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We develop a spectral theory for the equation (r + ieA) £ u = §mu on Minkowski
3-space (one time variable and two space variables); here, A is a real vector potential
and the vector product is de¯ned with respect to the Minkowski metric. This
equation was formulated by Elton and Vassiliev, who conjectured that it should have
properties similar to those of the two-dimensional Dirac equation. Our equation
contains a large parameter c (speed of light), and this motivates the study of the
asymptotic behaviour of its spectrum as c ! + 1 . We show that the essential
spectrum of our equation is the same as that of Dirac (theorem 3.1), whereas the
discrete spectrum agrees with Dirac to a relative accuracy ¯ ¶ =mc2 ¹ O(c ¡ 4)
(theorem 3.3). In other words, we show that our equation has the same accuracy as
the two-dimensional Pauli equation, its advantage over Pauli being relativistic
invariance.

1. Introduction

The purpose of this paper is to study the spectral properties of (the stationary form
of) the equation

(r + ieA) £ u = §mu (1.1)

in Minkowski 3-space. Here,1 r· = @=@x · is the (covariant) space time derivative,
A is a given electromagnetic potential (real vector valued function), u is an unknown
complex vector-valued function, and we are using the relativistic system of units,
i.e. ~ = 1, c = 1 and e º ¡ 1=

p
137. The Minkowski metric is assumed to be

g · ¸ = diag(+1; ¡ 1; ¡ 1) and the vector product is de ned as (v £ w) ¶ := e¶ · ¸ v · w ¸ ,
where e¶ · ¸ is the totally antisymmetric tensor with e012 = +1. Equation (1.1)
was suggested in [3] as part of a general programme of  nding possible tensor
alternatives to the Dirac equation.

Switching to atomic units, i.e. taking e = ¡ 1, ~ = 1, m = 1 and c º 137 ¾ 1, we
can rewrite (1.1) explicitly as

0
@

0 ¡ P2 P1

¡ P2 0 c¡1P0

P1 ¡ c¡1P0 0

1
A

0
@

u0

u1

u2

1
A = §ic

0
@

u0

u1

u2

1
A ; (1.2)

where P = ir ¡ eA = ir + A is the electromagnetic energy momentum vector.
1In what follows Minkowski tensor indices will be denoted by Greek letters and take the values

0, 1, 2.
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Remark 1.1. We have included a factor of 1=c into the magnetic potential (A1; A2),
which is customary in mathematical literature on the Dirac equation (see, for exam-
ple, remark 2 in x 6.1 of [9]). Physically, this convention means that the magnetic
 eld is assumed to be quite strong, so that in the  rst approximation the energy
levels are described by the Pauli equation and not by the Schr�odinger equation.
This simpli es the asymptotic analysis by reducing the chain of successive approx-
imations (Schr�odinger, Pauli, Dirac) to (Pauli, Dirac).

The stationary form of (1.2) is obtained by assuming A is independent of x0 and
u = u(x1; x2)e¡i¶ x0

, where ¶ is a spectral parameter. Formally, this allows us to
replace P0 with ¶ + © , where we write © = eA0 = ¡ A0 for the electric potential.
Furthermore, we can use the  rst row of (1.2) to eliminate u0 from the remaining
two rows. Taking the equation with the upper sign (from now on the other equation
will be discussed only for the purpose of comparison), we get

³
~A ¡ ¶

³
0 ¡ i

i 0

´´
u = 0; (1.3)

where u = (u1; u2)T is some function from R2 into C2 and

~A =

³
P 2

2 ¡ P2P1

¡ P1P2 P 2
1

´
+

³
c2 i©

¡ i © c2

´
:

Notation. Having reduced the problem to one on R2, we will now need to work
with the 2-vector part of various 3-vectors. Following tradition, we shall use the
contravariant form of the 3-vector for these purposes, i.e. if v is a 3-vector with a
2-vector part u, then the components of u are given by ui = vi = ¡ vi for i = 1; 2. In
particular, denoting the magnetic potential and the momentum 2-vectors by A and
P , respectively, and relabelling the original electromagnetic potential and energy
momentum 3-vectors as A0 and P 0, respectively, we have

A = (A1; A2) := (A01; A02) = ¡ (A0
1; A0

2)

and

P = (P1; P2) := (P 01; P 02) = ¡ (P 0
1; P 0

2):

For i = 1; 2, it follows that Pi = ¡ i@i ¡ eAi = ¡ i@i + Ai, where @i = @=@xi is the
partial derivative with respect to xi, the ith coordinate. From now on, we shall use
Ai and Pi to refer to the components of the 2-vectors A and P , respectively.

A computationally more convenient form of the spectral problem given by (1.3)
is obtained by applying the constant unitary transformation

U =
1p
2

³
1 i

i 1

´
:

Setting x§ = x1 § ix2 for any vector x = (x1; x2), we have

U ¤ ~AU =
1

2

³
P¡P+ ¡ iP 2

¡
iP 2

+ P + P¡

´
+

³
c2 ¡ © 0

0 c2 + ©

´
=

³
H +

P B ¤

B H¡
P

´
+ c2I;
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where
H§

P = 1
2P¨P§ ¨ © = 1

2 (P 2
1 + P2

2) § 1
2H ¨ © ;

H = @1A2 ¡ @2A1; B = 1
2 iP 2

+

)

(1.4)

and I is the 2 £ 2 identity matrix. De ne another constant 2 £ 2 matrix J by

J = U ¤
³

0 ¡ i

i 0

´
U =

³
1 0

0 ¡ 1

´
:

Therefore, equation (1.3) is equivalent to the spectral problem given by

(A ¡ ¶ J)u = 0; (1.5)

where

A =

³
H +

P + c2 B ¤

B H¡
P + c2

´
: (1.6)

Remark 1.2. The operators H§
P are just the Pauli operators for the electron and

positron, respectively, and cH is the magnetic  eld strength (see also remark 1.1).

The structure of the paper is as follows. In x 2 we give a rigorous mathematical
statement of our spectral problem and in x 3 we state our main results regarding
the essential spectrum (theorem 3.1) and the behaviour of the discrete spectrum as
c ! +1 (theorem 3.3). The former result is proved in xx 4 and 5, while the latter
is proved in xx 6 and 7.

The results stated in x 3 are naturally motivated by the structure of our equa-
tion (1.5), but their proofs are quite technical. This is related to the fact that the
problem (1.5) is not elliptic. Indeed, a straightforward calculation of the principal
symbol of the operator A gives

1

2

³
¹ 2

1 + ¹ 2
2 ¡ i(¹ 1 ¡ i ¹ 2)2

i( ¹ 1 + i ¹ 2)2 ¹ 2
1 + ¹ 2

2

´
;

and it is easy to see that the determinant of this matrix is zero. Consequently,
equation (1.5) cannot be viewed as an analytic perturbation of the Pauli (or Dirac)
equation.

2. Mathematical statement of the problem

Equation (1.5) gives rise to a linear spectral pencil problem. Various parts of the
spectrum of such a problem can be de ned by analogy with the de nitions for
standard spectral problems.

Definition 2.1. Suppose A is de ned as a closed (unbounded) operator on some
dense domain Dom A » L2(R2; C2). We de ne the J-spectrum of A, which will be
denoted by ¼ J(A), to be the complement of the set of all z 2 C for which A ¡ zJ
is boundedly invertible. The J-essential spectrum (denoted by ¼ J Es s (A)) is de ned
to be the set of all z 2 C for which A ¡ zJ is not Fredholm (where a closed densely
de ned operator B on L2 is said to be Fredholm if Ran B is closed and Ker B and
L2= Ran B are both  nite dimensional). If Ker(A ¡ ¶ J) 6= 0, then ¶ 2 ¼ J(A) will
be called a J-eigenvalue of A.
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Remark 2.2. The relationship

A ¡ zJ = J(JA ¡ zI) = (AJ ¡ zI)J (2.1)

allows us to reformulate statements regarding the J -spectrum of A in terms of the
(regular) spectrum of JA or AJ . In particular, ¼ J(A) = ¼ (JA) = ¼ (AJ) (with a
similar relationship holding for the essential spectra), while ¶ is a J -eigenvalue of A
if and only if it is an eigenvalue of JA or AJ . The alternative points of view given
by (2.1) will be used repeatedly below, especially in xx 6 and 7 to appropriately
modify standard properties of resolvents to the case of linear spectral pencils.

Suppose ¶ 2 ¼ J(A) is a J -eigenvalue of A. We de ne the geometric multiplicity
of ¶ to be dim Ker(A ¡ zJ). Clearly, this is the same as dim Ker(JA ¡ zI) or
dim Ker(AJ ¡ zI), which are just the geometric multiplicities of ¶ regarded as a
eigenvalue of JA or AJ , respectively. Following the general de nition for spectral
pencils (see [4], for example), we can de ne the algebraic multiplicity of ¶ to be
the sum of the lengths of a canonical set of Jordan chains corresponding to ¶ . It
is straightforward to see that this is just the algebraic multiplicity of ¶ regarded
as an eigenvalue of JA or AJ . We say that ¶ is semi-simple if its geometric and
algebraic multiplicities are equal.

Notation. For any p 2 [1; 1] and k 2 Z, we shall use Lp
k with norm k¢kL

p
k

to denote
the usual Sobolev space on R2; here, k is the `number’ of p-integrable derivatives.
Depending on the context, elements of Lp

k will take values in either R, C, R2 or
C2. The omission of k will imply its value is 0. We shall also use Lp

1 to denote the
space

T
k 2 ZLp

k (without any topology).

