\\ points on average differs by ~  3%, from that 

calculated using 8100 A?h points (9 y R(8^P,)~ g ^ (2xl° 1 ^  3%). Since the oscillations of 

the GMR ratio with respect to the layer thicknesses are larger than 3%, the choice of 

8100 k\\ points allows investigation of the oscillating behaviour of the conductance and 

the GMR, and is a good compromise between the accuracy of the calculation and the 

required computer time. Initially I fix the magnetic layer thickness to 5 atomic planes 

(AP), and calculate the conductance and GMR as a function of the Cu layer thickness.

I normalize the conductance by dividing it by the conductance of a single spin in
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the pure m etallic leads, which is a natu ral choice for the present work. For the results 

shown in figure 3.7 th is means th a t the norm alization factor is one half of the  to ta l 

Cu conductance, because of spin degeneracy. In this case the conductances of different 

m ultilayers are independent of the num ber of open channels in the leads and can be 

com pared directly. From Figure 3.7 it is clear th a t the Co based m ultilayers possess
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Figure 3.7: GMR and spin conductance for Co/Cu and Ni/Cu systems as a function of the Cu layers 
thickness. The first graph is the GMR, the second is the conductance for the Co/Cu system normalized 
to the conductance of pure Cu and the third is the conductance of the Ni/Cu system with the same 
normalization.

larger G M R ratios. In the ferrom agnetic configuration, the m ajority  electrons possess 

high conductances in bo th  cases, reflecting the good m atch between the m ajority  bands 

of Co and Ni, and the Cu band. Moreover the b e tte r  m atch of the s and p  m ajority  

bands of Ni w ith Cu, com pared with those of Co, gives rise to a slightly higher conduc­

tance in m ajority  channel for Ni than  for Co. A sim ilar argum ent explains the difference 

in the conductances of the m inority channel. As one can see from the table in A ppendix 

D, the m inority  d-band of Ni has a be tte r m atch to Cu than  th a t of Co, as indicated 

by the difference in the on-site energies of abou t 0.7 eV. Hence for the m inority band, 

the interface scattering  between C o /C u  is greater than  for N i/C u . In the antiferro­

m agnetic configuration, bo th  spins undergo the same scattering  sequence, belonging 

a lternately  to the m ajority  and to the m inority bands. The to ta l spin conductance in 

the antiferrom agnetic configuration is found to be close to th a t of the m inority  band 

in the ferrom agnetic configuration, because the m inority band m ism atch is larger than  

the m ajority  band, and dom inates the scattering.

The ratio  R  between the conductance T of the AF configuration and of the m inority
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band in the FM configuration (R  = r ^ F/ r p M) is ~  0.6 for Co/Cu and ~  0.9 for Xi/Cu. 

This difference can be understood by modeling the interface scattering through the 

step potential discussed previously, whose magnitude is equal to the band mismatch 

[29]. The effective scattering potential in the antiferromagnetic configuration will be 

a sequence of high steps (for minority band) and low steps (for majority band) with 

respect to a common reference.

The calculated R  ratios arise because the perturbation of the minority steps, due to 

the majority steps, is smaller in Xi/Cu than in Co/Cu. From this analysis the splitting 

between the two spin sub-bands in the magnetic materials is the crucial parameter lead­

ing to large GMR ratios and, since such splitting is larger in Co than in Xi, Co emerges 

as a natural candidate for high GMR ratio multilayers. Xote that highest possible val­

ues of GMR can probably be achieved with the use of half-metallic ferromagnets with 

100% spin polarization of electrons [80, 85].

Having examined the dependence of transport properties on the normal-metal layer 

thickness. I now examine the dependence on the magnetic-layer thickness. For a fixed 

Cu laver-thickness of 5 atomic planes, figure 3.8 shows results for Co/Cu and Xi/Cu 

multilayers. A key result in this figure is that for thin magnetic layers, GMR in both 

Xi/Cu and Co/Cu multilayers is suppressed. This can be understood in term of an 

effective scattering potential. The large off-sets between the minority d-bands of the 

different materials create an effective barrier in the d-band, for channels with high 

transverse momentum k\\. When the width of such a barrier is small, tunneling across 

the magnetic metal within the d-band is possible, and this results in an enhancement of 

the conductance in the minority spin channel and hence in a reduction of GMR. Thus 

I predict a lower limit of approximately 4 atomic planes (~  10A) to the magnetic-layer 

thickness, in order to achieve the highest possible GMR ratio. In what follows I will 

only consider thicknesses larger than this value.

3.3.3 D ependence o f G M R on non-m agnetic spacer m aterial

I now consider the dependence of GMR on the choice of non-magnetic material in Co- 

and Xi-based multilayers. In all calculations with Co I fix the Co thickness either 

at 5 or 10 atomic planes and in the calculations with Xi only at 10 atomic planes. 

The thickness of the non-magnetic layers always varies from 1 to 40 atomic planes.
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Figure 3.8: GMR and spin conductance for Co/Cu and Ni/Cu systems as a function of Co and Ni 
layers thicknesses. The first graph is the GMR, the second is the conductance for the Co/Cu system 
normalized to the conductance of pure Cu and the third is the conductance of the Ni/Cu system with 
the same normalization.

The m aterial in the external leads is the same non-m agnetic m aterial used for the 

m ultilayers (e.g. Ag in C o/A g m ultilayers). Tables 3.2 and 3.3 show the average value 

of the G M R ratio  and the root m ean square am plitude of oscillation around such value 

(A) for Co-based and Ni-based multilayers. To highlight the fact th a t G M R is an 

oscillatory function of the  norm al-m etal thickness w ith an am plitude which decreases 

with increasing thickness, the tables also show the mean square oscillation calculated for 

non-m agnetic m etal layers thicknesses between 1-10 (A l). In the tables the subscripts 

indicate the  num ber of atom ic planes of the m agnetic m aterial layers. From the tables 

some general considerations can be made. The first im portan t aspect is th a t the Co­

based m ultilayers always present a GM R larger than  their Ni-based counterparts. This 

confirms the result of the previous paragraph obtained for Cu and extends it to all the 

transition  m etals exam ined. It is im portan t to  note th a t the difference between C o/A  

and N i/A  m ultilayers is large when A belongs to the first two classes of non-m agnetic 

m aterials (the ones represented by Cu, and Ag respectively), and is quite small when 

A is a d-conductor (ie Pd, P t, Rh and Ir). F inally when A is a parabolic-like m etal 

(Pb  and Al) the G M R ratio  is quite large for bo th  Co-based and Ni-based m ultilayers, 

bu t also the oscillations are very large. The reasons for all these differences will be 

more clear when I present the conductances for the above m ultilayers in the different 

m agnetic configurations.
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Multilayer GMR (%) A(%) A l (%) A/GMR (%) A l/G M R  (%)
C o5/C u 183.7 10.0 12.4 5.4 6.7
C o5/A g 153.7 9.5 13.1 6.1 8.5
C o5/ P d 102.0 13.9 16.7 13.7 13.4
C o5/ P t 104.1 10.9 15.6 10.5 15.0
C o5/ A u 98.8 20.4 33.6 20.6 34.0
C o5/R h 142.6 9.9 10.2 6.9 7.1
C o5/ I r 143.6 12.8 14.4 8.9 10.1

C o5/P b 124.0 29.1 52.2 23.5 42.1
C o5/A 1 197.6 35.8 60.6 18.2 30.6

C o 10/C u 150.7 9.2 9.2 6.1 6.1
C oio/A g 131.0 7.6 5.3 5.8 4.1
C o io /P d 165.2 31.1 32.2 18.8 19.4
C o 10/ P t 175.7 14.8 21.1 8.4 12.5
C oio /A u 138.8 20.1 26.4 14.5 17.8
C o io /R h 171.9 15.1 18.7 8.7 10.9
C o10/ I r 175.4 13.6 16.0 7.7 9.1

C o10/ P b 154.7 25.2 40.9 16.3 26.4
C om /A l 169.6 35.7 56.4 21.1 33.3

Table 3.2: GMR ratio and GMR oscillations for different Co-based metallic multilayers.

Multilayer GMR (%) A(%) A l (%) A/GM R (%) A l/G M R  (%)
N i10/C u 29.1 2.9 3.3 10.1 11.3
Niio/Ag 35.8 2.8 2.0 7.9 5.6
N i10/P d 100.2 10.8 16.2 10.8 16.2
N i10/P t 94.3 10.6 18.4 11.2 19.5
N i1()/Au 26.9 3.3 4.1 12.37 15.2
N i10/R h 131.3 6.4 6.7 4.9 5.1
Niio/Ir 107.3 6.0 5.3 5.6 4.9
N i10/P b 97.8 12.1 10.9 12.4 11.1
N i10/A i 107.7 19.7 29.4 18.3 27.3

Table 3.3: GMR ratio and GMR oscillations for different Ni-based metallic multilayers.
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It is clear from table 3.2 th a t the GM R ratios depend quite sensitively on the m ul­

tilayer geometry, i.e. on the layer thicknesses. This can be seen both  from the values 

of A and from the fact th a t the GM R for Co thickness fixed a t 5 atom ic planes is 

generally larger th an  th a t obtained for a Co thickness of 10 atom ic planes, w ith a rel­

ative difference up to 30%. As examples, figure 3.9 shows plots of the GM R ratio  as a 

function of the non-m agnetic m etal layer thickness for the C o/A g and C o /P d  systems. 

Nevertheless in all the cases (excluding Au, Al and Pb) the oscillations are small corn-
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Figure 3.9: GMR as a function of the non-magnetic metal layer thickness for Co/Ag and Co/Pd. The 
horizontal lines denote the position of the average GMR.

pared to the long range oscillations observed experim entally [56, 86], suggesting th a t an 

additional contribu tion  m ust be considered. This is m ost likely to  arise from a periodic 

deviation from a perfect antiferrom agnetic configuration, the possibility of which is ne­

glected in the calculations. It is im portan t to point out th a t perfect antiferrom agnetic 

alignm ent of the m ultilayer in zero m agnetic field is a consequence of the exchange 

coupling of the  adjacent m agnetic layers through the non-m agnetic layer. The streng th  

and phase of such coupling depends critically on the Fermi surface of the non-m agnetic 

m etal [3, 4, 5, 6]. To the best of my knowledge few experim ental d a ta  are available for
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the d-conductor multilayers Co/Pd and C o/Pt, for which the antiferromagnetic con­

figuration may not be achievable. Nevertheless, even in the case that the exchange 

coupling is very weak, in a spin valve system an antiferromagnetic configuration can be 

always obtained by tuning the coercive fields of the different magnetic layers. This is 

achieved for instance by an appropriate choice of the spin valve geometry, or by using 

some magnetization pinning technique. Hence the theoretical predictions on Co/Pd 

and C o/P t multilayers can in principle be tested in the spin valves.

The above results for the GMR ratio hide the material dependence of the elec­

trical conductance and with a view to comparing these with their band structures, I 

now present results for the conductances of the different spin channels and of the AF 

configuration. In the tables 3.4, 3.5 and 3.6 I present the conductance (T), the mean 

conductance oscillation (A r), their ratio (A r/T ) , the maximum of the conductance os­

cillations (A rmax) and its ratio with the mean conductance (A rmax/ r ) ,  respectively for 

the majority electrons in the ferromagnetic configuration, the minority electrons in the 

ferromagnetic configuration, and both spins in the antiferromagnetic configuration, for 

Co-based multilayers. All conductances are normalized to the single-spin conductance 

of the non-magnetic-metal leads. This allows comparison with the different scattering 

properties arising from the electronic structure of the multilayers independently of the 

material of the leads. It is possible to extract the values of the conductance per unit 

area in units of Q- 1m -2 by multiplying the conductances given by the following con­

version factors / :  / c u =  0.61 • 10l0 ft- 1m-2, f \ g = 0.45 • 10l0 ft- 1m-2, f \ u =  0 .47-1015 

/ Pd =  0.73• 1015 ft- 1m~2, / Pt =  0.83• 1015 ft_1m~2, f Rh = 1.18 • 1015 Q - lm~2, 

f h = 0.97 • 1015 f t- 1m-2, /ai =  1.49 • 1015 f t^ m " 2, / Pb =  0.52 • 1015 f t^ m -2. Note 

that the absolute values of conductance per unit area are consistent with ab initio 

calculations for infinite superlattices in the ballistic regime [49, 50]. The tables 3.4- 

3.6 illustrate that, with some exceptions, materials belonging to the same class have 

similar normalized conductances. For Cu and Ag the majority (minority) band is a 

high (low) transmission band, leading to a large GMR ratio for such materials. The 

majority bands of these two materials match that of Co and there is little interband 

scattering (even less in Ag where the electrons at the Fermi energy are completely sp). 

By contrast, the minority carriers are subject to a large scattering potential due to the 

difference between the on-site energies of the d-band. They are also subject to large
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inter-band scattering because of almost pure d-character of the minority carriers in Co. 

The presence of an high transmission band together with a low transmission one is the 

reason for the large GMR in those systems.

Multilayer r A r A r / r  ( % ) a  r— max A r max/ r  (%)
C o10/C u 0.59 5.33 • 10"3 0.90 1.06- 10~2 1.81
C o10/A g 0.63 4.37- 10"3 0.69 1.31 • 10"2 2.06
C o10/P d 0.33 8.89 • 10-3 2.67 2.05 • 10“2 6.14
C oio /P t 0.37 5.02 • 10"3 1.37 1.25 • 10-2 3.41
C oio/A u 0.24 1.05- 10"2 4.42 3.69 • 1 0 -2 15.53
C oio/R h 0.17 6.13 • 10“3 3.61 2.63 • 10“2 15.47
C o10/Ir 0.17 9.91 • 10“3 5.73 4.00 • 10"2 23.17

C o10/P b 0.15 6.90 • 10~3 4.54 1.56 - 10“2 10.30
C o10/A l 0.12 1.07- 10~2 9.26 4.64 • 10“2 40.17

Table 3.4: Conductance and conductance oscillations for different Co-based metallic multilayers: ma­
jority band. The conductance of each multilayer is normalized to the conductance of the corresponding 
non-magnetic metal, which composes the leads.

Multilayer r AT A r /r  ( %) Ar max A rmax/ r  ( %)
C o 10/C u 0.32 1.08* 10"3 3.38 2.82 • 10"2 8.80
C oio /A g 0.32 1 .75-10"2 5.54 5.73 • lO"2 18.15
C o jo /P d 0.16 1.56 • 10-2 9.78 3.50 • 10"2 21.14
C o io /P t 0.19 9.02* 10“3 4.71 2.63 • 10"2 13.73
C oio /A u 0.16 9.60 • 10"3 5.95 2.34 • 10-2 14.53
C o io /R h 0.25 6.36 • 10-3 2.50 1.60- 10"2 6.29
C o 10/ I r 0.31 8.46 • 10-3 2.75 3.41 • 10“2 11.14

C o 10/ P b 0.17 8.66 • lO '3 4.95 1 .97-10~2 11.24
C o 10/A l 0.16 1.49- 10~2 9.08 7.55 • 10-2 45.98

Table 3.5: Conductance and conductance oscillations for different Co-based metallic multilayers: mi­
nority band. The conductance of each multilayer is normalized to the conductance of the corresponding 
non-magnetic metal, which composes the leads.

Turning the attention to the d-conductors it is easy to note that Pd and Pt have 

almost identical behaviour, which differs from the behaviour of Rh and Ir. The general 

feature of all the d-conductors is that the conductances in the majority spin band 

are highly suppressed with respect to the case of Ag and Cu. The on-site energies 

of the majority band of Co, Pd, Pt, Rh and Ir are roughly the same, ensuring a
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Multilayer r Ar A r /r  ( %) a  r—̂  max A rmax/ r  ( %)
C o 10/C u 0.18 6.40 • 10-3 3.51 1.62- lO '2 8.94
C oio/A g 0.21 5.10 • 10-3 2.46 1.06-10~2 5.17
C o io /P d 9.41 • 10"2 1.09- 10“2 11.62 3.15 * 10~2 33.45
C o io /P t 0.10 4.77 • 10~3 4.69 1.43 • 10~2 14.12
C o io /A u

froi-HoOO 6.95 • 10“3 8.27 1 .66-10~2 19.77
C o io /R h 7.81 • 1 0 ^ 4 .14 -10"3 5.30 8.76 • lO"3 11.21
C o 10/ I r 8.73 • 10“2 4.75 • 10-3 5.43 1.59-10~2 18.30

C o 10/ P b 6.47 • 10“2 6.29 • 10~3 9.72 2.04 • 10~2 31.50
C o 10/A l 5.28 • 10“2 8.01 • 10-3 15.15 3.05 • 10~2 57.80

Table 3.6: Conductance and conductance oscillations for different Co-based metallic multilayers: AF 
configuration. The conductance of each multilayer is normalized to the conductance of the correspond­
ing non-magnetic metal, which composes the leads.

good band match. Nevertheless, the width of the d-majority band of Co is associated 

with hybridization of s-, />-, and d-electrons, while the d-conductor bands are only d- 

like. Hence, a strong inter-band scattering is present in the majority band of Co/Pd, 

C o/P t, Co/Rh and Co/Ir superlattices. As far as the minority bands are concerned, 

the behaviour of Pd and Pt is quite different from that of Rh and Ir. C o/Pt and 

Co/Pd multilayers present a small conductance in the minority band, while it is quite 

large in Co/Rh and Co/Ir multilayers. This leads to the remarkable fact that the spin 

polarization of the carriers has opposite sign in Co/Pd and C o/Pt than in Co/Rh and 

Co/Ir. The spin-polarization is usually defined as

pt _  pi 
1 FM 1
pt , p i 
1 FM T- i  f .M

p  =  r M ? (3>9)

where r a is the spin o conductance. For the above materials, the spin-polarizations are 

Pco/Pd = 0.35, Pco/pt = 0.32, Pco/Rh = -0.20 and PCo/ir = -0.28. This result is quite 

important because it shows that the spin-polarization of a multilayer does not depend 

solely on the spin-polarization of the magnetic layers, but is a general property of the 

whole structure. The reason of the different conductances in the minority bands of 

multilayers formed from d-conductors is in the details of the band structure. In general 

one would expect the minority band to be an high transmission band in d-conductor 

based multilayers. Nevertheless the position of the Fermi energy with respect to the 

band center of the d-band is quite different in the different materials. In the minority 

band of Co, Rh and Ir (see figure 3.10 for Rh and Ir) the Fermi energy is well within 

the d-band and in particular it lies to the left of the large peak in the density of states
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a t the d-band edge. On the contrary the Fermi energy in Pd and P t lies to the right 

of the d-band edge. This means th a t the curvature of the d-band a t the Fermi energy 

is very different for Rh and Ir and for Pd and P t. This explains the  differences in 

the conductances. The m ultilayers formed from the parabolic-like conductors and from

Total DOS 
s-D O S  
p-D O S  
d-D O S

•9 -7 ■5 -3 3 5•1 1

Total DOS 
s-D O S  
p-D O S  
d-D O S
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Figure 3.10: P a rtia l DOS for Ir (a) and  Rh (b). Note the position of the Fermi energy w ith respect to 
the peak of the d-band.

Au lie som ew hat outside the above picture. All the conductances are usually quite 

small (particu larly  for Pb  and Al) and the oscillations are very large. This is not 

surprising if one considers the tight-binding param eters used. Both the on-site energies 

and the hopping integrals of Au, Al and P b  are quite different with respect to Co. This 

leads to  large scattering  potentials and therefore to  large oscillations. Two im portan t 

aspects m ust be pointed out. F irst the large difference between hopping param eters can 

break down the geom etric mean approxim ation th a t I have used to describe an interface 

between different m aterials. Secondly C o/A u, C o/A l and C o /P b  are m ultilayers formed 

from m aterials w ith quite large lattice m ism atch. In reality the interfaces are likely to 

present a  large am ount of defects and a more realistic description would be useful.

A tten tion  is now turned  to the Ni-based m ultilayers. The conductances for all 

the  m ultilayers are presented in the tables 3.7, 3.8 and 3.9, where I used the same 

norm alization as before.
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Multilayer r a  r A r / r  ( % ) AT max A r max/ r  (%)
Niio/Cu 0.66 4.26 • 10"3 0.64 9.51 • 10"3 1.43
Niio/Ag 0.69 5.81 • 10"3 0.84 2.27 • I Q - ' 2 3.27
N i10/P d 0.26 9.26 • lO"3 3.51 2.16- 10"2 8.19
Niio/Pt 0.28 6.01 • 10"3 2.15 1.88- 10"2 6.74
Niio/Au 0.64 8.35 • 10"3 1.31 2.80 • 10"2 4.41
N i10/R h 0.18 4.58 • 10"3 2.53 1.31 • 10"2 7.27
N i10/Ir 0.19 7.76 • 10"3 3.93 3.43 • 10"2 17.37

N i10/P b 0.14 6.25 • 10"3 4.43 1.19-10"2 8.5
N i10/A l 0.13 1.04-10"2 7.87 3.50 • 10"2 26.46

Table 3.7: Conductance and conductance oscillations for different Ni-based metallic multilayers: ma­
jority band. The conductance of each multilayer is normalized to the conductance of the corresponding 
non-magnetic metal, which composes the leads.

Multilayer r Ar A r /r  ( %) A r— max A rmax/r  (%)
N im /C u 0.47 8.35 • 10"3 1.78 2.07 • 10"2 4.42
N iio /A g 0.43 9.32 • 10“3 2.15 3.14 • 10"* 7.23
N i 10/ P d 0.54 2.75 • 10"2 5.07 7.81 • 10"2 14.40
N i 10/ P t 0.52 2.15 - 10“2 4.15 5.35 • 10“2 10.36
N i 10/ A u 0.49 7.96 • 10"3 1.62 2.51 • 10"* 5.10
N i10/R h 0.51 8.26 • 10"3 1.62 1.96 • 10"* 3.84
N i10/Ir 0.49 7.90 • 10"3 1.59 2.76 • 10"2 5.57

N i 10/ P b 0.16 9.07- 10"3 5.51 2.71 • 10"* 16.49
N i 10/ A l 0.11 9.29- 10"3 8.67 3.61 • 10"2 33.69

Table 3.8: Conductance and conductance oscillations for different Ni-based metallic multilayers: mi­
nority band. The conductance of each multilayer is normalized to the conductance of the corresponding 
non-magnetic metal, which composes the leads.

Multilayer r Ar A r/r  ( %) AT max Armax/r  ( %)

N i10/C u 0.44 1o1-Hooo 1.84 1.88-10"2 4.30
Niio/Ag 0.42 8.18-10"3 1.97 2.19 - 10"2 5.28
N i10/P d 0.20 6.18-10"3 3.07 1.81 • 10"2 8.98
N i10/P t 0.20 6.16- 10"3 3.00 2.73 • 10"2 13.34
N im /A u 0.44 7.95 • 10"3 1.79 2.27 • 10"2 5.11
N i10/R h 0.15 3.87- 10"3 2.59 7.84 • 10"3 5.25
N im /Ir 0.17 4.47* 10"3 2.67 1.51 • 10"2 9.06

N i10/P b 7.74 • 10"2 5.04 • 10"3 6.51 1.36 • 10"2 17.55
N i10/A l 5.83 • 10"2 7.61 • 10"s 13.06 2.59 • 10"2 44.40

Table 3.9: Conductance and conductance oscillations for different Ni-based metallic multilayers: AF 
configuration. The conductance of each multilayer is normalized to the conductance of the correspond­
ing non-magnetic metal, which composes the leads.

51



Most of the features of Co-based multilayers can also be found in Xi-based multilayers. 

From the tables it is very clear that the conductances for the Xi-based multilayers 

are generally higher than the conductances for their Co-based counterparts. This is 

particularly true for the majority band of Xi/Cu, Xi/Ag and Xi/Au and for the minority 

band of Xi/Pd, X i/Pt, X i/Ir and Xi/Rh. Moreover in the case of Xi/Cu, Xi/Ag and 

Xi/Au also the conductance of the minority band is quite large giving rise to a small 

spin-polarization (.Pxi/Cu =  0.17, Pxi/Ag =  0.23, Pxi/Au — 0.13) and consequently to 

small a GMR ratio (see table 3.2). In the case of d-conductors X i/Pd and X i/P t have 

the same spin-polarization as Xi/Rh and Xi/Ir and in all the four cases it is negative 

(Psi/Pd =  -0.34, Pxi/pt =  -0.30, Pxi/Rh =  -0.48, Pxi/ir =  -0.43). This reflects the 

fact that in the minority band of Xi the Fermi energy lies exactly at the peak of the 

d-region of the DOS (close to the band edge). Therefore the dispersion of the d-band is 

not largely different from that of both Pd, Pt and Rh, Ir. This is an important result 

and suggests that Xi can be used in conjunction with d-conductors to form multilayers 

with large GMR ratio. Finally one can note that also in the case of Xi, multilayers 

formed from Al and Pb present low conductances and large oscillations. The same 

considerations made for Co-based multilayers are still valid.

To conclude this section I will discuss the relevance of the present calculations to 

experiments. The results obtained for Co/Cu and Co/Ag multilayers are well consis­

tent with the largest experimental values for CPP GMR [13, 58, 67] and also with 

ab initio calculations [49, 50]. This result is surprisingly good if one considers that 

in actual multilayers a perfect antiferromagnetic configuration is difficult to achieve 

[87]. Xevertheless it is important to bear in mind that the calculations are for ballistic 

disorder-free systems and that the disorder can alter the present picture. The effect of 

disorder will be discussed in the Chapter 5.

CPP GMR measurements exist also for Co/Au point contacts [71] where one ex­

pects to reproduce closely the results obtained from a ballistic calculation. Xevertheless 

in such a measurement the point contacts yield / / V  curves which are typical of a diffu­

sive regime. Moreover the system appears granular with the presence of paramagnetic 

clusters. All this information suggests that in such a system inelastic scattering domi­

nates, and therefore the conductance regime is very far from ballistic.
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As far as multilayers based on d-conductors are concerned very little experimental 

work has been done [69, 72, 86] and none in the CPP configuration or with Xi. On the 

theoretical side ab initio transport calculations have been carried out [68]. The GMR 

ratios found for Co/Pd and Co/Rh are smaller than the ones computed here. The 

reason is that in reference [68] very thin magnetic layers are considered and therefore 

the spin filtering is not efficient (see the dependence of GMR on the magnetic layers 

thickness of figure 3.8). More experimental work on multilayers based on d-conductors, 

particularly built with Xi as magnetic materials would be welcome.

3.4 T M R

In this last section I will discuss some preliminary calculations on tunneling junctions. 

