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Abstract: Clustering algorithms resume the datasets into few number of data points such as
centroids or medoids, which explain the entire dataset briefly. In the domain of data-driven
machine learning, the more precision with the clustering rule leads directly to more precise
classification, prediction, and recognition. We propose an efficient clustering method, which
applies the paradigms - mainly 3D Gaussian model - to estimate the optimum cluster number,
cluster border, and congestion coordinates to model the datasets of the natural distributions.
This approach considers both qualitative and quantitative features of the dataset and calculates
the best scale to analyze it. We used fuzzy logic to compare the models with data, to generate
and rank the hypotheses, and finally to reject or accept the assumptions. The proposed approach
which is called Fuzzy Gaussian Paradigmatic Clustering (FGPC) algorithm is used as the basis
of a fast (with the complexity order of O(n)) and robust algorithm for identifying fuzzy models.
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1. INTRODUCTION

In the heart of data-driven modeling methodologies, there
are clustering processes that cohort similar data points
while avoiding grouping of the dissimilar data points.
The purpose of the grouping operation is to extract
natural groupings of data from a large data set and to
discover the strategic data points (or coordinates on the
Cartesian plane) that represent the corresponding data
groups. Improvement in precision and methodology of
the clustering operation leads to a better perception of
a system’s behavior, more precise classification, and more
confident prediction (Sun et al. (2018); Hruschka et al.
(2009)).

Technically, the traditional and conventional clustering
algorithms look for congestion with the datasets if drawn
on the Cartesian plane (Sun et al. (2018); Hruschka et al.
(2009); Bezdek (2013); Hartigan and Wong (1979); Amir-
javid et al. (2014b,a)), and recommend the congestion
centers as the cluster centers. However, we know two
interpretations of the term congestion: our first take on
the congestion is a quantitative view and refers to the
distribution of the data points in particular common re-
gions at the Cartesian plane. For instance, the K-means
algorithm (Hartigan and Wong (1979)) finds the crowded
regions and returns the congestion centers as the centroids.
However, there are qualitative approaches such as Fuzzy
Subtractive Clustering (FSC) (Chiu (1994)) which ignore
the mentioned quantitative features but focus on distribu-
tion of the data values. In this work, we are proposing a

fuzzy Gaussian paradigmatic clustering (FGPC) approach,
which lets cluster estimation within complexity order of
O(n). The data of distributions are the primary target
of this algorithm, and the returnee of the algorithm is a
model that considers both of quantitative and qualitative
features of the dataset in modeling.

FGPC escapes comparison of data points to each other,
thus significantly reduces the complexity order of the mod-
eling process. Alternatively, it compares the data with a
basic model and explains the data with likelihood regard-
ing that model; and for the particular case of the natural
distributions, we are using a 3D Gaussian filter. Other
than the complexity order, and attention to the qualitative
and quantitative features of the dataset, we propose to
consider also the resulted classification precision as the
second criterion to compare the clustering algorithms. By
classification accuracy, we address the confidence/strength
in acceptance or rejection of the samples to the discovered
models. Therefore, as the second novelty of this work,
since the FGPC considers both of the quantitative and
qualitative features of the data, then it proposes differ-
ent coordinations rather than the returnees of the major
clustering algorithms such as K-means, Fuzzy C-Means
(FCM), and FSC which leads to better classification pre-
cision and compatible efficiency rates.

This paper is organized as the following. In section (2)
we discuss the problem statement of the current work.
In section (3), we are proposing our FGPC model. In
the section(4), we experiment the proposed model and
compare the accuracy of the results, and the functionality



of the model with other works. Finally, we conclude the
present paper and propose suggestions to the interested
researchers in section (5).

2. PROBLEM STATEMENT

By reviewing some recent works on cluster analysis and
machine learning (Rouzbahman et al. (2017); Sanz et al.
(2015); Vluymans et al. (2016); Bassoy et al. (2017)) it
can be inferred that today the machine learning experts
explore the study through building a model from sample
inputs which are usually transformable to a set of IF-
THEN rules. The conversion of the dataset to model is the
core functionality of the clustering algorithms and classifi-
cation is the basic application of the models. Convention-
ally, the main traditional clustering algorithms such as K-
Means, FCM, and FSC and their derivations estimate the
cluster centers in forms of single points called centroids
and medoids within a symmetric range of influence or
cluster radius. Practically, the machine learning experts
use that information in fields of prediction, trend estima-
tion, pattern recognition, and other sorts of data analytics
applications.

