
IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 9, NO. 99, 2019 1

Performance-aware Speculative Resource
Oversubscription for Large-scale Clusters

Renyu Yang, Member, IEEE , Chunming Hu, Xiaoyang Sun, Peter Garraghan, Tianyu Wo, Member, IEEE ,
Zhenyu Wen, Hao Peng, Jie Xu, Member, IEEE , Chao Li

Abstract—It is a long-standing challenge to achieve a high degree of resource utilization in cluster scheduling. Resource
oversubscription has become a common practice in improving resource utilization and cost reduction. However, current centralized
approaches to oversubscription suffer from the issue with resource mismatch and fail to take into account other performance
requirements, e.g., tail latency. In this paper we present ROSE, a new resource management platform capable of conducting
performance-aware resource oversubscription. ROSE allows latency-sensitive long-running applications (LRAs) to co-exist with
computation-intensive batch jobs. Instead of waiting for resource allocation to be confirmed by the centralized scheduler, job managers
in ROSE can independently request to launch speculative tasks within specific machines according to their suitability for
oversubscription. Node agents of those machines can however avoid any excessive resource oversubscription by means of a
mechanism for admission control using multi-resource threshold control and performance-aware resource throttle. Experiments show
that in case of mixed co-location of batch jobs and latency-sensitive LRAs, the CPU utilization and the disk utilization can reach
56.34% and 43.49%, respectively, but the 95th percentile of read latency in YCSB workloads only increases by 5.4% against the case
of executing the LRAs alone.

Index Terms—resource scheduling, oversubscription, cluster utilization, resource throttling, QoS

F

1 INTRODUCTION

IMPROVING cluster resource utilization for cloud datacen-
ters is of ever-increasing importance towards promoting

return on capital of cluster operators and meeting global
demand for Internet services such as web search, social
networking, and machine learning applications. Modern
cluster management systems [1][2][3][4] are designed to
effectively allocate applications or jobs onto machines. How-
ever, production clusters still encounter issues associated
with underutilization [4][5][6]. A primary cause for such
low utilization is due to the disparity between requested
and actual resource usage of jobs, with studies of production
clusters from Twitter and Google demonstrating disparity of
53% and 40% for CPU, and memory, respectively [6][7].

In response to these issues, oversubscription (also known
as overbooking) [8] has been heavily exploited at various
cluster levels, spanning the kernel [9], hypervisor [10], and
the cluster resource scheduler. In cluster management, this
mechanism enables waiting jobs to exploit underused or
idle resources currently allocated to other running jobs
by launching speculative or opportunistic tasks in order to

• R.Yang, X.Sun and J.Xu are with School of Computing, University of
Leeds, UK. Email: {r.yang1, scxs, j.xu}@leeds.ac.uk.

• C.Hu, T.Wo and H.Peng are with Beihang University, China.
Email:{hucm, woty, penghao}@buaa.edu.cn. C.Hu is corresponding au-
thor.

• P.Garraghan is with Lancaster University, UK. Email:
p.garrahan@lancaster.ac.uk

• Z.Wen is with Newcastle University, UK. Email:
zhenyu.wen@newcastle.ac.uk

• C.Li is with Alibaba Group, China. Email: c.li@alibaba-inc.com

Manuscript received July 2019; revised Nov 2019

improve overall cluster resource utilization [11] [12] [13].
However, there still exist two interrelated problems:

Resource mismatch: Current approaches leverage the
cluster resource states (i.e. available idle or revocable re-
sources) to perform oversubscription decisions, and do so
via piggybacking on regular cluster scheduler heartbeat
messages. Speculative tasks will be sent, enqueued and
launched on the given node, taking at least 3 message
intervals. Given that the interval within production systems
is typically configured to 3s [1][11], a total of 9s required
perform oversubscription can result in substantive differ-
ences within the new cluster resource state. It is particularly
devastating when considering that a large proportion of
tasks only execute in seconds (e.g., MapReduce or Spark
tasks). This mismatch between the acquired states and clus-
ter resource states will generate invalid or low-quality task
placement. Unsuccessful tasks have to require extra heart-
beat intervals before they can be re-submitted, re-scheduled
and dispatched onto a node, resulting in increased job
makespan. Loosely-coupled schedulers may resolve this
issue by assigning opportunistic tasks randomly [13] or on
an per-application basis [14]. However, [14] is highly depen-
dent on accurate queue delay times, and require customers
who submit jobs to precisely estimate execution time which
in many practical scenarios is infeasible.

QoS degradation: Tail (e.g., 95th or 99th percentile)
latency has become the important and measurable attribute
of quality of service (QoS) for large-scale Internet services.
Existing cluster oversubscription focuses on maximizing
cluster CPU utilization but omits stringent QoS require-
ments of interactive and latency-sensitive applications such
as databases, key-value stores, etc. when such online appli-
cations are co-scheduled and co-located with computation-

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 9, NO. 99, 2019 2

intensive batch jobs through multi-tenancy. Current cluster
managers in YARN [1], Mesos [2] or Fuxi [3] are solely
designed to tackle short-running tasks within batch jobs,
whose performance is minimally affected when launching
additional speculative tasks. Additionally, cluster managers
(i.e. Resource Manager) are application-agnostic and com-
pletely unaware of runtime QoS – they are only responsible
for resource allocation among applications/jobs but leave
all application-specific logic to application managers. This
leads to decreased responsiveness and increase tail latency
for long-running applications (LRAs) which have intrinsic
QoS constraints. In reality, interference is particularly de-
structive for these applications because their performance
is extremely sensitive to the allocated resources and the
contention for shared resources among co-located work-
loads may lead to performance unpredictability [15]. This
problem will be further compounded in oversubscription
framework, as even a slightly overdue resource reclaim from
speculative tasks tends to violate the QoS substantially.

In this paper we propose ROSE, a resource manage-
ment platform capable of conducting performance-aware
resource oversubscription. Our approach maximizes cluster
resource utilization whilst minimizing LRA’s QoS degra-
dation when performing oversubscription. The framework
decouples oversubscription decision making from the cen-
tralized manager so that each job manager can indepen-
dently leverage idle resources directly from the node agent
situated within each machine to create speculative tasks
without waiting for available resources to be released by
the centralized resource manager. Our approach comprises
two coherent stages to provision performance-aware over-
subscription: Placement and Execution. At the placement
stage, multi-phase machine filtering is the primary decision-
making procedure that is used to determine machine suit-
ability to launch speculative tasks by considering estimated
load, correlative workload performance, and queue states,
instead of relying on the estimation of task execution time.
To minimize the incurred overheads of message flooding,
the updated information are incrementally synchronized
to each job manager. At the execution stage, a runtime
agent is designed to launch and throttle speculative tasks
in order to avoid QoS violation from excessive oversub-
scription. To achieve this, we develop a mechanism for ad-
mission control that temporarily queues tasks and decides
whether waiting tasks can be launched according to multi-
resource threshold restriction and a performance-aware re-
source throttling. This depends on quantifying machine-
level performance variability and job-level responsiveness
by employing streamized hardware counters (cycles-per-
instruction and cache misses) in real time. Task upgrading
and rescheduling are also conducted in job managers mini-
mize head-of-line blocking and straggler manifestation [16].

We implemented and evaluated ROSE based on Al-
ibaba’s Fuxi [3], a multi-layered cluster management sys-
tem. Experiments show that the average time of machine
selection is in an order of hundreds of milliseconds and
ROSE can roughly double CPU utilization in batch-only
jobs. In case of the mixed co-location of batch jobs and
latency-sensitive LRAs, the CPU and disk utilization can
also reach 56.34% and 43.49%, and the 95th percentile of
read latency in YCSB workloads only increases by 5.4%

against executing LRAs alone. Particularly, our contribu-
tions can be summarized as follows:
• A distributed resource oversubscription architecture for

cluster management that enables idle resources to be
leveraged by creating speculative tasks. Two different
oversubscription schemes are now used for adoption to
different co-location scenarios.

• A multi-phase machine filtering process that considers
diverse factors (e.g., task-level rating and machine states)
to locate suitable machines for speculative task placement.
Job managers can independently manage task life-cycle
with task upgrading and rescheduling.

• A runtime mechanism for admission control that can
exploit multi-resource threshold check and performance-
aware resource throttle to dynamically adjust speculative
task numbers and restrict resources that speculative tasks
can use, thereby preventing excessive oversubscription.

Organization. Section 2 outlines our research motivation
and Section 3 presents design principles and architecture
overview. Key techniques are mainly depicted in Section 4
to 6. Section 7 discusses the evaluation followed by related
work in Section 8. We conclude the paper in Section 9.

2 MOTIVATION

2.1 Background
Resource Management. Modern scheduling systems typ-
ically decouple the resource management layer from the
job-level logical execution plans to enhance system scala-
bility, availability and framework flexibility. For instance,
YARN[17] and Fuxi[3] share the following components:
Resource Manager (RM) is the centralized resource controller,
tracking resource usage, node aliveness, enforcing alloca-
tion invariants, and arbitrating contention among tenants.
The component is also responsible for negotiation between
available resources within the infrastructure and resource
requests from Application Masters. Application Master (AM),
also termed job manager, is an application-level scheduler
which coordinates the logical plan of a single job by re-
questing resources from the RM, generating a plan from
received resources, and coordinating task execution. Node
Manager (NM), also termed Node Agent, is a daemon pro-
cess within each machine responsible for managing local
tasks (including launch, suspend, kill, etc.) and monitoring
machine information.
Workload Characteristics. In production clusters, the clus-
ter resources are usually consumed by batch jobs and
LRAs. Various workloads that exhibit diversity in task scale
and resource heterogeneity are physically co-scheduled and
compete for the same underlying resources by either time
multiplexing [18] or fair sharing according to fixed or dy-
namic quota on a node basis [19][20].
• Batch Job. Batch analytic jobs are big data processing

applications that are insensitive to latency [3][21]. In
reality, they are measured by the end-to-end completion
time, and thus deadline-constrained, for their results to
be consumed by downstream jobs or services. A job can
be typically segmented into a large number of short-lived
tasks with only subsecond or seconds duration.

• Long-running Application (LRA). Long running applica-
tions (LRAs) encompass transaction analytics, online web

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 9, NO. 99, 2019 3

(a) CPU (cores)

0 2000 4000 6000 8000 10000 12000 14000
#container

0.00
0.05
0.10
0.15
0.20
0.25
0.30

no
rm

 m
em

 u
sa

ge mem_planned
mem_real

(b) Normalized Memory Usage ([0,1]) (c) Normalized Disk Usage ([0,1])
Fig. 1. Resource disparity in Alibaba’s workload co-location cluster

� ���� ���� ���� 	��� �����
��������

�
��
��
��
	�

���
���

�
��

��
��
�
��

��
��
��
�

� ���������

���������������

Fig. 2. Underused memory Fig. 3. Overestimated mem heatmap

services, or database services (e.g., HBase, Memcached,
MongoDB, etc). Those containers are allocated and used
for durations ranging from hours to months, and are typi-
cally latency-sensitive. Due to this characteristic, response
latency and throughput are the key performance indi-
cators and applications must meet strict QoS or Service
Level Objectives (SLOs). Hence, the QoS-centric objective
specifies a guarantee of a certain level of performance to
those latency-sensitive applications.

Therefore, an imperative requirement of cluster resource
management for co-located workloads is to improve cluster
utilization without sacrificing both LRAs responsiveness
and batch jobs performance. Meanwhile, when different
types of applications co-exist in a system, different or adap-
tive oversubscription strategies will be required.

2.2 Cluster Utilization Issues
To ascertain a comprehensive understanding of resource
characteristics within a production-level workload co-
location environment, we developed a data collection and
analysis pipeline based on (i) a recently released Alibaba
tracelog (Tr) [22] that encompasses 24-hours traces from
a production cluster which consists 1,300 machines and
23,000 jobs (millions of containers) and (ii) tracelog collected
from an Alibaba’s production cluster (Ti) that contains a
consecutive 5-day’s period over 10,000 machines.
Cluster resource usage is very low in production-level
clusters. Logical resource utilization is a metric often stud-
ied to measure scheduler performance. Higher utilization
implies more efficient scheduler decision making and faster
job completion. Fig. 1 demonstrates an obvious disparity
between real usage and the requested one in terms of CPU
cores, normalized value of memory and disk of all running
containers in the trace Tr . Particularly, those containers
severely under-utilize resources: the real usage of CPU and
disk on average is no more than 16% of the requested
value. This finding can be also corroborated from other
works [5][6] indicating low resource usage is a systemic
issue in large-scale clusters.
Under-utilization is resultant of resource fragmentation
and user overestimation. Within Ti, at a given time (i.e.,
at 27,500s), we collected the total amount reserved by all
running jobs and calculated the fragmentation on each
machine across the cluster. In this context, fragmentation
is the resources that exists in the machines but cannot be

TABLE 1
Centralized oversubscription

#Spec mQL #Unq #Resched #Killed #Timeout #Succ

2,000

10 857 856 72 0 215
15 804 890 79 0 227
20 248 1,440 79 0 234
50 24 1,664 78 0 237
70 20 1,685 75 0 253
avg 19.5% 65.3% 3.8% 0 11.7%

5,000

10 4,087 260 72 0 215
15 4,111 283 79 0 227
20 760 3,653 61 70 456
50 9 4,398 51 32 510
70 8 4,410 58 71 453
avg 35.9% 52.0% 1.3% 0.7% 7.4%

leveraged due to the currently served jobs that have re-
quested larger amount of resources. Fragmentation will not
only under-utilize the cluster, but lead to delayed schedul-
ing and reduced throughput. Additionally, users typically
request excessive amounts of resources to handle workload
bursting to avoid SLO violation. Fig. 2 depicts statistics
ordered by the resource amount, showing that more than
80GB memory could be reused within most machines (with
132GB memory per machine). This phenomenon is also non-
trivial among different machines over time. For example, we
evaluate the overestimated memory changes in temporal-
spatial heatmap. As shown in Fig. 3, the darker area in-
dicates a larger value of overestimated memory and the
overall range is shown in the side color-bar. We find out over
43.08% (marked in red squares) of the total time period (i.e,
from 0 to 63,300s), the over-estimated memory surpasses
60GB which should be fully utilized. This indicates a huge
potential of leveraging the underused resources via the use
of resource oversubscription.

