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Abstract: Data-driven prediction of future events is to provide decision-makers Predictive
Information (PI) to decrease human-error. They usually desire possession of a predictor which
works independently from the humanized configurations and works efficiently and accurately.
The accurate data-driven prediction of the systems’ behavior is the primary focus of this paper.
We define the future state of a system is a set of uncertain values, which can be modeled by
fuzzy numbers. The future machine state is not very dissimilar to the current status, and the
next event is a sort of behavior repetition. The PI also justifies the system being in a trend to
achieve a goal, and it counts the unplanned contextual reactions of the system. In this paper,
we come up with a fuzzy data-driven predictor application to foretell the system behavior.

Keywords: Fuzzy logic, temporal data analytics, adaptive learning, systems theory.

1. INTRODUCTION

The Predictive Information (PI) is a sort of actionable
insight, which allows decision-makers to act upon, and
which gives them enough insight into the future that the
actions that should be taken become clear. Technically, to
provide initial data of system behaviors experts perform
the frequent observations on the systems and form the
Systematic Temporal Datasets (STDs). Then to machin-
ery mining of the systems, we attribute four character-
istics to their behavior: stability, radicalism, goal achieve-
ment, and behavior repetitions [Djaferis and Schick (2000);
Rapoport (1986); Lobry (1973)]. Per each paradigm, there
is a predictor, and the aggregator concludes the individ-
ual predictions into a totalitarian hypothesis, which is
the final prediction of the Fuzzy Data-Driven Predictor
(FDDP) as shown in Fig.1. We also consider the role of an
Anomaly Recognizer, which compares the realized events
with predicted ones to find the anomalies. We argue that in
Data-Driven Machine Learning (DDML) and prediction,
by improving the clustering rule, we can get more accurate
results but in faster time. The reason is that it helps to un-
derstand the previous and current states more quickly and
more precisely to provide biases for prediction. The other
criterion to improve the DDML predictions is attention
to the new events and trends that happen after training,
and we address this issue by the term “adaptivity.” We
concentrate on the prediction of the future states of the
real-world systems as the initial problem. This paper is
organized as the following. In section (2) we discuss the
preliminaries of the current paper and we review some
important and relevant works. In section (3), we propose
our FDDP model. In the next section, we experiment the
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Fig. 1. The model of Fuzzy Data-Driven Predictor (FDDP)
and Anomaly Recognizer (FDDAR)

proposed model (4) and compare the results with others’,
and the functionality of the model with other works. In
5, we perform conslusion and propose suggestions to the
interested researchers. Finally, we present the applied ref-
erences.

2. PRELIMINARY AND THE RELATED WORKS

Data modeling provides biases for machinery perception of
the previous and current states of the systems. In this re-
gard, data classification and clustering are the two popular
methodologies used for DDML and prediction, and Each
instance of these algorithms operate based on a particular
logic and philosophy. An important parameter to list the
related works is that they are either Knowledge-Driven
(KD) or Data-Driven (DD) [Amirjavid (2014)]. In KD, the
experts have prior knowledge about the congestion specs
of the observation data points [Lu et al. (2017)]. In these
problems, expert experimentally knows the boundaries of
the clusters and the ranges of the target data. But, in most
of the issues, the user does not initially know where the



data points are congested around and how much the size
and proportion of the congestions are. A first solution is
to choose a clustering method such as k-means or Fuzzy
C-Means (FCM). Due to the segmentation operation with
k-means, it finds the centroids rapidly. But, knowing the
number of clusters is still a requirement. The fuzzy sub-
tractive clustering is a known popular algorithms for the
problems in which the experts intend to get tailored cluster
sizes and positions from STDs [Kruger et al. (2017)]. This
algorithm reviews the data, finds the congested areas and
defines the soft cluster boundaries in the neighborhood of
the data points that are the farthest to the corresponding
centroids. There is also a group of works that focus on clas-
sification and data modeling rule to improve the prediction
rate. This rule is done in a KD manner. We identified the
cited papers in Table 1 out of the recent related works
that focused on “Clustering” and “Classification” rules in
temporal data mining. These works extended/customized
derivations of more known algorithms such as “k-means”
and “SVM” to their concerning problems.
According to the presented information in Table 1, and

