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ABSTRACT 

Here a novel, real-time, highly-compact imaging system capable of detecting and localising gamma rays, thermal 

and fast neutrons is reported. The imaging system presented in this research comprises of a front-end containing 

three detection layers with a unique combination of scintillators optimised for multi-particle detection, and backed 

with silicon photomultiplier diode arrays to enable source localisation and to maximise efficiency. The system 

exploits Compton and neutron scattering techniques simultaneously to constitute a dual-mode radiation camera. 

Application-specific software algorithms are implemented here to process the numerous signals from the system 

and to reconstruct the location of radioactive sources using a back-projection technique. The three front-end 

detection layers fit within a volume of 120 mm  120 mm  200 mm, offering a uniquely compact imaging 

solution. A prototype of the instrument and the associated electronics have been designed using Monte Carlo 

simulations, and tested with Cs-137 (given its singular gamma-ray component) and Cf-252 (for its mixed neutron 

and gamma-ray emission). Experimental results indicate that the system can detect and localise both gamma-ray 

and neutron sources successfully, with intrinsic efficiencies in the order of 10-4. All results have been achieved 

within a scan time of 60 seconds and with a further data processing time of less than 60 seconds, for gamma 

sources of ~300 kBq and neutron sources of 106 neutrons per second (total) in close proximity (< 300 mm). Whilst 

high-speed, mixed-field, particle-imaging systems have numerous applications within both nuclear and non-

nuclear fields; this particular system has been optimised for use within the areas of nuclear materials assay and 

proliferation prevention. 

Keywords: Gamma rays, neutrons; detection; Compton scattering; neutron scattering; real-time imaging; 

proliferation prevention. 

1 Introduction  

Global imperatives to decarbonise electricity supplies have resulted in a variety of new nuclear build programmes 

and related developments in nuclear fuel technology. These developments have the potential to generate new 

challenges at national and international levels [1, 2]. The diversion of nuclear materials deemed unlawful under 

international regulations might involve several different stages, starting with for example: the acquisition of 

safeguarded material, its transportation and eventual deposition at a point where non-peaceful use might be the 

intent and concern. Of key strategic importance in this regard is the deployment of detection technologies capable 

of identifying and tracking special nuclear materials at national and international cross points, ports and borders 

[3, 4]. These areas can be either controlled (e.g., associated with secure areas within airports, border and cargo 

inspection points etc.) or uncontrolled (e.g., at airport terminals, train stations and so forth). The latter scenario is 

associated typically with a complex environment where innovative detection technologies are required [4]. In 

particular, these technologies usually need to be mobile (so they can be placed as required and offer flexibility 

when closer inspection is required) and offer fast data acquisition times (to ensure that the materials in question 

can be identified rapidly and tracked within what can be dynamic environments). 
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General radiation cameras have been utilised widely as thoroughly reviewed by H. Al Hamrashdi et al. [4], with 

some systems finding industrial designation such as RadCam [5] GAMPIX [6-8], GeGi [9] and Cartogam [10]. 

Systems that detect gamma rays and neutrons both passively and simultaneously are widely described and utilised 

within the literature [4, 11-15]. Such multi-mode systems possess an obvious advantage over single particle 

detection for security applications as it permits the location of a wider range of radioactive and nuclear materials. 

Compton and neutron scattering are physical interaction phenomena that are well-established, with Compton 

scattering being especially popular in the medical industry [16-18] and possessing intrinsic detection efficiencies 

typically between 10-6 to 10-3 [19, 20]. The concept of combining neutron and Compton scattering techniques to 

detect fast neutrons and gamma rays in safeguarding applications was first suggested by Polack et al. [21] in 2011 

and experimentally investigated by Poitrasson-Riviere et al. in 2014 [22]. The system described by Poitrasson-

Riviere et al. consists of three detection arrays, each with sixteen, relatively large EJ-309 and NaI(Tl) scintillation 

detectors, and offer comparable detection and localisation abilities to standard multilayer designs. Designed as a 

lab-based proof-of-concept study, the configuration is not practical for many security applications due to the sheer 

bulk of the system. This paper describes the design, construction and testing of a portable and real-time, compact 

neutron and gamma-ray detection and imaging instrument, along with the assessment of its detection abilities and 

characteristics. The main features of this design are: 

 The prototype front-end is highly compact, having dimensions of 200 mm x 120 mm x 120 mm and a 

mass of 3 kg. When battery powered, this allows the instrument to be utilised at any stage during the 

monitoring protocols of radioactive and nuclear materials at national and international cross points, 

ports and borders.  

 The design targets gamma rays in the Compton energy range (~10 keV to ~10 MeV), thermal and fast 

neutrons, and is capable of simultaneous detection of all three. 

 The instrument features fast data acquisition techniques leading to a 60-second scan time, short 

compared to most other imaging cameras. This allows rapid creation of a source position probability 

map that can be used to identify potential radiological sources. (The scan time is achieved for gamma 

sources of ~300 kBq and neutron sources of 106 neutrons per second (total) in close proximity < 300 

mm). 

The main target application for this system is border security, although it is anticipated that a more mature version 

of the design could be applied within alternative fields such as medical and industrial imaging. Previous work by 

the authors [23, 24] concerned the determination of aspects such as the materials used in the front end of the 

instrument and the optimal distances between layers. The work described here describes the physical construction 

of the front end, the electronics used in the instrument and the software utilised to extract and present the data 

generated. For reasons of brevity, the development of Pulse Shape Discrimination (PSD) techniques to be used 

with this instrument are to be discussed in future work. 

2 Imaging Concept 

Within this imaging system, Compton scattering is exploited to detect gamma rays with energies of between ~10 

keV and ~10 MeV [25]. Similarly, neutron scattering technology is used here to detect fast neutrons with energies 

higher than 1 keV, with additional capture technologies also integrated to detect low-energy neutrons; the 

detection system is shown Figure 1. Each of the four scintillators used have an active detection area of 27 mm  

27 mm. The materials selected and the particular thicknesses used are the result of an earlier, in-depth Monte 

Carlo-based optimisation study by the authors [23]. 
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Figure 1: A schematic of the imaging system comprising of scintillator and silicon photomultipliers (SiPMs). 

The upper diagram representing a side elevation of the system and the lower diagram representation a front 

elevation of the system. Here, d1 and d2 in the side elevation view are the separation distances between layers. 

The values of d1 and d2 were both 30 mm. 

The three layers are constructed from a unique combination of scintillators optimised for multi-particle detection. 

Each of the layers is backed by a segmented (88 array) silicon-based photomultiplier (SiPM), and a compact, 

photon-counting transducer device that is used to localise and quantify photons produced in the scintillation layers, 

as described below: 

 The first layer consists of two detectors coupled via optical gel. The first is a 10 mm thick, natural lithium 

glass scintillator (i.e. 6.6% of the lithium content is Li-6; GS10 from Scintacor Ltd., Cambridge, UK 

[26]) which captures thermal neutrons, whilst it is anticipated that fast neutrons and gamma rays generally 

pass through without interaction. The second is a 20 mm thick EJ-204 plastic scintillator (Eljen 

Technology, Sweetwater, TX, USA) [27]) that serves as the fast neutron scattering media within the 

neutron-scattering sub-system, again without significantly affecting the gamma-ray flux. This particular 

thickness of lithium glass detector in this layer has been selected to optimise thermal neutron detection 

while minimising gamma-ray interaction probability in the detector [23]. 

 The second layer comprises a 15-mm thick lithium glass scintillator (GS10 from Scintacor Ltd. as in the 

first layer) which captures the neutrons scattered and thermalized by the plastic scintillator in the first 

layer. The same crystal serves as the first Compton scattering layer in the Compton scattering sub-system. 