In order to de ne A as a closed (unbounded) operator, we impose some conditions
on the potentials © and A.

(A1) © = © 0 + © 1 for some © 0 2 L 1 and © 1 2 L1 which has compact support and
satis es (1 + j¹ j2)k=2 ^© 1( ¹ ) 2 Lp for some p 2 [1; 1] and k > 2(1 ¡ 1=p).

(A2) A 2 L 1
loc \ L2

1 loc.

Henceforth we shall assume these conditions are always satis ed. It follows that
for any u 2 C 1

0 the formal operator given by (1.6) de nes some Au 2 L2, i.e. (1.6)
de nes an operator on L2 with domain C 1

0 , which we shall denote by A0. Now
³

H +
P B ¤

B H¡
P

´
=

1

2

³
P¡P+ ¡ iP¡

2

iP +
2 P+ P¡

´
¡ © J = T ¤ T ¡ © J;

where T is the operator given by T = (1=
p

2)
¡
iP + P¡

¢
. It follows easily that A0

is symmetric. Furthermore, the quadratic form associated to A0, KA 0 , is given by

KA 0 (u) = hA0u; ui = kT uk2 + c2kuk2 ¡ K © (u);

where
K © (u) = h © Ju; ui = hu1; © u1i ¡ hu2; © u2i

for all u 2 C 1
0 . In x 4 we shall prove the following.
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Proposition 2.3. Let µ > 0. Then there exists a constant C such that the estimate
jK © (u)j 6 µkT uk2 + Ckuk2 holds for all u 2 C 1

0 .

Therefore, KA0 and hence A0 are semi-bounded. From standard results (see x 10.3
in [1], for example), it follows that A0 has a self-adjoint extension (the Friedrichs
extension), which we shall denote by A. Furthermore, C 1

0 » Dom A » L2 and
the quadratic form associated to A, KA, is the closure of KA 0 . More precisely,
C 1

0 » Dom A » Dom KA » L2,

Dom KA is the closure of C 1
0 with respect to the norm (kT uk2 + kuk2)1=2 (2.2)

and, for all u 2 Dom KA,

KA(u) = kT uk2 + c2kuk2 ¡ K © (u); K © (u) = hu1; © u1i ¡ hu2; © u2i: (2.3)

Conditions A1 and A2 thus allow us to de ne A as a self-adjoint operator. Since
(AJ) ¤ = J ¤ A ¤ = JA and ¼ J(A) = ¼ (JA) = ¼ (AJ) (see remark 2.2), we imme-
diately have that ¼ J (A) is symmetric about the real axis. However, the operators
JA and AJ are not self-adjoint (or even normal) so, in general, ¼ J(A) will contain
non-real points and non-semi-simple eigenvalues. There are several extra conditions
we can impose on © and/or A that allow us to proceed further. The next result
gives one such approach (essentially the approach used in [3]).

Theorem 2.4. Suppose there exists ¯ > 0 such that

jK © (u)j 6 kT uk2 + (c2 ¡ ¯ )kuk2 (2.4)

for all u 2 C 1
0 (note that, in particular, this is satis¯ed if k © kL1 6 c2 ¡ ¯ ). Then

¼ J(A) ³ ( ¡ 1; ¡ ¯ ] [ [ ¯ ; 1) and contains no non-semi-simple J-eigenvalues.

Proof. Using (2.2), it immediately follows that (2.4) holds for all u 2 Dom KA ¼
Dom A. Thus, for all u 2 Dom A,

hAu; ui = kT uk2 + c2kuk2 ¡ K © (u) > ¯ kuk2;

and so A > ¯ I . Therefore, A has a boundedly invertible positive self-adjoint square
root A1=2, which allows us to rewrite the spectral problem given by (1.5) as

(I ¡ zA¡1=2JA¡1=2)v = 0:

It follows that ¼ J(A) = fz j 1=z 2 ¼ (A¡1=2JA¡1=2)g. However, A¡1=2JA¡1=2

is a self-adjoint operator bounded by 1=¯ , so ¼ (A¡1=2JA¡1=2) ³ [¡ 1=¯ ; 1=¯ ] and
contains no non-semi-simple eigenvalues. The result then follows.

Some other conditions that allow us to obtain useful results about ¼ J (A) are as
follows.

(B1) In addition to the requirements imposed by condition A1, we assume that
© 0 2 L 1 \ L2

1 loc, © 0(x) ! 0 as jxj ! 1 and, if p = 1, then j¹ j2 ^© 1( ¹ ) ! 0
as j ¹ j ! 1,

(B2) In addition to the requirements imposed by condition A2, we assume there
exists a disc Bn » R2 of radius rn for each n 2 N such that rn ! 1 and
k © kL2(Bn); kHkL2(Bn) = o(rn) as n ! 1 (where H is de ned in (1.4)).
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(C) © and A are smooth with values and derivatives of all orders bounded (in the
L 1 norm). Furthermore, © and H decay at in nity.

Remark 2.5. Condition A1 forces © 1 2 Lp for all p 2 [1; 1); however, © 1 =2 L 1

in general (unless p = 1, in which case © 1 must be continuous). The same is true
for condition B1.

Examples of functions © 1 satisfying condition A1 but not the last part of condi-
tion B1 include © 1(x) = ¿ (x) log(jxj) and © 1(x) = ¿ (x)H(x1)H(x2), where ¿ 2 C 1

0

is some cut-o¬ function with ¿ (0) 6= 0 and H : R ! R is the Heaviside function.
Since kfkL2(Bn) 6

p
º rnkfkL1 (Bn) for any function f , it is enough to have that

k © kL1 (Bn); kHkL1 (Bn) ! 0 in condition B2 (see remark 5.10 for further technical
details regarding this condition).

Clearly, condition C implies conditions B1 and B2, while all of the above condi-
tions are satis ed if © and A are Schwartz class functions.

3. Main results

Our main result concerning the J -essential spectrum of A is the following.

Theorem 3.1. If © satis¯es condition B1, then ¼ J Es s (A) ³ ( ¡ 1; ¡ c2] [ [c2; 1).
Furthermore, ¼ J(A) n ¼ J Es s (A) consists of isolated J-eigenvalues of ¯nite algebraic
(and hence geometric) multiplicity.

If © and A satisfy condition B2, then ¼ J Es s (A) ´ ( ¡ 1; ¡ c2] [ [c2; 1).

This result was proved in [3] under the assumptions that © and A are smooth,
their values and derivatives of all orders vanish at in nity and k © kL1 < c2.

It is natural to compare the spectral properties of our equation (1.1) with those
of the Dirac equation. Using atomic units, the stationary form of Dirac’s equation
in R2 can be written as

(D ¡ ¶ I)Á = 0;

where

D =

³
¡ © + c2 cP¡

cP + ¡ © ¡ c2

´
; (3.1)

¶ is the spectral parameter and Á is a spinor (i.e. a function from R2 into C2).
Assuming © and A satisfy conditions B1 and B2, it is possible to de ne D as a
self-adjoint operator on a dense domain in L2 and show that

¼ Es s (D) = ( ¡ 1; ¡ c2] [ [c2; 1)

(see [9], for example). Thus the essential spectra of the operators A and D coincide.
If we assume that © and A satisfy condition C, we can also compare the discrete

spectra of these operators in the gap ( ¡ c2; c2). To do this, it is easiest to compare
both operators to the Pauli operator H +

P (after we have shifted the former spectra
by ¡ c2 to allow for the rest mass of the electron). For the Dirac operator, we have
the following result (see [6] or [9]).

Theorem 3.2. Let ¶ < 0 be an eigenvalue of Pauli’s operator H +
P with multiplicity

k and let fv1; : : : ; vkg be an orthonormal basis for the corresponding eigenspace.
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Then, for all su± ciently large c, there exist k (not necessarily distinct) isolated
eigenvalues ¶ 1(c); : : : ; ¶ k(c) in ¼ (D) which admit the asymptotic expansion

¶ i(c) = c2 + ¶ ¡ · ic
¡2 + O(c¡4); i = 1; : : : ; k;

where · 1; : : : ; · k are the (repeated) eigenvalues of the k £ k matrix with entries
hvi;

1
4P¡( © + ¶ )P + vji for i; j = 1; : : : ; k. Furthermore, there exists a c-independent

neighbourhood U of 0 such that these are the only points of ¼ (D) \ (c2 + U ).

We establish a similar result for the operator A (note that if c2 > k © kL1 , then
theorem 2.4 shows that all J -eigenvalues of A are real and semi-simple).

Theorem 3.3. Let ¶ < 0 be an eigenvalue of Pauli’s operator H +
P with multiplicity

k and let fv1; : : : ; vkg be an orthonormal basis for the corresponding eigenspace.
Then, for all su± ciently large c, there exist k (not necessarily distinct) isolated
J-eigenvalues ¶ 1(c); : : : ; ¶ k(c) in ¼ J (A) which admit the asymptotic expansion

¶ i(c) = c2 + ¶ ¡ · ic
¡2 + O(c¡4); i = 1; : : : ; k;

where · 1; : : : ; · k are the (repeated) eigenvalues of the k £ k matrix with entries
hvi;

1
2
B ¤ Bvji for i; j = 1; : : : ; k. Furthermore, there exists a c-independent neigh-

bourhood U of 0 such that these are the only points of ¼ J (A) \ (c2 + U).

Therefore, the discrete spectrum of A agrees with that of the Dirac operator to
a relative accuracy of O(c¡4), although we cannot expect to better than this in
general.

