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Abstract: In this paper, a new method was investigated to enhance remote sensing images by 

alleviating the point spread function (PSF) effect. The PSF effect exists ubiquitously in remotely 

sensed imagery. As a result, image quality is greatly affected, and this imposes a fundamental limit 

on the amount of information captured in remotely sensed images. A geostatistical filter was 

proposed to enhance image quality based on a downscaling-then-upscaling scheme. The difference 

between this method and previous methods is that the PSF is represented by breaking the pixel 

down into a series of sub-pixels, facilitating downscaling using the PSF and then upscaling using a 

square wave response. Thus, the sub-pixels allow disaggregation as an attempt to remove the PSF 

effect. Experimental results on simualted and real datasets both suggest that the proposed filter can 

enhance the original images by reducing the PSF effect and quantify the extent to which this is 

possible. The predictions using the new method outperform the original coarse PSF-contaminated 

imagery as well as a benchmark method. The proposed method represents a new solution to 

compensate for the limitations introduced by remote sensors (i.e., hardware) using computer 

techniques (i.e., software). The method has widespread application value, particularly for 

applications based on remote sensing image analysis. 

 

Keywords: Remote sensing, Geostatistics, Image enhancement, Image filtering, Point spread 

function (PSF). 

 

 

1 Introduction 

 

Image enhancement is an important technique in image processing, optics, computer graphics 

and computer vision. It refers to enhancement of the visual appearance of an observed image 

(usually called degraded image) by increasing the sharpness and reducing the blur. It is also termed 

image sharpening in the field of image processing. The technique plays a critical role in many 

applications such as robotics, medical imaging and quality control (Gilboa et al. 2002), where the 

enhanced data can help to support more reliable decisions. 

In this paper, image enhancement was investigated for remote sensing images. Due to the 

limitations of hardware, the character of landscapes and the uncertainties in imaging (e.g., 

atmospheric condition, sensor platform, etc.), blurry artifacts exist commonly in acquired remotely 

sensed images and have brought great challenges for post-image processing, analysis and related 

applications. This issue necessitates the development of more up-to-date image enhancement 

methods for remote sensing image enhancement or sharpening. 
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Note that the terminology of image sharpening in remote sensing refers to pan-sharpening in 

some cases, where a fine spatial resolution panchromatic band image is available for sharpening 

the coarse multispectral band images (i.e., the multivariate case), and the spatial resolution of the 

prediction is finer than the original multispectral images (Vivone et al. 2015). In this paper, the 

term sharpening was used to refer to the more general case where only the degraded image is 

available as input (i.e., the univariate case), and the prediction is at the same spatial resolution as 

the original degraded image. 

Over the past few decades, several enhancement methods have been developed. The linear 

unsharp masking (UM) is one of most widely used methods and it has been incorporated into 

popular software such as Adobe Photoshop (Cao et al. 2011). The basic idea dehind UM is to add a 

weighted high-pass filtered version of the input image back to the original data and, thus, enhance 

the edge and detail information (Polesel et al. 2000). UM underpins the development of various 

further methods including adaptive UM (Polesel et al. 2000), optimal UM (OUM) (Kim and 

Allebach 2005), and polynomial UM (Ramponi et al. 1996). In addition, other solutions such as the 

fuzzy logic filter (Farbiz et al. 2000), bilateral filter (Zhang and Allebach 2008) and Munsell’s 

scale-based scheme (Matz et al. 2006) were also developed for image enhancement. 

As acknowledged widely, the point spread function (PSF) effect exists ubiquitously in remotely 

sensed data and it is the main factor leading to blur. The PSF effect is caused mainly by the optical 

system, motion of the sensor platform (in in-track and/or crosstrack direction), the detector and 

electronics, atmospheric effects, and image resampling (Huang et al. 2002; Kaiser and Schneider 

2008). Due to the PSF effect, the signal of a pixel is contaminated by its neigbhoring pixels, rather 

than being a simple average of the contributions from within the spatial coverage of the pixel 

(Manslow and Nixon 2002; Townshend et al. 2000; Van der Meer 2012). The PSF is also termed 

adjacency effect in some literature (Kükenbrink et al. 2019; Wang et al. 2019; Zheng et al. 2019). 

As a result, the inherent contrast between pixels is reduced and blur is created. Such an effect has 

also been investigated for thermal infrared data (Zheng et al. 2019) and hyperspectral data (Wang 

et al. 2019) in recent years. 

