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Abstract 
This article introduces a new class of models for multiple 
networks. The core idea is to parametrize a distribution on 
labelled graphs in terms of a Fréchet mean graph (which 
depends on a user-specified choice of metric or graph 
distance) and a parameter that controls the concentration 
of this distribution about its mean. Entropy is the natural 
parameter for such control, varying from a point mass 
concentrated on the Fréchet mean itself to a uniform 
distribution over all graphs on a given vertex set. We 
provide a hierarchical Bayesian approach for exploiting 
this construction, along with straightforward strategies for 
sampling from the resultant posterior distribution. We 
conclude by demonstrating the efficacy of our approach via 
simulation studies and two multiple-network data analysis 
examples: one drawn from systems biology and the other 
from neuroscience.  
 
Keywords: Hierarchical Bayesian models, Graph metrics, 
Network variability, Object oriented data, Random graphs, 
Statistical network analysis. 
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Introduction 

This article introduces a new class of models for data consisting of observations 

of multiple networks. With advances in measurement technology, these types of 

data are rapidly becoming prominent in fields such as systems biology and 

neuroscience, among others. In systems biology, inferences must often be 

combined on the same gene interaction network, where different inferences 

correspond to different data sets or to different analysis procedures applied to the 

same data (Bartlett et al., 2014). In neuroscience, a population of networks 

encodes the way different regions of the brain interact when individuals perform a 

given task (Biswal et al., 2010), or characterises a population of individuals 

suffering from a neurological or psychiatric disorder (Lynall et al., 2010; Nelson 

et al., 2017). 

The developments proposed herein are therefore motivated by the problem of 

modelling populations of networks. The class of models we propose is based on 

the idea that distributions on graph space are naturally parameterised in terms of 

a mean—the Fréchet mean, which is itself a network—and a measure of how 

concentrated the distribution is about this mean. A benefit of our approach is that 

the Fréchet mean itself can be interpreted as the representative of a population 

of networks, relative to a user-specified choice of metric or graph distance. To 

specify concentration around the Fréchet mean, we use entropy as described 

below. We then provide general strategies for performing Bayesian inference for 

these new models, allowing for the modeller to decide which metric is most 

suitable for the given application at hand. 

By multiple networks we mean two or more networks comprising a set of 

independent observations, which we assume here are defined over the same 

vertex set. Generalizing this problem to map networks of arbitrary different sizes 

to a common reference or with scrambled order of nodes is a non-trivial 

extension, solving a potentially computationally intractable problem (we elaborate 
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more on this point in the discussion). In for example medical imaging and 

bioinformatics this assumption is not unreasonable, if admittedly restrictive. A 

brain connectome example (which we study later in Section 6) drawn from 

neuroscience is displayed in Fig. 1, with regions of the brain assigned to nodes 

according to the CC200 atlas, which was proposed by Craddock et al. (2012). 

Note from Fig. 1 that if we consider each possible pair of observations (first three 

figures, from left to right), any member of such pair can be seen as a modification 

of the other member or as a modification from a representative of the population 

(Fig. 1, on the right). Thus, although one modelling approach would be to treat 

such networks as realisations from a single random graph model based on global 

features, such as a stochastic block model, this limits the inferential insights that 

can be gained from multiple networks as opposed to a single one. 

Indeed, the questions arising from multiple network data demand a different 

perspective: 

1. How does one find a summary or representative (at the population level) 

for multiple observed networks? In other words, what type of structure 

must the modeller impose on the space of labelled graphs to define a 

suitable estimand? Without such an estimand (e.g., in the case of block 

modelling or link prediction) we risk our inference yielding a summary of 

the population that does not look like any of its elements, and cannot be 

used in place of them. 

2. In the Bayesian setting, if we have multiple networks (such as those in 

Fig. 1) as historical data, how do we perform prior elicitation without 

resorting to global assumptions on the network structure? For example, in 

systems biology it is typical that past inferences regarding a given gene 

interaction network may provide a very accurate idea about what a newly 

inferred network might be expected to look like, when obtained using a 

new measurement technology. This is illustrated in Section 6.1. 
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We show here that both questions can be answered by first assuming that the 

observed networks are perturbations of a “typical” network, and then 

characterising the variability of the data in those terms. Specifically, the Fréchet 

mean implied by a given metric will parametrize a generative model, under the 

assumption that the probability of generating a specific network is given by a 

strictly decreasing function only of its distance from this Fréchet mean. 