Remark 3.4. The operator (3.1) is the Dirac operator corresponding to `spin-up
electrons’ in R2; it is also possible to consider the Dirac operator corresponding to
`spin-down electrons’,

D =

³
¡ © + c2 cP+

cP¡ ¡ © ¡ c2

´
:

In this case, comparison should be made with the operator similar to A obtained
by taking the lower sign in (1.2) (and an appropriately modi ed Pauli operator).

Making the appropriate basic changes, it is also possible to compare points of
the discrete spectra of A and D just above ¡ c2 (i.e. when dealing with positrons);
the spectra have to be shifted by c2 and comparison made to positive eigenvalues
of the Pauli operator ¡ H¡

P .

4. Some technical results

In this section we deal with some technical results that are needed for the proofs
of proposition 2.3 and the  rst part of theorem 3.1; the former is given at the end
of this section and the later in the next section.

De ne a function ¤ on R2 by ¤ ( ¹ ) = (1 + j¹ j2)1=2 and let T0 be the operator
de ned in the same way as T except with A = 0, i.e. T0 = (1=

p
2)

¡
@ + ¡ i@¡

¢
.

Also, throughout this section, let © 1, p and k be as given by condition A1.
Let u 2 C 1

0 . Thus the Fourier transform û is Schwartz class. Now de ne maps
F and G on C 1

0 by setting
³

F u

Gu

´
=

1p
2

³
1 i¹ ¡=¹ +

i¹ + =¹ ¡ 1

´ ³
û1

û2

´
:
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It is easy to see that Fu and Gu are bounded rapidly decreasing functions. Fur-
thermore,

the Fourier transform of T0u is ¹ ¡Gu; (4.1)

while Parseval’s identity gives

kF uk2; kGuk2 6 kF uk2 + kGuk2 = kuk2: (4.2)

Setting f = F u and g = Gu, Parseval’s identity also gives

K © 1
(u)

=

Z Z
^© 1( ¹ ¡ ² )(û1( ² )·̂u1( ¹ ) ¡ û2( ² )·̂u2( ¹ )) d ² d ¹

=
1

2

Z Z
^© 1( ¹ ¡ ² )

µ³
1 ¡ ² + ¹ ¡

² ¡ ¹ +

´
f ( ² ) ·f( ¹ ) ¡

³
1 ¡ ² ¡ ¹ +

² + ¹ ¡

´
g( ² )·g( ¹ )

¶
d ² d ¹

+
1

2

Z Z
^© 1( ¹ ¡ ² )

µ³
i¹ +

¹ ¡
+

i ² +

² ¡

´
f ( ² )·g( ¹ ) ¡

³
i¹ ¡
¹ +

+
i ² ¡
² +

´
g( ² ) ·f( ¹ )

¶
d ² d ¹ :

Now j ^© 1j is symmetric about 0 (since © 1 is real valued) and j ¹ §=¹ ¨j = j ² §=² ¨j = 1.
It follows that

jK © 1 (u)j 6 I© 1 (F u) + I© 1 (Gu) + 2J © 1 (F u; Gu); (4.3)

where I © 1 (¢) and J © 1 (¢; ¢) are de ned by

I © 1
(f) =

1

2

Z Z ^© 1( ¹ ¡ ² )

³
1 ¡ ² + ¹ ¡

² ¡ ¹ +

´
f ( ² ) ·f( ¹ )

d ² d ¹

and

J © 1 (f; g) =

ZZ
j ^© 1( ¹ ¡ ² )f ( ² )g( ¹ )j d ² d ¹ :

Now, for any ¹ ; ² 6= 0, it can be checked that

1

2

1 ¡ ² + ¹ ¡

² ¡ ¹ +

6 minf1; ¤ ( ¹ ¡ ² ) ¤ ¡1( ¹ )g: (4.4)

We shall use a( ¹ ; ² ) to denote the expression on the left-hand side of (4.4) in the
proof of the following result.

Lemma 4.1. There exists a constant C and a non-negative function ¼ 2 C 1 with
k ¼ kL1 6 1 such that I© 1 (f ) 6 Ck¼ fk2 6 Ckfk2 for any bounded rapidly decreasing
function f . Furthermore, if p 6= 1 or if p = 1 and j ¹ j2 ^© 1( ¹ ) ! 0 as j ¹ j ! 1, then
we can choose ¼ so that ¼ ( ¹ ) ! 0 as j¹ j ! 1.

Proof. We have j ^© 1( ¹ ¡ ² )ja( ¹ ; ² ) = j ^© 1( ² ¡ ¹ )ja( ² ; ¹ ) (note that © 1 is real valued,
so j ^© 1j is symmetric about 0). Together with H�older’s inequality, we then get

I© 1 (f ) =

Z Z
j ^© 1( ¹ ¡ ² )a( ¹ ; ² )f ( ² ) ·f( ¹ )j d ² d ¹ 6

Z
· ( ¹ )jf ( ¹ )j2 d ¹ ;
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where

· ( ¹ ) =

Z
¤ ¬ ( ¹ )

¤ ¬ ( ² )
j ^© 1( ¹ ¡ ² )ja( ¹ ; ² ) d ²

and ¬ = 3
2
(1 ¡ 1=p). De ning q 2 [1; 1] by 1=p + 1=q = 1 and using H�older’s

inequality once again, we then have · ( ¹ ) 6 M ( ¹ )N ( ¹ ), where

M( ¹ ) =

µZ
ja1=2( ¹ ; ² ) ¤ k( ¹ ¡ ² ) ^© 1( ¹ ¡ ² )jp d ²

¶1=p

(4.5)

and

N ( ¹ ) =

µZ ³
¤ ¬ ( ¹ )a1=2( ¹ ; ² )

¤ ¬ ( ² ) ¤ k( ¹ ¡ ² )

´q

d ²

¶1=q

:

If p = 1, then q = 1 and ¬ = k = 0 so N ( ¹ ) = ka1=2( ¹ ; ¢)kL1 6 1 by (4.4). On the
other hand, if p > 1, then ¬ q = 3

2 and kq > 2, while (4.4) gives

aq=2( ¹ ; ² ) 6 ¤ 1=2( ¹ ¡ ² ) ¤ ¡1=2( ¹ ):

Therefore,

N ( ¹ ) 6
µ
¤ ( ¹ )

Z
d ²

¤ 3=2( ² ) ¤ 3=2( ¹ ¡ ² )

¶1=q

:

A scaling argument shows that this expression is bounded. Recombining the two
cases, it follows that we can  nd a constant C1 such that N ( ¹ ) 6 C1 for all ¹ and p.
However, equation (4.4) also gives M ( ¹ ) 6 k ¤ k ^© 1kLp . Hence · ( ¹ ) 6 C1k ¤ k ^© 1kLp

and the  rst part of the result follows with ¼ = 1.
Now suppose p 6= 1 or p = 1 and j ¹ j2 ^© 1( ¹ ) ! 0 as j¹ j ! 1. Choose " > 0

and set ¯ = "=2C1 > 0. Our assumptions on ^© 1 then allow us to  nd some r > 0
such that k(1 ¡ À ) ¤ k ^© 1kLp < ¯ , where À is the characteristic function of the disc
of radius r and centre 0 in R2. Now (4.4) gives

(1 ¡ À ( ¹ ¡ ² ))a1=2( ¹ ; ² ) 6 1 ¡ À ( ¹ ¡ ² ) and À ( ¹ ¡ ² )a1=2( ¹ ; ² ) 6 (1+r2)1=4 ¤ ¡1=2( ¹ )

(where the last estimate follows from the fact that À ( ¹ ¡ ² ) = 0 for j ¹ ¡ ² j > r). If
we now assume that j ¹ j > ¯ ¡2k ¤ k ^© 1k2

Lp (1 + r2)1=2, equation (4.5) gives us

M ( ¹ ) 6 k(1 ¡ À ) ¤ k ^© 1kLp + (1 + r2)1=4 ¤ ¡1=2( ¹ )k ¤ k ^© 1kLp 6 2 ¯ :

Since · ( ¹ ) 6 M ( ¹ )N ( ¹ ) and N ( ¹ ) 6 C1 from above, we then have · ( ¹ ) 6 ". Thus
· ( ¹ ) ! 0 as j ¹ j ! 1. The second part of the result now follows if we choose ¼ to
be any suitably scaled smooth majoritant of · that decays at in nity.

Lemma 4.2. There exists a constant C such that for any bounded rapidly decreasing
functions f and g we have J © 1 (f; g) 6 2Ckfkk¤ 3=4gk 6 C(kfk2 + k ¤ 3=4gk2).

Proof. Using H�older’s inequality, we get

J © 1 (f; g) =

ZZ
j ^© 1( ¹ ¡ ² )f ( ² )g( ¹ )j d ² d ¹ 6 k ^© 1kL4=3 kfkkgkL4=3
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and kgkL4=3 6 k ¤ ¡3=4kL4 k¤ 3=4gk = Ck ¤ 3=4gk, where C is a positive constant. It
remains to show that k ^© 1kL4=3 is bounded; this can be done by considering two
cases.

Case 1 (p > 4
3 ). H�older’s inequality gives k ^© 1kL4=3 6 k ¤ k ^© 1kLpk ¤ ¡kkLq , where

q is de ned by 3
4 = 1=p + 1=q. Therefore, kq > (8p ¡ 8)=(3p ¡ 4) > 2, which implies

k ¤ ¡kkLq < +1. Hence k ^© 1kL4=3 < +1.