2.3 Limitations of Centralized Oversubscription
Centralized resource schedulers such as YARN and Mesos
perform oversubscription decision making [11] [12] through
a central manager. There are two obvious defficiencies in
centralized oversubscription framework: resource mismatch
and lack of QoS-centric consideration.
Centralized oversubscription approach leads to resource
mismatch and inefficient resource utilization. Centralized
oversubscription scheduling (e.g., Apache YARN 3.0 [11])
has been proposed to reuse such idle resources. It trans-
mits the updated information in terms of idle or revocable
resources from the central RM to a job via piggybacking
on regular heartbeat messages within the cluster. Resource
allocations for speculative tasks are also conducted by RM.
However, the decision and heartbeat piggybacking mech-
anism will cause that task launching is lagged behind by
at least 3 heartbeat intervals. The mismatch of the latest
resource usage during heartbeat intervals will lead to a great
number of task suboptimal placement or re-distributions.
To demonstrate the consequential limitations, we conduct
experiments to submit speculative tasks into a 32-machine
Hadoop 3.0 cluster (each machine with 6-core Intel(R)

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 9, NO. 99, 2019 4

Xeon(R) CPU E5-2630 processors, 82GB RAM) and observe
the numbers of unqueued, rescheduled, killed, enqueued
but timing-out and launched tasks varying the number of
tasks (#Spec) and customizable max queue length (mQL)
on NMs. As shown in Table 1, when we submitted 2,000
speculative tasks, 19.5% of submitted tasks on average are
excluded from the queue and 65.3% have to be re-scheduled
even if they are allowed to enqueue. Merely 11.7% on
average can be successfully launched. Additionally, when
we increase the max queue length on each NM, the number
of launched tasks will not ideally increase even if more
tasks are allowed into the queue. This is because resource
capacities are deterministic and the redundant tasks will
be rescheduled instead. What is worse is that due to the
inherent workflow in centralized resource scheduling, un-
successful tasks require several heartbeat intervals before
they can be re-submitted, re-scheduled and dispatched onto
a new NM. For instance, when the task submission number
grows to 5,000, the overall success ratio drops by 4.3%
irrespective of the mQL increase. This reschedule-loop will
result in an increased trend of rescheduling and eventual
task timeout. Thus, the inefficiency greatly degrades the
performance of resource oversubscription and job execution.
Current oversubscription approaches lack QoS-awareness
mechanisms for LRAs. According to the de-coupled design
in YARN and Mesos, the centralized scheduler (Resource
Manager) is responsible for managing global resources and
allocating resources to applications. However, the manager
is completely agnostic with regard to both applications
and job frameworks. This intuitively makes both regular
resource allocation and resource oversubscription totally
unaware of any information such as job progress or run-
time QoS. There are interference-aware schedulers [7][23]
we can potentially leverage to ensure a controllable QoS
management for LRAs. However, they mainly infer the ex-
pected interference level of a given co-location, and heavily
require automatic estimation of resource preferences and
interference sensitivity. As this can only be done through
offline profilings in as many co-locations as possible based
on recurring job execution, it is prohibitively infeasible to
conduct in case of stochastic combinations of a great number
of batch and speculative tasks with LRAs. This necessitates
a feedback-based controller integrated with current multi-
layered resource management systems such that it can dy-
namically steer resource allocations for LRAs using generic
application-independent performance monitoring and effec-
tive resource throttling.

3 SYSTEM DESIGN

3.1 Design Principles

System efficiency is typically characterized by its utilization
and performance, for both resource providers and end users.
Balancing system utilization and application performance
(particularly LRA responsiveness) is therefore an important
consideration. ROSE is a resource oversubscription frame-
work that aims to seamlessly use two different oversubscrip-
tion schemes for adoption to two distinct scenarios:

• Batch only co-location: The cluster only executes batch
jobs, and we aim to adopt utilization-prioritized (UP)

oversubscription scheme to aggressively oversubscribe re-
sources and improve system efficiency.

• Batch-LRA mixed co-location: The cluster comprises both
batch jobs and latency-sensitive LRAs. Towards a QoS-
centric objective, we aim to use responsiveness-prioritized
(RP) oversubscription scheme to assure the desired perfor-
mance of latency-sensitive applications before improving
cluster utilization.

Thus in order to improve utilization whilst constantly
guaranteeing QoS, our roadmap follows three design princi-
ples encompassing architectural evolution, speculative task
placement, and runtime execution management.
• Distributed resource oversubscription: We need an ap-

proach to effectively create speculative tasks by indi-
vidual job managers in a distributed way. Such an ap-
proach should overcome issues associated with cluster
resource inefficiencies (Section 2.2) and centralized over-
subscription limitations (Section 2.3) for heterogeneous
workloads [6][24]. To underpin QoS-centric awareness in
resource oversubscription, we also highly require run-
time performance monitoring other than machine states
and loads collection. The distributed design is coherently
divided into two key stages: machine selection for task
placement and runtime management for task execution.

• Task placement stage: We need to determine the most
suitable placement for speculative tasks, particularly by-
passing machines that are likely to incur QoS violation
of existing workloads. The procedure of selection should
thoroughly exploit cluster diversity in terms of hetero-
geneous resources and dynamic resource usage; and
monitor and aggregate both application-level and multi-
dimensional system information for optimally exploiting
fragmented resources and allocated (yet idle) resources.
The ultimate goal is to raise the success rate of over-
subscription (i.e., reducing rescheduling or evictions of
speculative tasks).

• Task execution stage: Runtime management is essential to
navigate the manipulations during the whole life-cycle of
speculative tasks. Additionally, to achieve responsiveness-
prioritized oversubscription, it is imperative to leverage
a feedback-control based throttling for dynamically con-
forming to the QoS requirements of LRAs at anytime.

3.2 Distributed Oversubscription: Core Concept
The procedure of resource oversubscription of speculative
tasks will be decoupled from the centralized resource man-
ager and dispersed into distributed Job AppMasters (short
for Job Master or JM). JM will independently make decisions
of speculative task placement as shown in Fig. 4.

A job requests resources from the RM (step1). Once total
resources in the cluster have been allocated, no further regu-
lar resources are assigned to jobs (step2). Instead of waiting
for the emergence of available resources released by the RM,
JM will individually attempt to request additional resources
directly from per-machine Runtime Agents in a speculative
manner (step3). The job then simultaneously requests to
launch speculative tasks in machines that are most suitable
for oversubscribing resources. To manage speculative tasks
at node side, ROSE Runtime Agent will maintain a queue
of submitted speculative tasks and decide whether the in-
coming speculative tasks should be accepted or rejected on

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 9, NO. 99, 2019 5

resource
request 1

no available
resource

2

ROSE
Runtime Agent

Central Resource
Manager (RM)

ROSE Job
Master (JM)

3
wait for resource
allocation

3 launch over-
subscription
requests

4 enqueue or
reject

Fig. 4. Basic Idea of Speculative Oversubscription

the basis of current queue length. Once accepted, the tasks
can be dispatched onto the physical machine and enqueued
(step4). If rejected, corresponding JMs will be notified and
new attempts will continue periodically.

At runtime, in the life-cycle of speculative tasks, ROSE
Runtime Agent determines the timing of launching spec-
ulative tasks from task queue and limits the number of
oversubscribing resources and speculative tasks. To prevent
excessive resource oversubscription and the consequent QoS
degradation, the admission controller will also throttle the
resources that can be re-used by speculative tasks according
to real-time LRA performance. To prioritize regular tasks,
speculative tasks will run at lower priorities and are pre-
emptable by other co-running regular tasks and LRAs.

ROSE is designed to be complementary and compatible
to existing protocols between JMs and RM, and thus can
enhance existing two-layered scheduling systems. In reality,
RM does not perceive speculative tasks and their utilized
resources. The idle resources are actually taken and re-used
by the speculative tasks without being detecting by regular
tasks. The fragment or idle resources therefore can be fully
utilized by the speculative tasks, and the task instance can
be immediately scheduled to corresponding machines.

3.3 Architecture Overview
Fig. 5 illustrates the architecture overview. In general, LRA’s
AM inherently follows the traditional two-tier scheduling
protocols where AM requests resources from the centralized
resource manager. To achieve the aforementioned goals, key
system components encompass the Distributed Fingerprint-
ing that collects real-time metrics and forms data streaming;
the Cluster Aggregator (CA) that consumes the holistic
metrics and provides machine suitability; the JM that is
responsible for task scheduling and speculative task place-
ment; and the Runtime Agent that manages task runtime
execution and resource admission control.
Distributed Fingerprinting. For tracking system states and
workload performance, we need to collect system finger-
prints including machine-level, workload-level live metrics
and generalized performance counters. For instance, in per
machine runtime agent, we use open-source technique such
as Fluentd [25] in Metric Publisher to locally collect and
store high resolution metrics featuring hundreds of data
points per cycle. To deal with back pressure and network
latency, we use Apache Kafka [26] as an intermediate
metrics buffer and publish-subscribe (pub-sub) messaging
subsystem, thereby establishing flexible and robust data
streaming. The produced metrics will be subscribed by

RM

ROSE JM

Load

Aggregator

Perf Counter

Aggregator
Mach Score

Aggregator

Fingerprint
Pub-Sub
Streaming

Cluster Aggregator (CA)

Candidate

Selector

Machine List

Maintainer

ROSE Runtime Agent

Node Manager (NM)

Res Threshold

Controller

Perf-Aware

Res Throttle

Admission Controller

Queue Manager

ROSE LRA
AppMaster

Task

Scorer

Time-out

Detector

Task

Scheduler

Local List

Maintainer

Incremental sync

Metric Publisher

System Load

Approx.

LRA Perf

Counters

For RP Oversubscription

Fig. 5. ROSE architecture and design

metric consumers (such as CA and ROSE Runtime itself)
according to specified topics (see details in Section 4).
Cluster Aggregator. It is the key component that is decou-
pled from RM and aggregates runtime information and task-
level status. We use Telegraf ingest to consume metrics from
the upstream data pipeline and write to local time-series
database such as InfluxDB. Specifically, CA collects machine
loads and queue states of each machine and machine scores
given by each JM. For RP oversubscription, machine-level
performance counters are also included in the aggrega-
tion. Based on these information, the Candidate Selector
will periodically exploit a multi-phase machine filtering
mechanism to select and rank machine candidates prior
to oversubscribing resources. Machine List Maintainer will
incrementally synchronized the list to all JMs, instructing
them to launch the speculative tasks on proper machines.
We will present the details in Section 5.
ROSE JobMaster. JM is a specific AM that leverages the
proposed oversubscription mechanism to compensate un-
derutilized resource requests. Local List Maintainer locally
holds a replica of candidate machine collection that is incre-
mentally synchronized from CA. Task Scheduler can there-
fore dispatch speculative tasks by exploiting these machine
candidates in a random or round-robin way. Meanwhile, it
adaptively coordinates the task upgrading between specula-
tive tasks and regular tasks when resources are granted. Due
to variations in cluster states, the previous task placement
might become sub-optimal, resulting in the head of line
blocking. Timeout Detector will timely trigger a timing-out
re-scheduling to mitigate the task starvation (see details in
Section 6.3). Additionally, to help reflect the latest machine
status, Task Scorer is used to rate machines based on the
internal state and the state transitions of all tasks within the
job. The task-level scoring, therefore, becomes a valuable
criterion during the machine filtering process within the CA.
ROSE Runtime Agent. Runtime Agent is the daemon run-
ning on each machine and responsible for task execution.
The native NM is responsible for regular task management,
and Queue Manager deals with the incoming tasks from dif-
ferent JMs. Tasks in the queue will wait for being launched
by the Admission Controller that determines whether the
node capacity and current performance status allow for
further resource oversubscription based on real-time ma-

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 9, NO. 99, 2019 6

into k segments

segment: 0 segment: 1 segment: k-1

estimated value
in a segment

outlier

Time Series

va
lu

e

Fig. 6. Depiction of quick load approximation

chine loads, LRA’s performance indicators, etc. This is pri-
marily performed by multi-resource threshold controller
(see details in Section 6.1) and performance-aware resource
throttling (see details in Section 6.2) to avoid excessive
oversubscription and influence on LRAs’ performance.
UP/RP Global Switch. It is worth noting that we have a
global co-location configuration (which is not marked in
Fig. 5 for clarity) for cluster administrators to specify the
target scenario (either batch-only or latency-sensitive mixed
co-location). Correspondingly, a global flag in the system
will be set to switch between the UP and RP oversub-
scription schemes for scenario adaption. ROSE provides
bespoke resource saturation control inside each node agent.
The performance-aware resource throttling is an exclusive
procedure that adheres to RP oversubscription and targets
the latency-sensitive batch-LRA scenario. By contrast, in
batch-only scenario, the throttle will be turned off, thereby
allowing for aggressive oversubscription as long as other
conditions of resource thresholds are satisfied.

