
IEEE TRANSACTIONS ON EMERGING TOPICS IN COMPUTING, MANUSCRIPT ID 1

IoTility: Architectural Requirements for
Enabling Health IoT Ecosystems

Wyatt Lindquist, Sumi Helal, Fellow, IEEE, Ahmed Khaled, and Wesley Hutchinson

Abstract— The increasing ubiquity of the Internet of Things (IoT) has the potential to drastically alter the way healthcare

systems are utilized at home or in a care environment. Smart things offer new ways to assist in general patient wellness, such

as promoting an active and healthy lifestyle and simplifying treatment management. We believe smart health things bring new

requirements not typically addressed in traditional IoT systems, and that an architecture targeting these devices must address

such requirements to fully utilize their potential and safe usage. We believe such an architecture will help improve adoption and

efficacy, closing gaps between the variety of emerging health IoT systems. In this paper, we present a number of requirements

we consider integral to the continued expansion of the digital health IoT ecosystem (Health IoT). We consider the current

landscape of IoT in relation to these requirements and present solutions that address two pressing requirements: 1)

democratizing mobile health apps (giving users control and ownership over their app and data), and 2) making mobile apps act

and behave like any other thing in an IoT. We present an implementation and evaluation of these Health IoT requirements to

show how health-specific solutions can drive and influence the design of more generalized IoT architectures.

Index Terms— Emerging technologies, Health, Requirements/Specifications, Ubiquitous computing

—————————— ◆ ——————————

1 INTRODUCTION

n The Importance of Being Thing Or the Trivial Role of
Powering Serious IoT Scenarios [1], we argued for the the

importance of having explicit architectures for things in the

Internet of Things, and pointed out that without first

settling the quest for what a thing is or could be or do, we

run the risk of presumptuous visions, or hypes, that can

only fail the realities and limits of what is actually possible,

leading to customer and consumer confusion as well as

market hesitations. The article focused on the domain of

“Personal” IoT and addressed key new requirements for

thing architecture aiming at enabling their

programmability into IoT applications. In this paper, we

expand on our work in [1] and argue that for certain IoT

application domains, additional, domain-specific

requirements must be met and architected to enable IoT

application development in that domain. We focus on the

health application domain in which IoT is utilized, referred

to as “Health IoT.”

Let us first give a motivating example to explain why a

thing architecture is needed. Imagine hosting a symposium

for all the greatest minds in the world, with the ambitious

task of curing diabetes. Large teams of people arrive, each

from their own section of the world, each with their own

area of interest and each with their own skillset. All are set

to work, teams busily trying to progress their problem. But

quickly, it is realised that the teams continue to work in their

silos, unable to bridge the barrier of communication,

unaware of the duplication of work and failing to benefit

from the collective creation of the symposium. Any findings

are passed through directly via set channels of

communication. This is the current approach to the Internet

of Things. We have many very smart things limited to their

silos with the user unable to exploit the greater value of the

whole. Now imagine the same scenario again, however, this

time we ensure there are some essential requirements to

maximise the productivity and achievements of the groups.

For instance, we define a common scientific language for

all attendees to display each team’s interests, strengths,

and studies. Team-defined mechanisms of interaction

would then enable collaboration, sharing, and

understanding among team members. In this environment,

relationships develop, similar teams with analogous

interests can discover mutually beneficial strength, or even

work together on seemingly contradictory results seeking

the truth to avoid scientific errors. Such relationships could

lead to new ideas and outputs, where the symbiosis

benefits the whole of the symposium.

Keeping the above example in mind, we argue that

Health IoT things bring special and specific requirements

not typically addressed in traditional IoT systems. We

believe that any thing architecture targeting these devices

must address such requirements to fully utilize their

potentially collective and safe usage. We believe such an

architecture will help improve adoption and efficacy,

closing gaps between the variety of emerging health IoT

systems in a highly fragmented and evolving market. Like

the motivating example above, a successful architecture

would enable the collective utility derived from the

combined use of subsets of the things in the Health IoT.

xxxx-xxxx/0x/$xx.00 © 200x IEEE Published by the IEEE Computer Society

————————————————

• Wyatt Lindquist is with the School of Computing and
Communication, Lancaster University, Lancaster LA1 4WA, UK. E-mail:
w.lindquist@lancaster.ac.uk

• Sumi Helal is with the School of Computing and Communication,
Lancaster University, Lancaster LA1 4WA, UK. E-mail:
s.helal@lancaster.ac.uk

• Ahmed Khaled is with the Computer Science department,
Northeastern Illinois University, Chicago, IL 60625, USA. E-mail:
aekhaled@neiu.edu

• Wesley Hutchinson is with the School of Computing and
Communication and the School of Medicine, Lancaster University,
Lancaster LA1 4WA, UK. E-mail: w.hutchinson@lancaster.ac.uk

I

2 IEEE TRANSACTIONS ON EMERGING TOPICS IN COMPUTING, MANUSCRIPT ID

Otherwise, each thing will have its offering in isolation. We

refer to this figure of merit in such architectures as IoTility

or the ability to increase the collective utility of the Health

IoT.

In section 3, we describe requirements for Health IoT

that we broadly categorize into “device interactivity” and

“user interactivity”. In the former we address requirements

that enable thing-to-thing interaction and autonomous

inter-relations. In the latter, we address requirements for

user-thing interactions that must be met to ensure proper,

meaningful and safe use of the devices, the empowerment

and enablement of users to easily use the devices, and the

establishment of trust between the user and the Health IoT

elements. In section 6, we present a high IoTility

architecture for Health IoT emphasizing only parts that are

most relevant to the requirements presented in section 3

through 5. This includes the IoT-Device Description

Language (IoT-DDL), a machine- and human-readable

language to provide the basis of cross communication and

the establishment of inter-thing relationship. Section 7

presents implementation and evaluation of parts of the

architecture. In this section, we present two unique

frameworks/toolsets that meet the architectural

requirements. The Runtime Development Environment

(RIDE), allows end-users to dictate the high-level

functionality of Health IoT applications they easily compose

out of existing Health IoT devices; and the Mobile Apps As

Things (MAAT) framework, allows developers of health

mobile apps to utilize actionable keywords (AKWs) to

enable the future IoTility of their mobile application,

without the having to predict or plan for all potential future

interactions. We conclude the paper in section 9.

2 RELATED WORK

Managing an IoT ecosystem in a specialized environment

requires a structured architecture fit for the job. Works such

as NIST’s Network of Things (NoT) [2] propose a

foundational design for an IoT system. NoT defines a set of

primitives describing the functionality of individual sensors

and groups of devices, as well as how they may

communicate. Laplante et al. [3] present another structured

approach, specifically targeting IoT healthcare systems. The

authors consider various use cases, such as managing

dementia, and describe a set of privacy and safety

requirements for a Health IoT system.

Catarinucci et al. [4] offer an architecture

implementation, again targeting healthcare systems, that

focuses on the interoperation of a variety of wireless

protocols to collect and monitor patient data in a smart

hospital scenario. The data can be accessed uniformly by

healthcare providers, or monitored to send push

notificaions to caregivers on critical sensor events. Our

Atlas architecture [5] is another specialized IoT system,

focusing on peronal IoT and the potential for interaction

between devices. This architecture is described in further

detail in section 6.

Facilitating interactions between IoT devices and things

is a primary goal of many of these systems. The Social

Internet of Things (SIoT) [6] describes group of smart object

as a social network to mimic human behavior. Devices form

social relationships over similar functionalities, vendors, or

physical locations. If This Then That (IFTTT) [7] in the cloud

and Things Talk to Each Other (TTEO) [8] on the device

allow similarly allow users to compose services into rule

based applications through a set of “if-then” triggers. These

forms of interaction are expanded on in section 4.2.

