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Abstract:

Peatlands are important reserves of terrestrial carbon and biodiversity, 
and given that many peatlands across the UK and Europe exist in a 
degraded state, their conservation is a major area of concern, and a 
focus of considerable research. Aerial surveys are valuable tools for 
habitat mapping and conservation and provide useful insights into their 
condition. We investigate how Structure from Motion (SfM) 
photogrammetry derived topography and habitat classes may be used to 
derive an estimate of carbon loss from erosion features in a remote 
blanket bog habitat.  An autonomous, unmanned, aerial, fixed wing 
remote sensing platform (Quest UAV 300™), collected imagery over 
Moor House – Upper Teesdale National Nature Reserve, a site with a high 
degree of peatland erosion. The images were used to generate point 
clouds into orthomosaics and digital surface models using SfM 
photogrammetry techniques, georeferenced, and subsequently used to 
classify vegetation and peatland features. A classification of peatbog 
feature types was developed using a random forest classification model 
trained on field survey data and applied to UAV-captured products 
including the orthomosaic, digital surface model and derived surfaces 
such as topographic index, slope and aspect maps. Using the area 
classified as eroded peat, and the derived digital surface model, we 
estimated a loss of 438 tonnes of carbon from a single gully. The UAV 
system was relatively straightforward to deploy in such a remote and 
unimproved area. SfM photogrammetry, imagery and random forest 
modelling obtained classification accuracies of between 42% and 100%, 
and was able to discern between bare peat, saturated bog and 
sphagnum, habitats. This paper shows what can be achieved with a low-
cost UAV equipped with consumer grade camera equipment, and 
relatively straightforward ground control, and demonstrates their 
potential for the carbon and peatland conservation research community.
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1 Abstract

2 Peatlands are important reserves of terrestrial carbon and biodiversity, and given that many 

3 peatlands across the UK and Europe exist in a degraded state, their conservation is a major area 

4 of concern, and a focus of considerable research. Aerial surveys are valuable tools for habitat 

5 mapping and conservation and provide useful insights into their condition. We investigate how 

6 Structure from Motion (SfM) photogrammetry derived topography and habitat classes may be 

7 used to derive an estimate of carbon loss from erosion features in a remote blanket bog habitat.  

8 An autonomous, unmanned, aerial, fixed wing remote sensing platform (Quest UAV 300™), 

9 collected imagery over Moor House – Upper Teesdale National Nature Reserve, a site with a 

10 high degree of peatland erosion. The images were used to generate point clouds into 

11 orthomosaics and digital surface models using SfM photogrammetry techniques, georeferenced, 

12 and subsequently used to classify vegetation and peatland features. A classification of peatbog 

13 feature types was developed using a random forest classification model trained on field survey 

14 data and applied to UAV-captured products including the orthomosaic, digital surface model and 

15 derived surfaces such as topographic index, slope and aspect maps. Using the area classified as 

16 eroded peat, and the derived digital surface model, we estimated a loss of 438 tonnes of carbon 

17 from a single gully. The UAV system was relatively straightforward to deploy in such a remote 

18 and unimproved area. SfM photogrammetry, imagery and random forest modelling obtained 

19 classification accuracies of between 42% and 100%, and was able to discern between bare peat, 

20 saturated bog and sphagnum, habitats. This paper shows what can be achieved with a low-cost 

21 UAV equipped with consumer grade camera equipment, and relatively straightforward ground 

22 control, and demonstrates their potential for the carbon and peatland conservation research 

23 community.
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25 Introduction

26 Blanket bogs are tree-less habitats that form in cool, wet, oceanic climates dominated by vascular 

27 plants such as Eriophorum and Calluna spp and cushion forming bryophytes such as Sphagnum 

28 spp. They cover roughly 4,000,000 km2 land and have been estimated to store 500-600 

29 gigatonnes of carbon (Yu, 2012, Holden, 2005). Because of this enormous carbon (C) stock, 

30 peatland C represents an important reservoir within the global C cycle (Freeman et al. 2001). 

31 Over 80% of UK peatlands are in a degraded state due mainly to past drainage, fire and grazing 

32 (Joosten et al., 2012).  It has been estimated that 16% of the global peatland reserve has been 

33 degraded and lost owing to human activities (Littlewood, 2010). Recently, the increased 

34 awareness of this global decline has resulted in a range of directives and guidelines, and in the 

35 UK conservation management aimed at restoring peatlands has been implemented under the EU 

36 habitats directive (Evans et al. 2014). From an ecological perspective, peatlands also represent an 

37 important habitat for a number of rare and endangered plant and animal species. 

