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Abstract 

 

Grocery retailers need accurate sales forecasts at the Stock Keeping Unit (SKU) level to effectively 

manage their inventory. Previous studies have proposed forecasting methods which incorporate the 

effect of various marketing activities including prices and promotions. However, their methods have 

overlooked that the effects of the marketing activities on product sales may change over time. 

Therefore, these methods may be subject to the structural change problem and generate biased and 

less accurate forecasts. In this study, we propose more effective methods to forecast retailer product 

sales which take into account the problem of structural change. Based on data from a well-known US 

retailer, we show that our methods outperform conventional forecasting methods that ignore the 

possibility of such changes. 
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1.  Introduction 

 

Grocery retailers rely on accurate sales forecasts to coordinate their supply chains (Fildes, Ma, & 

Kolassa, 2018). Inaccurate forecasts of product sales can lead to out-of-stock conditions or inflated 

costs due to overstocking. When a specific item is out-of-stock, retailers directly lose out on profit 

from the missed sale of the item. If out-of-stock situations happen on a regular basis, it can further 

lead to consumer dissatisfaction which, in the long term, can lead to customers permanently switching 

to other retail chains (Corsten & Gruen, 2003). To avoid such situations, retailers may intentionally 

overstock to maintain a high level of customer satisfaction. However, this significantly raises 

inventory costs (e.g., capital cost, warehousing, and deterioration) and reduces profits (Cooper, Baron, 

Levy, Swisher, & Gogos, 1999). In 2014, retailers in North America made a loss of $634.1 billion due 

to products being out-of-stock and spent $471.9 billion on overstocking (OrderDynamics, 2015). One 

solution to mitigate this dilemma is to generate more accurate sales forecasts at the Stock Keeping 

Unit (SKU) level which improves the effectiveness of supply chain management by reducing the 

bullwhip effect and enabling Just-In-Time delivery (Ouyang, 2007; Sodhi & Tang, 2011). 

 

Some recent studies have proposed effective methods to forecast retailer product sales at the SKU 

level. For example, Gür Ali, SayIn, van Woensel, and Fransoo (2009) proposed the regression tree 

method with a range of variables constructed from the sales, price, and promotion of the focal 

product. Huang, Fildes, and Soopramanien (2014) proposed two-stage general-to-specific 

Autoregressive Distributed Lag (ADL) methods. Their methods incorporate the promotional 

information not only of the focal product but also of competing products within the same product 

category. Ma, Fildes, and Huang (2016) further developed three-stage forecasting methods which 

integrate the promotional information of the products across related product categories. The various 

methods in the literature have been explicitly surveyed by Fildes, Ma, et al. (2018). 

 

These studies assume that the impact of marketing activities such as the price and promotions on 

product sales remains constant over time. However, in practice, the effect of prices and promotions 

may change due to many uncontrollable external factors. For example, customers may become more 

sensitive to prices and promotions during an economic crunch period (Wildt, 1976; Wildt & Winer, 

1983). Also, customers may change their tastes due to a change in their familiarity with the product, 

or with a change in their lifestyle and social status (Meeran, Jahanbin, Goodwin, & Quariguasi Frota 

Neto, 2017). When a new competitor enters the market, the effect of prices and promotions of the 

focal product may decrease not only because of the marketing activities launched by the new 

competitor but also because customers seek variety. In 2014, the German discount retail chain Aldi 

opened more than 400 stores in the United States, leading to changes in customer grocery purchasing 

habits which then exerted severe competitive pressure on other retail chains (Loeb, 2014). 
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Under any of these circumstances described above, these forecasting models assume constant effects 

of the price and promotions but may potentially be subject to the problem of structural change (Allen 

& Fildes, 2001). As a result, the forecasts generated by these models might be biased and less 

accurate. The structural change problem has been addressed by previous studies (see a summary in 

Clements & Hendry, 1999) but overlooked in the marketing domain of forecasting retailer product 

sales. In this study, we design novel methods to forecast retailer product sales by taking into account 

the problem of structural changes. Specifically, we examine the forecasting performance of the 

Autoregressive Distributed Lag (ADL) models with the Intercept Correction (IC) method and the 

ADL model with the Estimation Window Combining (EWC) method for retailer product sales. The 

EWC method is to combine different sets of forecasts generated by the same model but with different 

estimation windows (Pesaran & Timmermann, 2007). The IC method is to make corrections to the 

final forecasts of the model based on an estimate of the forecast bias (Clements & Hendry, 1998, 

1999).  

  

Our research falls into the domain of retail forecasting and makes the following contributions. First, 

our research is, as far as we are aware, the first to investigate the problem of structural change in the 

area of forecasting retailer product sales. The empirical results based on the data suggest that our 

methods have superior forecasting performance compared to conventional models which do not 

account for the problem of structural change. Second, our methods focus on effectively utilizing 

available promotional information and thus do not incur the costs of collecting additional data (also, 

in reality, collecting additional data may not even be possible). Third, our research provides an 

evaluation of various forecasting methods. The results offer operational guidance to not only retailers 

but also to manufacturers when competitive promotional information becomes unavailable. Finally, 

our methods are fully automatic (e.g., the specification of the model does not rely on human 

intervention but algorithms) and are easy to implement, which meets the requirement by retailers who 

nowadays sell tens of thousands of products.  

  

The remainder of the paper is organized as follows. Section 2 initially summarizes previous studies 

which forecast retailer product sales at the SKU level: we then discuss those findings which justifiy 

why the effect of marketing activities, including price and promotions, may change over time. Section 

3 describes the structural change problem and the methods which can be applied to mitigate the 

problem. Section 4 explores the data that we use for empirical analysis. In section 5, we introduce our 

proposed three-stage forecasting methods. Section 6 describes the experimental design for evaluating 

the alternative models. Section 7 summarizes and discusses the results to compare the methods’ 

performances. In the last section, we provide recommendations for retailers, address various research 

limitations, and highlight directions for future research. 
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2. Literature review 

2.1 Forecasting retailer product sales at the SKU level 

 

In practice, some retailers forecast their product sales at the SKU level using a two-stage ‘Base-lift’ 

method (Cooper et al., 1999; Fildes, Ma, et al., 2018). The method entails dividing the data into 

promoted and non-promoted periods based on whether the focal SKU is being promoted. Specifically, 

they may use simple univariate methods to generate the ‘baseline’ forecasts for the non-promoted 

period and then make adjustments for the ‘lift’ effect of any upcoming promotional events. The 

adjustment could be estimated by relying on the experience of brand/category managers or based on 

the lift effect by the previous promotional event (Fildes, Goodwin, Lawrence, & Nikolopoulos, 2009; 

Fildes, Nikolopoulos, Crone, & Syntetos, 2008). A stream of research studies has been devoted to 

helping retail managers effectively tackle their own cognitive biases when they make the adjustment 

typically reflecting their understanding of the market conditions (Fildes, Goodwin, & Önkal, 2018; 

Petropoulos, Fildes, & Goodwin, 2016). Some other studies also divide the data into promoted and 

non-promoted periods but estimate the ‘lift’ effect with model-based forecasting approaches. For 

example, the PromoCast™ system relates the ‘lift’ effect to various driving factors including previous 

promotions of the focal product, the characteristics of product categories and stores, and manufacturer 

information (Cooper et al., 1999; Cooper & Giuffrida, 2000; Trusov, Bodapati, & Cooper, 2006). 

Aburto and Weber (2007) used Neural Network models to estimate the ‘lift’ effect from sales 

promotions on the product though their evaluation is only based on a very limited number of products. 

A limitation for all these methods is that, as they split the data into two periods, they tend to overlook 

the information in the promoted period when forecasting the product sales in the non-promoted 

period, and vice versa.  