Of the existing image enhancement methods, very few consider the physical blurring process 

due to the PSF effect. Huang et al. (2002) proposed a deconvolution approach to reduce the PSF 

effect in land cover mapping. The method quantifies the influence of neighbors at the original pixel 

level, which is a coarse characterization of the PSF. Kaiser and Schneider (2008) proposed a spatial 

sub-pixel analysis-based method for joint sensor PSF estimation and image sharpening. This 

method, however, is designed for the special case where land cover patterns are composed of large 

homogeneous fields separated by straight boundaries. It is, therefore, of great interest to consider 

the PSF effect for more general land cover patterns to produce more accurate predictions through 

image enhancement. 

In this paper, a geostatistical filter was proposed to perform image enhancement from the 

viewpoint of the physical PSF effect in the imaging process. The effect of surrounding pixels on the 

central pixel was investigated, as well as how to reduce the effect. The filter can also be thought of 

as a sub-pixel analysis method that explores the information at the sub-pixel level based on the 

principles of geostatistics. Different from the sub-pixel analysis-based method in Kaiser and 

Schneider (2008), its implementation is not restricted by the specific structure of landscapes. In 

comparison with the classical UM approach that treats the effect of neighbors equally and 

determines the parameter (i.e., weight for the high-pass filter) manually, the geostatistical filter 

determines the contributions of neighbors adaptively and the parameters are estimated 

automatically. Moreover, the geostatistical filter is conceptually suitable for any PSF. Crucially, 
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the method and its predictions can reduce the PSF-imposed limit on the amount of information 

captured in remote sensing images. 

In our previous research, it was demonstrated that the PSF effect can impact spectral unmixing 

(Wang et al. 2018) and sub-pixel mapping (Wang and Atkinson 2017) greatly, and developed some 

solutions to reduce the PSF effect in these two specific problems. This paper, however, investigates 

the more general case and finds solutions to enhance the original multispectral images. Specifically, 

the predictions of Wang et al. (2018) and Wang and Atkinson (2017) are a set of class proportions 

of land cover and thematic land cover maps, respectively. The prediction of this paper is enhanced 

multispectral images (in units of surface reflectance, brightness, radiance, etc.) at the original 

spatial resolution. Importantly, the predictions produced using the proposed filter in this paper have 

more widespread application value. They can be used for more reliable post-image analysis (not 

only for spectral unmixing and sub-pixel mapping, but also for many other technical problems) and 

post-quantitative-inversion (e.g., inversion of environmental and ecological variables based on 

reflectance data) that need to reduce the effect imposed by the PSF. 

The rest of the paper is organized as follows. In Sect. 2, the mechanism of the PSF effect on 

remote sensing images (pixel values) is introduced briefly and then the geostatistical filter is 

introduced for reducing the PSF effect and realizing image enhancement. The theoretical 

advantages of the method over UM is also analyzed. Section 3 provides the experimental results for 

both a simulated dataset and a real dataset to validate the proposed method. Further analysis, 

remarks and relevant further issues are discussed in Sect. 4. Section 5 concludes the paper. 

 

 

2 Methods 

 

2.1 Difference Between Observed Data and Ideal Data 
 

Let VbG  be the observed gray value (e.g., reflectance, radiance, brightness, etc.) of pixel V in 

band b (b=1, 2, …, B, where B is the number of bands of the observed image), and vbG  be the 

error-free gray value of sub-pixel v in band b. Due to the PSF effect, the pixel value of V is a 

convolution of the values of sub-pixels 

=Vb vb VG G h ,                                                            (1) 

where * is the convolution operator and Vh  is the PSF. 

The task of image enhancement is identified as the prediction of the ideal pixel value of V 

(denoted as VbQ ) for all pixels and all bands of the image. VbQ  is the value not contaminated by its 

neighbors and it is assumed that the blur can be eliminated by restoration of the image composed of 

the individual VbQ . The ideal pixel value is conceptually defined as the average of all error-free 

sub-pixel values falling within V 

Vb vb VQ G h   ,                                                           (2) 

in which Vh   is a specified square wave filter (Pardo-Iguzquiza et al. 2006; Wang et al. 2018) 

1
, if ( )( )

0, otherwise
V

Vh 

    


x x
x ,                                                     (3) 
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where x is the two-dimensional spatial coordinate of a sub-pixel, V(x) is the spatial coverage of the 

coarse pixel V, and   is the pixel areal ratio (in zoom) between V and v (i.e., the number of 

sub-pixels v within V). Eq. (2) means that the ideal pixel value is determined only by the sub-pixels 

within it and it is not affected by neighboring pixels. 