4 DISTRIBUTED FINGERPRINTING

To underpin precise machine selection while measuring the
resource utilization and cluster health, we track system
fingerprints comprised of system loads and performance
indicators in a distributed way and Metric Publisher will
populate the fingerprints into the data stream. We further
adopt load approximation to mitigate the overheads in CA.

4.1 System Load Monitor and Approximation
We track machine-level resource utilization (cpu util, mem-
ory util, disk util, and network received/transmit) and the wait-
ing/running numbers for both regular and speculative con-
tainers in each machine. We obtain these information during
a fixed time interval and publish them into the Kafka data
stream. Considering the rapidly-produced metrics across
machines, at the side of consumer, CA timely digests the
incoming data and approximates the load of each machine
within a sliding time window. Meanwhile, CA only needs
to store a small amount of latest metric data used for ap-
proximating and the resultant estimation values in the local
time-series database, instead of storing the huge amount of
all history raw data. Given the observations that load data
are amendable to an approximate, the load approximation
can substantially reduce the stored data but maintain high-
fidelity, thereby reducing the resource overheads and miti-
gating the potential bottleneck in CA.

We leverage a piecewise-based approximation and de-
noising load acquisition to accelerate the runtime load es-
timation without substantial precision degradation. Alg. 1
and Fig. 6 depict the main process. We delimit the basic
calculation unit with fixed number of data points conducted
over a slide window. We further divide the entire time

Algorithm 1 Load Level Approximation (LLA)
Input: D – a set containing continuous tracedata of a machine metric;

k – the pre-defined granularity of accuracy (default value is 5);
Output: v: a predicted tendency value
1: if D is monotonous then
2: return the last element of D
3: elseif |D| < k then
4: T ← eliminate outliers via Alg. 2
5: return mean(T)
6: endif
7:
8: for i ∈ [1..k] do
9: let Si ← ∅

10: endfor
11: for each d ∈ D do
12: Si ← Si ∪ {d}
13: if |Si| ≥ ⌈ |D|/k ⌉ then
14: i = i+ 1
15: endif
16: endfor
17:
18: let D′ ← ∅
19: in parallel each Si do
20: T ← eliminate outliers via Alg. 2
21: D′ ← D′ ∪mean(T)
22: endparallel
23:
24: if D′ is monotonous then
25: return the last element of D′

26: else
27: T ← eliminate outliers via Alg. 2
28: return mean(T)
29: endif

Algorithm 2 Outlier Elimination
Input: Si – a subset containing continuous tracedata of a machine

metric;
Output: T : a set eliminated outliers from Si

1: Q1 ← lower quartile of Si

2: Q3 ← upper quartile of Si

3: IQR← Q3 −Q1

4: T ← {d|d ∈ [Q1 − p ∗ IQR,Q3 + p ∗ IQR]} (customarily p is 1.5)
return T

period into k segments alongside the timeline (Lines 8-16). It
is worth noting that all segments conduct the average evalu-
ation in parallel (Lines 18-22). In each segment, we calculate
the average load by de-noising the sample data based on
Tukey’s boxplot [27][28] to pinpoint and eliminate potential
outliers (see Alg. 2). ROSE is compatible with other statis-
tical methods of outlier detection [29][30] to handle data
with asymmetric distribution. After the local calculation,
we can obtain the value set D′ containing k average val-
ues. Subsequently if the elements are monotonous, we can
easily determine the target value according to the tendency
(Lines 24-25). Otherwise, we regard the mean value with
eliminating outliers of D′ as the estimated result (Lines 26-
28). CA employs LLA to approximate latest load level while
periodically (e.g., every 10s) triggering a machine selection
to update the suitable machine list. For further optimization,
we can implement the LLA on a per machine basis with
Kafka processors before the intermediate results are sent to
the CA, thereby further reducing the time consumption of
load aggregation within CA.

4.2 LRA Performance Monitor
To early detect machine-level performance variability and
performance interference among co-running workloads, we

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 9, NO. 99, 2019 7

0 120 225 330 435 540 645 750 855 960 1065 1170 1275
Time (sec)

0.0

0.5

1.0

1.5

2.0
C
yl
es

 P
er
 In

st
ru
ct
io
n
(C

P
I)

Fig. 7. CPI fluctuation over LRAs and time on a specific machine

use a non-invasive fine-grained collector to capture runtime
performance of machines and LRAs. To reduce the tight
dependency upon specific workloads, we define and use
generalized performance indicators as important criteron
for RP oversubscription.
Hardware Event Based Performance Indicators. We rely
on Clock Cycles per Instruction (CPI) and Cache Miss
Per Thousand Instructions (MPKI) collected from hardware
events at both application-level and machine-level to indi-
cate the responsiveness of running LRAs and the overall
machine performance. In reality, CPI is the average number
of cycles used by each instruction for a given execution of a
given program. MPKI is a statistic that describes the number
of misses out of total cache accesses, which reflects how
workload behaves on a specific machine with given cache
hierarchy. It has been demonstrated that compute-intensive
application behavior is positively correlative to the moni-
tored (CPI) changes and most latency-sensitive applications
have fairly consistent CPIs [31]. Intuitively, higher CPI and
MPKI indicate slower execution and frequent cache misses.
We mainly focus on CPU interference derived from core
sharing and LLC (Last Level Cache) contention in this paper.
Other techniques [32][33] can be added to detect and handle
IO or disk interference.
Metric Collection. CPI and MPKI can be easily measured
without application level input and thus are quickly enough
to capture application behavior. Statistic CPI can be derived
from hardware counters periodically by using perf stat tool.
When the perf event subsystem is attached to a cgroup hi-
erarchy, all cgroups under the hierarchy can be tracked to
indicate behaviors of the pertaining processes and threads
using the perf tool. In practice, we collect such metrics per
container and per machine by docker uuid/process pid and
the root cgroup respectively. As indicated in[31], the CPU
overhead is less than 0.1% and no visible latency will be
incurred to end-users. Fig. 7 shows an example of temporal
variability of CPI on a specific machine where only latency-
sensitive LRAs are hosted. The boxplot shows that the
deviation among different LRAs fluctuates over time. Some
of them experience higher CPI values due to the continuous
resource contention. In principle, if LLC misses increase, the
workload is highly likely to acquire more CPU cycles to load
the missed cache and thereby causing interference to others.
By exploring hardware counters like CPI and MPKI from
different machines, we can also infer and differentiate the
variability among different machines.

5 MULTI-PHASE MACHINE FILTERING

In this section, we demonstrate how to use multi-phase
filtering to calculate the most suitable machine candidates
for speculative task placement.

Algorithm 3 Task Behavior Aware Machine Rating(TBAMR)
Input: JM – terminated jobs’ masters in a specific time period, JMi

represents the ith job’s master;
Task – all tasks, Taskij represents the jth task of the ith job
consisting ni tasks, where j ∈ {1, 2, . . . , ni};

Output: Score – a set consisting synthetic scores for all machines;
1: in parallel each JMi ∈ JM do
2: let penaltyScore← ∅
3: for each Taskij ∈ Taski do
4: if Taskij ’s status ∈ {failed, crashed, tailed, killed} then
5: m← getHostID(Taskij)
6: penaltyScorem ← penaltyScorem + 1
7: endif
8: endfor
9:

10: penaltyScore′ ← topK(penaltyScore)
11: for each psi ∈ penaltyScore′ do
12: Scorei ← Scorei − psi
13: endfor
14: endparallel
15: return Score

5.1 Multi-Phase Filtering Mechanism
Task Behavior Aware Machine Rating (TBAMR). To ac-
curately reflect the state of task execution, each machine
is assigned a satisfaction level reflecting their ability to
successfully execute speculative tasks, calculated through
the use of historical job execution data. Specifically, any
action that negatively impacts task execution such as long-
tail, failure, task kill and eviction, is regarded as negative
behavior that reduces the machine satisfaction score. This
machine rating is calculated for each machine by all JMs
(as shown in Alg. 3). Eventually, each JM will produce
perceived machine scores into the data stream and subse-
quently consumed and aggregated by CA.
Multi-phase Machine Filtering. To select the most suitable
machine set where speculative tasks should be placed, ROSE
adopts a multi-phase machine filtering mechanism. This
mechanism considers runtime load, task-level machine per-
formance, and the queue status of each machine. With these
phases, we can take advantage of both the load-balanced
and minimized-queuing, thereby mitigating the head of line
blocking problem. Alg. 4 depicts the core phases:

a) Blacklisting from perspective of task-level assessment, time-
out machine detection and runtime resource alerting. The cluster
aggregator will converge the evaluation scores of all ma-
chines from completed jobs. The lowest K machines will
be marked as weak performance machines which have a
higher likelihood of being removed from future scheduling
(Line 5 and Line 12). In addition to low scoring machines,
temporarily timing-out machines are also eliminated from
task placement (Line 13). Additionally, the overloaded ma-
chines are filtered out once any monitoring dimension (such
as system loads, max-queue-length, max-container-number,
etc.) surpasses the pre-defined threshold (Line 14). This is
steered by the multi-resource threshold controller in the
Runtime Agent (see details in Section 6.1).

b) Blacklisting machines with high runtime CPI and MPKI.
According to the global configuration, if RP oversubscrip-
tion scheme is enabled, we will consider runtime perfor-
mance counters in machine filtering. We will eliminate those
machines that have frequent cache misses and higher clock
cycles per instruction, and thus are likely to slow down
latency-sensitive applications (Lines 7-10).

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 9, NO. 99, 2019 8

TABLE 2
Parameters in Algorithms

Parameter Meanings

M
the cluster machine collection where Mi represents
the ith machine and i ∈ [1, n]

LMm×n
a matrix of monitored load information. i.e.,
[
−−−→
LM1,

−−−→
LM2, ...,

−−−→
LMn]

−−→
LMi

m-dimension metrics of machine Mi. i.e.,
[LMi1, LMi2, ..., LMim]⊺.