To construct our models, we borrow ideas from the graphical models and shape 

theory literatures, where authors have considered the notion of a “typical” non-

Euclidean observation, and random perturbations from that observation. Previous 

work on multiple networks in the statistics literature includes the following: The 

approaches proposed by Balachandrian et al. (2017) and Chang et al. (2018) for 

estimating features (subgraph counts and density, respectively) from network 

data; the model proposed by Gollini and Murphy (2016) (which is an extension of 

the latent space model proposed by Hoff et al. (2002)) for describing the 

variability of a homogeneous population of networks; the Bayesian 

nonparametric approach proposed by Durante et al. (2017) for modelling 

heterogeneous populations of networks; and the approach for comparing 

populations of networks via testing by Ginestet et al. (2017). The methodology of 

the last paper is based on the asymptotic theory for the space of unlabelled 

networks developed by Kolaczyk et al. (2019), which serves to quantify how 

concentrated the distribution is around a mean network when formulated in terms 

of a very specific metric. Kolaczyk et al. (2019) and earlier Feragen et al. (2011) 

discuss the problem of estimating a mean and the geometry associated to the 

space of possible values for that estimand, the former for the space of graphs 

while the latter for the space of trees. 

Recently, Nielsen and Witten (2018) proposed a multiple network model based 

on the random dot product graph model; their approach builds on work by Wang 

et al. (2017), who proposed a gradient-descent method to compute the 

simultaneous embedding of a set of graphs. In terms of inference, Nielsen and 
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Witten (2018) focus on the problem of comparing populations of networks. Tang 

et al. (2017) focus on the problem of testing for the difference of two populations 

of networks; the authors assume a random dot product graph model, as in Wang 

et al. (2017), but computation is done using the bootstrap. We also note the 

model-based approach for estimating the generating mechanism of multiple 

networks given by Bhattacharyya and Chatterjee (2018). Finally, some of the 

ideas developed in this paper have parallels in the literature for modelling 

measurement error for networks, including recent work by Newman (2018), 

Peixoto (2018b) and Le et al. (2018). 

In a different direction, similarity measures on the local structure of a network 

have been used to perform prior elicitation on graph space, particularly in the 

graphical models literature; this idea has been discussed by Mukherjee and 

Speed (2008) as well as Mitra et al. (2013). Our approach can also be related to 

work by Tan et al. (2017) and the work by Ni et al. (2018) in the graphical models 

literature, who propose hierarchical models on graph space. From the shape 

theory literature, we borrow insight from the work of Mardia and Dryden (1998), 

which uses the idea of modelling a set of non-Euclidean objects (shapes) in 

terms of a centroid and parameters that control how concentrated the distribution 

will be around that centroid. 

From a Bayesian point of view, computing a Fréchet mean at the population level 

is analogous to minimising the posterior expected loss, and becomes the same 

problem when the loss is a metric. Wade and Ghahramani (2017) exploit this 

idea, in the context of cluster analysis. In our work, we use entropy in conjunction 

with the Fréchet mean to define a distribution for non-Euclidean data, and in that 

sense, our work relates to the methodology developed by Pennec (2006). 

Distinct from the literature discussed above, the methodology we propose here 

achieves different goals: (1) It enables the modeller to characterise the variability 

of a set of observed networks in terms of a Fréchet mean and a measure of how 
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concentrated the distribution is around this mean, and to perform Bayesian 

inference, without resorting to asymptotics; (2) It enables the practitioner 

interested in network data to perform prior elicitation on graph space by using an 

observed network as starting point; and (3) It provides tools for incorporating 

different metrics on graph space into the modelling procedure, enabling the 

encoding of different assumptions the practitioner may have regarding similarity 

among graphs. We also are able to discuss a looser notion of a location-scale 

family for random graph models using this set of technology, taking inspiration 

from (Fang et al., 1990), we use the functional form of a symmetric multivariate 

distribution whose both location and scale need to be relaxed to apply. Concrete 

examples of this notion are provided, along with theoretical results that show that 

these examples are legitimate. We show how these examples relate to one 

another. 