Another goal of these IoT systems focuses on enabling

interoperable usage of heterogenous devices. Initiatives

such as the Continua Design Guidelines [9] provide a set of

standards with an open implementation that

manufacturers can follow in their health devices, creating a

uniform base API across brands. In a similar fashion, the

Solid [10] and MyData [11] services aim to improve health

data accessibility, utilizing concepts such as decentralized

storage and standardized formats. The importance of these

features is discussed in section 4.1.

Within these goals, trust, privacy, and security also play

a major role. NIST’s NoT considers thing security at each

level of their architecture, from sensors to user

communication and triggers. Mahale et al. [12] present an

access control system that calculates trust values based on

parameters captured from a smart space. These trust values

can then be used to manage user identity. Lomotey et al.

[13] create a health information system to associate user

identity with the various data streams gathered from

sensors in a smart space. Section 5.3 furher details these

issues.

3 REQUIREMENTS FOR HEALTH IOT

We identify a set of requirements we consider highly

relevant to future thing architectures targeting Health IoT

systems. We do not claim to provide a complete list of

these requirements, but a selection of those we believe will

allow such a thing architecture to maximize its IoTility in

utilizing new digital health devices and the interactions and

applications they enable. We group these requirements

into two categories: 1) device interactivity, or how a device

can expose its capabilities programmatically to application

developers as well as cybernetically to other devices in a

smart space, and 2) user interactivity, or how a device

enables and guides an end user to properly (and safely) use

it.

When considering the significance of device

interactivity, one may reflect on the state of health data

platforms such as Apple HealthKit [14]. This platform allows

a user’s phone to interact with supported devices, storing

and displaying data in a unified interface. A user is provided

with a level of assurance when buying a supported

device—it will “just work” through its integration in the

HealthKit app. However, this assurance hinges on this

platform support: a device supporting only Google Fit or

Samsung Health, for example, will be unable to interact

with other HealthKit devices. These platforms offer users

more control over their data and devices, but only in the

context of their supported and closed ecosystem.

When considering the importance of user interactivity,

one should look towards the plethora of personal health

devices collecting precision data, which may generate

WYATT LINDQUIST ET AL.: IOTILITY: ARCHITECTURAL REQUIREMENTS FOR ENABLING HEALTH IOT ECOSYSTEMS 3

erroneous or noisy data if used improperly or

inaccurately—often a challenging task for the user. For

instance, the Kardia [14] device can collect an

electrocardiograph (EKG) sequence as the user places two

fingers on each side of the device; proper finger placement

is critical in receiving a quality reading. To facilitate this, the

Kardia app exposes a familiar “signal strength”-style metric

(figure 1), providing at-a-glance, feedback and guidance on

finger placement to the user. Unfortunately, Kardia is an

outlier in this regard; most devices lack the facilities to

detect or react to inaccuracies and accept such interactions

unconditionally.
Fig. 1. The Kardia device and app interface.

To highlight both of these requirements, we consider the

following near-future scenario throughout this section:

following consultation with their physician, a patient’s risk

of diabetes is highlighted as significantly raised.

Suggestions are made for the patient to make lifestyle

adjustments to reverse this risk. Just as medicine is

prescribed, the physician also prescribes various IoT

devices for the patient to obtain. The patient fulfills the

prescription for a body-weight and body-fat sensing scale,

a blood pressure monitoring device, and a glucose monitor.

The patient chooses running as a means of exercise and so

purchases smart soles to compliment the community of

devices, as well as a pulse oximeter and a temperature

monitor advertised as a more accurate measure of

metabolic rate. Finally, the patient downloads a dieting

mobile app to his smartphone. We use the elements of this

scenario in the next sections to derive and explain our

requirements for Health IoT.

4 DEVICE INTERACTIVITY

A thing must have the ability to send information and

receive commands before it can be useful in a digital health

smart space. Many things have no physical user interface

and limited potential for physical configuration; instead,

they must utilize a more feature-complete parent device

(such as an edge device or mobile phone) to act as the

point of interaction with the user. A thing relies on this

ability to interact with a parent device to fully represent its

capabilities. To do this, the underlying thing architecture

must provide not only hardware and software interfaces

within the thing, but also the basis for communication with

other devices. This architecture therefore becomes critical

for the successful integration of that thing within a smart

space.

To achieve this goal across the wide range of potential

devices in health IoT, an architecture must be cognizant of

how things may manifest themselves. For example, a thing

may be a simple sensor, a higher-level device with a REST

API, or even a full software system such as a mobile

application. All of these thing types may perform the same

functionality, such as reading a sensor value; however, the

similarities stop there. Beyond utilizing different protocols,

these things may perform their interactions in an entirely

different way. The sensor thing may continuously emit its

value as an electrical signal, the REST API device may

perform its reading when an endpoint is invoked, and the

mobile app may record a measurement based on the

context of the phone's user's actions.

These different possibilities may be viewed as different

"tiers" of interaction within the same system, where a thing

architecture may always operate on, say, the REST API level

of the interaction. However, with new devices constantly

entering the IoT space, it is unreasonable to assume they

will all operate in the same manner and expose the same

capabilities. A health thing may not use a physical sensor

or may be entirely represented within a mobile application.

Instead, a thing architecture targeting digital health should

consider the potential for inter-thing interaction across all

of these forms.

4.1 Common Programming Interfaces (APIs)

Regardless of the context of its interactions, a thing must

expose some form of API to allow it to communicate with

the whole of the smart space. We believe the availability

and utility of such an API is a key piece in determining how

easily a new thing may be integrated into an existing smart

space. Without an API, there is likely little to no way for a

smart space to interact with said device. Rather, only the

functionalities and system the device was explicitly

programmed to utilize can be exploited.

Many devices in the current digital health landscape

tend towards this pattern [14]. Lacking a true independent

API, the device is tied to a specific ecosystem or subset

thereof, creating "silos" of functionality segmented

between manufacturers and vendors. While the potential

for interaction inside the silo may be rich, such interactions

cannot take place with devices outside that silo. If a user

wants to fully utilize the potential of their smart space, they

must stay within a silo of compatible devices. Such a

situation is especially problematic when a specific device

type does not exist within a user's chosen silo; the user is

forced to use a device with potentially decreased

functionality, or consider using a different silo.

Such an effect can be seen within the ecosystem of

companion mobile apps for health IoT devices. A user with

a collection of smart devices likely has a similar collection

of apps on their mobile phone, with each device requiring

its specialized app to make full use of its features. The

natural progression of these silos is an ever-increasing

number of apps on a user's phone as they acquire more

devices: making it harder for the user to find the

information they want, and making tasks such as showing

4 IEEE TRANSACTIONS ON EMERGING TOPICS IN COMPUTING, MANUSCRIPT ID

multiple measurements from different devices at once

more complicated.

Of course, eliminating these silos through a single

standardized API is unlikely; vendors will always want to

prioritize interactions between their own devices. However,

even a limited subset of API compatibility, such as that

defined by the Continua guidelines [9], could greatly

improve a thing's ability to interact with its smart space.

Consider the patient’s temperature sensor from the

scenario at the start of the section. Such a device is meant

to be attached directly to the body, meaning it likely has

little in terms of a physical interface (i.e., no integrated

display to show the current temperature), and limited

capacity for physical interaction (i.e., a sole button for

toggling power).

The temperature readings and any needed

configuration are instead exposed through a companion

mobile app, which the user is required to download to use

the sensor. Imagine, however, a user with accessibility

concerns, where the companion app does not work

properly on their specialized device. Without the app, the

health device cannot be used properly, even though the

hardware itself is functioning. However, in this case, the

device exposes a minimal standard API with basic

functionality. Perhaps the user holds their mobile device

near the sensor, and receives usage instructions as well as

the ability to perform a basic read from the sensor (thereby

receiving their body temperature as desired). More

advanced configuration features are not exposed through

this API, but the user is still able to use the device, despite

being unable to use the app.