 

Some other studies have proposed holistic methods which directly generate the final forecasts. Kuo 

(2001) used Fuzzy Neural Network models to forecast product sales of daily milk in convenience 

stores. However, their models were evaluated based on a very limited number of products. Gür Ali et 

al. (2009) proposed the regression tree method and the support vector regression (SVR) method to 

forecast retailer product sales at the SKU level for the non-perishable food categories. Their methods 

incorporated variables that were constructed based on statistical measures of past information (e.g., 

the sales, prices, and promotions) of the focal product and showed overall superior forecasting 

performance. Their methods did not perform better than the Base-lift method for the time period when 

the focal product was not being promoted. One of the limitations of their methods was that they 

overlooked the effect of competitive promotions on the sales of the focal product. Divakar, Ratchford, 

and Shankar (2005) proposed the CHAN4CAST method to forecast product volume sales for 

beverage manufacturers. Their method incorporated the promotional information for a small number 
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of known competitors of the focal product (e.g., the main competitors, Coca versus Pepsi). Their 

method, however, is not applicable to retailers where there are hundreds of competitive products. 

Huang et al. (2014) proposed two-stage Autoregressive Distributed Lag (ADL) methods to forecast 

retailer product sales at the SKU level, which was the first to account for the competitive promotional 

information from the whole product category where there is a large number of competitive products. 

They initially implemented a variable selection procedure to identify the most important variables for 

the competitive activities within the product category. Then they specified the ADL models following 

a general-to-specific modeling strategy based on these selected variables. Their methods had superior 

forecasting performance for five grocery categories such as Bottled Juice, Soft Drinks, and Bath Soap. 

However, their methods relied on intervention by human experts and thus do not directly meet the 

requirements for automatic modeling which is considered essential by today’s retailers. Ma et al. 

(2016) proposed three-stage ADL methods which further integrate the promotional information not 

only from the same product category but also from other related product categories. Their methods 

were extensions of those in Huang et al. (2014) and also benefited from an automatic model 

specification procedure. Their methods outperformed the Base-lift benchmark model for 15 food 

product categories. These studies suggest that promotional information is valuable in forecasting 

retailer product sales, and this is reflected in new evidence shows that modern commercial software 

has also started to integrate promotional information (Fildes, Ma, et al., 2018). However, all the 

studies described here assume constant effects from the marketing activities. 

 

2.2 The changing effect of marketing activities  

 

Previous studies of retail demand have suggested that the effect of marketing activities can change 

over time. Wildt (1976) and Wildt and Winer (1983) found that the effect of the marketing activities 

may change due to a change in economic conditions, consumer tastes, and the competition 

environment. Customers may find price reductions and promotions more attractive during an 

economic crunch compared to other time periods. Mahajan, Bretschneider, and Bradford (1980) found 

that the effect of prices and promotions changes during different stages of the product lifecycle. 

Meeran et al. (2017) find that customers have different tastes and preferences when they accumulate 

more knowledge about the product, when they seek variety, and when they reach a different social 

status and then decide to adopt a different lifestyle. Changes in the behavior of individual customers 

may eventually lead to substantial change in the aggregate effect of the marketing activities on 

product sales. Pauwels and Srinivasan (2004) found that the introduction of store-own brands in a 

product category reduces the price elasticities of premium national brands and increases price 

elasticities of second-tier national brands. The effect of the marketing activities can also change 

depending on how retailers communicate their marketing events. For example, retailers may promote 

products through mobile applications and adopt new prominent promotional shelf tags, which can 
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make promotions more effective (Dinner, Heerde, & Neslin, 2015). The effect of the marketing 

activities can also change due to an update of their content and format. For example, retailers tend to 

launch promotional events of a wide range of types such as multi-buy promotions, store flyers, mobile 

apps, billboard advertising, and temporary price reduction (TPR), or TPR for shopper-card holders 

only. Retailers may initially promote a product with ‘Buy One Get One Free’ but then update the 

content to ‘Buy One Get the Second for Half Price” months later. They may change the format of the 

feature advertising from weekly store flyers to mobile apps and also redesign the racks of their 

display. These changes in the content and format of marketing activities can be expected to lead to 

changes in consumer response. 

    

3. Dealing with the problem of structural change  

 

In practice, the effect of marketing activities such as prices and promotions may change due to 

influencing factors described in section 2.2. Under this circumstance, conventional forecasting models 

that assume constant effects of the marketing activities may be subject to the structural change 

problem (Allen & Fildes, 2001). The impact of the structural change problem on the model’s 

forecasting performance has been addressed by previous studies but not in retailing context2 (e.g., 

Castle, Doornik, & Hendry, 2008; Hendry, 2018; Pesaran & Timmermann, 2007). If the model is 

subject to the structural change problem, it will generate biased and potentially less accurate forecasts 

(Clements & Hendry, 1999). Pesaran and Timmermann (2007) demonstrated an example based on the 

calculation of a simple regression model. Other studies showed examples for more general cases (e.g., 

models with endogenous explanatory variables) using Monte Carlo simulation (see Clements & 

Hendry, 1999; Pesaran & Timmermann, 2005, 2007)3.  

 

In this study, we implement two methods to mitigate the problem of structural change. The first 

method is the Intercept Correction (IC) which specifies non-zero values for the model’s errors in the 

forecast period given that the model is subject to structural change (Clark & McCracken, 2007; 

Clements & Hendry, 1994, 1999). If the model is subject to structural changes, we can estimate the 

forecast bias, e.g., by taking the average value of the most recent residuals, e.g., Bıas�𝐼𝐼𝐼𝐼 =  1
𝜆𝜆
∑ �̂�𝑒𝑇𝑇−i𝜆𝜆
𝑖𝑖=1 , 

where 𝑇𝑇 is the forecast origin, 𝜆𝜆 is the number of residuals, and �̂�𝑒𝑇𝑇−i is the residual for time period 

𝑇𝑇 − i. When 𝜆𝜆 = 1, the bias will be estimated to be the residual at the forecast origin, i.e., �̂�𝑒𝑇𝑇−1, (e.g., 

Chevillon, 2016). We then add the estimated bias back to the out-of-sample forecasts. The final 

                                                 
2 The term ‘structural change’ is used interchangeably with the term ‘structural break’ in the literature. In this 
study, we use the term ‘structural change’ as in the retailer context we expect the effects of the marketing 
activities to change gradually rather than in a sudden and abrupt way. We thank one of the anonymous reviewers 
for pointing this out. 
3 We demonstrate the impact of the structural change on the forecasting performance using a simulation 
example and we include this in the supplementary material. 
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forecasts will be less biased and potentially more accurate. However, the IC method comes with 

limitations. For example, by adding the estimated bias back into the out-of-sample forecasts, we 

inevitably incur the cost of inflated forecast error variance (see the analytical evidence in Clements & 

Hendry, 1999). Also, in practice, product sales at the SKU level often exhibit large variations and 

unexpected outliers caused by marketing activities, which renders the task of estimating the forecast 

bias challenging. The bias could be submerged by high variations in the product sales. Under this 

circumstance, it is possible that the average value of the most recent residuals may predominantly 

represent random variations rather than the bias caused by the structural change.  

 

The second method is the Estimation Window Combining (EWC) which combines the forecasts 

generated by the same model but with different estimation windows (e.g., Pesaran & Pick, 2011; 

Pesaran, Schuermann, & Smith, 2009; Pesaran & Timmermann, 2005). The forecasts can be 

combined based on equal weights, which have been found effective and easy to implement 

(Claeskens, Magnus, Vasnev, & Wang, 2016; Elliott, Granger, & Timmermann, 2006). For example, 

we may initially estimate the model using the most recent 𝜔𝜔 observations. e.g., the estimation window 

is [𝑇𝑇 −  𝜔𝜔 + 1,𝑇𝑇]. The value of 𝜔𝜔 can be arbitrarily chosen given that there are enough observations 

to estimate the model and enough variations in the explanatory variables. Thus, we can generate the 

first set of forecasts, e.g., 𝑦𝑦�𝑇𝑇+ℎ,1, where h is the forecast horizon. We may add more observations 

(e.g., one) to the estimation window and generate the second set of forecasts, e.g., 𝑦𝑦�𝑇𝑇+ℎ,2 and so forth, 

until we estimate the model using the estimation window [1,𝑇𝑇] and generate the last set of forecasts 

𝑦𝑦�𝑇𝑇+ℎ,𝑇𝑇−𝜔𝜔+1. Thus, we may obtain the final forecast by equally combining the 𝑇𝑇 − 𝜔𝜔 + 1 sets of 

forecasts:   

𝑦𝑦�𝑇𝑇+h(𝑇𝑇,𝜔𝜔) = (𝑇𝑇 − 𝜔𝜔 + 1)−1 � 𝑦𝑦�𝑇𝑇+ℎ,𝑚𝑚

𝑇𝑇−𝜔𝜔+1

𝑚𝑚=1

 

(1) 

The forecasts generated using smaller estimation windows tend to be less biased (e.g., the models will 

utilize fewer observations before the structural change). However, these forecasts may bear a cost of 

inflated forecast error variance. This is because the models based on smaller estimation windows tend 

to ignore some of the data before the structural change, (these data may potentially be more 

informative compared to the data after the structural change). The EWC method thus tries to generate 

more accurate forecasts by making a trade-off between the reduced forecast bias and the potentially 

inflated forecast error variance (Pesaran & Timmermann, 2007). Compared to the IC method, the 

EWC method does not estimate the size of the bias.  