The real PSF Vh  in practical cases is not the same as the ideal square wave Vh  . The differences 

are generally twofold. 

i) The spatial coverage of 
Vh  is normally larger than a pixel (as is the case in Vh  ). This means 

that the observed pixel value VbG  is affected by its surrounding pixels, and more precisely, is 

a convolution of the sub-pixel values not only within, but also surrounding pixel V. 

ii) Different sub-pixels (both within and surrounding the center pixel) have different effects on 

the center pixel. Compared to more distant sub-pixels, the close (relative to the centroid of 

the observed pixel) sub-pixels have greater effect on VbG . 

As widely acknowledged, the PSF Vh  is often assumed to be a Gaussian filter (Campagnolo and 

Montano 2014; Huang et al. 2002; Kaiser and Schneider 2008; Manslow and Nixon 2002; 

Townshend et al. 2000; Van der Meer 2012; Wang et al. 2018; Wenny et al. 2015) 

2 2

1 2

2 2

1
exp , if ( )

( ) 2 2

0, otherwise

V

x x
V

h  

   
         
 

x x
x ,                                   (4) 

in which   is the standard deviation (related to the width of the Gaussian PSF),  1 2,x xx , and 

( )V  x  is the spatial coverage on which the PSF Vh  can exert an effect. ( )V  x  is usually a local 

window centered at coarse pixel V and it is larger than ( )V x  in Eq. (3).  

The obvious difference between Vh  and Vh   leads to a substantial lack of coherence between the 

observed pixel value VbG  and ideal value VbQ . It is clear that the prediction of VbQ  in Eq. (2) is 

essentially the prediction of the error-free sub-pixel values vbG . As seen from the relation in Eq. 

(1), vbG  can be predicted inversely if the real PSF Vh  is available. The predicted sub-pixel values 

can then be convolved with the ideal square wave filter to produce VbQ . In Sect. 2.2, a geostatistical 

solution is proposed to predict vbG . 

 

2.2 The Proposed Geostatistical Filter 

 

The inverse prediction problem of predicting sub-pixel values vbG  from pixel value VbG  

involves downscaling, which predicts ‘point’ values from observed ‘areal’ values. The challenge in 

the mathematical problem is to account for the PSF Vh  explicitly. The geostatistics-based 

area-to-point kriging (ATPK) is exactly a downscaling approach that can account for the PSF 

explicitly. It is employed to predict sub-pixel values vbG  in this paper. ATPK is essentially an 

interpolation approach, where the sub-pixel values are predicted as a weighted combination of 

neighboring pixel values. Specifically, for a given sub-pixel iv , the value is predicted as 

(Kyriakidis 2004) 
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1 1

ˆ , s.t. 1
i j

N N

v b ij V b ij

j j

G G 
 

     ,                                              (5) 

where ij  is the weight for neighboring pixel jV  and N is the number of neighboring pixels 

(including the center pixel). It is always necessary to determine an optimal size of neighborhood in 

advance. The size is determined according to the width of the PSF. If the width of the PSF is large, 

a large number of neighbors affect the center pixel and a large number of pixels in the 

neighborhood need to be considered in ATPK; If the width of the PSF is small, only a small 

number of neighbors need to be considered. The weights in Eq. (5) are calculated according to the 

equation below (Kyriakidis 2004) 

CC i FCγ λ γ ,                                                                (6) 

where CCγ  is a (N+1)×(N+1) matrix composed of area-to-area semivariograms, FCγ  is a (N+1)×1 

vector composed of point-to-area semivariograms, and iλ  is a (N+1)×1 vector composed of the 

weights. The calculation of CCγ  and FCγ  accounts for the PSF Vh  in the scale transformation. Note 

that in this paper, the pixel gray values are used for semivariogram modeling. This is different from 

the cases in spectral unmixing (Wang et al. 2018) and sub-pixel mapping (Wang and Atkinson 

2017), where land cover proportions (with values between 0 and 1 for each class) and land cover 

class labels (with value of 0 or 1 for each class) are used for semivariogram modeling, respectively. 

Readers may refer to Wang et al. (2015, 2016) for more detail on the calculation of the 

semivariograms. 