considering that a full data-mining cycle includes both
clustering and classification then an ideal approach would
predict as accurate as 96.5% × 96% = 92.64% with KD
strategy and 95.75% × 94% = 90.005% with DD strategy.
These rates are usually taken by more complexity order al-
gorithms and the total complexity will be ofO(n2) : O(n4).
However, a full cycle of DDML, which works independent
of expert configurations with light complexity order (O(x),
where x < n2) is not proposed. To our best knowledge,
if such cycle be proposed then the average prediction
accuracy rate with the recent and relevant works will span
around the rate of 90 − 93%. The proposed predictors
are not generally extensible to predict the STDs of other
domains and a full human-independent DDML cycle re-
garding the model knowledge (unsupervised) and model-
training process (DD) is required.

3. FDDP MODELLING

For data-driven machine learning of the system, the m
features (fi|1 ≤ i ≤ m) are observed. Each feature is
assumed to have totally minimum and maximum values,
which means {x|x ∈ fi, x ∈ [0 1], 1 ≤ i ≤ m}, and
the FDDP analyzes m-dimensional space. The inputs
to the FDDP are the observations (oi,j in equation 1),
which are frequently taken off the system behaviors. The
observations matrix is STD, which has m columns and n
rows, whereas m,n > 0. Therefore, the current observation
will sit on the last row, and it will be the n + 1 th row of
the STD matrix.

STD =
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In Equation (1), fi is the ith world feature, Stj is the jth

observation or the observation in time j.
In [Amirjavid et al. (2018)], a derivation of subtractive
clustering is proposed, which inputs the STD dataset and
the desired similarity degrees between the data points of
the clusters (ε). The first output of this algorithm is the
list of centroids (matrix C) and the sizes of the clusters

(matrix Sz).
The first sort of specific clusters that the FDDP forms is
the “machine state”. This a set of continuous observations
or a set of sequential rows (sti..j ) in STD that are similar
to each other with similarity degree of ε. A machine state
is a fuzzy concept such as:

s̃ti..j = {Stx |Stx ∈ STD, x ∈ [i..j]|0 ≤ i ≤ j ≤ n,

∃C(k)|∀Stx → |Stx − C(k)| < 1− ε}, 0 ≤ k ≤ w
(2)

Based on this concept, we determine the present/current
state and the previous state. By present/current state, we
mean a subset of machine state that are recently observed.
This fuzzy set is defined as the following:

S̃present = {x|x ∈ s̃ti..j , |x.time− current time| ≤ 1− ε } (3)

Alike the “current state”, the “previous state” is a sort of
machine state that includes all the previous machine states
but excludes the recent observations:

S̃past = {x|x ∈ s̃ti..j , |x.time− current time| < ε } (4)

We use the basic concepts mentioned above in design of
the paradigmatic predictors.

3.1 Stability Characteristic

The systems are stable, and their behavior is stable over
the time. By this statement, we infer that the two contin-
uous observations from a system are not very dissimilar to
each other, and the system changes the machine states
smoothly/slowly. If Sti and Sti+1

are two consecutive
observations, then a threshold measure symbolized by ε
defines for the maximum difference between two observa-
tion vectors:∣∣Sti

− Sti+1

∣∣ < ε, ∀i|0 > i, i+ 1 ≤ n, ε > 0 (5)

The equation (5) indicates each two consecutive observa-
tions are similar to each other. Therefore, if Sti is the latest
observed status from the world, then the future upcoming
state Sti+1

will be a measure in following constraints:

|Stn | − ε <
∣∣Stn+1

∣∣ < |Stn |+ ε (6)

According to equation (6), the future event will be a vector
similar to the present vector, which means |Stn | ∼=

∣∣Stn+1

∣∣.
See Figure. 2. In Figure. 2.A, we are presenting that the
feature i of the future state of the system will be of Gaus-
sian fuzzy number, in which the current value of feature
i has the highest fuzzy membership value to occur in
future. In Figure. 2.B, we are presenting a two dimensional
presentation of the future state of the features i and j.
This space is the product of stn .fi×stn .fj . This prediction
space is a fuzzy set. It gives the highest possibility degree
of occurrence to the center of the circular space, which
refers to the current value of feature i and the current
value of feature j. The ε of equation (6) indicates a soft

Fig. 2. Fuzzy predictive hypothesis generation by paradigmatic
predictors. A: Gaussian function, B: 2-D representation.