The remainder of this article is organised as follows. Section 2 first introduces the 

necessary preliminaries, including metrics on graph space and the Fréchet 

mean. Section 3 then details the general concepts on which the generative 

models proposed in this paper are be based on, along some examples. The 

corresponding strategies for Bayesian modelling and computation are presented 

in Section 4. Section 5 documents the behaviour of our models via simulation 

studies, and Section 6 describes fully the fitting of our models to the multiple-

network data introduced in Fig. 1 above. Finally, Section 7 discusses briefly the 

contributions of our approach, placing it in context and outlining limitations as 

well as future possibilities. 

Preliminaries 

A simple labelled graph ( , )  comprises a set of vertices  and a set of 

edges  :| | 2E E  
. Letting | |N  , we may represent  by an N × N 

adjacency matrix 
A

 such that 
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1 if  th e re  is  a n  e d g e  b e tw e e n  n o d e s   a n d  ,
( , )

0 o th e rw ise.

i j
A i j


 


 

The models and methods we propose can all be applied equally to directed 

graphs (with 
( , )A i j

 distinct from 
( , )A j i

 for i < j) and those having self-loops (

( , ) 1A i i 
), as well as more generally any weighted graph such that each 

( , )A i j
 

takes values in some finite, discrete set. We write that a graph 1 1 1
( , )

 is a 

subgraph of 2 2 2
( , )

 if 1 2


 and 1 2


. For a set 
 s s S , we denote by 

( , )
k

A i j
 the (i, j)th entry of the adjacency matrix of 

,
k

k S
. 

For N   and : {1, 2 , , }N  , define 

   [ ]
: : ( , ) :| | ,

N
N     

so that 
 [ ]N  represents the set of all N-node labelled networks of a given type 

(simple, directed, etc.). If we consider simple graphs, for example, then 

 
 2

[ ]
2

N

N


. We refer to 
 [ ]N  for the simple directed case as a graph space. 

This term tends to be used in this way (rather informally) in the graphical models 

literature. 

Metrics on graph spaces in turn allow for an appropriate definition of network 

structural similarity (Donnat and Holmes, 2018). We are interested in developing 

probability models on 
 [ ]N  given the choice of a metric 

(·,·)
G

d
 on 

 [ ]N . Two 

examples of metrics which can be used to formulate the models introduced in 

Section 3 below are as follows: 

1. The Hamming distance between two graphs when their adjacency 

matrices are treated as strings, which is given by the number of entries 

that disagree. We will use the notation 

1 2
1 2

( , ) | | ,
H H

d A A   
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to denote this distance independently of the type of network under 

consideration by the modeller (e.g., simple, directed). 

2. A Diffusion distance based on the graph Laplacian, for example the choice 

made by Hammond et al. (2013): 

1 2

2

1 2
( , ; ) e x p ( ) e x p ( ) , 0 ;

L F
d t tL tL t    ( (  

where 
·

F
((

 is the Frobenius norm and 
L

 is the combinatorial Laplacian 

matrix associated to an undirected graph : 

1

( , ) i f  ,
( , )

( , ) o th e rw is e.

N

k

A i k i j
L i j

A i j






 

 


 

Note that this is referred to by the letter L in (Chung, 1997), whilst Chung 

(unlike Hammond et al.) defines the Laplacian to be normalized. The 

normalized version of the matrix is an operator related to the Laplace-

Beltrami operator for objects different than networks via the discretization 

of a derivative. 