The existing major and popular clustering algorithms such
as K-means, FCM, and FSC are either purely qualitative
or purely qualitative. The quantitative methodologies such
as K-means focus on distribution of the data points in
particular regions of the Cartesian plane and estimate
the center of the congestions as the centroids. On the
other hand, the qualitative approaches such as FSC focus
on distribution of the data values, and they select the
data point that is the most similar to the neighbor data
points as the medoid. These approaches face relatively
weak classification confidence/accuracy rates (Sanz et al.
(2015); Vluymans et al. (2016)) for two specific reasons.
The modeling with quantitative methods is fast but not
efficient; since with a dataset, several congestions at closed
common coordinates might occur then it leads to difficulty
in separation of the data groups and consequences the
imprecision with classification. Even though, the quali-
tative approaches are more efficient; they face again the
weak classification confidence/accuracy rate problem. It is
because they ignore the weight of the regions with the
higher number of data points. By comparing the data
points to each other, the traditional approaches are in the
order of O(n2) (Tan (2005)), which makes it very time-
consuming for modeling, classification and prediction of
large datasets. In prior to begin the clustering rule, they
require knowing expert configurations such as number of
clusters or the influence range. They consider either the
qualitative or quantitative features of the data; while,
the proposal of a compromiser method could decrease
the error with cluster center estimation process. In this
paper, we propose a method to overcome the limitations
mentioned above and improve the clustering process of
natural distribution datasets regarding the classification
accuracy, efficiency and complexity order.

3. MODELING THE FGPC

Let us consider the matrix dn,m indicates n of the m-
dimensional data of the series D. The d2n,m,m is a n ×

Fig. 1. 3D Gaussian curve on the Cartesian plane as the
paradigm for clustering.

m×m matrix which holds the corresponding pairs of the
xn,m:

d21:n,1:m,1:m =

n∏
i=1

di,1:m × di,1:m (1)

The paradigm P is a mathematical model, which repre-
sents relationships between points as of a mathematical
function.

P = R(x, y)|x, y ∈ [0, 1] (2)

Therefore, a paradigm or a training model is a relationship
such as a mathematical function. In this paper, by the
notion PG we refer to the specific paradigm that we
compare the datasets of our experiment to a 3D curve
of a Gaussian distribution. PG sits in the center of a one
by one square and its maximum height is one. See Fig.1.
The equation that makes the model mentioned in Fig.1 is
as of the following:

PG = Z(x, y) = 1.72× e−
(x−0.5)2+(y−0.5)2

0.05 (3)

In equation 3, the value of Z(x, y) indicates the quantity of
the data points at the (x, y). Therefore, the PG indicates
explicitly the congestion of the matching dataset around
the center of the Cartesian plane:

µCR=(0.5,0.5) = 1.72× e−
(x−0.5)2+(y−0.5)2

0.05 (4)

By equation 4, we are indicating that the possibility degree
of being the congestion center of the dataset (cluster
representatives or CR) decreases smoothly with the slope
of Z ′. The FGPC will model the datasets how much they
respect this rule in equation 4. The paradigm of equation
(3) is used to compare the datasets within variant scales.
The FGPC segments the data into equal-size rectangles
while a is the width, and b is the length of the rectangle.
φa and φb are the number of the segments that the FGPC
divides the rectangle edges at each step:

a =
1

φa
, b =

1

φb
| φa, φb ∈ N (5)

Since, a and b divide the data in some steps by the rate
of 1

φ , and they have variable values, then we refer to the

value of a and b at each step by the as and bs. By dividing
the data into equal-size rectangles, we will have a list of
a in b regions. We refer to each area by the notion As,i
or Aa,b,x,y. s indicates the segmentation strategy, and i is
the index of the segment created by that segmentation
number. By the notion qs,i or qa,b,x,y we refer to the
number/quantity of the data points in the corresponding
regions. To monitor the segmentation process there we
apply a corresponding matrix: M is a two-dimensional list
that holds the information of the regions at each step the
FGPC segments the data. The concerning information is:
step number s, a, b, coordinate x, coordinate y, and the
proportional number/quantity of the data points in the



rectangle which is q|q ∈ [0, 1], q =
qa,b,x,y

n . For instance,
the first row of the M is as of the following:

Ms=1 =
( s i a b x y q

1 1 1 1 0 0 1
)

(6)

In 6, s is the segmentation step, and i is the CR index.
a, b, x, y, and q indicate the coordination of the CR. By
the parameter q the FGPC reflects the effect of the
“local quantitative features of the dataset”, while by
considering the existence of the data points in separate
regions the FGPC reflects the qualitative characteristics of
the data points. The datasets within different scales show
different qualitative and quantitative properties leading
to estimation of various congestion centers. Therefore,
discovering a single invariant entity is a critical issue to
model the data. For this objective, the FGPC partitions
the data into smaller regions and analyzes the data of each
area separately, which means it compares the data of each
partition by the PG:

Dists,i = Distance(PG, [xs,i +
as
2

; ys,i +
bs
2

; qs,i]) (7)

By equation 7, the FGPC measures how much the data
distribution with D is alike the PG. Since there are
probably more than one CR at each segmentation step,
then we propose three other parameters as the criteria of
comparison:

AIDs =

as×bs∑
i=1

Dists,i

n

XIDs =Max(Dists,i)|
i=as×bs
i=1

IIDs =Min(Dists,i)|
i=as×bs
i=1

OCEs =Average(AIDs, XIDs, IIDs)

(8)

The FGPC continues the segmentation process up to
status whereas further segmentation does not lead to
further congestions at around the center of the Cartesian
plane but the corners:

IF (OCEs+1 ≥ OCEs) THEN

ISE = Ms;

Stop Segmentation();

END IF

We call the optimum scale to model the data by invariant
scale entity (ISE). This model indicates a segmentation
strategy by which the data is viewed the most alike
a 3D Gaussian distribution (See equation 4). In this
way, the FGPC defines the dataset as a fuzzy Gaussian
distribution with five parameters which are: List of Cluster
Representatives (LCR), “minimum inter distance” (IID),
“maximum inter distance” (XID), “average inter distance”
(AID), and Overall Classification Error (OCE).
So far, we have covered the overall structure of the FGPC
algorithm; however, there are more details included.
Definition 1: Density of the data points (ρ). This is
to specify the minimum number of data points in an area
of one-by-one. The FGPC recognizes a section as equal
as empty if the corresponding number of data points is
smaller than ρ:

IF (
qs,i

as × bs
≤ ρ) THEN

Remark Empty Zone(s, i);

END IF

By remarking the low-dense or empty zones, the FGPC
prevents further analysis of those zones.
Theorem1:Cluster. The area As,i is dense if qs,i ≥ ρ. A
dense area is modeled by comparison to PG. The center

of the As,i is the center of the zone Aj . With FGPC each
dense zone is a cluster.
Definition 2: Cluster Representative (CR). The
cluster Representative of the zone As,i is in the following
coordinations:

CRs,i.x = xs,i +
as
2
, CRs,i.y = ys,i +

bs
2

(9)

The cluster center is derived from a dense zone, else
since the required congestion is not formed then further
processes to calculate the cluster and cluster center would
be ruled out. The circle surrounding the position Yj and
Xj is the corresponding cluster:

(x− CRs,i.x)2 + (y − CRs,i.y)2 = (
aj + bj

2
)2 (10)

Definition 3: Model Fitness Parameters (MFP ).
This is the collection of the following parameters: XID,
IID, AID, and OCE.
Definition 4: The List of Cluster Representatives
(LCR). The coordinations of the cluster representatives
are in the vector LCR. By LCCs,i we refer to the cluster
center of the zone As,i. The coordinations of the items of
the LCR come from equation (9).
Definition 5: Dataset model. The model of dataset
D is the collection of PG, LCR, and MFP including
M and s as meta data. The FGPC describes the model
of the dataset D in comparison to a predefined model
here PG. The PG, MFP , and LCR indicates the prop-
erties of such comparison. The initial visual comparison
of dataset D at the first step, is to compare it with a
3D Gaussian curve that rises in center of the Cartesian
space. In equation (3) the mathematical representation
and in Fig. 1, the visual representation of the Gaussian
model is presented. At each step, the centroid estimation
error per each coordination (x or y axis) is maximum 0.5.
Therefore, in the maximum error in centroid estimation is:√