A crucial property of ATPK is perfect coherence: when the ATPK predictions ˆ
vbG  are upscaled 

(convolved with the same PSF Vh ) back to the spatial resolution of pixel V, the value is exactly the 

same as the original data VbG  (Kyriakidis 2004; Kyriakidis and Yoo 2005) 

ˆ=Vb vb VG G h .                                                           (7) 

Thus, Eq. (7) demonstrates mathematically that the ATPK prediction ˆ
vbG  is a reliable solution for 

predicting the pixel value VbG  identified in Eq. (1), as it strictly satisfies Eq. (1). 

The ideal pixel value VbQ  of the enhanced image is finally predicted as 

ˆ ˆ=Vb vb VQ G h  .                                                          (8) 

The proposed method is compared to the classical UM approach. In UM, the Laplacian operator 

is used widely and the prediction, denoted as, ˆ
VbU , is calculated as 

1

1

1

1
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,                                      (9) 

where 
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+1, if is the center pixel

, otherwise
1

j

j

w V

w

N



 


 


 

.                                       (10) 

In Eqs. (10) and (11), (0,1]w  is the weight for the high-pass filtered version and N  is the 

number of neighboring pixels (including the center pixel). For the Laplacian kernel, the 

4-neighborhood or 8-neighborhood is always used. 

With respect to the proposed ATPK-based geostatistical filter, the prediction in Eq. (8) can be 

further transformed as follows 
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,                                                  (11) 

where 
1

= /j ij

i



  


  is the weight for the neighboring pixel jV . This means that the final prediction 

of the proposed method can be viewed as a linear weighted combination of the neighboring pixel 

values. 

As seen from Eq. (11), the mathematical model of the proposed filter has the same format as the 

UM method, but the weights are totally different. Usually, the parameter w in UM is determined 

manually or empirically. In the proposed method, the parameter ij  is determined automatically 

according to the Kriging matrix in Eq. (6), where the semivariograms are computed based on the 

spatial structure information (in terms of spatial variation) and different neighbors exert a different 

influence on the center pixel as a result. Moreover, sub-pixel level information is explored in the 

proposed filter, which is not the case in the UM method. Regarding the generalization capability, 

physically there is no restriction on the land cover patterns for the proposed filter. That is, it is 

suitable for any land cover patterns. Mathematically, its implementation is not affected by the 

specific form of PSF and any PSF can be used readily once the PSF is known or predicted. 

Our previous work for spectral unmixing (Wang et al. 2018) and sub-pixel mapping (Wang and 

Atkinson 2017) was carried out based on the mathematical relation between coarse and sub-pixel 

proportions (or sub-pixel class labels). This paper investigates a more general mathematical model. 

The previous mathematical models can be viewed as special cases of the model in Eq. (1) in this 

paper, where the more general terms of coarse pixel gray value VbG  and fine sub-pixel value vbG  

are used. The predictions of this paper can be used to reduce the PSF effect in spectral unmixing 

and sub-pixel mapping (i.e., the two techniques can be performed on the filtered data directly 

instead of on the original observed data). Moreover, the filtered data have value in any application 

where there is a need to reduce the PSF effect. 
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3 Experiments 

 

Two datasets, including a simulated PSF-contaminated, blurry dataset and a real dataset, were 

used to validate the proposed geostatistical filter-based image enhancemnet method. In the first 

experiment, a blurry dataset was simulated by convolving a 30 m Landsat 8 image with a Gaussian 

PSF. The geostatistical filtering method was then applied to enhance these data simulated with 

various standard deviations and spatial resolutions. With such a design, one can concentrate solely 

on the recovery capability of the proposed method and, more importantly, the ideal images (i.e., 

images that are not contaminated by the PSF) are known perfectly as a reference for evaluation. 

The root mean square error (RMSE) and correlation coefficient (CC) were used to provide a 

quantitative evaluation of the predictions. In the second experiment, the method was applied to 

enhance a real dataset and the evaluation was performed by visual inspection and comparison of 

empirical semivariograms before and after filtering. 

 

3.1 Experiment 1: Simulated Data 

 

The selected Landsat 8 surface reflectance image covers an area of 18 km by 18 km 

(corresponding to 600 by 600 pixels) in Coleambally, Australia. The image was acquired on 6 July 

2013. Bands 2-4 were considered in the experiment and the false color composite is shown in Fig. 

1. 