My aim is to show that the scattering technique developed in the previous chapters 

is able to deal with a tunneling problem and to show that a realistic description of 

ballistic tunnel junctions may be given. The structure I want to simulate is a Co­

based tunnel junction attached to two semi-infinite crystalline Cu leads, namely the 

structure Cu/Co/IX S/Co/Cu, where IXS denotes the insulator. The magnetizations of 

the Co layers may have either a perfect ferromagnetic or antiferromagnetic alignment. 

Xote that the presence of the Cu leads reproduces correctly the typical experimental 

situation in which the magnetic layers do not form the electrical contacts.

I used for Cu and Co the same parameterization used for the case of GMR, while 

for IXS I have taken the parameterization shown in the tables of Appendix D (see 

figure 3.11). For all the simulations I considered perfect translational invariance in the 

transverse plane and used 150 x 150 /^-points in the 2D Brillouin zone. An important 

problem that one has to face when calculating the tunneling current is that, due to 

the small value of the transmission coefficient, the violation of the unitarity of the S  

matrix due to numerical errors may be of the same order of the transmission coefficient 

itself. If this happens the error in the calculated tunneling current is larger than the 

current itself and the calculation is meaningless. To avoid this problem I performed the 

following test. For each fc||-point I compared the transmission coefficient jT(At||) with 

the following measurement of violation of unitarity £(&n) = IX//^) — R(k^) — T(A*||)|, 

where R(k\\) and N(k\\) are respectively the reflection coefficient and the number of open 

scattering channels. In the case 6 > 1/10T  I rejected the corresponding T. Surprisingly
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Figure 3.11: Partial DOS (a) and partial conductance (b) for the fee insulator used in the calculation. 
The vertical line denotes the position of the Fermi energy.

the conductance obtained w ith this procedure differs by less th an  1 % with respect 

to the conductance calculated keeping all the transm ission coefficients. This means 

th a t the transm ission coefficients which significantly contribu te to  the conductance are 

calculated w ith good accuracy.

In figure 3.12 I present the different spin conductances for a junction  in which the 

thickness of the first Co layer is fixed to 50 atom ic planes, the thickness of the insulator 

is respectively 1 ,2 , and 3 atom ic planes and the thickness of the second Co layer is 

varied between 5 and 55 atom ic planes. In the antiferrom agnetic case I present either 

the m ajority  or the m inority electrons (with respect to  the m agnetization of the first Co 

layer), which show very sim ilar conductances even if the oscillating pa tte rn s  are quite 

different. The m ost im portan t feature of figure 3.12 is th a t, on the one hand when 

the thickness of the insulator is one atom ic plane the conductance in the ferrom agnetic 

configuration is dom inated by the m ajority  electrons with a  polarization of Pi =  0.34 

(the subscrip t labels the INS thickness), on the other hand when the INS thickness is 

larger than  one atom ic plane, the m inority electrons dom inate the conductance w ith 

polarizations — —0.33 and P 3 =  -0 .7 . The polarization for one atom ic plane of INS 

is close to the  polarization found for C o/C u  m ultilayers (Pc0/cu =  0-30) and, since the 

conductance is large (the normalized conductance is T =  0.45 for the  m ajority  spins), I 

conclude th a t the  tran sp o rt is m ainly via direct current and the tunneling  com ponent 

is very suppressed.
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Figure 3.12: Conductance for Cu/Co/INS/Co/Cu tunneling junction. The thickness of INS is 1 (a), 
2 (b) and 3 (c) atomic planes. In the AF configuration the spin-direction is given with respect to the 
first Co layer.

The situa tion  when the thickness of the insulator is larger th an  one atom ic plane 

is very different. In such a case the transm ission is generally very small and decays 

exponentially w ith the INS thickness (as expected from the elem entary tunneling the­

ory). In figure 3.13 I present the normalized transm ission coefficient for the m ajority  

and m inority  spins as a function of the thickness of the insu lator and the corresponding 

spin-polarization of the tunneling junction. Note th a t while the transm ission coefficient 

decays exponentially (the scale is logarithm ic) the polarization first increases (becomes 

more negative) and finally sa tu ra tes a t a value close to  -1 for thick barriers. This effect

10'
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1

0.5

0.0

-0.5

- 1.0

INS Thickness (AP)

Figure 3.13: Transmission coefficient (a) and polarization (b) of C u/C o/IN S/C o/C u tunneling junc­
tions as a function of INS thickness. The thickness of the right-hand side Co layer is varied from 1AP 
to 55AP and each point corresponds to the average value over these thicknesses.
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can be understood by considering the standard theory of tunneling through a rectan­

gular barrier with the effective mass approximation and parabolic bands. The usual 

textbook expression for the transmission coefficient of two free electron normal metals 

of effective mass rax separated by a rectangular barrier of height U Q with an effective 

mass rai is simply

T (*") =  1 +  .4(fcy) • sinh2[</(fr||)/] ’ (3'10)

where the quasi-momentum <7(fr||) into the insulator is

q{k\\) = j ^ 2 m \ ( U 0 -  E F) + fcjj , (3.11)

and the coefficient A(k\\)

_  [ 2 m i m l ( U 0 -  £ F) +  2ra?rax£ F fcjj(raf +  ra -̂)]2 ^

4m 2m \  [2mx£p _  ĵf] [^mi(Uo ~ Ef) ~  ĵj]

The total conductance is simply given by the sum of all the transmission coefficients 

T(k\\) over the 2D transverse Brillouin zone. The important point of equation (3.10) 

is that the decay of the transmission coefficient with the insulator thickness I is solely 

determined by the quasi-momentum q. In the present case this yields to the well known 

fact that the transmission is largest at the T point and decays exponentially far away 

from it (note that in the parabolic case the quasi-momentum q is a function only of 

A:jj). Moreover if one introduces an exchange field between the two spin sub-bands it is 

easy to show that this will affect only A(k\\) but not q(k\\). In the limit of thick barriers

sinh2[<7(A;||)/] a  e~2q(-k and the equation (3.10) becomes simply

r 7̂ ,,) =  ^ (fc ii)-1 • e-2, f̂c||)l , (3.13)

where I introduced the index o to indicate the spin. Finally the polarization of the 

junction is obtained by using the equation (3.9)

EU^W-^-n)]

The key point of the equation (3.14) is that the polarization is independent of the 

thickness of the barrier and this reflects the fact the the same decaying factor e~2qW  

is present both for the majority and the minority spin-current.
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Xevertheless the model considered is highly ideal and the band structure of real 

transition metals can be very different from parabolic. The crucial point is that in 

general the quasi-momentum q can be a complicated function of k\\, which depends on 

the insulator. In particular q can be different for electrons with different atomic orbital 

components. Note that different values of q for different atomic orbital components 

means that there are different effective barriers for different bands. For instance one 

can imagine the situation in which q for electrons with a strong s-component is larger 

than q for electrons with a strong d-component. In this case of a thick enough barrier the 

contribution to the current will come mainly from the d-electrons and consequently it 

will be given by the d-electrons only. Moreover the polarization will change by changing 

the barrier thickness because the cancellation of the exponential terms, yielding the 

equation (3.14), will not occur. Finally for very thick barriers the polarization will 

saturate to either the value 1 or -1, depending on which of the two spin-electrons has 

the largest exponential decay. This last result is crucial because it means that for 

disorder-free tunnel junctions the polarization increases with the barrier thickness and 

it is complete for very thick barriers. Therefore I predict that for large disorder-free 

barriers the TMR ratio of a tunneling junction is either +oo or — oo. Nevertheless it 

is also important to note that if the barrier is disordered, tunneling through localized 

states in the barrier is possible. This process may be largely spin-independent [19, 20] 

resulting in a global reduction of the polarization of the junction.

To prove that q can be a non-trivial function of k\\ in figure 3.14 and 3.15 I show 

the transmission coefficient T(kx, ky) for the Cu/Co/IN S/Co/Cu junction as a function 

of kx and ky in the first Brillouin zone, respectively for the majority and minority spin.

The two distributions of T  in the Brillouin zone look very different. On the one hand 

the one for majority spins shows spherical symmetry around the T point, highlighting 

a quasi-parabolic behaviour. On the other hand the distribution for the minority spins 

shows a remarkable resonant signature of the intricate band structure of the d-band 

at the Fermi energy. This very different behaviour of the transmission coefficient is a 

property of the insulator that therefore affects in a crucial way the polarization of the 

junction.

To conclude this section I want to compare the result obtained above with other 

existing theories. In particular Tsymbal and Pettifor [78] showed that the polarization
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Figure 3.14: T(kx,ky) for Cu/Co/INS/Co/Cu tunneling junction: majority spins.
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Figure 3.15: T(kx,ky) for. Cu/Co/INS/Co/Cu tunneling junction: minority spins.

59



can be changed by varying the coupling between the insulator and the magnetic elec­

trodes while keeping constant the parameters of the insulator itself. In that case the 

barrier is not changed and the decay of the wave-function within the barrier will not 

vary. Xevertheless by changing the coupling between the magnetic electrodes and the 

barrier, the local density of state at the surface of the barrier is changed. This results 

in a change of the polarization of the electrons approaching the barrier, or at least of 

that fraction which possesses high transmission through the barrier. The polarization 

of the whole junction will therefore be changed, because the polarization of the injected 

electrons is changed. In the language of the simple-parabolic model this corresponds 

to a change of -4(A;||).
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4 Conductance Oscillations

4.1 Introduction

One of the results of the previous chapter was that the spin-conductance and the GMR 

ratio are oscillating functions of the thickness of the layers forming the multilayer. 

These oscillations are larger when large scattering is present even if they cannot take 

into account the large-amplitude long-period oscillations of GMR found in experiments. 

These latter are due to a periodic variation of the exchange coupling between adjacent 

magnetic layers, which results in the absence of the antiferromagnetic alignment of the 

multilayer for certain layers thicknesses. The magnetic configuration in zero magnetic 

field will not always be antiferromagnetic and the corresponding conductance will not 

be that of the antiferromagnetic configuration. In the extreme case in which in zero 

magnetic field a ferromagnetic configuration is present instead of an antiferromagnetic 

one, the GMR ratio will vanish. Therefore the oscillations of the GMR ratio only reflect 

the fact that for some layer thicknesses the antiferromagnetic configuration does not 

exist.

Recently a new set of measurements on Xi/Co [88, 89, 90, 91] multilayers re­

vealed the possibility of long-period oscillations of the conductance of a different origin, 

whereas, measurements on Ag/Pd [91], Ag/Au and Ag/Cu [92] multilayers have not 

shown any long-period oscillations. On the one hand, the Ag based multilayers are 

entirely non-magnetic. On the other, the Xi/Co multilayers were measured in high 

magnetic field, far above the coercive field of the structure, which rules out magnetic 

misalignment between magnetic layers as source of the oscillations. In these experi­

ments, all the measurements were conducted with the current in plane (CIP) configu­

ration and to-date, no measurements have been carried out in the CPP configuration.

One of the possible explanations of such puzzling experiments is the formation of 

quantum wells in all or only few of the bands due to the multilayer structure. The 

quantum well theory has been used in the past for describing the oscillations of the 

exchange coupling [5, 6, 93], and to correlate such oscillations with the oscillations of 

the CPP conductance [94, 95]. All the calculations have been carried out by considering 

a trilaver because in this case the treatment is simplified and analytic calculations can 

be carried out. The central result of this approach is that the conductance and the
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exchange coupling oscillate with periods that depend only on the Fermi surface of the 

materials involved, the superlattice structure being neglected.

In this chapter I will study in detail the oscillations of the conductance in a multi­

layer and show that the oscillation periods are not only a function of the Fermi surface 

of the materials forming the multilayer, but also a function of the geometry of the 

multilayer. The calculations are carried out in the CPP configuration where at present 

no experimental data exist and predictions for future experiments will be made. First 

I will calculate the conductance for disorder-free Xi/Co and Ag/Pd multilayers, where 

the layer thickness fluctuates randomly. This will provide quantitative description of 

the conductance fluctuations in the CPP geometry for real multilayers.

Secondly I will introduce a free electron model within the effective mass approxi­

mation and Kronig-Penney potential. This simple model has the advantage of giving 

a clear interpretation of the numerical results and provides a simple expression for the 

relevant oscillation periods. The long period oscillations of the conductance will emerge 

to be the result of beating between the Fermi wave-vector and a class of wave-vectors 

characteristic of the superlattice structure. A completely analytic description of the 

system and a formula to calculate the conductance will be given.

Finally, leaving the problem of the oscillations, I will use the simple model to re- 

discuss the material dependence of GMR and in particular on the different dispersion 

relations between different materials. Even in this case the model gives a good quali­

tative understanding of the general mechanism leading to the scattering, even though 

it will not capture all the details of the transition metals. This leads to a better model 

which will be developed in the next chapter.

4.2 R eal M aterial Sim ulations

In this section I consider the conductance of Xi/Co and Ag/Pd multilayers in the 

CPP configuration. I use the same tight-binding parameterization used in the previous 

chapter [84] and assume that in the case of Xi/Co a perfect ferromagnetic alignment of 

both Co and Xi is achieved. Furthermore I consider complete translational invariance 

and completely clean interfaces. Xote that this assumption is particularly good in the 

case of Co and Xi which do not mix at the interface, but breaks down in the case of Ag 

and Pd which are quite miscible [91]. The conductance is therefore given by summing
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up the spin-dependent, /^-dependent transmission coefficients T a(k\\) as indicated in 

equation (3.2). In what follows, I employ as in the previous chapter 8100 /c||-points, 

which is sufficient to render effects due to the finite number of /^-points negligible 

compared with the oscillations of interest.

The same analysis used in Chapter 3 to interpret the conductance results in term of 

band structures mismatch can also be used here. It should be noted that the majority 

bands of Ni and Co are dominated by sp-electrons and are closely aligned (see figure 

3.1). On the other hand the minority bands are d-like and possess a relative shift in 

energy of about 0.7 eV. Hence one expects a large contribution to the conductance 

from the majority channel and a small contribution from the minority channel. For 

the same reason the oscillations of the conductance are expected to be larger in the 

minority spin sub-bands than in the majority.

For Ag/Pd the situation is qualitatively different (see figures 3.4 and 3.5), because 

at the Fermi energy the DOS of Ag is dominated by sp-electrons, while in Pd it is 

dominated by d-electrons. As a consequence one expects at the interfaces, together 

with a scattering potential in the d-band, a strong inter-band scattering. In summary, 

despite the scattering mechanisms at the interface looking different, both Xi/Co and 

Ag/Pd multilayers are constituted by two metals whose band match gives rise to an 

effective periodic scattering potential.

Following reference [54, 96], I consider a pseudorandom layer arrangement, in which 

a finite A/B multilayer, attached to semi-infinite leads of material A, possesses B-layers 

of fixed thickness /B and A-layers of random thicknesses l \  which are allowed to fluctuate 

by ±1 atomic planes (AP) around a mean value U (with equal probability for Za, Za±1). 

In all the following simulations, I consider multilayers consisting of 10 A/B bilayers and 

for each /B show results for the average conductance of 10 random configurations of the 

A-layers.

For Xi/Co and Ag/Pd respectively, figures 4.1 and 4.2 show the mean conductance 

as a function of /B, along with error bars for the standard deviation of the mean om. 

While om is smaller than the underlying conductance fluctuations, it should be noted 

that this is not the case for the standard deviation a in the distribution of the individual 

conductances, which for an ensemble of m  realization satisfies am = cr/s/m, where 

m = 10 for figures 4.1 and 4.2. For small m, a  is of the order of the conductance
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Figure 4.1: Conductance of Xi/Co multilayers as a function of the Xi thickness. The Co thickness is 
10 atomic planes. The inset shows the two spin conductances on the same scale with the upper plot 
for majority spin and the lower for minority spin. The error bars correspond to the root-mean-square 
deviation of the mean.

oscillations themself, thereby masking any underlying trend. In experiments involving 

a large number n of bilayers, such that the total length I =  n(lA 4- /b) is larger than 

the phase braking length 1$ (due to incoherent scattering processes), the sample may 

be viewed as comprising 1/1$ samples in series and therefore the total resistance is 

the sum of 1/1$ statistically independent resistances. This suggests that multilayers 

with a large number of bilayers are needed in order to detect reproducible conductance 

oscillations, as pointed out in several experiments [88, 89, 90, 91]. The figures suggest 

the presence of long-period oscillations on a scale greater than the atomic spacing, 

with amplitudes not exceeding 25% of the mean conductance, though the period does 

not seem constant. Moreover the Ni/Co system shows smaller oscillations than the 

Ag/Pd system, and despite the fact that the conductance of the majority spin channel 

is almost double that of the minority, the oscillations arise predominantly from the 

minority spins, where the scattering is strongest. This is consistent with the scattering 

mechanisms pointed out in the previous chapter. Although the results of figures 4.1 and 

4.2 are important because represent a quantitative calculation involving real materials,
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Figure 4.2: Conductance of Ag/Pd multilayers as a function of the Pd thickness with an average Ag 
thickness of 5 atomic planes.

iii order to understand how quantum interference of the conduction electron wave- 

functions might give rise to long period oscillations, it useful to develop a simple model 

which capture most of the relevant physics. This is done in the next section.

4.3 Effective M ass M odel and C onductance for an Infinite Sys­
tem

The model consists in a 3D free-electrons gas with parabolic band, effective mass and 

Kronig-Penney potential [97]. The potential is along the 2-direction only (the direction 

of the current in the CPP configuration) and describes the off-sets between the bottom 

of the bands of different materials. The masses of the different materials are allowed 

to be different reflecting the different band dispersions. For instance, if one wants to 

describe a d-conductor (Pd) in contact with an sp-conductor (Ag), two parabolic bands 

with respectively large and small effective masses will be considered. The Hamiltonian 

for such a system can be written as
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where V 2y is the 2D I aplacian. Since the structure considered possesses translational 

invariance in the x-y directions, the spin-dependent Kronig-Penney potential V a{z) 

and the effective mass m*(z) are functions of z only. Consequently the problem can be 

mapped onto a /^-dependent ID problem, whose Hamiltonian is

H°(z\  fe||) =  - i L A —L - i L  +  A A  + Y ^ z ), (4.2)
2dz m*( z ) dz  2m* (z)

For each k\\ and spin cr, an eigenstate at the Fermi energy contributes e2/h  to the con­

ductance of this infinite periodic structure. The open scattering channels of the Hamil­

tonian (4.2) can be found with an ordinary transfer matrix technique (see Appendix 

E). Nevertheless in the case in which the effective mass is constant, the calculations can 

be carried out analytically and a good description of the relevant oscillation periods 

can be given. It is therefore useful to introduce a general formula for the conductance 

(more precisely for the conductance per unit area) of an infinite system in the case in 

which the Schrodinger equation can be solved by separating the variables. This is the 

case of the Hamiltonian of equation (4.1) when m*(z) = m *.

The starting point is the Landauer-Biittiker formula for an infinite system. In this 

case there is no reflection and the total conductance is

r = A ( e f ) , (4.3)
h

where ,Y(EF) is the total number of open channels at the Fermi energy. Suppose the 

total energy can be written as a sum of a transverse component E\\ and a component 

along the direction z of the transport E±. The total number of open channels at the 

Fermi energy is simply the number of states of the form elk±z whose corresponding 

energies E± satisfy the relation

E ± = E f -  £ ,| , (4.4)

for some allowed E\\. If the potential is periodic along z the states exk̂ z will form one 

dimensional bands En and the number of open channels will be the number of states 

satisfying the equation (4.3) with E±_ belonging to one of the bands

.v (£ f ) =  5 > '» -  (4-5>
n
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where N n is the number of open channels corresponding to the 77-th band and the sum 

runs over all the occupied bands up to the Fermi energy. The number of states between 

an energy window E± and E± +  dEj_ within an allowed band is simply given by

dNn = p (£ ||)d£M =  p(EF -  E ±)dE± , (4.6)

where p is the two-dimensional density of state in the plane orthogonal to z (this can be 

substituted by a one-dimensional density of states if one deals with a two-dimensional 

transport problem). Given (4.6), the total conductance can be easily evaluated

fp-   r E n +r = TE/ dEp(EF - E ) ,  (4.7)
11 V  J E n

where the sum spans all the occupied 77-bands, E n is the position of the bottom of the 

n-th band and A n is the correspondent band width. The expression (4.7) is completely 

general and can be applied to every system in which the energy can be written in the 

form of equation (4.4).

In the free-electron case introduced above the equation (4.7) can be further sim­

plified. In fact for a system with finite cross section A = L x L and with periodic 

boundary conditions the two-dimensional density of states is simply

with m* the effective mass. Note that the two-dimensional DOS does not depend on the 

energy. Therefore the integral of equation (4.7) is trivial and the conductance assumes 

the following expression
r = 2 M  ^

h * n

Note that in the case of an infinite system also in the transverse direction T diverges 

because A — > oo . It is possible to eliminate such a divergence by defining the conduc­

tance per unit area T/A  (note that this is proportional to the normalized conductance 

used throughout the first chapters).

It is also important to note that in this simple case the problem of calculating 

the conductance is mapped onto the problem of calculating the total bandwidth of a 

one-dimensional periodic potential. In the next section I will use the formula (4.9) 

to evaluate the conductance of an infinite multilayer and to calculate the oscillation 

periods.
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4.4 The O scillation Periods

In the previous section I have shown that the calculation of the conductance in a three- 

dimensional infinite multilayer consists of evaluating the total bandwidth up to the 

Fermi energy of the mono-dimensional problem defined by the Hamiltonian

= + ( 4 -1 0 )

Consider an infinite superlattice composed of materials A and B, with laver-thicknesses 

l \  and /B {Ia +  — L). The correspondent Kronig-Penney potential assumes values

V = V0 (Ep > Va) in the metal A and Vr =  0 in the metal B. The Hamiltonian (4.10) 

yields immediately the Kroning-Penney secular equation

cos(kLL) = cos(kAl \  +  kBIB) -  ^ A. + sin(frA/A) sin(fcB/B), (4-11)
k \ k s

with kA{E) = yj2m*(E -  V0)/h  and kB(E) = \f2m*E/h.  Based on this expression, 

I now argue that the bandwidths exhibit several periods of oscillation as the layer 

thicknesses are varied.

To describe Xi/Co (Ag/Pd) multilayers, I vary the thickness of metal B keeping 

fixed the thickness of metal A. To understand the oscillatory behaviour of the band­

widths, note that equation (4.11) cannot be satisfied at energies for which

kA(E)lA +  kB(E)lB =  rrm , (4.12)

where m is an integer. Hence at E  = Ep and fixed /A, successive bandgaps appear at 

the Fermi energy Ep when /B changes by

;B = i /T~-rjrm = l sm- (4-13*’̂b (^ f) \f2m*Ep

Equation (4.13) introduces the first period of oscillation /B. The second period corre­

sponds to the presence of narrow gaps below the Fermi energy. From equations (4.11) 

and (4.12) narrow bandgaps appear at the energies

whenever the lengths /B equal



This last result can be easily proved as follows. Consider a general choice of kA(E)l \  

and kB(E)lB which satisfies the equation (4.12)

k \(E) lx  = mi: + <p , (4.16)

kB(E)lB = , (4.17)

with 0 <  (f> < 7r. By substituting the equations (4.16) and (4.17) into the equation 

(4.12) one obtains

cos(k^L) = ±1 ±  sin2(<ft) , (4.18)
k.\kB

where the sign “+ ” ( “-”) corresponds to even (odd) m. It is now clear that narrow

gaps are obtained when the second term of the left-hand side of the equation (4.18) is

small. This occurs when 4> = nV, which yields the relation

k \ l \  = 777T (4.19)

and the condition (4.14). The total bandwidth A and hence the conductance per unit of 

area (4.9) are oscillating functions with periods /g and the /g^’s. All these periods are of 

order \ y  (ie few A), but beating between them can give rise to long-period oscillations. 

It is important to note that the Fermi period is defined only through the Fermi energy, 

while the periods /g1̂ depend critically on the superlattice geometry. In particular, 

because the energies corresponding to periods (4.15) depend on l / / 2 and must not 

exceed the Fermi energy, the number of /g^’s depends on the thickness of the metal 

A. If l \  is large, a large number of 1 ^  periods will be present and the beating pattern 

will be complex. On the other hand, if l \  is small, few Iq '̂s will be present, giving rise 

to a simple beating pattern. A numerical evaluation of the equation (4.9) is shown in 

figure 4.3. For the chosen parameter in this plot, I expect only one /g1̂ and clear beats 

are observed, with period 21^ 1^/(1^  -  /g). Since the /gn) periods are characteristic of 

the superlattice structure I predict that the period of the long oscillations can be set 

by choosing the appropriate superlattice geometry. Of course in a real superlattice, 

the B-metal thickness can only be changed in units of the inter-atomic spacing. The 

solid dots in figure 4.3 highlight the conductance associated with such a discrete set of 

thicknesses.

The above dependence of oscillations on the multilayer structure is missed by a 

trilaver quantum well approach to conductance oscillations and GMR [93], where only
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Figure 4.3: Conductance per unit area in the effective mass approximation. The parameters are Ep =  
lOeY. Y0 =  6eY, m* =  0.5MeV, /a =  8A. The dots correspond to the conductance calculated at integer 
values of the lattice spacing of Xi. The vertical lines show the beating period /beat =  ^ b ^b /(^b  ̂ ~ b̂)-

two periods have been identified. The first of these pFS depends on the extremal Fermi 

surface radius of the spacer forming the well, and in the parabolic band approximation 

corresponds exactly to the period /g. The second period pcp depends on the cut-off of 

the sum over the s, and in the parabolic approximation, on the energy difference 

between the Fermi energy and the step potential VQ. In the superlattice description 

given, this period is replaced by the class of periods \  which are a function of the 

superlattice structure itself. This structural dependence of the oscillation periods is the 

key to understanding the apparent non-reproducibility of the long period oscillations 

from sample to sample, observed in some of the experiments [92]. It may be shown that 

these beating features are preserved when a more realistic material-dependent effective 

mass is used and therefore may be considered general.

Bearing in mind that the above analysis describes the CPP configuration, I can 

also speculate on the absence of the oscillations in other recent experiments [92, 91]. 

Ag/Cu [92] exhibits very good phase separation between the different metals and hence 

it should be a good candidate for observing conductance oscillations. However the band



match between Ag and Cu is very good, resulting in a very small scattering potential 

at the interface. In the effective mass approach this means a very small step potential 

\ o with respect to the Fermi energy. A large number of periods will be present and 

the beats will be difficult to detect. The same argument is valid for Ag/Au [92]. In 

addition the high miscibility of Ag and Au results in dirty interfaces. Ag/Pd [91] is in 

theory a good candidate to show conductance oscillations because of the large mismatch 

between the Ag and Pd bands. Unfortunately interdiffusion at the interface is difficult 

to avoid and the elastic mean free path will be quite short. Finally, note that for Ni/Co 

[88, 89, 90, 91, 92], the majority band reproduces roughly the situation of Ag/Cu, 

while the scattering in the minority band 'is quite large. According to the effective 

mass model the minority band will possess a low conductance with large oscillations, 

while the conductance of the majority band will be large and the oscillations small. 