 The third layer is a 30 mm thick thallium-doped, caesium iodide (CsI(Tl)) scintillator (John Caunt 

Scientific Ltd., UK [28]) which forms the final gamma-ray detection layer in the Compton scattering 

sub-system. 

The lithium glass used in the imaging system is a cerium-activated, silicate glass with lithium content in its natural 

isotopic abundance. As shown in the previously-mentioned material characteristics optimisation study (Al 

Hamrashdi et al. [23]), the GS10 lithium glass exhibits superior scattering capabilities compared to other 

scintillation materials that are sensitive to both neutrons and gamma rays. EJ-204 is a general-purpose, plastic 

scintillator which possesses a 1.1 H:C ratio and demonstrates sensitivity to both fast neutrons and photons with 

energy of less than 100 keV. Indeed, EJ-204 (also known as NE-104 and BC-404) possesses one of the highest 

scintillation efficiencies amongst all plastic detectors with 10,400 photons generated per MeV of incident 
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electrons. CsI(Tl) is a widely-utilised, inorganic scintillator renowned for its larger gamma-ray absorption 

coefficient compared to sodium iodide and a higher absolute light yield of 65,000 photons/MeV compared to 

38,000 photons/MeV for NaI(Tl) [25].  

Thermal neutron detection is achieved in the first lithium glass layer via the 6Li(n,)3H thermal neutron capture 

reaction. The alpha and triton products of this reaction are highly ionising, with energies of 2.73 MeV and 2.05 

MeV respectively [25], and transfer their energy to the cerium-activated lithium glass. Pulses generated in this 

layer are of consistent height and shape characteristics albeit with slight variations due discrepancies in photon 

transport and photodetector response. Fast neutron detection is the result of neutrons undergoing elastic scattering 

whilst interacting with the protons within the EJ-204 plastic scintillator located in the first layer, followed by the 

detection of the scattered neutrons in the second layer. The scattered protons in the EJ-204 deposit most of their 

energy within this volume (the range of a 10 MeV proton in general PVT plastic scintillators is c.a. 1.2 mm [29]) 

generating visible photons, which are detected by a SiPM. Within the second layer of the system, some of the 

lower energy scattered neutrons will interact with the lithium glass through capture reactions or elastic scattering, 

with both reactions producing visible photons. The pulses generated from these interactions are utilised to measure 

the time-of-flight (TOF) of the neutrons between the two layers. Figure 2 shows a schematic of the components 

used in the neutron-scattering technique, and the parameters used in the analysis. 

 

Figure 2: A schematic of the neutron scattering sub-system components. The schematic illustrates a successful 

neutron scattering event within the system in which the neutron will first interact in EJ-204 detector, producing 

a proton that will eventually generate scintillation photons in the scintillator.  The scintillation photons will then 

be collected in the SiPM of that layer. The scattered neutron then interacts in the lithium glass layer. Secondary 

particles from this interaction will then generate scintillation photons that will be collected in the SiPM of that 

layer.       

The scattering angles and incident trajectories can be calculated from the relative positions of the detected pulses 

via the position of activated pixels in the SiPM. The energy of an incident neutron is assumed to be the sum of the 

energy of the scattered proton, Ep, and of the energy of the scattered neutron, E’n [30, 31]. These energies are 

related to the scattering angle, ,  through equation 1:    

                                                                              tan2 = Ep/E’n                                                                       (1) 

The energy of the scattered neutron can be calculated using the time-of-flight (TOF) measurement between the 

two SiPMs, as shown in equation 2. 

                                                                         E’n   = 0.5 mn (d12/TOF2)                                                              (2) 

Where d1 is the separation distance between the two SiPM arrays, and mn is the mass of a neutron. The probable 

origin of the neutron source is formed by creating probability cones coincident on the plane defined by the 

scattering angle. The compound images of the intersection areas of all of the resultant ellipses can then be used to 

estimate the most likely location of the incident neutron source. 
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The Compton detection technique is used here to overcome the drawbacks of conventional physical collimation, 

the most significant of which concerns the narrow range of incidence angle, which has a direct effect on detection 

efficiency [16, 17]. Two layers of scintillator are utilised in this Compton scattering subsystem: the second lithium 

glass scintillator operating as the photon-scattering layer with the CsI(Tl) scintillator operating as the photon 

detection layer. The scattering angles and incident trajectories can be related using conservation of energy and 

conservation of momentum equations as shown in equation 3 and Figure 3. It is assumed that the energy of the 

incident gamma-ray photon is the sum of the measured energy of the recoil electron Ee and the measured, 

absorbed, scattering photon energy E’.   

 

 

Figure 3: gamma particle collides with an atom in the lithium glass via the Compton Effect, the electron 

producing visible photons in the volume, which are collected in the SiPM. The photon scattered in this volume 

then enters the CsI(Tl) scintillator with the electron produced via the photoelectric effect producing visible 

photons which are collected in the associated SiPM.  

                                                               cosϕ = 1 –mc𝟐 [(
1

E’γ
) - (

1

E’γ+ Ee

)]                                                           (3) 

Where m is rest mass of an electron and c is the speed of light. 

The high fill-factor J-series SiPM sensor array (ArrayJ-30035-64P-PCB 8x8 SiPM, SensL, Cork, Ireland [28]) is 

used as the photodetector within each of the three detection layers of the design described in this paper. The typical 

breakdown voltage (Vbr) of this particular array is 24.5 V, with a sensitive spectral range of between 200 nm and 

900 nm; a limit that comfortably spans the wavelength of maximum emission for lithium glass (395 nm), EJ-204 

(408 nm) and CsI(Tl) (550 nm) [25]. The main features of the J-series SiPM array are the low dark count rate 

(typically 50 kHz/mm2 at 2.5V above Vbr and 80 kHz/mm2 at 5V above Vbr) and the high photon detection 

efficiency (38% at 2.5V above Vbr and 51% at 5V above Vbr). The photon detection efficiency extends into the 

blue range of the electromagnetic spectrum, matching the wavelength range of the lithium glass and EJ-204 

emission spectra [32]. This latter feature contributes directly to the reduction of dark current as the penetration of 

light in the blue region is shallow in a silicon wafer, minimising the depth of the generated electric field and 

subsequent spontaneous generation of electrons [25]. The main physical feature of the ArrayJ-30035-64P-PCB 

8x8 SiPM is the efficient use of space within the active area of the array. The arrays used here feature 64 individual 

pixels (each with a total number of 5,676 SPAD microcells) with each pixel featuring a pitch of 3.16 mm equating 

to a total size of 26.68 mm  26.68 mm, offering high-resolution 2D-mapping of incident and locally-generated 

pulses [32]. 

3 Experimental Set-up 

The experimental system consists of three ‘zones’. The measurement zone features the three-layer detectors 

assembly as described above, the front-end electronics associated with the detection layers, and the three power 

supplies that provide the 29.4 V DC required by the SiPMs. The 192 channels of data generated in this zone are 

fed into the readout circuit zone, which comprises of a large volume of bespoke electronics designed to process 
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the data from the SiPM pixels and utilising a ±12 V, 10 A power supply. Finally, the control zone incorporates the 

software used to collect and process the data produced by the instrument. 

3.1 Measurement Zone 

The scintillator detectors are orientated vertically in a stainless steel enclosure with a wall thickness of 4 mm to 

simultaneously reduce the influence of background radiation while offering structural integrity and machinability. 