38 The monitoring of blanket bogs is particularly challenging, as a consequence of their remoteness 

39 and physical complexity, but a number of methods have been developed (Mc Morrow et al., 

40 2004, Evans and Lindsay, 2010, Glendell et al., 2017). Remote sensing techniques using 

41 commercial satellite data are well established, and offer data at sub-10 m resolution. To date the 

42 high cost of these data, and limitations due to cloud coverage or view angles, have limited the 

43 value of Earth Observation (EO)-based data for this type of surveillance. Recently however, new 

44 methods for capturing high resolution scenes of remote peatlands have emerged.

45 Unmanned aerial vehicles (UAVs) now offer the ecologist a useful platform for capturing images 

46 of peatlands closer to the ground, i.e. below normal cloud levels. The data can be accessed 

47 immediately, and ground truthing field surveys can be timed to coincide precisely with the time 

Page 2 of 34

http://mc.manuscriptcentral.com/PiPG

Progress in Physical Geography

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review

Page 3 of 22

48 of flights. UAVs allow the collection of higher resolution imagery at a lower cost than manned 

49 aircraft or commercial satellite-data. UAV imagery resolution is typically less than 5cm per 

50 pixel, whereas manned aircraft resolution is typically 25-12.5 cm per pixel and satellite 

51 resolution is at best around 50 cm per pixel (Toth and Jozkow, 2016). Imagery acquired by the 

52 older generation of satellite sensors, at around 30 m per pixel, may pick up the dominant habitat 

53 but tend to lack the resolution required to represent the complex mosaics characteristic of many 

54 natural and semi-natural habitats (Boyle et al, 2014).

55 Image mosaic preparation, i.e. stitching the imagery together using off the shelf tools, remains a 

56 challenge due to the heterogeneity of habitats within landscape imagery, but is now automated in 

57 many software packages, and orthomosaics can be readily obtained. An important recent 

58 breakthrough is that a high resolution digital surface model (DSM) may also be obtained through 

59 Structure from Motion (SfM) photogrammetry processing in such software, since information on 

60 surface structure derived from the DSM may inform the relationship between subsequent 

61 classifications and peatland condition (Anderson et al. 2010). The combination of spectral data, 

62 DSM and classification techniques already available in the remote sensing scientist’s toolbox 

63 (Random Forest Classification, maximum likelihood etc.) now provide huge potential to develop 

64 and calibrate an effective UAV-imagery based tool for peatland monitoring.  Spectral and 

65 textural information have been combined successfully using Random Forest  (a method based on 

66 machine learning that uses ensembles of decision trees to assign classes - see Breiman (2001) 

67 and Gislason et al. (2006)) for predicting forest condition (Dye et al. 2012), and for looking at 

68 fine scale coastal structures (Juel et al. 2015). Whilst uncertainties certainly exist in the use of 

69 SfM, uncertainties are simultaneously reduced if one considers how little detailed surface 
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70 topographic information exists for remote gully environments such as at Moor House NNR, used 

71 in this study.

72 In this paper we explore the potential of high spatial resolution (4 cm) true-colour (RGB) 

73 imagery obtained from a UAV platform for mapping and ecologically classifying a remote 

74 upland blanket bog in northern England. Since the surface topography of northern blanket bog 

75 habitats determine the presence of Sphagnum, Eriophorum or Calluna habitats, the models 

76 presented here incorporate a compound topographic index (CTI). Specifically we compared two 

77 input data scenarios and quantified the difference in the resulting classification: 

78 Scenario 1: True-Colour orthomosaic only

79 Scenario 2: True-Colour orthomosaic, plus slope, CTI and aspect

80 We used two scenarios so that the effect that texture information might have on the accuracy of 

81 the peatland classification could be investigated. In particular we aimed to investigate the 

82 capability of the imagery to define small patches (< 1m width) of the fine scale habitats such as 

83 Sphagnum (a positive indicator of high water table), or exposed peat (negative indicator) that are 

84 poorly mapped by coarser resolution EO data. We considered how the information content of the 

85 input data could be maximised to improve classification accuracy. Finally we provide an 

86 estimate of carbon loss from an area of eroded peat based on: the elevation model, the classified 

87 eroded peat area, and the carbon density measurements taken through surveys at the site.