−−→
LMi can be divided

into the load-relevant part
−−→
LM l

i and queue-relevant
part
−−−→
LMq

i . Namely,
−−→
LMi = (

−−−→
LMq

i ,
−−−→
LMq

i)
LMij the jth dimension of monitored information of Mi−−→
LM l

i
load-relevant dimensions in

−−→
LMi

−−−→
LMq

i

queue-relevant dimensions in
−−→
LMi. i.e.,

[rc am, oc w am, oc r am]⊺

CPI
Machines’ avg CPI collected in a sliding time win-
dow

MPKI
Machine’s avg MPKI collected in a sliding time
window

Lmax
a bespoken maximum amount of candidate ma-
chines

−−−−−−−−→
queueF ilter

[rc am, oc w am, oc r am], a weighted filter vec-
tor for queue-relevant dimensions. The nil element
means that the dimension is excluded from the
selection

−−−−−−−→
loadF ilter

[cpu ut,mem ut, load avg 1, disk s ut, disk ut,
disk usage, net rec ut, net tra ut], a weighted
filter vector for load-relevant dimensions

c) Machine selection based on approximated loads across
multi-resources. Heuristic algorithm in [34] uses dot product
to reduce the alignment of different tasks to a machine
across multi-dimensions to one-dimension case. Inversely,
ROSE intends to match a suitable set of machines with
given tasks according to the approximated load level. For
dimensionality reduction, we consider the dot product of
the scheduler’s weighted preference for each resource di-
mension and the used amount of each dimension. Herein,
the vector

−−−−−−−→
loadF ilter represents the configurable weight

values showing the dominant degree of the given dimen-
sion in the resource management system. The dot product
value of runtime load information and the weighted filter−−−−−−−→
loadF ilter for a given machine can be regarded as the
approximated load index to imply the accumulated level over

the corresponding dimensions (
−−→
LM l

i). Notably, within the
procedure of implementation, to ensure the same numerical
range, we normalize the available resources and loads of
different machines into a uniform value by the maximum
machine capacity in the cluster and record the values of
each dimension of all machines into LM (Lines 1-4). In
reality, the dot product prefers to place tasks onto light-
loaded machines whose available resource is much more
sufficient than others. The overall resource utilization can
be promoted accordingly. In this context, we order the
load index of all machines (Line 19) and filter out a set of
machines which are most fit for oversubscription (Line 24).

d) Machine selection based on queue states. Under similar
load circumstance, the capability of launching tasks as soon
as possible is significantly important to shorten the job
execution time. Thus, another factor to consider in the mech-
anism is the length of queue state. It can indirectly indicate
how soon the waiting tasks can be allocated onto a given
machine. The queue relevant statistics

−−−→
LMq

i such as waiting

Algorithm 4 Multi-phase Machine Filtering (MMF)
Input: (M,JM, Task, CPI,MPKI,Lmax)
Output: C – candidate machines fit for oversubscribed resources;
1: let LM ← ∅
2: for each Mi ∈M do
3: LM ← LM ∪ {LLA(Mi).normalize()}
4: endfor
5: let MachScore← TBAMR(JM, Task)
6:
7: if the type is RP oversubscription then
8: B0 ← {Mi | PSi ∈ topKdescend(CPI) }
9: B0 ← B0 ∪ {Mi | PSi ∈ topKdescend(MPKI)}

10: endif
11:
12: B1 ← {Mi |MSi ∈ topKascend(MachScore) }
13: B2 ← {Mi |Mi ∈M and Mi is disconnected}
14: B3 ← {Mi | LMij is over the jth threshold }
15: let M ′ ←M −B0 ∪B1 ∪B2 ∪B3

16:
17: let candidateInfo← ∅
18: for each Mi ∈M ′ do

19: lIndex←
−−→
LM l

i ·
−−−−−−−→
loadF ilter

20: qIndex←
−−−→
LMq

i ·
−−−−−−−−→
queueF ilter

21: candidateInfo← candidateInfo ∪ {(Mi, lIndex, qIndex)}
22: endfor
23:
24: C′ ← candidateInfo.ascendSortBy(lIndex).topK(d ∗ Lmax)
25: C′′ ← C′.ascendSortBy(qIndex).topK(Lmax)
26: let C ← ∅
27: for each c ∈ C′′ do
28: m← extractCandidateMachine(c)
29: C ← C ∪ {m}
30: endfor
31: return C

machine updates load/metric updates

< localCandList >

incremental sync heartbeat + ver_m_local

< localFullMachList, ver_m_local >

< bitVector,

ver_m, ver_c > < fullMachList, ver_m >

full sync

ver_m ++ if fullMachList changes ver_c++ if candList changes

< candList, ver_c >

CA

AM

Compare(ver_m_local, ver_m)
parse candidateList ask for full sync

< bitVector, ver_m, ver_c >

compress

if ver_m == ver_m_local if ver_m > ver_m_local

Fig. 8. Incremental transmission optimization

and running task numbers are also profiled periodically. For
example, apart from regular tasks, we record the number of
running and waiting speculative tasks in the LM . Similarly,
an index of queuing status is calculated by the dot product
operator (Line 20). In this manner, the 3-tuple information
for each machine (Mi, lIndex, qIndex) can be obtained and
aggregated (Line 21). On the basis of the load pre-filtering,
the final selection phase is to determine the Lmax machines
that is prepared for those waiting JMs to accurately leverage
idle resources (Lines 25-30).

5.2 Incremental Information Synchronization

Considering the scalability and huge overheads of flood-
ing communication with an increased number of jobs and
machines, we optimize the transmission by incremental
synchronization to keep a consistent view of machine can-
didates calculated by the MMF procedure. Essentially, we
adopt a version control mechanism to label the different
generation and candidate changes. We compare the locally
cached version with the versionID recently sent by CA to
decide if we need to synchronize the candidates.

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 9, NO. 99, 2019 9

Fig. 8 shows the basic pipeline. The CA maintains the
full machine list with its version ver m. Once machines
join or leave the cluster, CA will acquire the full list up-
dated with an added ver m. MMF algorithm (Alg. 4) will
be periodically performed, producing the latest candidate
list and its updated version ver c. Instead of transmitting
the full candidate list, CA quickly generates a bit vector
where each bit represents if the corresponding machine is
in the candidates. The bit-vector and the above two version
information will be periodically passed to JMs.

In each JM, the local maintainer keeps track of a local
replica of full machine list and a local version ver m local.
This local version will be piggybacked by heartbeat to the
CA. If the carried version is older than CA’s ver m indicating
the inconsistency, CA will trigger a mandatory response
to synchronize the full machine list to the JM. To revive
the candidate machines that CA determines the best fit for
oversubscription, JM will compare the ver m local and the
ver m in the bit-vector information. If they match, the list
will be locally cached and later used in the job schedul-
ing. Otherwise, JM will request a full synchronization to
catch up with the latest machine information. By leveraging
this decoupled maintenance, JM can independently conduct
oversubscription in a distributed manner.

5.3 Algorithm Complexity Analysis
Complexity Analysis. The overall time complexity of Alg. 1
is O(d) where d denotes the number of elements in D. The
step of dividing elements of D into subsets requires O(d)
time. The core operation is to determine lower and upper
quartiles in each subset Si with at most ⌈ d

k ⌉ elements. Ran-
domized Selection Algorithm is a classic means to solve top-
K selection on a set with n elements, and the expected time is
Θ(n) [35]. As selecting quartiles is a special case, the above
operation will require O(⌈ d

k ⌉) time. Hence the complexity is
O(d + ⌈ d

k ⌉) = O(d) assuming the number of pre-defined
granularity of accuracy k is a constant. The overall time
complexity of Alg. 3 is O(nt+np) where nt denotes the task
number in JMi and np denotes the number of penalized
machines. Specifically, the calculation of penalty scores takes
O(nt) time as it depends on each task’s status shown in
JMi’s execution report. The following-up operation is to
merge top-K penalized scores, which traverses all penalized
machine scores and thus takes O(np) time.

The overall time complexity of Alg. 4 is O(nd) where
n denotes the number of machines and d represents the
number of sampling points. Alg. 4 is initially dependent
on Alg. 1 and 3. Since performing LLA on each machine
requires O(d), approximating the loads for all machines
takes O(nd) time. As Alg. 3 is executed in each individual
JM in parallel, obtaining all these scores merely consumes
O(1) time. Subsequently, blacklisting unwanted machines
is virtually implemented by top-K selection, resulting in
O(n) time complexity. Moreover, generating load and queue
indexes for all machines takes O(n) time and the final ma-
chine filtering via top-K takes additional O(n). This results
in an overall time complexity of O(nd + n) = O(nd). To
validate the theoretical analysis, we also measure the time
consumption of the placement decision in our experiment.
Nevertheless, the complexity of Alg. 4 can be reduced to
O(n) if LLA is dispersed onto different machines. In effect,

if LLA is calculated in parallel at the machine end or
integrated in Kafka processor before populating into the
data stream, CA can directly use the result without taking
O(nd) time to calcuate. Certainly, this will increase the
computation and communication costs in the data stream.
Comparison. We also compare Alg. 4 against other existing
schemes including random-based (RB), system load based
(SLB) and queue length based machine selection (QLB) that
are explicitly defined and used in Section 7.1. Due to the
intrinsic nature of load ranking, SLB algorithm is also de-
pendent upon Alg. 1 executed on each machine and selects
top-K machines according to the sampled loads, resulting in
the same O(nd) time complexity. By contrast, QLB requires
O(n) time to pick top-K machines with shortest queue
because it merely requires the length of the queue in each
machine which can be directly obtained. RB is the quickest
algorithm as it is independent of any input of information
and thus performs O(1) complexity. Purely from the time
complexity perspective, our approach is no better than other
approaches. However, it is still acceptable considering the
satisfactory decision time (hundreds of milliseconds) and
substantially improved quality of speculative task.

6 ROSE RUNTIME MANAGEMENT

ROSE runtime is composed of two key components includ-
ing (i) oversubscription admission control that determines
the resource saturation and oversubscription degree, and (ii)
job level task scheduling that manages the whole life-cycle
of the pertaining tasks. Admission control encompasses a
general speculative task restriction using multiple resource
threshold and a resource throttling procedure especially
towards RP oversubscription.

6.1 Multi-Resource Threshold Based Control
Multi-resource Threshold Control. Based on runtime sys-
tem information, the admission controller of task execution
primarily manages the whole life-cycle of speculative tasks
including task enqueue permission, execution start time,
resource allocation, task preemption with priorities, etc. We
firstly employ a resource threshold controller to determine
the timeliness of task execution. A speculative task can be
popped from the queue and started if all resource metrics
are within the limits of upper bounds and the overall
oversubscription quota does not surpass the maximum
threshold. Once any dimension is beyond the corresponding
threshold value, the oversubscription will be temporarily
blocked until the launching condition is satisfied. This also
creates an opportunity to configure a certain resource re-
quirement according to user or system administrator de-
mand and machine heterogeneity. When the regular tasks
request to revoke resources, task preemption will occur.
As a result, delicate machine selection can facilitate the
speculative tasks running on reasonable machines where
such preemption infrequently occurs.
Resource Isolation. In general, we leverage cgroup [36] and
its sub-systems such as blkio, cpu, cpusets, memory, net cls
to enforce the IO, CPU, memory and network isolation
and control for oversubscription. We generate a tree-based
structure for each resource dimension and the root node of
the hierarchical structure describes and controls the resource

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 9, NO. 99, 2019 10

isolation. We define two node types to serve – the regular
group and oversubscribed group. As the immediate chil-
dren of the root, the nodes represent the parent for task
containers. We separate tasks into two sub-tree collections
through placing speculative task and regular task within
the oversubscribed and regular groups, respectively. Each
group manages its own priority and tasks within the over-
subscribed group have lower priorities than those in the
regular group. This mechanism ensures that the speculative
tasks are preempted by higher prioritized tasks. To enhance
QoS management for LRAs, we further adopt CPU pinning,
LLC and memory bandwidth isolation to protect LRAs from
excessive oversubscription (detailed in Section 6.2).

6.2 Performance-aware Resource Throttling
To implement RP oversubscription for coherently enabling
latency-sensitive co-location, we integrate a performance-
aware resource throttle with the admission controller. Since
CPU is the dominating bottleneck resource for most LRAs,
the mechanism elaborately restricts the oversubscribable
resources (particularly CPU cores and LLC) to make sure
LRAs have constantly sufficient resources and normal per-
formance indications. Using LRA’s responsiveness as feed-
back signal, the core idea of feedback-control is to temporar-
ily curtail the amount of resources shared by speculative
tasks and dynamically restrict the launching number of
speculative tasks for calibrating corresponding performance
within acceptable boundaries. Fig. 9 briefly depicts the over-
all pipeline of resource throttling. Specifically, the procedure
encompasses the following steps:
Protective Resource Isolation for LRAs. We enforce CPU
and LLC isolation to prioritize LRA performance. We re-
stricts which CPU cores speculative tasks can use and ensure
LRAs have slack cores for thread switch wake-up or switch
within LRAs. We specify all CPU cores in a machine into
two distinct classes using cgroup cpuset: the 1st class cores
consisting of the amount requested by LRAs and the num-
ber of slack cores are prioritized for LRAs. The remaining
cores in the machine are 2nd class that are unrestricted for
launching any regular batch tasks and affiliated speculative
tasks. In this context, incoming speculative tasks will be
preferably restricted to the 2nd class cores to reduce the
interference to running LRAs. Naturally, the eviction order
will be reversed when resources have to be mandatorily
reclaimed to regular tasks and LRAs. Additionally, to tackle
LLC and memory bandwidth isolation, we mainly rely on
Cache Allocation Technology (CAT) and Memory Band-
width Allocation (MBA) powered by Intel Resource Director
Technology (Intel RDT) [37] to dynamically tune and direct
the cache ways and memory bandwidth for LRAs.
Early Awareness of Performance Anomaly. In aforemen-
tioned Section 4.2, the CPI and MPKI values are measured
and analyzed at both machine level and container level. For
periodical operations, the values of performance indicators
exhibit low variability given that a given application should
have similar instructions or queries to execute and stable
resource usage pattern. Thus if there is a significant metric
deviation from the normal behavior at runtime, the victim
application tends to violate its service objective. To rescue
this performance degradation, the oversubscribed resources
should be throttled down and instantly reclaimed so that the

 Speculative

Task Queue

resource
sharing
info

Threshold

Controller

Protective Res

Isolation

Early Detection

of Violation

Perf-Aware

Res Throttling

evict/pre-empt
running tasks

block
waiting
tasks

launch tasks
from the queue

trigger throttling

permit to
launch
tasks

Fig. 9. Flowchart of resource throttling scheme

0 1 2 3
CPI

0

2

4

6

P
ro
ba

bi
lit
y
D
en

si
ty

0 1 2 3 4 5 6
MPKI

0

1

2

3

P
ro
ba

bi
lit
y
D
en

si
ty

Fig. 10. Histogram of CPI and MPKI

victim application’s performance can rebound to the norm.
To achieve this, we will profile the CPI and MPKI distribu-
tion for the LRAs in our system. Fig. 10 depicts an example
of measured distribution of a specific database application
– the skewed form indicates a long-tail CPI distribution
where low performance containers have a relatively higher
CPI values. Through statistical analysis, we conclude that
gamma and chi-square distribution are the best fits for CPI
and MPKI respectively. We use the 3σ criteria to determine
an outlier if the value surpasses the 3σ boundary on the
best-fit distribution.
Runtime Throttling. If we find an performance outlier on a
node, we attempt to throttle the oversubscription degree by
temporarily blocking more tasks from being launched from
the queue and pre-empting running oversubscription tasks.
Namely, all pending and existing oversubscription tasks will
be postponed to give ways to the victim applications. We
prefer to firstly preempt speculative tasks pertaining to 1st

class cores and having least execution progress to mitigate
the degradation to LRAs. To precisely determine the amount
of resources to be spared for rescuing the performance
(equivalently how many speculative tasks will be affected),
we further explore the quantitative relationship between
allocated resource and consequent workload performance
through learning the sensitivity of application performance
to multiple resources. By using this model, we could infer
the proper slice of resources for rapid performance recovery.
Due to the limited space, we omit the details in this paper
but they can be found in [38].