The enclosure has external dimensions of 120 mm  120 mm  200 mm, reflecting the small form factor of the 

imaging system. The 88 SiPM arrays are placed in optical contact with the scintillators within each layer, and are 

mounted on ARRAYJ-BOB3-64P (SensL) breakout boards. Each SiPM pixel has a dedicated simple current-to-

voltage converter consisting of a 47 Ω resistor in series with the diode. Off-the-shelf benchtop power supplies 

were used to provide 29.4 V of reverse bias, which was applied across the resistor and diode, with the output, read 

across the diode and transmitted via ribbon cable to the readout circuit. Figure 4 shows the SiPM array with the 

front-end electronics.  

 

Figure 4: A photograph of the SiPM array with the front-end electronics used in this research. 

The characteristic equation describing an output current pulse from the SiPM has been discussed previously by 

A. Spinelli and A. L. Lacaita [33], and by R. Turchetta [34]. The shape of the raw pulses from a single SPAD (or 

microcell) is commonly described as a Dirac’s delta pulse (Q(t-c)). The total charge Q generated by each SPAD 

in the SiPM array being equal to V(Cq+Cd); where V is the overvoltage, Cq is the quenching capacitor value 

and Cd is the depletion region capacitance in the SiPM cell. The anode-cathode (standard) output of the SiPM 

module used in this design has a total capacitance of 1000 pF. Figure 5 showcases the processed and normalised 

output pulses from the SiPM when lithium glass, EJ-204 and CsI(Tl) detectors are utilised. The data were acquired 

using Agilent 54845A Infinium Oscilloscope with a sampling speed of 8 GSa/s and bandwidth of 1.5 GHz. 
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Figure 5: Pulses generated from an SiPM and front-end electronics (current-to-voltage converter) for lithium 

glass, EJ-204 and CsI(Tl) detectors, using a Cf-252 source (the inset figure is an enlarged proportion of the 

figure comprising close-ups of the lithium glass and EJ-204 short pulses). 

Table 1 provides a list of the average rise and fall times of the three types of pulse featured in Figure 5. The rise 

time in the table refers to the time required for the leading edge of the pulse to rise from 10% to 90% of its 

maximum value, whereas fall time is the time required for the decaying edge of the pulse to fall from 90% to 10%. 

Table 1: Rise time and fall time of SiPMs pulses for lithium glass, CsI(Tl) and EJ-204 (Note that measurements 

here are limited by the sampling speed of the oscilloscope utilised in this part of the experiment) 

Detector Maximum 

emission 

wavelength (nm) 

Radiation 

source 

Average rise time (ns) Average fall time (ns) 

   Measured Reported Measured Reported 

Lithium 

glass 

395 mixed 50.4 ± 0.9 NA 70 ± 3 70(1)  

CsI(Tl) 550 gamma-ray 67 ± 2 NA 1600 ± 30 600 (fast 

component) 

/3340 (slow 

component) 

EJ-204 408 mixed NA 0.7(2)  NA 1.8(2)   

(1)  van Ejik et. al, 2012[35] 
(2)  https://eljentechnology.com/images/products/data_sheets/EJ-200_EJ-204_EJ-208_EJ-212.pdf  [27] 

EJ-204 is an appropriate scintillator choice within counting applications that require a fast response, as the material 

boasts a pulse rise and fall time of less than 3 ns and a pulse width at FWHM of 2.2 ns. While this is of great 

advantage in the TOF measurements, an issue occurs when sampling the pulse with conventional instrumentation, 

such as the oscilloscope. The high sampling speed of the Agilent 54845A Infiniium Oscilloscope allows the 

digitising of EJ-204 pulses and hence the plotting of the pulses shown in Figure 5, although the low input 

impedance (1 MΩ) can cause the undershooting observed in the EJ-204 pulse, which might affect further analysis 

on pulse shape discrimination. 

3.2 Readout circuit zone 

An application-specific readout circuit (ASRC) was designed in order to process each of the 192 pixels from the 

three SiPM arrays individually. There are three main levels of circuitry within the ASRC: (i) filtering and 

amplification, (ii) pulse comparison, and (iii) time-of-flight (TOF) measurement. The DAQ used here was the 

USB-2633 (Measurement Computing Corporation, USA) [36] which operates at a sampling rate of 1 MSa/s with 
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64 single-ended analogue inputs (1 GΩ input impedance) and three 8-bit digital inputs. Figure 6 shows a block 

diagram of the readout circuit with an example of the different stages in the ASRC for two channels. It should be 

noted that whilst this also features the current-to-voltage stage for completeness, this component is physically in 

the measurement zone as opposed to being in the application-specific readout circuit zone. 

 

Figure 6:  Block diagram of the ASRC showing, as an example, the transition of pulses within two of the 

channels. 

The function of the first stage of the circuit is to filter and amplify the voltage pulses from each of the SiPM pixels 

via a high-pass filter and two inverting amplifiers (also acting as active low-pass filters). This features a cut off 

frequency of 10 GHz and a gain of 100 (Figure 7). The amplifier used is the low-noise and high-speed LT1226 

(Linear Technology, USA) which features a gain bandwidth product of 1 GHz at ±12 V and slew rate of 400 V/ms. 

 

Figure 7: Schematic diagram of the double-inverting amplifier, active low-pass filters in the filter and amplifier 

boards. 

An input pulse to this circuit, with a peak height of 80 mV and decay time of 1.6 µs, was found to correspond to 

an output pulse with a peak height of 5000 mV and a decay time of 200 µs. This allows for a longer time for 

digitisation and analysis of the signal as well as reducing the likelihood of pulses being lost while being read in 
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the DAQ. Each of these processed signals are input to a LM319MX dual high-speed comparator (Texas 

Instruments, USA [37] , where the peak amplitude of the pulse is compared to a user-adjustable reference voltage, 

which is set above the electrical noise and background levels. When the input voltage is above this reference 

threshold, it is treated as an ‘event’. For each layer in the imaging system, there is a PCB featuring 32 LM319MX 

dual comparators (±12 V) which can compare 64 analog signals, simultaneously, in 80 ns. The output is sent to a 

voltage divider, comprising two 10-kΩ resistors (shown in Figure 8), resulting in a ‘high’ output pulse of 6 V. 

 

 

Figure 8: Main building block circuit for the comparator PCB. 

These digital signals are then sent to the TOF circuit, which generates digital pulses to trigger a time-to-digital 

Converter (TDC) module via the start/stop input. The TOF circuit uses a series of rising-edge, trigger logic OR 

gates which determine whether any of the outputs from the comparators are non-zero at time ‘t’. This output is 

sent to the TDC7200EVM (Texas Instruments) evaluation module (used to operate and evaluate the TDC7200 

TDC) to trigger the start/stop clock. This module possesses an input measurement range of between 12 ns and 500 

ns, with a resolution of 30 ps - a range that roughly matches that of the scattered neutron TOF anticipated in these 

experiments. Within the measurement range of the TDC7200EVM (12 ns to 500 ns) and the separation distance 

between layers 1 and 2 (30 mm), it would be rational to evaluate the minimum and the maximum TOF time 

boundaries of the circuit.  Using the kinetic energy equation (equation 2), one can find the TOF for a scattered 

neutron losing 50%, 90% and 99% of its energy to a proton in EJ-204. Table 2 shows the TOF calculations for a 

scattered neutron with original kinetic energies of 0.001 MeV, 0.01 MeV, 0.1 MeV and 1 MeV.  The examples are 

used to illustrate the relation between the incident neutron energies, percentages of energy losses in the scattering 

reactions and the corresponding TOF. Based on this, one can estimate neutrons TOF that can be successfully 

detected in the TOF circuit and hence the minimum and maximum neutron energies that can be measured by the 

imaging. The table indicates that within the current TOF circuit, scattered neutrons with energies equal to or above 

0.1 MeV will fall outside the TDC7200EVM measurement range if they lose 50% or less of their initial energies. 

Similarly, neutrons with incident energies lower than 0.001 MeV will not be detected by the TOF circuit if they 

lose 99% of their initial energy in the scattering reaction. 