Case 2 (1 6 p 6 4
3
). We have © 1 2 L1, so ^© 1 2 L 1 . Also, ¤ k ^© 1 2 Lp for some

k > 0, so ^© 1 2 Lp. However, L4=3 ³ Lp \ L 1 , giving k ^© 1kL4=3 < +1.

Proof of proposition 2.3. Write © = © 0 + © 1, where © 0 and © 1 are as given by
condition A1, and choose ¿ 2 C 1

0 to be a cut-o¬ function with Ran ¿ ³ [0; 1] and
which is equal to 1 on supp( © 1). Thus © 1 = ¿ 2 © 1. It follows that for any u 2 C 1

0

we have K © 1 (u) = h © 1Ju; ui = K © 1 ( ¿ u) and so

jK © (u)j 6 jK © 0 (u)j + jK © 1 (u)j 6 k © 0kL1 kuk2 + jK © 1 ( ¿ u)j: (4.6)

On the other hand,

T0( ¿ u) = ¿ T u ¡ ¿p
2

(iA + u1 + A¡u2) +
1p
2

((@ + ¿ )u1 ¡ i(@¡ ¿ )u2):

Since ¿ has compact support, k¿ kL1 = 1 and A 2 L 1
loc, we then obtain

k¿ uk 6 kuk and kT0( ¿ u)k2 6 C1kuk2 + 2kT uk2 (4.7)

for some constant C1.
By combining (4.3) with lemmas 4.1 and 4.2, we get

jK © 1 ( ¿ u)j 6 C2kF ( ¿ u)k2 + C3kG( ¿ u)k2 + C4

®® ¤ 3=4G( ¿ u)
®®2

(4.8)

for some constants C2, C3 and C4. Now C4 ¤ 3=2( ¹ ) 6 C5 + µj¹ ¡j2=2 for some con-
stant C5. With the help of (4.1) and Parseval’s identity, it follows that

C4

®® ¤ 3=4G( ¿ u)
®®2 6 C5kG( ¿ u)k2 + 1

2µkT0( ¿ u)k2:

Using this estimate and (4.2), equation (4.8) now gives

jK © 1 ( ¿ u)j 6 (C2 + C3 + C5)k¿ uk2 + 1
2
µkT0( ¿ u)k2:

Equations (4.6) and (4.7) now complete the proof.

5. The essential spectrum

In order to prove the  rst part of theorem 3.1, we will  rst show that the form
K © (u) is `relatively compact’ with respect to the form kT uk2 + kuk2. We begin by
establishing this for K © 1 (u).

Lemma 5.1. Let © 1 be as given by condition B1. Then, for any " > 0, there exists
a ¯nite-dimensional vector space L » C 1

0 such that jK © 1 (u)j 6 "(kT uk2 + kuk2)
for all u 2 L? \ C 1

0 .



Spectral properties of the equation (r + ieA) £ u = §mu 1075

Proof. Let ¿ and C1 be as de ned in the proof of proposition 2.3. Also choose
Á 2 C 1

0 , with Á equal to 1 on supp( ¿ ). Now let u 2 C 1
0 . By combining the

identity K © 1
(u) = K © 1

( ¿ u) with (4.3) and lemmas 4.1 and 4.2, we get

jK © 1 (u)j 6 C2(k ¼ F ( ¿ u)k2 + k ¼ G( ¿ u)k2) + C3kF ( ¿ u)k
®® ¤ 3=4G( ¿ u)

®® (5.1)

for some constants C2 and C3 and a bounded non-negative function ¼ 2 C 1 that
satis es ¼ ( ¹ ) ! 0 as j¹ j ! 1 (the existence of which comes from lemma 4.1 now
that the extra conditions are satis ed). By Parseval’s identity,

k ¼ F ( ¿ u)k2 + k ¼ G( ¿ u)k2 = k ¼ ( ¡ i@)( ¿ u)k2; (5.2)

while, with some help from (4.1) and the fact that T0( ¿ u) = ÁT0( ¿ u),

k¤ 3=4G( ¿ u)k2 =

Z
(j¤ ¡1=4( ¹ )G( ¿ u)( ¹ )j2 + j¤ ¡1=4( ¹ ) ¹ ¡G( ¿ u)( ¹ )j2) d ¹

6 k ¤ ¡1=4( ¡ i@)( ¿ u)k2 + k¤ ¡1=4( ¡ i@)(ÁT0( ¿ u))k2: (5.3)

Set ¯ = "=(C2 + 2C3 + C1C3) > 0. Now the functions ¼ and ¤ ¡1=4 decay at in nity
while ¿ 2 C 1

0 . It follows that the operators ¼ ( ¡ i@)( ¿ ¢ ) and ¤ ¡1=4( ¡ i@)( ¿ ¢ ) are
compact on L2 (see Appendix 2 to x XI.3 of [8] for example). Thus we can  nd a
 nite collection of functions v1; : : : ; vn 2 C 1

0 such that

k ¼ ( ¡ i@)( ¿ u)k 6
p

¯ kuk and k ¤ ¡1=4( ¡ i@)( ¿ u)k 6 ¯ kuk (5.4)

if hu; vii = 0 for i = 1; : : : ; n. Similarly, the operator ¤ ¡1=4( ¡ i@)(Á ¢ ) is compact
on L2, so we can  nd another  nite collection of functions ¿ 1; : : : ; ¿ m 2 C 1

0 such
that

k¤ ¡1=4( ¡ i@)(ÁT0( ¿ u))k 6 2 ¯ kT0( ¿ u)k (5.5)

if hT0( ¿ u); ¿ ii = 0 for i = 1; : : : ; m. Now de ne a  nite-dimensional vector space
by

L = spanfv1; : : : ; vn; ¿ T ¤
0 ¿ 1; : : : ; ¿ T ¤

0 ¿ mg » C 1
0

and suppose u 2 L? \ C 1
0 . It follows that the conditions for (5.4) and (5.5) are

satis ed. We also have kF ( ¿ u)k 6 kuk by (4.2) and (4.7). Combining these obser-
vations with (5.1){(5.5), we then get

jK © 1 (u)j 6 C2 ¯ kuk2 + C3kuk( ¯ kuk + 2̄ kT0( ¿ u)k)

6 (C2 + 2C3) ¯ kuk2 + C3 ¯ kT0( ¿ u)k2:

Estimate (4.7), together with the de nition of ¯ , then completes the result.

We now extend the previous result to deal with © (rather than just © 1).

Lemma 5.2. Suppose © satis¯es condition B1. Then, for any " > 0, there exists a
¯nite-dimensional vector space L » C 1

0 such that jK © (u)j 6 "(kT uk2 + kuk2) for
all u 2 L? \ Dom A.

Proof. If ª 2 L2
1 loc and supp( ª ) is compact, then ¤ ^ª 2 L2. It follows that we

can write © 0 = © 0
0 + © 0

1, where © 0
0 and © 0

1 satisfy condition B1 (with p = 2) and
k © 0

0kL1 < 1
3". Hence

jK © 0
0
(u)j 6 1

3 "kuk2 6 1
3"(kT uk2 + kuk2)
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for all u 2 C 1
0 . On the other hand, lemma 5.1 gives us a  nite-dimensional vector

space L » C 1
0 such that

jK © 1 (u)j; jK © 0
1
(u)j 6 1

3 "(kT uk2 + kuk2)

for all u 2 L? \ C 1
0 . However, K © (u) = K © 0

0
(u) + K © 1 (u) + K © 0

1
(u), which,

combined with (2.2), now completes the result.

Proposition 5.3. Let z 2 C n (( ¡ 1; ¡ c2] [ [c2; 1)) and suppose © satis¯es con-
dition B1. Then Ker(A ¡ zJ) is ¯nite dimensional and Ran(A ¡ zJ) is closed.

Proof. Write z = x+iy, where x; y 2 R. Firstly, suppose y = 0 (so z = x 2 ( ¡ c2; c2))
and set ¯ = dist(x; f¡ c2; c2g) > 0. It follows that, for all u 2 Dom A,

KA(u) ¡ hzJu; ui = kT uk2 + c2kuk2 ¡ xhJu; ui ¡ K © (u)

> kT uk2 + ¯ kuk2 ¡ K © (u):

Hence we can choose " > 0 so that

jKA(u) ¡ hzJu; uij > "kT uk2 + 2"kuk2 ¡ jK © (u)j:

Now suppose y 6= 0 and set w = x(x2 + y2)¡1=2. Therefore, jwj < 1, which implies
¯ = (1 ¡ w2)1=2 > 0. Let u 2 Dom A and set d = kT uk2 + c2kuk2. Then

jkT uk2 + c2kuk2 ¡ hzJu; uij2

= ¯ 2d2 + w2d2 ¡ 2w(x2 + y2)1=2dhJu; ui + (x2 + y2)hJu; ui2 > ¯ 2d2:

It follows that, for all u 2 Dom A,

jKA(u) ¡ hzJu; uij > ¯ (kT uk2 + c2kuk2) ¡ jK © (u)j
> "kT uk2 + 2"kuk2 ¡ jK © (u)j

for some suitably chosen " > 0. By recombining the two cases (i.e. when y = 0
and y 6= 0) and applying lemma 5.2, we can now  nd a  nite-dimensional subspace
L » C 1

0 such that, for all u 2 L? \ Dom A, we have

jh(A ¡ zJ)u; uij = jKA(u) ¡ hzJu; uij > "kuk2 ) k(A ¡ zJ)uk > "kuk:
(5.6)

Now suppose we have a sequence satisfying

fuigi2 N » Dom A; kuik = 1; (A ¡ zJ)ui ! 0: (5.7)

Write ui = u0
i + u1

i , where u0
i 2 L and u1

i 2 L?. Thus u0
i 2 C 1

0 » Dom A
and so u1

i 2 Dom A as well. Now fu0
i gi2 N is a bounded sequence in the  nite-

dimensional space L, so it contains a convergent subsequence fu0
i(j)

gj 2 N. However,

A ¡ zJ is bounded on L (as L » Dom A is  nite dimensional), so (5.7) implies

that f(A¡ zJ)u1
i(j)gj 2 N is convergent and hence Cauchy. Since u1

i(j) 2 L? \ Dom A,

equation (5.6) then implies that fu1
i(j)

gj 2 N is also Cauchy and hence convergent.