Introducing more open APIs, however, does have

implications regarding the safety and security of these

smart devices [15]. Such concerns must also be carefully

addressed; once a device provides data and receives

commands more openly, the thing architecture must “pick

up the slack” and ensure these APIs are not abused. Even

when the API is being used properly, health devices must

consider who is using the API; a primary user may be able

to see readings from a device through its API, but these

readings should not be available freely. These are other

important requirements for the health IoT that are

discussed in later sections.

We believe at least a minimal shared API is essential in

mitigating the segmentation of thing devices. Ensuring

functionality across a larger portion of users, in addition to

providing users with more control over their data (such as

with Solid [10] or MyData [11]) is essential when creating

an effective thing architecture targeting digital health.

While APIs give vendors less control over how their devices

are used, they also have their own business cases: either

making devices more desirable to consumers, or creating

opportunities for platform services.

4.2 Relationships Between Things

Communication between things is a substantial part of an

IoT ecosystem. The standardization discussed above is less

impactful if considering only user-thing relationships. Once

things are able to "speak" some level of a common

language, they can interact not only with the user and

edge, but also with each other. We believe this thing-to-

thing interaction to be another critical part of a functional

health IoT system. A thing with the potential to cooperate

and utilize the capabilities of the smart space increases the

capacity for meaningful interactions to occur.

As the number of devices in a smart space increases,

explicitly programming them becomes more difficult; this

is especially true in a health environment with a wide

variety of medical sensors and devices. Even if all of the

devices share a common interface, they still must be

individually considered and programmed for. Beyond

receiving data or sending controls directly, considering the

potential for synergy between devices in a large smart

space quickly becomes unreasonable. Allowing things to

communicate between themselves has the potential to

alleviate this burden.

Relationships, or logical links between functionalities

offered by two or more things, allow for the creation of

implicit interactions between smart space devices. A

relationship may allow a thing to become a conditional

element within a logic matrix, its output used as an input

or to control another thing, as in IFTTT [7] and TTEO [8]. We

believe that a thing's ability to form these types of

relationships (especially when they can be formed as

suggested by the thing, rather than explicit user

intervention, such as the SIoT [6]), will allow users to focus

on the high-level functionality of their smart space, leaving

the low-level details to be taken care of by the architecture

itself.

These kinds of relationships are especially useful in a

health environment, where sensors may only record a part

of a larger metric (such as how body temperature, blood

pressure, etc. make up a patient's general vital signs), or

may record the same measurement in conjunction with

other sensors (such as reading pulse in different places on

the body). Such grouping of information can be handled or

specified between things through relationships, reducing

the need for explicit programming and simplifying the use

of the smart space at the edge, especially for personal

health scenarios where the user may not want or know how

to effectively manage their array of smart devices.

Using the initial scenario, consider the patient’s blood

pressure measuring device and pulse oximeter. Both of

these devices are capable of recording, among their other

measurements, the patient’s pulse. In the traditional case,

the user would be presented with two pulse readings, and

would likely choose to use one over the other, possibly

hiding or removing the second measurement. Imagine

instead that these devices look to form relationships with

other devices (whose specific form may not be known) that

provide a pulse reading, allowing them to combine

readings or keep each other in check. Such a situation

improves usability and allows for a form of reliability across

devices taking the same measurement (where services only

need to be aware of the measurement itself, not the source

device).

We believe relationships between things can play a large

role in the effective programming and use of a health IoT

system. When dealing with many devices in a smart space,

allowing them to consider their position inside the smart

WYATT LINDQUIST ET AL.: IOTILITY: ARCHITECTURAL REQUIREMENTS FOR ENABLING HEALTH IOT ECOSYSTEMS 5

space and the other functionalities being offered becomes

valuable for both the end user and the operation of the

smart space itself. An architecture handling these

relationship-based behaviors can help supplement or

simplify the creation of meaningful interactions in a smart

space.

4.3 Thing-Like Mobile Applications

In much of the above discussion, the mobile app plays a

prominent role in a smart space system. The number of

these apps targeting digital health is significant: over

300,000 as of 2017 [16], [17], and still growing. In addition

to self-contained health apps, many health IoT devices

require a mobile device to host their companion app.

However, despite their close interaction with things and the

smart space, these mobile apps are not utilized fully: we

believe they can be further integrated as things themselves.

Considering mobile applications as "software things" (as

opposed to hardware things, such as sensors, actuators, or

other personal health devices) can open up new potential

for meaningful interactions within a smart space.

In most situations, the mobile app either acts as a

controller for other smart things, such as requesting data

or sending commands, or manages information for the

user, such as the aforementioned diet app. In terms of a

smart thing, this is only half of the picture. Other things in

a smart space cannot consider the app for any interactions

beyond what it is programmed to do. Even if a health app's

information could be used by another thing (especially one

unrelated to the purpose of the app), the app most likely

lacks a way to channel data to that thing. The app is missing

a concrete API like those of other physical things, simply

because most mobile apps are not designed to work this

way.

For example, consider the patient’s dieting app and their

smart soles from the initial scenario. The user eats a meal,

enters the information into their app, and receives an

updated exercise plan. The user then must use another

mobile app or other method for updating their smart soles’

configuration to reflect their exercise parameters. Even

though all the information is available implicitly within the

smart space, the user must manually “transfer” parameters

between the app and the thing, because the developer of

the app did not consider this potential for interaction.

If the diet app had a thing-like API, the interaction could

have progressed differently: after the user enters their

information into the app, the smart soles see that the

exercise plan has changed, updating their parameters

automatically. In this case, the thing becomes the driver of

the interaction, where it asks the mobile app for

information through its thing-like API. Although the app

was not developed with smart soles in mind, it was able to

provide its information to the smart space and enable the

interaction.

Compared to a normal hardware thing, a mobile app is

likely much more capable in terms of features and the

ability for the user to interact. Things in the smart space can

potentially utilize a wide variety of sensors (for example,

accelerometer and GPS) or engage the user through a

touchscreen interface. This is especially interesting for

lightweight hardware things with minimal physical

interfaces, like the body temperature sensor mentioned

above. Such functionality makes higher-level interactions

available to things without the need for physical interfaces

or a specially programmed app (thereby reducing the need

for the "silos" of companion apps described in section 4.1.

We believe positioning mobile apps to behave more like

things to be another critical requirement in an effective

digital health thing architecture. As mobile applications

become more prevalent in smart spaces, allowing them to

behave like any other thing device will solidify them as an

integral part of an IoT system. Such a feature creates new

potential for meaningful interactions with the things in a

smart space, allowing for things to easily interact and form

relationships with mobile apps. Thing-like relationships

between apps could allow users to “combine” app

functionalities, or easily create new apps with the exact

functionality they desire.

5 USER INTERACTIVITY

Things in a smart space offer limited utility unless they can

interact with and convey information to their users. While

some health IoT systems may, for example, be set up

professionally or pass their readings to the cloud for

analysis before being viewed, many systems (especially in

personal health situations) will see their data and

functionality being accessed directly by users (coming from

readings such as vitals and indicators of activity). In this

case, interaction with the user is critical: aspects such as

data acquisition are dependent on correct use of the

device. In fact, it may be argued that proper user-thing

interaction (with factors such as ease of use and required

knowledge) constitutes a significant barrier hindering

digital health adoption [18], [19].

In addition to using a device incorrectly, a thing

architecture should consider the potential for lack of use as

well. A user may interact with a device properly in terms of

API and physical use, but not use it often enough, at the

right times, or at all. In this case, a thing must have a

concept of user motivation; that is, how the thing can

interact to increase its chance of being used when needed.

A thing may utilize markers such as a schedule or the

behavior of other things in the smart space to hint at these

opportunities.