This is precisely what I obtain from the material specific tight-binding calculations. 

The absence of oscillations found in reference [92] for Xi/Co multilayers may be due 

to the diffusive nature of the multilayers. In fact in such experiments the resistances 

involved are about five times larger than the ones of references [88, 89, 90, 91], and 

the mean free path is much shorter. This suggests that the transport is not only non- 

ballistic. but also that the absolute error in the resistance measurements may become 

comparable to the observed magnitude of the oscillations.

This concludes the part of this chapter concerning the conductance oscillations. In 

the next section I will revisit the dependence of the GMR on the materials forming the 

multilayer by using the effective mass model.

4.5 The role o f the effective mass

In this section I extend the effective mass model to the case of different effective masses 

for different materials and consider an infinite multilayer described by the Hamiltonian 

(4.1). Note that the kinetic operator possesses the following term which

ensures the Hamiltonian to be hermitian. In the case of a multilayer composed of 

different materials the effective mass m*(z) can be a step function assuming the values 

rn\ and m g respectively in the metal A and B. Whether or not this model is well- 

founded and the consequent envelope-function approximated wave-function represents 

the real wave-function is a matter of debate [99]. There is more or less general agreement
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that this approximation is valid in the case in which the Fermi wave-length is much 

larger than the typical interface region between different materials (p • k theory [100]). 

This is the case of semiconductors. In the case of metals the typical Fermi wave­

lengths are of the order of the lattice spacing and questions on the validity of such an 

approximation are legitimate. I do not want to enter into this debate and I will use the 

above model only as phenomenological model to understand some general features of 

the transport of metallic multilayers. At the end of this paragraph it will be clear that 

a free-electron model is too crude to account for some features of the transport.

The conductance is calculated using the general transfer matrix technique presented 

in Appendix E. The problem one has to face is to select correctly the parameters for 

the Kronig-Penney potential and the effective masses. In what follows I assume that

the bottom of the band of the non-magnetic material A (say Cu) is OeY and the Fermi

energy is 7eY. The remaining parameters to set are the Kronig-Penney potential for 

the two spin-bands of the magnetic material (say Co) Y* and Y^, the spin-dependent 

effective masses in Co m? and nY, and the effective mass in Cu m. I leave m  to be 

a free parameter. This is because I want to study the dependence of the conductivity 

and the GMR on the dispersion of the non-magnetic material. The only parameters 

left are therefore the ones regarding Co. The criterion I adopted was to reproduce the 

correct DOS at the Fermi energy p a(Ep) = pp and the integrated DOS up to the Fermi 

energy N a of Co, calculated with the spd tight-binding model. In a free electron model 

these two quantities are respectively
3 /2

p(E) = t£ r - V 2 E  (4.20)

and

N  = f EF p(E)dE = ^ - ^ E T  . (4.21)
Jo n irz 6

From the tight-binding model I obtain the following estimates Pp/pp =  6.3 and N i /N^  = 

0.94, which yield the relations (Ep — V^)/(Ep — V^) ~  0.15 and m}/m?  ~  6.4. These two 

equations can be solved for several choices of Y^, Y*, ttY and m} . I performed several 

calculations aimed at reproducing the normalized conductances of Co/Cu multilayers. 

One of the typical results is presented in figure 4.4 where the conductances of the two 

spins and the antiferromagnetic configuration, and the consequent GMR are plotted 

as a function of the Cu effective mass. Figure 4.4 presents some interesting features.
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Figure 4.4: Conductance per channel in the effective mass approximation. The parameters are Ep =  
7eV, V r =  1.9eV, =  6.4eV, mT =  16 me, = 2 m e, with m e the electron mass.

Assume the “tru e” effective mass of Cu is the one which m axim izes the GM R, i.e. it 

is abou t 1.4 m e. If the  effective mass of the non-m agnetic m etal decreases from the 

value of Cu, all the spin conductances increase, bu t the GM R decreases. This reflects 

correctly the behaviour of C o/A g with respect to C o/C u , where the presence of a full 

sp-like band a t the Fermi energy is sim ulated by an Ag effective mass lighter than  th a t 

of Cu. On the o ther hand if one moves the non-m agnetic m etal effective mass towards 

large effective masses, all the  conductances decrease. Moreover, because an increase of 

the effective m ass results in an improved band m atch of the  m inority band with the 

non-m agnetic band, and in a degraded m atch of the m ajority  band, the m ajority  spin 

conductance tu rn s  out to decrease faster. This gives rise to  a decreasing of the GM R. 

Pd and P t show this situation , and the d-like behaviour a t the Fermi energy can be 

sim ulated by a large effective mass.

Therefore th is qualita tive  behaviour seems to reproduce correctly the results ob­

tained w ith  the spd  tight-binding model for Co-based m ultilayers. Nevertheless there 

are two problem s. F irst the spin-dependent effective mass for Co assum es very large 

values th a t, despite the fact they should include the large curvature of the d-band, seem 

largely non-realistic. Secondly the conductance of the antiferrom agnetic configuration
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is alm ost coincident w ith the conductance of the m inority spins in the ferrom agnetic 

configuration for all the values of the effective mass of Cu. This reflects directly  the 

fact th a t the  m odel is only single-band and in ter-band scattering  cannot be described.

This last problem  can be somehow solved by assum ing a further m ism atch between 

the spin-effective mass of Co. In fact the effective k\\ po ten tial of the to ta l H am iltonian

( 4 -2 )

+  (4.22)

h2k2
comprises a kinetic p a rt and a true poten tial part V a (z). It is possible to choose

the spin-dependent po ten tia l V a and the spin-dependent effective mass m*a in such a 

way th a t  the  kinetic p a rt of U(z)  dom inates the m ajority  electrons and the poten tia l 

part dom inates the  m inority. In the antiferrom agnetic configuration, this will result 

in two different sources of scattering  for electrons moving into regions w ith different 

m agnetizations. In figure 4.5 I plot the conductance and the G M R for one of these 

possible choices of param eters. It is interesting to note th a t  now the antiferrom agnetic

400

FM M ajority 
FM M inority 
AF

GM R

<D
G
Ca

s z
U

0.8
300

0.6

200 ^
0.4O

3
-o
co

U

100
0.2

m

Figure 4.5: Conductance per channel in the effective mass approximation. The parameters are Ep =  
7eV, V* =  1.9eV, V =  6.4eV, m1" = 28 m e, m l =  1.4 m e, with m e the electron mass. Note that the 
large difference between mT and m l  yields the conductance in the AF configuration to be smaller than 
the conductances in both spin-channels in the FM configuration.

conductance is lower th an  the conductance for the m inority  spins in the ferrom agnetic
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alignment. Nevertheless the parameters and in particular the effective masses are very 

large.

To conclude, although a single-band model provides a good qualitative description 

of the spin-conductance in magnetic multilayers, it leads to unrealistic parameters. This 

suggests that a realistic minimal model must include two bands with different disper­

sions and possible hybridation. This model can describe both a scattering potential 

and inter-band scattering.
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5 GM R, Disorder and the Breakdown of the B oltz­
mann Description

5.1 Introduction

In the previous chapters I have considered disorder-free systems with translational 

invariance in the direction orthogonal to the current. The main aim of this chapter is 

to investigate the effects of breaking this hypothesis and to study how disorder affects 

the spin transport. This is particularly relevant for magnetic systems produced with 

non-MBE techniques, where structural defects or impurities are largely present. In 

particular in magnetic multilayers made by electrodeposition techniques [32, 101, 102] 

the quality of the interfaces is not as good as in the MBE-made counterparts and 

large interdiffusion between the multilayer constituents is present. Moreover, because 

of the dual bath technique usually employed, the magnetic layers are contaminated by 

non-magnetic impurities with concentration as large as 159U Nevertheless, despite all 

these sources of disorder, such disordered multilayers show large GMR ratios sometimes 

larger than 1009c. It is therefore natural to ask what are the effects of disorder on spin- 

transport.

On the theoretical side two fundamentally different approaches have been used to 

describe CPP GMR in disordered systems. The first assumes that all the transport 

is diffusive and is based on the semi-classical Boltzmann’s equation within the relax­

ation time approximation. This model has been developed bv Valet and Fert [33, 34], 

and has the great advantage that the same formalism describes both CIP and CPP 

experiments. It identifies the characteristic lengths of the problem and can include the 

effects of disorder into the definition of the spin a dependent mean free path and 

the spin diffusion length /sf. Moreover it can be extended to describe the temperature 

dependence of GMR [102]. In the limit that the spin diffusion length is much larger 

than the layer thicknesses (infinite spin diffusion length limit), this model reduces to 

a classical two current resistor network, in which additional spin-dependent scatter­

ing at the interfaces is considered. The resistor network model has been used since 

the early days of CPP GMR by the Michigan State University group [66], and de­

scribes most of the experimental data. The parameters of the model are the magnetic 

(non-magnetic) metal resistivity p ,̂ (p*), the spin asymmetry parameter 3 introduced
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through the spin-dependent resistivity of the magnetic metal p ^ )  =  2p^[l -  (+)/?], the 

magnetic/normal metal interface resistance per unit area r£ and the interface scattering 

spin asymmetry 7 introduced through the spin-dependent interface resistance per unit 

area 77(4,) =  2rJ[l — (+ )t]. A good fit of the parameters has been shown to be possible, 

and the same values can fit reasonably well both the CIP and the CPP data [66]. The 

limitation of such a model is that it neglects the band structure of the system, and all 

the parameters are phenomenological. An extension of the model to include band struc­

ture has been made recently [51, 52], implementing the above transport theory within 

the framework of density functional theory in the local spin density approximation. 

In this calculation, the scattering due to impurities is treated quantum mechanically, 

while transport is described semi-classically using the Boltzmann equation. The same 

method has been previously used to describe the spin-polarization of the current in di­

luted Xi- [103] and Co- [104] alloys. The polarization is generally reproduced correctly 

for light impurities, while the absence of spin-orbit interaction seems to be a strong 

limitation in the case of heavy impurities.

The second theoretical approach to CPP GMR in disordered systems is based on 

the quantum theory of scattering. Full ab initio calculations based on density functional 

theory [49, 50] in this case cannot be used because of the massive computer overheads. 

Tight-binding methods are more promising even if the use of accurate spd Hamiltonians 

leads quickly to unmanageably large matrices. The only calculations carried out to date 

involve either infinite superlattices in the diffusive regime [53] where small unit cells 

can be used, or finite superlattices in which disorder is introduced without breaking 

translational symmetry in the direction perpendicular to the current [29, 54]. In the 

latter case the system is an effective quasi ID system, whereas real multilayers are 3D 

systems with roughness at the interfaces which breaks translational invariance.

From this short overview it is clear that with exception of references [29, 54] the 

transport in disordered magnetic multilayers is always assumed to be diffusive. The 

main expectation from this assumption is that interference effects can be neglected and 

that transport is completely local. As a consequence of this assumption both the spin- 

polarization of the current and the GMR do not change with the length of the systems. 

This picture is generally consistent with experiments. Nevertheless very recently it 

has been shown [35, 36, 105] that in magnetic multilayers the GMR increases with
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the number of magnetic/non-magnetic layers period, and depends critically on the 

order of the layers. Although in the case of reference [36] these data are explained 

by considering a very short spin-diffusion length, this argument is hardly applicable 

to the experiments of references [35, 105] where the use of MBE-grown Co/Cu and 

C o/C u/Fe/C u multilayers assure long spin-diffusion lengths. These results suggest 

that the relevant length scale for CPP GMR is not only the spin-diffusion length but 

also the elastic mean free path, and that non-local contributions to the conductance 

are important. For these reasons the strictly local description of the transport based on 

the Boltzmann’s equation is not valid and a quantum approach to transport is needed.

The aim of the present chapter is twofold. First I will study three-dimensional 

GMR multilayers and investigate the effect of disorder on the spin-transport in both the 

ballistic and diffusive regimes and the crossover between them. Secondly I will present 

a few examples in which the resistor network model is clearly violated and a phase 

coherent theory of transport is needed. To address these problems I consider a reduced 

tight-binding model with two degrees of freedom (s-d) per atomic site. I use the same 

technique as in Chapter 2 to compute the zero-bias zero-temperature conductance in 

the framework of the Landauer-Biittiker formalism. The calculation is optimized such 

that it scales sub-linearly with the multilayer length. This is crucial to study phase 

coherent transport in long but finite multilayers, where a large ensemble average is also 

needed. Several models of disorder are introduced in order to mimic defects, impurities, 

vacancies and lattice imperfections. In the case of electrodeposition-made multilayered 

nanowires [32, 101, 102] where the phase breaking length is comparable with the wire 

cross-section, I also consider the effects of rough boundaries and confinement.

The main result of this analysis is to show that phase coherent transport in disor­

dered magnetic multilayers may give rise to behaviours not describable by the Boltz­

mann approach and I will discuss the relevance of these “non-diffusive” effects in several 

new experiments [35, 36, 105]. Most of the results of this chapter have been published 

already in references [37, 38].

The chapter is organized as follows: in the next section I will describe an imple­

mentation of the numerical scattering technique capable of handling large systems and 

performing efficient averages over large ensembles. In this section I introduce a “dia­

grammatic” approach to decimation, which will also be useful in Chapter 7 to describe
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carbon nanotubes. In the section 5.3 I discuss a two s-d band model which is the 

minimal Hamiltonian capable of capturing inter-band scattering and reproducing the 

correct density of state of transition metals. Then I present the main results of this 

chapter and discuss the effect of different sources of disorder. Finally I consider ex­

amples where a phase coherent approach to transport gives rise to completely different 

results with respect to the resistor network model. It will be clear that this approach 

is more appropriate for describing new experiments where the elastic mean free path 

may be very long.

5.2 Im plem entation  of decim ation in the case of disorder: “D ec­
im ation D iagram s”

The numerical technique used in the present calculation is entirely equivalent to that 

presented in Chapter 2 and reference [27]. Here I want only to discuss some numerical 

optimizations which are useful in the case of disordered systems. I always consider 

finite disordered multilayers sandwiched between two semi-infinite perfectly crystalline 

leads. With this setup all the disorder is included into the scattering region. Therefore 

the only difference to the completely disorder-free case is that one needs to decimate 

a region where the matrices describing the atomic planes are different. Nevertheless, 

since I want to consider arbitrary long disordered multilayers and perform averages 

over a large number of ensembles, it is crucial to optimize the decimation technique. 

This is achieved by recalling that the decimation technique, in the case of nearest 

neighbour coupling, only redefines the matrix element coupled with the decimated one. 

For instance in the decimated Hamiltonian at /-th order

E - H U
t t (0  _  r r ( f - l )  I H  0  i \
H i ,  -  H , j  +  — -----~m ZTT  > V0'1)

only the matrix elements coupled to the element of the (/ — l)-th  order Hamil-

tonian are redefined. Consider now a disordered multilayer composed of alternating 

magnetic (M) and non-magnetic (X) layers of thicknesses t\i and fx respectively. Sup­

pose that the multilayer consists of /i repeated (X/M /N/M ) units, that I call double 

bilayers. Since I consider only short range interactions, it is possible to decimate the 

Hamiltonian of the whole multilayer by building up the following intermediate Hamil-
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tonian

v0f

V

Hu # L R i 0
H«Li HRi Vo 0 ...................

0 v i Hh{i+i) # L R ( i + l )  0 ..............
0 0 # R L ( i + l ) H  R(i+i)  Vo 0 ...

(5.2)

/
where Hu (Hm) describes the coupling within the left- (right-) hand surfaces of the 

z-th cell (N /M /N /M ) (i= l,..,p), FfLRi ( # r u  =  #LRi) describes the coupling between 

the left and right surfaces of the z-th cell, and V'0 is the “bare” coupling between the 

first right-hand atomic plane of the z-th cell and the first left-hand atomic plane of the 

(z +  l)-th  cell, which is assumed to be the same for every cell (this last condition is easily 

satisfied if the first left-hand and the last right-hand atomic plane of every (X /M /N/M ) 

cell is disorder-free). Equation (5.2) suggests a very convenient implementation in which 

multilayers consisting of p (N /M /X/M ) cells are built using the following procedure. 

Firstly one decimates a certain number v, of cells (X /M /X/M ) in which disorder is 

introduced everywhere except in the first and last atomic plane. Secondly the matrix 

H\i of equation (5.2) is built, choosing randomly the order of the p (X /M /X /M ) cells. 

Finally the matrix H\i is further decimated to yield the coupling matrices between the 

lead surfaces HeR(E) of equation (2.40), which has the structure

/  Hl(E) H ’lr(E) \  
t i r t W  -  y H kh(E) H U E)  ) (5.3)

In this expression, H l(E)  (HR(E)) describes intra-surface couplings involving degrees 

of freedom belonging to the surface of the left- (right-) hand side lead and H£R(E) =  

H l R( E y  describes the effective coupling between the surfaces of the left-hand side and 

the right-hand side leads. Xote that p*' possible different multilayers can be built from 

a set of v disordered unit cells, and that the computation time scales as the number 

of (X /M /X /M ) cells and not as the total length of the scatterer. This procedure can 

be further optimized, for instance by building v ' new cells (X /M /X /M )x2, and using 

these to form the multilayers.

To conclude this section it is instructive and useful to introduce a “diagrammatic” 

way to describe the decimation procedure. Consider as an example figure 5.1. In 

the figure I represent an atomic plane described by the intra-plane matrix .40 by a
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Figure 5.1: “Decimation diagrams”.

vertical line labeled w ith the index A0. The coupling between different atom ic planes 

is represented by horizontal lines w ith different shapes for different coupling m atrices, 

which are denoted with Greek letters. For instance the quadri-layer of figure 5.1a 

consists of four atom ic planes described by the m atrices A 0, B 0, Co and D 0 respectively, 

and coupled by m ean of the m atrices a , j3 and 7 . The H am iltonian describing this 

s truc tu re  is a  block-trigonal m atrix  H  of the form

H  =

(  A q ol 0 0 \
a* Bo P 0
0 Co 7

\  0 0 7 f £)0 )

(5.4)

Suppose now th a t  one decim ates all the  degrees of freedom of the atom ic plane labelled 

w ith Bo (I denote the decim ation w ith a red cross over the plane to  elim inate). Figure 

5.1b shows the result of such a decim ation. On the one hand the in-plane m atrices of 

the layers adjacent to  Bo have been redefined (Ai and C\ respectively) as well as the 

coupling between the two. On the o ther hand the atom ic plane D 0 and the in teraction 

between D 0 and Co are not redefined because they are decoupled from B 0. Therefore 

the new m atrix  describing the right-hand side of figure 5.1b is

/  Ai 6 0 \
H =  5* Cx 7 ■ (5.5)

^0 7f A) /
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As a m atte r  of no tation  the symbol describing the renorm alized inter-plane in teraction 

is the com position between the symbols describing the previous interactions with the 

decim ated plane. The symbol of the in teraction with the left-hand side plane is on 

top of th a t  of the  right-hand side plane as indicated in figure 5.1b. By continuing 

the decim ation one obtains the final “decim ated” system  described in figure 5 .1 c. Two 

im portan t aspects m ust be stressed. F irst the final inter-plane coupling does not depend 

on the order w ith which the layers are decim ated. Secondly the redefined in-plane 

m atrices are sensitive to the  position of the decim ated atom ic planes. In general a new 

redefined in-plane m atrix  is different if the decim ation is perform ed on the adjacent 

left-hand side atom ic plane or on the adjacent right-hand side atom ic plane. This 

difference will be crucial in the description of carbon nanotubes in C hapter 7.

F inally  according to the scheme presented, the decim ation of a disordered (N /M /N /M ) 

cell is shown in figure 5.2. Note th a t in th is case the coupling between adjacent 

(N /M /N /M ) cells (term inal coupling symbols) is not redefined.

A 0 B 0 Co Do Mo N 0

Figure 5.2: Scheme of the decimation of a (N /M /N /M ) cell. Note that the coupling between adjacent 
cells is not redefined.

5.3  T h e  tw o -b a n d  m o d el and th e  m o d e ls  for d isord er

The technique for com puting tran spo rt properties, is based on a three dim ensional 

tigh t-b inding  m odel w ith nearest neighbour couplings on a sim ple cubic lattice  and 

two degrees of freedom (s-d ) per atom ic site. I have chosen th is sim ple model because 

it provides a good description of the density of s ta te  of tran sition  m etals and of the 

in ter-band scattering , and a t the same tim e allows disordered un it cells to be dealt

82



with. The general spin-cr-dependent H am iltonian is

» '  =  £  , (5.6)
i ,a  *J,a/3

where a  and /? label the two orbitals (which for convenience we call s and d), i , j  

denote the atom ic sites and a  the spin. efCT is the on-site energy which can be w ritten  

as ef =  €% +  ah5ad w ith h the exchange energy and a  =  — 1 (a =  + 1 ) for m ajority  

(m inority) spins. In equation (5.6), y ° f a =  j f ?  is the hopping between the orbitals 

a  and f3 a t sites i and j ,  and (c^\) is the annihilation (creation) operator for an 

electron a t the atom ic site i in an orb ital a  w ith a spin a. h vanishes in the non­

m agnetic m etal, and is zero if i and j  do not correspond to nearest neighbour sites. 

H ybridization between the s and d orbitals is taken into account by the non-vanishing 

term  j sd- I consider two orbitals per site in order to give an appropriate  description of 

the density of s ta tes  of transition  m etals and to take into account in ter-band scattering  

occurring a t interfaces between different m aterials. The DOS of a transition  m etals, as 

discussed extensively in C hap ter 3, consists of narrow bands (m ainly d-like) em bedded 

in broader bands (m ainly sp-like). This feature can be reproduced in the two-band 

m odel, as shown in figure 5.3, where I present the DOS and the partia l conductance 

for a set of param eters corresponding to copper. Following the discussion of C hap ter 3
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Figure 5.3: DOS (a) and partial conductance (b) obtained for the two-band model. The parameters 
used are the ones corresponding to Cu in the Table 5.1. The vertical line denotes the position of the 
Fermi energy used in the calculation.

I note th a t the  position of the Fermi energy with respect to  the  edge of the  d-band 

largely determ ines the tran spo rt properties of pure transition  m etals. For instance the
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current in silver is carried almost entirely by light effective mass sp-electrons with a 

small DOS, while in the minority band of Co or Ni it is carried by heavy d-electrons 

with a large DOS. The hybridization at the Fermi energy can also be important and 

for instance in copper the current consists of an equal mixture of sp- and d-electrons. 

In the analjrsis of Chapter 3 I have identified the large inter-band scattering as one 

of the main sources of GMR. In particular it has been shown that due to inter-band 

scattering the conductance of a multilayer in the antiferromagnetic configuration is 

always smaller than both spin conductances in the ferromagnetic configuration. It is 

possible to capture this feature by choosing the parameters of the two-band model to 

yield conductances as close as possible to those obtained for the full spd model (see 

Chapter 3 and reference [27]). In the case of a heterojunction, like for the spd model, 

the hopping parameters between different materials are chosen to be the geometric 

mean of the hopping elements of the bulk materials. The parameters for Cu and Co 

and FeV are presented in Table 5.1. In figure 5.4 I show the corresponding normalized

M ate ria l fs (eV) cd (eV) ss<7 (eV) dd(cr, 7r,d) (eV) sd<7 (eV) h (eV)
Cu -7.8 -4.0 -2.7 -0.85 1.1 0.0
Co -4.6 -2.0 -2.7 -0.85 0.9 1.6

FeV -4.6 3.25 -2.7 -0.95 1.1 1.75

Table 5.1: Parameters used in the calculations.

(to the total number of open scattering channels in the leads) spin-conductances for 

Co/Cu multilayers attached to semi-infinite Cu leads as a function of the Cu layer 

thickness. Note that as a consequence of inter-band scattering the conductance in the 

antiferromagnetic configuration is always the smallest, a feature which is not present in 

a simple single-band model. The results of figure 5.4 are indeed not very different from 

the ones presented in figure 3.7 for the accurate spd tight-binding Hamiltonian. The 

main difference between the two is the largest conductance in the minority spin and in 

the antiferromagnetic alignment for the simple two band model. This is related to the 

different degeneracy of the s- (no degeneracy) and d-band (fivefold degeneracy), which 

is neglected in the simple two band model. I believe that this simple two-band model 

is the minimal model capable of describing in a semi-quantitative way the behaviour of 

transition metals. It includes the correct DOS and the possibility of scattering electrons 

between high dispersion (s) and low dispersion bands (d).
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Figure 5.4: Conductances normalized to the number of open channels for Co/Cu multilayers with Cu 
semi-infinite leads as a function of the Cu layers thickness. This gives rise to a GMR of about 60%. 
This results should be compared with those of figure 3.7 obtained for an accurate spd tight-binding 
Hamiltonian.

Figure 5.5 shows the different models of disorder analyzed below. The sim plest 

m odel was in troduced by Anderson w ithin the framework of the localization theory 

[106] and consists of adding a random  potential V  to each on-site energy, w ith a uniform 

d istribu tion  of w idth W  ( - W / 2  <  V  <  W / 2), centered on V =  0

«r = «r+v. (5.7)
This generic model of disorder can yield arb itra ry  m ean free paths and significant 

spin-asym m etry  in the conductance. To obtain  a more realistic description of disorder 

I also consider the role of lattice distortions, which are known to be present a t the 

interfaces between m aterials w ith different lattice constants. Moreover in the case of 

electrodeposited nanowires, contam ination by im purities is unavoidable, and lattice  

distortions occur in the  vicinity of such point defects. In w hat follows I model lattice  

d istortions by scaling the hopping param eters between nearest neighbours. It has been 

proposed [107] and confirmed num erically [84] th a t the  following scaling law for the 

tigh t-b inding  hopping 7 °^ is valid

7 “« =  7ô . ( l  +  <Sr ) - ( i+ « + «  , 
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where is the hopping element for atoms cit the equilibrium positions r0, a  and (3 

are the angular momenta of the orbitals forming the bond, and dr is the displacement 

from the equilibrium position relative to r0 (6r = A r /r0 with Ar the displacement 

from the equilibrium position). Hence the s-s hopping scales as (1 +  6r)~l , the d-d as 

(1 +  6r)~5 and the s-d as (1 +  Sr)~3. Note that it has been recently proved [108] that 

in 3d transition metals contaminated with 3d and Asp impurities the variation of the 

nearest neighbour distance in the proximity of an impurity never exceeds ~  5%, which 

is within the limit of validity of equation (5.8). In the following I will consider uniform 

distributions of lattice displacements with zero mean.