 

The two methods described above have been found effective in previous studies. For example, the 

EWC method has shown superior forecasting performance for exchange rate, inflation, and equity 
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index futures (e.g., Pesaran & Pick, 2011; Pesaran et al., 2009; Rapach & Strauss, 2008). Meanwhile, 

the IC method has been applied to forecast the likes of wages, unemployment, and CPI inflation (e.g., 

Clark & McCracken, 2007; Clements & Hendry, 1996). However, in the case of retailer product sales, 

whether we could rely on the two methods (i.e., the IC method, and/or the EWC method) to generate 

more accurate forecasts remain empirical questions. 

 

4. The data 

 

In this study, we use the retail dataset which is publicly available from the Information Resources, 

Inc. (IRI) company. A more comprehensive description of the dataset can be found in Bronnenberg, 

Kruger, and Mela (2008). The dataset contains weekly data at the SKU level with variables including 

product unit sales, price, features, and displays. We initially evaluate the forecasting performance of 

various models based on 1831 SKUs for 28 product categories from 28 different stores. We select the 

SKUs for the same category from the same store, and with positive movements for at least 90% of the 

time. Table 1 shows basic statistical measures for the selected SKUs during a period of 202 weeks for 

each product category, which suggests a wide variety in the marketing activities across different 

product categories. Figure 1 shows the data series for a typical SKU in the Beer category. e.g., the 

product sales spikes are usually associated with price reductions, feature, or display of the focal 

product, as well as calendar events such as Halloween, Thanksgiving, and Christmas. 

Table 1. Statistical descriptions for each product category 

Category Price 
mean 

Sales 
mean* 

Display 
percentage** 

Feature 
percentage*** 

Number 
of SKUs 

Beer 8.3 20.6 13.9% 4.0% 169 
Blades 8.1 14.6 7.4% 2.2% 22 
Carbonated Beverages 2.1 113.6 26.8% 15.6% 82 
Cigarette 22.3 22.2 0.0% 0.8% 203 
Coffee 5.2 14.5 5.2% 2.9% 86 
Cold cereal 3.5 70.7 4.0% 18.1% 125 
Deodorant 2.7 6.9 4.1% 5.2% 126 
Face Tissue 2.1 75.8 0.3% 11.7% 6 
Frozen Dinner 2 43.8 5.3% 23.7% 87 
Frozen pizza 3.4 31.2 8.9% 9.1% 147 
Household Cleaner 2.5 29.9 0.3% 3.6% 18 
Hotdog 4 68.6 13.2% 15.6% 35 
Laundry Detergent 8.8 28.9 2.3% 8.8% 57 
Margarine/Butter 2 71.4 0.1% 6.3% 36 
Mayonnaise 3 79.7 3.0% 0.4% 22 
Milk 2.5 222.3 2.1% 1.8% 30 
Mustard & Ketchup 2.1 64.5 5.3% 0.9% 22 
Peanut butter 3.7 34.2 3.2% 0.6% 15 
Photo 7.2 9.2 4.6% 5.1% 13 
Salty snacks 2.3 50.9 6.7% 5.0% 101 
Shampoo 3.5 9.9 12.8% 7.1% 70 
Soup 1.5 61.6 1.2% 9.7% 139 
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Spaghetti sauce 2.4 39.1 1.6% 6.5% 52 
Sugar substitutes 2.8 14.5 0.1% 1.4% 20 
Toilet Tissue 5.4 89.1 4.3% 8.3% 20 
Toothbrush 2.6 8.7 3.1% 6.3% 28 
Toothpaste 2.8 35.5 11.0% 12.5% 25 
Yogurt 1.1 115.1 0.7% 6.3% 75 

* ‘Sales mean’ represents the average unit sales across all the SKUs for the category for the specific 
store. 
**   ***Display percentage and feature percentage indicate the percentage of weeks during the 202-
week time period when the focal product is being promoted for display and feature respectively. 

 

 

Figure 1. Store level data for an SKU in the Beer category 

 
In Figure 1, week 1 indicates the first week in the year of 2001. The Calendar events 

include Halloween, Thanksgiving, Christmas, New Year’s Day, President’s Day, Easter, 

Memorial Day, the 4th of July, and Labour Day. The Promotional events include feature 

and display. 

5. Methodology 

We propose two novel methods to forecast retailer product sales at the SKU level by taking into 

account the problem of structural change. Both methods consist of three stages. During the first stage, 

we identify the most relevant competitive explanatory variables for the focal product within the 

product category. In practice, grocery retailers typically sell hundreds of SKUs in a single product 

category. This leads to hundreds of potential competitive explanatory variables (e.g., competitive 

price and competitive promotions) for the focal product. Incorporating all the variables into the model 

can easily overfit the model and render the estimation task infeasible (Martin & Kolassa, 2009). 

Therefore, we select the most relevant competitive explanatory variables using the Least Absolute 

Shrinkage and Selection Operator (LASSO) procedure (Huang et al., 2014; Tibshirani, 1996). That is, 

we construct the following model for each SKU: 

ln (𝑦𝑦0,𝑡𝑡) = 𝑋𝑋𝑋𝑋 + 𝑢𝑢, 𝑠𝑠𝑢𝑢𝑠𝑠𝑠𝑠𝑒𝑒𝑠𝑠𝑠𝑠 𝑠𝑠𝑡𝑡 ∑ �𝑋𝑋𝑗𝑗� = 𝜂𝜂𝑁𝑁
𝑗𝑗=1 , 𝜂𝜂 ≤ 𝜂𝜂0  (2) 
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where ln (𝑦𝑦0,𝑡𝑡) represents log sales of the focal product for a store at week t. 𝑋𝑋 is the matrix for the 

explanatory variables including prices, features, and displays of all the products in the same product 

category. u represents the error term. 𝑋𝑋 represents the vector of the parameter coefficients. N is the 

total number of SKUs for the category. 𝜂𝜂0 is the shrinkage factor. The LASSO procedure thus 

imposes a constraint on the sum of the absolute values of the models’ parameter coefficients. It 

removes the less relevant explanatory variables by pushing their parameter coefficients towards zero. 

We control the model simplification process using the shrinkage factor based on a 10-fold cross 

validation (Ma & Fildes, 2017; Ma et al., 2016)4.  