6.3 Runtime Task Scheduling
Task Upgrading. In the event of unfulfilled resource re-
quests due to insufficient resource, the JM will proactively
dispatch several speculative tasks onto NMs (Alg.5 Lines 1-
3) according to the latest result of MMF procedure. The JM
also tracks all launched tasks until their completion. Once
the waiting resource is approved and the corresponding
request can be further fulfilled, the JM determines whether
a speculative task has been launched and which machine it
is executing within. If the available resources are assigned

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 9, NO. 99, 2019 11

Algorithm 5 Task Scheduling in Job Master
1: if resource requests cannot be satisfied then
2: dispatchSpeculativeTask()
3: endif
4:
5: if waiting resource has been approved then
6: specTaskLoc, resLoc← where(specTask, resource)
7: if specTask is in queue or specTaskLoc is null then
8: cancelSpeculativeTask(specTtask)
9: startRegularTask(resource)

10: elseif isSameP lace(specTaskloc, resloc) then
11: upgradeSpeculativeTask(specTask)
12: elseif specTask progress is more than τ then
13: keepSpeculativeTask(specTask)
14: reserveRes(resource)
15: else
16: killSpeculativeTask(specTask)
17: startRegularTask(resource)
18: endif
19: endif

to a resource request that is served by an oversubscribed
resource, the speculative tasks should be transformed to
regular tasks. In effect, the task upgrade is achieved ac-
cording to the task location and execution progress. Ideally,
we preferably expect to alter the speculative task on the
same machine because there is no additional initialization
time to reschedule and launch. In our implementation, if
speculative tasks have not yet started (either staying in the
queue or failing to find destinations), we will cancel them
and directly start the regular tasks (Lines 7-9). Otherwise,
if the launched task has already been executed on the same
machine, we will directly re-label it as a regular task (Lines
10-11). ROSE judges whether it is cost effective to evict the
speculative task based on execution progress. If the progress
surpasses a predefined threshold (e.g., 60%)(indicating a
near-completed task), we retain the task and also reserve the
recently approved resource in the event of speculative task
failure (Lines 12-14). If the task is started with a progress
no greater than the threshold, the task is killed directly and
launched using new resources (Lines 15-17). The resource
reservation is seemingly contradictory to the improvement
of resource utilization. However, the reserved resource can
be oversubscribed again to other tasks, thereby reducing
overall eviction and shortening the job makespan.
Task Rescheduling. Task starvation is also a possible oc-
currence in speculative tasks since the previous decision
might become sub-optimal and unreasonable considering
the variation of cluster states. In order to avoid this scenario,
the JM adopts a time-out detection to determine how long
the speculative tasks are waiting within the NM queue. If
the waiting time is over a finite timing-out bound, the task
will be re-dispatched to machines by using the latest MMF
result. This strategy can prevent the starvation and head-
of-line blocking, resulting in a better utilization and load
balancing among different queues. The occurrence of task
stragglers can also be mitigated.

6.4 Discussion
Safeguards for Robust Oversubscription. On each node,
determining a safe oversubscription ratio (OR) and a load
threshold is important to regulate the degree of resource
oversubscription in the cluster. For example, if the memory
capacity of a machine is 10GB, we can specify a 40% OR

to ensure that at most 4GB can be oversubscribed. In fact,
the ratio can be customized according to their conservative
strategy and preference. Suitable system parameter config-
uration is challenging because they are usually associated
with performance-sensitive operations. One common prac-
tice based on our large-scale engineering experience is to
initially set safe and conservative parameters for profiling
and validation in a small-scale test system that has the
same hardware configurations before deploying the system
to larger-scale production. This procedure can significantly
help towards understanding system behavior in a controlled
manner. For example, we can start from oversubscribing
10% memory of the node capacity and allowing for at most
60% disk utilization in the threshold control. Subsequently,
through weekly regression tests and tracelog collections, we
can analyze the observability of performance slowdowns or
system failures such as out-of-memory (OOM) or out-of-
disk (OOD), etc. This procedure can help us gradually revise
the configuration with a small step until all regression tests
deliver stable outputs and acceptable performance.

We are also aware that configuration auto-adjustment
is well-studied by a rich body of work in software engi-
neering and system communities enabled by either control
theory (CT) or machine learning (ML) [39][40]. Specifically,
feedback-control provides a general set of mechanisms for
ensuring that systems can achieve the desired effects in
dynamic and runtime environments. ML-based approaches
aim at finding optimal configurations based on exploit-
ing historical records and exploring complex configuration
space. Reinforcement learning (RL), combining both CT
and ML also offers us advances and opportunities in the
future to replace current conservative profiling and tuning
approach. This research is currently beyond the scope of this
paper and will be left for future work.
Overheads. Overall, the overheads are generally low,
mainly generated from collecting and retaining per-
workload and per-machine states. Workload states include
performance counters and task-level state information while
machine states consist of different types of load information,
queue states, and the information on scheduled workloads,
etc. Main overheads encompass: (i) Disk cost: For timely col-
lecting and storing these states, a local InfluxDB component
temporarily stores the raw time-series data. The space used
for saving raw data of those states per machine per day
is approximately 4.8MB, and the total space required by a
cluster will scale linearly with the total machine number in
the cluster. In our testbed with 210 machines, for example,
the disk space used per day is roughly 1.02GB, which is
acceptable in typical cluster systems. (ii) Memory and CPU
cost: Runtime memory consumption is typically determined
by the number of workloads and machines involved in the
resource scheduling. ROSE keeps all the updated states at
runtime and consumes roughly 128B per workload and 256B
per machine. The total memory cost scales linearly with the
number of workloads and machines. In our experimental
example with 210 machines and 120 submitted workloads,
the total memory consumption is no more than 200MB, that
is, a no more than 5% increase as compared with the original
cluster without ROSE. The CPU overhead is less than 3%
of the computation cost imposed by the original resource
management system without ROSE.

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 9, NO. 99, 2019 12

0 20 50 70 100
Over-subscription Proportion (%)

0
100
200
300
400
500
600

M
ak

es
pa

n(
se

c)

0 150 300 450 600
Execution Time (sec)

10

20

30

40

50

Lo
ad

 A
ve
ra
ge

 O
ne

 M
in
ut
e

100%
70%
50%
20%
0%

0 150 300 450 600
Execution Time (sec)

0.
3

0.
6

0.
9

1.
2

M
em

or
y
(G

B)

1e4

100%
70%
50%
20%
0%

0 150 300 450 600
Execution Time (sec)

10

20

30

40

50

60

D
is
k
(%

)

100%
70%
50%
20%
0%

Fig. 11. The impact of varying oversubscription parameter

7 EVALUATION

7.1 Experimental Setup
Environment. We implemented ROSE within Fuxi and de-
veloped a light-weight prototype of the distributed over-
subscription patched in YARN. YARN evaluation was per-
formed using a 32-machine cluster, while other evaluations
were performed in a 210-machine cluster. Each machine con-
sists of two 6-core Intel(R) Xeon(R) CPU E5-2630 processors,
82GB RAM, 12*1.9TB disk drives, and 10Gbps network.
Methodology and Baseline. The experiments are four-fold:
(i) We evaluate that the distributed oversubscription archi-
tecture can effectively resolve resource mismatch in central-
ized oversubscription frameworks. As our proposed mech-
anisms in this paper are coupled with Fuxi system that is
independent of open-source YARN, to carry out necessary
comparisons we implemented a light-weight prototype of
distributed oversubscription YARN-r that is decoupled from
the centralized RM: the running AMs are developed to own
oversubscription functionality and can obtain a machine list
that is calculated by CA through machine filtering (detailed
in Section 5.1). By these modifications, we can avoid the
central RM participating in the oversubscription and spec-
ulative task scheduling. We then compare YARN-r against
native YARN (YARN-n) and the centralized oversubscrip-
tion method in YARN (YARN-o) [11].
(ii) We perform several micro-benchmarks to demonstrate
the impact of oversubscription ratio, the efficiency/over-
heads of machine selection and incremental information
synchronization mechanism.
(iii) We demonstrate the effectiveness of our machine
selection and its impact on improved utilization and
job execution particularly for batch-only job co-location.
Specifically, we compare the ROSE method against non-
oversubscription and three representative selection strate-
gies adopted in other systems:
• RB (Random Based Selection): Assigns tasks by round

robin and FIFO queue management. This is the com-
parable method of which Sparrow [41] and Apollo [13]
perform resource oversubscription;

• SLB (System Load Based Selection): Considers real-time
resource utilization when selecting candidate machines;

• QLB (Queue Length Based Selection): Primarily mea-
sures the queue length or waiting container size of each
machine, and is adopted within Mercury [14].

(iv) We evaluate the oversubscription effectiveness in mixed
co-location scenario where batch jobs and latency-sensitive
LRAs co-exist. We especially measure the benefit of im-
proved LRA responsiveness and the corresponding impacts
on system utilization and batch job execution. To demon-
strate the wider effects, we comprehensively compare how
utilization-prioritized (UP) and responsiveness-prioritized (RP)

TABLE 3
Comparisons – YARN-r, YARN-n and YARN-o

Group CPUUtil MemUtil Makespan #Unqueued #SuccSpec
YARN-n 21.3% 18.5% 609s – –
YARN-o 38.6% 27.1% 587s 169 58
YARN-r 59.4% 49.3% 481s 0 493

oversubscription work with different machine selection and
the following task placement strategies, denoted by [strat-
egy]-UP and [strategy]-RP, e.g., ROSE-UP, SLB-RP, etc. We
compare the discrepancy between *-UP and *-RP to imply
the sacrifice of resource utilization and speculative amount
for the guarantee of LRA performance.
Workloads. To measure the performance of batch processing
workload, experiments were conducted using the mixture
of jobs including WordCount and TeraSort [42] on 10GB
data and a Bayesian classification algorithm in the Ma-
hout library [43] on 1.6GB set of Wikipedia pages jobs.
These are well established to benchmark cluster scheduling
performance [3][44][45]. While we conduct experiments
with different workload in MapReduce and Fuxi DAG [3],
the concept of speculative tasks through oversubscribing
resources is readily applicable to other types of jobs (e.g.,
Tez and Spark) and no difference will manifest if the AM is
correspondingly implemented adhering to the ROSE proto-
col and interfaces. We use Yahoo Cloud Serving Benchmark
(YCSB) benchmarks [46] to create different levels of data
operations on MongoDB, a document-oriented NoSQL data
store [47]. The database and benchmarks are all continu-
ously run in docker containers. We also submit sysbench
benchmarks (e.g., CPU and Memory) [48] to represent more
general-purpose long-running applications.
Metrics. We mainly consider the following metrics:
• Cluster Resource Utilization. CPU utilization, System

load avg per 1 minute1, memory usage, and disk utiliza-
tion etc. on a cluster-level and machine-level basis.

• Job Completion Time (JCT). End-to-end completion
time for a single job, recorded from the start of job’s AM
execution and finished at the termination of all tasks.

• Workload Makespan. Holistic span-time for a batch of
jobs, consisting of the accumulation of all submitted jobs.

• Evicted and Started Task Number. The launched tasks
or evictions due to preemption.

• LRA Performance. Indicators such as Events per Seconds
(EPS), read/write latency, throughput, etc.