Table 1. Review of related works that focused on improvement of clustering rule for prediction

KD/DD Approach Accuracy Derived algorithm Complexity Focus

KD

Kim et al. (2016) 85.40% KNN O(n) Classification

Arif et al. (2013) 90.02% ID3 and C4.5 O(n) Classification

Vluymans et al. (2016) 91% FIS O(n.log(n)) Classification

Lopez-Garcia et al. (2016) 83.10% FRBS N/A Classification

Lippi et al. (2013) 95% Regression and SVM O(n) Classification

Baggenstoss and Harrison (2016) 93% SVM N/A Classification

Abercrombie and Friedl (2016) 96.50% HMM O(n2) Classification

KD

Huang et al. (2013) 75% Regression O(n) Clustering

Debonnaire et al. (2016) 87% K-means O(n) Clustering

Wang et al. (2017) 96% Hierarchical O(n2.log(n)) Clustering

DD Yin et al. (2017) 95.75% SVM O(n2) Classification

DD

Mori et al. (2016) 71% K-means O(n) Clustering

Kruger et al. (2017) 90% FCM O(n) Clustering

radius of a circle that represents the possible future values
of the feature i. The ε does not represent a hard boundary
indicating the impossibility measures of the world features,
but it shows the limitation implied in current calculations.
A possibilistic/fuzzy 2D space as similar as the Figure. 2.B
can be drawn per each couple of the features to predict
totally the Stn+1

vector. The possibility degrees at the
radius borders and beyond there are not zero, but not
noticeable. As a result by this we indicate that by exclusive
respect to the stability feature of the systems, the vector
Stn+1

is predicted in the form of a multidimensional fuzzy

number, which is S̃tn+1
.

Definition 1: Current state. The Current observations
cluster is the cluster, which includes the current obser-
vation and the last recent observations from STD. The
algorithm for determination of current state cluster is in
Fig. 3. The SPP performs this process. We show fuzzy
space of S̃tn+1

, which is produced by SPP, by the notion

P̃SPP . By PSPP we point to the defuzzified of the P̃SPP .

3.2 Radicalism Characteristic

By radicalism, we address the tendency of a dynamic
system to leave the current state regardless of whatever
reason makes the system leaves the current status. A fuzzy
operator called Absolute Fuzzy Symmetrizer Operator
(AFSO) finds the most dissimilar status to the current
status [Amirjavid (2014); Amirjavid et al. (2018)]:

AFSO(Stn) = S′tn = {1−x|x ∈ Stn .fi,∀i|i ∈ [1..m]} (7)

By this paradigm, the future state of the system is:

Input 
STD, ℇ

set CSCL = Null

d = firstRow(STD)
insert d in CSCL

c = d

is dist ≤ ℇ ? Yes

set CSCL = Null
insert d in CSCL

c = d

output cprevious

No

insert d in CSCL
c = centroid(CSCL, ℇ)

d = nextRow(STD)

dist = distance(c, d)

Fig. 3. Algorithm regarding Dynamic formation of current
state cluster (current fuzzy state)

Stn+1
= (AFSO(Stn) + Stn)× λ , 0 ≤ λ ≤ 1 (8)

In (8), the λ is a factor that indicates the tendency of the
system to the radicalism behavior. We show fuzzy space
of S̃tn+1

, which is produced by RPP, by the notion P̃RPP .

3.3 Goal Orientation Characteristic

Systems are to achieve a particular goal. The goal is a
world state, and to make it the system transits a series
of temporary states. The goal is a fuzzy vector G̃, which
justifies the next state of the system in transition to
meet it. Therefore, the future machine state will be in a
possibilistic space between the Stn and the G̃:

Stn+1
= {x̃|x̃ ∈ [Stn , G̃]} (9)

In (9), the G̃ is not known, but the next machine state is
in trend of the two precedent states to achieve the goal:

Stn+1
= (Stn − Stn−1

) + Stn = 2Stn − Stn−1
(10)

The present state in (10) comes from the algorithm in
Fig. 3, and the previous state comes from the algorithm
in Fig. 4. The GPP performs the prediction based on goal
orientation feature of the systems. We show fuzzy space
of S̃tn+1 , which is produced by GPP, by the notion P̃GPP .