To achieve this, an effective health IoT architecture

should be able to understand and manage the potential for

unreliability or error when dealing with input and output

between a user and a thing. This includes validating input

data and its proper acquisition, along with maximizing

accessibility of the output data. We believe a health thing

architecture needs to have the ability to monitor and

correct the interaction process to ensure an interaction is

completed properly and successfully: such an ability will

allow the architecture to maximize its effectiveness across

the spectrum of lay users in a health environment.

5.1 Input and Output Safety

Ensuring correct and reliable interactions with devices is a

basic requirement of any IoT device. This requirement is

6 IEEE TRANSACTIONS ON EMERGING TOPICS IN COMPUTING, MANUSCRIPT ID

especially critical in health IoT systems, where a sensor

malfunction or other errors with the device could generate

noisy or erroneous data—with potentially serious

consequences. In addition to device reliability, proper

acquisition of data is equally important in a digital health

environment. For sensors, this means ensuring the user is

using the device correctly (for example, such as proper

placement of EKG electrodes). As mentioned previously,

many sensor devices have limited ability to physically

interact; they may not be able to signal proper use

themselves.

Obviously, to monitor for proper use, a health thing

must be architected to detect erroneous values or improper

use symptoms in the first place. Depending on the specific

sensor, this could be feedback in the form of binary

information (such as valid or invalid), instantaneous

feedback on accuracy (such as “signal strength” feedback),

or others (such as instructions and corrections). If a thing

can detect these parameters, it could provide feedback to

the user, requesting that a reading be taken again or

offering help on correct usage, rather than just recording

these erroneous values as-is for the user or edge to handle

later.

This user feedback becomes increasingly important in a

health IoT ecosystem when considering the large number

of health devices that may be in use. As a lay user acquires

more devices, it becomes harder to stay familiar with all of

the devices and their proper use instructions. Consider how

the patient was prescribed health things in the initial

scenario. A user setting up a device they did not choose

personally may be less likely to initially understand its

proper use. While they could read an instruction manual for

the device, offering feedback directly through their Health

IoT device would likely increase the chances of the user

seeing the information and using the device properly.

Like sensors, actuator things depend on proper use by

the user. While (simple) actuators do not transmit data, they

receive commands that, when used improperly, could

physically damage components or expose the user to

potential harm. For example, a hybrid closed-loop insulin

pump provides the user with an insulin dose dependent on

the reading from their continuous glucose monitoring

device [20], [21]. Improper use or placement of the monitor

or pump could result in an incorrect dose being delivered.

Preventing these actuations from occurring is another

important requirement in a digital health smart space; as

mentioned above, when a user is unfamiliar with a device,

the potential for error or malfunction must be limited.

Actuation commands may be validated through

constraints, or limitations on the frequency, magnitude, etc.

of an API invocation. These run-time enforcements could

be provided by developers, vendors, or owners to help

govern safer things interactions that can be fine-tuned for

specific smart space deployments. Such enforcements

would help prevent issues (at least those that could be

caused by the user) before the device fails—in the case of

the hybrid insulin pump, hardware constraints have

resulted in an impressive safety profile in testing [21], [22].

Additionally, in the case that a device does fail, constraints

can also be capable of defining a “fail-safe” mode [23],

where the final resting state of a device has minimal

potential for harm.

The hybrid insulin pump is just one example of how

automated devices can be safe despite controlling high-

risk activities. More closed-loop monitoring and dosing

devices are beginning to emerge, such as activity sensors

providing input for levodopa dosing in Parkinson’s disease.

The use of objective sensor data to dictate medication

dosing must be undertaken with careful consideration, but

has the potential to provide personalized treatment

regimens with better safety outcomes [24].

Current work focuses mainly on data validation and

monitoring of sensor data in health scenarios. O’Donoghue

et al. [25] present a Data Management System that focuses

on data validation and consistency of different IoT sensors,

as well as on how to choose which information is relevant

to the user. Yang et al. [26] focus on data validity and

reliability in a set of wearable health devices and mobile

apps.

We believe an architecture should carefully consider

how data and commands enter and leave a smart device.

Providing feedback on the quality of produced data and

validating inputs for safety and correctness are two facets

that are likely to be valuable components of a health IoT

smart space. These would allow things to handle

problematic interactions before they are utilized by the

target device or other devices in the smart space,

strengthening assurance to the user and trust in the device.

Integrating these can help simplify user interactions and

allow the user to better understand their smart space.

5.2 Notifications and Reminders

When considering the relationships between user

interactions and validating device input/output, another

requirement becomes prominent: notifications. The

previous section discusses providing feedback and

assistance to users based on their use of a device. Often,

the user may not be viewing the output of a sensor real

time; therefore, during events such as abnormal or

erroneous readings, the device may need to interact with

the user another way. Depending on a device’s ability to

convey information, it may be more efficient to broadcast

a notification where a more capable thing, such as one with

a screen, sound, or other output could display the

information. This is especially relevant when considering

the potential of mobile apps as things.

As mentioned above, a critical part of a sensor

monitoring its data quality or an actuator limiting its input

is displaying this information to the user. That information

can then be used to adjust how the device is being utilized,

improving these interactions with the device. A concept of

notifications would allow this information to be viewed by

the user in a uniform way. In situations like these where this

error data is ephemeral, notifications allow the user to

review the information after the fact, without having to

store it permanently. Notifications could also be extended

outside of a local smart space, to provide family or care

practitioners info on critical events.

A specific form of notifications, reminders, is especially

important for user empowerment in a health IoT smart

WYATT LINDQUIST ET AL.: IOTILITY: ARCHITECTURAL REQUIREMENTS FOR ENABLING HEALTH IOT ECOSYSTEMS 7

space. In addition to conveying its data, a device may want

to assist the user in performing actions at certain points in

time. For a health device, this may include notifications for

proper use, maintainance, calibration, etc. These events are

time sensitive, and likely to be known by the device before

hand. By sending a notification at the appropriate time, a

device does not need to rely on the user remembering a

schedule and can increase the likelihood of proper use.

For example, consider the glucose monitor from the

initial scenario. To take an optimal reading, the user must

measure their blood sugar about 20 minutes after eating.

The burden of remembering to measure at the appropriate

time, even though meal information is likely available

within the smart space, through the dieting app. A thing

architecture with notification and reminder support could

enable the dieting app to schedule a reminder for the

glucose monitor after the user inputs a meal. After 20

minutes, the reminder would appear on the user’s

smartphone, increasing the likelihood of proper use.

In addition to interacting with the user, notifications can

also be used between devices to help signal and trigger

more complex interactions. A sensor that normally only

sends out the values it records may also be able to send

information about its state, such as information about itself

and its functioning or when the user changes how it is

being used. These notifications could be picked up by other

devices that rely on the user performing a specific action

before they should begin their own interaction. These

events, along with the inter-thing relationships mentioned

above, can provide the groundwork for enabling

meaningful interactions within a smart space.

Phone-based notifications are a popular component in

architectures targeting health today. Catarinucci et al. [4]

present a system for a smart hospital that uses push

notifications to send sensor events to caregivers. Tcarenko

et al. [27] introduce a system to send notications remotely

to caregivers on critical health events, such as a fall. Some

systems integrate mobile-like notifications further; Kubitza

et al. [28] describe an architecture that allows notifications

to be displayed contextually through capable smart

devices, reducing reliance on the mobile phone.

We believe an architecture should include some form of

notifications or message passing between things in

addition to the normal means of sending commands or

receiving data. The above sections discuss allowing things

to react to smart space events even when the source or

target device is not explicitly known or programmed for.

Notifications are a convenient way to achieve this, in

addition to providing an additional way for users to view

important information about their smart space. Building off

of the idea of mobile apps as things, notifications are

already a familiar concept to users that could be extended

to work between things and mobile devices.