7.2 YARN-r vs. YARN-o and native YARN
We submit 40 Apache Mahout ML jobs in our YARN cluster.
As shown in Table 3, the average cluster CPU utilization of

1. system load avg is the average number of processes that either in a
runnable or uninterruptable/waiting state. It can be collected via linux
uptime command

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 9, NO. 99, 2019 13

0 1000 2000 3000 4000 5000
#Point

0

200

400

600

800

1000

M
ak
in
g
D
ec
is
io
n
Ti
m
e
(m

s) #Machine = 1000

0 5000 10000 15000
#Machine

#Point = 1000

Fig. 12. Decision making time in machine selection

1st 2nd 3th 4th 5th
Times

0
1

10
10

0
Tr
an

sm
itt
ed

 D
at
a
Si
ze

 (M
B)

75
.0

0.
62

5

0.
62

5

0.
62

5

0.
62

5

7.
5

4.
05

4.
95 6.
6

5.
55

37
5.
0

3.
12

5

3.
12

5

3.
12

5

3.
12

5

37
.5

25
.0
5

37
.0
5

28
.6
5

31
.3
5

Inc (1000)
Non-Inc (1000)

Inc (5000)
Non-Inc (5000)

Fig. 13. Incremental vs. Non-Incremental

YARN-r can be increased to 59.4% in comparison to YARN-
n (21.3%) and YARN-o (38.6%). Memory utilization also
sees similar improvements when using YARN-r, increasing
to 49.3% compared with 18.5% and 27.1%. Moreover, the
overall makespan of submitted jobs can be shortened using
YARN-r by 21.0% and 18.1% compared with YARN-n and
YARN-o respectively. YARN-r can successfully launch 8.5×
more speculative tasks than YARN-o without any exclu-
sion from the NM’s local queue. By contrast, in YARN-
o, a large portion of the created speculative tasks fail to
enqueue. This is because YARN-r is equipped with dis-
tributed oversubscription enabled in individual AMs and
effective machine filtering mechanism, thereby effectively
removing the lagged messaging in the centralized oversub-
scription managed by the central RM. This indicates that
decoupling resource oversubscription from the centralized
resource management can efficiently improve the overall
system utilization and speed up the job execution.

7.3 Microbenchmark

Oversubscription Parameter Impact. We investigate the
impact of oversubscription parameters that may influence
the system and job performance. In a ROSE job, we can cus-
tomize the proportion of tasks that can speculatively request
oversubscribed resources. We adjust the ratio within a job
from 0 % to 100% (where 0% indicates that no tasks within
the job are allowed to use oversubscribed resources). Fig.11
demonstrates the full oversubscription (with 100% task
oversubscription capability) can achieve more than 31.24%
(from 637.06s to 438.04s) improvement in overall execution
efficiency. Additionally, when the ratio value increases, the
utilization of all resource dimensions also rises. Therefore,
we preset the ratio as 100% in all experiments. In particular,
when diverse workloads within different constraints are
submitted by multi-tenants, the configuration can provide
sufficient flexibility to satisfy various service requirements.
Machine Selection Time. As the decision making is vital
for system turnover rate, we measure the overall time con-
sumption of Alg. 4 through a large number of repetitions
using our large-scale stress-testing tool. Fig. 12 demonstrates
the consumed time when varying the number of machines
in the cluster and the number of sampling points within

210

175

140

105

70

35

Se
rv

er
 ID

RB SLB QLB ROSE

0

3

6

9

12

15

18

La
un

ch
ed

 S
pe

cT
as

k
N

um
be

r

210

175

140

105

70

35

Se
rv

er
 ID

0

6

12

18

24

30

36

Lo
ad

 A
ve

ra
ge

 O
ne

 M
in

ut
e

210

175

140

105

70

35

Se
rv

er
 ID

0

3

6

9

12

15

18

M
em

or
y

U
sa

ge
 (G

B)

0 240 480 720
Time (sec)

210

175

140

105

70

35

Se
rv

er
 ID

150 300 450 600
Time (sec)

150 300 450 600
Time (sec)

150 300 450
Time (sec)

0

20

40

60

80

100

D
is

k
U

til
iz

at
io

n
(%
)

Fig. 14. Cluster resources utilization using oversubscription strategies.
(Row#1: Launched speculative task number; Row#2: Load Average One
Minute; Row#3: Memory usage; Row#4: Disk utilization;)

TABLE 4
Median Statistics

Dimensions RB SLB QLB ROSE
CPU Load 9.739 10.704 9.263 13.902

Mem Usage(GB) 10.040 9.610 7.294 10.457
Disk Util(%) 32.727 33.870 31.814 50.956

#co-running spec task 1.64 1.87 1.31 3.18
#co-running spec task/cluster 344 392 275 668

a load estimation window (defined in Alg. 1). We can
observe that the time is hundreds of milliseconds and is
almost linearly correlative to the number of machines and
sampled points, which cohere to our theoretical analysis in
Section 5.3. In fact, even when the cluster size grows up
to 15,000 machines, 700ms decision making time can be
achieved with minor deviations, which is still acceptable in
large-scale cluster management. A larger deviation begins
to manifest when the number of involved sampling points
surpasses 4,000, because Randomized Selection[35] used for
top-K operations is more likely to experience worse cases if
more sampling points are included.

Incremental Synchronization Impact. To demonstrate the
mitigation effectiveness of flooding messages, we measure
the amount of data transmission between CA and JMs after
they are initialized. Due to the periodical synchronization,
we mainly record the first five times synchronization under
two different cluster scales (with 1,000 and 5,000 machines
respectively), and compare the proposed incremental ap-
proach against the non-incremental approach. We submitted
5,000 jobs into the system and 10% of the total machines will
be selected as candidates. As shown in Fig. 13, incremental
synchronization needs to transmit more data for the first
time but the amount will be significantly reduced in the
follow-ups. For instance, for a 1,000-machines cluster, the
amount can be reduced to merely 0.83% (from 75MB to
625KB). By contrast, non-incremental approach naturally
maintains a stably large data transmission. We can obtain
increasing benefits from our incremental design when the
cluster size grows.

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 9, NO. 99, 2019 14

0 150 300 450 600
Execution Time (sec)

20

40

60

80

100
C
P
U
 U

til
iz
at
io
n
(%

) ROSE Non-oversubscr

Fig. 15. Cluster CPU utilization

0 100 200 300 400 500 600 700
Execution Time (sec)

20

40

60

80

D
is
k
U
til
iz
at
io
n
(%

) ROSE
QLB
SLB
RB

Fig. 16. Cluster disk utilization

RB SLB QLB ROSE
400

500

600

700

800

M
ak
es
pa
n
(s
ec
)

-10.56% -17.72% -30.11%

(a) Makespan comparison

RB SLB QLB ROSE

100

300

500

700

Jo
b
C
om

pl
et
io
n
Ti
m
e(
se
c) -5.04% -21.35% -27.19%

(b) JCT comparison

Fig. 17. Workload execution time under different policies

7.4 Batch Only Co-location Evaluation

To emulate production workloads, we submitted 60 jobs
(equal numbers for each of those three types) in each
experiment run, forming 214,880 tasks in total. Each job
type was configured consisting of various task scales (10*10,
100*10, 100*100, 1000*100, 1000*1000, 8000*2000) where m∗r
represents m mappers and r reducers per job.
Resource Utilization. Fig. 15 shows that ROSE increases
the cluster-level CPU utilization, achieving 65.10% on av-
erage versus 36.37% with the non-oversubscription method.
Fig. 14 and Table 4 depict a heatmap and median value sum-
mary of per-machine resource utilization and the number
of co-running speculative task using different oversubscrip-
tion strategies. ROSE can achieve a higher CPU and disk
utilization across the entire cluster. For instance, the load
can be increased by 42.75% and the number of speculative
task launched per machine even doubles compared with RB.
Since the workloads executing within the experiment are IO-
intensive, an increase in disk utilization is the most impor-
tant dimension to consider. In particular, as shown in Fig. 16,
ROSE can achieve an 18.23% disk utilization improvement.
The memory usage does not exhibit apparent growth as the
CPU and disk thresholds are firstly reached which imposes
a restriction on the memory oversubscription.

All these improvements are resultant of additional spec-
ulative tasks that utilize the oversubscribed resources. In
reality, by using the multiple phase machine selection, the
speculative tasks within ROSE can be precisely dispatched
onto machines that have sufficient capacity to execute ad-
ditional workloads. Consequently, the number of running
speculative tasks is almost 1.94x and 1.70x times that of RB
and SLB. Accordingly, finish time is shortened due to the
increased efficiency of cluster packing, as well as the re-
duced waiting time for tasks to be assigned oversubscribed
resources. By contrast, the RB method neglects runtime
resource variation and thus lacks optimal task placement.
In fact, other than IO intensive workloads, ROSE naturally
facilitates other types of workloads. In particular, the CPU-
intensive and short tasks can be significantly enhanced by
the proposed efficient resource oversubscription. This is

because tasks with shorter duration will have less likelihood
of eviction occurrence during their execution, resulting in ef-
ficient resource fragmentation recycling. The CPU isolation
and sharing mechanism within cgroups can also provision
more flexible approaches that complement our solution.

Job Completion Time. To accurately determine the effect of
job execution, we repeatedly submit workloads 20 times.
Fig. 17(a) shows the statistics of the workload execution
with the maximum, 75th percentile, average(green circle),
median(red line), 25th percentile and the minimum execu-
tion times depicted. In terms of the median value of all
submission rounds, it is observable that SLB and QLB re-
duce the workload makespan by approximately 10.56% and
17.72% compared with the random-based method, while the
reduction can even reach 30.11% by ROSE. Additionally,
the fluctuation of workload makespan in ROSE can also
be diminished compared with other approaches. Fig. 17(b)
illustrates the per-job execution time by synthesizing all sub-
mitted jobs. It is observable that the execution time varies
as the number of mapper and reducer changes and con-
sequently, the submitted jobs exhibit diverse time ranges.
Nevertheless, we can observe that there is an improvement
for effectiveness for JCT. For example, the 75th percentile
box border of ROSE increases, indicating that job execution
times with small configurations (e.g. 10 mappers and 10 re-
ducers) is shortened and aggregated within 230s. Compared
against the RB method, the overall distribution of comple-
tion time shifts smaller. Specifically, the maximum of job
execution time in ROSE can be reduced by approximately
27.19%. By contrast, SLB and QLB methods only result in a
5.04% and 21.35% reduction respectively. This substantial re-
duction within ROSE is predominantly derived from rapid
task launching with oversubscribed resource and efficient
machine filtering process. The threshold controller can also
provision the best destination for speculative tasks, avoiding
potential interference or eviction.

Rescheduling and Task Eviction Reduction. To evaluate
the effect of the rescheduling approach on job execution,
comparisons are conducted between RB (with rescheduling)
vs. RB (without rescheduling) and ROSE (with rescheduling)
vs. ROSE (without rescheduling). Fig.18 shows that RB and
ROSE are capable of reducing the median makespan by
approximately 12%. To evaluate the task eviction occurrence
during oversubscription, Table 5 demonstrates that ROSE
achieves a substantially increases speculative task number
by 37.78% and 43.54% compared with RB and QLB, re-
spectively due to more speculative tasks can be accurately
launched within specific machines. Despite a large increase
in speculative tasks, the eviction rate only slightly increases
due to the machine filtering and threshold controller.