0.52 + 0.52 = 0.7071. Although, regardless of the data
content, the initial presumption of the FGPC is a Gaussian
curve formed around the (0.5, 0.5). In the next step, the
FGPC segments the possibilistic area into smaller zones,
so that the CR estimation error decreases.
Theorem 2: Invariant Scale Entity (ISE). This is the
collection of optimum MFP , and the corresponding LCR
including the M and s as the meta data. For calculating
the ISE, the FGPC continues segmentation of data into
subsections, and matching models to data and LCR items
until the model fitness parameters (MFP ) match the
minimum requirements (initiated by the user), or until the
matching errors do not improve (or even worsen). In other
words, whenever the matching errors at steps by further
segmentation increase then the segmentation and model
fitting process stops. The algorithm to calculate the ISE
and the MFP is in Fig.2. By the algorithm in Fig.2 the
FGPC archives a sort of data segmentation that matches
the most economically to a Gaussian distribution; however,
the default Gaussian model (see equation (3)) might be far
similar to the current ISE. The ISE is a sort of collection
and the best scale to analyze D is: ISE.s, which indicates
the most economical count of clusters to model D.
Theorem 3: The optimum Invariant Scale Entity
(ISE∗). To calculate a better fitting Gaussian ISE to data
the FGPC moves the default Gaussian model toward both
of x and y dimensions partially. In fact, the PG might be
adjusted to LCR elements in a way that the Gaussian



model fits better to the dataset. For this objective, the
model is moved partially to right and left, and up and
down. In this way, while the distance of the LCC members
to the Gaussian model decreases then the moving act
continues. Finally, the FGPC arrives at a coordination that
no move from there toward any of the axes would improve
the MFP. See the algorithm in Fig. 3. By the algorithm in
Fig. 3, the FGPC represents its best estimation to describe
data segmentations as parts of a Gaussian distribution.
The LCR includes centroids, while MFP includes the
reasoning criteria to inclusion of a data point to the trainee
dataset.
Definition 6: Efficiency. By the criterion efficiency, we
are addressing how much an algorithm is advantageous
to achieve a fundamental goal of clustering, which is the
maximization of the inter-cluster distances while minimiz-
ing the intra-cluster distances:

Efficiency =

as×bs∑
k=1

as×bs∑
j=1

Distance(CRk, CRj)

as×bs∑
c=1

mc∑
i=1

Distance(ClusterMemberc,i, CRc)

, k > j (11)

In (11), the mc indicates the number of clusters members
in cluster c. By the equation (11), we are indicating that
the efficiency is a ratio representing the proportion of the
sum of intra-cluster distances to the sum of inter-cluster
distances. Obviously, if an algorithm proposes far centroids
while keeping cluster members closed to each other, then
we recognize it as an “efficient” approach.

4. EXPERIMENTING THE FGPC

Efficient, precise, and fast clustering of the data points of
natural distributions within complexity order of O(n) is
the main subject of this experiment. For this objective,
we selected analysis of the Iris dataset. It consists of the
measurements of four attributes of 150 iris flowers from
three types of irises’ (Setosa, Versicolour, and Virginica)
petal and sepal length, stored in a 150x4 matrix. The rows
of this dataset being the samples and the columns being:
Sepal Length, Sepal Width, Petal Length and Petal Width.
We survey the functionality of the FGPC in two stages
including the qualitative functionality of the FGPC (the
success in the separation of different concepts and also in
the union of the similar concepts) and quantitative func-
tionality (the number of times the algorithm successfully

Fig. 2. The FGPC algorithm to make ISE

Fig. 3. Fitting the Gaussian Model to centroids

classifies the Iris items).Then in the context of the single
cluster center, we compare the results with other popu-
lar available approaches (K-means, FCM, and subtractive
clustering).