Hammond and coauthors (Hammond et al., 2013) argued that the 

diffusion distance is natural as two graphs are similar if they transmit 

information in the same way. Generic transmission is by them modelled 

using heat diffusion on the network. The distance therefore arises as 

ex p ( )tL
 is the kernel associated with (e.g., classical heat) diffusion on a 

graph  via the discrete Laplace operator 
L

. The value of t is here the 

time of diffusion. As 0t   we should return to whatever initial conditions 

were specified, and at t    equal proportions of diffused “stuff” should 

be at each node. 
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The value of 1 2
( , )

L
d

 measures the discrepancy after t units of time 

between the diffusion on 1  versus that on 2 . For our purposes t may be 

regarded as a parameter whose value can be elicited a priori using 

information from the application domain under consideration. As t 

decreases, it becomes harder to distinguish between diffusion patterns (no 

diffusion has happened yet) and therefore to distinguish between different 

elements of 
 [ ]N . Finally the graph Laplacian is discussed in detail in 

(Chung, 1997), and we use the unnormalized version. Hammond 

et al. (2013) argues that this captures the temporal evolution of the vector 

representing the diffusion. Thus this metric captured how differently things 

have flowed up to time t. 

While the Hamming distance focuses on simple flips of edges into non-edges 

(changes in very local structure), the diffusion distance is treating the objects 

functionally (i.e. it focuses on changes that may impact the global structure). 

One might ask what choice of metric should be made? Donnat and 

Holmes (2018) provide some guidelines in this choice of metric. The Hamming 

distance can be interpreted as simple flips of edges (a local modification of the 

network). The diffusion distance allow information to diffuse on the network, and 

then lets us compare that diffusion. As Donnat and Holmes (2018) discuss, the 

Hamming distance assume deletions and additions carry the same weight, even 

if their structural impact may not be equivalent. The Hamming distance is 

strongly affected by the sparsity of the graph, as already pointed out by the 

aforementioned authors. To take into account the sparsity into the metric, the 

Jaccard distance is used (Donnat and Holmes, 2018). The authors additionally 

discuss global metrics based on spectral distances. The diffusion distance 

balances information differently taking the diffusion of information on the network 

into account. Other balances between global and local can be made (Donnat and 

Holmes, 2018). Computationcal cost factor into our usage of these two metrics. 

Later on (see Section 4.2) we will illustrate how a model based on a simple 
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metric can aid the computation of the posterior for a model based on a more 

sophisticated metric. 

We conclude this section by introducing the Fréchet (1948) mean for use in the 

context of the metric spaces 
 [ ]

( , )
N G

d
 and associated probability models that 

we will consider below. Given an arbitrary metric space ( , )d  and a probability 

measure on , the Fréchet mean provides the notion of an average or measure 

of central tendency with respect to d. It generalizes the first moment to non-

Euclidean settings and has seen wide use in areas such as shape theory. 

Definition 2.1 (Fréchet mean). Let Y be a random element defined on sample 

space  and let (· ,· )d  be a metric on . The set 

2
arg in f [ ( , )]

m

Y
d Y



 


  (1) 

is called the Fréchet mean set of Y. 

We will use the Fréchet mean in conjunction with unimodality to formulate natural 

and intuitive models on the space 
 [ ]N  of labelled N-node networks. 

Modelling Approach 

In this section, we propose a generative modelling approach for data sets 

consisting of multiple networks. Our models are parametrized in terms of a 

unique mode and a univariate measure of dispersion around that mode. The 

mode in the space of labelled N-node networks 
 [ ]N  is itself a network defined 

on the same vertex set as each individual observation, allowing us to define a 

suitable estimand to obtain directly a population-level summary of multiple 

networks. 

In analogy to a location–scale family, we provide concepts that enable us to 

propose probability models on 
 [ ]N  in terms of a central graph (location) and 

Acc
ep

te
d 

M
an

us
cr

ipt



concentration around that central graph (scale of variation). We use the terms 

loosely given that we are working in a non-Euclidean setting. In contrast with the 

location–scale family, which takes the vector space structure for granted, we are 

constrained by the structure entailed by a metric in 
 [ ]N  and the fact that the 

space is finite. 