 
Fig. 1 The Landsat 8 image used in experiment 1 (bands 4, 3 and 2 as RGB) 

 

3.1.1 Data Simulated with Different PSF Parameters 

 

The 30 m Landsat image in Fig. 1 was upscaled with a factor of 4 and a Gaussian PSF. The 

standard deviation of the PSF (i.e., σ) was set to 0.3, 0.5, 0.7 and 0.9, creating four different 

PSF-contaminated images with a spatial resolution of 120 m (containing 150 by 150 pixels), as 

shown in the first column of Fig. 2. The last column shows the 120 m reference image (i.e., the 

ideal image that is not contamitaed by the PSF) that was produced by upscaling the 30 m data with 

the ideal square wave filter. Comparing the blurred images with the ideal image, it is seen that as σ 



 

 

8 

increases, the image becomes increasingly blurred and more spatial detail is lost. For example, the 

boundaries between classes appear to be more ambiguous and the linear features are almost 

completely lost in the image contaminated with σ=0.9. 

The proposed ATPK-based geostatistical filter was used to enhance the four blurred images, and 

the filtered images are shown in the second column of Fig. 2. It is clear how the original images are 

enhanced and how the prediction of the proposed method is similar to the 120 m reference in all 

four cases. Even for the case of σ=0.9 where the blurring was the most serious, the filter can still 

reproduce most of the spatial details. The results suggest that the proposed filter is applicable for 

PSFs with various widths. 
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0
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 p
ix
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Fig. 2 The results (at 120 m) of the ATPK-based geostatistical filter in relation to different PSF parameters 

 

Table 1 provides a quantitative assessment of the results of predicting the reference using the 

original 120 m PSF-contaminated images and using the proposed ATPK-based geostatistical filter. 

Generally, two observations can be made by checking the results. 

First, as σ increases, the accuracies of both the original and filtered images decrease. More 

precisely, from σ=0.3 to σ=0.9 the CC of the original data decreases from 0.9990 to 0.9443, while 

the CC of the filtered data decreases from 0.9990 to 0.9869. This is because as σ increases, more 

sub-pixel neighbors contaminate the center pixel, leading to blurred images with a greater losss of 

information. Meanwhile, the uncertainty in reproduction increases as the inverse prediction 

problem becomes more complex and when more sub-pixel neighbors are involved. 

Second, the filtered results have consistently greater accuracy than the original data. The 

advantages are more obvious for large σ. For example, the RMSE of the filtered result is 0.0001 (in 

units of reflectance) smaller than that of the original data for σ=0.3, but the gains increase steadily 

from 0.0034 to 0.0069 when σ increases from 0.5 to 0.9. For the RMSE, the corresponding 

reduction in remaining error (RRE) (Wang et al. 2015) of σ=0.5, 0.7 and 0.9 are 6.67%, 59.65%, 

59.38% and 55.20%, respectively. 

 
Table 1 Quantitative assessment of the predictions of the proposed filter in relation to different PSF parameters (the 

standard deviation σ is relative to a 120 m pixel) 

 
CC RMSE (in units of reflectance) 

σ=0.3 σ=0.5 σ=0.7 σ=0.9 σ=0.3 σ=0.5 σ=0.7 σ=0.9 

Original 0.9990 0.9884 0.9672 0.9443 0.0015 0.0057 0.0096 0.0125 

Filtered 0.9990 0.9976 0.9933 0.9869 0.0014 0.0023 0.0039 0.0056 

 

3.1.2 Data Simulated with Different Spatial Resolutions 

 

The Landsat image in Fig. 1 was upscaled with a Gaussian PSF (σ=0.5 pixel) and three different 

factors of 4, 8 and 12, creating three PSF-contaminated images with pixel sizes of 120 m, 240 m 

and 360 m. The results before and after filtering are shown in the first two columns of Fig. 3. The 

three reference images are created by upscaling Fig. 1 with the corresponding factor and ideal 

square wave filter. For blurred data at different spatial resolutions, the proposed method 

consistently can enhance the images and the predictions are visually closer to the reference. 

The quantitative assessment results are shown in Table 2. The effect of the PSF is more obvious 

for data at coarser spatial resolution and the inconsistency with the reference is larger. The filtered 

predictions have a greater CC and smaller RMSE in relation to the reference, suggesting that the 
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data are enhanced using the filter. For example, the CC values of the filtered predictions are 0.0092, 

0.0135, 0.0187 larger than those of the original data at 120 m, 240 m and 360 m, respectively. 