As mentioned above, in electrodeposited GMR nanowires, because of the dual-bath 

deposition technique, the magnetic layers are contaminated by non-magnetic impurities 

up to 15% in concentration [109], while a negligible concentration of magnetic impurity 

atoms is present in the non-magnetic layers. To describe this feature I have intro­

duced non-magnetic impurities in the magnetic layers of the multilayer. An impurity 

is modeled by substituting a magnetic ion by a non-magnetic ion (ie Cu instead of Co 

for the materials considered) at an atomic site. The on-site energy of the impurity 

is assumed to be the same of the bulk material forming the impurity (ie bulk Cu for 

Cu impurities), and the hopping tight-binding parameters depend on the type of sites 

surrounding the impurity. I do not introduce correlation between impurities and hence 

there are no clustering effects. Although this model is quite primitive and does not take 

into account perturbations of atoms in the proximity of the impurity, density functional 

calculations [103, 104] have shown that a good estimate of the resistivity of transition 

metal alloys in the low concentration limit is possible by considering only perturbations 

of the first nearest neighbours of the impurity. This suggests that this simple model 

should give a correct qualitative description of a 3d impurity in 3d transition metals.

As a third source of disorder I have considered the possibility of vacancies. A va­

cancy is introduced simply by setting an on-site energy to a large number (103eV in the 

present case), with all the hoppings to nearest neighbours set to zero. I do not consider 

aggregation of vacancies and assume a uniform distribution across the whole multilayer. 

Finally I model cross-section fluctuations of GMR nanowires by examining a wire of 

finite cross-section which is not repeated periodically in the transverse direction and 

mimics the fluctuations along the wire by introducing vacancies in the first monolayer
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at the  wire surface.

(c)
Figure 5.5: Schematic illustration of the disorder models considered: (a) vacancy, (b) vacancy at the 
boundary of the cell (cross-section fluctuation), (c) impurity (with hopping parameters the geometric 
mean of those for bulk and the impurity), (cl) lattice1 distortion.

Ill all the calculations with disorder. I consider finite cross-sections involving 5 x 5 

atom ic sites, which I repeat periodically using up to 100 k , -points in the 2D Brillouin 

/one. In the case of cross-section fluctuations I com pute the ensem ble-averaged conduc­

tance of wires w ith finite cross-sections as large as 15 x 15 atom ic sites. It is im portan t 

to note th a t in spu ttered  or MBE m ultilayers the typical cross-sections vary between 

1 //in2 and 1mm2. which is several tim es larger than  the typical phase breaking length 

/P|,. On the o ther hand in the case of electrodeposited nanowires the d iam eter of the 

wires is usually between 20nm and 90nm. but several wires are m easured at the sam e 

tim es thereby yielding the mean conductance of an array of phase coherent, nanowires, 

each w ith a cross-section of the order of /2)h.

5.4  R e su lts  and  D isc u ss io n

5.4.1 D iso rder-induced  enhancem en t of th e  sp in -p o la riza tio n  of th e  c u rre n t

In this section I consider effects produced by A nderson-type disorder, im purities and 

lattice  distortions. Despite the fact tha t the disorder in each of those eases is spin- 

independent the effect on transport is spin-dependent. In order to investigate the
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different conductance regimes that may occur and their dependence on the magnetic 

state of the system it is convenient to consider as a scaling quantity the average spin 

conductance ( r CT) multiplied by the total multilayer length L and divided by the number 

of open scattering channels in the leads. I define the resulting “reduced" conductance 

g by means of the equation
«■ h (r<7> r9 =-r2— - L ,  (o.9)

c  - ' open

where the number of open channels in the leads A ro p e n  in the case of a finite system 

is proportional to the multilayer cross-section. In the ballistic limit g increases lin­

early with a coefficient proportional to the conductance per unit area, in the diffusive 

(metallic) limit g is constant, and in the localized regime g decays as g cx exp( —L /f) 

with £ the localization length [110, 111]. Consider first the case of a random on-site 

potential. For Co/Cu multilayers with a width of disorder IF =  O.GeY, figure 5.6 shows
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Figure 5.6: Reduced conductance g° and spin asymmetry g =  0 f m / < 7 f m  as a function of the multilayer 
length for Cu/Co multilayers with random on-site potential. The random potential has a normal 
distribution of width 0.6eY, and the layer thicknesses are t c u =  8AP and tC o = 15AP. Each point 
corresponds to a cell Co/Cu/Co/Cu of total thickness 46AP.



the quantity g for the two spin sub-bands in the FM and AF configurations along 

with the ratio 77 =  Pfm/^fm- These results were obtained for a cross-section of 5 x 5 

atoms, and layer thicknesses of £cu =  8 atomic planes (AP) and tCo = 15AP. In figure 

5.6 the standard deviation of the mean is negligible on the scale of the symbols, and 

each point corresponds to an additional Cu/Co double bilayer. From the figure it is 

immediately clear that the spin-asymmetry of g (ie of the conductance) is increased 

by the disorder, which as a consequence of the band structure, turns out to be more 

effective in the minority band and in the AF configuration. In fact the disorder has the 

effect of spreading the DOS beyond the band edge, but does not affect the center of the 

band. The relevant quantity is the disorder strength defined as the ratio ra between 

the width of the distribution of random potentials and the band width rQ =  \V/ya. For 

the set of parameters chosen the disorder strength of the s- and d-band is respectively 

rd = 0.7 and rs = 0.22. Since the current in the majority band of the FM configuration 

is carried mostly by s-electrons, for which the disorder strength is weak, the majority 

spin sub-band will not be strongly affected by the disorder. In contrast in the minority 

band and in both bands in the AF configuration, the current is carried by d-electrons, 

for which the scattering due to disorder is strong.

A second remarkable result is that in the FM configuration the almost ballistic 

majority electrons can co-exist with diffusive minority carriers. In the regime of phase 

coherent transport the definition of spin-dependent mean free paths for individual mate­

rials within the multilayer is not meaningful, and one must consider the spin-dependent 

mean free path for the whole multilayered structure. Hence I introduce the elastic mean 

free path for the majority (minority) spin sub-band in the FM configuration AFM (Afm) 

and for both spins in the AF configuration A^F. This is defined as the length at which 

the corresponding conductance curve g(L) changes from linear to constant (ie the length 

L* corresponding to the crossing point between the curve g(L) and the tangent to g in 

the region where g is constant). For the calculation in figure 5.6 it is possible to estimate 

AFM > 3000AP, ApM ~  500AP and A^P ~  1000AP. All of these results are obtained at 

zero temperature and voltage. At finite temperature, when the phase breaking length 

/Ph is shorter than the elastic mean free path, /ph becomes the relevant length scale. The 

system can be considered as a series of phase coherent scatterers of length /ph added in 

series through reservoirs [113]. The scattering properties of such a structure are solely
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determined by elastic transport up to a length /ph.

Turning now the attention to GMR, it is clear from figure 5.6 and the definition 

of the GMR ratio (3.1) that enhanced spin asymmetry will increase the GMR ratio 

because of the high transmission in the majority band. In figure 5.7 I present the GMR 

ratio as a function of the total multilayer length for different values of the width of the 

distribution of the random potential. From the figure it is possible to conclude that 

GMR strongly increases as a function of the disorder strength and that this is due to 

the increasing of the spin polarization of the conductance. Xote also that the standard 

deviation of the mean GMR increases as a function of disorder and of the multilayer 

length. This is due to the approaching of the AF conductance to the localized regime, 

in which the fluctuations are expected to be large. The results of figures 5.7 seem

50 0  r

Total Length L (AP)

Figure 5.7: GMR as a function of the total multilayer length for different values of the on-site random 
potential. The layer thicknesses are feu =  8AP and tc0 =  15AP and each point corresponds to a cell 
C o/C u/C o/C u of total thickness 46AP.

to be in contradiction with the published results of Tsymbal and Pettifor [53, 112]. 

In that case an analogous kind of disorder was employed together with an accurate 

spd tight-binding model, and the GMR ratio turned out to decrease with increasing 

disorder. They calculated the conductance for an infinite diffusive system using a 

small disordered unit cell in the direction of the current, namely a Co4/C u4 cell (the 

subscripts indicate the number of atomic planes). To check this apparent contradiction
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I have calculated the conductances and the GMR ratio for a C 0 5 / C U 5 / C 0 5 / C U 5  unit cell 

attached to pure crystalline Cu leads. Apart from the resistances of the interfaces with 

the leads, the conductance for this system is proportional to the conductance calculated 

in reference [53] and figure 5.8 shows that the GMR ratio for such a short system does 

indeed decrease with disorder strength. This shows that for small cells, when the mean 

free path is much longer than the cell itself, the increase of all the resistances is not fully 

compensated by an increase of their spin-asymmetry, and this gives rise to a decrease 

of GMR. In contrast for thicker layers, provided the transport remains phase coherent, 

asymmetry builds up with increasing L and the resulting GMR ratio increases.

Consider now the effect produced by Cu impurities in the Co layers and by lattice 

distortions. The main features of both these kinds of disorder are very similar to the case 

of a random on-site potential: the GMR ratio increases as a function of disorder because 

of an increase in spin-asymmetry. Again the quantity g behaves quasi-ballistically for 

small lengths, followed by a diffusive region and finally by a localized regime. The 

mean free path at any disorder turns out to be longer for the majority spins in the FM 

configuration and the co-existence of ballistic majority electrons with diffusive minority 

electrons is still possible. This means that even in these cases spin-independent disorder 

produces spin-dependent effects. Similar arguments to the one used for the on-site 

random potential can be applied. In fact, in the case of impurities, we note from 

Table 5.1 that the alignment between the majority band of Co and the conduction 

band of Cu is better than that of the minority band of Co. Hence impurities are 

less effective in the majority band than in the minority. For lattice distortions, it is 

important to observe that the scaling of the hopping coefficients with the displacement 

from the equilibrium position is more severe for the d orbitals (see equation (5.8)). 

Since the current in the majority band is s-like while in the minority band and in the 

AF configuration it is d-like, this different scaling will result in larger disorder-induced 

scattering for the minority channel and for the AF configuration. Figure 5.9 shows 

the reduced conductances g for all the the spins in the case of uniform distributions 

of lattice displacements with different widths. From the figures I can conclude that: 

i) the spin-conductance asymmetry increases with increasing disorder ii) all the mean 

free paths decrease, iii) the contrast between ppM and <7̂  increases with disorder.

I wish to conclude this section with some final remarks about length scales involved.
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Figure 5.8: GMR and reduced spin conductances as a function of the width \V of the normal distribu­
tion of on-site random potentials for a single Co/Cu/Co/Cu cell with Co and Cu thicknesses of 5AP. 
In this case, according with the results of reference [53] the GMR ratio decreases with the disorder 
strength. This is due to a general reduction of the mean free paths, which is not compensated by the 
enhancement of the spin-asymmetry of the conductance.
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As mentioned above, since one is dealing with phase coherent transport, the concept 

of mean free path within the individual layers loses meaning, and one can only speak 

about the spin-dependent mean free path of the whole multilayer (ie ApM, ApM and A^p). 

Nevertheless, if the mean free paths of both the spin sub-bands in the FM configuration 

extend over a length scale comparable with the cell Co/Cu (ApM, ApVI ~  tco +  £cu)> the 

mean free path of the AF configuration is simply given by

Au  =  4 m ± ^ m  t (3 10)

and a resistor network approach becomes valid at the length scale of the Co/Cu cell. I 

have checked this prediction by calculating the GMR ratio as a function of the number 

of double bilayers for multilayers with different Co layer thicknesses but the same 

concentration of impurities (8%). By increasing the Co thickness one can cross over 

from a regime in which the resistor network is not valid at the scale of the bilayer 

thickness to a regime in which the resistances of bilayers add in series. In the first case 

the GMR ratio will increase as the number of bilayers increases and in the second one 

expects a constant GMR. The result for a Co thicknesses of respectively 150AP, 50AP 

and 15AP is presented in figure 5.10. Note that for a phase-coherent structure the 

increase of GMR with the number of bilayers is different from the increase of GMR in 

diffusive systems when the total multilayer length is kept constant (as predicted by the 

Boltzmann approach [33] and observed experimentally [66, 101, 102]). In the latter case 

the effect is due to an interplay between the resistances of the different materials while 

in the former it is due to an increase of the spin asymmetry of the current. It is crucial 

to observe that the second effect is strictly connected with the non-local nature of the 

transport in high-quality magnetic multilayers. To date a massive increase of the GMR 

ratio with the number of bilavers has been observed in the CIP configuration [114, 115], 

while a systematic study of this effect in the CPP configuration is still lacking, although 

there is some evidence of a similar trend [35, 105] (see also last section of this chapter).

5.4.2 R eduction o f mean free path

In this section I consider the effect of vacancies and cross-section fluctuations and their 

interplay with the other sources of disorder discussed in the previous section. I recall
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Figure 5.10: GMR as a function of the number of double bilayers for an impurity concentration of 8%. 
The Cu thickness is fixed to 8AP and the Co thickness is varied in order to show the crossover from 
a phase coherent regime to a regime in which a resistor network model is valid. Note that in the case 
of t-co =150AP the GMR is almost independent of the total multilayer length.

that cross-section fluctuations are modeled as vacancies with a distribution concen­

trated at the boundaries of a finite cross-section multilayer (see figure 5.5). Hence it is 

natural to expect the qualitative behaviour of vacancies and cross-section fluctuations 

to be the same. As main feature these sources of disorder do not act on the two spin 

sub-bands in a selective way and produce only a small spin asymmetry. The largest 

effect is to drastically reduce the elastic mean free paths of all the spins. In figure 

5.11 I present the reduced spin-conductances ga, the spin asymmetry 77 and the GMR 

ratio for a Co/Cu multilayer (£cu =  8AP, tco =  15AP) with a vacancy concentration of 

1%. The results obtained for cross-section fluctuations are very similar and presented 

in figure 5.12. Figures 5.11 and 5.12 show that (in contrast with figure 5.6b) the spin 

asymmetry of the conductance is not greatly enhanced by the presence of vacancies 

and cross section fluctuations. For instance in the case of vacancies with the parame­

ters used in the present simulation 77 varies from 1.6 to 3.5 for multilayers with a total 

thickness ranging from 46 to 3000 atomic planes. In contrast for the case of a random 

on-site potential of 0.6eY figure 5.6 shows that 77 varies from 2 to about 30 for the 

same range of multilayer lengths. Moreover it is important to note that in the case of a
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Figure 5.11: Effects of vacancies on Co/Cu multilayers. Figure (a) shows the reduced spin conductance 
for majority spin in the FM configuration (•), for minority spins in the FM configuration (□), and 
for the AF configuration (x ). Figure (b) shows the spin asymmetry of the conductance and figure 
(c) the GMR. The horizontal line of (b) represents the average spin asymmetry of the conductance 
for the clean system. In figure (c) the symbols O  represent the system with vacancies and the solid 
line the disorder-free system. The vacancy concentration is l c/c and the thicknesses are te u =8AP and 
tco =15AP.
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random on-site potential the spin asymmetry of the current is always larger than in the 

disorder-free case. In contrast, when vacancies are present, the spin asymmetry of the 

current is smaller than the disorder-free case for short multilayers and becomes larger 

for longer multilayers. From figure 5.11 one can see that the crossover length (that I 

denote /cr), defined as the length at which 77 for a system with vacancies equalizes 77 

for the disorder-free case, is comparable with the mean free path of the minority spins 

in the FM configuration and of the AF configuration. It is important to note that the 

reduction of all the mean free paths with respect to both the vacancy concentration and 

the cross-section fluctuations is very severe. The reduced spin conductances g exhibit 

quasi-ballistic behaviour for lengths up to /cr, and an almost localized behaviour for 

lengths larger than /cr. The diffusive region is strongly suppressed and there is a small 

difference between all the spin-dependent elastic mean free paths. The spin asymme­

try of the current can be enhanced by increasing the vacancy concentration, but this 

produces a further decreasing of the mean free paths and a further suppression of the 

diffusive region, resulting in a global reduction of GMR for lengths shorter than /cr.
i" IFor lengths longer than lCT GMR is enhanced and this is due to the approach of <7AF 

to the localized regime. To date there is no evidence of localization effects in metallic 

magnetic multilayers and I believe that the results shown here are currently important 

only for lengths shorter than lCT. To summarize, the main effects of vacancies are, on 

the one hand to reduce the spin asymmetry of the current for lengths shorter than lcr 

and to enhance it for lengths larger than /cr, and on the other to reduce drastically the 

mean free paths for all the spins in both magnetic configurations. The crossover length 

is comparable with the mean free path of the minority spin in the FM configuration and 

GMR is always reduced in the limit of quasi-ballistic transport. The qualitative results 

obtained for vacancies are broadly mirrored by those of cross-section fluctuations as 

it can be seen by comparing figure 5.11 and 5.12. Nevertheless some differences must 

be discussed. The simulations with cross-section fluctuations have been carried out 

with a finite cross-section, whereas for the case of vacancies I have considered a wire 

repeated periodically in the transverse direction. When cross-section fluctuations are 

introduced, the disorder-induced scattering scales as P / S  oal / L  with P  the perimeter, 

S  the area of the cross-section and L = \/S.  This introduces a new length scale, namely 

the cross-section linear dimension lcs = \/~S. If this length is shorter than the mean free
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Figure 5.12: Effects of cross-section fluctuations on Co/Cu multilayers. Figure (a) shows the reduced 
spin conductance for majority spin in the FM configuration (•), for minority spins in the FM configu­
ration (□), and for the AF configuration (x ). Figure (b) shows the spin asymmetry of the conductance 
and figure (c) the GMR. The horizontal line of (b) represents the average spin asymmetry of the con­
ductance for the clean system. In figure (c) the symbols Q  represent the system with cross section 
fluctuations and the solid line the disorder-free system. The cross section fluctuation concentration is 
59c and the thicknesses are tc u =8AP and tcQ =15AP. The cross section in this calculation is 10 x 10 
atomic sites.
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paths, then a reduction of GMR will take place for the same reasons as in the case of 

vacancies, whereas if the mean free paths are shorter than /cs, the effect of the cross- 

section fluctuations will be weak and no further reduction of the GMR will take place. 

Unfortunately, even with the optimized technique presented in the previous section it 

is very difficult to investigate the limit A < /cs. I have performed simulations with 

cross-sections up to 15x15 atomic sites, which is far below this limit, and have found 

no important deviations from the case of vacancies. A cross-section of 15x15 atomic 

sites corresponds to P / S  of 0.26a"1 with aQ the lattice constant. This is comparable 

with the values of experiments [32, 101, 102] which can be estimated to range between 

0.005a"1 and 0.025a"1. This suggests that the disorder strength in the present simu­

lations is larger than the experimental values and that the effects of the cross-section 

fluctuations on GMR nanowires should be weak. On the other hand the model used for 

cross-section fluctuations involves only the first monolayer at the boundaries while in 

real systems the roughness extends over several monolayers. Moreover long range cor­

related surface roughness along the wires is likely to be present in real systems because 

of the structure of the nano-holes in which the wires are deposited. All these effects 

may result in a drastic enhancement of the disorder strength due to surface roughness 

and therefore a reduction of GMR.

A key result of the above simulations is that the reduction of GMR due to vacan­

cies and cross-section-fluctuations may be compensated by a large increase of the spin 

asymmetry of the conductance. To address this issue I have performed simulations 

with both vacancies and non-magnetic impurities in the magnetic layers. The GMR 

ratios and spin asymmetries of the conductances are presented in figure 5.13 for Co/Cu 

multilayers with different impurities and vacancies concentrations. The figures show 

very clearly that competing effects due to impurities and vacancies can give rise to large 

values of GMR even for very disordered systems. The same value of GMR obtained in 

presence of impurities and vacancies can be obtained for a system with only impurities, 

but at a lower concentration. The fundamental difference between the two cases is that 

when impurities and vacancies co-exist, all the mean free paths are very small and the 

large GMR is solely due to the large spin asymmetry of the current. In this limit, 

despite the GMR ratio is large, a description of spin-transport based on the resistor 

network model is possible. More about this will be presented in the next section.
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Figure 5.13: Competition between vacancies and impurities. Figure (a) shows the GMR ratio for 
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5.5 Breakdow n of the resistor m odel

In the introduction of this chapter I pointed out that one of the most successful models 

to describe CPP GMR in magnetic multilayers is the resistor network model, which 

can be derived from the Boltzmann’s equation in the limit of infinite spin-diffusion 

length. Two important and central predictions of this model are that the CPP GMR 

ratio is independent of the number of bilayers in the case that the total multilayer 

length is not constrained to be constant, and furthermore is independent of the order 

of the magnetic layers in the case of different magnetic species. These two predictions 

arise directly from the fact that the transport is assumed to be local, which in the 

framework of quantum transport means that the phase breaking length is shorter than 

the layer thicknesses. An apparent violation of the first prediction has been observed in 

CIP and CPP measurements [35, 105, 114, 115], and of the second prediction in CPP 

measurements [35, 36, 105].

The aim of this section is to provide a quantitative description of the breakdown of 

the resistor model in diffusive CPP multilayers in the limit of infinite spin-relaxation 

length. To illustrate this breakdown, consider a multilayer consisting of two indepen­

dent building blocks, namely a (X/M) and a (X/M') bilaver, where M and M' represent 

magnetic layers of different materials or of the same material but with different thick­

nesses and X represents normal metal ‘spacer’ layers. This is the experimental setup 

of references [35, 36, 105]. From an experimental point of view M and M' must pos­

sess different coercive fields, in order to allow AF alignment. In the case of references 

[36, 105] this is achieved by considering Co and respectively Xig4Fei6 layers with Ag 

as non-magnetic spacer (reference [36]), and Fe layers with Cu as non-magnetic spacer 

(reference [105]). On the contrary in the case of reference [35] all the magnetic lay­

ers are made from Co (with Cu as spacer) but with different thicknesses (respectively 

lnm and 6nm). Two kinds of multilayer can be deposited. The first, that I call type 

I ( “interleaved” in the notation of reference [105]), consists of a (X /M /X /M ' )Xfi  se­

quence where the species M and M# are separated by an X layer and the group of four 

layers is repeated // times. The second, that I call type II ( “separated”), consists of 

a (X/M) x //(X/M ') x/i  sequence, where the multilayers (X/M )x / i  and (X/M ')xfj, are 

arranged in series. If the coercive fields of M (H\ f ) and M' {Hm>) are different (eg
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Hm < H m1) and if N is long enough to decouple adjacent magnetic layers, the AF 

configuration can be achieved in both type I and type II multilayers by applying a 

magnetic field H  whose intensity is H m < H  < H M> • The AF configuration is topolog­

ically different in the two cases, because in type I multilayers it consists of AF alignment 

of adjacent magnetic layers (conventional AF alignment), while in type II multilayers 

it consists of the AF alignment between the (N/M)x/x and (N/M ')x/z portions of the 

multilayer, within which the alignment is parallel (see figure 5.14a and figure 5.14c). In 

other words the magnetization profile for the two types of multilayers is very different. 

This is not the case of the FM configuration, where the type I and type II differs only 

because of the different kind of layers M and M' (see figure 5.14b and figure 5.14d). 

From the point of view of a resistor network description of transport, the two types 

of multilayers are equivalent, because they possess the same number of magnetic and 

non-magnetic layers, and the same number of N/M and N/M ' interfaces. Hence the 

GMR ratio must be the same. In contrast the GMR ratio of type I multilayers is 

found experimentally to be larger than that of type II multilayers [35, 36, 105], and 

the difference between the two GMR ratios increases with the number of bilayers. In 

reference [36] this effect is attributed to loss of coherence due to the short spin-diffusion 

length of permalloy. This explanation is not however applicable to the case of reference 

[35, 105] because of the well-known long spin-diffusion length of MBE-deposited Co 

and Fe. Moreover, in such a case the GMR ratio of both type I and type II multilayers 

increases with the number of bilayers, which again lies outside the resistor network 

model.

In this section I demonstrate that a description which incorporates phase-coherent 

transport over long length scales can account for such experiments. To illustrate this 

I have simulated type I and type II multilayers using a Co/Cu system with different 

thicknesses for the Co layers, namely tcu =  10AP, tcQ =  10AP, t'Co = 40AP. The 

model I used is the two band-model discussed in this chapter with random on-site 

potentials to mimic generic disorder and to study the difference between type I and 

type II multilayers in different transport regimes. In the present calculation I consider 

disordered cubic supercells containing 100 atoms in the plane perpendicular to the 

current, and as many atomic planes as the total length of the multilayer. Such supercells 

are repeated periodically in the irreducible 2D Brillouin zone using 100 /c-points. I
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Figure 5.14: AF and FM configuration for type I and type II multilayers described in the text. Figures 
(a) and (c) refer to the AF configuration in the case of thick and thin Co layers with different coercive 
fields. Figures (b) and (d) are the corresponding FM configurations. The black blocks represent Cu, 
the white Co and the arrows indicate the direction of the magnetizations. Note that in the case of 
figure (c) the AF alignment occurs between the two halves of the multilayer.

checked the convergency of the calculation with respect to both disorder and cell size. 