 

During the second stage, we construct the General Autoregressive Distributive Lag (ADL) model 

following Huang et al. (2014) based on the variables retained by the LASSO procedure during the 

first stage. The LASSO procedure has a limitation in that it may potentially miss important variables 

especially under the condition of high multicollinearity (Fan & Lv, 2008; Ma et al., 2016). Previous 

studies suggest that product sales are usually mostly influenced by the prices and promotions of the 

products themselves (Bucklin, Gupta, & Siddarth, 1998). Thus, we intentionally incorporate the prices 

and promotion variables of the focal product into the general ADL model even if these variables were 

not retained by the LASSO procedure during the first stage. We also incorporate the dynamic effect of 

these explanatory variables as well as a time variable to capture the potential trend, four trigonometric 

variables to capture the seasonal effect, and other dummy variables to capture the calendar effect. The 

constructed general ADL model for each product in a specific store can be written as follows: 

ln (𝑦𝑦0,𝑡𝑡) = 𝑖𝑖𝑖𝑖𝑠𝑠𝑒𝑒𝑖𝑖𝑠𝑠𝑒𝑒𝑖𝑖𝑠𝑠 + 𝜏𝜏 ∗ 𝑠𝑠 + �𝛼𝛼𝑗𝑗 ln�𝑦𝑦0,𝑡𝑡−𝑗𝑗�
𝐿𝐿

𝑗𝑗=1

+ �𝑋𝑋0,𝑗𝑗 ln�𝑖𝑖0,𝑡𝑡−𝑗𝑗�
𝐿𝐿

𝑗𝑗=0

+ �𝛾𝛾0,𝑗𝑗𝐹𝐹𝑒𝑒𝐹𝐹𝑠𝑠𝑢𝑢𝑖𝑖𝑒𝑒0,𝑡𝑡−𝑗𝑗

𝐿𝐿

𝑗𝑗=0

+ �𝛾𝛾0,𝑗𝑗𝐷𝐷𝑖𝑖𝑠𝑠𝑖𝑖𝐷𝐷𝐹𝐹𝑦𝑦0,𝑡𝑡−𝑗𝑗

𝐿𝐿

𝑗𝑗=0

+ � �𝑋𝑋𝑚𝑚,𝑗𝑗 ln�𝑖𝑖𝑚𝑚,𝑡𝑡−𝑗𝑗�
𝐿𝐿

𝑗𝑗=0

𝑀𝑀

𝑚𝑚=1

+ ��𝛾𝛾𝑛𝑛,𝑗𝑗𝐹𝐹𝑒𝑒𝐹𝐹𝑠𝑠𝑢𝑢𝑖𝑖𝑒𝑒𝑛𝑛,𝑡𝑡−𝑗𝑗

𝐿𝐿

𝑗𝑗=0

𝑁𝑁

𝑛𝑛=1

��𝛾𝛾𝑛𝑛,𝑗𝑗𝐷𝐷𝑖𝑖𝑠𝑠𝑖𝑖𝐷𝐷𝐹𝐹𝑦𝑦𝑛𝑛,𝑡𝑡−𝑗𝑗

𝐿𝐿

𝑗𝑗=0

𝑃𝑃

𝑛𝑛=1

+ 𝜃𝜃1 sin �
2𝜋𝜋𝑠𝑠
52

� + 𝜃𝜃2 cos �
2𝜋𝜋𝑠𝑠
52

�

+ 𝜃𝜃3 sin �
2𝜋𝜋𝑠𝑠

4
� + 𝜃𝜃4cos (

2𝜋𝜋𝑠𝑠
4

)  

+��𝛿𝛿𝑐𝑐,𝑣𝑣𝐶𝐶𝐹𝐹𝐷𝐷𝑒𝑒𝑖𝑖𝐶𝐶𝐹𝐹𝑖𝑖𝐶𝐶𝐶𝐶𝑒𝑒𝑖𝑖𝑠𝑠𝑐𝑐,𝑡𝑡−𝑣𝑣

1

𝑣𝑣=0

9

𝑐𝑐=1

+ 𝜀𝜀𝑡𝑡                                                (3) 

where ln (𝑦𝑦0,𝑡𝑡) is the log sales of the focal product at week 𝑠𝑠. We include the time 𝑠𝑠 as a variable to 

capture any potential trend during the estimation period (Song & Witt, 2003). ln (𝑖𝑖0,𝑡𝑡−𝑗𝑗) and 

                                                 
4 Huang et al. (2014) used alternative schemes such as the Akaike’s Information Criterion. In this study, we find 
rare difference in the results between these different schemes. 
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ln (𝑖𝑖𝑚𝑚,𝑡𝑡−𝑗𝑗) respectively represent the log price of the focal product and the log price of a competitive 

product, m, at week 𝑠𝑠 − 𝑠𝑠. 𝐹𝐹𝑒𝑒𝐹𝐹𝑠𝑠𝑢𝑢𝑖𝑖𝑒𝑒0,𝑡𝑡−𝑗𝑗 and 𝐷𝐷𝑖𝑖𝑠𝑠𝑖𝑖𝐷𝐷𝐹𝐹𝑦𝑦0,𝑡𝑡−𝑗𝑗 represent the feature and the display 

dummy variables for the focal product at week 𝑠𝑠 − 𝑠𝑠. The trigonometric variables of sin �2𝜋𝜋𝑡𝑡
52
� and 

cos �2𝜋𝜋𝑡𝑡
52
� capture the week of the year effect, and the trigonometric variables of sin �2𝜋𝜋𝑡𝑡

4
�, and 

cos (2𝜋𝜋𝑡𝑡
4

) capture the week of the month effect (A. Harvey, 2006)5. 𝐶𝐶𝐹𝐹𝐷𝐷𝑒𝑒𝑖𝑖𝐶𝐶𝐹𝐹𝑖𝑖𝐶𝐶𝐶𝐶𝑒𝑒𝑖𝑖𝑠𝑠𝑐𝑐,𝑡𝑡−𝑣𝑣 is the 

dummy variable for the 𝑠𝑠𝑡𝑡ℎ calendar event at week 𝑠𝑠 − 𝐶𝐶. The dummy variable represents the week of 

the calendar event if 𝐶𝐶 = 0, and the week before the event if 𝐶𝐶 = 1. 𝑠𝑠 takes the values from 1 to 9 

representing all the calendar events6. 𝛼𝛼𝑗𝑗,𝑋𝑋0,𝑗𝑗, 𝛾𝛾0,𝑗𝑗,𝑋𝑋𝑚𝑚,𝑗𝑗, 𝛾𝛾𝑛𝑛,𝑗𝑗,𝜃𝜃1,𝜃𝜃2,𝜃𝜃3,𝜃𝜃4,𝛿𝛿𝑐𝑐,𝑣𝑣 , 𝜏𝜏 are the parameters. 𝜀𝜀𝑡𝑡 

is the error term. We assume the error terms are normally and independent distributed, i.e., 

𝜀𝜀𝑡𝑡~𝑁𝑁𝑁𝑁𝐷𝐷(0,𝜎𝜎2). 𝐿𝐿 is the order of the lags and is set as 2. 𝑀𝑀, 𝑁𝑁, and 𝑃𝑃 are the numbers of selected 

competitive price, feature, and display variables for the product category. 

 

The general ADL model, as shown in equation (3), contains too many explanatory variables and lacks 

parsimony. Therefore, we simplify the model using the LASSO procedure following Ma et al. (2016) 

(we refer to the resulting model as the ADL-raw model thereafter). During this stage, we use the 

LASSO procedure as a model specification strategy rather than a variable selection method as 

previous studies have shown that models simplified by the LASSO procedure can have good 

forecasting performance and outperform traditional models based on statistical significance (Epprecht, 

Guegan, & Veiga, 2013; Ma et al., 2016). Also, the LASSO procedure enables the automation of the 

statistical forecasting task which becomes essential as typically grocery retailers stock a large number 

of SKUs (Cooper et al., 1999). To mitigate the limitation of the LASSO procedure in that it may 

potentially miss important variables, we specify a supplementary parallel ADL model which has a 

similar specification compared to the general ADL model but only includes the price and promotion 

variables of the focal product:  

                                                 
5 We thank one of the anonymous reviewers for this suggestion to capture the seasonal effect using 
trigonometric variables. We find that models with trigonometric variable generally have higher forecasting 
accuracy compared to models which capture the seasonal effect using four-week dummy variables (e.g., Huang 
et al., 2014). Also, there is a possibility to add further components to capture additional seasonal effects such as 
the month of the year effect and the quarter of the year effect. 
6 We include the following US calendar events including Halloween, Thanksgiving, Christmas, New Year’s 
Day, President’s Day, Easter, Memorial Day, the 4th of July, and Labour Day. 
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ln (𝑦𝑦0,𝑡𝑡) = 𝑖𝑖𝑖𝑖𝑠𝑠𝑒𝑒𝑖𝑖𝑠𝑠𝑒𝑒𝑖𝑖𝑠𝑠 + 𝜏𝜏 ∗ 𝑠𝑠 + �𝛼𝛼𝑗𝑗ln (𝑦𝑦0,𝑡𝑡−𝑗𝑗)
𝐿𝐿