 
Table 2 Quantitative assessment of the predictions of the proposed filter in relation to different spatial resolutions 

 
CC RMSE (in units of reflectance) 

120 m 240 m 360 m 120 m 240 m 360 m 

Original 0.9884 0.9826 0.9756 0.0057 0.0068 0.0077 

Filtered 0.9976 0.9961 0.9943 0.0023 0.0028 0.0032 

 

 Original data Enhanced data Reference 

1
2

0
 m

 

   

2
4

0
 m

 

   

3
6

0
 m

 

   

Fig. 3 The results (σ=0.5 pixel) of the ATPK-based geostatistical filter in relation to images with different spatial 

resolutions 

 

3.1.3 Comparison with Other Methods 
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The proposed method was compared with the classical UM method (using the popular Laplacian 

operator). The three cases of σ=0.5, 0.7 and 0.9 (upscaled with a factor of 4) were considered. The 

weight w in the Laplacian-based filter was set to 0.2, 0.4 and 0.7 for σ=0.5, 0.7 and 0.9, respectively, 

which was found to produce the greatest accuracy for the method after repeated testing. The results 

are shown in the first column of Fig. 4. Comparing to the original data in the first column of Fig. 2, 

the Laplacian-based method can produce visually clearer images. However, the predictions are still 

ambiguous to some extent, which is particularly obvious for the case of σ=0.9. Checking the 

predictions of the proposed method, it can be observed that they are visually clearer than those of 

the Laplacian-based method (the difference is more obvious for larger σ). The quantitative 

assessment results in Table 3 and the scatter plots in Fig. 5 also reveal that the proposed method is 

more accurate than the Laplacian-based method. To highlight the improvement of the proposed 

ATPK-based method over the benchmark methods, the RRE is also shown in Table 3. It is seen that 

the RREs are all above 35% for CC and around 30% for RMSE, suggesting that the increase in 

accuracy is obvious. 
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Fig. 4 The results (at 120 m) produced with different methods 

 
Table 3 Quantitative assessment of the predictions produced with different methods (the standard deviation σ is 

relative to a 120 m pixel) 

 
CC RMSE (in units of reflectance) 

σ=0.5 σ=0.7 σ=0.9 σ=0.5 σ=0.7 σ=0.9 

Original 

(RRE) 

0.9884 

(79.31%) 

0.9672 

(79.57%) 

0.9443 

(76.48%) 

0.0057 

(59.65%) 

0.0096 

(59.38%) 

0.0125 

(55.20%) 

Laplacian 

(RRE) 

0.9963 

(35.14%) 

0.9882 

(43.22%) 

0.9762 

(44.96%) 

0.0034 

(32.35%) 

0.0055 

(29.09%) 

0.0079 

(29.11%) 

ATPK 0.9976 0.9933 0.9869 0.0023 0.0039 0.0056 

 

 
Fig. 5 Scatter plots (σ=0.7 pixel) between the predictions and reference data (at a spatial resolution of 120 m) 

 

3.2 Experiment 2: Real Data 

 

The proposed geostatistical filter was applied to enhance a real Landsat 7 ETM+ dataset in this 

experiment. The Landsat image (in units of digital number (DN)) was supplied by the Government 

of Canada through Natural Resources Canada, Earth Sciences Sector, Canada Centre for Remote 
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Sensing, which was used for pan-sharpening in our previous research (Wang et al. 2016). The 

image covers a 9 km by 9 km area (containing 300 by 300 pixels) in Alberta in Canada. The green, 

red, and near-infrared bands (i.e., bands 2, 3, and 4) with a spatial resolution of 30 m were 

considered in this experiment, as shown in the false color composite in Fig. 6. 

 
Fig. 6 The Landsat 7 image (bands 4, 3, and 2 as RGB) selected for Experiment 2 

 

The standard deviation of the Gaussian PSF σ was tuned from 0.1 to 0.9 with an interval of 0.1, 

and the proposed filter was performed for each parameter. The zoom factor in ATPK-based 

downscaling was empirically set to 4. The nine predictions are shown in Fig. 7. It was found that as 

σ increases, the prediction becomes clearer. When σ exceeds a certain value, however, the 

prediction contains more spurs and noise with further increases of σ. The optimal σ was determined 

finally as 0.4 after visual comparison of the nine predictions. 