By adding fu0
i(j)gj 2 N and fu1

i(j)gj 2 N, it follows that we can  nd a convergent subse-

quence of any sequence satisfying (5.7). A standard argument (see theorems IV.5.10
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and IV.5.11 in [7], for example) shows that this implies that A ¡ zJ has a  nite-

dimensional kernel and a closed range.

The next two results are needed to help control the behaviour of the non-real
part of ¼ J(A). To do this, we will need to consider the standard spectral problem
associated to the (self-adjoint) operator A.

Proposition 5.4. Suppose © satis¯es condition B1 and let ¯ > 0. Then the spectral
subspace of A corresponding to ( ¡ 1; c2 ¡ ¯ ] \ ¼ (A) is ¯nite dimensional.

Proof. Let x = c2 ¡ ¯ and " = minf1; 1
2
¯ g > 0. Therefore, for all u 2 Dom A,

KA(u) ¡ xkuk2 = kT uk2 + c2kuk2 ¡ xkuk2 ¡ K © (u)

> "kT uk2 + 2"kuk2 ¡ K © (u):

By applying lemma 5.2, it follows that we can  nd a  nite-dimensional subspace
L » C 1

0 such that

h(A ¡ xI)u; ui = KA(u) ¡ xkuk2 > "kuk2

for all u 2 L? \ Dom A. Therefore, the spectral subspace of A corresponding to
( ¡ 1; x] \ ¼ (A) has dimension at most dim L.

Proposition 5.5. There can be at most ¯nitely many non-real J-eigenvalues in
¼ J(A).

Proof. Let Q¡ and Q + be the (self-adjoint) spectral projections of A corresponding
to ( ¡ 1; 0)\ ¼ (A) and [0; +1) \ ¼ (A), respectively. Therefore, §Q§AQ§ > 0, and
so we can de ne non-negative self-adjoint operators by B§ = (§Q§AQ§)1=2. De ne
further operators by Q = Q + ¡ Q¡ and B = B + ¡ B¡. A straightforward calculation
gives

BQB = A: (5.8)

Suppose fzi j i 2 Ig is a  nite set of non-real J -eigenvalues of A such that
fzi; ·zi j i 2 Ig is a set of 2jIj distinct points. Choose 0 6= ui 2 Ker(A ¡ ziJ) for each
i 2 I and set vi = Bui. De ne L and L0 to be the linear spans of fui j i 2 Ig and
fvi j i 2 Ig, respectively. Since the ui are eigenvectors of the operator JA corre-
sponding to distinct eigenvalues, the set fui j i 2 Ig must be linearly independent.
Therefore, dim L = jI j.

Claim. dim L0 6 dim Q¡. Suppose v 2 Ker Q¡ for some v =
P

i 2 I ¶ ivi, where
¶ i 2 C for each i 2 I. Since Q + + Q¡ = I and hv; Q¡vi = 0, we have

kvk2 = hv; (Q + + Q¡)vi
= hv; (Q + ¡ Q¡)vi

=
X

i;j 2 I

¶ i
·¶ jhBui; QBuji

=
X

i;j 2 I

¶ i
·¶ jhui; Auji (5.9)
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by (5.8) and the self-adjointness of B. Now A is self-adjoint and Aui = ziJui for
each i 2 I. Therefore,

zihJui; uji = hAui; uji = hui; Auji = ·zjhui; Juji:

However, J is also self-adjoint while zi 6= ·zj for any i; j 2 I. Thus hui; Auji = 0,
and so kvk = 0 by (5.9). It follows that the projection Q¡ restricted to L0 has a
trivial kernel. Hence dim L0 6 dim Ran Q¡ = dim Q¡.

Now suppose that Bu = 0 for some u 2 L. Since A = BQB (by (5.8)), we have
u 2 Ker A; that is, the kernel of the restriction BjL : L ! L0 is contained in Ker A.
Since L and L0 are  nite dimensional and BjL : L ! L0 is surjective, we thus get

jI j = dim L

= dim L0 + dim Ker BjL
6 dim Q¡ + dim Ker A;

where the inequality follows with the help of the claim. However, dim Q¡ and
dim Ker A are both  nite by proposition 5.4. The result now follows.

Remark 5.6. We can de ne an inde¯nite inner product on L2 by the expression

hu; vi Q = hu; Qvi:

The pair (L2; h¢; ¢i Q ) is then a Pontrjagin space (i.e. a Krein space with a  nite rank
of inde niteness (see [2], for example)). In this setting, the operator

A Q = (B + + B¡)J(B + ¡ B¡)

is self-adjoint (note that (B + + B¡)Q = (B + ¡ B¡) = Q(B + + B¡)). Furthermore,
the (standard) spectrum of A Q and the J -spectrum of A agree, modulo special
consideration of the point 0. Proposition 5.5 now follows from a simpli ed form
of a general result (see theorems IX.4.3 and IX.4.6 in [2]; the relevant part of the
proofs of these results forms the basis for the proof of proposition 5.5). Using the
full generality of this result, we can show that sum of the algebraic multiplicities
of all the non-real and non-semi-simple J -eigenvalues of A is at most 2m + 1, m
being the dimension of the spectral subspace of A corresponding to ( ¡ 1; 0] \ ¼ (A)
(which is  nite by proposition 5.4).

Proof of the ¯rst part of theorem 3.1. Let § = Cn(( ¡ 1; ¡ c2][[c2; 1)) and choose
z 2 § . By proposition 5.3, we immediately have that Ker(A ¡ zJ) is  nite dimen-
sional and Ran(A¡ zJ) is closed. It follows (see theorem IV.5.13 of [7], for example)
that

Ran(A ¡ zJ) = (Ker(A ¡ zJ) ¤ )?:

However, (A ¡ zJ) ¤ = A ¡ ·zJ and ·z 2 § , so Ker(A ¡ zJ) ¤ must also be  nite
dimensional by proposition 5.3. Thus A ¡ zJ is Fredholm, and so z =2 ¼ J Es s (A) by
de nition. Furthermore,

Index(A ¡ zJ) = dim Ker(A ¡ zJ) ¡ dim Ker(A ¡ ·zJ):



Spectral properties of the equation (r + ieA) £ u = §mu 1079

Now let § 0 = C n ¼ J Es s (A) ´ § . Therefore, § 0 is connected. Using standard
stability theorems for Fredholm operators (in particular, see theorem IV.5.31 of [7]),
it follows that Index(A ¡ zJ) is constant on § 0 while dim Ker(A ¡ zJ) is constant
on § 0 n M where M is a (possibly empty) set of isolated points in § 0. On the
other hand, proposition 5.5 implies dim Ker(A ¡ zJ) = 0 for all but a  nite number
of z 2 § 0 n R. It follows that Index(A ¡ zJ) = 0 = dim Ker(A ¡ zJ) for all
z 2 § 0 n M , and so ¼ J(A) n ¼ J Es s (A) ³ M . Finally, let z 2 ¼ J(A) n ¼ J Es s (A). Thus
JA ¡ zI = J(A ¡ zJ) is Fredholm and so z must be an eigenvalue of JA of  nite
algebraic multiplicity by theorem IV.5.28 in [7]. From remark 2.2, it follows that z
is a J -eigenvalue of A of  nite algebraic multiplicity.

For the remainder of this section, we will use A0 to denote the operator de ned as
for A except with © = 0 and A = 0. Thus A0 = T ¤

0 T0+c2I, where T0 is the operator
de ned at the beginning of x 4. We will prove the second part of theorem 3.1 by
using Weyl’s criterion (i.e. by constructing a sequence of approximate eigenvectors);
the next result essentially does this for A0.

Proposition 5.7. Suppose ¶ 2 ( ¡ 1; ¡ c2] [ [c2; 1) and we have a disc B » R2 of
radius r > 1

2 . Then we can ¯nd 0 6= v 2 C 1
0 with supp(v) ³ B such that

k(A0 ¡ ¶ J)vk 6 C1kvk=r and kvkL1
1

6 C2kvk=r

for some constants C1 and C2 that are independent of B and r.

Proof. Since the operator A0 and all the norms appearing in the statement of the
proposition are translation invariant, it su¯ ces to prove the result assuming that
B is centred at 0.

Let ¹ 2 R2, de ne ¹ ¢ x = x1 ¹ 1 + x2 ¹ 2 for all x 2 R2 and de ne a function w by
w(x) = aei ¹ ¢x for some constant vector a. Thus (A0 ¡ ¶ J)w(x) = Maei¹ ¢x, where
M is the constant matrix

M =
1

2

³
j ¹ j2 ¡ i¹ 2

¡
i¹ 2

+ j¹ j2

´
+

³
c2 ¡ ¶ 0

0 c2 + ¶

´
:

Now det(M ) = c4 ¡ ¶ 2 + c2j ¹ j2. Since ¶ 2 > c4 by assumption, we can choose ¹
so that det(M ) = 0. Choosing a to be a non-zero null-vector of M , we thus have
(A0 ¡ ¶ J)w = 0.