Conductance per channel did not change by more than a few percent for cells containing 

more than 20 atoms and, due to the weak disorder considered, larger ensembles were not 

needed. In figure 5.15 I present the mean GMR ratio for type I (type II) multilayers 

GMR] (GMRn) and the difference between the GMR ratios of type I and type II 

multilayers A G M R = G M R i- G M R n ,  as a function of // for different values of the on-site 

random potential. The average has been taken over 10 different random configurations 

except for very strong disorder where I have considered 60 random configurations. In 

the figure I display the standard deviation of the mean only for AG M R because for 

GMRj and GM Rn it is negligible on the scale of the symbols. It is clear that typo 

I multilayers possess a larger G M R  ratio than type II multilayers, and that both the 

GM R ratios and their difference increase for large /i. These features are in agreement, 

with experiments [35, 36. 105] and cannot be explained within the resistor network 

model of CPP GMR. The increase of the GMR ratio as a function of the number of 

bilayers is a consequence of enhancement of the spin asymmetry of the current dm1 

to disorder, as I discussed in the previous section. In fact I recall that, even though
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Figure 5.15: GMR for type I (a) and type II (b) multilayers, and AGMR (c) in the case of thin (10AP) 
and thick (40AP) Co layers, as a function of the number of double bilayers C o/C u/C o/C u for different 
values of disorder. The symbols represent respectively W  =  0 (•), W  =  0.3eV (□), W  =  0.6eV (x) ,  
IF =  1.5eV (O). As an example the calculated mean free paths for W  =  0.6eV are >  4000AP, 
I™* =  1300AP, 4 f U =  1800AP, 4 $ T > 4000AP, l ^ 1 =  1700AP, / J $ n  =  2300AP.
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the Anderson potential is spin-independent it is more effective on the d-band than on 

the s-band, because the former possesses a smaller bandwidth. Since the minority 

spin sub-band is dominated by the d-electrons and the majority by the s-electrons, 

the disorder will suppress the conductance more strongly in the minority band than 

in the majority. Moreover, since transport is phase-coherent, the asymmetry builds 

up with the length, resulting in a length-dependent increase of the GMR ratio. These 

features are shown in figure 5.16, where I present the reduced conductance g for both 

the multilayers and different values of disorder. It is important to note that, with 

the only exception of the disorder-free case, the g's of type I and type II multilayers 

are very similar in the FM configuration while they are rather different in the AF 

configuration. In the FM configuration in fact the conductance is largely dominated by 

the majority electrons, while in the AF configuration both the spin-electrons give the 

same contribution. Moreover the majority electrons undergo weak scattering either at 

the Co/Cu interfaces and due to disorder, while the opposite is the case for the minority 

electrons. Therefore the majority electrons and consequently the conductance in the 

FM configuration are not very sensitive to the order of the layers. In contrast in the 

AF configuration the conductance of type I multilayers is smaller than the one of type 

II multilayers and this is what gives rise to the different GMR ratios. The different 

GMR ratios of type I and type II multilayers are a consequence of the inter-band 

scattering, which occurs whenever an electron phase-coherently crosses a region where 

two magnetic layers have AF magnetizations. This occurs in each (N /M /N /M ') cell for 

type I multilayers, while only in the central cell for type II multilayer (see figure 5.14a 

and 5.14c). Hence the contribution to the conductance in the AF alignment due to 

inter-band scattering is smaller in type I than in type II multilayers, as shown in figure 

5.16. Eventually when the elastic mean free path is comparable with a single Co/Cu 

cell one expects the resistor model to become valid. To illustrate this feature, figure 

5.15 shows that in the case of very large disorder (W  =  1.5eV), AGMR vanishes within 

a standard deviation. In this regime the mean free path for the minority spins and 

the AF configuration is smaller than 100AP, while the mean free path of the majority 

spins is still large (~  1000AP). This means that the resistor model is applicable only 

to the minority spins and to the AF configuration and that a phase-coherent approach 

is needed for the majority spins. Nevertheless, as pointed out above, the conductance
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Figure 5.16: Reduced conductance g  for type I and  type II m ultilayers, in the  case of th in  (10AP) and 
thick (40AP) Co layers, as a  function of the num ber of double bilayers C o /C u /C o /C u  for different 
values of disorder: (a) W  — 0, (b) W  =  0.3eV, (c) W  =  0.6eV and  (d) W  =  1.5eV. T he upper p lots 
(□ symbol) represent the  AF configuration while the  bo ttom  plots (• sym bol) the FM configuration. 
Black and red sym bols axe for type I and type II m ultilayers respectively.
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of the m ajority  spins is only weakly dependent on the order of the layers. For these 

reasons, although the individual GM R ratios of type I and type II m ultilayers are still 

increasing w ith the num ber of bi-layers, their difference vanishes. F igure 5.16 shows 

very clearly th is point. If one considers the highly disordered lim it (IF  =  1.5eY), from 

figure 5.16d it is easy to  see th a t the reduced conductance is the sam e for type I and type 

II m ultilayers in both  the FM  and AF configurations. This elim inates any difference 

between the two kinds of geom etry and therefore the two GM R ratios become equal.

As a second exam ple in which the dependence of the GMR ratio  011 disorder changes 

when the m ultilayer geom etry is varied, consider the system  sketched in figure 5.17. In

I I  II II

(a) (b) (C) (d)
Figure 5.17: AF and FM configuration for type I and typo II multilayers of the second example 
described in the text. Figures (a) and (c) refer to the AF configurations, figures (b) and (d) arc' 
the corresponding FM configurations. The black blocks represent Cu, the white Co and the hatched 
Fot-A’-jh- The arrows indicate the direction of the magnetizations.

this case M and M' are different m aterials chosen in such a way th a t the  m inority  

(m ajority) band of M possesses a good alignm ent w ith the m ajority  (m inority) band 

of M'. Moreover the thickness of the X layers has been chosen in order to allow an AF 

alignm ent of the m agnetizations of adjacent m agnetic layers in both  type1 I and type* II 

m ultilayers. In th is case both  type I and type II m ultilayers exhibit conventional FM 

and AF alignm ents, but their po ten tial profile is quite different. I11 figure 5.18 I present 

a schem atic view of the poten tial profiles for type I and type II m ultilayers for bo th  tin*
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spins in the FM and AF configuration. A high barrier corresponds to large scattering 

and a small barrier corresponds to weak scattering. The dashed line represents the 

effective potential for material M and and the continuous line for material M'. Figure 

5.18 illustrates that type I multilayers possess a high transmission spin-channel in the 

AF alignment, and hence the resulting GMR ratio will be negative. In contrast type

_n. _n.. jirJUl
LTLTL.rjlrjl J

‘J I M  M s -AF

a f 1 . . f O l i m .

(a) (b)

Figure 5.18: Heuristic scattering profiles for type I (a) and type II (b) multilayers of the second example 
discussed in the text. The dashed and continuous lines represent respectively scattering potentials of 
material M and M'.

II multilayers do not possess a high transmission channel (there are large barriers for 

all spins in both the FM and AF configuration) and the sign of the GMR ratio will 

depend on details of the band structure of M and M'. Consider the effects of disorder on 

these two kinds of multilayers. Using the same heuristic arguments as above one should 

expect that the GMR ratio of type I multilayers will increase (become more negative) 

as disorder increases, in the case of disorder that changes the spin asymmetry of the 

current. This is a consequence of the fact that, in common with the conventional single- 

magnetic element , one of the spin sub-bands in the AF alignment is dominated by weak 

scattering s-electrons (small barrier), which are only weakly affected by disorder. It 

is clear that this system is entirely equivalent to conventional single-magnetic element 

multilayers discussed above. In contrast for type II multilayers there are no spin sub­

bands entirely dominated by the weak scattering (small barriers) s-electrons, and all 

spins in either the FM and AF configuration will undergo scattering bv the same number 

of high barriers. In this case the effect of disorder will be to increase all the resistances

108



and this will result in a suppression of GMR. Moreover it is important to note that 

in the completely diffusive regime, where the resistances of the different materials may 

be added in series, the GMR ratio will vanish if ~  where is the

spin-dependent resistance of the material A. To verify this prediction I have simulated 

both type I and type II multilayers using the parameters corresponding to Co and 

Fe72V28 respectively for M and M', and corresponding to Cu for N, taken from table 

5.1. This choice was motivated by the fact that a reverse CPP-GMR has been obtained 

for (Fe72V28/C u /C o /C u )x /i multilayers [116, 117]. The GMR ratio for type I and type 

II multilayers is shown in figure 5.19, which illustrates the remarkable result that the 

GMR ratio of type I multilayers increases with disorder, while for type II structures 

it decreases. As explained above this is due to an enhanced asymmetry between the 

conductances in the FM and AF alignment for type I multilayers, and to a global 

increase of all the resistances for type II multilayers. As far as I know there are no 

experimental studies of the consequences of the geometry-dependent effect described 

above, and further investigation will be of interest, in order to clarify the role of the 

disorder in magnetic multilayers.

200

1500

Total Length L (AP)

Figure 5.19: Different geometry-induced behaviour of the GMR ratio as a function of disorder in 
multilayers composed of Co and Fe7 2 V-2 8 - In this case all the layer thicknesses are fixed at 10AP. 
The open (closed) symbols represent type I (type II) multilayers discussed in the text. The circles 
are the disorder free case, squares and diamonds are for random on-site potentials of 0.6eV and 1.2eV 
respectively.
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6 GM R w ith Superconducting Contacts and FS Junc­
tions

6.1 Introduction

In previous chapters I have considered spin-transport in a typical two-probe measure­

ment, in which the current/voltage probes are made by ordinary non-magnetic tran­

sition metals. The aim of this chapter is to complete this analysis by considering the 

effects of superconducting contacts. This is relevant for understanding the transport of 

spin-polarized systems in contact with superconductors and the role of spin-flip scat­

tering at the interface. The use of superconducting contacts will also highlight the need 

for a better understanding of the transport across Ferromagnet/Superconductor (F/S) 

ballistic junctions, which will be considered in the last section of this chapter.

Turn the attention to the case of two probe GMR measurements using supercon­

ducting contacts. The interest of these systems is twofold. On the one hand super­

conducting contacts have been always used by the group at Michigan State Univer­

sity [13] to achieved a uniform distribution of the current across the cross-section of 

the magnetic multilayers, and to perform squid measurements of the resistance. On 

the other hand, at a fundamental level, new physics associated with such structures 

arises from the proximity of two electronic ground states with different correlations 

(ferromagnetism and superconductivity), which can reveal novel scattering processes 

not apparent in the separate materials. The basic feature of the transport in ferromag­

netic/superconductor and ferromagnetic-multilayer/superconductor systems is that the 

current is spin-polarized in the magnetic material, but it is not spin-polarized in the 

superconductor. Below the superconducting gap the current is solely determined by 

Andreev reflection [23], which involves electrons and holes with different spin orienta­

tions. In view of the spin-imbalance in a ferromagnet due to the exchange field, one 

may expect that Andreev reflection will be generally suppressed in the case of F /S  

junctions [118]. Moreover, since the Andreev reflection is a spin-polarized process, one 

may also expect a severe suppression of the GMR ratio when superconducting contacts 

are considered. Despite these important features past theoretical treatments of GMR 

have always neglected the presence of Andreev reflection at the leads. In this chapter I
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will fill this gap and consider the GMR of r magnetic multilayer in which one contact 

is a superconductor and the other is a normal metal. This situation corresponds to the 

case in which the phase breaking length is shorter than the entire multilayer length. 

The analysis, carried out by considering both the realistic spd tight-binding model 

and the two-band model, will show the surprising result that the GMR is completely 

suppressed by the presence of a superconducting contact. Such a result, completely 

in contradiction with the measurements at Michigan State University, opens impor­

tant questions on the nature of the interfaces with the superconductor. Agreement 

with experiments is achieved by postulating a large amount of spin-flip scattering at 

the surface of the superconducting contact. This appears to be consistent with recent 

experimental observations [119].

A better understanding of these issues can be achieved by considering ballistic 

X/S and F /S  junctions. Recent nano-fabrication technology enables X/S and F /S  

ballistic point contacts to be made [22, 120, 121]. Transport in these structures has 

been shown to be ballistic and therefore its description is directly accessible by the 

calculation technique developed so far. I calculate the transport properties of several 

junctions and found that the I -V  curve can be reproduced very accurately in the case 

of X/S (ie Cu/Pb) junctions, while this is not the case of F /S  (ie Co/Pb) junctions. 

In particular the calculations underestimate the sub-gap conductance at very small 

bias. Possible sources of this discrepancy are the neglecting of spin-flip scattering and 

the local enhancement of the magnitude of the magnetization at the F /S  interface. 

Several scenarios will be considered and a consistent picture of the spin dynamics of 

F/S heterojunctions will be given.

6.2 G M R  and Superconducting C ontacts

As pointed out in the introduction, although superconducting contacts have been 

largely employed in CPP GMR measurements [13], a complete theoretical description 

has never been given. In this chapter I will address this problem and show that as 

superconductivity is induced in one of the contacts (eg by lowering the temperature) 

CPP GMR is largely suppressed. The suppression is total in the case of diffusive and 

ballistic systems, even though for the latter case the GMR ratio is very sensitive to the
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m ultilayer geom etry and sm all GM R (either positive and negative) can be found. In an 

interm ediate regime, when the m ajority  spins are quasi-ballistic and the m inority  are 

diffusive, the G M R ratio  can be different from zero. Nevertheless I will show th a t the 

GMR possesses an upper bound of 100% and larger GM R ratios cannot be achieved. 

This is strongly in contrad iction  w ith m ost of the experim ents, where G M R  ratios much 

larger th an  such a value have been found. Before going to describe the calculations and

Figure 6 .1 : Schematic picture of N /N  (a) and N/S (b) junctions and relative scattering processes. Note 
that the Andreev reflection is a spin-flip process, where the spin direction of the incoming electron 
and the reflected hole axe opposite.

the results, I will briefly in troduce the basic m odification of the tran sp o rt theory  in the 

case of superconductivity . Consider for example a junction  between a norm al m etal 

and a superconductor (N /S  junction), as sketched in figure 6 .1 . In the case in which 

superconductiv ity  is sw itched off, this reduces to a  junction  between two norm al m et­

als (N /N  junction ), whose conductance Rnn is sim ply given by the  L andauer-B iittiker 

form ula [24, 25, 26]

(a)

(6.1)
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where T a — Tr tata\  with ta the multi-channel transmission m atrix for the spin a. In

this case every electron with spin a  crossing the interface with a transmission amplitude
2

T a  gives a contribution j - T a  to the conductance. When one of the normal metal is 

replaced by a superconductor the situation is drastically different. In fact, because of 

the presence of the superconducting gap, free electrons with an energy E  < A (A is 

the superconducting gap) cannot propagate within the superconductor. Nevertheless 

electrons can propagate in the superconductor in form of Cooper pairs, giving rise to a 

non-vanishing sub-gap conductance for the N /S junction. The pairing process respon­

sible for sub-gap transport through an N /S junction is known as Andreev reflection 

[23] and is schematically represented in figure 6.1b. Andreev reflection consists in the 

reflection of an electron into a hole with the same momentum and opposite group ve­

locity (all the components are reflected). Moreover, because of the opposite spins of 

the two electrons forming the Cooper pair, the incoming electron and the reflected hole 

possess opposite spin directions. Therefore in the superconducting state, equation (6.1) 

is replaced by the current-voltage relations derived in [123], and re-derived in [47, 124], 

which in the absence of quasi-particle transmission through the superconductor yields

4e2
Txs =  - y R *  , (6.2)

where R a = r arj[ is the Andreev reflection coefficient, which is independent on the 

spin o  of the incident quasi-particle (for a general review on transport in mesoscopic 

superconducting heterostructures see reference [125]).

For what follows it is im portant to note tha t the Andreev reflection is a process 

which does not conserve spin and in which the two spin-bands are coupled. This reflects 

the fact th a t the supercurrent in the superconductor is not spin-polarized. Therefore 

when a superconductor is brought into contact with a material in which the current 

is spin-polarized, one expects extra resistance at the interface [118, 126, 127] and the 

presence of depolarizing effects. Since the GMR in magnetic multilayers is an effect 

which arises from the spin-polarization of the current, it is reasonable to expect strong 

modifications by adding superconducting contacts.

To understand the role of superconducting contacts on the C PP GMR consider first 

the case of ballistic transport in which there is no disorder within the layers, nor at the 

interface. I have used the same spd tight-binding Hamiltonian introduced in C hapter 3,
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w ith  p a ram ete rs  corresponding  to  Cu, Co and  P b . S u p e rconduc tiv ity  is in troduced  by 

doubling  the  H ilbert space in o rder to  take  in to  account the  degrees of freedom  of the  

holes, and  by coupling electrons and  holes w ith  the  su p erconducting  o rder p a ram ete r 

A . A  assum es th e  value of the  superconducting  gap in bulk P b  (Apb = 1 .331-10—3 eV). 

T he  resu lting  Bogoliubov-D e G ennes [128] H am ilton ian  has the  form

H i 0 A 0 \
0 0 - A
A* 0 - H t 0

1  o —A* 0 )

w here H q is th e  sp in -dependen t H am ilton ian  describ ing  the  no rm al s ta te  and  A  =  A  xX  

w ith  X  th e  u n it m atrix . N ote th a t  if one considers th e  spd  tig h t-b in d in g  m odel, the  

H am ilto n ian  H qq is a (36M )  x  (36M ) m atrix , w ith  M  th e  num ber of a tom s in the  un it 

cell.

T he  system  sim ulated  consists in a  C o /C u  m ultilayer w ith  the  Co and  Cu layers 

respectively  of 7 and  10 a tom ic  planes, and  in which th e  C o /C u  p eriod  is rep ea ted  10 

tim es. Such a s tru c tu re  is a tta ch e d  on one side to  a  C u lead and  on th e  o th e r to  a  P b  

lead. I rep resen t such a system  w ith  the  n o ta tio n  C u /[C o 7 /C u io ]x io /P b . F igure  6.2a

0.6
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Figure 6.2: GMR ratio (a) and conductance in the FM and AF configurations (b and c) for the 
disorder-free system Cu/[Co7 /C u io]x io /P b . NN refers to the case in which Pb is in the normal state, 
NS to the case in which Pb is in the superconducting state, (b) shows the conductances in the NN 
case and (c) in the NS case. Note the dramatic suppression of the spin-polarization of the current 
when superconductivity is introduced.
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shows results for the GMR ratio in the normal and superconducting states as a function 

of the Cu thickness, obtained by summing over 5-103 k\\ points, and clearly demonstrates 

a dram atic superconductivity-induced suppression of GMR. Figure 6.2b and 6.2c show 

results for the individual conductances per open channel and dem onstrate th a t the 

GMR ratio suppression arises because T™ is drastically reduced compared with T™ 

and equals r £ | .

To understand this effect, consider the simplest model of spin-dependent bound­

ary scattering shown in figure 6.3, namely the Kronig-Penney potential introduced in 

Chapter 4. In the limit of delta-function ferromagnetic layers, it reduces to the model 

used to describe the N /F /S  experiment of [22]. Fig 6.3a (6.3b) shows a cartoon of a 

m ajority (minority) spin, scattering from a series of potential barriers in successive FM 

aligned layers. Since the minority spins see the higher barrier, one expects TFM < TFM. 

Figures 6.3c and 6.3d show the scattering potentials for anti-ferromagnetically aligned 

layers, for which T jF =  T^F < TFM. For such an ideal structure, GMR arises from the 

fact th a t XpVJ )§> TFM and T jF. In the presence of a single superconducting contact this 

picture is drastically changed. For ferromagnetically aligned layers, figure 6.3e shows 

an incident m ajority electron scattering from a series of low barriers, which Andreev 

reflects as a minority hole and then scatters from a series of high barriers (figure 6.3f). 

The reverse process occurs for an incident minority electron, illustrating the rigorous 

result tha t the Andreev reflection coefficient is spin-independent. Figures 6.3g and 6.3h 

illustrate Andreev reflection in the anti-aligned state. The crucial point illustrated by 

these sketches is tha t in presence of a S contact for both the aligned (figures 6.3e and 

6.3f) and anti-aligned (figures 6.3g and 6.3h) states the quasi-particle scatters from N 

(=4 in the figures) high barriers and N (=4) low barriers and therefore, one expects 

T™  ~  r £ | .  Of course the rigorous results of figure 6.2, obtained using an spd Hamil­

tonian with 36 orbitals per atomic site ( sp d x 2 for spin x2 for particle-hole degrees of 

freedom) go far beyond this heuristic argument, nevertheless the figure clearly shows 

tha t the reduction of the GMR ratio in entirely due to the suppression of the high 

transmission m ajority channel in the ferromagnetic configuration.

Having shown th a t GMR is suppressed by adding a superconducting contact in the 

case of perfectly crystalline systems, it is reasonable to ask if this effect survives in 

presence of disorder. Despite the use of the highly efficient recursive Green’s function
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Figure 6.3: Cartoon of the different scattering processes. Figures (a), (b), (c) and (d) describes the 
transmission of spin electrons in a NX system. Figures (e), (f), (g) and (h) describe the NS case. 
Note that in the FM case a majority (minority) spin electron e1" (e^) is Andreev reflected as a minority 
(majority) hole h  ̂ ( t f ) .  In the antiferromagnetic (AF) case the path of the incoming electrons and 
out-coming holes is identical for both spins. The total number of large barriers is the same in the AF 
and FM case, and this produces GMR suppression.
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technique to  exactly  evaluate  the  sca tte rin g  m atrix  of a  m ultilayer, cu rren tly  available 

c o m pu ting  resources res tric t such a ca lcu la tion  to  system s w ith  tra n s la tio n a l invariance 

para lle l to  the  planes. To d em o n stra te  th a t  the  suppression  of C P P  G M R  is a  generic 

fea tu re  of N /F /S  hybrids and  to  s tu d y  the  effect of e lastic  im p u rity  sca tte rin g , I now 

exam ine the  reduced  two band  (s-d) m odel in troduced  in the  prev ious c h ap te r w ith  a 

H am ilton ian  m atrix
'  H0 - h

H  BG =
A

a *  - m  -  h
(6.4)

In th is  m odel H 0± h  is th e  sp in -H am ilton ian  for th e  no rm al system  w ith  h th e  exchange 

coupling, and  A  =  AX w ith  A  the  superconducting  o rder p a ram ete r. T h e  tig h t-b in d in g  

p a ram ete rs  are  th e  ones presen ted  in tab le  5.1 for Cu and  Co and  th e  su p erconduc ting  

gap  is assum ed to  be A  =  10- 3eV. I consider as a m odel of d iso rder th e  sim ple A n­

derson  m odel of C h ap te r 5 w ith  a  uniform  d is tr ib u tio n  of random  p o ten tia l w ith  w id th  

W  = 0 .6eV . F igure  6.4 shows resu lts  for the  G M R  ra tio s  in th e  no rm al and  supercon-
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F igu re  6.4: G M R  (a) an d  reduced  spin  conductances g of C u /C o  m ultilayers ca lcu la ted  w ith  th e  s-d two 
b ands m odel, in th e  case of no rm al con tac ts  (b) and  w ith  one N co n tac t rep laced  by a  su p erco n d u ctin g  
(c) co n tac t. T h e  Co an d  C u thicknesses are fixed and  are  respectively  15 an d  8  a to m ic  p lanes. E very  
p o in t on th e  g rap h  co rresponds to  an  ad d itio n a l double b ilayer C o /C u /C o /C u .  T h e  on-site  energy 
flu c tu a te s  ran d o m ly  accord ing  w ith  a  uniform  d is trib u tio n  of w id th  W  =  0.6, an d  th e  e rro r b ars  are 
th e  s ta n d a rd  d ev ia tio n  of th e  m ean  over 10 random  configurations. T h e  u n it cell is a  square  w ith  5 x 5  
a tom ic  sites, an d  I consider 25 fc -p o in ts  in th e  B rillouin  zone. T h e  ho rizo n ta l line deno tes G M R = 0 .

du c tin g  case and  d em o n stra tes  th a t  the  suppression of C P P  G M R  by su p erco n d u c tiv ity  

survives in th e  presence of d isorder. T he  sam e argum en t used for com pletely  ba llis tic

117



multilayers can be also used in the present case. If one assumes tha t all the transport 

is diffusive on the length scale of the individual layer thickness, the resistor network 

model can be applied. The cartoon of figure 6.3 can be re-interpreted by substituting 

the scattering potential with resistances in series, and elementary circuit analysis shows 

immediately tha t the GMR vanishes.

I have investigated a broad range of disorders and system sizes and find GMR 

suppression induced by superconductivity in all cases even though for some particular 

choices the suppression is not complete. As an example figure 6.5 shows the GMR ratio 

for a disorder with a uniform distribution of random potential of width W  =0.4eV. In 

this case while the transport of the minority spins is almost diffusive, the one of the 

m ajority spins is quasi-ballistic. If one assumes the picture in which an N /S system 

can be mapped onto an equivalent N /N  system with double size [129], it is clear tha t 

the difference between the conductances in the ferromagnetic and antiferromagnetic 

configuration is entirely equivalent to the difference between the conductances in the 

antiferromagnetic configuration of type I and type II multilayers of the first example 

discussed in the previous chapter in the section 5.5. Since these two conductances are 

different one expects the GMR in the N /S case not to vanish completely. Nevertheless 

I can use a simple heuristic argument to show that in the N /S case the GMR cannot 

be larger than 100%. Consider in fact the equivalent N /N  system of double length and 

use the resistor network model. In term of resistances the GMR ratio is simply

MR =  -  1 , (6.5)
ttFM

with ( R a f ) the resistance of the ferromagnetic (antiferromagnetic) configuration. 

Suppose now th a t the resistance arising from the Andreev reflection can be w ritten 

simply by adding in series the resistance of the incoming electron and outgoing hole 

(equivalent NN system). The GMR ratio becomes

MR =  t  2rAF, -  1 , (6.6)
r FM  +  r FM

Iwith ra the spin-dependent resistance of the multilayer. Since r FM < ra f  < r FM one can 

immediately conclude tha t the GMR ratio in the case of superconducting contacts has 

an upper bound of 100%. This last result is still not consistent with the experiments of 

Michigan State University which show GMR ratio up to 150%. It is therefore clear tha t
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F igu re  6.5: G M R  of C u /C o  m ultilayers ca lcu la ted  w ith  th e  s - d  tw o b an d s m odel, in  th e  case of no rm al 
co n tac ts  an d  w ith  one N co n tac t rep laced  by a  su p erco n d u ctin g  co n tac t. T h e  Co an d  C u th icknesses 
are  fixed an d  are  respectively  15 and  8 a tom ic planes. E very  p o in t on th e  g rap h  co rresponds to  an  
ad d itio n a l double b ilayer C o /C u /C o /C u . T he on-site  energy fluc tua tes  random ly  accord ing  w ith  a  
un iform  d is trib u tio n  of w id th  W  =  0.4, and  th e  e rro r b a rs  are th e  s ta n d a rd  d ev ia tion  of th e  m ean  
over 10 ran d o m  configurations. T h e  u n it cell is a  square  w ith  5 x 5  a to m ic  sites, an d  I consider 25 
fc—p o in ts  in th e  B rillouin  zone. T h e  horizon tal line denotes G M R = 0 .

som e e x tra  m echanism  a t th e  interface betw een the  m ultilayer and  th e  su perconducto r 

m ust occur. Here I propose th a t  spin-flip a t the  in terfaces can account for such a 

d iscrepancy. C onsider in fact the  ca rtoon  of figure 6.6, w here now I describe the  

A ndreev  reflection in presence of spin-flip a t th e  in terface. If a  m a jo rity  e lectron  is 

A ndreev  reflected and  spin-flipped, the  corresponding  ou tgo ing  hole will possess an up 

spin , and  therefore  p ro p ag a te  in th e  m ajo rity  band . In  th is  way th e  high tran sm ission  

m a jo rity  b an d  is resto red  and  the  G M R  ra tio  will no t be suppressed . It is im p o rta n t to  

no te  th a t  in th is  case th e  electrons responsible for the  G M R  signal are the  ones which 

undergo  to  spin-flip  a t th e  in terface. T h is  s itu a tio n  is exactly  opposite  to  th e  case in 

which no su perconduc to rs  are present. T he experim en ta l s tu d y  of th e  G M R  in sam ples 

in w hich th e  su p erco n d u c tiv ity  of th e  con tac ts  can be sw itched on and  off a rb itra rily , 

is of g rea t in te res t in o rder to  to  confirm  th is  p red iction . In th e  nex t section  I will show 

th a t  spin-flip  a t th e  in terface m ay be considered also to  exp lain  th e  ch a rac te ris tic  I - V  

curve of ba llis tic  F /S  ju n c tio n s .