5.3 Managing Identity

Many health IoT things are designed with a single user in

mind (for example, wearable sensors). However, some

devices (such as larger, non-wearable ones) may be

designed to be used concurrently by multiple users. This is

especially true in personal health scenarios, where in a

single smart space, a device may be used by a group, such

as a family or entire household. In these cases, the thing

must have some notion of who it is being used by, so that

the data it produces or the functionality it performs can be

associated with the correct user within the smart space.

Even things made for single users may utilize some form of

identity, especially in relation to health IoT. In a multi-user

smart space, a specific smart thing may be concerned with

privacy: only a specific user should have access to the

device’s data or functionality.

This understanding of identity is another important

component of a thing architecture targeting health IoT. A

sensor device that changes users would likely see a

different range of normal values (for example, blood

pressure), which could create issues if the device is unaware

the readings are now from a different user. Even if the smart

space edge or cloud is capable of handling multiple users,

a shared device must also be aware of this logic: at a

minimum, the device must be able to inform the smart

space about the current user identity.

Building upon the initial scenario, consider when the

user receives all their prescribed devices. Upon activating

each device, it is assigned with some form of secure user-

specific identifier. During use, the devices may only

communicate with other devices using the same user

identifier, preventing unauthorized access. This concept of

identity is necessary for the user, who lives with a

roommate in a shared dwelling. Even though both have

smart things on the same network, the roommate is unable

to access the APIs of the user’s things because the

architecture controls access based on the user identifier.

Identity management for a health thing consists of two

main stages: provisioning and use. During provisioning, or

setup of the device, a user identity must be assigned or

created. This identity could potentially be created with little

user intervention, sourcing parameters from the user or the

smart space [12]. For single-user devices, this involves

associating a specific user with the device and its data,

while for multi-user devices, this might involve the creation

of separate data profiles for each user. For example, a

simple temperature sensor may be configured to send its

data to a user-specific endpoint. The other stage, use,

involves identifying who the current user is, whether they

are authorized, and how any generated data or received

commands should be handled, such as in the system by

Lomotey et al. [13]. For example, a smart watch may require

a password or nearby unlocked phone before it can be

used.

We believe an architecture targeting digital health

should be able to understand and manage user identity.

User privacy and information security are critical parts of a

health IoT system, both of which have a basis in the

appropriate handling of user identity. Considering how

devices are initially set up and configured, and how they

could be used by members of a smart space is another

important role of a digital health IoT architecture.

6 HIGH IOTILITY ARCHITECTURE FOR HEALTH IOT

In response to the above, we present our Atlas Thing

8 IEEE TRANSACTIONS ON EMERGING TOPICS IN COMPUTING, MANUSCRIPT ID

Architecture, which includes functionality we believe begins

to satisfy some of these new requirements. The Atlas

architecture consists of several works focusing on different

issues in IoT; however, we will focus only on the subset that

relates directly to the above requirements. This includes the

architecture itself, focusing on communication between

things, the IoT Device Description Language (IoT-DDL),

handling dynamic thing APIs, and the Inter-Thing

Relationships framework, defining a concrete set of

relationships between things.

6.1 IoT-Device Description Language (IoT-DDL)

In the absence of a device description language, significant

effort is required to interact and manage the wide

heterogeneity of things that can exist in a smart space. At

the same time, the thing description should be part of the

thing itself to facilitate a thing’s smooth migration between

smart spaces and to enable thing-to-thing ad-hoc

interactions. The IoT-DDL [29] is a machine- and human-

readable XML-based descriptive language used to

describe, through a set of attributes, values, and

parameters, a thing in a smart space. The IoT-DDL

describes the thing in terms of the thing’s identification

information, resources, inner entities (for example, sensors,

actuators, and software-based functionalities), along with

the services such a thing offers to other smart space users

and devices. Each thing entity provides a subset of these

services through a set of well-defined interfaces (APIs).

Such configuration scheme is then uploaded to the thing

to enable it to self-discover its capabilities and engage with

the surrounding IoT ecosystem.

A thing can also use the IoT-DDL to describe how it is

socially related and linked to other things. Using

identification attributes such as model, vendor, etc., the

thing can describe how offered services can be logically

and functionally tied. Such a social network of logically

connected things can help guide the creation of new

meaningful interactions. The IoT-DDL also enables explicit

description of such logical social bonds and functional

relationships.

The IoT-DDL uses this human- and machine-readable

format to provide the basis for a uniform API across thing

devices. It limits the creation of silos between groups of

devices (as mentioned in the above requirements), by

enabling thing interfaces to be defined and modified by the

vendor, developers, and end users. This helps ensure a

greater compatibility among smart things, even if they

were not originally programmed for each other explicitly.

6.2 Atlas Thing Architecture

Fig. 2. The Atlas Thing Architecture.

The current IoT platforms and architectures link the access

of things to a central point (for example, cloud platforms or

the edge) where direct communication between things is

hardly supported. These vendor-constricted connections

narrow down the opportunity to integrate things from

different vendors seamlessly into the smart space. This

restricted paradigm ignores the potential for devices to

communicate with each other, in addition to cloud

platforms and the edge. The Atlas Thing Architecture [5] is

a set of software operating layers and modules that utilizes

the capabilities of the IoT-DDL (discussed in the previous

section), mounted onto a thing to provide new

functionalities it requires to engage and interact with other

things, platforms, and IoT scenarios.

The architecture, illustrated in figure 2, consists of three

main layers: Atlas IoT platform, host interface layer, and IoT

OS services. The IoT OS services are the basic services

provided by the thing’s OS (e.g. process execution and

management, network modules, memory units, and I/O

interfaces). The Atlas IoT platform represents the logical

layer of the architecture and provides new IoT services not

currently provided by the thing’s OS. Such new services

focus on the descriptive and semantic aspects of things to

better enable engagement, interaction, and

programmability in an IoT. Such services enable a thing to:

1) self-discover its characteristics, resources, and

capabilities through the uploaded IoT-DDL, 2) dynamically

generate outward services and formulate their appropriate

APIs based on information in the IoT-DDL, and 3) enable

secure interactions between things and users in new IoT

applications and scenarios, including those in which smart

things speak different “languages,” using a protocol

translator attachment [30]. The host interface layer, the

middle layer of the architecture, shields the platform and

provides the portability and interoperability features

needed. This layer manages the internal interactions

between the Atlas IoT platform and the set of services

provided by the underlying OS.

This communication between devices exists as a set of

information- and action-based interactions. Information-

IoT-DDL Manager

API Engine
Metadata

Parser

Attachment

Manager

User Interactivity Engine

Metadata, API &

Knowledge Tweets

A
tl

as
 I

o
T

 P
la

tf
o

rm

Host Interface Layer

Network

Manager

Process

Manager

Memory

Manager

Device Secure

Elements

Services

Interfaces

Main Controller and Messaging Backbone

Io
T

 O
S

 S
er

v
ic

es

Device

Manager

Proper Interactions, Notifications,

and IoT App Developments

Security Engine

Relationship

Manager

Device Interactivity Engine

WYATT LINDQUIST ET AL.: IOTILITY: ARCHITECTURAL REQUIREMENTS FOR ENABLING HEALTH IOT ECOSYSTEMS 9

based interactions (referred to as tweets) enable a thing to

announce its metadata, API, and knowledge of the smart

space to nearby things. A thing can use these tweets to

describe what it is, what it does, and what it knows. Action-

based interactions are utilized to execute relationships and

provide notification-like messages to things and users.

The Atlas Thing Architecture focuses on enabling

device interactions; by utilizing different communication

standards and a uniform API interface, the chances for

meaningful inter-thing interactions are increased. The

architecture can run on a range of devices, from sensor

boards to Linux-based systems to Android devices,

enabling intercations between things with varying

capabilities.