88 Methodology

89 Description of the study site

90 The UK Environmental Change Network (ECN) site, Moor House, Upper Teesdale, (OS Grid 

91 reference NY75303331), in the North Pennine uplands (Figure 1), is England's highest and 
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92 largest terrestrial National Nature Reserve (NNR). It is a UNESCO Biosphere Reserve and a 

93 European Special Protection Area. Habitats include exposed summits, extensive blanket 

94 peatlands, upland grasslands and pastures grazed mainly by sheep, hay meadows and deciduous 

95 woodland. A large part of the catchment of the River Tees, from its source near Great Dun Fell 

96 to High Force waterfall, is included in the reserve. The site comprises two areas divided by Cow 

97 Green Reservoir. The Moor House area extends from the upper edge of enclosed land in the 

98 Eden Valley, over Great Dun Fell (848 m), Little Dun Fell and Knock Fell to the upper end of 

99 Cow Green Reservoir on the River Tees. The gently sloping eastern side of the area is overlain 

100 by poorly-drained glacial till, which has led to the development of blanket bog with peat 2-3 m 

101 deep. The vegetation is dominated by Eriophorum spp., Calluna vulgaris and Sphagnum spp. 

102 with patches of eroded blanket bog without vegetation cover. The western side is steeper and the 

103 soils and vegetation are more variable. The area includes unique communities of arctic-alpine 

104 plants and upland flora and fauna of conservation interest. 

105 Field Data Collection

106 A vegetation and landform survey was carried out between June and September 2008, and May 

107 and July 2009, as part of a wider objective to update habitat mapping within the Troutbeck 

108 catchment, a small catchment within the Moor House area (Rose et al., 2016). Quadrat sampling 

109 points were located systematically at the mid-points of a 100 m grid using ArcGIS (ESRI) 

110 (Figure 1), and located in the field using a handheld GPS unit (Garmin eTrex Vista HCx, 

111 accuracy < 3m). 

112 Data were entered into a GIS database in the field using a modified version of the ‘CS Surveyor’ 

113 digital data capture system designed for Countryside Survey 2007 (Maskell et al. 2008). A 2 x 2 

114 m2 quadrat was placed at each plot, with the diagonal orientated north-south. Within each 
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115 quadrat, percentage cover of all vascular plant species, and a restricted list of bryophytes, was 

116 determined using visual estimation according to the technique described in Maskell et al. (2008). 

117 Airborne Data Collection

118 The airborne campaigns were conducted in summer 2015 using an unmanned aerial vehicle 

119 (UAV) operated by the NERC Centre for Ecology and Hydrology. The UAV, a QuestUAV 

120 300™, carried a Panasonic Lumix DMC-LX7 with a 3648 x 2736 pixel detector that captured 

121 JPEG images at f/1.4 and 1/2500s with an angular field of view of 73.7×53.1, providing ∼4.5cm 

122 pixel-1 resolution at 122 m above ground level (AGL). The UAV was a 2 m wingspan fixed-wing 

123 platform with up to 1 h endurance at 3 kg take-off weight and 63 km/h ground speed. The UAV 

124 platform followed four flight plans over a 2400 m2 area, which had been designed to ensure 

125 sharp imagery was obtained at high resolution, which had large across- and along-track 

126 overlapping. The UAV took 20 minutes to complete each flight plan at 122 m AGL. It was flown 

127 by two trained operators and controlled by an autopilot for fully autonomous flying (Skycircuits 

128 SC2, Southampton, UK). The autopilot had a dual CPU controlling an integrated attitude heading 

129 reference system (AHRS) with a comprehensive onboard sensor suite (3-axis accelerometers, 3-

130 axis gyroscopes, 3-axis magnetometers, dynamic and static pressure sensors). The ground control 

131 station and the UAV were radio linked, transmitting position, altitude, and status data at 2.4 gHz. 

132 The weather on the date of the flights was clear and free of cloud. Flights were conducted 

133 between 10:00 and 16:00 to minimise effects of shadow. Wind speeds remained below 15 knots 

134 on all flights. The integrated onboard GPS updated at between 4 and 10 Hz and had a positional 

135 accuracy of +/-3 m.

136

137 Airborne Data Processing
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138 The imagery was synchronized using the GPS position and the triggering time recorded on the 

139 flight logger for each image, and these were then used for the generation of an orthomosaic and 

140 digital surface model (DSM). Flight altitude data were also logged and images were geotagged 

141 with xyz coordinates for use by the image processing software. Image processing of the image 

142 collection was performed in Agisoft PhotoScan Professional v1.4.2 (© 2018 Agisoft LLC, 27 

143 Gzhatskaya st., St. Petersburg, Russia). Details of the steps taken in acquisition, processing and 

144 modelling are shown in Figure 2. The software initially aligned the camera positions based on 

145 the GPS coordinates from the flight log. Ground control points were added based on known 

146 locations of static features located using 25cm Next Perspectives Aerial Photography RGB 

147 Product (Infoterra Ltd). Height values were based on values obtained from the Environment 

148 Agency LIDAR digital surface model which covered parts of the study area. Then a 3D point 

149 cloud, and 3D mesh representing the land surface was generated at a density of 160 points m-2, 

150 this mesh was then used for orthomosaic and DSM generation at 0.04 m resolution. The Z error 

151 was computed by deducting check points Z values from the DSM value at the same point. The 

152 image processing settings and associated calculated accuracies are shown in Tables 4  and  5. 