119



r FM
NS

et -

h t  -

(C) 'N  
\

s !
(d ) ■'

r FM

NS

(e) -

(f)

N
\

S  II
/

r AF

NS

Figure 6 .6 : Cartoon of Andreev reflection in presence of spin-flip at the N /S  interface. Figures (a- 
d) describe the FM configuration and figures (e-f) the AF configuration. Note that a majority spin 
electron is reflected like a majority spin hole, if spin-flip occurs at the interface (figures a and b). This 
produces high transmission in the majority spin-channel and therefore large GMR.
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6.3 N S  B a llistic  Ju n ction s

In the last twenty years the measurement of the spin-polarization of the current in 

ferromagnetic metals raised up some confusion due to the misleading idea of compar­

ing polarization values inferred from different experiments. In particular the direct 

comparison of the polarization obtained from tunneling junctions and from devices 

where the direct current is measured shows very different results. The key point of all 

these measurements is th a t the quantity which is measured is the spin-polarization of a 

complicate structure, usually involving several different materials and interfaces. I have 

shown in the previous chapters that, when transport is phase-coherent, all the structure 

is im portant and the measured polarization may change simply as a result of chang­

ing the non-magnetic elements of the structure. For instance in magnetic multilayers 

based on Xi, the spin-polarization of the current in the ferromagnetic configuration 

may be switched from positive to negative, by using Pd (Pxi/pd =  —0.34) instead of 

Cu (Psi/Cu — 0.17) as non-magnetic metal. Therefore the quantity to compare directly 

with experiments is the spin-polarization of the current of the specific device.

One recent and successful way to obtain information on the spin polarization of a 

system is by using ballistic F /S  junctions and by measuring the change of the conduc­

tance due to the switching on of the superconductivity [22, 120, 121]. In the typical 

experimental setup a small constriction (usually 30nm long and 3-10nm thick) is made 

between a superconducting metal and another metal tha t can be either ferromagnetic 

or normal. The system is then cooled below the critical tem perature for the supercon­

ductor and the I - V  curve at small biases is measured. As a reference usually also the 

I - V  curve for the equivalent F /X  junction is measured at the same tem perature. This 

is achieved by applying a magnetic field higher than the critical field of the supercon­

ductor. The quantity which is of interest is the normalized conductance g ( V ) (not to 

be confused with the reduced conductance g defined in Chapter 5) as a function of the 

bias voltage V

where TpsOO ( T f n O 7 ) )  is the measured differential conductance for the F /S  (F /X ) 

junction. Experimentally, although the individual conductances fluctuate from sample 

to sample by up to one order of magnitude, the quantity #(1') is constant. This is
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a d em on stration  th at the transport is b a llistic  and th at th e flu ctu ation s o f th e con-

Tinkham-Klapwijk theory [130] with spin-dependent delta-like scattering at the inter­

face, and hence the polarization is evaluated. Usually a remarkable good agreement 

with the experimental data is achieved particularly in the low bias region, where the 

fit is focused.

This kind of experiments is easily accessible to the scattering technique developed 

in this thesis. I have reproduced the I - V  curves found in the experiments in order 

to obtain some informations on the scattering processes at the F /S  interfaces. It is 

im portant to note tha t with the only exception of the superconducting gap (which 

is assumed to be the one of the bulk superconductor) there are not free param eters 

because all the tight-binding coefficients are fixed by an accurate fitting of the band 

structure for the bulk materials. Since g(V)  is measured for small bias, it is im portant 

to have a very accurate fit of the band structure in a narrow energy region close to the 

Fermi energy. I have performed such a fit for Cu, Co and Pb (the superconductor used 

in the references [22, 120]) by using a modified version of a fitting routine included 

in the tight-binding package OXO X [131]. Details of this fitting procedure and the 

resulting band structures are discussed in appendix D.

The calculation of the conductance in the F /S  and F /X  cases uses the same tech­

nique of the previous section and of Chapter 2. Here I considered perfectly translational 

invariance across the entire structure (which means perfect lattice match at the inter­

face) and I have taken only 30 x 30 /^-vectors in the transverse Brillouin zone, which 

gives roughly the same number of transverse modes of a constriction with a diam eter 

of lOnm. I have consider C u /P b  and C o/Pb constrictions and the hopping between 

different materials is, as usual, the geometric mean of the hoppings of the bulk m ateri­

als. I calculate the conductance as a function of the energy T(E)  and then integrate in 

order to obtain the differential conductance at finite tem perature. This last quantity 

respectively for the F /S  and F /X  case is calculated as follows [130]

ductance depend only on the size of the constriction (which can vary from sample to 

sample). Finally a fit of g(V)  is performed by using a modification of the Blonder-

r Fs(E)dE  , (6.8 )
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-  £ T  (-
dfo
d E T f n  ( E ) d E , (6.9)

where /o is the Fermi distribution. This is obtained by assuming th a t the effect of the 

tem perature and the bias is only to change the occupation of the reservoir according 

to the Fermi distribution.

The calculated I - V  curve for C u /P b  is shown in figure 6.7 together with the experi­

mental da ta  from reference [22]. The agreement is surprisingly good particularly for low
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Figure 6.7: I -V  curve for a C u/Pb ballistic junction at 4.2°K. The solid line represents the calculated 
curve and the squares the experimental data from reference [22]. Note that the agreement is remarkably 
good particularly at low bias.

bias. Note th a t the experimental data  show a negative g(V)  for large biases which is in 

contradiction with the elementary expectation of g{V ) ~  0 for eV  > A. Nevertheless 

this seems to be consistent with the experimental error on the determ ination of g(V)  

[132] and therefore the agreement of the theoretical curve may be considered almost 

perfect over the whole voltage range. Better agreement can be obtained by reducing the
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superconducting gap A below the bulk value for Pb. This is reasonable if one considers 

th a t in the constriction region size effects can suppress the superconductivity.

This surprisingly good agreement indicates tha t the scattering technique is the 

appropriate description of this kind of structures. In particular it is im portant to point 

out tha t, at least for the case of C u/Pb, an accurate description of the hopping at the 

interface seems not to be crucial and all the transport is largely determined by the 

bulk band structures of the constituent materials. Since the lattice mismatch between 

Cu and Pb is very similar to the one between Co and Pb, one may expect th a t the 

same good agreement can be found also for C o/Pb  interfaces. Figure 6.8 shows the I - V  

curve for a C o/P b  junction, where it is easy to see tha t such an expectation is largely 

not satisfied. In particular at zero bias the normalized conductance g (V ) is negative, 

which is the result of a strong under-estimation of Tps with respect to the experiments. 

It is quite unlikely tha t such a disagreement is related with a very different quality of
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Figure 6 .8 : I - V  curve for a C o/Pb ballistic junction at 4.2°K. The solid line represents the calculated 
curve and the squares the experimental data from reference [22]. Note that at low bias the calculated 
curve presents a g(V)  value with an opposite sign with respect to what found in experiments.

the junction in the the C o/P b  case with respect to C u /P b  or to a bad fit of the band 

structure of Co, and therefore this must be connected with the magnetic state. One 

possible explanation is to postulate large spin-flip scattering at the interface. Like Nb 

in the case of the contacts for GMR measurements, Pb is a heavy m aterial and spin-
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orbit scattering can be large. Spin-orbit scattering is not a spin-conserving process 

and therefore induces spin-flip at the interface. This, as explained in the previous 

section, restores the high transmission in the majority channel, giving rise to  a global 

enhancement of the conductance. Note tha t this process can be also present in the case 

of C u /P b  junctions (because due solely to Pb) without producing any change of the 

resistance.

Another possibility is to assume an enhancement of the magnetization at the in­

terface as recently found by several groups for different materials [69, 133]. If this 

enhancement is present, the band structure will be locally distorted and a better match 

between the Fermi surfaces of electrons with different spins is possible. This creates 

a global enhancement of the conductance in the F /S  case and eventually g(\  ’) can be 

positive a t low bias. Figure 6.9 shows Ffx(O) and rFS(0) for C o/Pb as a function of the 

exchange coupling h of the first Co monolayer at the interface with Pb. It is clear tha t 

for a small range of exchange coupling #(0) can indeed be positive with a maximum 

obtained for an exchange coupling of h = 1.85eY (the bulk value is h ~  0.9eY). The 

I -V  curve corresponding to  h = 1.6eY is presented in figure 6.10 and shows tha t good 

agreement with experiments can be achieved. This is the central result of this section 

because it shows tha t I - V  curves similar to the experimental ones can be obtained by 

making a detailed prediction of the materials characteristic of the F /S  interface.

In summary I have shown that the description of ballistic X /S and F /S  junctions 

is a powerful tool for the understanding of the scattering processes occurring a t the 

interfaces. The scattering technique gives excellent agreement with the experimental 

data in the case of N /S junctions, but largely under-estimate the conductance in the case 

of F /S  junctions. This may be due to the presence of spin-flip scattering, consistently 

with GMR measurements, or to a strong local distortion of the band structure of the 

magnetic metal. A completely self-consistent description of the interface can solve this 

ambiguity and give a complete solution of this fascinating problem.
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Figure 6.9: Ffn(0) and Tfs(O) at 4.2°K for a C o/Pb ballistic junction as a function of the exchange 
coupling of the first Co monolayer at the interface with Pb. Note that for a small window of exchange 
coupling rFx(0) < rFS(0) and therefore <?(0) > 0.
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Figure 6.10: I - V  curve for a C o/P b ballistic junction at 4.2°K when a monolayer with an exchange 
energy of h =  1.6eV is added at the F /S  interface. The solid line represents the calculated curve and 
the squares the experimental data from reference [22].
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7 C arbon N anotubes

7.1 In trod u ction

In this chapter I will concentrate on a new class of materials which in the last ten years 

raised up great enthusiasm for their amazing mechanical and electronical properties, 

namely carbon nanotubes. Carbon nanotubes [134, 135, 136] are narrow seamless 

graphitic cylinders, which show an unusual combination of a nanometer-size diam eter 

and millimeter-size length. This topology, combined with the absence of defects on a 

macroscopic scale, gives rise to uncommon electronic properties of individual single-wall 

nanotubes [137, 138], which depending on their diameter and chirality, can be either 

metallic, semiconducting or insulating [139, 140, 141].

Here I will focus attention only on metallic nanotubes and in particular on the 

so-called “arm chair” nanotubes. An armchair nanotube is a graphite tube in which the 

hexagon rows are parallel to the tube axis. If n  is the number of carbon dimers along 

the nanotube circumference the tube will be labeled as (n, n) nanotube. One of the 

most im portant properties of the armchair nanotubes is tha t they behave like a mono­

dimensional metal and this is directly connected with their structure. The electronic 

wave-length in fact is quantized around the circumference of the tube because of the 

periodic boundary conditions. This gives rise to mini-bands along the tube axis and the 

tube is metallic or insulating whether or not one or more mini-bands cross the Fermi 

energy. In the case of armchair nanotubes two mini-bands along the tube axis cross 

the Fermi energy [142, 143, 144], therefore, according to scattering theory [24], the 

conductance is expected to be 2Go, where Go = 2e2/ h  ~  (12.9 kD)_1 is the quantum  

conductance. Direct evidence of the de-localization of the wave function along the tube 

axis has been already shown [145, 146], while a direct measurement of the conductance 

quantization for single-wall nanotubes is still missing (for an introduction to electronic 

transport in carbon nanotubes see reference [147]).

The situation for multi-wall nanotubes is rather different. A multi-wall nanotube 

consists of several single-wall nanotubes inside one another, forming a structure remi­

niscent of a “Russian doll” . A section of a double-wall (5,5)@(10,10) armchair nanotube 

is presented in figure 7.1. Recent measurements [44] of the conductance in multi-wall 

nanotubes have raised a significant controversy due to the observation of unexpected
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Figure 7.1: Section of a (5,5)@(10,10) “armchair” nanotube.

conductance values and of ballistic transport at tem peratures far above room tem pera­

ture. In these experiments several multi-wall nanotubes are glued to a gold tip, which 

acts as the first electrode, with a colloidal silver paint. The second electrode is made by 

a copper bowl containing mercury, which provides a gentle contact with the nanotube. 

The tip is lowered into the mercury and the two-probe conductance is measured as a 

function of the immersion depth of the tubes into the mercury. The main feature of the 

experiments is tha t at room tem perature the conductance shows a step-like dependence 

on the immersion depth, with a value of 0.5 Go for low immersion and 1 Go when the 

tip is further lowered. The value of 0.5 Go usually persists for small immersion depths 

(<  40nm) and is completely absent in some samples, while the value 1 Go is found 

for very long immersion depths, up to 0.5^m. Nevertheless some anomalies have been 

found with conductances of 0.5 Go lasting for more than 500nm [44].

While the ballistic behaviour up to high tem perature can be explained by the 

almost complete absence of backward scattering [148], the presence of such conductance 

values is still not completely understood. In the absence of inter-tube interactions, if 

one assumes tha t m  of the nanotubes forming the multi-wall nanotube are metallic
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and in contact with both the electrodes, then a conductance of 2mGo is expected for 

the multi-wall nanotube. This means tha t even in the extreme case in which only one 

tube is metallic and in contact with the electrodes a conductance of 2Go must be 

measured. Therefore the values 0.5 Go and 1 Go are largely unexpected. One possible 

explanation, provided by the authors of the experiments, is tha t only the outermost 

tube is responsible for the transport and that the anomalous conductance is the result 

of scattering to impurities. Nevertheless both these hypotheses may be challenged. 

The first is based on the assumption that, since mercury does not wet the innermost 

tubes, it does not provide an efficient electrical contact with the innermost part of the 

multi-wall nanotube. This may not be the case because the interaction between the 

different walls may be large and the motion of electrons across the structure efficient. 

As far as the second hypothesis is concerned, it has been shown recently [149] tha t 

disorder averages over the tube’s circumference, leading to an electron mean free path 

tha t increases with the nanotube diameter. Therefore single impurities affect transport 

only weakly, particularly in the nanotube forming the outermost shell, which has the 

largest diameter.

In this chapter I address these puzzling measurements and show that the structural 

properties of multi-wall nanotubes can explain their peculiar transport. The electronic 

band structure of multi-wall carbon nanotubes [150, 151, 152], as well as single-wall 

ropes [153, 154] is now well documented. More recently, it has been shown tha t pseudo­

gaps form near the Fermi level in multi-wall nanotubes [152] due to inter-wall coupling, 

similar to the pseudo-gap formation in single-wall nanotube ropes [153, 154]. Here I 

dem onstrate th a t the unexpected transport properties of multi-wall nanotubes arise 

from the inter-wall interaction. This interaction may not only block some of the quan­

tum  conductance channels, but also redistribute the current non-uniformly over the 

individual tubes. When only the outermost tube is in contact with one of the volt­

age/current electrodes, then this forms a preferred current path and, because of inter­

tube interaction, the conductance of the whole system will typically be smaller than

2 G0.

The chapter is organized as follows. In the next section I will briefly describe how 

to calculate the transport in infinite armchair single-wall and multi-wall nanotubes.

129



Since the unit cell must include two atomic planes the hopping m atrix turns out to be 

singular, and a special trick must be used to solve the dispersion equation and built up 

the retarded Green’s function. I will illustrate this procedure by using the decimation 

diagrams introduced in Chapter 5.

In the following section I will discuss the transport in infinite multi-wall nanotubes 

and understand which are the effects of the inter-tube interaction both on the disper­

sion and on the wave-function of the tube. Then I present the results for transport 

of inhomogeneous multi-wall nanotubes, giving an explanation of the experiments of 

reference [44]. In this part I will consider different scenarios regarding the structure of 

the electrical contacts.

Finally I will extend the analysis given in the previous sections for the zero- 

tem perature limit to room tem perature, in the limit in which the multi-walled scattering 

region is replaced by a continuous of states. In this classical limit, if only the outer­

most tube forms an electrical contact with the metallic electrodes, the conductance is 

expected to be lGo- A reduction of this value is expected in the case in which there is 

strong scattering between the single-walled and the multi-walled regions.

The last section is dedicated to the investigation of possible spin injection in carbon 

nanotubes. At present very few studies has been made both theoretical and experimen­

tal [41]. Nevertheless the absence of spin-mixing scattering and the low dimension of 

the tubes paves the way for the injection of spin-electrons into carbon nanotubes with 

extremely long spin life-time. This may open new hopes for spin-filtering devices and 

maybe quantum  computation.

Most of the material of this section has been already published in references [42, 43].

7.2 S ingu larity  o f  H \

In this section I describe a trick necessary to calculate the retarded Green’s functions of 

the carbon nanotubes. In this case two atomic planes must be included in the unit cell 

and therefore the m atrix H\  is singular. As indicated in Chapter 2, this is a problem 

since the dispersion relation expressed by equation (2.27) is not well defined.

The tight-binding parameterization of carbon nanotubes is determined by ab initio 

calculations for simpler structures [155]. The electronic structure and superconducting 

properties of the doped Ceo solid [156], the opening of a pseudo-gap near the Fermi
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level in a rope consisting of (10,10) nanotubes [154] and in (5 ,5)@(10,10) double-wall 

nanotubes [152] are some of the problems successfully tackled by this technique. The 

band structure energy functional is augmented by pairwise interactions describing both 

the closed-shell interatomic repulsion and the long-range attractive van der Waals in­

teraction. This reproduces correctly the interlayer distance and the C33 modulus of 

graphite. Independent checks of this approach can be carried out by realizing tha t 

the translation and rotation of individual tubes are closely related to the shear motion 

of graphite. One expects tha t the energy barriers in tubes lie close to the graphite 

value which, due to the smaller unit cell, is easily accessible to ab initio calculations

For infinite nanotubes, both single-wall and multi-wall, the unit cell tha t I have 

used comprises two atomic planes. This is because two adjacent planes are identical 

but rotated by n / n  degrees where n is the coordination number of the tube. Therefore 

the matrices H q and H \  are respectively of the form

The previous expressions describe a system in which the inequivalent atomic planes 

are described by the matrices H'0 and H q, and H[ describes the coupling between the 

H'0 plane and the H q plane, while H'{ describes the coupling between the H q plane 

and the H q plane. Such a structure can be represented by the decimation diagrams

decimation technique introduced in Chapter 2 for the scatterer. The main idea in fact 

is to decimate all the degrees of freedom of the unit cell which are not coupled with

matrix. For this purpose consider the figure 7.2. The procedure consists in decimating 

all the planes described by H q yielding a new intra-plane m atrix H q and a new inter­

plane m atrix //* . Note tha t the new matrices H q and H{ have dimension which is a

In performing this procedure one should be careful to decimate the H q planes both on

[157, 158].

(7.1)

(7.2)

of figure 7.2. In order to obtain a non-singular m atrix Hi  I have decided to use the

degrees of freedom of the next unit cell and hence to define a new non-singular H 1

half of the dimension of the starting matrices H q and Hi of equations (7.1) and (7.2).

the left- and on the right-hand side of H'0 in order to obtain a new periodic structure.
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F igu re  7.2: D ecim ation  d iag ram s for th e  ca rbon  n an o tu b es  u n it cell. T h is  p ro ced u re  enables to  
co n s tru c t a  non-singu lar coupling m a tr ix  H x .

T he rules to  perfo rm  such a decim ation  are illu s tra te d  in figure 7.4a and  7.4b w here 

th e  new m atrices H q and  H* are defined. N ote th a t  th e  new s tru c tu re  defined by these 

new m atrices is period ic  and  th a t  the  coupling m a tr ix  H {  is non-singu lar.

F ina lly  special a tte n tio n  m ust be used w hen a finite sc a tte re r  is a tta c h e d  to  sem i­

infin ite  ca rb o n  n an o tu b es  described  by th e  new m atrices H q an d  H*. To illu s tra te  

th is  po in t consider th e  decim ation  d iagram s of figure 7.3 w here I take  two sem i-infin ite  

n a n o tu b es  a tta ch e d  to  a  sca tte rin g  region. T he aim  is to  describe th e  two sem i-infin ite

H
ii

H 0

H ,  H x H i H x H x Hi  H i

Ho H H

H i  H i  H i

*AAA/^-AAAI^/\AAJ^/)  rvA/^

H i  H i  H i H i  H i  H i  H i

H 0 H o H 0 

|/ \n n f l |/ \A /\j |/ \A A A

H* H* H*

F igu re  7.3: D ecim ation  d iag ram s for two sem i-infinite ca rbon  n an o tu b es  a t ta c h e d  to  a  fin ite sc a tte r in g  
region (also a  ca rb o n  n a n o tu b e ). T h e  purpose is to  describe th e  sem i-infin ite p a r ts  by th e  renorm alized  
m a trice s  H q an d  H * an d  th e  fin ite p a r t  by  th e  “b a re ” m atrices H q , H q , H [  an d  H " .

n a n o tu b es  by th e  new m atrices H q and  H {  and  a finite m iddle  region (the  one included
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in th e  blue box) by the  “b a re” m atrices H'0, H q , H[ and  H". T he  im p o rta n t p o in t is 

th a t  w hen th e  tu b e  is sem i-infin ite  tra n s la tio n a l sym m etry  is ev iden tly  broken. Suppose 

one decim ates all th e  p lanes described by Hq in the  left-hand  side (rig h t-h an d  side) 

sem i-infin ite  region. T h is will yield to  th e  new m atrices Hq  and  H *  w ith  the  exception  

of th e  las t p lane before th e  finite region (the  first p lane a fte r the  finite region), where 

the  dec im ation  has occurred  only on the  left-hand  side (rig h t-h an d  side). Such a p lane  

is therefore  described  by a m atrix  which is in general different from  H q ,  H'q and  H q . I 

call th is  m a tr ix  Hq if the  decim ation  has occurred  in the  left-hand  side p lane and  H ^  if 

th e  dec im ation  has occurred  in the  rig h t-h an d  side plane. T hese new m atrices are the  

ones which m ust be used to  a tta c h  finite sc a tte rin g  regions to  sem i-infin ite  n ano tubes . 

I illu s tra te  th is  po in t in figure 7.3 by using the  decim ation  d iag ram s. In th e  figure the  

u p p e r p a r t  describes the  s tru c tu re  and  th e  position  of the  p lanes to  decim ate , and  th e  

lower p a rt  the  resu lt of the  decim ation .

To conclude in figure 7.4 I sum m arize all th e  dec im ation  ru les in tro d u ced  in th is  

section.

(a) (c)
II I II * M I L

H 0 H 0 H 0 H 0 Ho H 0 H „

* + * - 1  * d -
H i  H i  H i

(b) (d)
I II I I II R

H„ H 0 H 0 H n H„ H„

— cAAA/V H K =

Ho H i  H xHx

F igu re  7.4: S u m m ary  of all th e  dec im ation  rules in tro d u ced  in th is  section: (a) new  on-site  m a tr ix  
H q , (b) new non-singu lar coupling m a trix  H * ,  (c) la s t le ft-hand  side m a tr ix  of th e  le ft-h an d  side lead 
H q , (d) first r ig h t-h an d  side m a tr ix  of th e  r ig h t-h an d  side lead  H q -.
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7.3 C on d u ctan ce in in fin ite m ulti-w all n an otu b es

For  an homogeneous system the total transmission coefficient T (E )  assumes integer 

values corresponding to the total number of open scattering channels at the energy 

E.  For individual (n, n ) armchair tubes, this integer is further predicted to be even 

[142, 143, 144], with a conductance of 2G0 near the Fermi level. As an example, the 

results for the conductance G(E)  and the density of states of the (10,10) nanotube are 

shown in Fig. 7.5. In this section I combine the scattering technique with the procedure

20

0 _ i_

732 4 5 6 81

E [eV]

F igu re  7.5: S ingle-w all (10,10) n an o tu b e , (a) Local density  of s ta te s , (b) C o n d u c tan ce  as a fu nction  
of energy. N ote th e  m ono-d im ensional ch a rac te r of b o th  th e  DOS an d  G ( E ) .

for dealing with singular Hi matrices, and introduce the main transport properties of 

infinite multi-wall carbon nanotubes. The main feature of an armchair nanotube is its 

true mono-dimensional metallic behaviour. Note tha t the density of state  shows mono­

dimensional van Hove singularities which are due to the presence of dispersion-less mini­

bands. This is reflected in the energy-dependent conductance which shows a typical 

step-like behaviour. Such steps appear whenever the energy crosses a new mini-band, 

and therefore correspond to the van Hove singularities in figure 7.5. It is crucial to note 

th a t in an infinite system every scattering channel gives the same contribution Go to 

the conductance independently from its dispersion and group velocity. The situation
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is rather different in an inhomogeneous system, where scattering of electrons from 

low dispersion to high dispersion bands of different materials, can give rise to strong 

backward scattering and therefore to a reduction of the conductance. At the Fermi 

energy of an armchair nanotube (in this case E  = Ep = 3.6eV) only two scattering 

channels are present resulting in a conductance 2G0- This value remains constant in 

an energy interval of approximately L5eV, above which other mini-bands s tart to cross 

the Fermi energy.

Consider now multi-wall nanotubes. As observed in the introduction, in the absence 

of inter-tube interactions, different tubes behave as conductors in parallel and the 

conductances are simply additive. Therefore, since the position of the Fermi energy does 

not change with the tube diameters one expects a conductance 2mGo for a multi-wall 

nanotubes comprising m  walls. Note also tha t the width of the energy region around 

the Fermi energy where the conductance is 2Gq, depends only weakly on the tube 

diameters. The situation changes drastically when inter-tube interaction is switched 

on. In figures 7.6 and 7 .71 present the density of states and the conductance respectively 

for a (10,10)@(15,15) and for a (5,5)@(10,10)@(15,15) multi-wall nanotube. In the

(a)

o
Q

o
5

o  [ (b)

3.2 3.4 3.6 3.8 4
E [eV]

Figure 7.6: (a) Local density of states for a double-wall (10,10)@(15,15) nanotube, (b) Conductance 
as a function of energy for the same nanotube.

figures I restricted the energy window to the region where the single-wall armchair
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Figure 7.7: (a) Local density of states for a triple-wall (5,5)@(10,10)@ (15,lo) nanotube, (b) Conduc­
tance as a function of energy for the same nanotube.

nanotubes present conductances of 2Gq. The main feature of both the figures is the 

presence of pseudo-gaps [152] which lower the conductance from the expected value 

2mGo. In the case of a double-wall nanotube, this results in two regions where the 

conductance passes from 4G$ to 2Go, while in triple-wall nanotube the values 6Go, 4Go 

and 2Gq are possible. Nevertheless both these results are still not consistent with the 

experimental observations of lGo and 0.5Go [44].