Definition 3.1 (Unimodal network distribution based on location). Fix a metric dG 

on 
 [ ]N  for N  , and consider a family of probability mass functions 

 
 [ ]

( · | )
m

N

m
p



 on 
 [ ]N  such that 

1. Each (· | )
m

p  is unimodal with mode 
 [ ]

m

N


; 

2. For 
 1 2 [ ]

,
N


, we have that 1 2

( , ) ( , )
m m

G G
d d

 implies 2 1
( ) ( )p p

, while 1 2
( , ) ( , )

m m

G G
d d

 implies 2 1
( ) ( )p p

. 

The most straightforward example is as follows: the Centred Erdös–Rényi Model, 

which will be introduced later on this section. We shall now need another 

important concept from information theory, namely that of entropy, see Mézard 

and Montanari (2009). This is used to measure the uncertainty of a random 

variable and takes the form of 

 ( | ) · lo g ( | ) .
m m

H p p



   (2) 

Sometimes lo g (·)  in the above expression is replaced by 2
lo g (·)

. We set 0·lo g (0 )  

to equate to zero, as usual. 

Building from unimodality we also need to introduce scale, which is our next step. 
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Definition 3.2 (Unimodal network distribution with location & scale). Fix a metric 

(·,·)
G

d
 on 

 [ ]N  for ,N   nonempty set 
  , and consider a family 

 
 [ ]

,
( · | , )

m

N

m
p




 

: 

1. For every fixed scale parameter 
*

   , the family 
 

 [ ]

*
( · | , )

m

N

m
p 



 

satisfies Definition 3.1 with respect to the metric dG. 

2. For every fixed location parameter 
 

*

[ ]N


, the entropy associated to 

the family 
 

*
(· | , )p




  is a strictly monotone function of    . 

For finite, discrete sets such as 
 [ ]N  and associated probability mass function 

(·)p , entropy  lo g (·)p
 provides a convenient characterization akin to 

variance, ranging from 0 for a point mass to 
 [ ]

lo g ( | |)
N  for the uniform 

distribution on 
 [ ]N . Entropy can thus be used to parametrize a family of 

discrete distributions on 
 [ ]N  with the same unique mode, in an analogous way 

to how the scale parameter would parametrize a member of the location–scale 

family when the location parameter has been specified. The metric provides a 

ranking of the elements 
 [ ]N  given the mode, the entropy enables the 

statistician to control the decay of the values of the probability mass function 

given that ranking. To take the analogy with a Gaussian distribution γ plays the 

role of 1 /   for the Gaussian, where 
2

  is the variance. Therefore we expect 

0   to play the role of    , or the maximum entropy solution that should be 

the least peaked. In contrast,    , we expect to correspond to the minimum 

entropy solution, and be the most concentrated distribution. Therefore intuitively, 

we expect the entropy to decay in γ. This allows us to consider the analogy of “

peaked” versus “flat” distributions where γ controls the peak. 
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We now provide two examples for the random graph distribution based on 

distance and entropy. These examples will be discussed in detail in Sections 4.1 

and 4.2, respectively. 

We will now introduce a first example of a random graph distribution based on 

distance and entropy; we call it the Centred Erdös–Rényi Model. The intuition 

behind this model is that noisy versions of the centroid (which is denoted by 
m

) 

are generated by flipping edges independently at random with probability α. From 

a modelling perspective, it is sensible to penalize (or constrain) α so it takes 

values much smaller than the density of 
m

; there is little utility for a model 

where the trend is overwhelmed by noise. 

Definition 3.3 (Centred Erdös–Rényi Model). Given a graph 
 [ ]

m

N


 and 

1 / 2 0  , consider a model (· | , )
m

p   on 
 [ ]N  of the form : 

 P r ( , ) ( , ) 1 .mA i j A i j     (3) 

We call this the Centred Erdös–Rényi Model (CER) with mode 
m

 and parameter 

α. 

Note that 
( , )A i j

 generating mechanism can also be written as 

( , ) | ( , ) , | ( , ) ( , ) |,m mA i j A i j A i j Z i j    

where the Z(i, j)’s are i id  B e r ( )  for 1 i j N   . 