6.3 Inter-Thing Relationships Framework

The Inter-Thing Relationships Programming Framework

[31] utilizes both the Atlas Thing Architecture and the IoT-

DDL to build a distributed programming ecosystem for the

social IoT. The framework broadens the social bonds (thing-

level relationships) between things according to their

identification attributes (for example, vendor or things

collocated in the same space) and utilizes a new set of

relationships between the offered services (for example, a

competitive relationship or a relationship that extends

functionalities) that we believe can empower developers to

program a much wider class of meaningful applications.

A thing can also use the IoT-DDL to describe how it is

socially related and linked to other things. Using

identification attributes such as model, vendor, etc., the

thing can describe how offered services can be logically

and functionally tied. Such a social network of logically

connected things can help guide the creation of new

meaningful interactions. The IoT-DDL also enables explicit

description of such logical social bonds and functional

relationships.

The framework introduces services (abstractions of the

functions offered by a thing), relationships (abstractions of

how services are linked together), and recipes (abstractions

of how services and relationships build up an interaction)

as the primitives for an Atlas IoT application. The

framework also defines filter, match, and evaluate as three

operators that functionally define how the primitives are

wired. The description of an IoT application within the

framework utilizes a set of semantic rules that evaluate the

correctness of the developer’s established application.

These relationships within the framework can be

utilized by vendors in the IoT-DDL, defined by developers

while building IoT apps, or dynamically inferred from the

exchanged knowledge (tweets) between things. This ability

to discover and infer new links between thing services

allows more meaningful interactions to develop with less

intervention needed from the user.

7 IMPLEMENTATION AND EVALUATION

In addition to the core Atlas architecture components, we

also present two extensions to the core architecture that

have been developed to satisfy a specific requirement

mentioned within the previous sections. The first extension,

the Runtime Development Environment (RIDE), focuses on

utilizing relationships between things, allowing users to

develop new smartphone apps composing their things. The

second, Mobile Apps As Things (MAAT), focuses on

providing smartphone apps with thing-like capabilities and

making them available to the smart space. A brief

description of each is provided, along with some

preliminary evaluations and results.

7.1 Runtime Development Environment (RIDE)

Fig. 3. High-level architecture for Atlas RIDE.

RIDE is a development environment, runtime system, and

interactive tool for end users to develop and build IoT apps.

It extends the Inter-Thing Relationships framework

described in section 6.3, utilizing the Atlas architecture and

IoT-DDL to build a distributed programming ecosystem

that utilizes a set of concrete relationships for the

development of a wider class of domain-related IoT apps.

Using RIDE, a developer can: 1) continuously listen to

the things in the smart space, visualizing available services

and relationships; 2) establish new relationships and

applications; 3) infer new opportunities from existing

services and relationships; and 4) set preferences for

functionalities and services to guide the inferences of these

new opportunities. RIDE also accepts a description for a

new application and generates an independent Android

mobile app that communicates with the smart space. The

IDE, as illustrated in figure 3, targets smartphone users with

no programming experience to easily create new smart

space IoT apps with a touchscreen interface.

The developer uses the Development Interface, utilizes

primitives (from the Inter-Thing Relationships framework)

from the Repository to establish new IoT applications, while

the Inference Engine discovers new relationships, recipes,

and programming opportunities from existing primitives.

The Inference Engine also holds developer preferences

based on feedback from previously inferred applications,

which guides future inference. The Application Engine

checks the validity and correctness of a created application

(either established manually or inferred by the IDE) before

generating an Android app executable through an external

on-cloud service, based on an XML description of the

chosen primitives. Each generated application, shown in

figure 4, is governed by a set of semantic rules.

Development Interface

Application

Engine

Repository
Recommender

Engine

Explorer

• Applications

• Results

• Recommendations

• Feedback

• Established Primitives

• User Preferences
Primitives

A
tl

as
 I

D
E

Developers

• App Development

• Preferences

• Recommendations

• Programming Opportunities

Unicast

Interactions
Multicast

Tweets

Atlas Things

….
App 1

Directory of developed and generated

Atlas IoT apps

App 2 App n

10 IEEE TRANSACTIONS ON EMERGING TOPICS IN COMPUTING, MANUSCRIPT ID

Fig. 4. The structure of a generated IoT mobile app.

The Atlas RIDE prototype is built for Android-based

smartphones, where generated IoT applications are fully

independent Android apps. We performed a set of

experiments using a Nexus 9 Android device to evaluate

and benchmark the feasibility of the proposed IDE. The

energy consumption of RIDE under various conditions was

measured and compared against that of the background

OS processes and tablet hardware. The difference in these

values was used to determine the energy consumption of

the IDE.

One such measurement is shown in figure 5. This

measurement shows the runtime energy consumption of a

generated application—that is, the power required to

communicate back and forth with the APIs of the other

Atlas smart space things offering the required services.

Parameters are sent to a thing and a response value is

received before repeating this interaction with the next

endpoint, until all services and relationships in the recipe

have been executed. As the number of services increases,

the energy consumption increases as well, but remains

negligible overall.

In our DIY Health IoT Apps demo [34], we utilized RIDE

in a health IoT scenario. The scenario simulated a health

smart space with a temperature sensor thing, a pulse

oximeter thing, a bodyweight scale thing, and a fitness

mobile app with thing capabilities. Atlas RIDE was used to

generate two applications: 1) an app that displayed

combined readings from the temperature sensor and pulse

oximeter; and 2) an app that automatically passes the

reading from the bodyweight scale into the fitness app for

calculations. None of the things were pre-configured for

these interactions; they are both handled through the Inter-

Thing Relationships framework.

Fig. 5. Energy consumption of generated personal IoT applications.

7.2 Mobile Apps As Things (MAAT)

The Atlas architecture as described in section 6 has mainly

focused on enabling hardware devices to be things. To

complement this, we introduced MAAT, a framework that

allows mobile apps to behave as traditional things and

seamlessly communicate with existing hardware things in a

smart space. While the framework does not provide an app

with the full feature set of the hardware Atlas platform, it

achieves parity with core features such as API-ing and inter-

thing interaction. The framework also considers the role of

the mobile developer, who may not be familiar with IoT or

want to waste time adding complex IoT support. To this

end, MAAT also introduces a programmable description

called an Actionable Keyword (AKW), along with an IDE

plugin to minimize changes to a developer’s workflow.

Fig. 6. The Actionable Keyword lifecycle.

Receiving capabilities from a thing in the form of API

declarations, as was utilized in our previous apps-as-things

demo [33], provides the app with the information it needs,

but places a large burden on the mobile developer. The

developer must know the exact API to integrate with before

hand, and must anticipate how the thing will manifest

within the UI and behavior of the app. If these parameters

are not known, the context of the interaction likely must be

handled “on top” of the existing UI, such as in a pop-up or

entirely new interface.

Consider, for example, the scenario from section 3. The

smart soles have a function to track how much of a meal

the patient has burned off by exercising. To calculate this,

the soles require the total calorie count of the meal. The

dieting app can provide this value; however, the developer

did not consider the potential for interaction with smart

soles. Even if the app can give the soles calorie information

<App>
<----->

……

</---->
</App>

Manifest

User Interface

Gateway

App

Unicast

Interactions

Atlas Things

A
tl

as
 I

o
T

 A
p

p

Execution Engine

0.00E+00

5.00E-07

1.00E-06

1.50E-06

2.00E-06

2.50E-06

3.00E-06

2 4 6 8 30

Number of Services

Energy Consumption per Invocation (Watt-Hours)

Lunch

536 calories

{

“keywords”:[“calories”, “food”],

“type”: “button”,

“value”: “number”

}

HIDDEN TRACK

{

“service”:“TrackCalories”,

“owner”: “SmartSoles”,

“inputs”: [“number”]

}

Lunch

536 caloriesNew

Relationship

Smart Soles

Actionable

Keyword

WYATT LINDQUIST ET AL.: IOTILITY: ARCHITECTURAL REQUIREMENTS FOR ENABLING HEALTH IOT ECOSYSTEMS 11

based on its API, it still lacks the context of when and where

this value might come from.