4.1 Calculation of the best scale (ISE.s) to model the Iris
data

To find the ISE, the FGPC requires knowing the optimum
number of clusters or the best scale (ISE.s) for modeling
the dataset so it begins partitioning the data into (here
equally sized) rectangles (here squares). At each step, it
counts the number of data points in each partition (qs,i or
qa,b,x,y) and indicates each partition by a 3D coordination.
Then FGPC compares the 3D data points with the basic
paradigm (PG) to find the Euclidian distance between
the structural model and the 3D points in space. See
equation (7). If the distance of the 3D points and the
Gaussian model improves by further sectioning the data,
then the FGPC continues the segmentation process. It
stops whenever further segmentation does not economise
or does not improve the distance between the 3D points
and the underlying paradigm. See Fig. 2.
In this experiment, at the first step the first two columns
of the Iris data are normalized using the following:

||D.x|| =
Iris(1 : 150, 1)−min(Iris((:, 1))

Max(Iris((:, 1))−min(Iris((:, 1)) + 1
,

||D.y|| =
Iris(1 : 150, 2)−min(Iris((:, 2))

Max(Iris((:, 2))−min(Iris((:, 2)) + 1

(12)

In the next step, in order to discover the ISE, the FGPC
divides each axis of the dataset into equally sized i|i =
{1, 2, ...} parts. Each time the data is divided into smaller
sections the data is matched in terms of similarity degree
with a 3D Gaussian model. The algorithm stops the seg-
mentation process when it determines further partitioning
of data does not produce better similarity degrees to the
Gaussian paradigm. In this part of the experiment by se-
lection of the values i|i = {1, 2, 3, 4, 5, 6, 7} for parameters



Fig. 4. Classification error measures of FGPC basic model
on Iris data

Table 1. The fuzzy centroids of the Iris data.
z represents the possibility degree to be a

centroid.

Segments No. Segment index x y z Cluster radius

1 1 0.5 0.5 1 0.5

2 1 0.25 0.25 0.4067 0.25

2 2 0.25 0.75 0.2267 0.25

2 3 0.75 0.25 0.3067 0.25

2 4 0.75 0.75 0.0600 0.25

φa and φb (see equation (5)), the FGPC segmented the
data totally seven times into once 1, then 4, 9, 16, 25, 36,
and finally 49 sections. The classification error measures
of the clustering, which are the “Euclidean distances”
between the data points and the basic Gaussian paradigm
are in Fig. 4. As this is shown in Fig. 4, by beginning
the segmentation from single partition to four squares, the
overall classification error improves; however, by further
data partitioning the OCE factor does not improve notice-
ably. By continuing the data segmentation after quarterly
partitioning, the worst case of error (XID) worsens, and
the best case of clustering (IID) improves; however the
average error rate (AID) would not necessarily improve
and four segments/clusters is setted.

4.2 Iris Dataset Modeling with Single Cluster Representative

After that the optimum number of clusters is determined
by the FGPC, which indicates ISE.s = 2 then it deter-
mines the cluster center coordinations. The 3D coordina-
tions of the centroids are in Table 1. According to the
algorithm proposed in Fig. 2, the FGPC classification error
rate might be improved by transiting the center of the
basic paradigm from [0.5, 0.5] toward left and right, and
toward up and down. The 3D models, which are the data
points in Table.1 give the best fitting rates (or the least
total Euclidean distance) when the center of the paradigm
is at [0.5, 0.45]. In other words, the FGPC could find the
best match of the Gaussian paradigm to the Iris data using
the following:

G∗ = Z∗(x, y) = 1.72× e−
(x−0.5)2+(y−0.45)2

0.05 (13)

By the use of symbol ∗ we are referring to the optimum
results of the FGPC rather than the primary results given
in Table. 1. By the use of equation in 13, the FGPC
proposes to return the coordination C∗ = [0.5, 0.45] as the
cluster center of the Iris data. However, since the fitting
steps are in size of 0.01, then Overall error measure for

this coordination is
√

0.12 + 0.12 = 0.14142135. By the
C∗∗ we are referring to the optimum centroid with the
minimized error caused by the fitting process. Hereafter,
by the FGPC∗ we are referring to the results of the
FGPC those are taken by the fitting process. A comparison

of results between FGPC, and the other popular major
clustering algorithms are in Table 2. According to Table
2, the FGPC returns a different coordinations rather
than the Mean, K-means, FCM and Fuzzy Subtractive
Clustering (FSC) methods for the Single Cluster Center.
The overall classification error rate of the FGPC is also
different, because it improves coverage of the data points
those are far from the cluster center. This is though the
FGPC recommends to segment the data into four sections.
When the number of clusters is more than one, then
the problem of clustering efficiency arises. By the term
“clustering efficiency” we mean to estimate cluster centers
that are far from each other while it minimizes the intra-
distance between the cluster members. In Fig. 5 we are
showing the FGPC efficiency in clustering and precision
in classification in comparison with the other approaches.
By four clusters of data, in regard of inter-cluster distance
factors, the FGPC gives the best classification error rates.
In regard of cluster estimation efficiency the subtractive
clustering algorithm gives the best rate; however, the
FGPC shows better efficiency rates rather than the K-
means and FCM.