By PGPP we point to the defuzzified of the P̃GPP .

3.4 Behavior Repetition Paradigm

The systems usually repeat their behaviors. We expect
the system repeats a behavior whenever the context (a
set of preliminary conditions) for this issue comes up.
We define the context as the similar state in STD and
the ”behavior repetition” as the following state that the
system has already experienced in that situation:

S̃tn+1
= S̃tx+1

|S̃tn
∼= S̃tx , x ∈ [1...n− 1] (11)

Input 
STD, ℇ

d = firstRow(STD)

read c as ccurrent
dist = distance(ccurrent , d)

is dist ≤ ℇ ? Yes

cprevious = c

output cprevious

No

d = nextRow(STD)

Fig. 4. The method to compute the previous state



In (11), we are indicating that the future event will be an
action that the system has already accomplished whenever
it was in similar context.
Theorem 1: According to the stability paradigm in (5,
6) since two consecutive observations are similar, then the
BPP output (PBPP ) as the future state of the machine is
the most similar centroid in history of the system behavior:

S̃tn+1
= S̃tx |S̃tn

∼= S̃tx , x ∈ [1...n− 1] (12)

Therefore, according to the (12), the BPP calculates the
centroid, which is the most similar centroid to the current
observation as the future event. We show fuzzy space of
S̃tn+1 , which is produced by BPP, by the notion P̃BPP . By

PBPP we point to the defuzzified of the P̃BPP .

3.5 Aggregation of The Paradigmatic Predictions

We apply an aggregator to achieve a single number as of
the final prediction. See Fig. 1. Presuming the “XPP” and
“YPP” are two typical paradigmatic predictors, and we
define the Aggregate(PXPP , PY PP ). The predictive values
of XPP and YPP are either intersected or distinct/disjoint.
In Fig. 5 and Fig. 6 we are providing a visual representa-

tion of the intersection and distinction between two fuzzy
predictions.
If the centroids of P̃XPP and P̃Y PP are close to each
other then they make intersection area like in Fig. 5.A
and Fig. 6.A. The radius or effective range of centroids are
in L matrix. The L values correspond the radius measures
of the clusters. The predictive centroids make intersection
area if:

ABS(P̃Y PP − P̃XPP ) ≤ L valuesXPP + L valuesY PP (13)

In the case that equation (13) is valid, then the two fuzzy
numbers coming from paradigmatic predictors produce
intersection areas.
Proposition 1: If the predictors make an intersection

area (see Fig. 7.A, Fig. 8.A), then the possible area of
the occurrence of the predictive event is a member of the
intersection area of two paradigmatic predictors, and the
plausible punctual event is at the average (in half distance)
of the corresponding centroids.

P̃FDDP =P̃XPP ∩ P̃Y PP ,

P̃FDDP =Average(PXPP , PY PP ) =
PXPP + PY PP

2

(14)

If Eq. (13) is not valid, Eq. (14) will not be valid too.
The reason is that although, by (13) the plausible event

Fig. 5. 1-D intersected (A) and disjoint (B) prediction spaces

Fig. 6. 2-D intersected (A) and disjoint (B) prediction spaces

Fig. 7. 1-D aggregation of the intersected (A) and disjoint (B) XPP
and YPP

Fig. 8. 2-D aggregation of the intersected (A) and disjoint (B) XPP
and YPP

is in space between the predictors, the equation (14)
recommends contradictorily low impossibility degree for
this estimation. To resolve this problem, the FDDP creates
a third larger cluster, which includes, both of the clusters
as the predictive estimation. See Fig. 7.B, Fig. 8.B.
Proposition 2: The aggregated prediction of disjoint
paradigmatic predictions are computed by (14). This is
the new centroid of the new auxiliary cluster. The radius
of the new cluster is (R):