153 During the stages of processing checks were made on image quality, tie point quality. 

154 Topographic Processing

155 The DSM obtained from the image processing software was processed in ArcGIS 10.6 (ESRI, 

156 2018). Slope, aspect, and a compound topographic index (CTI) (Sorensen et al., 2006) were 

157 generated at 4 cm resolution (see Figure 3) to be compatible with the RGB data. These figures 

158 show a subset of the data, and the gully features used for the Carbon loss estimation. 

159 These data were then combined to yield a 6 band raster image containing red, green, blue, slope, 

160 aspect, and CTI values at 4 cm resolution. 
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161

162 Image Classification

163 The classification was trained on the 8 aggregate cover classes (Table 1) using all pixels within 

164 the digitised areas around each point. Specifically we compared two input data scenarios and 

165 quantified the difference in the resulting classification:

166 Scenario 1: Image Classification using Original RGB bands

167 The image obtained from the SfM procedures in Photoscan was processed using only the red, 

168 green and blue colourspace. 

169 Scenario 2: Image Classification using Surface features and Original RGB Bands

170 The final image was processed using the red, green and blue colourspace, together with surface 

171 characteristics (gullies, edges) derived from the digital surface. The additional surface 

172 characteristics were added as separate bands to the image. These were slope, aspect, and CTI, all 

173 generated from the surface model at 4 cm resolution in ArcGIS 10.6 (ESRI, 2017).

174 The Random Forest (RF) classifier is an ensemble method that combines CART (Classification 

175 And Regression Trees) with bootstrap aggregating techniques (Breiman et al., 1984). Random 

176 Forests grow a number of binary classification trees by selecting a random sample with 

177 replacement from the training set (bootstrap aggregating or bagging) for each tree (Breiman, 

178 1996). The predicted class for observations in the training set is the most frequent class in the 

179 trees for which the observation is a member. This process is described as “voting” (Breiman et 

180 al., 1984). The RF algorithm outputs the class label that received the majority of votes, and a 

181 probability estimate is derived for each pixel based upon the percentage of votes. The 6 band 

182 raster image, and companion training data for the 8 classes (Table 4) were supplied as inputs to 
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183 the algorithm, and the algorithm was processed in R (R Core Team 2015) using the Random 

184 Forest package by Liaw and M. Wiener (2002), and Horning (2013)

185 Field data Processing: Training data

186 The plant species cover data from the quadrats were automatically assigned to the nearest 

187 National Vegetation Classification (NVC), (Rodwell, 1995.) sub-community using the MAVIS 

188 program (Smart, 2000) which uses Czekanowski’s quantitative index of similarity, taking into 

189 account the abundance as well as presence of species (Magurran, 1998). This supervised 

190 classification of the data was then visually checked against photographs taken at the date of 

191 sampling. If there were discrepancies the assigned class was corrected according to a visual 

192 interpretation from the photography. The areas were manually digitised in GIS in order to 

193 encapsulate the habitats of a similar type around the plot, so that for a 10 m diameter zone 

194 around each plot, the dominant habitat type was described, and the other habitat areas removed, 

195 leaving just the habitat of interest for each plot. For example Sphagnum areas only were 

196 digitised, for a plot classed as sphagnum. These vegetation classes were aggregated according to 

197 one of 8 types (Table 1) for ease of classification. In addition, 20 ground control points were 

198 identified from Environment Agency Lidar 2m DSM (Environment Agency © 2015) at fixed 

199 locations identified using 25cm Aerial imagery (Infoterra, © 2014).

200 Field data processing: Validation data

201 Validation points were randomly stratified across the 8 classes in ArcGIS 10.8 (ESRI, 2016), 

202 with 10 points within each class. These points were then used to sample the classifications and 

203 assess the performance of the random forest classification.