It is im portant to note tha t the presence of energy pseudo-gaps not only lowers the 

conductance but also gives rise to two im portant effects. First it changes drastically 

the dispersion of the mini-bands close to the gaps. At the edge of the gaps in fact 

the dispersion passes from a linear to an almost dispersion-less parabolic-like structure. 

This is shown in figure 7.8 where I present the band structure along the direction of 

the tube axis for a double-wall (10,10)@(15,15) nanotube in contrast with the band 

structure of a single-wall (15,15) nanotube.

Secondly the amplitude of the wave-function across the nanotubes may not be uni­

formly distributed. Far from the gaps, where the effects of the inter-tube interaction are 

weak, the wave-function is expected to have a uniform distribution across the different 

walls composing the nanotube. This is what is found in the case of non-interacting
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Figure 7.8: (a) Band structure along the tube axis for a (15,15) nanotube, (b) Band structure along 
the tube axis for a (10,10)@(15,15) nanotube.

walls, whereas in the vicinity of a pseudo-gap, the distribution changes dram atically 

and the amplitude may be enhanced along some walls and reduced along some others. 

To dem onstrate this effect in figure 7.9 I present the partial conductance across the two 

walls composing a (10,10)@(15,15) nanotube and across the three walls composing a

(5,5)@(10,10)@(15,15) nanotube. The partial conductance is defined as the projection 

of the to tal conductance for an infinite multi-wall tube onto the degrees of freedom 

describing the individual walls. This is identical to what done for the partial conduc­

tance over the atomic orbitals presented in Chapter 3. From the figure it is very clear 

th a t the amplitude of the wave-function (which is proportional to the partial conduc­

tance) is not uniform across the structure and depends critically on the energy. Both 

the change in the dispersion and the non-uniform distribution of the am plitude of the 

wave-function across the tubes have drastic effects on the transport of heterogeneous 

systems, because it creates strong inhomogeneities along the structure, and therefore 

strong backward scattering. This aspect, which occurs in a multi-wall nanotube when 

one of the innermost walls closes, will be discussed in the next section.
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Figure 7.9: Partial conductance of (a) (10,10)@(15,15) and (b) (5,5)@(10,10)@(15,15) nanotube. The 
solid line, dotted and dashed lines represent the partial conductance respectively onto the innermost, 
the medium (only in the case of (5,5)@(10,10)@(15,15)) and the outermost tube. Note that within the 
pseudo-bandgaps the conductance does not distribute uniformly onto the different tubes.

7.4 T ransport in in hom ogen eou s m ulti-w all n an otu b es

In this section I will use the ideas developed above to describe the experiments of 

reference [44]. Note tha t for inhomogeneous systems, where multi-wall nanotubes are 

contacted to the voltage/current probes, the conductance quantization in units of 2Go 

which I found also for multi-wall nanotube in presence of inter-wall interaction is evi­

dently violated and fractional values of the conductance are allowed. One of the diffi­

culties of the experiments, which use gold as one electrode and mercury as the other, is 

th a t not all the tubes make contact with the electrodes. I have considered two different 

scenarios and have found tha t agreement with the experiments is obtained when one 

assumes th a t only the outermost tube is in contact with the gold electrode, whereas 

the number of walls in contact with the mercury depends on the depth a t which the 

tube is immersed into the liquid. This latter assumption may seem surprising, because 

the mercury does not wet the inner tubes. Nevertheless I believe th a t at equilibrium, 

the inter-tube interaction allows a uniform distribution of the chemical potential across 

the cross-section of the whole structure and therefore in the linear-response regime,
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the scattering problem reduces to a semi-infinite single-wall nanotube (the one in di­

rect contact with gold) attached to a scattering region in which a variable number of 

walls are present (see fig.7.10a). Moreover a close analysis of the inter-tube m atrix 

elements shows tha t these are of the same order of magnitude as the intra-wall ones. 

This means th a t electron transport between different walls may be efficient, as well 

as the electron feeding of the innermost walls from the electrons reservoirs. Consider

(a) (b)
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— ■+
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Figure 7.10: (a) Schematic geometry of the system in which only the outermost tube is contacted with 
the gold electrode for different immersion depths. The perfect contact of the outermost tube with 
the gold electrode is simulated by considering a semi-infinite single-walled carbon nanotube lead, (b) 
Conductance as a function of energy for the system of (a).

first the case in which only the outermost tube makes contact with the gold electrode. 

I argue th a t the step-like dependence of the conductance on the immersion depth is 

due to the fact th a t the scattering region makes contact with the mercury reservoir 

via a multi-wall semi-infinite nanotube whose number of walls varies and depends on 

the immersion of the structure. For small immersion depths (such as Hgl in fig.7.10a), 

only the outermost tube is in contact with mercury, because it is the only one with an 

end below the mercury level. A further lowering of the gold tip (to depths such as Hg2

139



and Hg3 in figure 7.10a) will sequentially place more inner walls into electrical contact 

with the mercury, thereby changing the conductance. Note th a t the conductance of 

such a structure cannot be larger than tha t of the single-wall nanotube, which is the 

only tube in contact with the gold electrode.

In figure 7.10b I present the conductance as a function of energy for the inhomo­

geneous structure described in figure 7.10a. In all three cases, the simulated structure 

makes contact with the upper Au reservoir via a (15,15) nanotube, which forms the 

upper external lead, whereas the lower external lead contacting the Hg comprises either 

a single-, double- or triple-wall nanotube. The solid curve corresponds to a structure 

formed from a 200 atomic plane (AP) (~250A) (5,5)©(10,10)@(15,15) triple-wall re­

gion, below which is attached to a 200 AP (10,10)@(15,15) double-wall region. The 

ends of the outer (15,15) nanotube are connected to semi-infinite (15,15) nanotubes, 

which form the external leads. The dashed curve corresponds to a structure formed 

from a 200 AP (5,5)@(10,10)@(15,15) triple-wall region. The upper end of the outer 

tube is attached to a semi-infinite (15,15) nanotube, which forms the external lead con­

tacting the Au reservoir. The lower end of the (10,10) and (15,15) nanotubes continues 

to infinity, and forms a (10,10)@(15,15) external contact to the Hg reservoir. Finally 

the dot-dashed line shows the conductance of a (5,5)@(10,10)@(15,15) nanotube, which 

at the lower end makes direct contact with the Hg and at the upper end, the outer tube 

continues to infinity, thereby forming a (15,15) external contact to the Au reservoir. 

These situations correspond to immersion of the tube into the mercury at positions 

H gl, Hg2 and Hg3 respectively, where either one wall and two walls are in electrical 

contact with the mercury.

In all the simulations, the ends of the finite-length tubes are left open and I do 

not include capping layers. I believe tha t the capping layers are not crucial to the 

description of the transport properties of inhomogeneous multi-wall nanotubes, since 

these are mainly determined by the mis-match of wave-vectors between different regions. 

Figure 7.10b shows clearly tha t in an energy window of about 0.03eV (indicated by 

vertical dashed lines), the conductance for the first structure is approximately 0.5G0, 

while for the latter two is of order 1G0. Note tha t such energy window is larger than 

both the bias used in the experiments and room tem perature. This suggests th a t 

these results are quite robust and will survive both at room tem perature and moderate
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biases. This remarkable result is in excellent agreement with the recent experiments of 

reference [44].

The scattering in such an inhomogeneous structure arises from the reasons pointed 

out in the previous section. In the energy window considered in fact the infinite

(5,5)@(10,10)@(15,15) presents a large pseudo-gap with conductance AGq. One there­

fore expects th a t at both the interfaces of the (5,5)@(10,10)@(15,15) region with re­

spectively the (10,10)@(15,15) region and the (15,15) tube, the mismatch of either the 

transverse components of the wave-function (j>k± and the longitudinal A;_L-vectors will 

be large. This gives rise to the strong suppression of the conduction observed in the 

experiments [44]. In figure 7.11 I present the conductance as a function of immersion 

depth in mercury for the structure described above. The conductance is calculated at 

zero-temperature in the zero bias limit and the energy has been set in the middle of the 

marked region of figure 7.10b (3.825eV). For comparison I superimpose the experimen­

tal results of reference [44], which show a very good agreement with the calculation.

1.0

^  0.5

0.0
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z  [nm]

Figure 7.11: Conductance G  of a multi-wall nanotube as a function of immersion depth 2  in mercury. 
Results predicted for the multi-wall nanotube discussed in figure 7.10a, given by the dashed line, are 
superimposed on the experimental data of reference [44].

I now consider a second possible scenario, in which three tubes are in direct con­

tact with the gold electrode. In this case the electrons are fed from gold into the 

structure directly along all the tubes. This contact can be simulated by a semi-infinite

(5,5)@(10,10)@(15,15) nanotube with uniform chemical potential across the tubes. The
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structure considered is presented in figure 7.12a. In this case the upper bound of the
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Figure 7.12: (a) Schematic geometry of the system in which three tubes tubes are contacted with 
the gold electrode for different immersion depths. The perfect contact of the outermost tube with 
the gold electrode is simulated by considering a semi-infinite triple-walled carbon nanotube lead, (b) 
Conductance as a function of energy for the system of (a).

conductance is no longer fixed by the single-wall tube to be 2Gq but can be as large 

as 6Go and depends on the number of walls contacting the mercury. In figure 7.12b I 

show the conductance as a function of energy respectively for a 200 AP (10,10)@(15,15) 

nanotube sandwiched between a (15,15) and a (5,5)@(10,10)©(15,15) nanotube leads, 

for (10,10)@(15,15) nanotube lead in contact with a (5,5)@(10,10)@(15,15) nanotube 

lead, and for an infinite (5,5)@(10,10)@(15,15) nanotube. This again corresponds to 

the different levels of immersion Hgl, Hg2 and Hg3 in (figure 7.12a). Note th a t in the 

case in which the (5,5)@(10,10)@(15,15) nanotube is in direct contact with both the 

gold and the mercury electrodes its conductance corresponds to the number of open 

scattering channels for the infinite triple-wall system.

Figure 7.12 shows tha t if all the three tubes are electrically connected to the gold 

electrode, a much larger increase in the conductance occurs when a new wall is lowered
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below the mercury level, although this is still smaller than the value of 2G0, obtained 

for completely isolated tubes. In this case, corresponding to the different value of the 

immersion depth, I expect the conductance to be respectively lGo, 2Go and 46*0-

The large difference between the transport of the structures in figures 7.10a and 

7.12a is therefore crucially dependent on the number of tubes which make a direct 

contact with the gold electrode. At the moment a complete description of the nan­

otube/m etal interface is not available, and deserves further investigation both experi­

mentally and theoretically.

7.5 R oom  tem p eratu re  transport: th e  classical lim it

In this section I will extend the results obtained at zero-temperature for a multi-walled 

scattering region with up to three walls, to the case of room tem perature and a scatter­

ing region with a large number of walls. I will evaluate the conductance in the classical 

limit by using the framework of quantum transport through a quantum  dot coupled 

to two external contacts. This mimics a single-wall carbon nanotube in which a large 

multi-walled region is encapsulated and corresponds to the first scenario discussed in 

the previous section. Note tha t in this case the coupling to the scattering region is not 

through a scattering potential like in the typical case of quantum dots, but is given by 

the intertube interaction, whose effects have been discussed previously.

Consider first the general expression for the current within the Landauer-Biittiker 

formalism (see for example [159])

I  = j J  t { E ) [ h ( E )  -  h ( E ) } d E  , (7.3)

where T (E )  is the transmission function obtained by summing all the the transmission 

probabilities Tnm(E)  and f \ ( E )  ( f2(E)) is the Fermi function for the contact 1 (2) 

which is a t the chemical potential fii (/i2). All the information regarding the scattering 

region and its coupling with the external contacts is included in the definition of the 

transmission function. As stated earlier, the scattering region is described as a system 

with a large number of discrete energy levels E m whose widths are smaller than the 

typical level spacing. In this limit the transmission function can be w ritten in the
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Lorentzian form [160, 161, 162],

f ( E)  =  £ ---------r L*(£)rR(g)--------
^ ( g - g mp  +  ( g (E>r s (E))

where +  Tpl(£ ’) is the linewidth of the ra-th resonance and is proportional to the

transmission probability T (E )  from both the left- and right-hand side contacts through 

the relation rf i? )  =  hvT(E )  with v the attem pt frequency [163]. Suppose now tha t 

the linewidths are independent on the energy of the resonant states. In this case the 

total current through the structure is simply given by

1 =  y  E /  /  ~ - K S{E> ~  f2 (E ) ] d E d E ' , (7.5)
h m J J ( E - E 1)2 +  (E l±!^)

which can be re-written in the following form by introducing the density of states of 

the scattering region ~ E m) — p(E)

j = t E  /  /  rLFR P{P r r-T-2 lME) -  M E ) ] d E d E ' . (7.6)h  m J J ( E  _  £ / ) 2  +

The integration over E  can be performed by taking the low-bias limit in which [fi(E)  — 

f 2( E )] reduces to — §^(p i — p 2)• The integration over E'  is then simply the integration 

of a Lorentzian curve, once p(E) is taken to be constant, p0. After both integrations 

the conductance G becomes,
r  _  ~e r Lr R

f iPor L + r R ' ( ' )
Finally by using the definition of attem pt frequency and the relation between the trans­

mission probability and the resonance linewidth, I obtain the expression for the con­

ductance in the classical limit,

G = ( i + i )  ’ (7-8)
where G l  (Gr ) is the conductance of left-hand (right-hand) contact, determined solely 

by the transmission into the scattering region. Equation (7.8) expresses the ohmic 

conductance of two contacts coupled to a region with a large number of discrete states. 

Note th a t this does not involve any dissipation and the transport is completely ballistic.

I now apply the above formula to the case of the multi-wall nanotube described

earlier. In the case tha t the contacts are two semi-infinite single-wall carbon nanotubes

with no scattering potential between them and the multi-walled region, then G l =
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G r  =  2Go and the total conductance is expected to be lGo- This is the upper bound of 

the conductance and is obtained in the case tha t the transmission from the nanotube 

contacts to the multi-walled region is perfect. Nevertheless the non-uniform distribution 

of the wave function along the different tubes in the case of multi-walled nanotubes 

can generate backward scattering, which in general reduces the transmission. This is 

what was found in the previous sections. However the limiting case of G l =  G r  =  2Go 

can be obtained for some energies, when the mixing of the wave-functions belonging to 

different tubes is minimal.

Bearing in mind tha t the results of the previous sections have been obtained at zero 

tem perature, they seem to suggest tha t agreement with the experiments is achieved if 

only few tubes make contact with the metallic electrodes, and if the transmission from 

the nanotube leads to the multi-walled scattering region is not perfect.

7 .6  Is sp in  in je c t io n  p o s s ib le ?

This last section is dedicated to a different aspect of the physics of carbon nanotubes. 

In fact I will briefly investigate the possibility of spin-injection into nanotubes. This is 

a completely new field and to date only one experiment [41] conducted on a multi-wall 

nanotube sandwiched between two cobalt contacts has shown tha t the current in a 

nanotube can be spin-polarized by proximity with magnetic metals. In this experiment 

an hysteretic behaviour of the resistance is detected and explained as a spin-valve 

effect. From the experimental data the authors estimate (by using the elementary 

Julliere theory for spin tunneling [17]) tha t the spin-diffusion length of the nanotube is 

about 130nm. Nevertheless this value can largely underestim ate the true spin-diffusion 

length of the nanotube, since a paramagnetic region is very likely to be present at the 

Co/N anotube interface, and therefore large spin-flip scattering may be present solely 

at the interface.

In this section I am not going to present any calculation, but only to give some 

reasons to believe th a t spin-injection into nanotubes is possible, and th a t in principle 

very large GMR can be obtained. The main idea is based on a paper by Tersoff [164] 

in which the contact resistance between a metal and a carbon nanotube is investigated. 

Consider first the Fermi surface of an armchair single-wall carbon nanotube. It can be 

derived easily from the Fermi surface of a graphite sheet and consists only of two points
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symmetric with respect to the T point (see figure 7.13). Such a Fermi wave-vector can 

be calculated and is simply given by kF = 27t/3zo with z0 = d0\ / 3/2 and d0 the C- 

C bond distance (do=lA2  A). In contrast the Fermi surface of a magnetic transition 

metal consists of two spheres with different radii for the different spins. In a simple 

free-electron model with exchange field, in which the energy is given by

E" = ^  +  a  A /2 , (7.9)2m

with o — —1 (a =  +1) for majority (minority) spins and A the exchange energy, 

the spin-dependent wave-vectors are respectively ky = yj2m(EF -1- A /2 ) /h  and ky =  

y j2m(EF — A /2 )/h.  The transport through an interface between such a magnetic metal 

and the nanotube is determined by the overlap between the corresponding Fermi sur­

faces. Three possible scenarios are possible.

First the Fermi-wave vector of the carbon nanotube is smaller than both ky and 

ky (see figure 7.13a). In this case in the magnetic metal there is always a k -vector tha t 

perfectly matches the Fermi-wave vector of the nanotube for both spins. Therefore 

both spins can be injected into the tube and the total resistance will be small and 

spin-independent.

Second the Fermi-wave vector of the carbon nanotube is larger than both ky and ky 

(see figure 7.13b). In this case there are no available states in the metallic contact whose 

wave-vectors match exactly the Fermi wave-vector of the carbon nanotube. Therefore 

in the zero-bias zero-temperature limit the resistance is infinite and spin-independent. 

Nevertheless as one increases the tem perature or/and  the bias, transport may be pos­

sible because of inelastic scattering at the interface. In fact electrons can be scattered 

out of the Fermi surface into states with large longitudinal momentum. At tem per­

ature T  the fraction of electrons with energy above E F is simply proportional to the 

Fermi distribution function and is spin-independent. Nevertheless, because of the ex­

change energy, spin-up electrons possess higher total momentum than the spin-down, 

and therefore there is a larger probability to find spin-up states with a longitudinal 

momentum th a t matches the one of the nanotube than spin-down states. This gives 

a temperature-induced spin-dependent resistance. Hence one should expect th a t the 

increasing of the tem perature will largely decreases the resistance for spin-up electrons, 

leaving almost unchanged the one for spin-down.
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Finally if the Fermi wave-vector of the carbon nanotube is larger than kp but smaller 

than kp (see figure 7.13c), only the majority electrons can enter the nanotube and the 

system becomes fully spin-polarized. In this situation a spin-valve structure made by 

magnetic contacts and carbon nanotube as spacer is predicted to show an infinite GMR 

at zero tem perature, similar to the case of the half-metals [80, 85]. The increase of the 

tem perature will produce a degradation of the polarization because also the spin-down 

electrons may occupy high energy states with large longitudinal momentum. Both the 

spins can be injected and the spin-polarization depends on the number of occupied 

states with longitudinal momentum matching the one of the nanotube.

Two im portant aspects must be pointed out. First all these considerations are based 

on the assumption of perfectly crystalline systems. This may not be true in reality 

and the effects of breaking the translational invariance must be considered. From a 

qualitative point of view disorder will smear the Fermi surface and eventually produce 

some states with large longitudinal momentum. This will improve the conductance 

through the nanotube, even if its spin-polarization will be in general dependent on the 

nature of disorder. An enhancement of conductance of nanotubes connected to gold 

electrodes with increasing disorder has been recently observed experimentally [165].

Second, in contacts made from transition metals the simple parabolic band model 

introduced here is largely non-realistic. The details of the band structure can play a 

very im portant role and the polarization of the current injected into the nanotube will 

also depend on the coupling between the nanotube and the metal. Some attem pts of 

describing realistic nanotube/m etal contacts have been recently made [166], although 

a fundamental ab initio description is still absent.
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Figure 7.13: Fermi surfaces of an armchair carbon nanotube and of a magnetic transition metal. The 
Fermi surface of the nanotube consists in two points kp =  q. symmetric with respect to the T point. 
The Fermi surface of a transition magnetic metal consists of two spheres (for up and down spins) 
whose different diameters depend on the exchange field. The three possible scenarios discussed in the 
text: (a) q <  (b) k  ̂ < kp < q, (c) k^ < q < k£.

148



8 C onclusions and Future W ork

The discovery of GMR in magnetic metal multilayers [1, 2] has brought the electron 

spin to the attention of the scientific community as an im portant degree of freedom 

for electronic devices. Since then, a large amount of work has been done both to 

understand the characteristics of spin transport and to fabricate new sensitive devices. 

Several systems have been studied, including ferromagnetic multilayers, spin valves, 

tunneling junctions and superconductor/ferromagnet junctions. The aim of this thesis 

was to study the transport of these various systems and to understand their m aterial 

characteristics and dependencies. An efficient scattering technique has been developed, 

which makes use of a real space Green's functions calculation and a “decimation” 

algorithm. The use of this technique, in combination with realistic spd tight-binding 

models, allowed the investigation of transport in several metallic systems. The main 

results of this work are as follows.

I have analysed the material characteristics which give rise to large GMR ratios in 

disorder-free systems, and identified the main effects of disorder. From this analysis 

Co-based multilayers emerge as the best candidates for devices design. The large energy 

separation between the two spin sub-bands of Co, much larger than in Xi, is the key el­

ement to understanding this behavior. Nevertheless, it is clear that when the transport 

is phase coherent, the whole structure is im portant and the role of the non-magnetic 

metals used is crucial. In particular I have shown tha t spin-polarization of the current 

in a magnetic multilayer can be reversed only by changing the non-magnetic spacer. In 

view of this, Ni-based multilayers can also present large GMR ratios, in particular if 

d-conductors (Pd, P t, Rh and Ir) are used as spacers.

Similar results were obtained during the study of magneto-tunneling junctions. 

In this case the polarization of the tunneling current was shown to depend on the 

m aterial forming the insulator. Moreover, in the case of disorder-free insulators such 

a polarization can be either +1 or -1 for very thick barriers and can be reversed by 

changing the insulator.

All this suggests tha t the spin-polarization of a magnetic structure does depend on 

all the elements forming the structure and not only on the magnetic elements.
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In magnetic multilayers the GMR ratio and also the spin-conductance are oscillating 

functions of the layer thicknesses. I have studied this problem using both the spd tight- 

binding model and a simple free-electron like effective mass model with Kronig-Penney 

potential to represent band offsets. The main result was to show tha t the conductance 

oscillations depend both on the Fermi surfaces of the materials forming the multilayer 

and on the multilayer structure itself.

Disorder was introduced in the calculations by considering a reduced s-d tight- 

binding model. Several models of disorder were considered and the competition between 

the enhancement of the spin-asymmetry of the conductance, and the reduction of the 

mean free path due to disorder were analyzed. Moreover the coherent approach to 

transport, going beyond the largely employed resistor network model, enabled recent 

experiments, in which the GMR ratio changes when the order of the layers is changed, 

to be explained.

The interplay between superconductivity and ferromagnetism was also investigated. 

I have shown tha t the use of superconducting contacts in C PP GMR measurements 

drastically suppresses GMR. This, in strong contradiction to most of the experiments, 

pointed out the role of spin-flip scattering at the interface with the superconductor. 

I have predicted tha t in the absence of spin-flip scattering at the interface, the GMR 

ratio vanishes when superconducting contacts are used. This prediction deserves further 

experimental investigation.

W ith the same technique, realistic F /S  and X /S ballistic junctions have been stud­

ied. Detailed I - V  curve were calculated and in some cases the agreement with the 

experiments is remarkably good. The main problem with these calculations is th a t the 

results are very sensitive to the interface and hence an accurate model is fundamental. 

This is particularly true in the case of materials with very different bulk properties 

(lattice spacing, band structure...), and more sophisticated techniques to model the 

interface will be welcome.

Finally the transport in Carbon nanotubes was investigated. The great interest in 

the electronic properties of Carbon nanotubes is due to their peculiar one-dimensional 

properties. These can be used for spin-injection and several other future applications.
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In this thesis I have concentrated on the transport of multi-wall nanotubes, and inves­

tigated the effects of inter-tube interaction on the transport. An explanation of the 

unexpected conductance quantization in units of e2/h  is given, solving an old contro­

versy of the physics of nanotubes.

Several aspects deserve further investigation.

The study of the I - V  curves of ballistic junctions highlighted the limit of the scat­

tering approach. In the case of heterojunctions made from very different materials a 

simple description of the interface is not satisfactory. In this thesis the coupling be­

tween different materials has been taken as the geometric mean of the coupling of the 

individual materials. This can be largely improved with a self-consistent description 

of the interface including both ab initio methods and molecular dynamics simulations. 

Moreover, recently several measurements on ballistic point-contacts made from mag­

netic metals have been carried out [167, 168, 169]. The modeling of these is of great 

interest, but tight-binding methods with parameterization based on bulk materials are 

not adequate. In a typical point-contact device very few atoms form the contact, the 

lattice spacing may be very different from the bulk and the local magnetic moment can 

vary from atom to atom. The description of all these aspects deserves a fundamental 

approach and a combination of ab initio methods and molecular dynamics simulations 

seems to be the most powerful way forward. Finally the same problem is encountered 

in the study of metallic contacts with Carbon nanotubes. This is a very im portant 

issue from both the fundamental and device design point of view. A detailed descrip­

tion of the C-Metal bond does not exist at the moment. This is expected to be crucial 

for molecular electronics design and to understand the possibility of spin-injection into 

carbon nanotubes.

Probably the largest challenge for the future is to transfer the present knowledge 

of spin-transport in metallic system to semiconductors. This large field is called “spin- 

tronics” [170, 171]. The use of semiconductors presents several advantages. From a 

fundamental point of view the electronic properties of semiconductors are much more 

controllable than those of metals and manipulations are possible both at the struc-
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tural and electronic level. From the point of view of applications spin-transport in 

semiconductors can be readily transfered to present electronic device, which are almost 

exclusively based on semiconductors. Several im portant breakthroughs have already 

been made in both these directions.

Hybrid semiconductor-metal devices have been produced. In particular metallic 

ferromagnetic thin films can be exchange coupled through semiconductors [172], and 

spin-polarized current can be injected into semiconductors by proximity with metallic 

magnetic contacts [173]. Nevertheless, hybrid structures are not completely satisfactory. 

On the one hand they involve materials with very different resistances and usually the 

spin-dependent component is small compared with the spin-independent one. On the 

other hand large electric fields at the interfaces can be present. This creates large 

spin-flip scattering at the interfaces, reducing the spin-polarization of the current.

The production of magnetic semiconductors based on low-temperature MBE tech­

niques [174. 175] has been demonstrated. (Ga,Mn)As can be deposited with a Curie 

tem perature of 110°K and this can be used in combination with non-magnetic semi­

conductors to build up future devices. Spin-injection into semiconductors by using 

magnetic semiconductors has also been demonstrated [176], opening the way to new 

“all-semiconductor'' devices.