Table 2: Estimated neutron TOFs and velocities measured in the current prototype configuration. 

 Neutron Energy (MeV) 

 1 0.1 0.01 0.001 

Energy (MeV) and TOF 

after 50% energy loss 

after scattering (ns) 

(velocity m/s) 

3.1 (9.8x106) 9.7 (3.1 x106) 31 (9.8 x105) 97 (3.1 x105) 

TOF after 90% energy 

loss after scattering (ns) 

(velocity m/s) 

6.9 (4.4x106) 22 (1.4x106) 69 (4.4x105) 220 (1.4x105) 

TOF after 99% energy 

loss after scattering (ns) 

(velocity m/s) 

22 (1.4x106) 69 (4.4x105) 220 (1.4x105) 690 (4.4 x104) 
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In addition, the TOF circuit generates a list of the digital addresses of all SiPM pixels that are activated, based on 

the first arrived/first recorded approach. This list will facilitate data reconstruction of the Compton camera and 

the neutron scattering sub-system since events generated in the SiPM array are time correlated according to their 

order of arrival. Figure 9 shows the direction of logical operations in the TOF board starting with arrival of pulses 

from the comparator board to the transmission of the activated 8-bit address to the USB2633 DAQ digital port. 

The pulses from each comparator are simultaneously sent to a D-type flip-flop (MC14174M, ON Semiconductors) 

which will store a value of 1 when the corresponding comparator has a high output, at the same time as the clock 

(given by the output of the OR gate in level 3 – see Figure 9) is at a rising edge. The output of the flip-flop will 

return to 0 when the corresponding comparator has a low output at the next rising edge of the clock input. Note 

that the clear input pin on the flip-flop is always high, as this input is connected directly to a constant +12 V 

supply. The flip-flops are in groups of 8 and the outputs of the flip-flops in each group are sent to an 8-input 8-bit 

priority encoder (CD4532B, Texas Instrument) which encodes the location of whichever flip-flop has a high 

output to a 3-bit binary code output. This output represents the address of the corresponding SiPM pixel that has 

registered an event. Each encoder also has another output, GS, which goes high if any of the inputs are high, i.e. 

if an event was registered by any of the corresponding flip-flops. As 8 of these encoders are needed to encode the 

address of the 64 pixels, it is necessary to discriminate between the output of each encoder to acquire a unique 

complete address. The three binary outputs from each encoder (Q1, Q2 and Q3) are consolidated using three 8-

input OR gates, resulting in a single 3-bit address. Furthermore, the GS outputs from each encoder are fed into 

another 8-input 8-bit priority encoder. The output of this encoder gives the address of the other encoders (0-7) that 

had registered an event. These two 3-bit addresses therefore uniquely identify the pixel that registered an event as 

it occurs. These six values are eventually saved in a .csv file, the data transferred via the digital input of the 

USB2633 DAQ. While each SiPM array has a corresponding TOF circuit, for the third layer it is only used to 

generate the digital address list. That is, there is not a TDC board connected to the third layer.  

 

Figure 9:  Architecture of the TOF board. 

3.3 Control zone 

In order to process the data coming from the ASRC, three pieces of software are used in this system. A Python 

code (v3.6.5) is first used to serially acquire the data from the 64 analog ports and 1 digital port from each of the 

three DAQs utilised. The code utilises the mcculw module [38] to communicate and read the data from the DAQs 

before saving the data from each layer in individual .csv files. The digital port in each DAQ reads the 8-bit digital 

data stream that contains the addresses of the pixels that have been activated and saves this in another.csv file. 

Also acquired here is the analogue TOF data stream generated from the TDC7200EVM module which utilises a 

LABVIEW GUI [39] to interact with the user and generate more .csv files in which TOFs are saved in general 

number format. In total, seven .csv output files are generated after the 60-second data acquisition cycle for the 



   11 

activity of the sources described in the next section. Six of these output files use the Python code interface, while 

the TOF data is instead relayed to the computer via a LabVIEW™ interface. A MATLAB® [40] script has been 

developed for analysing and reconstructing the data from these seven .csv files. For each layer, the 8-bit addresses 

are converted into channel numbers and then using a while loop, the voltage is read from the analogue output files 

of the corresponding layer and assigned to the channel number. Depending on the type of event, the measured 

voltage are converted into energy, probability cones are created and the image plane reconstructed. The flowchart 

shown in Figure 10 illustrates the steps taken within the MATLAB® algorithm. 

 

Figure 10: Flow diagram illustrating how the MATLAB algorithm creates the probability cones and construct 

source image.  

3.4 Radioactive source details 

Two sealed radioactive sources have been used for testing of the device; Cs-137 and Cf-252. The Cs-137 used had 

a total activity of 315 kBq at time of use. A high proportion (94.7%) of the beta particles produced during its decay 

lead to Cs-137 disintegrating to an excited state of barium, which decays subsequently via a 662 keV gamma-ray, 

corresponding on this basis to a total of 300,000 gamma rays emitted by this source each second. The Cf-252 

source at Lancaster University is encapsulated with aluminium and had an activity of 18.8 MBq at time of use. 

This source is held inside a double-walled, fiberglass tank of water of volume ~1 m3 that, in turn, is located inside 

a mild-steel enclosure. Cf-252 decays via either α emission or spontaneous fission, with a branching ratio of 

96.91% and 3.09%, respectively [41]. 3.759 neutrons on average are emitted per spontaneous fission event, thus 

yielding a total number of 2.18 x 106 n/s into 4 with an average energy of c.a. 2.1 MeV, and most probable energy 

of c.a. 0.7 MeV [42]. The average energy of the associated gamma-ray component is 0.8 MeV with average prompt 

fission multiplicity of 8.3 gamma rays per fission event [43].  

4 Experimental Setup 

Figure 11 shows the experimental setup with detector enclosure assembly (front-end), voltage supplies and the 

readout electronics ASRC. Using a Gaussian fit of the normalised pulse height against voltage; the 662 keV 

gamma-ray photo-peak was detected in the lithium glass at 0.36 V and resolution in terms of a FWHM of (0.23 ± 

0.02) V. Similarly within CsI(Tl),  the 662 keV gamma-ray photo-peak was detected  at 0.44 V and resolution in 

terms of a FWHM of (0.37 ± 0.01) V. Figure 12 shows a plan schematic of the experimental setup used for the 
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neutron measurements. The source-to-detector enclosure distance can be broken down into several components. 

First, there is the 50 mm distance between the detector enclosure and the source tank, and then there is a 242 mm 

gap between the Cf-252 source and the edge of the tank. This equates to a total source-to-detector distance of 292 

mm. However, for simplicity, the source tank to detector enclosure distance (50 ± 1) mm is defined for the rest of 

this paper as the source-to-detector distance.  

 

Figure 11: A photograph of the gamma-ray detection experiment setup.  The sealed Cs-137 gamma source will 

be positioned just out of view of this photograph, on the right-hand side.  

 

Figure 12: A plan view (schematic) of the experimental setup for the neutron measurements performed in this 

research. 
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5  Monte Carlo Simulations 

The system was designed and verified using Monte Carlo simulations in MCNPv6.1.0 [44]. The cross sections 

used in this work for neutrons simulations are from the ENDF/B-VII.1 library, with room temperature assumed 

throughout (293K). For gamma-ray analysis, the Evaluated Photon Data Library (EPDL) and the Activation 

Library (ACTL) compilations from Livermore data libraries were used [44]. In all subsequent simulations, the 

geometry of the detection system and material characteristics were as defined in section 2. In addition, the absence 

of significant levels of background radiation within the experimental setup allows the comparison of experimental 

measurements with simulation results and enables the verification of experimental results. The analysis for all 

radiation types described here is based on the output of the PTRAC card, FMESH tally and F8 pulse height tally. 