204 Evaluation and validation

Page 9 of 34

http://mc.manuscriptcentral.com/PiPG

Progress in Physical Geography

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review

Page 10 of 22

205 To assess the accuracy of an image classification, a confusion matrix was created which 

206 compared the classification results with the validation data. This identifies the nature of the 

207 classification errors, as well as their quantities. Confusion matrices were produced from the 

208 overlay of the validation areas and the resultant spatial classification. Overall Accuracy (OA) 

209 values were computed from confusion matrices in order to evaluate the accuracy of the produced 

210 land cover maps (Congalton, 1991). User and producer accuracy was also calculated. Producer 

211 accuracy is the fraction of correctly classified pixels with regard to all pixels of that ground truth 

212 class, whereas user accuracy (or reliability) is the fraction of correctly classified pixels with 

213 regard to all pixels classified as this class in the classified image. A kappa statistic (Cohen, 

214 1960), that compares the accuracy of the system to the accuracy of a random system, was 

215 computed against the validation data. Probability estimates derived from the model (the 

216 percentage votes for each pixel) were grouped by class, and the mean taken for each group to 

217 assess the quality of the predictions.

218 Carbon loss Estimation

219 The area surveyed at Moor House contains a number of erosion features and gullies. One gully is 

220 of considerable size, and an estimate of the net loss of carbon through the peat degradation and 

221 erosion is of interest. From previous studies of the site, a measurement of the eroding gully 

222 carbon density is 69.84 ± 2.74  mg C cm3 (Whitfield 2012). The area of the gully was first 

223 covered with a hypothetical surface (assumed flat) at 4 cm spatial resolution, to cover the edges 

224 of the gully, and only where bare peat was exposed. This follows the method of Evans and 

225 Lindsay (2010), who used linear interpolation of the DEM between gully edges defined from the 

226 gully map to create a ‘pre-erosion’ surface; and then subtracted the contemporary surface from 

227 the pre-erosion surface to create a gully depth map. Using a cut – fill model in QGIS (QGIS 
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228 Development Team, 2017), a hypsometric model of the eroded gully was then created. Using this 

229 estimate of volume and the carbon density measurements for the Moor House site allowed an 

230 estimate of the carbon loss to be calculated.

231 Results

232 The SfM derived imagery yielded a 4 cm resolution orthomosaic (Figure 1). The elevation model 

233 obtained from the image processing was used to compute the aspect, slope and topographic index 

234 maps shown in Figures 3. The classifications computed by the RF classifier yielded the 

235 classification maps and probability estimates in Figures 4 to 7.

236 Confusion matrices were produced to assess the accuracy of the classified image using both data 

237 input scenarios (Table 2 and 3). These matrices show the accuracy of the predictions for the 

238 external validation areas, which are independent of the training areas used for establishment of 

239 the classification models. For scenario 1, using RGB data only, the classification accuracy per 

240 class varied between 40 and 100%. The highest classification accuracy in this case was for 

241 coniferous woodland, with the lowest being for bare peat. The overall kappa coefficient was 0.66 

242 (Table 2). For scenario 2, using RGB and surface topography data, the classification accuracy 

243 per class varied between 50 and 100%. The highest classification accuracy was for conifer 

244 plantation, and the lowest was for bare peat. The overall kappa coefficient was slightly higher at 

245 0.68 (Table 3). 

246 Mean probability values for each classification are shown in Figure 7 and ranged from 41% 

247 (Saturated bog) to 67% (coniferous woodland). For all classes, the mean classification 

248 probability was higher for the RGB plus topography classification. 

249 Carbon loss estimate
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250 The volume of material lost in the formation of the gully, assuming an intact blanket bog 

251 formation prior to erosion, was estimated as 6,273 m3. The carbon density for gullies at Moor 

252 House is 69.84 ± 2.74  mg C cm3. Therefore the estimated carbon that has been lost from the 

253 gully is estimated to be between 420 and 455 tonnes of C.

254 Discussion

255 The results of the image classification using a Random Forest classifier are encouraging, and 

256 demonstrate the potential for rapid reconnaissance and monitoring of blanket bog condition (per 

257 se) nationally. Incorporation of surface feature data derived from SfM techniques improved the 

258 classification accuracy. The incorporation of surface data improves the classification by defining 

259 those areas where water accumulates in the landscape, thereby assisting the classification of the 

260 smaller Sphagnum bog areas. Incorporation of surface topography improved the predictive 

261 accuracy, in part due the presence of specific habitats in dry or wet areas of the blanket bog. For 

262 example Sphagnum carpet is only ever found in specifically wet channels or funnels at the Moor 