RB ROSE50
0

60
0

70
0

80
0

M
ak
es
pa

n
(s
ec
) no reschedule

reschedule

Fig. 18. Rescheduling approach

TABLE 5
Eviction Number

#Evicted #Started
RB 532 85411
SLB 556 111915
QLB 680 81982
ROSE 591 117676

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 9, NO. 99, 2019 15

RB
-U
P

RB
-R
P

SL
B-
UP

SL
B-
RP

QL
B-
UP

QL
B-
RP

RO
SE
-U
P

RO
SE
-R
P

Ru
n-
Al
on
e

0

200

400

600
cl
ea
nu
p_
95
p(
m
s)

RB
-U
P

RB
-R
P

SL
B-
UP

SL
B-
RP

QL
B-
UP

QL
B-
RP

RO
SE

-U
P

RO
SE

-R
P

Ru
n-
Al
on
e

1

2

3

re
ad

_9
5p

(m
s)

RB
-U
P

RB
-R
P

SL
B-
UP

SL
B-
RP

QL
B-
UP

QL
B-
RP

RO
SE

-U
P

RO
SE

-R
P

Ru
n-
Al
on
e

0.2

0.4

0.6

0.8

up
da

te
_9

5p
(m

s)

RB
-U
P

RB
-R
P

SL
B-
UP

SL
B-
RP

QL
B-
UP

QL
B-
RP

RO
SE

-U
P

RO
SE

-R
P

Ru
n-
Al
on
e

1

2

3

4

5

ru
nt
im

e(
x1

00
s)

RB
-U
P

RB
-R
P

SL
B-
UP

SL
B-
RP

QL
B-
UP

QL
B-
RP

RO
SE

-U
P

RO
SE

-R
P

Ru
n-
Al
on
e

0

2

4

6

th
ro
ug

hp
ut
(k
op

s/
se

c)

Fig. 19. Performance comparison of YCSB workloads on MongoDB
TABLE 6

*-UP vs. *-RP Comparisons (Diff=(*-RP - *-UP)/ *-UP)
Dimensions RB-

UP
RB-
RP

Diff SLB-
UP

SLB-
RP

Diff QLB-
UP

QLB-
RP

Diff ROSE-
UP

ROSE-
RP

Diff

avgClusterCPUUtil(%) 44.20 38.52 -12.85% 47.23 39.53 -16.30% 44.12 38.66 -12.38% 63.02 56.34 -10.60%
avgClusterDiskUtil(%) 33.32 25.93 22.18% 32.19 25.82 20.11% 30.17 24.98 17.20% 53.21 43.49 18.27%
avg #Co-running spec/node 1.44 1.25 -12.91% 1.53 1.28 -16.51% 1.24 1.10 -11.15% 2.48 2.15 -15.52%
avg #Co-running spec/all 302 263 -12.91% 321 268 -16.51% 260 231 -11.15% 521 451 -15.52%
med CPU Load 9.45 8.12 -14.07% 10.11 8.43 -16.62% 9.42 8.21 -12.85% 15.93 13.31 -19.68%
med Mem Usage(G) 10.27 8.21 -20.06% 8.69 7.19 -17.26% 7.19 6.02 -16.27% 10.92 9.21 -18.57%
med Disk Util(%) 31.79 24.41 -23.21% 31.91 24.97 -21.75% 28.49 23.6 -17.16% 49.13 40.59 -21.04%
makespan(s) 1128.7 1329.2 17.76% 1013.43 1186.1 17.04% 909.65 1081.39 18.88% 791.02 922.27 14.23%
#Evicted 402 498 23.88% 429 521 21.45% 489 561 14.72% 453 534 15.17%
#Started 64060 57232 -10.66% 77152 60378 -21.74% 61489 54393 -11.54% 79494 64995 -22.31%

7.5 Latency-sensitive Co-location Evaluation

To emulate a representative DB application, we deploy 20
instances of MongoDB cluster and an instance consists of 3
slaves and a master (each of them is run in a container). 40
YCSB containers are submitted into the system to generate
query stress. MongoDB is configured to have a constant
replication factor of two replicas per shard, meeting the
minimum recommended production settings. A range of
YCSB configurations covering different types of data op-
erations, e.g., read-heavy, write-heavy, 95/5% breakdown
of read/write and 95/5% breakdown of write/read work-
loads are used to stress the data stores. Record count and
operation count are set to be 4M and 400k respectively.
Furthermore, we also use Sysbench to represent other com-
prehensive workloads. Particularly, we submit a bunch of
1,200 sysbench containers and each one calculates the prime
20,000 with 4 threads, requesting for a CPU core by default.
We still submit the group of 60 jobs used in Section 7.4.
Performance Guarantee for LRA. Boxplots in Fig. 19 firstly
illustrate the measured performance of YCSB under dif-
ferent UP and RP schemes. Observably, all operational la-
tency and running time of YCSB benchmark in RP scheme
can be significantly reduced against UP scheme in which
performance awareness and resource throttle are turn off.
Compared with the results when the LRA runs alone,
RP oversubscription only experiences slight performance
degradation. For example, the median value of 95p read la-
tency of ROSE-RP increases merely by 5.4% compared with
running the LRA alone, while in ROSE-UP the value will be
2.58x times that of the running-alone LRA. Equivalently, the
read latency in ROSE-RP has a 55.3% reduction compared
with ROSE-UP. This is because effective resource throttling
can guarantee sufficient resource provisioning to LRA and
adaptively adjust the speculative tasks to avoid excessive
oversubscription. We can draw similar conclusions from
other 95p cleanup and update latency.

Accordingly, the median throughput of ROSE-RP can
reach roughly 2.87 kops/sec, with only 12.8% performance

400 600 800 1000 1200 1400
0.0

0.2

0.4

0.6

0.8

1.0

C
D
F

RB-UP
RB-RP
Run-Alone

600 800 1000 1200 1400

QLB-UP
QLB-RP
Run-Alone

800 1000 1200 1400
EPS

0.0

0.2

0.4

0.6

0.8

1.0

C
D
F

SLB-UP
SLB-RP
Run-Alone

800 1000 1200 1400
EPS

ROSE-UP
ROSE-RP
Run-Alone

Fig. 20. Throughput comparison of sysbench containers

degradation compared against running-alone LRA. By con-
trast, if we use ROSE-UP without prioritizing LRA’s per-
formance, the throughput will be decreased to only 9% of
the baseline throughput, which is no longer tolerable. More
comparisons can be easily observed from Fig. 19. We can
conclude that the performance-aware RP oversubscription
can effectively maintain LRA’s responsiveness, and thus is
very suitable for resource oversubscription among latency-
sensitive workloads.

Fig. 20 shows the CDF of sysbench performance, mea-
sured by the built-in events per second (EPS). It is obvious
that all RP schemes outperforms UP schemes. Explicitly, the
curve of RP schemes is much closer to the baseline when
LRAs run alone. However, the overall EPS of UP curve is far
lower than the other two. More specifically, the median EPS
of ROSE-RP can achieve 978.26, only with 4% degradation
compared with the running-alone baseline (1019.47). How-
ever, the EPS of adopting the ROSE-UP oversubscription
will drop to 805.37, which has been degraded over 20%.
More specifically, roughly 85% container’s EPS in ROSE-RP
are between 850 to 1050, while in ROSE-UP approximately
75% container’s EPS are no great than 850. All these results
demonstrate the proposed performance-aware monitor and
runtime resource throttling can effectively protect LRAs

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 9, NO. 99, 2019 16

from being aggressively oversubscribed by other batch jobs.
Overall Utilization and Performance Impact on Batch
Jobs. Since Section 7.4 has demonstrated the utilization
increase of adopting UP oversubscription against non-
oversubscription, we will focus on the comparisons between
UP and RP schemes, and further examine their impact on
the performance of batch jobs. Table 6 outlines all com-
parative statistics. The overall utilization of *-UP can be
maintained the same level as that of batch-only co-location.
For instance, the median disk utilization per machine is
49.13%, only have a 1.83% absolute discrepancy against that
(50.956%) in the batch-only test. This is because the fixed
cluster capacity determines the similar saturation in the
same consolidated system. Nevertheless, as demonstrated
above, the LRA’s responsiveness has been severely affected.
Furthermore, by adopting RP oversubscription, the utiliza-
tion of CPU and disk can still reach 56.34% and 43.49%,
separately. Although all system metrics of *-RP exhibit de-
creased phenomenon against *-UP, this is not unexpected
since resource oversubscription are preservably conducted
in order to guarantee performance of LRAs. This indicates
the necessity of adopting RP oversubscription for LRA,
despite that it will slightly diminish the utilization.

Regarding the total number of launched speculative
tasks, ROSE-UP and ROSE-RP can be found 32.45% and
44.77% reduction respectively compared against that in
batch-only co-location. Against ROSE-UP, the number that
ROSE-RP can launch is reduced by 22.31% and the evicted
task number is also slightly increased by 15.17% as more
speculative tasks are forced to give ways to LRAs when spe-
cific LRAs are detected suffering from performance degra-
dation. Consequently, the makespan will be extended to
791.02s and 922.27s in ROSE-UP and ROSE-RP compared
against the same jobs in batch-only co-location (517.4s).
Against ROSE-UP, the makespan of ROSE-RP is extended by
4.23%. In reality, the extension in ROSE-RP can be attributed
to resource contention incurred in mixed co-location, less
launched speculative tasks and higher eviction frequency
for giving way to LRAs. As the responsiveness protection (*-
RP) can be enforced onto any other placement approaches,
experiments also showcase similar comparison results.

8 RELATED WORK

Cluster scheduling. Resource management systems in
shared clusters are proposed [1][2][3][4] to underpin di-
verse workload through resource negotiations in centralized
manager. Capacity Scheduling [49] or Fairness Schedul-
ing [50][51] are proposed to fulfill an efficient quota-based
resource sharing among multiple jobs. The objective is the
enforcement of scheduling invariants for heterogeneous ap-
plications, with policing/security utilized to prevent ex-
cessive resource occupation. It sacrifices efficient resource
utilization for the assurance of scheduling fairness and job
execution performance.
Oversubscription in virtualized environments. Over-
committing memory or CPU is a long-standing concept
in the Linux kernel [9]. It allows for allocation of more
resources than available, based on the assumption that
processes often do not utilize applied resources fully. Con-
servative systems frequently leverage this concept to avoid

the dangers of OOM killing and evictions. In fact, virtual re-
sources (e.g., vCPU) are actually visible to the resource man-
ager. The underlying over-committing mechanism in the
standalone is orthogonal to the proposed cluster scheduling
policy. In virtualized Cloud datacenters, resource oversub-
scription is a widely-used technique [8][10][52] due to the
same principle. Different VMs might have differentiated
QoS, resulting in the different tolerance level of being over-
booked from its own resources. Available physical capacity
can be dynamically adjusted for VMs that need the resource.
A feedback-control approach is adopted to steer and ensure
the resource re-distribution among co-located VMs depend-
ing on their tolerated oversubscription level. However, this
requires proactive exploitation of per-task resource patterns,
and thus cannot be directly applied into the computation-
intensive scenario consisting of millions of running tasks.
ROSE compacts the resource utilization by aggressively dis-
patching latency-agnostic tasks and reactively coordinates
shared resources through QoS-aware throttling.
Oversubscription in Big Data environments. Centralized
oversubscription in YARN [11], Mesos [12] and Datom [53]
re-uses the resource allocation strategy used in the central-
ized scheduling pipeline. All oversubscription decisions are
handled in the central manager (YARN RM or MesosMaster)
according to current machine loads that places considerable
strain on the cluster scheduler. The message including ma-
chine load level, where to launch opportunistic tasks is only
piggy-backed by the heartbeat between NM, RM and AM.
Afterwards, opportunistic tasks will be sent, enqueued and
launched on the given NM. The the whole procedure take
at least 3 heartbeat intervals, and the time will be several
times longer considering the task retry and re-submission.
However, resource usage changes during this time period
and resource mismatch will result in the inaccurate spec-
ulative task distributing, long-time queuing, cancelling, as
well as longer job completion times. By contrast, ROSE
harnesses the decentralized, heartbeat-decoupled method
to filter proper nodes for oversubscription, and uses the
threshold control to flexibly create and control specula-
tive tasks at any possible moment. Within decentralized
schedulers, Apollo [13] introduces opportunistic scheduling
to take advantage of idle resources. However, randomly
selected tasks can only fill the spare capacity of compute
slots and may lead to blind task dispatching. Mercury [14]
adopts a hybrid scheduling to enhance cluster throughput
and reduce feedback delays. These approaches rely on the
precise queue delay estimation. However, many factors
including code logic, processed data size and runtime re-
source allocation will make the execution time difficult to
predict. Sparrow [41] and Hawk [20] perform random-based
probing to assign tasks. However, due to limited visibility
of entire cluster resources, it sacrifices scheduling quality
for low-latency and is unlikely to ascertain an appropriate
destination machine under high load. In comparison, ROSE
can comprehensively reuse all idle resources with accurate
machine filtering and task packing.

9 CONCLUSIONS AND FUTURE WORK

This paper proposes ROSE, a resource management plat-
form capable of conducting performance-aware resource
oversubscription in a distributed manner. The approach

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 9, NO. 99, 2019 17

takes into account specifically latency-sensitive applications,
due to the increasing importance of Quality of Services
(QoS) assurance, and investigates the potential implication
of co-locating them with batch jobs. Main conclusions can
be summarized as follows:

Judiciously oversubscribed resources for speculative task ex-
ecution often increase substantially the gain of resource effi-
ciency. Although individual speculative task may experi-
ence a slight slowdown due to interference, the overall job
completion time will be significantly reduced owing to a
much higher task concurrency. The distributed and loosely-
coordinated scheduling mode within each Job Manager to
re-use idle resources is also becoming a necessity when han-
dling heterogeneous workloads with diverse characteristics.

Tackling workload co-location plays an increasingly important
role in resource management and job scheduling. Improving the
resource utilization and guaranteeing the QoS of running
applications has become a severe dilemma which requires
constant efforts to balance. It is still challenging to realize
innovations in terms of QoS modelling, interference-aware
job scheduling and fine-grained resource management in
uncertain and extra-dynamic environments.

Analysing and quantifying the elasticity and plasticity in
the cloud environments can facilitate the design of the next-
stage resource scheduling system. Exclusive resource plasticity
indicates more stringent throttling of resource allocation to
batch tasks, resulting in improved effects on QoS assurance
of long running applications. However, the limitations are
the break-down of resource elasticity and the resultant lower
utilization. Therefore, only elaborate planning for resource
re-usability and resource reservation can achieve a high-
quality resource sharing with performance isolated.