Let ¿ 2 C 1
0 be a non-zero function with supp( ¿ ) ³ fjxj 6 1g » R2 and de ne

¿ B 2 C 1
0 by ¿ B(x) = ¿ (x=r). Set v = ¿ Bw. Clearly, supp(v) ³ B, while

k@ ¬ ¿ BkL1 = r¡j ¬ jk@ ¬ ¿ kL1 (5.10)

for any multi-index ¬ . Since a is non-zero, we also have that

kwkL2(B) = C1kvk and kwkL1
1 (B) = C2kvk=r (5.11)

for some positive constants C1 and C2. Now

(A0 ¡ ¶ J)v = ¿ B(A0 ¡ ¶ J)w +
1

2

³
¡ @¡@ + ¿ B i@2

¡ ¿ B

¡ i@2
+ ¿ B ¡ @ + @¡ ¿ B

´
w

+
1

2

³³
i ¹ ¡
¡ ¹ +

´ ¡
¡ @ + ¿ B i@¡ ¿ B

¢
¡

³
@¡ ¿ B

i@ + ¿ B

´ ¡
i ¹ + ¹ ¡

¢´
w:
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However, (A0 ¡ ¶ J)w = 0, so

k(A0 ¡ ¶ J)vk 6 C3

X

i;j = 1;2

(k@i ¿ BkL1 + k@i@j ¿ BkL1 )kwkL2(B) 6 C4kvk=r

for some constants C3 and C4 using (5.10) and (5.11). Applying these equations
again, we also have

kvkL1
1

6 C5k ¿ BkL1
1

kwkL1
1 (B) 6 C6kvk=r

for some more constants C5 and C6.

Before generalizing the previous result to the operator A, we must consider a
technical complication that arises in dealing with A (essentially relating to the fact
that condition B2 places some decay requirements on H but not on A). The next
lemma addresses this issue but before stating it we make the following observation.

Remark 5.8. Suppose B ³ R2 is a disc of radius r > 1 and g 2 L2
loc. By taking

a suitable periodic extension of g and using Fourier series, it is possible to  nd
f 2 L2

2loc such that ¢f = g on B. Furthermore, by using a scaling argument, it
is possible to ensure that kfkL2

2(B) 6 C1r2kgkL2(B) for some constant C1 that is
independent of B.

Lemma 5.9. Suppose A 2 L2
1loc, let B1 » R2 be a disc of radius r > 1 and de¯ne

B0 to be the disc with the same centre and a radius of 1
2r. Then, for any " > 0,

there exists ¿ 2 C 1
0 such that kAi ¡ @i ¿ kL2

1(B0) 6 C1r2kHkL2(B1) + ", for i = 1; 2.

Proof. We have @1A1+@2A2, H 2 L2
loc, so, using remark 5.8, we can  nd f; h 2 L2

2loc

that satisfy the identities ¢f = @1A1 + @2A2 and ¢h = H on B1 and the norm
estimate

khkL2
2(B1) 6 C1r2kHkL2(B1): (5.12)

Now set A0 = A ¡ (@1f; @2f ) ¡ ( ¡ @2h; @1h) 2 L2
1loc. Straightforward calculations

give @1A0
1 + @2A0

2 = 0 = @1A0
2 ¡ @2A0

1 on B1, from which it follows that ¢A0
i = 0

for i = 1; 2. Standard regularity results then imply A0jB1 2 C 1 (B1). Now  x the
centre of B1 as the origin and de ne a function g on B1 by

g(x) =

Z 1

0

(x1A0
1(tx) + x2A0

2(tx)) dt:

Clearly, g 2 C 1 (B1), while a simple calculation gives A0 = (@1g; @2g) on B1. Now
let ¼ 2 C 1

0 be a cut-o¬ function equal to 1 on B0 and with supp( ¼ ) ³ B1. Set
Á = ¼ (f +g). Clearly, Á 2 L2

2, while A ¡ (@1Á; @2Á) = ( ¡ @2h; @1h) on B0. The norm
estimate (5.12) immediately gives kAi ¡ @iÁkL2

1(B0) 6 C1r2kHkL2(B1) for i = 1; 2.

Since C 1
0 is dense in L2

2, we can  nd ¿ 2 C 1
0 with k ¿ ¡ ÁkL2

2
< ", completing the

proof.

Remark 5.10. Referring to condition B2, we may assume that the Bn are mutually
disjoint (by choosing subsets of a subsequence of fBngn 2 N if necessary). Now take
a  xed R > 0. Thus, for all su¯ ciently large n, the disc Bn contains O(r2

n) disjoint
discs of radius R. Since

R
Bn

jH j2 = o(r2
n), it follows that, for all su¯ ciently large
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n, we can  nd a disc Bn;R ³ Bn of radius R such that
R

Bn;R
jH j2 6 R¡4. Since a

similar argument clearly applies to © , we can thus replace condition B2 with the
following condition.

(B20) In addition to the requirements imposed by condition A2, we assume there
exists a sequence fBngn 2 N of disjoint discs such that, for each n 2 N, the
radius of Bn is n and k © kL2(Bn); kHkL2(Bn) 6 n¡2.

Proof of the second part of theorem 3.1. Choose ¶ 2 ( ¡ 1; ¡ c2] [ [c2; 1) and let
fBngn2 N be the sequence of balls given by condition B20. For each n 2 N, let B0

n

denote the disc with the same centre as Bn, but with a radius of 1
2 n. Let vn be the

function given by proposition 5.7 for the disc B0
n and, using lemma 5.9, choose a

¿ n 2 C 1
0 that satis es

kAi ¡ @i ¿ nkL2
1(B 0

n) 6 C1n2kHkL2(Bn) + 1;

for i = 1; 2. Finally, de ne a function un 2 C 1
0 ³ Dom A by

un(x) = e¡i¿ n(x)vn(x):

Clearly, supp(un) ³ B0
n » Bn, so the set fun j n 2 Ng is linearly independent

(since the Bn are mutually disjoint). The result will therefore follow if we can show
k(A ¡ ¶ J)unk=kunk ! 0 as n ! 1.

Let n 2 N. Thus

k © Junk = k © Jvnk 6 C2k © kL2(Bn)kvnkL1 6 C3k © kL2(Bn)kunk=n

for some constants C2 and C3. On the other hand,

P§un = e¡i¿ n(x)( ¡ i@§ + (A§ ¡ @§ ¿ n))vn;

so

kT ¤ T un ¡ e¡i ¿ n(x)T0
¤ T0vnk 6 C4

X

i = 1;2

kAi ¡ @i ¿ nkL2
1(B 0

n)kvnkL1
1

6 C5(n2kHkL2(Bi) + 1)kunk=n

for some constants C4 and C5. Therefore,

k(A ¡ ¶ J)unk 6 k(A0 ¡ ¶ J)vnk + kT ¤ T un ¡ e¡i¿ n(x)T ¤
0 T0vnk + k© Junk

6 C6(1 + n2kHkL2(Bn) + k © kL2(Bn))kunk=n

for some constant C6. Condition B20 now completes the proof.

6. Stability of isolated eigenvalues

The proof of theorem 3.3 will employ the method of asymptotic perturbation theory,
as developed in chapter VIII of [7].

Before beginning with results, we introduce some new notation that will be used
throughout the next two sections. For c > 0, we de ne Ac to be the shifted operator
Ac = A ¡ c2J . Thus ¼ J (Ac) = ¼ J(A) ¡ c2, and so direct comparison can now be
made with the eigenvalues of the Pauli operator H +

P .
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For z 2 C n ¼ J(Ac), let Rc(z) = (Ac ¡ zJ)¡1 be the `resolvent’ of Ac. Also, for
z 2 C n ¼ (H +

P ), set

R(z) =

³
R(z) 0

0 0

´
and ~Rc(z) =

³
R(z) 0

0 1
2
c¡2

´
; (6.1)

where R(z) = (H +
P ¡ z)¡1 is the resolvent of Pauli’s operator. We will use N c to

denote the constant matrix operator given by

N c =

³
1 0

0 c¡1

´
:

Operators denoted by some form of the letter Q will be (essentially) projections.
For such operators, we will use dim Q to denote the dimension of the range.

The  rst lemma allows us to assume extra regularity conditions in the statement
and proofs of some subsequent results.

Lemma 6.1. The set C 1
0 is a core of Ac.

Proof. It is su¯ cient to prove that T ¤ T is essentially self-adjoint on C 1
0 (note that

Ac = T ¤ T + © J + c2(I ¡ J) and © J + c2(I ¡ J) is bounded by condition C). This
is equivalent to showing that if v 2 L2, then

T ¤ T v = §iv (6.2)

implies v = 0. Here, we initially de ne T v and T ¤ T v as elements of L2
¡1 and L2

¡2,
respectively. Setting w = T v 2 L2

¡1, equation (6.2) implies

T ¤ w = ¡ 1p
2

³
@¡
i@ +

´
w +

1p
2

³
¡ iA¡
A +

´
w 2 L2: (6.3)

However, we have
¡
¡ iA¡ A +

¢T
w 2 L2

¡1 by condition C, so (6.3) implies @§w 2
L2

¡1. It follows that @iw 2 L2
¡1 for i = 1; 2, which, coupled with the fact that

w 2 L2
¡1, gives w 2 L2. Applying the same argument again now gives w = T v 2 L2

1.
Therefore, hT ¤ T v; vi = hw; wi 2 R. It follows from (6.2) that §ihv; vi 2 R and so
v = 0.

The operators P§ are  rst-order elliptic partial-di¬erential operators on R2

whose coe¯ cients, together with their derivatives of all orders, are bounded in
the L 1 norm (this follows from condition C). Using standard theory (see x 18.1
of [5], for example), we can hence  nd pseudo-di¬erential operators F1, F2, G1 and
G2 of orders 0, 0, ¡ 1 and ¡ 1, respectively, such that

P + = F1P¡ + G1 and P¡ = P+ F2 + G2: (6.4)

Furthermore, we can insist that F1, F2, G1P§ and P§G2 are bounded operators on
L2

k for any k; this fact will be used in the proof of the next result.