4.3 Experimenting quantitative functionality of the FGPC

Applying the qualitative reasoning and according to the
information in Fig. 4 the optimum number of clusters to
group the first two columns of the Iris data is four. This
is though in the real world the Iris data contains three
classes. All 150 items of the Iris data are classified using
the four clusters, once by FGPC and once by FGPC*.
We call the real world classes of the Iris by “CLASS 1”,
“CLASS 2”, and “CLASS 3”. In Iris, there are 50 items
in each class. These are the known classes and we use
them to verify how much the algorithm classifies according
to the reality. We refer to assignments of the algorithm
classification by “GROUP 1”, “GROUP 2”, “GROUP 3”,
and “GROUP 4”. Since the number of the clusters are
bigger than the number of classes, then the algorithms
over-cluster the data. In other words, the FGPC identifies
two groups of data points inside class of “CLASS 3”; how-
ever, the algorithm which matches perfectly the real world
should recognize these items within one group. Therefore,
we consider the smaller rate of the over-clustering as an
indicator of the better matching of the algorithm to the
real world. Considering the over-clustering, then the true
classification rate are in Table. 3. The FGPC* gives a
lower amount of over-clustering in comparison to the other
main clustering algorithms. In other words, it classified a
bigger number of similar items into common groups, while
it avoids better the separation of the similar objects. As

Fig. 5. FGPC performance in comparison with other
approaches



Table 2. Comparison of the centroid estimation error measures with three major algorithms

Cluster center coordinations Measured classification errors

Method x y XID AID IID OCE

FGPC 0.5 0.5 0.586 0.2804 0.0556 0.307333

FGPC* 0.5 0.45 0.5831 0.2704 0.0333 0.2956

FCM 0.3888 0.4166 0.6961 0.2672 0.00000000035 0.3211

Subtractive clustering 0.4595 0.36 0.6479 0.6479 0 0.303767

Mean 0.4236 0.2917 0.7364 0.2886 0.0069 0.343967

Table 3. Over-clustering of Iris data by FGPC and other major clustering approaches

Real world classes Revised true classification rate

Iris real world classes CLASS 1 CLASS 2 CLASS 3

Number of items in each class 50 50 50

Number of identified subclass

items GROUP 4 by FGPC
N/A N/A 15 0.68

Number of identified subclass

items GROUP 4 by FGPC*
N/A N/A 11 0.7933

Number of identified subclass

items GROUP 4 by FCM
N/A N/A 21 0.7733

Number of identified subclass

items GROUP 4 by FSC
N/A 12 N/A 0.76

a result, the FGPC* identified more precisely the natural
groupings within the data of natural distributions of the
Iris data, which is the consequence of the efficient and
precise clustering of the data within the modeling process.

5. CONCLUSION AND FUTURE WORKS

The proposed FGPC method segments the datasets of
the natural distributions into sections until a Gaussian
distribution of the data points’ quantities and their values
is found. That particular segmentation is an invariant
scale model, which represents the best scale to analyze
the dataset and best number of clusters for centroid esti-
mation. The main problem that the FGPC deals with is
consideration of both qualitative and quantitative features
of the data in clustering process. In overall, we recognize
the FGPC standing between the purely qualitative and
purely qualitative methods. In comparison with quanti-
tative approaches, it gives better efficiency rates, while
compared to qualitative methods it provides better classi-
fication error rates.Although the existing major clustering
methods require basic configuration (expert idea) to es-
timate the number of clusters and the cluster size, the
FGPC method estimates this parameter by complexity
order of O(1).This would help to design the more precise
predictors, that act as fast as of complexity order of O(n).
The proposed paradigmatic clustering method targets the
data of natural distributions; however, by considering dif-
ferent paradigms we will propose further efficient and high-
performing methodologies for data-mining.
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