𝑗𝑗=1

+ �𝑋𝑋0,𝑗𝑗ln (𝑖𝑖0,𝑡𝑡−𝑗𝑗)
𝐿𝐿

𝑗𝑗=0

+ �𝛾𝛾0,𝑗𝑗𝐹𝐹𝑒𝑒𝐹𝐹𝑠𝑠𝑢𝑢𝑖𝑖𝑒𝑒0,𝑡𝑡−𝑗𝑗

𝐿𝐿

𝑗𝑗=0

+ �𝛾𝛾0,𝑗𝑗𝐷𝐷𝑖𝑖𝑠𝑠𝑖𝑖𝐷𝐷𝐹𝐹𝑦𝑦0,𝑡𝑡−𝑗𝑗

𝐿𝐿

𝑗𝑗=0

+ 𝜃𝜃1 sin �
2𝜋𝜋𝑠𝑠
52

� + 𝜃𝜃2 cos �
2𝜋𝜋𝑠𝑠
52

� + 𝜃𝜃3 sin �
2𝜋𝜋𝑠𝑠

4
�

+ 𝜃𝜃4cos (
2𝜋𝜋𝑠𝑠

4
)  + ��𝛿𝛿𝑐𝑐,𝑣𝑣𝐶𝐶𝐹𝐹𝐷𝐷𝑒𝑒𝑖𝑖𝐶𝐶𝐹𝐹𝑖𝑖𝐶𝐶𝐶𝐶𝑒𝑒𝑖𝑖𝑠𝑠𝑐𝑐,𝑡𝑡−𝑣𝑣

1

𝑣𝑣=0

9

𝑐𝑐=1

+ 𝜀𝜀𝑡𝑡                        

 (4) 

We simplify the supplementary parallel ADL model by using the LASSO procedure (we refer to the 

resulting model as the ADL-own model thereafter). We then incorporate the explanatory variables 

retained in the ADL-own model into the ADL-raw model (we refer to the resulting model as the 

ADL-intra model hereafter). This enables us to selectively retain potentially important variables only 

at a cost of efficiency. The supplementary parallel ADL model, by definition, has fewer explanatory 

variables compared to the general ADL model and thus is less likely to suffer from multicollinearity 

compared to the latter. Thus, if the price and promotions of the focal product truly have effects on the 

product sales, it would be less likely for these variables to be removed from both the ADL-raw model 

and the ADL-own model7.  

 

Figure 2. An illustration of the three stages of our proposed methods 

                                                 
7We do not further reduce the ADL-intra models using the LASSO procedure as further simplification using the 
LASSO procedure will potentially remove important variables. 
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During the final stage, we integrate the ADL-intra model with the EWC method and the IC method 

respectively to account for the structural change problem. We implement the EWC method and the IC 

method only when the ADL-intra model is subjected to structural changes, and keep the forecasts 

generated by the ADL-intra model as the final forecasts otherwise. In this study, we conduct a 

sequential Chow test for up to 95% of the weeks in the estimation period8. For instance, suppose we 

have an estimation period of 160 weeks. We would then conduct the Chow test for 152 times and each 

time we assume a structural change has occurred at a specific week from week 5 to week 156 and 

obtain the p-values. The null hypothesis of no structural change will be rejected if any of these p-

values is below a threshold. To mitigate the multiple comparison problem, we adopt a very small 

threshold, i.e., 0.0019. Previous studies have proposed alternative tests which focus on estimating 

multiple structural changes and their locations but they are usually associated with stringent 

assumptions (e.g., Andrews, 1993; Andrews & Ploberger, 1994; Bai & Perron, 1998, 2003; Brown, 

Durbin, & Evans, 1975). In our study, we only need to identify the presence of structural change. 

Thus, we conduct the sequential Chow test which meets the requirement and also benefits from 

                                                 
8 We keep at least 5% of the weeks for the estimation of the test. 
9 The results in our study suggest that for most scenarios (e.g., above 99%) the ADL-intra models are subject to 
structural change if we conduct the Chow test for 95% of the observations. For robustness, we have conducted 
the whole evaluation by implementing the sequential Chow test for fewer observations (e.g., 70% of weeks) and 
we find the final results consistent. 
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simple implementation. We refer to these two three-stage methods as the ADL-intra-EWC method 

and the ADL-intra-IC method respectively. Figure 2 provides a guide for the implementation of the 

two methods.  

 

6. The experimental design 

 

In this study, we consider the Base-lift method as the benchmark model. The method has been used in 

previous studies (e.g., Cooper et al., 1999; Gür Ali et al., 2009; Huang et al., 2014; Ma et al., 2016). 

The forecasts for week t by this method can be described as follows: 

𝐹𝐹𝑡𝑡𝑖𝑖𝑒𝑒𝑠𝑠𝐹𝐹𝑠𝑠𝑠𝑠𝑡𝑡 = �
𝑀𝑀𝑡𝑡 ,                            if the focal product is not being promoted
𝑀𝑀𝑡𝑡 +  adjustment, if the focal product is being promoted 

𝑀𝑀𝑡𝑡 = (1 −  𝐹𝐹)𝑀𝑀𝑡𝑡−1 + 𝐹𝐹𝑆𝑆𝑡𝑡−1  

(5) 

where 𝑀𝑀𝑡𝑡 represents the baseline forecast for week 𝑠𝑠 by the simple exponential smoothing (SES) 

model. The SES model is estimated exclusively based on the data when the focal product is not being 

promoted. Thus, 𝑆𝑆𝑡𝑡−1 represents the sales of the focal product for the previous time period when the 

focal product was not promoted. 𝐹𝐹 is the smoothing parameter of the SES model, and is estimated by 

minimizing the in-sample mean squared errors. The adjustment for the ‘lift’ effect is calculated as the 

increased sales of the focal product during its most recent promotion compared to the corresponding 

baseline sales. In this study, we have the following candidate models:  

 

1. The ADL-own model, i.e., the model in equation (4) simplified by the LASSO procedure 

2. The ADL-intra model; i.e., the model in equation (3) simplified by the LASSO procedure and 

then include the explanatory variables retained in the ADL-own model. 

3. The ADL-own-EWC model: the ADL-own model with the EWC method 

4. The ADL-own-IC model: the ADL-own model with the IC method 

5. The ADL-intra-EWC model: the ADL-intra model with the EWC method 

6. The ADL-intra-IC model: the ADL-intra model with the IC method. 

 

We specify the models with an estimation window of 160 weeks, and evaluate their forecasting 

performance using 18 rolling origins for robustness (Tashman, 2000). For each rolling event, we 

move the estimation window two weeks forward and re-specify the model. The value of the price and 

any promotional information is considered to be known as it is part of the retailer’s inventory plan. 

We use the forecast value of product sales when the forecast horizon is beyond one week. We 

generate one-to-𝐻𝐻 weeks ahead forecasts, where 𝐻𝐻 is 1, 4, and 8, to approximate the situation retailers 

face in practice. For the EWC method, the final forecasts are generated by equally combining the 

forecasts using the same model with 10 estimation windows (e.g., suppose we have an estimation 
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period of 160 weeks, the estimation windows for the models will be [1, 160], [3, 160], and so forth, 

until [19, 160]). For the IC methods, we estimate the forecast bias as the average value of the 16 most 

recent residuals and add the value directly to the forecasts of all the forecast horizons. We implement 

the models using the MODEL procedure with macros in SAS 9.4. The model parameters are 

estimated using the OLS estimator. 

  

We evaluate the models’ forecasting performance using different error measures which approximate 

the unknown loss function of the retailer from different perspectives (Kolassa, 2016; Petropoulos & 

Kourentzes, 2015). We include traditional error measures including the Mean Absolute Error (MAE), 

the symmetric Mean Absolute Percentage Error (sMAPE) and the scaled Mean Squared Error (scaled 

MSE) 10. We also include relative measures such as the Mean Absolute Scaled Error (MASE) 

proposed by Hyndman and Koehler (2006) and the Relative Average Mean Absolute Error 

(RelAvgMAE) proposed by Davydenko and Fildes (2013). These measures have more desirable 

properties, e.g., equally penalizing positive and negative errors and being more robust to outliers. 