Proposition 6.2. Let z 2 C and " > 0. Then there exists a constant C("; z),
depending continuously on " and z, such that, for any ¯ 2 [0; 1], c > C("; z) and
u 2 L2

1 with kN ¯
c (Ac ¡ zJ)uk 6 "kuk, we have k(H +

P ¡ z)wk 6 5"kwk, where w
is de¯ned by w = u1 ¡ iF2u2. Furthermore, w = 0 only if u = 0.
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With the help of lemma 6.1, proposition 6.2 (with ¯ = 0) gives the following.

Corollary 6.3. Suppose z 2 Cn ¼ (H +
P ). Then z =2 ¼ J(Ac) and kRc(z)k 6 5kR(z)k

for all c > C( 1
5
kR(z)k¡1; z).

Remark 6.4. The spectrum of Ac thus converges to that of H +
P in the following

sense: given a compact set K » C n ¼ (H +
P ), we have K \ ¼ J(Ac) = ; for all c > C,

where C is the maximum value of C( 1
5
kR(z)k¡1; z) for z 2 K.

Proof of proposition 6.2. Let u 2 L2
1 and set w = u1 ¡ iF2u2. Thus

kuk 6 kwk + C1ku2k (6.5)

for some constant C1. On the other hand, equation (6.4) allows us to write

(Ac ¡ zJ)u =

³
(H +

P ¡ z)w

Bw

´
+

³
0

2c2u2

´
+ Mzu2; (6.6)

where Mz is the operator

Mz =
1

2

³
¡ iP¡
P +

´
G2 + (z + © )

³
¡ iF2

1

´
:

We can also write B = iF1(H +
P ¡ z)+ Nz, with Nz = 1

2
iG1P + + iF1( © +z). Now the

operators F1, Mz and Nz are all bounded on L2. Let C2(z) denote the maximum
of the corresponding operator norms and 1. Setting C3("; z) = minf1; "g=2C2(z),
it follows that C3("; z) 2 (0; 1

2
]. However, on any inner product space we have the

inequality ka + bk > · (kbk ¡ kak) for all · 2 [¡ 1; 1]. It follows that

kBw + 2c2u2k > C3("; z)(2c2ku2k ¡ kBwk):

Choosing any ¯ 2 [0; 1] and c > 1, we then get

c¡̄ kBw + 2c2u2k > C3("; z)(2cku2k ¡ kiF1(H +
P ¡ z)w + Nzwk)

> 2C3("; z)cku2k ¡ 1
2
k(H +

P ¡ z)wk ¡ 1
2
"kwk:

Combining this with (6.6), it follows that

2kN ¯
c (Ac ¡ zJ)uk > 1

2
k(H +

P ¡ z)wk ¡ 1
2
"kwk + 2(C3("; z)c ¡ C2(z))ku2k:

If we now assume kN ¯
c (Ac ¡ zJ)uk 6 "kuk and use (6.5), we get

5"kwk > k(H +
P ¡ z)wk + 4(C3("; z)c ¡ C2(z) ¡ "C1)ku2k:

Therefore, the result follows if we take C("; z) = (C2(z) + "C1)=C3("; z) > 2.

Let z 2 C n ¼ (H +
P ), so R(z), R(z) and ~Rc(z) are all bounded operators on L2.

From corollary 6.3, it follows that Rc(z) is also a bounded operator on L2 for
all su¯ ciently large c. The next result deals with the relationship between these
operators as c ! +1.

Theorem 6.5. For any z 2 C n ¼ (H +
P ), we have Rc(z)

s¡! ~Rc(z) (where `
s¡!’ is

used to denote strong operator convergence as c ! +1). Since ~Rc(z) ! R(z) in
operator norm, it follows that Rc(z)

s¡! R(z).
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Proof. For u 2 C 1
0 , we have

(Rc(z) ¡ ~Rc(z))u = ¡ Rc(z) N ¡1
c

³
N c(Ac ¡ zJ) N c ¡

³
H +

P ¡ z 0

0 2

´´
N ¡1

c
~Rc(z)u:

Now

N ¡1
c

~Rc(z)u =

³
R(z)u1

0

´
+

1

2c

³
0

u2

´
;

R(z)u1 2 L2
1 by condition C (see proposition 7.2 for more details) and

N c(Ac ¡ zJ) N c ¡
³

H +
P ¡ z 0

0 2

´
=

³
0 c¡1B ¤

c¡1B c¡2(H¡
P + z)

´
:

It follows that
³

N c(Ac ¡ zJ) N c ¡
³

H +
P ¡ z 0

0 2

´´
N ¡1

c
~Rc(z)u ! 0

as c ! +1. On the other hand, Rc(z) N ¡1
c = ( N c(Ac ¡ zJ))¡1. By proposition 6.2

(with ¯ = 1), this is uniformly bounded in operator norm for c > C( 1
5
kR(z)k¡1; z).

Thus we have (Rc(z) ¡ ~Rc(z))u ! 0 as c ! +1 for any u 2 C 1
0 . However, C 1

0 is
dense in L2, while corollary 6.3 shows that Rc(z) ¡ ~Rc(z) is uniformly bounded in
operator norm for c > C( 1

5
kR(z)k¡1; z). It follows that Rc(z) ¡ ~Rc(z)

s¡! 0.

Let ¶ < 0 be an isolated eigenvalue of H +
P and let ¡ be a simple closed contour

in C n ¼ (H +
P ) enclosing ¶ but no other part of ¼ (H +

P ). Set

Q = ¡ 1

2 º i

Z

¡

R(z) dz and Q =

³
Q 0

0 0

´
= ¡ 1

2 º i

Z

¡

R(z) dz:

Thus Q is just the projection onto the eigenspace of H +
P associated with ¶ . Now, by

remark 6.4, we know that the contour ¡ does not intersect ¼ J(Ac) for all su¯ ciently
large c. Hence we can de ne an operator Qc by

Qc = ¡ 1

2 º i

Z

¡

Rc(z) dz: (6.7)

Remark 6.6. Owing to the fact that we are dealing with a slightly non-standard
spectral problem, the operator Qc is not a projection. However, both of the opera-
tors JQc and QcJ are projections (see remark 2.2 for more details).

The next result plays a key role in making the asymptotic perturbation theory
`work’. The proof is somewhat technical but essentially centres on showing that
k(Ac ¡ ¶ J)Qck ! 0 as c ! +1.

Proposition 6.7. For all su± ciently large c, we have dim Qc 6 dim Q.

Proof. Let d¶ = dist( ¶ ; ¼ (H +
P )nf¶ g) > 0 denote the separation of ¶ from the rest of

¼ (H +
P ). Set " = 1

10
d¶ , r = 1

10
" and de ne ¡ r to be the circular contour centred at ¶

of radius r. Since H +
P is self-adjoint and ¶ is the closest point of ¼ (H +

P ) to any point
on ¡ r, we immediately get kR(z)k = 1=r for all z 2 ¡ r . Now let K be the closure
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of the region between ¡ and ¡ r. Therefore, K is compact and K \ ¼ (H +
P ) = ;, so

we can de ne a bounded constant C1 by

C1 = supfC("; ¶ )g [ fC( 1
5
kR(z)k¡1; z) j z 2 Kg

(where C(¢; ¢) is given by proposition 6.2). Now suppose c > C1. Corollary 6.3 then
gives kRc(z)k 6 5=r for any z 2 ¡ r. Corollary 6.3 also implies K\ ¼ J(Ac) = ;. Using
standard properties of resolvents and Cauchy’s theorem to deform the contour, we
then get

(Ac ¡ ¶ J)Qc = ¡ 1

2 º i

Z

¡ r

(z ¡ ¶ )JRc(z) dz:

Since kJk = 1, it follows that

k(Ac ¡ ¶ J)Qck 6 1

2º

Z

¡ r

jz ¡ ¶ j5
r

dz 6 5

2 º
j¡ rj =

"

2
:

Therefore, k(Ac ¡ ¶ J)uk 6 1
2 "kuk for all u 2 Ran Qc. By lemma 6.1, we can thus

choose a dim Qc subspace L of C 1
0 such that k(Ac ¡ ¶ J)uk 6 "kuk for all u 2 L.

Now let

L0 = fu1 ¡ iF2u2 j u 2 Lg ³ L2
1 » Dom H +

P :

Since c > C("; ¶ ), proposition 6.2 (with ¯ = 0) gives us k(H +
P ¡ ¶ )wk 6 5"kwk for

all w 2 L0. Since 5" < d¶ , the minimax principle (see theorem 10.2.3 in [1], for
example) applied to the non-negative self-adjoint operator (H +

P ¡ ¶ )2 immediately
gives us dim L0 6 dim Q. However, the last part of proposition 6.2 also implies
dim L0 = dim L = dim Qc, completing the result.