Instead, MAAT allows the developer to specify potential

data from their app to be used in a smart space. In this

situation, the developer knows the calorie information from

the user’s recent meals could be useful, but does not have

a target device in mind. MAAT allows the developer to say,

“the user is interested in this calorie count,” rather than wait

for a device to announce, “I can do calculations with

calories.” By specifying the data, the developer announces

that each listed meal is potential input for a thing.

This data and context information is represented within

an actionable keyword. A single piece of data (one of the

recent meals) is associated with a user interface element (a

button) to trigger a future thing service. This relationship is

represented in figure 6; the developer configures an AKW

containing calorie information from a single meal. The

trigger button remains hidden until the data is associated

with a thing service. Once the smart soles discover this

opportunity and offers its tracking service, the button

appears (with a label specified by the soles), which will send

the specific calorie value to the sole’s service when tapped.

Fig. 7. Keyword search within the IDE plugin.

Finding the association between an AKW and a

potential thing service, however, is difficult. To solve this,

along with the input data, and AKW also specifies a set of

keywords that are semantically compared by the thing. For

example, the smart soles might look for numeric input with

“calorie” and “food” keywords. These keywords build off of

the descriptive keywords from Atlas; MAAT also includes an

IDE plugin to search a repository of keywords and input

data scraped from a database of IoT-DDL specifications.

This interface is shown in figure 7.

Due to their direct interaction with the mobile app’s UI,

actionable keywords must be able to be processed quickly.

Any delays could be confusing or cause the app to appear

sluggish; potential relationships should appear smoothly as

the user navigates throughout the app. In figure 8, we

analyze the total time between broadcast and formation of

a relationship, for varying numbers of AKWs. Even with a

very large number of AKWs, the total response time

remains reasonable at about half a second.

Fig. 8. Total response time of multiple active AKWs.

8 DISCUSSION AND FUTURE WORK

In this section, we discuss several issues of scope,

limitations, and future work. First, the presentation of the

requirements introduced in this paper is deliberately

focused on the ideas behind them, the reasons they are

needed, and the motivations of their potential impact.

However, they can be further formalized and tested using

a requirement engineering process [34], which is outside

the scope of this paper. Formalizing the requirements will

facilitate communication with personal health devices

standards such as the IEEE 11073 and Continua Alliance [9]

in the hope that such requirements may be adopted and

included within the standard bases. Engaging standards

organizations in our work will ensure practical pathways to

widespread adoption, and more importantly, tests and

certifications that these requirements are met; processes

which are often within the remit of these organizations.

Second, while we engage general practitioners as a key

stakeholder in arriving at the user interactions

requirements in this paper, additional stakeholders,

including other health professionals and the end users

themselves, can further refine our requirements or add to

them. We are currently conducting a large-scale study on

user interaction with digital health involving a multitude of

commercially available devices and a sizable number of

users and health professionals. We are hopeful this work in

progress will capture more broadly any elements we may

have missed in our work on user interaction requirements

so far.

Third, to best focus on the new requirements (especially

in regard to user interactions), we limit the scope of the

paper to users without special needs. However, additional

accessibility requirements and special interface design for

individuals with special needs remain important and should

be further addressed. While such requirements are not

discussed directly, considering they are their own area of

specialization and outside the scope of this paper, we

completely acknowledge their importance and the need to

further develop them as Health IoT progresses into the

future.

9 CONCLUSIONS

Health IoT things bring new requirements not typically

addressed in traditional IoT systems. We presented numerous

examples to demonstrate this argument, along with a detailed

0

100

200

300

400

500

600

4 8 12 16 20

Total Active AKWs

Total Activation Time for Multiple AKWs (milliseconds)

12 IEEE TRANSACTIONS ON EMERGING TOPICS IN COMPUTING, MANUSCRIPT ID

analysis of new requirements, which we classified into device

interaction requirements and user interaction requirements.

The former is needed to enable inter-device interaction,

communication, and most importantly inter-relationships. It is

also needed to enable mobile apps to be and act as other

health IoT things. This is important given the large number of

health mobile apps. We also analyzed user interaction

requirements showing how the device could support and

empower the user to use the device properly and safely, and

how users could gain control over their mobile apps and

devices. We presented an architecture targeting Health IoT

devices that address the analyzed requirements to fully utilize

their collective and safe usage. We considered the current

landscape of IoT in relation to these requirements and

presented solutions that address two pressing requirements:

1) democratizing mobile health apps (giving users control and

ownership over their app and data), and 2) making mobile

apps act and behave like any other thing in an IoT. We

presented an implementation and evaluation of these Health

IoT requirements to show how health-specific solutions can

drive and influence the design of more generalized IoT

architectures.

REFERENCES

[1] S. Helal, A. Khaled and W. Lindquist, "The Importance of Being

Thing Or the Trivial Role of Powering Serious IoT Scenarios," in

Proceedings of the IEEE ICDCS Conference 2019, 2019.

[2] J. Voas, "Networks of 'Things'," NIST Special Publication, 2016.

[3] P. Laplante, M. Kassab, N. Laplante and J. Voas, "Building Caring

Healthcare Systems in the Internet of Things," IEEE Systems

Journal, vol. 12, no. 3, pp. 3030-3037, 2018.

[4] L. Catarinucci, D. De Donno, L. Mainetti, L. Palano, L. Patrono, M.

Stefanizzi and L. Tarricone, "An IoT-Aware Architecture for Smart

Healthcare Systems," IEEE Internet of Things Journal, vol. 2, no.

6, pp. 515-526, 2015.

[5] J. King, R. Bose, H.-I. Yang, S. Pickles and A. Helal, "Atlas: A

service-oriented sensor platform: Hardware and middleware to

enable programmable pervasive spaces," in 31st IEEE

Conference on Local Computer Networks, 2014.

[6] L. Atzori, A. Iera, G. Morabito and M. Nitti, "The Social Internet

of Things (SIoT) - When social networks meet the Internet of

Things: Concept, architecture and network characterization,"

Computer Networks, vol. 56, no. 16, 2012.

[7] "IFTTT", Available: ifttt.com

[8] J. Yun, I.-Y. Ahn, S.-C. Choi and J. Kim, "TTEO (Things Talk to Each

Other): Programming smart spaces based on IoT systems,"

Sensors '16, vol. 4, p. 467, 2016.

[9] Personal Connected Health Alliance, "Continua Design

Guidelines," Available: www.pchalliance.org

[10] MIT, "Solid," 2017. Available: solid.mit.edu.

[11] "MyData," 2018. Available: mydata.org/mydata-101.

[12] P. Mahalle, P. Thakre, N. Prasad and R. Prasad, "A Fuzzy Approach

to Trust Based Access Control in Internet of Things," in 3rd Int’l

Conf. on Wireless Comm., Vehicular Technology, Information

Theory and Aerospace and Electronic Systems, 2013.

[13] R. Lomotey, J. Pry and S. Sriramoju, "Wearable IoT data stream

tracability in a distributed heath information system," Pervasive

and Mobile Computing, vol. 40, pp. 692-707, 2017.

[14] "Apple HealthKit". Available: developer.apple.com/healthkit.

[15] "AliveCor Kardia". Available: www.alivecor.com.

[16] D. Dimitrov, "Medical Internet of Things and Big Data in

Healthcare," Healthcare Inform. Res., vol. 22, no. 3, pp. 156-163.