R = L values +
distance(P̃Y PP , P̃XPP )

2

= L values +
ABS(P̃Y PP − P̃XPP )

2

(15)

In Fig. 8.B, we show the auxiliary cluster formed by two
disjointed fuzzy numbers. The position of the new centroid
is calculated by (14), but the new radius of the new cluster
(R) is:

R = L values +
distance(P̃Y PP , P̃XPP )

2

= L values +
ABS(P̃Y PP − P̃XPP )

2

(16)

The R of (16) is demonstrated in Figure. 8.B. The final
prediction of the FDDP is a fuzzy space represented by
the symbol P̃FDDP , and the plausible measure is PFDDP ,
which is the defuzzified of P̃FDDP .
Proposition 3: We define the “Problem Solution Space
(PSS)” is the auxiliary cluster, which includes all the
individual clusters formed by paradigmatic predictors. “R”
from equation (16,15) is the radius of this cluster, and the
position of the center of this cluster is:

Pos(PSS) = Average(Pos(SPP ), Pos(RPP ), Pos(GPP ), Pos(BPP ))

(17)

The PSS indicates that the FDDP expects that the predic-
tive values are in PSS and we consider it to be impossible
that the event occurs out of the PSS specs.
Theorem 2: The “Static Programming Aggregation (SPA)”
function inputs the predictive values in type of the fuzzy
numbers from individual paradigmatic predictors and re-
turns the aggregated predictive value by:

[PSS, P̃FDDP ] = SPA(P̃SPP , P̃RPP , P̃GPP , P̃BPP )

= π.R
2
, Average(PSPP , PRPP , PGPP , PBPP )

(18)

The R values in equation (18) comes from equations
(15,16). The smaller values of “R” reveal more cer-



Fig. 9. By dynamic programming the plausible hypotheti-
cal prediction moves from average/center toward the
more precise predictor (YPP), while the PSS does not
change.

tain/reliable predictions regarding the UOS behavior in
comparison to bigger values of “R”.

3.6 Dynamic programming Aggregation (DPA)

In equation (18), we presume all the paradigmatic predic-
tors have equal weights in the SPA aggregation process.
However, in reality, one or more paradigmatic predictors
usually work more accurately than the others temporarily
or permanently. To adjust the weight of the paradigmatic
predictors in aggregation process FDDP evaluates the
functionality of the individual predictors:

PredictionAccuracy of XPP = |PXPP,n − Stn | (19)

In (19), the XPP is a typical paradigmatic predictor:
XPP = {x|x ∈ {SPP,RPP,GPP,BPP}}. Stn is the
current observation, PXPP,n is the prediction of XPP ; the
concerning process is done in time n − 1 (previous time)
and supposed to be observed in time n (current time).
Dynamic Programming Aggregation type 1 (DPA-
I): Presuming XPPi , i = 1..4 predicts more accurately
than others in time n (current time), then it will have
additional weight in average making rule 14 to predict the
Stn+1

:
PFDDP = Average(PXPPi

, PXPPi
, PXPPk

) | k = 1..4, k 6= i (20)

In DPA-I method, the temporarily effect of the “more
accurate” predictor is taken into account and at the next
observation FDDP redoes the processes in equations (19,
20).
Dynamic Programming Aggregation type 2 (DPA-
II): This reflects the permanent effect of the predictors in
prediction accuracy. DPA-II counts the number of times
each of the XPPs are the most accurate in precision since
the beginning to the current time:

PFDDP =
(iSPP .PSPP ) + (iRPP .PRPP ) + (iGPP .PGPP ) + (iBPP .PBPP )

iSPP + iRPP + iGPP + iBPP

,

iXPP ≥ 0, iXPP ∈ N

(21)

The visual presentation of the effect of dynamic program-
ming is in Fig. 9. The objective of dynamic programming
is to drive the predictions to the more accurate predictors
while the PSS does not increase. In this way, the certainty
of the predictions (“R” values) does not decrease but the
accuracy of the predictions might increase.