263 House site. Conversely, exposed bare peat may only be found on the flat tops or edges of the 

264 blanket bog (Bower, 1961), where water accumulates, and hard frost and wind can attack the 

265 structure of the peat. The centre of the blanket bog is characterised by a large eroding mass of 

266 peat. This is not surprising since peat erosion is associated with high levels of exposure and 

267 precipitation (Bragg, 2001;Yeloff et al. 2005). The Random Forest classifier accurately predicted 

268 all classes specified in the training data. Interestingly, although the classification accuracy (user 

269 accuracy) for bare peat was 50%, saturated bog, water and sphagnum were higher, ranging 

270 between 80% and 90%. Saturated bog, water and bare peat habitats are often in very close 

271 proximity in the study area, and only by using aerial photography at 4cm resolution could we 
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272 locate habitat patches at such fine a scale. Future studies could look at how much bare peat exists 

273 elsewhere in the study area, in addition to the central exposed peat area. 

274 The probability of the classification is slightly higher for all classes when topography is used in 

275 addition to the RGB data. This may in part be due to high spatial variability in the surface 

276 topography exceeding that encompassed within the training data. Also, the incorporation of more 

277 predictor variables in Random Forests may yield greater certainty, as a result of the model 

278 structure. The mean probability estimates are acceptable (i.e. generally above the default value of 

279 0.5), however it is worth noting that Random Forest classifiers normally give good estimates 

280 (Belgiu and Dragut 2016), probably due to the transitional nature of upland habitats. Further 

281 studies should explore the effect of sample data collection and survey date on the classification. 

282 In some cases an accurate Random Forests model can give poor probability estimates (Yang et 

283 al. 2016), so the percentage of correctly classified test data is the most common criterion to 

284 evaluate models (Bostrom 2007). Therefore comparison of both scenarios accuracies based on 

285 mean probabilities could be misleading.

286 Although the vegetation survey data and the aerial survey were six years apart, the use of site 

287 photography taken on the date of the vegetation survey (2010) allowed a comparison of the 

288 present situation with the state of the land surface in 2014 to be accomplished, and showed that 

289 vegetation composition was not significantly different. We cross referenced photographs from 

290 the study site taken at the time of the botanical survey, with 25 cm resolution aerial photography, 

291 and our own orthorectified imagery to ensure that the training areas had not changed 

292 significantly, thus minimising any uncertainty associated with the classification of training areas.

293 Ideally, vegetation surveys should be undertaken at least during the same year of the aerial 

294 survey to reduce this uncertainty.
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295 As with all modelling and data collection methodologies there are uncertainties arising from the 

296 various stages of data acquisition, and implicit uncertainties in the modelling, either as a result of 

297 the data or the structure of the modelling framework. The uncertainties in the data may arise 

298 through the temporal mismatch between the date of image acquisition and the land survey, and 

299 this may explain some of the misclassification of water as peat and vice versa. 

300 The purpose of this study was to investigate the area of blanket peatland under erosion, and 

301 quantify the apparent losses. This was achieved with some success, but also some uncertainty, 

302 since the volume of intact blanket peatland prior to the formation of gully and erosion features 

303 can never be fully known. The true volume of carbon that has been lost cannot be calculated, 

304 since the bog would have gradually lost and simultaneously sequestered carbon through 

305 revegetation and recovery over time. Also, the hypothetical surface used to calculate the volume 

306 could be Estimating a value is, however, useful in providing the conservation scientist with a 

307 value associated with the formation of gully features, and what could potentially be recovered 

308 through habitat restoration. 

309 The methodology, combining ground- and UAV-based survey, and ground control points based 

310 on static objects, is readily transferable to other sites containing different habitats. When 

311 combined with topographic indices, slope and aspect, RGB data can be extremely useful in 

312 remote areas where habitat classification can be difficult due to limited access or data 

313 availability. Although ground control points should normally be located using a high accuracy 

314 GPS unit, such systems were unavailable to the team at the time, and the purpose of this study 

315 was to minimise impact at the site, especially in the upland saturated bog environment. Future 

316 studies could however make use of onboard RTK systems for improved camera location 

317 accuracy, and improved ground control point accuracy for the static locations. While 
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318 hyperspectral data from UAVs are still expensive to obtain, the approach provided here can 

319 provide equivalent outputs with a similar level of accuracy. UAVs may therefore fill the gap 

320 between land surveys and satellite imagery. UAVs do have some drawbacks compared to more 

321 traditional sources of remote sensing data. Specifically, UAVs are more limited in their sensor 

322 payload, and therefore the complexity of sensors that they can carry, although this is due to a 