[17] B. Farahani, F. Firouzi, V. Chang, M. Badaroglu, N. Constant and

K. Mankodiya, "Towards fog-driven IoT eHealth: Promises and

challenges of IoT in medicine and healthcare," Future Generation

Computer Systems, vol. 78, no. 2, pp. 659-676, 2018.

[18] IQVIA, "The Growing Value of Digital Health," 7 November 2017.

Avail.: www.iqvia.com/institute/reports/the-growing-value-of-

digital-health.

[19] Research2Guidance, "mHealth App Economics 2017," Avail.:

research2guidance.com/product/mhealth-economics-2017-

current-status-and-future-trends-in-mobile-health.

[20] M. Mackert, A. Mabry-Flynn, S. Champlin, E. Donovan and K.

Pounders, "Health Literacy and Health Information Technology

Adoption: The Potential for a New Digital Divide," Journal of

Medical Internet Research, vol. 18, no. 10, 2016.

[21] M.-P. Gagnon, P. Ngangue, J. Payne-Gagnon and M. Desmartis,

"m-Health adoption by healthcare professionals: a systematic

review," Journal of the American Medical Informatics

Association, vol. 23, no. 1, pp. 212-220, 2016.

[22] S. Weinzimer, G. Steil, K. Swan, et al., "Fully Automated Closed-

Loop Insulin Deliver Versus Semiautomated Hybrid Control in

Pediatric Patients with Type 1 Diabetes Using an Artificial

Pancreas," Diabetes Care, vol. 31, no. 5, pp. 934-939, 2008.

[23] R. Bergenstal, S. Garg, S. Weinzimer, et al., "Safety of a Hybrid

Closed-Loop Insulin Delivery System in Patients with Type 1

Diabetes," JAMA, vol. 316, no. 13, pp. 1407-1408, 2016.

[24] R. Bergenstal, D. Klonoff, S. Garg, et al., "Threshold-Based Insulin-

Pump Interruption for Reduction of Hypoglycemia," N. Engl. J.

Med., vol. 369, no. 3, pp. 224-232, 2013.

[25] W. Dunn, "Designing safety-critical computer systems,"

Computer, vol. 36, no. 11, pp. 40-46, 2003.

[26] I. Thomas, M. Alam, F. Bergquist and e. al., "Sensor-based

algorithmic dosing suggestions for oral administration of

levodopa/carbidopa microtablets for Parkinson's disease: a first

experience.," J Neurol., vol. 266, no. 3, pp. 651-658, 2019.

[27] J. O'Donoghue and J. Herbert, "Data Management within

mHealth Environments: Patient Sensors, Mobile Devices, and

Databases," Journal of Data and Information Quality, vol. 4, no.

1.

[28] P. Yang, D. Stankevicius, V. Marozas, Z. Deng, E. Liu, A.

Lukosevicius, F. Dong, D. Xu and G. Min, "Lifelogging Data

Validation Model for Internet of Things Enabled Personalized

Healthcare," IEEE Transactions of Systems, Man, and Cybernetics:

Systems, vol. 48, no. 1, pp. 50-64, 2016.

[29] I. Tcarenko, T. Gia, A. Rahmani, T. Westerlund, P. Lijeberg and H.

Tenhunen, "Energy-Efficient IoT-Enabled Fall Detection System

with Messenger-Based Notification," in Wireless Mobile

Communication and Healthcare, 2016.

[30] T. Kubitza, A. Voit, D. Weber and A. Schmidt, "An IoT

Infrastructure for ubiquitous notifications in intelligent living

WYATT LINDQUIST ET AL.: IOTILITY: ARCHITECTURAL REQUIREMENTS FOR ENABLING HEALTH IOT ECOSYSTEMS 13

environments," in Proceedings of the 2016 ACM International

Joint Conference on Pervasive and Ubiquitous Computing, 2016.

[31] A. Khaled, A. Helal, W. Lindquist and C. Lee, "IoT-DDL - Device

Description Language for the "T" in IoT," IEEE Access, 2018.

[32] A. Khaled and S. Helal, "Interoperable Communication

Framework for Bridging RESTful and Topic-based

Communication in IoT," The Future Generation Computer

Systems Journal Special Issue on "Internet of Things:

Communications, collaborations and services in networks of

embedded devices, 2018.

[33] A. Khaled, W. Lindquist and A. Helal, "Service-Relationship

Programming Framework for the Social IoT," Open Journal of

Internet of Things (OJIOT), vol. 4, no. 1, pp. 35-53, 2018.

[34] A. Khaled, W. Lindquist and S. Helal, "DIY Health IoT Apps," in

16th ACM Conf. on Embedded Networked Sensor Systems, 2018.

[35] S. Helal, A. Khaled and V. Gutta, "Atlas Thing Architecture -

Enabling Mobile Apps as Things in the IoT," in 23rd ACM Int’l

Conference on Mobile Computing and Networking, 2017.

[36] G. Kotonya and I. Sommerville, Requirements Engineering:

Processes and Techniques, Wiley Publishing, 1998.

[37] S.-H. Chang, R.-D. Chiang, S.-J. Wu and W. Chang, "A Context-

Aware, Interactive M-Health System for Diabetics," IT

Professional, vol. 18, no. 3, pp. 14-22, 2016.

[38] P. Mahalle, B. Anggorojati, N. Prasad and R. Prasad, "Identity

Authentication and Capability Based Access Control (IACAC) for

the Internet of Things," Journal of Cyber Security and Mobility,

vol. 1, no. 4, pp. 309-348, 2013.

Wyatt Lindquist received the B.Sc. degree in
computer eng. from Univ. of Florida, USA, in
2017. He is currently pursuing the Ph.D. degree
in computer science at the School of Computing
and Comm., Lancaster Univ., UK. His current
research interests include IoT, operating
systems, and embedded systems with
applications in digital health.

Abdelsalam (Sumi) Helal received the Ph.D.
degree in computer sciences from Purdue Univ.,
USA. He is professor and Chair in Digital Health,
School of Computing and Comm., and Div. of
Health Research, Lancaster Univ., UK. Before
joining Lancaster he was professor in the dept.
of Computer & Info. Science and Eng., Univ. of
Florida, USA, where he directed the Mobile and
Pervasive Computing Lab. His research spans
pervasive systems, IoT and digital health.

Ahmed E. Khaled received the Ph.D. degree in
computer science from Univ. of Florida, in 2018.
He is currently assistant professor, computer
science dept., NE Illinois Univ., USA. He
received the B.Sc. (2011) and M.Sc. degrees
(2013) in computer eng. from Cairo Univ., Egypt.
His research interests span IoT, smart spaces,
and ubiquitous computing.

Wesley Hutchinson received a BSc in
Molecular Medicine (2004) and MB BS (2007)
from Univ. College London; MRCGP (2012);
PGDip [Diabetes] (2016); PGCert [Computer
Science] (2018). Currently a GP Academic
Training Fellow at Lancaster Univ. pursuing a
PhD in Digital Health, whilst continuing his
clinical work as a GP. His research focus is the
application of digital health assistive
technologies for clinicians. He is a member of the
Royal College of General Practitioners and the
IEEE Computer Society.

	1 Introduction
	2 Related Work
	3 Requirements for Health IoT
	4 Device Interactivity
	4.1 Common Programming Interfaces (APIs)
	4.2 Relationships Between Things
	4.3 Thing-Like Mobile Applications

	5 User Interactivity
	5.1 Input and Output Safety
	5.2 Notifications and Reminders
	5.3 Managing Identity

	6 High IoTility Architecture for Health IoT
	6.1 IoT-Device Description Language (IoT-DDL)
	6.2 Atlas Thing Architecture
	6.3 Inter-Thing Relationships Framework

	7 Implementation and Evaluation
	7.1 Runtime Development Environment (RIDE)
	7.2 Mobile Apps As Things (MAAT)

	8 Discussion and Future Work
	9 Conclusions
	References