Adding the PTRAC card to an MCNP input file creates an output file detailing particle tracks through the system 

with complete information of collisions and interactions depending on the keywords added to the input card. An 

overview of the cards used in the PTRAC file, FMESH card and F8 tally are shown in Figure 13, illustrating the 

layout of the output files with brief highlights of the main elements. The PTRAC input file includes the output 

control keyword FILE=ASC that instructs the software to generate an ASCII output file type, with the command 

WRITE=ALL indicating that the location in Cartesian coordinates and directional cosines of the particle should 

be written to the output file along with the particle energy for each interaction, the weight and the time. The control 

keyword TYPE=n, p, t, a, h specifies the particle types in the PTRAC output file (denoting neutrons, photons, 

tritons, alpha particles and protons, respectively). Furthermore, the control keyword MAX=100000 controls the 

maximum number of events to be written within the PTRAC file. The output file generated by the use of the 

PTRAC card is subsequently analysed in MATLAB®. 

The FMESH card generates a user-defined mesh tally laying over the surface or cell of interest with Cartesian 

geometry used throughout the FMESH based simulations. For the Monte Carlo simulations used in this research, 

the main facets of the scintillators in the detector module are defined in the y-z plane, and hence the locations of 

the fine mesh points are specified in these two directions, with keywords JINTS=60 and KINTS=60 defining 60 

fine mesh points in each orientation. The F8 tally is defined in MCNP6 as a pulse-height tally, and thus the output 

of this tally is a register of the energy distribution of pulses within a cell by the defined radiation particle and any 

subsequent secondary particles. In contrast to the case of photons, when neutrons are evaluated using the F8 tally, 

an inconsistency can arise because of differences in the way neutrons transport through matter. To overcome this 

error, the F6 MCNP energy deposition tally (in units of MeV/g) is used to determine the secondary particles 

generated by a neutron interaction. For example, the triton and alpha generated as a result of neutron capture in 

Li-6, is used in coincidence with the F8 tally with a pulse-height light tally with the anticoincidence (PHL) option 

added to the tally specification card (FT). The following MCNP code is an example of an F8 tally card executed 

to generate a distribution of pulses from neutrons capture reactions in lithium glass through the interactions of the 

secondary particles: 

 F6:a (cell number)       

 F16:t (cell number)  

 F8:a (cell number)           

 FT8 PHL 1 6 1 LIG-1   

 F18:t (cell number)         

 FT18 PHL 1 16 1 LIG-1 

LIG-1 and CSI-1 are keywords for the lithium glass and CsI(Tl)  detectors that enable the use of a special tally 

treatment used when scintillators are selected. The numbers following the tally number, FT and PHL are the F6 

tally number for this detector region followed by the pairing numbers of the tally number (6 or 16) and the tally 

bin number, which is the one in the example given here. More details of these keywords is available in the MCNP 

manual [45]. The way the cones are plotted can be described in several stages: 

1) The PTRAC file is imported into the MATLAB environment. 

2) The number of histories is ascertained in order to initiate counting matrices. 

3) Using a ‘while’ loop and ‘If’ statement, events of interest are determined. 
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4) The appropriate equations are used to find scattering angles and energies of gamma rays and neutrons (see 

section 2). 

5) Cones are plotted leading to probability map generation. 

 

Figure 13: A schematic diagram illustrating MCNPv6.1.0 input parameters and simulation output analysis. 
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5.1 Simulation results for the gamma-ray detection system 

5.1.1 Detection efficiency of the Compton-scattering sub-system and the localisation of a gamma-ray source 

Simulations of the complete front-end system exposed to a single Cs-137 source (as defined in section 3.4) were 

conducted. The number of particles specified in the MCNPv6.1.0 environment was 298,305, with 1106 of these 

events registered in the PTRAC output file. The positions, the energy deposited by gamma-ray interactions and 

the associated scattering angles were determined within the layer 2 15-mm lithium glass and layer 3 CsI(Tl), using 

a combination of the MATLAB code described above and equation 3. The output is illustrated in Figure 14 with 

the source located centrally 50 mm in front of the first detection layer; denoted here with an ‘X’. It can be observed 

visually here that the pixel located at (3, 5) shows the highest probability of source location, a position within one 

pixel of the actual location; a distance of 3.375 mm. Due to the statistical nature of this technique, it is necessary 

to consider the surrounding pixels of the actual source position. The intensity in the pixel of the actual source 

location and the 16 pixels surrounding it combined is (31.2 ± 0.5) % of the total predicted fluence – an average of 

1.95% in each pixel. The pixels outside this area receive on average 1.43% of the total predicted fluence each. 

Thus, there is a rise of 36% in the pixels around the correct source location. The intrinsic efficiency has been 

simulated too indicating the total number of radiation quanta detected in the Compton scattering sub-system of 13 

events per second (a figure verified using repeated simulations). Given the detector cross sectional area (7.29 cm2), 

an estimate of the geometric efficiency of the detector of 0.023 follows. Given the activity of the Cs-137 source, 

6,861 photons would be expected to reach the active detector surface in the specified period of time. Thirteen 

events recorded indicates an intrinsic efficiency of 1.89 x 10-3 at 662 keV. 

 

Figure 14: A schematic diagram illustrating the steps of image reconstruction applied to yield the response of 

the system to a gamma-ray source (‘X’ indicates the source location in simulations). The intensity units are 

arbitrary. 

5.1.2 Source localisation ability of the Compton scattering sub-system 

The source localisation ability of the Compton scattering sub-system was determined using the Cs-137 source 

placed at four different locations, relative to the front of the detector system, as illustrated in Figure 15, with the 

results shown in Figure 16. The pixel corresponding to the real location of the source, along with the 8 surrounding 

pixels, represents 63.9% of the total fluence recorded by the camera, an average of 7.1 ± 0.1 % per pixel compared 

to 0.7% of the total fluence on average per pixel outside of this area. Similarly, Figure 16 (b) indicates 69.3% of 

the fluence in the nine pixels around the real source location (7.7 ± 0.2 % per pixel compared to 0.9% outside of 

it), Figure 16 (c) shows 60.3% of the fluence in the nine pixels (6.7 ± 0.1 % compared to 0.7% outside of this) and 

finally Figure 16  (d) shows 71.1% of the fluence observed from within the nine pixels surrounding the real source 

location (7.9 ± 0.1 % compared to 0.9% outside of this area).  
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Figure 15: A schematic diagram of the four different locations of the Cs-137 source relevant to the image plane. 

 

Figure 16: The reconstructed images derived from the results of simulations of the response of the system to 

changing the position of the Cs-137 source (a) upper left, (b) upper right, (c) lower left and (d) lower right. The 

colour map indicates image intensity and  the source position in the simulations relative to the imaging 

system. 

5.1.3 Angular resolution of the Compton scattering sub-system 

The ability of the system to differentiate between two, closely-spaced gamma-ray sources was investigated in 

order to estimate the angular resolution of the system. Three different angular spacing scenarios were explored, 

namely 40o, 15o and 5o. The resulting reconstructed images with two Cs-137 sources 40o (29 mm) apart, 15o (10.5 

mm) apart and 5o (5 mm) apart are shown in Figure 17. The number of PTRAC events recorded was 1736. In 

Figure 17 (a), the points at which the ellipses intersect appears to be shifted upward relative to the location of the 

source defined in the simulation geometry. Nonetheless, these results indicates that the system can differentiate 

between two sources with a minimum angular spacing of 15o. 
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Figure 17: A schematic diagram of source position with respect to detectors enclosure and the reconstructed 

images of the computational analysis of two Cs-137 sources 40o (29 mm) apart, 15o (10.5 mm) apart and 5o (5 

mm) apart (colour map shows image intensity and  indicates source location specified in the simulation 

geometry).  