323 combination of cost, ease of use and regulations. UAVs are also more susceptible to high winds 

324 and adverse weather compared to manned aircraft. Wind speeds above 15 knots (35 mph) 

325 typically lead to poor image capture from a UAV. Individual flights cover much smaller areas 

326 compared to manned aircraft and satellites. Therefore more flights are required to cover larger 

327 areas and more time is required to process the imagery produced. Larger areas (multiple km2) 

328 could be captured per flight using fixed wing UAVs, however this approach is limited by visual 

329 flight rule requirements. RGB data from UAV platforms can also fill the gap between field and 

330 satellite imagery, which are either labour intensive or conversely too coarse resolution to 

331 separate distinct habitats within the broad habitats. UAV hyperspectral data are still prohibitively 

332 expensive, so the combination of UAV RGB data with topography data can be useful for upland 

333 habitats in the UK where the access is difficult and availability of satellite imagery is low due to 

334 cloud coverage.

335 Conclusions

336 There is a greater availability of UAV platforms providing RGB imagery at present, owing in 

337 part to the expense of hyperspectral instruments. This study demonstrates that for large areas of 

338 fairly homogenous and well defined habitats, habitat classifications may be produced in a 

339 relatively cheap and easy way using consumer grade cameras and relatively inexpensive fixed 

340 wing UAV platforms. Remote sensing of upland sites in the UK can be difficult due to cloud 
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341 cover, and therefore UAVs may offer an effective and realistic alternative. Combined with open 

342 source software approaches for image classification, this approach presents new opportunities for 

343 directing, and monitoring the success of peatland conservation schemes. As a specific means of 

344 measuring success, carbon loss estimates can be readily generated using the UAV imagery and 

345 SfM techniques described here. 
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Figure 1 Overview of the Troutbeck study area at Moor House ECN, showing the orthorectified 

image obtained from 4 UAV flights, ground control points, the model training and validation 

areas and the focus area (red square).
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Figure 2 Process flow from image capture to the final habitat classification used in this study.
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Figure 3 Aspect, slope and topographic index surfaces generated from the surface topography 

(4 cm spatial resolution). Area of the eroded gully shown, maps extend across the whole 

Moorhouse study area.
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Figure 6 Map showing the bare peat, water and sphagnum habitats as predicted for Moor 

House with RGB and topographic information for the focus area.
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Figure 7 Predicted classes for Moor House using only the RGB data
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Figure 8 Predicted classes for Moor House using the RGB combined with the topographic 

information
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Figure 9 Mean probabilities for each surface summarised for each classification with standard 

errors.
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Table 1 List of aggregated classes based on the Countryside Vegetation System used in 
this study

CVS Class Aggregate Class
Northern Blanket Bog Northern Blanket Bog
Dry heath soil
Bare Peat

Bare Peat

Young conifer
Conifer plantation

Conifer plantation

River shingle Gravel
Streamside/acid grassland
Bracken/acid grass
Moorland grass/bog
Moorland grass/heath peat
Marsh/streamside
Moorland grass/heath soil
Heath/moorland grass

Moorland Grass

Saturated bog Saturated bog
Sphagnum Sphagnum
Open Water Open Water
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Table 2 Confusion Matrix for the random forest classification using only the RGB data for 

Moor House

Predicted
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nd

 
gr
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Ba
re
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ea

t

Gr
av

el
/R
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d

To
ta

l

U
se

r a
cc

ur
ac

y 
(%

)

Northern blanket 
bog 8 0 2 0 0 0 0 0 10 80

Rush/moorland 
grass/streamside 0 10 0 0 0 0 0 0 10

10
0

Saturated bog 2 1 7 0 0 0 0 0 10 70

Conifer 
plantation 0 0 0 9 1 0 0 0 10 90

Water 0 0 2 0 7 0 0 1 10 70

Sphagnum 0 1 0 0 0 9 0 0 10 90

A
ct

ua
l

Bare Peat 3 0 1 0 2 0 4 0 10 40

Gravel/Road 1 0 2 0 0 0 0 7 10 70

Total 14 12 14 9 10 9 4 8

Producer 
accuracy (%)

42 83 50 100 70 100 100 88

Kappa 0.68
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Table 3 Confusion Matrix for the random forest classification using the RGB data and surface 

topography for Moor House

Predicted

N
or

th
er

n 
bl

an
ke

t b
og

Ru
sh

/m
oo

rla
nd

 
gr

as
s/

st
re

am
sid

e

Sa
tu

ra
te

d 
bo

g

Co
ni

fe
r p

la
nt

at
io

n

W
at

er

Sp
ha

gn
um

Ba
re

 P
ea

t

Gr
av

el
/R

oa
d

To
ta

l

U
se

r a
cc

ur
ac

y 
(%

)