Also, the RelAvgMAE is readily interpretable as the percentage improvement (or worsening) of the 

focal method compared to a benchmark. The MASE and the RelAvgMAE can be demonstrated as 

follows: 

MASE(𝐻𝐻) =
1
𝑆𝑆

1
𝐻𝐻

1
𝐾𝐾
����

𝑦𝑦𝑠𝑠,ℎ,𝑘𝑘 − 𝑦𝑦�𝑠𝑠,ℎ,𝑘𝑘
1

𝑇𝑇0 − 1∑ |𝑦𝑦𝑠𝑠,𝑡𝑡,𝑘𝑘
𝑇𝑇0
𝑡𝑡=2 − 𝑦𝑦𝑠𝑠,𝑡𝑡−1,𝑘𝑘|

�
𝐾𝐾

𝑘𝑘=1

𝐻𝐻 

ℎ=1

𝑆𝑆

𝑠𝑠=1

 

(6) 

AvgRelMAE(𝐻𝐻) = �∏ RelMAE𝑠𝑠,𝐻𝐻,𝑘𝑘
𝑆𝑆
𝑠𝑠=1 �

1
𝑆𝑆, where RelMAE𝑠𝑠,𝐻𝐻,𝑘𝑘 = MAE𝑠𝑠,𝐻𝐻,𝑘𝑘

𝐶𝐶

MAE𝑠𝑠,𝐻𝐻,𝑘𝑘
𝐵𝐵  ,  

MAE𝑠𝑠,𝐻𝐻,𝑘𝑘
𝐼𝐼 =

1
𝐻𝐻

1
𝐾𝐾
����𝑦𝑦𝑠𝑠,ℎ,𝑘𝑘 − 𝑦𝑦�𝑠𝑠,ℎ,𝑘𝑘��

𝐾𝐾

𝑘𝑘=1

𝐻𝐻

ℎ=1

 

(7) 

 

where MASE(𝐻𝐻) and AvgRelMAE(𝐻𝐻) are the MASE and the AvgRelMAE based on one-to-H weeks 

ahead forecast horizon (𝐻𝐻=1, 4 and 8) across 𝑆𝑆 SKUs (e.g., S= 1831) for K rolling events (e.g., K=18). 

𝑦𝑦𝑠𝑠,ℎ,𝑘𝑘 and 𝑦𝑦�𝑠𝑠,ℎ,𝑘𝑘 are respectively the h-step ahead actual value and forecast value for data series 𝑠𝑠 

based on the 𝑘𝑘𝑡𝑡ℎ rolling event. 𝑇𝑇0 is the total number of observations in the estimation window (i.e., 

𝑇𝑇0 = 160). The AvgRelMAE measures the forecasting performance of one model relative to another 

and the corresponding MAE𝑠𝑠,𝐻𝐻,𝑘𝑘
𝐼𝐼  and MAE𝑠𝑠,𝐻𝐻,𝑘𝑘

𝐵𝐵  are the MAE by these two models based on one-to-H 

                                                 
10 The sMAPE is more robust to outliers compared to the Mean Absolute Percentage Error (MAPE) as the latter 
does not have an upper bound. We have also conducted the analysis for the MAPE and the results are consistent 
with the results based on the sMAPE. We do not report the results for the MAPE for simplicity. 
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weeks ahead forecast horizon across 𝑆𝑆 SKUs for K rolling events. In this study, we use the 

AvgRelMAE to measure the forecasting performance of each model relative to the ADL-own model. 

Thus the MAE𝑠𝑠,𝐻𝐻,𝑘𝑘
𝐼𝐼  is the MAE by the candidate model and the MAE𝑠𝑠,𝐻𝐻,𝑘𝑘

𝐵𝐵  is the MAE by the ADL-own 

model. Before we transform the log values to levels for evaluation, we adjust the final forecasts by 

adding one-half mean squared error, which mitigates the bias caused by the logarithm transformation 

(e.g., Cooper et al., 1999; Ma & Fildes, 2017; Ma et al., 2016).   

 

7. Results and discussion 

 

In Table 2, we summarize the forecasting performance of the models across all the products with 

respect to different forecast horizons. Table 3 shows the results of the Diebold-Mariano (DM) test for 

the statistical significance of the difference between the models’ forecasting performance (Diebold & 

Mariano, 1995; D. Harvey, Leybourne, & Newbold, 1997)11. The following findings emerge from this 

analysis: 

 

(i) The Base-lift model generates the least accurate forecasts across all the error measures. 

(ii) The ADL-intra model outperforms the ADL-own model across all the error measures, which 

is consistent with the findings in Huang et al. (2014).  

(iii) The ADL-own-EWC model outperforms the ADL-own model for all the error measures. 

(iv) The ADL-own-IC model generally outperforms the ADL-own model except for the MAE.  

(v) The ADL-intra-EWC model outperforms the ADL-intra model for all the error measures. 

(vi) The ADL-intra-IC model generally outperforms the ADL-intra model except for the MAE 

and the scaled MSE for longer forecast horizons (e.g., Forecast horizon is one-to-four week 

ahead and one-to-eight weeks ahead). 

(vii) Overall, the ADL-intra-EWC model and the ADL-intra-IC model generate the most accurate 

forecasts. 

 

Table 2. The forecasting performance of the models for all forecast periods 

Forecast horizon is one-to-eight weeks ahead 
Model/measure MAE SMAPE MASE AvgRelMAE scaled MSE 
Base-lift 22.92 46.98% 0.7753 1.1508 0.2234 
ADL-own 15.70 40.74% 0.6932 1.0000 0.1552 
ADL-intra 15.36 40.39% 0.6915 0.9934 0.1530 
ADL-own-EWC 15.61 40.61% 0.6907 0.9954 0.1542 
ADL-own-IC 16.14 40.67% 0.6899 0.9986 0.1570 
ADL-intra-EWC 15.27 40.29% 0.6900 0.9893 0.1525 
ADL-intra-IC 15.54 40.37% 0.6896 0.9935 0.1545 

                                                 
11 We conduct the DM test based on all the error measures except for the AvgRelMAE which does not fit into 
the framework of the DM test. 
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Forecast horizon is one-to-four weeks ahead 
Model/measure MAE SMAPE MASE AvgRelMAE scaled MSE 
Base-lift 22.67 46.24% 0.762 1.1413 0.2186 
ADL-own 15.62 40.39% 0.687 1.0000 0.1530 
ADL-intra 15.11 40.02% 0.684 0.9908 0.1498 
ADL-own-EWC 15.53 40.25% 0.684 0.9948 0.1519 
ADL-own-IC 15.88 40.19% 0.681 0.9941 0.1533 
ADL-intra-EWC 15.02 39.91% 0.682 0.9865 0.1492 
ADL-intra-IC 15.19 39.87% 0.679 0.9877 0.1502 

Forecast horizon is one week ahead 
Model/measure MAE SMAPE MASE AvgRelMAE scaled MSE 
Base-lift 24.99 45.42% 0.762 1.1294 0.2261 
ADL-own 16.67 39.86% 0.687 1.0000 0.1551 
ADL-intra 15.65 39.40% 0.685 0.9892 0.1525 
ADL-own-EWC 16.60 39.72% 0.684 0.9952 0.1540 
ADL-own-IC 16.97 39.49% 0.678 0.9895 0.1539 
ADL-intra-EWC 15.58 39.29% 0.683 0.9849 0.1515 
ADL-intra-IC 15.62 39.12% 0.678 0.9810 0.1514 

 

We also investigate the models’ forecasting performances for the time periods depending on whether 

the focal product is being promoted. In practice, retailer product sales tend to exhibit high levels of 

variations when the focal product is being promoted and tend to become comparably stable otherwise 

(Gür Ali et al., 2009). We refer to these two periods as the promoted period and non-promoted period 

respectively thereafter. Table 4 shows the forecasting performance of the models for the promoted 

forecast period and the non-promoted forecast period respectively for one-to-eight weeks ahead 

forecast horizon12. The following findings are particularly important. The ADL-intra-IC model has the 

best forecasting performance for the non-promoted period but only has average performances for the 

promoted period. A possible explanation is that the estimated bias added to the error term in the 

forecast period may get submerged by the high variations of the product sales when the focal product 

is being promoted. In contrast, the ADL-intra-EWC model has the best performance for the promoted 

period. Therefore, we develop an exploratory combined method across these two methods and refer to 

this model as the ADL-EWC-IC model. The ADL-EWC-IC model is identical to the ADL-intra-EWC 

model for the promoted period and the ADL-intra-IC model for the non-promoted period. To allow 

for a fair comparison, we evaluate the performance of the ADL-EWC-IC model based on previously 

unseen data (e.g., the data for 1605 SKUs for the same 28 product categories but from a different set 

of 28 stores). Table 5 shows the forecasting performance of the models13. The exploratory results 

indicate that the ADL-EWC-IC model generally generates the most accurate forecasts across all the 

models even when we consider previously unseen data. 