5.2 Simulated results using the thermal neutron detection system 

The response of the system exposed to thermal neutrons was simulated using the Cf-252 source set-up as 

illustrated in Figure 12. The Cf-252 source is defined using the Watt approximation of the corresponding fission 

spectrum using the Spontaneous Fission (SP) keyword with appropriate constants in the source card [33]. In order 

to generate a high proportion of thermal neutrons, an 11-mm thick polyethylene slab was included in the 

simulation geometry between the instrument and the source tank to act as a moderator. The F2 card was utilised 

in the MCNPv6.1.0 input file to estimate the number of thermal neutrons incident on the instrument.  Considering 

the number of neutrons output from the polyethylene slab is 4.16 x 10-6 per initial neutron, the thermal neutron 

fluence was determined to be 81 n/cm2 over the 60 s period. Therefore, the expected number of thermal neutrons 

is 591 over the whole of the 2.7  2.7 cm detector area. The F8 tally card was added to the MCNPv6.1.0 input file 

which was used to investigate the number of triton particles generated by the thermal neutrons capture reactions 

and subsequent energy pulse height generation in the lithium glass detector. The details of the F8 tally card used 

in the input file are indicated in section 5. In the Monte Carlo environment, 478 tritons are simulated as being 

generated within the lithium glass layer indicating a simulated intrinsic efficiency of (81 ± 4)%. 
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5.3  Simulation results for fast neutron detection system 

The response of the system when located 50 mm from the front of the Cf-252 neutron source tank was simulated 

using the PTRAC card to generate the data required in equations 2 and 3, using the keywords listed in Figure 13. 

The parameters registered in the PTRAC output file included interaction positions, energy depositions and TOF 

data. Equations 2 and 3 were then used to find the scattering angles and to generate the probability cones, as shown 

in Figure 18. Based on these simulations, 8177 neutrons reached the detectors enclosure, 50 of which were 

recorded in the system as neutrons scattering events. This indicates an intrinsic detection efficiency of 6.1 x10-3 

at 2.1 MeV (the average energy of neutrons from Cf-252 source). 

 

Figure 18: A schematic diagram illustrating the steps taken in image reconstruction to extract the response of the 

system to the neutron source (  is source location defined in the simulation geometry). 

Figure 18 would suggest that the source is a scattered source with only 27.2% of the neutron flux predicted to be 

within one pixel of the real source location in this result. This can be compared to Figure 14, which illustrated a 

Monte Carlo simulation of the probability map achieved when the Cs-137 source was located 50 mm in front of 

the instrument. As expected, the Cs-137 results illustrate a point source as oppose to a scattered source.  

6 Experimental results and discussion 

6.1 Gamma-ray results 

The experimental gamma-ray results are divided into three sets: the first two sets focus on the validation of the 

system exploiting Compton scattering to detect and locate gamma rays, and the third set on the abilities of the 

system to locate and differentiate different gamma-ray sources. Keeping in mind the activity of the gamma-ray 

source describe in section 3.4, all measurements (unless specified) were made over a 60 s time interval and repeated 

three times to yield an average. The uncertainties depicted by the error bars were determined in each case on the 

basis of one standard deviation of the mean in these results. The usual compromise, i.e. longer scan times yield 

more statistics and thus reduce uncertainties, has been sought. However, shorter scan times may be desirable in 

some applications where a faster camera may be preferable to one offering greater accuracy. 

6.1.1 Compton events as function of time 

The probability of Compton scattering events as a function of time was determined experimentally to determine 

the efficiency of the system. Figure 19 indicates the total number of Compton scattering events, which occur in 

the system as a function of time when the Cs-137 source is 50 mm away from the front detector plane. An average 

of 2.03 ± 0.01 events was observed per second whereas; the geometrical efficiency of 0.023 implies 6900 gamma-

ray photons were incident on the detector surface. The figure of 1.98 thus indicates an intrinsic efficiency of (2.89 

± 0.07) x 10-4 at 0.662 MeV. This figure is consistent with the experimental reported value in the work done by 
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Poitrasson-Rivier et al. [22] who also reported an efficiency in the order of 10-4. This measured efficiency is 15 

% lower than the MCNPv6.1.0 results in section 5.1.1.  

Figure 19: Number of Compton-scattered events versus time for the Compton scattering sub-system. The fit of 

the points indicates a linear relationship between the number of Compton scattering event and time with slope of 

(2.03 ± 0.01) counts per second and R2 value of 1.0   

6.1.2 Compton events as a function of distance  

For further confirmation of the successful operation of the system, a graph of the count rate as a function of distance 

is provided in Figure 20. The inverse-square law would suggest that the exponent in the fit line would be -2 instead 

of -2.28 ± 0.01.  

Figure 20: Count rate vs. distance for Compton camera subsystem. The fit an exponential decay with decay 

constant of (-2.28 ± 0.001) counts/cm and R2 value of 0.99. 

6.1.3  Source localisation ability of the Compton scattering sub-system 

In order to verify the ability of the system to identify individual sources and to locate the source position, the Cs-

137 source was moved to four different locations close to the four different corners of the active area of the system, 

and 50 mm from the image plane, as illustrated in Figure 15. The system responds to this change in source position 

with relatively high accuracy as illustrated in Figure 21, in which reconstructed images as a function of changing 
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source position are presented. It can be seen that the location of the source is identified successfully in each 

scenario. Figure 21(a) shows that 26.0% of the predicted flux is within one pixel of the real source location. The 

corresponding value is 35.4% in Figure 21(b), 43.3%, in Figure 21(c), and 34.2% in Figure 21(d). This appears to 

indicate relative consistency across all four locations with between 26.0% and 43.3% of the flux correctly 

predicting the source location to within a pixel. Another way to quantify these results is to compare the peak-to-

average values. In (a) the maximum value is 25, compared to a total fluence over the 64 pixels of 600, an average 

of 9.2. This indicates a peak-to-average figure of 2.7, with corresponding figures of 7.8, 5.7 and 2.8 for results (b), 

(c) and (d) respectively. The equivalent simulated results shown in Figure 16 indicated that between 46% and 64% 

of the total predicted fluence was within one pixel of the real source. 

 

Figure 21: Reconstructed images of experimental results of the system response to four, different Cs-137 source 

positions: (a) upper left, (b) upper right, (c) lower left and (d) lower right.   marks the source position in the 

experiment relative to the imaging system. 

Experimental results reported here are comparable with MCNPv6.1.0 simulations results (section 5.1.2) in terms 

of locating the source within the right image plane corner. However, lower predicted fluence in the pixels 

surrounding the actual source locations in the experimental results might be due to limitations in the efficiency of 

the imaging system compared to the simulation environment were all events are recorded in the PTRAC file. 