Northern blanket 
bog 9 0 1 0 0 0 0 0 10 90

Rush/moorland 
grass/streamside 1 9 0 0 0 0 0 0 10 90

Saturated bog 1 0 8 0 1 0 0 0 10 80

Conifer 
plantation 0 0 0 10 0 0 0 0 10

10
0

Water 1 0 0 1 8 0 0 0 10 80

Sphagnum 0 1 0 0 0 9 0 0 10 90

A
ct

ua
l

Bare Peat 1 1 1 0 2 0 5 0

Gravel/Road 0 2 1 0 0 1 0 6

10

10

50

60

Total 13 14 11 11 11 10 5 6

Producer 
accuracy (%)

41 64 73 91 73 90 100 100

Kappa 0.66
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Table 1 Processing parameters used in Agisoft Photocsan for the construction of the orthomosaic and digital surface model

General Cameras 2207
Aligned cameras 2207
Markers 24
Coordinate system OSGB 1936 / British National Grid 
(EPSG::27700)
Rotation angles Yaw, Pitch, Roll

Point Cloud Points 440,842 of 638,731
Reprojection error 1.2099 (7.04299 max)
Point colors 3 bands, uint8
Key points No
Average tie point multiplicity 3.75116

Dense Point Cloud
Points 625,020,795
Point colors 3 bands, uint8

Dense Point Cloud Reconstruction parameters Quality High
Depth filtering Aggressive

Model Faces 4,925,688
Vertices 2,473,776
Vertex colors 3 bands, uint8
Texture 4,096 x 4,096, 4 bands, uint8

Model Reconstruction parameters Surface type Height field
Source data Dense
Interpolation Enabled
Quality High
Depth filtering Aggressive
Face count 5,000,000
Processing time 20 minutes 12 seconds

Model  Texturing parameters Mapping mode Orthophoto
Blending mode Mosaic
Texture size 4,096 x 4,096
Enable hole filling Yes
Enable ghosting filter Yes
UV mapping time 1 minutes 37 seconds
Blending time 9 hours 46 minutes

DSM Size 52,504 x 46,139
Coordinate system OSGB 1936 / British National Grid 
(EPSG::27700)

DSM Reconstruction parameters Source data Dense cloud
Interpolation Enabled
Processing time 55 minutes 24 seconds

Orthomosaic Size 65,494 x 52,584
Coordinate system OSGB 1936 / British National Grid 
(EPSG::27700)
Colors 3 bands, uint8

Orthomosaic Reconstruction parameters Blending mode Mosaic
Surface DEM
Enable hole filling Yes
Processing time 1 hours 15 minutes
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Table 5. Control points RMSE and ground control point (GCP) errors , ( X - Easting, Y 
- Northing, Z – Altitude).

Point 
type

Count X error (m) Y error (m) Z error (m) XY error (m) Total (m)

Control 15 1.75774 0.485608 1.43344 1.82359 2.31953

Label X error (m) Y error (m) Z error (m) Total (m) Image (pix)

Bridge -0.469988 -0.100511 -0.728492 0.87275 0.000 (1)

point 1

point 2 -0.499273 0.0301792 0.249121 0.55879 0.000 (1)

point 3 -0.936561 -0.487554 -1.5222 1.85256 0.002 (4)

point 4 2.05486 -0.616093 -3.03196 3.71413 0.002 (2)

point 5

point 6 0.0944338 0.510288 0.282165 0.590702 0.000 (1)
point 7

point 8 0.220504 -0.0945066 1.2857 1.30789 0.005 (7)

point 9 0.261059 -0.448917 2.29679 2.35477 0.003 (3)

point 10 -0.106125 -0.870693 -1.06144 1.37696 0.005 (3)

point 11 0.384385 -0.632363 0.320792 0.806562 0.001 (3)

point 12 0.659767 0.174325 -1.05869 1.25956 0.003 (4)

point 13

point 14

point 15

point 16 -6.03509 -0.503942 -1.11076 6.15711 0.002 (3)
point 17

point 18

point 19 1.41136 -0.343287 1.09074 1.81645 0.003 (3)

point 20 0.972456 0.651922 1.50597 1.90752 0.003 (3)

point 21 0.823755 0.0132818 2.07568 2.2332 0.002 (3)

point 22

GCP

point 23 -0.128602 0.67285 -0.600468 0.910949 0.002 (2)
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