Theorem 6.5, combined with the de nitions of Qc and Q and the fact that
kRc(z) ¡ R(z)k depends continuously on z 2 ¡ for all su¯ ciently large c, gives
us Qc

s¡! Q. On the other hand, the fact that Ac is self-adjoint can be used to show
Qc = Q ¤

c . Since JQ = Q = QJ , it follows that the projections JQc and (JQc)
¤

both converge strongly to Q. By combining this observation with proposition 6.7
and lemmas VIII.1.23 and VIII.1.24 from [7], we get the following result.

Proposition 6.8. We have dim Qc = dim Q = dim Q for all su± ciently large c.
Furthermore, Qc ! Q in operator norm as c ! +1.

7. Asymptotic expansions of isolated eigenvalues

The next theorem is based on theorems VIII.2.1 and VIII.2.2 in [7]. It gives an
asymptotic expansion for the resolvent Rc(z).

Theorem 7.1. For u 2 L2
1 , we have

Rc(z)u = R(z)u + 1
2
c¡2

³
R(z)B ¤ BR(z) ¡ R(z)B ¤

¡ BR(z) I

´
u + O(c¡4);

where O(c¡4) denotes an element of L2 with norm of order O(c¡4) as c ! +1.
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Proof. We have

Ac ¡ zJ =

µ
I +

³
0 B ¤

B H¡
P + z

´ ³
R(z) 0

0 c¡2=2

´¶ ³
H +

P ¡ z 0

0 2c2

´
;

so Rc(z) = ~Rc(z)(I + G )¡1, where

G =

³
0 B ¤

B H¡
P + z

´
~Rc(z): (7.1)

Now let N > 0 and suppose u 2 L2
1 . Therefore, u 2 Dom G k for k = 0; : : : ; N and

u = (I + G )

N¡1X

k = 0

( ¡ G )ku + ( ¡ G )N u:

Hence

Rc(z)u =

NX

k = 0

~Rc(z)( ¡ G )ku + (Rc(z) ¡ ~Rc(z))( ¡ G )N u:

Now G N is a polynomial in c¡2 whose (operator-valued) coe¯ cients are non-
zero only for powers between [1

2 N ] and N (where [ 1
2N ] is the greatest integer

not exceeding 1
2 N ). On the other hand, Rc(z)

s¡! ~Rc(z) by theorem 6.5. Thus
(Rc(z) ¡ ~Rc(z))( ¡ G )N u = o(c¡2[N=2]) and so

Rc(z)u =

NX

k = 0

~Rc(z)( ¡ G )ku + o(c¡2[N=2]): (7.2)

The result now follows from a direct computation using (6.1), (7.1) and (7.2) with
N = 4.

The operator H +
P is a  rst-order perturbation of the Laplacian ¢ on R2. Further-

more, the coe¯ cients of this perturbation have bounded derivatives of all orders
(by condition C on © and A). Induction and the fact that u 2 L2

k, ¢u 2 L2
k¡1

implies u 2 L2
k + 1 for any k 2 Z now leads to the following result.

Proposition 7.2. Let u 2 L2, z 2 C and suppose (H +
P ¡ z)u 2 L2

1 . Then u 2 L2
1 .

Since elements of Ran Q are eigenvectors of H +
P it follows that Ran Q » L2

1 . In
turn, this means that we can apply the asymptotic expansion given by theorem 7.1
to elements of Ran Q. This fact underlies the next result (which is based on part of
theorem VIII.2.6 in [7]).

Theorem 7.3. For all su± ciently large c, we have

QcQ = Q + c¡2T Q + O(c¡4);

where O(c¡4) denotes an operator with norm of order O(c¡4) as c ! +1 and T
is the operator de¯ned by

T =
1

2

³
SB ¤ B 0

¡ B 0

´
; S = ¡ 1

2 º i

Z

¡

R(z)

¶ ¡ z
dz:



Spectral properties of the equation (r + ieA) £ u = §mu 1087

Proof. The operator H +
P is self-adjoint and so can only have semi-simple eigenval-

ues. Therefore,

R(z)Q = QR(z) = ( ¶ ¡ z)¡1Q ) R(z)Q = ( ¶ ¡ z)¡1Q: (7.3)

Now let u 2 L2. Thus Qu 2 L2
1 , and so theorem 7.1 gives

Rc(z)Qu

= R(z)Qu + 1
2 c¡2

³
R(z)B ¤ BR(z) ¡ R(z)B ¤

¡ BR(z) I

´ ³
Q 0

0 0

´
u + O(c¡4)zu

= ( ¶ ¡ z)¡1Qu + 1
2c¡2( ¶ ¡ z)¡1

³
R(z)B ¤ B 0

¡ B 0

´
Qu + O(c¡4)zu (7.4)

for any z 2 ¡ (note that because Q contains a non-zero entry only in its upper-left
corner, the second column of any matrix operator appearing immediately to its
left can be chosen arbitrarily). In (7.4), O(c¡4)zu denotes an element of L2 such
that c4O(c¡4)zu is bounded as c ! +1; this bound depends continuously on z
and u. Now, Q has  nite rank and ¡ is compact so the strong convergence given
by (7.4) implies convergence in operator norm, while the error term can be bounded
uniformly on ¡ ; that is,

Rc(z)Q = ( ¶ ¡ z)¡1Q + 1
2c¡2( ¶ ¡ z)¡1

³
R(z)B ¤ B 0

¡ B 0

´
Q + O(c¡4); (7.5)

where O(c¡4) denotes an operator with norm of order O(c¡4) as c ! +1. Now

¡ 1

2 º i

Z

¡

dz

¶ ¡ z
= 1;

so the proof can be completed by integrating (7.5) around ¡ and using the de ni-
tions of Qc (see (6.7)) and T .

Using theorem 7.3, the proof of theorem 3.3 now follows from an argument quite
similar to that used in the second part of the proof of theorem VIII.2.6 in [7]. It
will be included here for completeness.

Proof of theorem 3.3. De ne ( nite-dimensional) subspaces of L2 by

L = Ran Q and Lc = Ran Qc = Ran QcJ;

and de ne an operator V c by

V c = I ¡ Q + QcQ = I + c¡2T Q + O(c¡4);

where the second equality follows from theorem 7.3. Since Q is a projection, we
have V cQ = QcQ and V c(I ¡ Q) = (I ¡ Q). Combining these observations with
proposition 6.8, it follows that V c maps L onto Lc and leaves every element of the
complementary space Ran(I ¡ Q) unchanged (for all su¯ ciently large c). We also
have dim L = dim Lc, so V c is invertible,

V ¡1
c = I ¡ c¡2T Q + O(c¡4)
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and V c
¡1 maps Lc onto L and leaves every element of Ran(I ¡ Q) unchanged.

Now set R0
c(z) = V c

¡1Rc(z)J V cQ. By standard properties of resolvents, Rc(z)J
commutes with QcJ , from which it follows that Ran R0

c(z) ³ L. Therefore,

R0
c(z) = QR0

c(z)

= QV c
¡1Rc(z)J V cQ

= (Q + O(c¡4))Rc(z)(Q + c¡2JT Q + O(c¡4)); (7.6)

where we have used the facts that JQ = Q and QT = 0 (the later being a con-
sequence of the identity QS = 0). Now B, B ¤ and S all map L2

1 into itself (this
follows from condition C for B and B ¤ , and from proposition 7.2 and the identity
(H +

P ¡ ¶ )S = I ¡ Q for S). Coupled with the fact that Ran Q is a  nite-dimensional
subspace of L2

1 and the de nition of T , it follows that Ran(JT Q) is also a  nite-
dimensional subspace of L2

1 . Since QR(z)JT = R(z)QT = 0, theorem 7.1 now
gives

QRc(z)JT Q = QR(z)JT Q + O(c¡2) = O(c¡2); (7.7)

where O(c¡2) denotes an operator with norm of order O(c¡2) as c ! +1. On the
other hand, equations (7.3) and (7.5) give

QRc(z)Q = ( ¶ ¡ z)¡1Q + c¡2( ¶ ¡ z)¡2QBQ + O(c¡4); (7.8)

where

B =
1

2

³
B ¤ B 0

0 0

´

(note that because Q contains a non-zero entry only in its upper-left corner, the
second row of any matrix operator appearing immediately to its right can be chosen
arbitrarily). Combining the de nition of R0

c(z) with (7.6), (7.7) and (7.8), we now
obtain

V c
¡1Rc(z)J V cQ = ( ¶ ¡ z)¡1Q + c¡2( ¶ ¡ z)¡2QBQ + O(c¡4)z: (7.9)

The remainder term O(c¡4)z can be estimated uniformly for z 2 ¡ . Furthermore,
by standard properties of resolvents,

JAcQcJ = ¡ 1

2 º i

Z

¡

zRc(z)J dz:

Integration of (7.9) along ¡ after multiplication by ¡ z=2 º i thus gives

V ¡1
c JAcQcJ V cQ = ¶ Q ¡ c¡2QBQ + O(c¡4): (7.10)

The earlier remarks about ranges, etc., of V c, etc., means that the left-hand side
of (7.10) maps L into L. Furthermore, the eigenvalues of this restricted map can
be seen to be ¶ 1; : : : ; ¶ k. Standard results about the perturbation of eigenvalues of
 nite-dimensional matrices (see, for example, theorem II.5.4 in [7]) now complete
the proof of the theorem.
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