Finally the spin lifetime in semiconductors has been shown to be very long (~100ns) 

[177, 178, 179] and electrons can be drifted over long distances (~100/im) without losing 

their spin direction [180]. The importance of this result is twofold. On the one hand it 

shows th a t in semiconductors the two spin-fluid picture is largely applicable and tha t 

spin-polarization can be conserved over long distances. This is crucial for constructing 

efficient spin-valve-like systems with high sensitivity. On the other hand the long spin 

lifetime paves the way for more exotic spin-systems, such as q-bit elements for quantum  

computation.

From a theoretical point of view a lot of further work needs to be done. As far 

as the materials are concerned the origin of ferromagnetism in diluted magnetic semi­

conductors must be understood. The RKKY interaction seems to be responsible for 

ferromagnetism but at present there are no calculations of GaAs doped with Mn. For
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this purpose ab initio calculations are crucial and perhaps tne only reliable way to 

fully understand these materials. Transport is also of interest and both tight-binding 

methods and simple effective mass models could be used.

Probably the most difficult challenge is the study of the spin dynamics in nor­

mal and magnetic semiconductors [181]. Several mechanisms to explain the spin- 

decoherence in semiconductors are known from the early sixties [182] and mainly in­

volve spin-orbit scattering [183, 184] and electron-hole exchange interactions [185]. The 

analysis of these models from the viewpoint of the recent experiments involving het­

erostructures and a quantitative approach, is the next big step.

To conclude, I believe tha t although a great deal of progress has been made in 

the past ten years towards the comprehension and use of spin dynamics in condensed 

m atter, our understanding is still insufficient. A major challenge has been set for the 

future and only the combination of physics, chemistry, engineering and material science 

will enable the spintronics dream to become a viable reality.
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A E xplicit C alculation o f retarded G reen function  
for a double infinite system

In this appendix I present the explicit calculation leading to the equation (2.29) for the 

Green function of a double infinite system. The starting point is the equation (2.28)

f E,=,
9 z z '  =  \ , (A-l)

{ E fil 2 ^
with and wk two vectors to be determined. The expression of equation (A .l) to be 

a Green function must be continuous for z — z' and must satisfy the Green equation

l(E -  H)g ]zz, =  5iZ, . (A.2)

The first condition yields immediately to the relation

M  M

X  =  X  - (A-3)
/=i /=i

while the second gives

M

X  [(£■ -  H0)4>kA, +  =  1 • (A-4)
1=1

The task is now to re-write the vectors w’s as a function of the known vectors and 

their dual fts.  First note that by adding and subtracting to the (A.4) the expression

W  =  X  • (A-5)
1=1

it is possible to re-write the (A.4) in the following compact form

M

x ;  t f - 1  [4>k,e-klw[, -  d>-kle - ik‘w t]  =  - 1  , (A .6)
1=1

where the definition of (f)k of equation (2.23) has been used. Now consider the continuity 

equation (A.3) and multiply the left-hand side by the dual vector <pkh and the right-hand 

side by . It yields respectively to two expressions tha t relate w* to \Nk

M

x K ^ , we, ] = wL ’ ( a -7)1=1

M

X  =  wL ■ (A -8)
i=i
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If now one substitutes the equations (A.7) and (A.8) into the equation (A.6) and uses 

the continuity equation (A.3), the following fundamental relation is obtained

M  M
—tici

i=i j = i

from which it follows immediately

A /

k l ^ A r / J  "“kj
.t _ (A.9)

L/ = l

A /  A /

j = l  j = l

(A.10)

In the second equality of the equation (A. 10) I have used the continuity equation (A.3). 

Note th a t the equation (A. 10) expresses explicitly the vectors w’s in term of the known 

quantities <f>, (j) and H -\ .  Therefore w’s may be computed by simply multiplying the 

(A. 10) for the correct dual vectors. By doing so I obtain

wL = v 1Kh K’h (A.11)

=  <&„V 1

with V the operator defined in Chapter 2

_ A- &~iki aJ
M

V = Y . H - 1 [ A le - th' 4 , - < P h e - ih'0 l l

(A.12)

(A. 13)
1 = 1

The equation (A. 13) concludes the demonstration. In fact by substituting the expres­

sions for Wjt. and w* into the starting Ansatz (A .l), one obtains the final expression for 

the Green function of an infinite system

E fi, < ,̂eif'<2"2')d ,v “1 2 ^ z'
Qz = (A-14)
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B Current O perator and the R otation  in th e  D e­
generate Space

I this appendix I discuss the construction of the current operator and the rotation 

needed to diagonalize it in the case in which the vectors £+s are degenerate. Let start 

by considering the current matrix at the position 2 . It can be easily expressed as the 

time derivative of the density m atrix at the same point 2

By explicitly evaluating the time derivative in equation (B .l), and by using the Schrodinger 

equation and its complex conjugate, the current m atrix can be w ritten in the following 

transparent form

In the calculation of the relations above I simplified the time-dependent component 

of the wave-function and expressed the current m atrix by mean of the column vectors 

introduced in Chapter 2 through the time-independent Schrodinger equation (2.21). 

Note tha t does depend only on the value of the wave-function at the position 2 , 

while J z - i ^ z  and J z+1_*2 depend also respectively on its value a t the position 2 -  1 

and 2 +  1. Now evaluate the expectation value of the current by taking the trace of the 

current matrix. It is easy to show that

r\
Jz(i)  =  > (B .l)

where ^ z(t) is the value of the time-dependent wave-function at the position 2 satisfying 

the time-dependent Schrodinger equation

(B.2)

Jz  — J q +  J Z-\-+Z +  Jz + l^z (B.3)

where J 0, and J z+ \^z are defined respectively as

(B.4)

J z - i ^ z  -- - i  ,

Jz+i^z = - i  \H\'ipz+i'ipl -  i/iz^t+iH-i  .

(B.5)

(B.6)

Jz — Tr Sfz — Jz—i-+z Jz+i—>z 5 
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with

Jz — 1 —► 2 — i 

Jz+\^>-z — i

=  23 , (B.8)

* M +l -  ^ + 1 ^ - 1 ^ ]  =  - 2 3  (t<]+1tf-it>*) ■ (B.9)

In the calculation of the equations (B.8) and (B.9) I used the circular property of the 

trace Tr A B  = Tr BA.  Note that the expectation value of j7o vanishes. The relations 

(B.8) and (B.9) have a clear interpretation. J z_ \ ^ z and J z+1_>2 represent the current 

matrices for electrons propagating respectively to the right (right-moving) and to the 

left (left-moving). Note tha t in the case of a translational-invariant system can be 

w ritten in the Bloch form of equation (2.22)

%  =  nk,2eikzok . (B.10)

If now one substitutes the (B.10) into the (B.8-B.9) it is easy to show tha t Jz =  0 as 

expected from the translational invariance.

The final part of this appendix is dedicated to show tha t the states of the form 

l ’z =  n i / /2e%kzdiagonalize the current. As anticipated in the Chapter 2 this is not 

strictly valid in the case of different ^  corresponding to the same k. Nevertheless in 

such a case I will show that there is always a rotation in the degenerate space tha t 

diagonalizes the current.

Consider for instance the right-moving current (all the following arguments can be 

applied to the left-moving counterpart), and a Bloch state

ipz = , (B. l l )
i

and calculate the expectation value of the current for such a state. It easy to show tha t 

this yields to the equation

=  - i £ a , a j  -  4 > lH ^ kleik"] = -  H ieik")<t>k
1,1' 1,1’

(B.12)

If one now assumes tha t the off-diagonal m atrix elements vanish (0Cs diagonalize the 

current), then the states (B .ll)  diagonalize the current and curry unitary flux if the 

normalization constant is taken to be

_  ai ~  r ( u  . 0-ik, _  TT.*iki\A. U / 2  ’ (B.13)
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with V[ defining the group velocity. Note that the states (B. l l )  with the normalization

constant (B.13) are the ones introduced in Chapter 2, which guarantee the unitarity of

the S  matrix.

The final step is to demonstrate tha t ipz = elkz(j)k diagonalizes the current. To

achieve this, consider the Schrodinger equation evaluated on such a Bloch state and its

complex conjugate

(E -  H 0) <t>k, = (Hte*- +  H ^ e ~ ik‘) 0*, , (B.14)

0[, (E  -  H 0) =  . (B.lo)

By multiplying the first equation by 4>\it to the left and the second by 4>ki, to the right

one obtains the relation

0 i(, i /_ ,0 t,e - ifc' +  4,,Hi<t>k,eik' =  +  0*i, / / 10*,e!fc'' . (B.16)

The (B.16) is identically satisfied if ki = ky, also if This occurs when one or

more wave-vectors ki are degenerate (ie there are many djt/s for the same ki). In the 

case this does not happen few algebraic manipulations yield to the relation

0 ii, i / _ 10 t,e - !t-" =  4 , , ^ ^ '  . (B.17)

The last equality shows the cancellation of the off-diagonal terms in the expression of 

the expectation value of the right-going current (B.12). This means tha t in the case in 

which there is no degeneracy in k, the states (pkl diagonalize the current. Nevertheless 

in the case in which degeneracy is present one can perform a unitary rotation in the 

degenerate space and construct a new basis ip in which the current is diagonal. To 

show explicitly how to obtain this rotation consider a set of vectors 4>k (// =  1,.... Ar) 

corresponding to the same wave vector k and construct the “reduced” N  x N  current 

matrix, whose m atrix elements are

(JR)ij =  -  H ieikM  . (B.18)

Since H - \  =  Hi  the “reduced current” is an hermitian matrix. Therefore it has always 

a diagonal form. Moreover the transformation matrix U which diagonalizes J R, is a 

unitary matrix. If V  is the diagonal form of J R I can write such a unitary transform ation 

as

V  = U~1J R U .  (B.19)
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It follows th a t the transformation U also transforms the basis (jjfc into a “rotated” basis 

^  which diagonalize the current (note tha t the “reduced current” is simply the total 

current introduced above calculated onto a subset of the total Hilbert Space). By 

evaluating the equation (B.19) the explicit definition of ^  is obtained

v i  = E  v f r u  . (B.20)
1 = 1

The equation (B.20) completes the demonstration.

In this appendix I have shown tha t the Bloch states ipz = elkz(f)k diagonalize the 

current in the case the vectors (f>k are not degenerate in k. Moreover in the case in 

which this condition is not satisfied it is always possible to perform a rotation in the 

degenerate space and to obtain a new set of vectors <p in which the current is diagonal.
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C P rojector o f th e  R etarded G reen function  onto  
th e  corresponding W ave-function

In this appendix I want to show that the projector that maps the retarded Green 

function for the double infinite system on the corresponding wave-function projects also 

the to tal retarded Green function (system =  scatterer -I- leads) on the corresponding 

total-wave function. Consider the total Hamiltonian

+  tfscat , (C .l)

where Ho describes the leads and Hscat describes the scattering region. The Schrodinger 

equation and the Green equation for the leads (without any scattering region) are 

respectively

(E -  H0)ip0 = 0 , (C.2)

( E - H 0)g0 = X ,  (C.3)

with go the Green function, E  the energy and X the identity matrix. The corresponding 

equations for the whole system (scatterer +  leads) are

[ £ - ( t f o  +  t f s c a t ) b  =  0 .  ( C . 4 )

[ E - ( H 0 + Hscat)}G = l . (C.5)

Furthermore V'o and g0, G are related by the respective Dyson equations

* > = ( ! -  9otfscat)- V o , (C.6)

G = ( I  -  SotfsCat)_1<7o • (C.7)

Define now the projector P  in such a way that

^0 =  go ' P  • (C.8)

If one now uses the Dyson equation for (C.6) together with the definition of P , it

follows immediately

■<!, =  ( I  -  g0ffscat)-‘9o ■ P  = G ■ P  , (C.9)

where I used the Dyson equation for G (C.7). The equation (C.9) completes the demon-

stration and shows tha t P  also maps G onto ip.
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D T ight-B inding Param eters and band fit at th e  
Fermi energy

In this appendix I tabulate all the parameters used throughout the thesis. The first 

table corresponds to the on-site energies and the second contains the corresponding 

hopping integrals. They are taken from reference [84].

M e ta l Es (eV) EP (eV) Ej (eV) Ej (eV)
C o 5.551 14.025 -2.23 -0.66
N i 4.713 11.699 -2.114 -1.374
C u 2.992 10.594 -2.746 -2.746
A g 2.986 9.127 -4.65 -4.65
A u 0.329 10.081 -3.82 -3.82
P d 5.764 11.457 -2.05 -2.05
P t 1.849 11.523 -2.61 -2.61
I r 2.844 11.728 -2.211 -2.211

R h 6.737 11.903 -1.84 -1.84
P b -8.220 2.146 14.947 14.947
A1 -1.868 5.852 15.233 15.233

IN S -4.756 3.655 -15.640 -15.640

T able 4.1: O n-site  energies from  reference [84]. IXS is a m odel in su la to r.

M e ta l sscr spcr ppcr PP7T sda pdcr pd7T ddcr ddyr dd S

C o -1.23 1.856 3.23 -0.019 -0.517 -0.553 0.38 -0.573 0.405 -0.092
N i -1.177 1.75 2.877 0.155 -0.455 -0.465 0.382 -0.478 0.349 -0.084
C u -1.02 1.578 2.679 0.258 -0.421 -0.449 0.245 -0.354 0.245 -0.054
A g -0.895 1.331 2.143 0.088 -0.423 -0.531 0.207 -0.429 0.239 -0.046
A u -0.909 1.323 2.431 -0.224 -0.642 -0.871 0.258 -0.676 0.357 -0.062
P d -1.083 1.541 2.329 -0.073 -0.665 -0.893 0.289 -0.709 0.392 -0.072
P t -1.066 1.523 2.541 -0.335 -0.843 -1.165 0.333 -0.933 0.48 -0.08
I r -1.163 1.65 2.548 -0.408 -0.987 -1.376 0.383 -1.144 0.573 -0.092

R h -1.184 1.62 2.321 -0.126 -0.763 -1.038 0.326 -0.858 0.464 -0.083
P b -0.37 -0.557 1.464 -0.089 0.725 -1.384 0.134 -1.847 1.345 -0.365
A1 -0.793 -1.267 2.333 -0.139 1.129 -2.212 0.42 -2.314 1.006 -0.067

IN S 0.068 -0.129 0.110 0.053 0.248 -0.156 -0.063 -0.012 0.002 0.003

T able 4.2: H opping in teg rals from  reference [84]. IXS is a  m odel in su la to r.

All the tight-binding parameters are expressed in eV and the on-site energies are chosen 

in order to have the Fermi energy E F = OeV. In Chapter 6 I used a different set of
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parameters for Co, Cu and Pb. These have been obtained with a fitting algorithm 

which allows to accurately fit a specific energy region. In what follows I will discuss 

the fitting algorithm and present the computed band structure and the new set of 

parameters.

The fitting code used for fitting band structures coming from ab-initio LDA cal­

culations is included in a large tight-binding package called OXON (OXford Order N)

[131]. The code can perform a multi-parameter fit in which all the tight-binding param ­

eters can be varied. Alternatively there is the flexibility to perform the fit only varying 

smaller subsets of parameters. The inputs for the fitting algorithm are the eigenvalues 

E n(k) calculated for arbitrary Appoints in the Brillouin zone. Such eigenvalues do not 

need to be taken at high symmetry points in the Brillouin zone. Xevertheless it can 

be useful to perform the fit at high symmetry points because it allows to check the 

correct molteplicity of the bands. This may also improve the convergence of the fit. If 

I call the provided eigenvalues E n(k) (the values one wants to fit) the function which 

is minimized during the fit is the following

/ ( £ n,-7) =  $ > „ [£ „ (* :)  -  E c(k , i ) }2 , (D .l)
n

where 7 is the m-dimensional vector (m = 13 in the case of spd Hamiltonian with 

Slater-Koster parameterization [81]) including the fitting parameters (7 = (E s,Ep,Ed,

sscr.spcr )), a n is the weight assigned to the different eigenvalues and E c(k, 7 ) are

the computed eigenvalues. At a fixed k-point the bands must be fitted starting from 

the lower energy (it is not possible to fit arbitrary taken E(k)  points). If one wants to 

have a good fit near the Fermi energy the weight must be large for eigenvalues close 

to the Fermi energy (~  1) and small elsewhere. The fit is not unique. The function 

/ {Em 7)1 at least for 3d transition metals, possesses a large number of local minima 

and the convergence not always is easy to achieve. To avoid falling down into local 

minima it is useful to start from an initial set of parameters as close as possible to the 

final one. If the starting set is not particularly accurate the fit results to be very long. 

In all the fit tha t I performed I used as starting set of parameters the one tabulated in 

reference [84].

The following standard prescription has been followed in all the fits. Firstly I 

calculate the band structure by varying only a single param eter every run. This is
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useful to get confidence with the band structure and to understand which are the 

branches of the band structure modified by each individual parameter. Usually only 

few parameters are important at the Fermi energy and may be useful to fit them 

independently. Secondly I performed several multi-parameter fits starting from the 

new set obtained during the previous runs. Finally I compared the new band structures 

obtained with the ones that I wanted to fit and, if the agreement was not satisfactory. 

I performed new multi-parameter fits.

The band structures I used as fitting bands come from LDA calculations, namely 

from the Siesta code (Spanish Initiative for Electronic Simulations with Thousands of 

Atoms) for Co and Cu, and from reference [84] for Pb. I usually considered 4 symmetry 

points (T, Z, X , IT) in the fee Brillouin zone, fitting 6 eigenvalues for each points. The 

/  function is thus evaluated over 24 eigenvalues.

The aim of the fit was to have a good description of the band structure within 4 eY 

around the Fermi energy. The eigenvalues in tha t energy window are calculated with a 

weight a n = 1 and the weight is continuously decreased going toward higher and lower 

energy. It has been usually convenient to neglect completely the description of the low 

energy branch of the parabolic s-band at the T point, and to adjust it later by varying 

the sscr param eter (it does not affect largely the region around the Fermi energy). The 

main aspects tha t I reproduced are the correct curvature of the band and the correct 

position of the band crossing at the Fermi energy. Examples of the band structures 

for Cu, for the majority band of Co and for Pb are presented in figures D .l, D.2 and

D.3. It is clear tha t the agreement with the LDA band structures is quite good. The 

minority band of Co gives more problems because of the strong d-component and the 

presence of almost dispersionless bands at the Fermi energy. I reasonably reproduced 

the minority band of Co by making a complete new fit with respect to the majority 

band. The majority and the minority bands of Co do not differ only in the different 

on-site energy of the d-bands, but all their tight-binding parameters are allowed to be 

different. This is justified because I am not interested in properties of the bands at all 

energies (ie the total magnetic moment) but only locally in the properties of the Fermi 

surface. The new set of parameters are tabulated in the next two tables. Note tha t 

for Pb a good description of the band structure can be obtained allowing a very large 

value of Ed- This is consistent with the well known sp-characters of the conduction
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electrons o f Pb at the Fermi energy.

TBFIT
LDA

-10

W L r  X K
F igu re  D .l :  B and  S tru c tu re  for fee Cu. T h e  b an d  ob ta in ed  w ith  th e  tig h t-b in d in g  fit (black line) are  
com pared  w ith  th e  ones o b ta in ed  w ith  a b  i n i t i o  m e thods (red  line).

164



• TB FIT
• LDA

2

0

-2

- 4

-6

-8

- 1 0

W L F X K
F igu re  D.2: B an d  S tru c tu re  for m ajo rity  ban d  of fee Co. T h e  b an d  o b ta in ed  w ith  th e  tig h t-b in d in g  
fit (black line) are  com pared  w ith  th e  ones ob ta in ed  w ith  a b  i n i t i o  m e th o d s (red  line).
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Figure D.4: Band Structure for minority band of fee Co. The band obtained with the tight-binding 
fit (black line) are compared with the ones obtained with ab initio methods (red line).
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M e ta l Es (eV) Ep (eV) Ed (eV)
C oT 6.652 14.874 -2.388
Co+ 5.678 14.015 -0.661
C u 2.992 10.594 -2.746
P b -8.461 1.899 23.401

Table 4.3: New on-site energies fitted from ab-initio calculations

M e ta l S S t T spa ppa PP7T sda pda p d 7 T dda ddyr ddS
Co^ -1.225 1.807 3.150 -0.399 -0.646 -0.769 0.403 -0.557 0.384 -0.066
Co+ -1.303 1.904 3.074 -0.702 -0.608 -0.702 0.318 -0.507 0.325 -0.087
C u -1.022 1.578 2.217 -0.609 -0.427 -0.741 0.504 -0.355 0.206 -0.047
P b -0.276 0.611 1.143 -0.066 -0.079 1.698 -0.208 -1.007 2.977 -0.057

Table 4.4: New hopping integrals fitted from ab-initio calculations
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E G eneral Transfer M atrix A pproach to  th e  B and  
Structure o f an A rbitrary ID  P eriodic P oten tia l

In this appendix I introduce an efficient and easy way to calculate the band structure 

for an arbitrary periodic Kronig-Penney potential. Consider the periodic potential of 

figure E .l where only a period is plotted. It is composed by four regions respectively 

labelled with A, B, C and D. Each region N is characterized by an effective mass my.  

a potential V y  and a length l y .

A B C  D

Figure E .l: Kronig-Penney potential considered in the calculation.

I consider a monodimensional case reminding tha t in Chapter 4 I have shown that

this is sufficient to describe the conductance for a 3D superlattice. The Hamiltonian

to be considered therefore is

h2 d 1 d
H( z )  = ~ ^ T z ^ { r ) A l  + 2^ ( z ) + V ( z ) - ( E ' 1}

In each of the four regions the wave-function is simply a linear combination of plane- 

waves of the form

M z )  = a*eik*'~ + b s e - ih** , (E.2)

where the wave-vector is simply ks  =  J 2 m s ( E  — 1x ) /h  and E  is the energy. The 

total wave-function must be continuous, therefore the wave-functions defined in the 

different regions (E.2) must be matched at the interfaces. Moreover the condition of 

current conservation across the structure provides the following relation between the 

first derivatives
1 d^N  1 d ^ M (E.3)

m y  dz
1 d!pM

2=20 rnM dz 
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where I assumed tha t the boundary between the region N  and M  is located at z = zq. 

Note th a t the condition (E.3) reduces to the usual continuity of the first derivative in 

the case the effective masses are the same = tum-

The continuity of the wave-function and the condition (E.3) provide six equations 

and to completely define the system the two following Bloch conditions must be con­

sidered

x!)N{zq +  L) = eiqL'tpN(z0) , (E.4)

1 dxl)N
m N dz

1 dxl)M

z ~ z q - \- L

jq L (E.5)
Z  =  ZQ

rriM dz

where L  =  I a +  /b +  ^c +  ^d is the total length of a period and q is the quasi-momentum. 

The resulting eight equations can be written in a convenient matricial form

Mb'  =  0 (E.6)

The vector v is a column vector

v  =

with

cs =

The m atrix M  is a 4 x 4 block matrix

I  ca A
cB 
cc

\  CD )

«N
&X

(E.7)

(E.8)

M  =

(  Ma 
0 
0

V :\iqL

— M e e z/CB,A

0
0

0
- M c eikc(iA+l»)

M c eikc^A+lB+lc^
0

\

(E.9)

where the following 2 x 2 matrices have been introduced

M a  =

eiaa =  I

1 1 A
kr. j
mQ m a /

gikaO t 0
0

(E.10)

(E .ll)

The secular equation for such a system can be explicitly calculated by solving det M  =  

0. Nevertheless, for numerical purposes it is convenient to map the calculation of the 

determ inant of M. onto an eigenvalue problem involving only 2 x 2  matrices. This can
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be achieved by writing explicitly the equation (E.6) in term of the two-dimensional 

column vectors cN and the matrices M a and etaQ. The equation (E.6) is therefore

written as a system of four 2 x 2 matricial equations, which can be reduced by recursive 

substitution to the equation

The equation (E.12) concludes the demonstration. In fact for a given energy E  the 

quasi-momentum q can be calculated by calculating the eigenvalues of the following 

m atrix

evaluated for both real and imaginary q. Note that, in complete analogy with respect 

to the general solution of the dispersion relation in the tight-binding case (see Chapter 

2 in particular equation (2.24)), the dispersion is calculated like q =  q(E) and not like 

in the usual band structure approach E  =  E(q).

The final result of equation (E.12) can be generalized either to the case of arbitrary 

potential and to energies below the barriers (one or many). In the first case it is possible 

to divide the system in regions where both the potential and the effective mass are

constant. Suppose these regions are Ai,  A 2, ^ 3,  As.  Following the same procedure

described above I define in every region a m atrix f t sm( h m) (which depends only on the 

effective mass, the potential and the length of such a region) and the dispersion relation 

is calculated like in equation (E .12) where this time S(E )  is given by the product

Note tha t if in the region Nm the energy is below the barrier, then k s m -> i \ksm\ and 

the matrices /tNmf e ro) become simply

[A d(M A c(W A b(W A a(W  ~  XeiqL] cA =  0 , (E.12)

where X  is the 2 x 2  identity m atrix and fia (a) =  M QetkaaM a 1 or explicitly

(E. 13)

S(E)  — £D(^D)Ac(W£B(W/iA(U) • (E.14)

Such eigenvalues have a form eiqL and the dispersion calculated as q = q(E)  can be

S(E') — //An,(/An) ...... /ij\3 (/A3)/iA2 (/A2)/^Ai (^Ai) • (E. 15)

/ixm(*x J  =cosh(|/cNm|/Nm)
tanh(|/cxJ / Nm)

tanh(|fcNJ / NJ
(E. 16)
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The expression (E.16) is particularly useful from a computational point of view because 

all the eventual large divergences are factorized out of the m atrix in the prefactor 

cosh(|fcxJZxJ.

Finally the above treatm ent can be further generalized to the calculation of the 5  

m atrix for a non-periodic potential. I this case the Bloch conditions (E.4-E.5) are no 

longer applicable but a relation between the coefficient vectors (E.8) of the first cAl 

and the last c a x region of the potential can be calculated

cA n =  e " i*ANI'MÂ /iAN_i(/Ax- i )  A a ^ a J A /a .c a , =  S '(E)cM , (E.17)

where L  =  / Al +  / a 2 + ........+  / a n . If now one considers electrons traveling from the

right-hand side to the left-hand side of the potential the transmission t and reflection 

coefficient r are defined by the equations

CA. =  (  < )  ’ (E -18)

can =  (  [ )  , (E.19)

and are related to the m atrix elements of the m atrix S' of equation (E.17) through the 

relations

r =  f 1 . (E.20)
*->22

t = -±~ .  (E.21)
0-22

Note that also in this case the divergent terms can be factorized out of the matrices.
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