 

   
(a)                                                     (b)                                                     (c)  
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(d)                                                     (e)                                                     (f) 

   
(g)                                                     (h)                                                     (i)  

Fig. 7 The filtered results produced using the Gaussian PSF with nine different standard deviations. (a)-(i) σ=0.1, 0.2, 

0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9 

 

Figure 8 shows the differences between the filtered predictions and the original data based on the 

optimal parameter σ=0.4. It is seen clearly that the differences are located mainly on the boundaries 

between classes (see, for example, the elongated features for band 4 and rectangle features for all 

three bands), where mixed pixels exist and the PSF effect is prominent. The semivariogram was 

used to evaluate the prediction. Figure 9 shows the semivariograms (without any model fitting) of 

the original and filtered data. It can be seen that the filtered prediction exhibits greater spatial 

variation than the original data, suggesting that the filtered prediction increases the contrast 

between pixels (i.e., increases the sharpness). Table 4 shows the semivariogram (at a lag of one 

pixel) of the original and filtered data. The increases at a lag of one pixel for the three bands are 

1.42, 3.13 and 3.53, respectively. 
 

Table 4 The semivariogram (at a lag of one pixel, in units of DN
2
) of the original and filtered data 

 Band 2 Band 3 Band 4 

Original 2.34 5.92 9.22 

Filtered 3.76 9.05 12.75 
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(a)                                                                                       (b) 

 
(c) 

Fig. 8 The difference between the original and filtered data (σ=0.4). (a) Band 2. (b) Band 3. (c) Band 4 

 

 
Fig. 9 The semivariograms of the original and filtered data 
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4 Discussion 

 

Very few image enhancement methods consider how the neighbors affect the center pixel from 

the physical viewpoint of the PSF effect. This paper analyzes the mathematical relation between 

the signal of the center pixel and its neighbors. Such a relation is described at the sub-pixel level, 

and this focus on sub-pixels has seldom been considered in existing methods such as the classical 

UM method. The proposed downscaling-then-upscaling scheme can account explicitly for the form 

of the PSF of the sensor, and it is conceptually suitable for any PSF. Furthermore, the proposed 

method is applicable to any images and is expected to be applied to enhance images in other 

domains (e.g., medical imaging or computer vision) in the future. 

The produced enhanced data have widespread application value, including all applications based 

on remote sensing image analysis. A crucial benefit is that after filtering, the boundaries between 

land cover and land use classes can be more clearly observed. This is potentially of great help for 

image interpretation, especially for images of heterogeneous landscapes which contain mixed 

pixels. Land cover classification and spectral unmixing are two of the most widely studied goals in 

remote sensing. As mentioned earlier in the Introduction, this paper proposed a general solution to 

enhance original remote sensing images contaminated by the PSF effect and, as such, the 

predictions can be used in many potential applications, not only spectral unmixing (Wang et al. 

2018) or sub-pixel mapping (Wang and Atkinson 2017). In addition, compared to the solution to 

enhance spectral unmixing in Wang et al. (2018), another theoretical advantage of the solution in 

this paper is relaxing the assumption that the endmembers are scale-free (i.e., the same 

endmembers can be considered for spectra at different spatial resolutions in Wang et al. (2018)). 

Such an advantage may lead to more reliable spectral unmixing predictions, especially when the 

endmembers actually vary greatly across different scales and impose great uncertainty in the model 

developed, as in Wang et al. (2018). 

In this paper, the ATPK approach was considered for the inverse prediction problem of 

predicting error-free sub-pixel values from observed pixel values. It should be noted that the 

inverse prediction problem is ill-posed, especially when the size of the PSF width is large and more 

neighbors impact the center pixel. This means that multiple solutions can meet the constraint in Eq. 

(1). For example, the implementation of ATPK involves the estimation of the point-to-point 

semivariogram (Wang et al. 2015, 2016). Different point-to-point semivariograms will finally lead 

to different predictions of sub-pixel values, but all of them strictly meet the constraint in Eq. (1) 

(Kyriakidis 2004; Kyriakidis and Yoo 2005). On the other hand, as acknowledged widely, 

downscaling becomes more challenging as the spatial heterogeneity of pixel values increases and 

downscaling might not even be pursued if the spatial heterogeneity is very high. Thus, the 

reliability of downscaling and the proposed geostatistical filter varies spatially depending on the 

local spatial heterogeneity. To reduce the uncertainty in downscaling-based sub-pixel value 

prediction, and the proposed geostatistical filter, it is necessary to seek more auxiliary information 

about the land cover patterns. 