 

                                                 
12 The results for other forecasting horizons are similar and are omitted for simplicity. 
13 The results based on the unseen data for the 1605 SKU’s are consistent with the results based on the previous 
1831 SKU’s. In Table 5, we do not show the forecasting performance for the Base-lift method, the ADL-own 
model, the ADL-own-EWC model, and the ADL-own-IC model for simplicity. 
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We further explore the benefit of taking account for the problem of structural change by focusing on 

the percentage reduction of the MASE by the ADL-intra-EWC method and the ADL-intra-IC method 

compared to the ADL-intra model for each product category. The ADL-intra model has a similar 

specification compared to the ADL-intra-EWC method and the ADL-intra-IC method but overlooks 

the problem of structural change. The percentage reductions of the MASE by the ADL-intra-EWC 

method and by the ADL-intra-IC method for product 𝑖𝑖 can be demonstrated as follows14: 

 

PctRed(ADL− intra − EWC, 𝑖𝑖) =
MASE(ADL− intra, 𝑖𝑖) −  MASE(ADL − intra − EWC, 𝑖𝑖)

MASE(ADL− intra, 𝑖𝑖)
× 100% 

   (8) 

PctRed(ADL − intra − IC, 𝑖𝑖) =
MASE(ADL− intra, 𝑖𝑖) −  MASE(ADL − intra − IC, 𝑖𝑖)

MASE(ADL − intra, 𝑖𝑖)
× 100% 

   (9) 

 

We then take the average value of PctRed(ADL− intra − EWC, 𝑖𝑖) and PctRed(ADL − intra − IC, 𝑖𝑖) 

respectively across all the SKUs for each product category. Table 6 shows the results for each product 

category for one-to-eight weeks ahead forecast horizon15. The ADL-intra-EWC method and the ADL-

intra-IC method outperform the ADL-intra model for most of the product categories (e.g., 18 and 16 

respectively, out of 28 categories). They do not outperform the ADL-intra model for all product 

categories due to the heterogeneity of the data characteristics across different product categories (Ma 

et al., 2016). Figures 3(a) and 3(b) show the boxplots for the percentage reduction in the MASE for 

selective product categories where the two methods respectively produce the greatest improvement in 

forecasting performance compared to the ADL-intra model. 

                                                 
14 In Equation (8) and (9), all the MASE’s have the same denominator, thus the percentage reductions of the 
MASE is equivalent to the percentage reductions of the MAE. 
15 The comparison results for other error measures and horizons are similar and thus omitted for simplicity. 
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Table 3. The results of the Diebold-Mariano (DM) test 

Model 1 Model 2 MAE sMAPE MASE scaled MSE 
H=1 H=1 

to 4 
H=1 
to 8 

H=1 H=1 
to 4 

H=1 
to 8 

H=1 H=1 
to 4 

H=1 
to 8 

H=1 H=1 
to 4 

H=1 
to 8 

ADL-own Base-lift 0.000* 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 
ADL-own ADL-intra 0.000 0.000 0.007 0.000 0.000 0.000 0.555 0.100 0.294 0.352 0.973 0.304 
ADL-own ADL-own-EWC 0.092 0.001 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.669 0.604 0.388 
ADL-own ADL-own-IC 0.106 0.022 0.000 0.000 0.000 0.175 0.000 0.000 0.007 0.554 0.469 0.019 
ADL-intra ADL-intra-EWC 0.165 0.002 0.000 0.000 0.000 0.000 0.000 0.061 0.048 0.488 0.368 0.301 
ADL-intra ADL-intra-IC 0.791 0.296 0.009 0.000 0.002 0.532 0.000 0.000 0.078 0.590 0.059 0.006 

*0.000 indicates that the p-value is smaller than 0.001. 
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 Table 4. The forecasting performance of the models for the promoted and non-promoted 

forecast period for one-to-eight weeks ahead forecast horizon 

 

Forecast horizon is one-to-eight weeks ahead, for the promoted period 
Model/measure MAE sMAPE MASE AvgRelMAE scaled MSE 
Base-lift 119.33 87.26% 1.915 1.381 2.474 
ADL-own 64.80 47.49% 1.319 1.000 1.048 
ADL-intra 62.57 45.95% 1.294 0.981 0.999 
ADL-own-EWC 64.58 47.36% 1.315 0.996 1.043 
ADL-own-IC 68.95 47.94% 1.344 1.022 1.104 
ADL-intra-EWC 62.16 45.79% 1.289 0.975 0.992 
ADL-intra-IC 64.62 46.32% 1.316 1.009 1.040 

Forecast horizon is one-to-eight week ahead, for the non-promoted period 
Model/measure MAE sMAPE MASE AvgRelMAE scaled MSE 
Base-lift 8.84 41.10% 0.609 1.0120 0.0973 
ADL-own 8.53 39.76% 0.602 1.0000 0.0912 
ADL-intra 8.47 39.58% 0.604 0.9977 0.0914 
ADL-own-EWC 8.46 39.62% 0.599 0.9957 0.0905 
ADL-own-IC 8.43 39.61% 0.594 0.9984 0.0904 
ADL-intra-EWC 8.42 39.49% 0.602 0.9950 0.0912 
ADL-intra-IC 8.37 39.50% 0.598 0.9961 0.0909 

 

Table 5. The forecasting performance of the models based on previously unseen data for one-

to-eight weeks ahead forecast horizon for 1605 SKUs for the same 28 product categories from a 

different set of 28 stores 

All forecast period, for 1 to 8 weeks ahead 
Model/measure MAE SMAPE MASE AvgRelMAE scaled MSE 
ADL-intra 13.46 39.91% 0.7669 0.997 0.1674 
ADL-intra-EWC 13.47 39.79% 0.7650 0.993 0.1674 
ADL-intra-IC 13.39 39.50% 0.7592 0.986 0.1660 
ADL-EWC-IC 13.41 39.49% 0.7588 0.985 0.1661 

promoted period, for 1 to 8 weeks ahead 
Model/measure MAE SMAPE MASE AvgRelMAE scaled MSE 
ADL-intra 55.02 45.88% 1.566 0.988 1.2459 
ADL-intra-EWC 55.36 45.83% 1.564 0.982 1.2482 
ADL-intra-IC 55.23 45.93% 1.567 0.993 1.2451 
ADL-EWC-IC 55.36 45.83% 1.564 0.982 1.2482 

non-promoted period, for 1 to 8 weeks ahead 
Model/measure MAE SMAPE MASE AvgRelMAE scaled MSE 
ADL-intra 7.692 38.28% 0.622 0.989 0.0904 
ADL-intra-EWC 7.644 38.13% 0.618 0.985 0.0897 
ADL-intra-IC 7.451 37.46% 0.605 0.967 0.0869 
ADL-EWC-IC 7.451 37.46% 0.605 0.967 0.0869 
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Table 6. The percentage reduction of the MASE by the ADL-intra-EWC model and the ADL-

intra-IC model compared to the ADL-intra model for one-to-eight weeks ahead forecast horizon for 

each product category 

Category/MASE ADL-intra-
EWC 

ADL-intra-
IC 

Category/MASE ADL-intra-
EWC 

ADL-intra-
IC 

Beer 0.18% -0.53% Mayonnaise 0.00% -0.11% 
Blades 0.32% 1.08% Milk 1.06% 5.09% 
Carbonated Beverages -0.30% -2.44% Mustard & Ketchup 0.31% -0.62% 
Cigarettes 0.11% 0.80% Peanut butter -0.18% 4.90% 
Coffee -0.22% 0.13% Photo 1.00% -0.98% 
Cold Cereal 0.61% -1.88% Salty snacks 0.10% 1.12% 
Deodorant 0.11% 1.39% Shampoo 0.31% 1.34% 
Face Tissue 2.93% -1.31% Soup 0.97% -4.39% 
Frozen Dinner -0.39% -2.15% Spaghetti sauce 2.79% 0.70% 
Frozen pizza -0.46% -2.16% Sugar substitutes 0.09% 1.75% 
Hotdog -0.45% -4.88% Toilet Tissue 1.61% 2.29% 
Household Cleaner 1.24% 0.66% Toothbrush -0.14% -1.11% 
Laundry Detergent 1.14% -0.17% Toothpaste 1.75% -0.83% 
Margarine/Butter -0.84% -2.70% Yogurt 2.01% 3.89% 

* positive numbers refer to forecast improvements by our proposed methods with respect to the ADL-
intra model. 
 