6.1.4 Angular resolution of the Compton scattering sub-system 

Two identical Cs-137 sources were used to determine the ability of the system to differentiate between two 

closely-spaced, gamma-ray point sources. Figure 22 indicates the geometry of the three experiments via plan 

diagrams, alongside the corresponding reconstructed images with two Cs-137 sources 40o (29 mm) apart, 15o 

(10.5 mm) apart and 5o (5 mm) apart. It is clear that in situations (a) and (b) the sources can be discerned from 

one another, whereas in situation (c) the two are indistinguishable, indicating that the angular resolution of the 

system is probably between 15o and 5o. Another way to look at these results is to look at the maximum value 

recorded compared to the lowest value between the two peaks. In these three scenarios, the lowest to highest 

values recorded were 4.0%, 7.4% and 100% in the 40o, 15o and 5o scenarios, respectively. Although the simulated 

(shown in section  5.1.3) and practical results are not identical, the outcomes are similar in that the system’s 

angular resolution is in the order of 15o. The discrepancy in the results might be due to limitations in the efficiency 

of the imaging system. 
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Figure 22: A schematic diagram of source position with respect to the detector enclosure and the reconstructed 

image of two gamma-ray sources 40o (29 mm) apart, 15o (10.5 mm) apart and 5o (5 mm) apart (colour map 

shows image intensity and  indicates source locations). 

6.1.5 Gamma source within transportation devices 

One of the main goals of this research is to test the capability of the design to detect and locate radiation sources 

in real-time in security applications. To fulfil this goal, trafficking scenarios of hidden gamma sources have been 

replicated using two realistic transportation devices. Initially, an IM2720 Peli® case [46] made of ABS plastic 

with an average thickness of 12 mm and external dimensions  of 432 mm  553 mm  254 mm was used as an 

example transportation device. These cases are toughened specifically to enable transportation of expensive and 

delicate items such as instrumentation equipment. Secondly, a shipping box made of cardboard with a thickness 

of 9 mm and external dimensions of 255 mm x 260 mm x 260 mm was used. Figure 23 provides some photographs 

of the experimental setup and the response of the system to these two scenarios using Cs-137 sources. The results 

indicate that the instrument can detect and locate a CS-137 source successfully, either within a Peli® case or a 

cardboard box within 60 s for gamma sources of ~300 kBq. In both cases, the probability map indicates that the 

source is predicted to be either at its real location or within the adjacent eight pixels. 
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Figure 23: The experimental setup (top) and system response (below) to a hidden Cs-137 source in (a) Peli® 

transportation case and (b) cardboard shipping box with colour bars showing image intensity in arbitrary unit (

is the source location in the experiment setup). 

6.1.6 The gamma-ray component of the Cf-252 source 

Here, the gamma-ray Compton camera sub-system was isolated and utilised to monitor the gamma-ray component 

of the Cf-252 source. A 60-mm thick slab of polyethylene was placed between the instrument and the source in 

order to block a significant proportion of the neutron output from the source, allowing a significant gamma ray 

component to reach the detector with reduced neutron fluence. Figure 24 shows the experimental setup in the 

laboratory and illustrates the combination of the Cf-252 source, polyethylene slab and instrument. Figure 25 shows 

the Compton scattering sub-system response map obtained with this experimental set-up. It should be noted that, 

within this output, results in the upper-right corner of the instrument are shadowed by the stainless steel enclosure. 

 

Figure 24: A photograph of the experimental setup for the gamma-ray experiment with the detection instrument, 

polyethylene slab and Cf-252 source tank. 
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Figure 25: The reconstructed Compton-scattering, sub-system response to the gamma-ray component from Cf-

252 with colour bars showing image intensity in arbitrary unit. 

6.2 Thermal neutron testing 

To investigate the system response to thermal neutrons, an 11-mm thick polyethylene moderator was placed 

between the instrument and the Cf-252 source tank in order to thermalize the neutron fluence. The response of the 

system is shown in Figure 26. As described in section 5.2 above, the expected number of thermal neutrons incident 

on the detector as estimated via MCNPv6.1.0 simulations is 600 neutrons/s. Taking an average from five repeated 

experiments, the number of pulses generated in the lithium glass detector in the first layer is (460 ± 20) neutrons/s. 

Based on these calculations, the measured intrinsic detection efficiency is (78 ± 4) %, compared to the simulated 

value of (81 ± 4)% from section 5.2. Work by G. Ban et al  [47] reports a comparable detection efficiency of 

80.6±2.3% in GS10 for low energy neutrons in the ultra-cold region. 

Figure 26: Reconstructed systems’ response to thermal neutrons from Cf -252 source with colour bars showing 

image intensity in arbitrary unit. 
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6.3 Fast neutron testing 

6.3.1 The response to fast neutrons 

The response of the neutron scattering sub-system was investigated by measuring the number of fast-neutron 

scattering events as a function of time at 50 mm from the Cf-252 source. Figure 27 indicates the number of fast-

neutron scattering events in the first two layers as a function of time with the number of events increasing linearly 

as expected. 2.18 x 106 neutrons produced per second by the source multiplied by the calculated geometrical 

efficiency of 0.00258 indicates an expected 5,600 neutrons/s incident on the active area of the detector. Figure 27 

indicates that an average of (4.2 ± 0.1) events are being recorded per second, a figure that equates to an intrinsic 

efficiency of (7.49 ± 0.2) x 10-4. This number roughly compares with the detection efficiency reported by 

Poitrasson-Rivier et al. [22], which was of the order 10-4. 

Figure 27: Neutron scattering events as function of time in the neutron scattering sub-system. The fit of the 

points indicates a linear relationship between the number of neutron scattering event and time with slope of (4.2 

± 0.1) counts per second and R2 value of 0.99.   

6.3.2 Collimated and un-collimated neutron beams 

The response of the system was further investigated using alternate source geometry. Figure 28 shows a 

comparison of the system response between the standard non-collimated Cf-252 source and a collimated pencil 

beam, with 50 mm between source and detection plane. The collimated version was formed using 50 mm thick 

polyethylene slabs with an 8 mm diameter hole. Results achieved indicate quite clearly through simple visual 

inspection the change in the system’s response to the source geometries. As expected, the counts when collimation 

is not used are generally far higher than in the collimated version. The result for the un-collimated source, indicate 

that 26.3% of the predicted radiological source is correctly assigned within one pixel of the real source location. 

This compares to the collimated source where 55.0% of the predicted radiological source is assigned correctly to 

within one pixel of the real source. An alternative way to report this is to say that in Figure 28(a) the peak to 

average figure is 3.99 where as in Figure 28(b) the figure is 8.56. This indicates the ability of the neutron detecting 

subsystem to detect both a point source (emitting neutrons over 4π) and a beam-like source geometry. 
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Figure 28: Reconstruction images of neutron scattering sub-system response to (a) non-collimated and (b) 

collimated Cf-252 source (colour bars shows image intensity). 

7 Discussions and Future Work 

For gamma-ray photons at energy of 662 keV, MCNP6 simulations indicated intrinsic detection efficiency in the 

order of 10-3, whereas experimental results showed detection efficiency in the order of 10-4. Similarly, for neutrons 

emitted from Cf-252 source, MCNP6 simulations indicated intrinsic detection efficiency in the order of 10-3, 

whereas experimental results indicated intrinsic detection efficiency of 10-4. In both cases, the differences between 

simulation results and experimental results are anticipated to be due to the limited speed of the DAQ.  For thermal 

neutrons, simulation results indicated intrinsic detection efficiency of (81 ± 4) % compared to the experimental 

results demonstrating intrinsic detection efficiency of (78 ± 4) %. In here, the experimental result falls within the 

range of the MCNP6 simulation result. The prototype instrument fulfils the criteria of detecting both gamma rays 

and neutrons within a relatively short time period of 60 seconds for gamma sources of ~300 kBq and neutron 

sources of 106 neutrons per second in close proximity of <300 mm. However, there are some significant issues and 

limitations: The testing that has been undertaken has involved source locations close to the detection plane. If the 

sources were located at a more realistic distance from the instrument, it would be expected that the statistics would 

be reduced significantly. The efficiency that has been recorded in both the gamma-ray and neutron cases is of the 

order 10-4, which is comparable to efficiencies reported in other multi-layered Compton scattering imaging 

systems. Spatial resolution of the instrument has been estimated at <15% and more >5%, although the exact figure 

is difficult to ascertain due to the digitisation of the visual results achieved. So where does this instrument sit in 

comparison to other neutron and gamma localising instrumentation? The Germanium Gamma Ray Imager [9]  has 

been developed at the Lawrence Livermore National laboratory, with dimensions of 300 mm x 150 mm x 230 mm 

and a mass of 15 kg. The sensitive range is reported as between 30 keV and several MeV, with Compton scattering 

techniques also used within the instrument at higher energies (>150 keV). Spectral resolution s reported at being 