Dealing with imbalance among multi-dimensional resources
is another important but open research challenge in the context of
resource oversbuscription. Such a problem is often formalized
as a multi-objective combinatorial optimization problem.
Multiple objectives would have to include maximizing the
balance among different dimensions, minimizing job exe-
cution time, and maximizing resource utilization subject
to constraints such as machine capacity, machine affinity
preference, etc. Speculative task placement could be further
formulated as an integer linear program (ILP), to be solved
as an online optimization problem. However, theoretically
optimal solutions are often difficult to achieve in practice
due to various factors including resource reservation for
load spike, and dynamic request changes in real use cases.
Therefore, oversubscription-based scheduling with multi-
dimensional resources in large-scale clusters will require
further research effort and additional implementations.

We plan to futher study GPU oversubscription mecha-
nism in ROSE and analyze historical tracelogs of different
LRAs before employing reinforcement learning technique
to automate and optimize oversubscription configurations.

ACKNOWLEDGMENT

We would like to thank Alibaba Group, particularly col-
leagues from Fuxi scheduling team for their collaboration.
This work is supported by National Key R&D Program
of China (2016YFB1000503), NSFC (61421003), the EPSRC
(EP/T01461X/1) and Beijing Advanced Innovation Center
for Big Data and Brain Computing (BDBC).

REFERENCES

[1] V. K. Vavilapalli, A. C. Murthy, C. Douglas, S. Agarwal, M. Konar,
R. Evans, T. Graves, J. Lowe, H. Shah, S. Seth et al., “Apache
Hadoop YARN: Yet Another Resource Negotiator,” in ACM SoCC,
2013.

[2] B. Hindman, A. Konwinski, M. Zaharia, A. Ghodsi, A. D. Joseph,
R. H. Katz, S. Shenker, and I. Stoica, “Mesos: A platform for fine-
grained resource sharing in the data center,” in USENIX NSDI,
2011.

[3] Z. Zhang, C. Li, Y. Tao, R. Yang, H. Tang, and J. Xu, “Fuxi: a
fault-tolerant resource management and job scheduling system at
internet scale,” in VLDB, 2014.

[4] A. Verma, L. Pedrosa, M. Korupolu, D. Oppenheimer, E. Tune, and
J. Wilkes, “Large-scale cluster management at google with borg,”
in ACM EuroSys, 2015.

[5] Q. Liu and Z. Yu, “The elasticity and plasticity in semi-
containerized co-locating cloud workload: A view from alibaba
trace,” in ACM SoCC, 2018.

[6] C. Reiss, A. Tumanov, G. R. Ganger, R. H. Katz, and M. A. Kozuch,
“Heterogeneity and dynamicity of clouds at scale: Google trace
analysis,” in ACM SoCC, 2012.

[7] C. Delimitrou and C. Kozyrakis, “Quasar: resource-efficient and
qos-aware cluster management,” in ACM ASPLOS, 2014.

[8] B. Urgaonkar, P. Shenoy, and T. Roscoe, “Resource overbooking
and application profiling in shared hosting platforms,” ACM
OSDI, 2002.

[9] Overcommit. [Online]. Available: https://www.kernel.org/doc/
Documentation/vm/overcommit-accounting

[10] L. Tomás and J. Tordsson, “Improving cloud infrastructure utiliza-
tion through overbooking,” in ACM ICAC, 2013.

[11] YARN Oversubscription. [Online]. Available: https://issues.
apache.org/jira/browse/YARN-1011

[12] Mesos Oversubscription. [Online]. Available: https://issues.
apache.org/jira/browse/MESOS-354

[13] E. Boutin, J. Ekanayake, W. Lin, B. Shi, J. Zhou, Z. Qian, M. Wu,
and L. Zhou, “Apollo: scalable and coordinated scheduling for
cloud-scale computing,” in USENIX OSDI, 2014.

[14] K. Karanasos, S. Rao, C. Curino, C. Douglas, K. Chaliparambil,
G. M. Fumarola, S. Heddaya, R. Ramakrishnan, and S. Sakalanaga,
“Mercury: hybrid centralized and distributed scheduling in large
shared clusters,” in USENIX ATC, 2015.

[15] S. K. Barker and P. Shenoy, “Empirical evaluation of latency-
sensitive application performance in the cloud,” in ACM SIGMM,
2010.

[16] P. Garraghan, X. Ouyang, R. Yang, D. McKee, and J. Xu, “Straggler
root-cause and impact analysis for massive-scale virtualized cloud
datacenters,” IEEE Trans. on Services Computing, 2016.

[17] Apache Hadoop. [Online]. Available: http://hadoop.apache.org
[18] S. Das, V. R. Narasayya, F. Li, and M. Syamala, “Cpu sharing

techniques for performance isolation in multi-tenant relational
database-as-a-service,” VLDB, 2013.

[19] P. Delgado, D. Didona et al., “Job-aware scheduling in eagle:
Divide and stick to your probes,” in ACM SoCC, 2016.

[20] P. Delgado, F. Dinu, A.-M. Kermarrec, and W. Zwaenepoel,
“Hawk: Hybrid datacenter scheduling,” in USENIX ATC, 2015.

[21] Apache Tez. [Online]. Available: http://tez.apache.org/
[22] Alibaba Cluster Trace. [Online]. Available: https://github.com/

alibaba/clusterdata
[23] C. Delimitrou and C. Kozyrakis, “Paragon: Qos-aware scheduling

for heterogeneous datacenters,” in ACM ASPLOS, 2013.
[24] I. S. Moreno, P. Garraghan, P. Townend, and J. Xu, “Analysis,

modeling and simulation of workload patterns in a large-scale
utility cloud,” IEEE Trans. on Cloud Computing, 2014.

[25] Fluentd. [Online]. Available: https://www.fluentd.org/
[26] Apache kafka. [Online]. Available: https://kafka.apache.org
[27] J. W. Tukey, “Exploratory data analysis,” 1977.
[28] M. Frigge, D. C. Hoaglin, and B. Iglewicz, “Some implementations

of the boxplot,” The American Statistician, 1989.
[29] M. Hubert and E. Vandervieren, “An adjusted boxplot for skewed

distributions,” Computational Statistics & Data Analysis, 2008.
[30] P. J. Rousseeuw and M. Hubert, “Robust statistics for outlier

detection,” Wiley Data Mining and Knowledge Discovery, 2011.
[31] X. Zhang, E. Tune, R. Hagmann, R. Jnagal, V. Gokhale, and

J. Wilkes, “Cpi 2: Cpu performance isolation for shared compute
clusters,” in ACM Eurosys, 2013.

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 9, NO. 99, 2019 18

[32] S. Wu, S. Tao, X. Ling, H. Fan, H. Jin, and S. Ibrahim, “ishare:
Balancing i/o performance isolation and disk i/o efficiency in
virtualized environments,” Concurrency and Computation: Practice
and Experience, vol. 28, no. 2, pp. 386–399, 2016.

[33] C. A. Lai, Q. Wang, J. Kimball, J. Li, J. Park, and C. Pu, “Io
performance interference among consolidated n-tier applications:
Sharing is better than isolation for disks,” in IEEE Cloud, 2014.

[34] R. Grandl, G. Ananthanarayanan, S. Kandula, S. Rao, and
A. Akella, “Multi-resource packing for cluster schedulers,” ACM
SIGCOMM, 2015.

[35] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein, Introduc-
tion to algorithms. MIT press, 2009.

[36] Linux Control Groups. [Online]. Available: http://www.kernel.
org/doc/Documentation/cgroups/cgroups.txt

[37] Intel RDT Software Package. [Online]. Available: https://github.
com/intel/intel-cmt-cat

[38] J. Zhu, R. Yang, C. Hu et al., “Perphon: a ml-based agent for
workload co-location via performance prediction and resource
inference,” in ACM SoCC, 2019.

[39] C. T. Karamanolis, M. Karlsson, and X. Zhu, “Designing control-
lable computer systems.” in HotOS, 2005.

[40] S. Wang, C. Li, H. Hoffmann, S. Lu, W. Sentosa, and A. I. Kistijan-
toro, “Understanding and auto-adjusting performance-sensitive
configurations,” in ACM ASPLOS, 2018.

[41] K. Ousterhout, P. Wendell, M. Zaharia, and I. Stoica, “Sparrow:
distributed, low latency scheduling,” in ACM SOSP, 2013.

[42] O. OMalley, “Terabyte sort on apache hadoop,” Yahoo, available
online at: http://sortbenchmark. org/Yahoo-Hadoop. pdf, 2008.

[43] Apache Mahout. [Online]. Available: http://mahout.apache.org/
[44] H. Yang, A. Breslow, J. Mars, and L. Tang, “Bubble-flux: Precise

online qos management for increased utilization in warehouse
scale computers,” in ACM ISCA, 2013.

[45] L. Wang, J. Zhan, C. Luo, Y. Zhu, Q. Yang, Y. He, W. Gao, Z. Jia,
Y. Shi, S. Zhang et al., “Bigdatabench: A big data benchmark suite
from internet services,” in IEEE HPCA, 2014.

[46] Ycsb. [Online]. Available: https://github.com/brianfrankcooper/
YCSB

[47] Mongodb. [Online]. Available: https://www.mongodb.com
[48] Sysbench. [Online]. Available: https://wiki.gentoo.org/wiki/

Sysbench
[49] YARN Capacity Scheduler. [Online]. Avail-

able: http://hadoop.apache.org/docs/current/hadoop-yarn/
hadoop-yarn-site/CapacityScheduler.html

[50] YARN Fair Scheduler. [Online]. Avail-
able: http://hadoop.apache.org/docs/current/hadoop-yarn/
hadoop-yarn-site/FairScheduler.html

[51] M. Zaharia, D. Borthakur, J. S. Sarma, K. Elmeleegy, S. Shenker,
and I. Stoica, “Job scheduling for multi-user mapreduce clusters,”
Technical Report UCB/EECS-2009-55, EECS Department, Univer-
sity of California, Berkeley, Tech. Rep., 2009.

[52] L. Tomás, E. B. Lakew, and E. Elmroth, “Service level and per-
formance aware dynamic resource allocation in overbooked data
centers,” in ACM/IEEE CCGrid, 2016.

[53] J. Chen, C. Cao, Y. Zhang, X. Ma, H. Zhou, and C. Yang, “Im-
proving cluster resource efficiency with oversubscription,” in IEEE
COMPSAC, 2018.

Renyu Yang is a postdoc researcher with Uni-
versity of Leeds and Edgetic Ltd. UK. He re-
ceived BSc and PhD degree from Beihang Uni-
versity in 2011 and 2017. He was previously
with Alibaba Group and had industrial experi-
ence in building large-scale resource scheduling
systems. His research interests include reliable
resource management, distributed systems and
data analytics. He is a member of IEEE.

Chunming Hu is an Associate Professor and
Vice Dean of the School of Computer Sci-
ence and Engineering, Beihang University. He
received PhD degree from Beihang University
in 2006. His current research interests include
distributed systems, system virtualization, data
management and processing systems.

Xiaoyang Sun is currently a PhD student with
University of Leeds, UK. He received MSc de-
gree from Beihang University, China in 2018. He
was previously a software engineer in Alibaba
Group, working on real-time systems and large-
scale cluster scheduling. His research interests
include distributed systems and data analytics,
etc.

Peter Garraghan is a Lecturer in the School
of Computing & Communications, Lancaster
University. He has industrial experience build-
ing large-scale systems and his research inter-
ests include distributed systems, cloud datacen-
ters, dependability, data analytics and energy-
efficient computing.

Tianyu Wo is an Associate Professor with the
School of Computing at Beihang University. He
received his BEng and PhD Degrees both in
computer science from Beihang University in
2001 and 2008 respectively. His current re-
search interests include distributed systems,
network operation systems and IoV systems. He
is a member of IEEE.

Zhenyu Wen is currently a postdoc researcher
at the School of Computing, Newcastle Univer-
sity, UK. He received M.S and Ph.D. degrees
in computer science from Newcastle University,
Newcastle Upon Tyne, UK in 2011 and 2015 re-
spectively. His current research interests include
multi-objects optimisation, big data processing
and cloud computing.

Hao Peng is currently a Ph.D. candidate at the
State Key Laboratory of Software Development
Environment, and Beijing Advanced Innovation
Center for Big Data and Brain Computing in Bei-
hang University. His research interests include
distributed machine learning, big data process-
ing, urban computing, etc.

Jie Xu is Chair Professor of Computing at Uni-
versity of Leeds, Director of UK EPSRC WRG
e-Science Centre and Chief Scientist of BDBC,
Beihang University, China. He has worked in
the field of dependable distributed computing for
over 30 years. He is a Steering/Executive Com-
mittee member for numerous IEEE conferences
including SRDS, ISORC, HASE, SOSE and is
a co-founder for IEEE IC2E. He has led or co-
led many research projects to the value of over
$30M, and published in excess of 300 academic

papers, book chapters and edited books. He is a member of IEEE.

Chao Li is Director of Engineering at Alibaba
Group. He leads the teams of Cloud resource
scheduling infrastructure. His research interest
is distributed systems and large scale data pro-
cessing techniques.