4. EXPERIMENTING THE FDDP

We experimented the functionality of the FDDP on the
monthly Fama-French 3-Factor Model Dataset.This data
is an indicator of the systematic risk of an investment aris-
ing from exposure to general market movements. The FF
3-factor model dataset includes three parameters, which

are (rm− rf ), SMB and HML. We predicted the data of
FF three parameters model since July 1926 to November
2016. The first step to deal with this dataset is to normalize
the dataset so that the data of fi in STD. We examined
the FDDP with multiple values of ε (an indicator of cluster
size) for values between zero and one. In overal, the SPA
predicts most accurately at ε = 0.15. In Fig. 10, we
are representing the inaccuracy rates of the paradigmatic
predictors as well as the aggregators at ε = 0.15. According
to our test results, in average the static programming
aggregation gives the best outcome; however, the dynamic
method improves the maximum amount of prediction in-
accuracy. See Table 2.
The main objective to accomplish this experiment is to

Table 2. Dynamic programming aggregation of
the FF data in ε = 0.15

Inaccuracy DPA-Il DPA-II

Average 0.02591598 0.026053

Minimum 0.000894579 0.001572

Maximum 0.215938889 0.218264

show the functionality of the clustering rule within the
paradigmatic predictors. We also reflected the applica-
tion of fuzzy logic in aggregation of predictions that led
to more reliable accuracy rates. Moreover, the adoptive
learning technique improved the results. Statistically, the
BPP predicted 25.6931608% of the observations more ac-
curate than the others, then SPP by 25.23105366%, RPP
by 24.7689464% and GPP by 24.1219963% predicted the
more accurate the FF data, which explains the character-
istic of the FF dataset. According to the related works in
section (2), the other proposed methods are customized to
and dependent on the problem context. In average they
do not propose an accuracy rate any better than 96%.
Especially, if we desire a data-driven approach that works
fast (being of O(n)), then the expected accuracy rate drops
to less than 71 − 90% [Yang et al. (2015); Mori et al.
(2016)]. Since, regression lets us model and predict the
datasets with no expert prejudgment, then we selected the
linear regression method to compare our works with it.
To compare the FDDP results on FF dataset with the
regression results, we set a linear regression model to learn
each data column by the other columns. For example,
column 1 learns the columns 2 and 3, and the column
2 learns the column 3. The average RSQ rate of the linear
regression on FF data is 0.229701927, which indicates the

SPP RPP GPP BPP SPA DPA-I DPA-II
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.03129

0.03129

0.31306

0.02765

0.00177

0.24813

0.02796

0.00123

0.250867

0.02489

0.00140

0.153433

0.02602

0.00156

0.21368

0.02591

0.00089

0.21593

0.02605

0.00157

0.21826

Fig. 10. Inaccuracy rates in prediction of FF dataset at
ε = 0.15



inaccuracy rate at the learning step. Therefore, at the
prediction time the average inaccuracy rate for prediction
is expected to be worse. The FDDP with DPA-II method
achieved the inaccuracy rate of 0.026053 at the predic-
tion time. This is though the FDDP works with no pre-
configuration and training data, but the regression model
is trained with full FF data. [Arif et al. (2013)] for classifi-
cation of the same dataset. The RSQ rate (inaccuracy rate
at the learning step) for the Kagaru Airborne Dataset is
3.064886%, while the FDDP achieved the rate of 1.3112%
for prediction inaccuracy of that dataset.

5. CONCLUSION

Four paradigms in the interpretation of systematic tem-
poral data series are considered to predict future events.
The FDDP explains the behavior of a system regarding
its predictability proportion with the paradigmatic predic-
tors. For instance, since GPP and RPP predicted the FF
data the most accurate then we resemble the FF dataset
as a radical and goal oriented dataset. We experimented
the FDDP on FF dataset to survey the accuracy of pre-
diction, and we verified the role of dynamic programming
to propose inaccurate average predictions. We recommend
the future researchers to expand the paradigmatic pre-
dictors. In particular, we suggest adding the probabilistic
predictors in the box of paradigmatic predictors and study
their role if it could improve the prediction specs such as
accuracy rate and the reliability factor. We propose also
to survey the proposed model to recognize the anomalies
in economical systems so that the systematic economical
crises could be inferred before their occurrence.
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