Figure 3. The boxplots for the percentage reduction of the MASE by the ADL-intra-EWC 

method and the ADL-intra-IC method compared to the ADL-intra model for one-to-eight weeks ahead 

forecast horizon for selected product categories. 

 
(a) the ADL-intra-EWC method          (b) the ADL-intra-IC method  

The box widths are proportionate to the number of SKUs for the category. The square symbols, which 
are joined by lines for illustration, indicate the group means for the category. Positive numbers refer 
to forecast improvements by our proposed methods with respect to the ADL-intra model. 

8. Conclusions, limitations and future research 

 

Grocery retailers need to effectively manage their supply chain and, to achieve that they welcome new 

approaches that will improve their forecasting accuracy. Previous studies have focused on 
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incorporating additional information to build better forecasting models (e.g., Gür Ali et al., 2009; 

Huang et al., 2014; Ma et al., 2016), but they assume the effect of marketing activities such as price 

and promotions (e.g., feature and display) to be constant over time. This assumption may not hold 

because of the impact of external factors such as changes in economic conditions, changes in 

consumers’ tastes, and new entrants into the market. The data on these external factors are typically 

not available. Thus, conventional models that assume constant effects of marketing activities may be 

subject to the problem of structural change. As a result, these models may generate biased and 

potentially less accurate forecasts.  

 

Table 7.   The percentage reductions of different error measures compared to the Base-lift method for 

one-to-eight weeks ahead forecast horizon 

Models MAE SMAPE MASE AvgRelMAE Scaled MSE 
ADL-own-EWC -31.9% -13.6% -10.9% -13.5% -31.0% 
ADL-own-IC -29.6% -13.4% -11.0% -13.2% -29.7% 
ADL-intra-EWC -33.4% -14.2% -11.0% -14.0% -31.7% 
ADL-intra-IC -32.2% -14.1% -11.1% -13.7% -30.8% 

 

In this study, we propose novel methods to forecast retailer product sales by taking into account the 

problem of structural change. We propose the ADL-intra-EWC method which combines the forecasts 

generated by ADL-intra models with different estimation windows when structural changes are 

present. The method tries to achieve an effective trade-off between the reduced forecast bias and the 

inflated forecast error variance by changing the estimation window. We also propose the ADL-intra-

IC method which attempts to offset the potential forecast bias. The method adds the estimate of the 

recent forecast bias back to the error term at the cost of inflated forecast error variance when structural 

changes are detected. Our models significantly outperform the Base-lift model. Table 7 shows the 

forecasting improvement by the ADL-intra-EWC method and the ADL-intra-IC model compared to 

the Base-lift method averaged over a one-to-eight weeks ahead forecast horizon. Specifically, by 

using these methods we can reduce the MASE by 11.0% and 11.1% respectively compared to the 

Base-lift method. We have also evaluated the forecasting performance of the ADL-own-EWC method 

and the ADL-own-IC method. These methods are particularly valuable to manufacturers when 

competitive promotional information is not available. Table 7 also shows the forecasting improvement 

by the ADL-own-EWC method and the ADL-own-IC method compared to the Base-lift method for 

one-to-eight weeks ahead forecast horizon. Specifically, by using the ADL-own-EWC method and the 

ADL-own-IC method, we can reduce the MASE by 10.9% and 11.0% respectively compared to the 

Base-lift method. The improvements are consistent across different forecast horizons and such 

improvements in accuracy are estimated to translate into a similar improvement in profits (Kremer, 

2015). In this study, we also compare the forecasting performance of our proposed methods with 

conventional econometric models which have similar specifications but overlook the structural change 
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problem. The ADL-intra-EWC method and the ADL-intra-IC method outperform the ADL-intra 

model, and the ADL-own-EWC method and the ADL-own-IC method outperform the ADL-own 

model. We conduct the comparison to highlight the benefit of taking into account the problem of 

structural change as some retailers have tried to take advantage of conventional econometric models 

(Fildes, Ma, et al., 2018). 

 

We also evaluate the models’ forecasting performance depending on whether the focal product is 

being promoted. We find that the ADL-intra-EWC method has the best performance for the promoted 

forecast period and that the ADL-intra-IC method dominates the non-promoted forecast period. We, 

therefore, forge an exploratory ADL-EWC-IC model which is a combination of the ADL-intra-EWC 

method and the ADL-intra-IC method based on whenever the focal product is being promoted. We 

evaluate the forecasting performance of the ADL-EWC-IC model based on previously unseen data for 

1605 SKUs from a different set of 28 stores, and find that this combined model generates the most 

accurate forecasts overall. We note that the results are post hoc and based on the same dataset. 

However, this may suggest a potential for more effective forecasting strategies, and we leave further 

analysis to future research. 

 

In this study, our proposed methods deliver greater accuracy improvements compared to conventional 

models for some product categories. This may further raise the question whether our methods lead to 

greater accuracy improvements for SKUs with some specific characteristics. For example, in an 

exploratory analysis, we regress the improvement of the forecasting performance (e.g., as defined in 

equation 8 and 916) on a wide range of measures such as the mean and standard deviation of product 

sales and price, the intensity of promotion, the proportion of outliers, randomness, and trend (see 

Fildes, 1992). We find that both of our proposed methods have greater accuracy improvements 

compared to the ADL-intra models for SKUs associated with higher levels of randomness and trend 

(e.g., those which are more difficult to forecast and tend to exhibit a trend in product sales). The 

ADL-intra-IC method tends to have smaller accuracy improvements for SKUs with higher 

proportions of outliers and higher levels of promotion intensity, possibly because it becomes more 

difficult to make adjustments for the forecast bias when there are too many outliers which are likely 

associated with promotional activities. This finding is consistent with the forecasting performance of 

the ADL-intra-IC model for the non-promoted period. Thus, the post hoc results suggest a potential 

for more effective forecasting strategies where we select the forecasting models based on the data 

characteristics of the SKU, an interesting question which we also leave to future research. 

 

                                                 
16 We have also tried dependent variables for other error measures and we have consistent findings. 
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The methods proposed in this study are new in the domain of forecasting retailer product sales at the 

SKU level, but there are areas where further improvements in forecasting performance can be 

achieved. For the ADL-intra-EWC method, we equally combine the forecasts generated by the ADL-

intra model with 10 different estimation windows. It is possible to further explore the model’s 

forecasting performance with different numbers of estimation windows and with different forecasting 

combination schemes (e.g., based on k-fold evaluation). For the ADL-intra-IC method, it is possible to 

explore the model’s forecasting performance when using different correction schemes (Clements & 

Hendry, 1999). One of the alternative correction schemes is to make adjustments to the one-step-

ahead forecast and then calculate the two-step-ahead forecast based on the value of the one-step-ahead 

forecast which has been adjusted, and so forth. In this study, we have brought attention to the problem 

of structural change. An alternative method to account for this problem is to directly model the change 

in the effect of the marketing activities, such as using time-varying parameter models. However, a 

disadvantage of this type of model is that we need to make strong assumptions concerning the effect 

of the changing marketing activities. For example, Foekens, Leeflang, and Wittink (1999) modeled 

the effect of marketing activities as a linear function of previous promotional activities. Their models 

were not developed for forecasting purposes. In summary, the methods we have proposed in this study 

produce consistently more accurate forecasts than established alternatives. They also satisfy the 

practical requirements of retail forecasting in that they are intuitive, they can be developed and 

operated automatically and can also use readily available data on marketing activities. 
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