When characterizing the mathematical relation between the pixel and its neighbors due to the 

PSF effect, an interesting issue is the definition of the ‘point’. Physically, the point is infinitely 

small when the sensor acquires signals from the Earth’s surface. In the mathematical model in this 

paper (Eq. (1)), and in geostatistics generally, the ‘point’ is defined as the smaller unit (i.e., 

sub-pixel). In theory, to achieve the closest approximation of the PSF and coarse pixel space 

through sampling, the spatial size of the sub-pixel needs to be defined to be as small as possible, 

that is, approaching a point. However, the zoom factor will be unacceptably large in this case, and 

this will greatly increase the computational burden of ATPK-based downscaling. On the other hand, 
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to save computational cost, the spatial size of the sub-pixel needs to be defined to be as large as 

possible. However, the effect of neighbors will then be quantified less well due to coarse 

approximation of the true PSF, and the reliability of the model will be reduced. According to the 

experimental test in this paper, the largest spatial size of a sub-pixel was set to 1/16 of the coarse 

pixel (i.e., the minimum zoom factor was 4), which will result in an acceptable balance between the 

computational cost and reliability of the model. For example, in Experiment 1, the sub-pixel with a 

spatial resolution of 30 m was treated as a ‘point’ when enhancing the 120 m original 

PSF-contaminated data. However, there is still a need to develop methods to predict reliably the 

optimal spatial size of the ‘point’ in more cases. 

Since the ‘point’ is geostatistically defined as a sub-pixel at a certain spatial resolution, the PSF 

in this case is actually changed to a set of sub-pixels in scale transformation (between pixel and 

sub-pixel), rather than the true PSF of the sensor (i.e., original measurement). There is a great need 

to develop methods to estimate the PSF, including the specific form of the function (not only 

Gaussian in this paper, but other forms (Tan et al. 2006)) and related parameters. Generally, two 

cases for PSF estimation can be expected. 

i) If images are available at both of the spatial resolutions of the pixel and sub-pixel, a transfer 

function between the sub-pixel and pixel images, which approximates the PSF if the 

difference between the resolutions is large, may be estimated using the training image-pair. 

In using such an image-pair to estimate the PSF one consideration would be the temporal 

distance between the two images, and the spatial and temporal distance between the training 

data pair and the study area. The two images and two types of data need to be as close (both 

spatially and temporally) as possible for more reliable PSF estimation. Another 

consideration is the inconsistency (e.g., uncertainties in geometric registration and 

atmospheric correction) between the data at different spatial resolutions in the training 

image-pair. 

ii) If only the observed blurred image is available, the PSF may be estimated by visual 

inspection of the predictions for all possible PSF candidates, as was done in Experiment 2 

where the optimal parameter for the Gaussian PSF was determined by comparison of the 

nine predicted images. The benefit of the artificial visual interpretation process is that human 

perception, by definition, is more intelligent than a mathematically defined metric. The 

limitation, however, is that such a process is laborious, particularly when the number of data 

increases, and the risk of over-dependence on the experts’ knowledge. Alternatively, the PSF 

can be estimated mathematically by focusing on some representative features in the images 

(e.g., linear features or straight boundaries) and investigating how the features can be 

degraded from features known prior. 

In this paper, the semivariograms were characterized using a global model. That is, a single 

semivariogram was calculated for the entire study scene. This is reasonable for the image in the 

experiments, as the spatial coverage is relatively small and the choice of a stationary model is 

reasonable. For large application areas, however, the spatial structure may vary greatly spatially 

and a non-stationary model might be more appropriate. In this case, the uncertainty in 

semivariogram modeling and, further, in ATPK-based downscaling, as well as the proposed filter, 

would increase if a global model is fitted. As a solution to applying the proposed filter to large areas, 

one could develop local models, such as by dividing a large area into sub-areas, or by constructing 

a local window for semivariogram modeling for each pixel, if the expensive computational cost is 

tolerable. 

 

 



 

 

18 

5 Conclusion 

 

This paper proposed a geostatistical filter to enhance remote sensing images by removing or 

reducing the PSF effect. The PSF effect is ubiquitous in remotely sensed images and it can be 

regarded as a nuisance; it adds a smoothing effect to the data that blurs the visual appearance of 

images and makes the data more difficult to use in relation to predicting scene components such as 

land cover and land use objects.  

The new method explores the effect of neighbors on the pixel signal (i.e., gray value) at the 

sub-pixel level such that each pixel value is considered as a convolution of the sub-pixel values 

within the pixel and in the neighbors of the pixel. On this basis, a novel geostatistical filter method 

was proposed that involves downscaling-then-upscaling. The method first downscales the original 

image to sub-pixels while accounting for the PSF effect, and then upscales the downscaling 

predictions with a square wave filter (i.e., involving only sub-pixels within the pixel) to produce a 

predicted image without the PSF effect. The effectiveness of the method was demonstrated using 

two datesets. 
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