2.1 keV (at 662 keV) with spatial resolution reported as being at 6 % [9]. The Gampix [6-8] is another gamma 

camera (known commercially as ipix) created at CERN and based on a coded mask and cadmium telluride sensor 

attached to a medipix 2 segmented photon counter. The instrument only weighs 1 kg and, dependant on rank of 

coded aperture chosen, offers spatial resolution of between 1.5 and 2 %, and an energy range of between around 

59 keV  (i.e. the Am-241 peak) and 1.25 MeV (i.e. the Co-60 peak).  The Advanced Portable Neutron Imaging 

System (APNIS) was developed at Oak Ridge National Laboratory in order to initially detect and locate 14.1 MeV 

neutrons generated by a D-T source. The neutron detection part of the system consists of an 8×4 array of fast 

plastic scintillators segmented into 100 pixels that are read by four photomultipliers whose shared response 

determines the pixel of interaction  [48]. The Radscan 2 system developed by Whitney et al. [5], involves the use 

of a coded aperture and a CLYC scintillator. Although numerical results are limited, visually the work presents 

very impressive images when either gammas or neutrons are solely utilised. Goldsmith et al. [49] report a 40 kg 

instrument which utilises Compton scattering to localise gamma rays and the time of flight between two layers of 

EJ-309 liquid scintillators to localise neutrons, and present an efficiency of 45%. The work of Gamage et al. [50]  

also presents some visually impressive images although values for parameters such as spatial or spectral resolution 

are not readily available in the literature. The paucity of comparable numerical data within the literature thus 

renders it difficult to perform a thorough comparison of individual instruments.  
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There are several improvements, which may benefit the instrument in its current state. A larger detection plane 

than the current 27 mm x 27 mm may be an obvious implementation to improve efficiency. The current photon 

sensor in a 2 x 2 configuration would suggest a geometrical efficiency improvement of a factor 4 times, although 

there will always be a trade-off between portability and detection efficiency. Utilisation of longer scan times would 

obviously improve statistics whilst diminishing significantly one of the strengths of the device. Use of an 

Application Specific Integrated Circuit (ASIC) could allow integration of all of the circuits within one PCB that 

could in turn be integrated within the system enclosure, thus minimising the overall footprint of the system and 

enhancing the mobility. However, such a solution can be financially restrictive in an instrument designed to be 

cost effective.  

The TOF circuit currently presents a problem when false-positive scattering events occur. Currently, the process 

involves a start signal generated in layer 1 and an independent stop signal generated in layer 2. Therefore, if a 

neutron passes through layer 1 without interaction and then interacts in layer 2, an orphan stop signal is generated 

and thus false-positive events are recorded. With the probability of successful neutron scattering events estimated 

to be of the order of 10-4, this can have significant impact on the performance of the system. A proposed solution 

to this shortcoming is in the addition of a trigger circuit such that a stop pulse is only generated if a pulse is first 

recorded in layer 1, and if a pulse exceeds the threshold voltage set by the comparator board. Another potentially 

significant area of improvement is in the increase in the measurement range of the TOF. The TDC7200EVM 

module has a measurement range of between 12 ns and 500 ns where, based on Table 2, scattered fast neutrons 

with scattering energies of around 0.1 MeV and above may fall outside of this range. A wider TOF measurement 

range can greatly improve the energy range of detected fast neutrons by the system.  

Further, instead of interrogating each individual pixel, pulses could be integrated over each row and column of the 

SiPM array. This alteration to the current configuration could reduce power consumption in the overall circuit 

while maintaining the pixelated integrity of the system. In addition, because more current is allowed in each 

integrated row or column, the response of the circuit to deposited energy will show enhanced linearity. The signal 

from each row/column can be then sent to a reduced number of 16 filter and amplifier circuits for each layer of the 

design, reducing current consumption by a factor of four. Currently, four PCBs are utilised per layer with 64 

channels filtered and amplified simultaneously, which can result in large and unbalanced currents drawn from the 

voltage supply. This sometimes causes an unbalanced current problem which can have a significant impact in the 

amplitude of the resultant signals and hence the energy resolution of the detected pulses.  

The means of discriminating neutron and gamma pulses represents the most significant future work in this dual 

particle imaging system. The Pulse Shape Discrimination (PSD) principle [51, 52] is based on the differences in 

shape between the pulses from the scintillation process that are produced due to the interaction between the target 

radiation field and detection medium; an area of research well investigated in literature [53-58]. The shape and the 

height of the pulses depend on the interaction mechanism between the radiation and the detection medium, the 

energy of the incident radiation field and the light production mechanism in the medium [53]. Figure 29 shows 

time dependent differences for gamma-ray and neutron pulses in lithium glass as an example. 
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Figure 29: Raw gamma-ray and neutron pulses from Lithium glass crystal (GS10). 

EJ-204 was utilised within this system to scatter fast neutrons, as it is a general-use plastic scintillator, although it 

is somewhat sensitive to low-energy gamma rays, and thus more sophisticated pulse-shape analysis may be 

necessary if this scintillator is retained. The very short 2.2 ns pulse from the EJ-204 would further require an ultra-

fast analysis ASRC. An investigation into alternative scintillators with more favourable gamma/neutron 

discrimination abilities such as EJ-276, may be advisable. An implemented coded aperture system [59], could also 

greatly enhance the spatial accuracy of the imaging system and improve its resistance to background radiation, 

although detrimentally, the overall sensitivity and the field of view is typically reduced. Active electronic 

collimation techniques have been proposed in the literature as practical alternatives that offer higher signal-to-

noise rejection and a wider field of view [60]. 

8 Conclusions 

Within this extensive study, a compact imaging system capable of real-time simultaneous detection and 

localisation of gamma rays, thermal neutrons and fast neutrons has been investigated both theoretically and 

experimentally. The three layered imaging system features several scintillating materials including GS10 lithium 

glass, EJ-204 plastic scintillator and CsI(Tl) inorganic scintillator, in which Compton and neutron scattering 

techniques are utilised in parallel. Within all of these three layers, an 8x8 silicon photomultiplier array has been 

used as a compact method of capturing the scintillation protons produced within the detection layers. The 192 

signals from the SiPMs are investigated individually, a process which requires a large volume of back end 

electronics and some high-speed components. Furthermore, algorithms have been produced in order to process the 

signals produced and produce in real-time a graphical output representing the radiological component of the 

incident field. Monte Carlo software was used to optimise and verify the design through comparison with 

experimental results gained subsequently with the instrument using Cs-137 as a gamma ray source and Cf-252 as 

a neutron and gamma source. Outcomes were that the instrument operates successfully within optimised scenarios 

– i.e. when single mode sources have been placed a few cm from the instrument. Within these limits, the instrument 

operates successfully with intrinsic efficiency of typically in the order of 10-4 and with spatial resolution of between 

5% and 15%. 
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