This way of describing 
( , )A i j

’s generating mechanism highlights that edges or 

flipped to non-edges, or non-edges to edges, with probability α. This clarifies why 

we expect 

1

2
 

, as otherwise we are more likely to flip all edges and not be “

centered” at 
( , )mA i j

. This condition also will be required in the proofs of 

Proposition 3.1, which exactly establishes mode etc. Thus, for the Centred 
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Erdös–Rényi to effectively serve as an error measurement model, the α 

parameter should be constrained to be be smaller than the edge density 

parameter of 
m

. The condition 1 / 2 0   furthermore ensures that the 

maximum likelihood estimator (of 
m

) will be the graph that minimises the 

average number of mismatches with respect to the observed networks. For this 

model, we do not expect the observed graphs to be, on average, of different 

density than 
m

; this is because the error model affects edges and non-edges 

equally. Observe that if a parametric random graph model is further imposed 

upon 
m

 (e.g., Erdös–Rényi), then this model can be cast into the approach 

proposed by Newman (2018). 

Proposition 3.1. We let 
(·,·)

G
d

 denote the Hamming distance on 
 [ ]N . If two 

graphs 1  and 2  are generated from the Centred Erdös–Rényi model with 

centroid 
 [ ]

m

N


 and 0 1 / 2   then we have that 1 2
( , ) ( , )

m m

G G
d d

 

implies 2 1
( ) ( )p p

, while 1 2
( , ) ( , )

m m

G G
d d

 implies 2 1
( ) ( )p p

. We 

deduce that ( )p  is unimodal, and that the Centred Erdös–Rényi model is a 

unimodal network distribution based on location and scale. 

As a second example of a unimodal network distribution based on location and 

scale, we introduce a model motivated by the notion that the similarity with 

respect to the centroid is made concrete by the choice of 
(·,·)

G
d

 (e.g. the metrics 

proposed by Zelinka (1975), Hammond et al. (2013), or the ones discussed in 

Donnat and Holmes (2018)), and covered by our discussion in Section 2 earlier 

in the paper. 

Definition 3.4 (Spherical Network Family). Given a graph 
 [ ]

m

N


, a metric 

(·,·)
G

d
 on 

 [ ]N , and 0  , we propose: 

 ( | , ) e x p ( ( , )) ,
m m

G
p d    (4) 
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where ( · )  is a non-negative strictly increasing function such that (0 ) 0  . This 

is the Spherical Network Family with parameters 
m

 and γ. 

This model is related to the prior introduced by Mitra et al. (2013), which was 

introduced in the context of graphical modelling. A main difference with respect to 

their approach is that the Spherical Network Family is aimed to serve as the 

functional form for both the likelihood and the prior. This model also relates to the 

similarity measure proposed by Dahl et al. (2017) for random partitions. The 

normalizing constant for this model is the reciprocal of: 

 

 
[ ]

( , ) e x p ( ( , ) ) ,

N

m m

G
Z d 



   (5) 

here ( , )
m

Z   is known as the partition function of ( | , )
m

p  . We observe 

directly that ( ) 0Z    as it is a sum of positive terms. Just like the normalizing 

constant of any probability mass function, as (5) aggregates over 
 [ ]N


, the 

sum will not be a function directly of 
( ( , ) )

m

G
d

, only implicitly as the sum will 

vary depending on the functional form. Therefore ( , )
m

Z   is a positive constant 

that does not depend on 
( , )

m

G
d

. 

The functional form proposed for the Spherical Network Family (SNF) is inspired 

by the notion of symmetry of the density discussed in Fang et al. (1990). A 

random variable X on  has the symmetry of the density property if its density 

(· | , )p    is of the form 

 
1

( | , ) ( )·ex p ( ( , )) ,p X Z d X    


   

where , 0 , (·) 0      is a non-decreasing function, (· ,· )d  is a metric on . 

Proposition 3.2. The CER is a member of the SNF. 
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The above proposition demonstrates that the SNF is not empty. There are some 

other properties we would like to see, and to be clear on what properties that we 

desire, let us show that they hold in the following proposition. 

Proposition 3.3. We let 
(·,·)

G
d

 denote a graph metric on 
 [ ]N . If two graphs 1  

and 2  are generated from the Spherical Network Family with centroid 
m

 and 




  then we have that 1 2
( , ) ( , )

m m

G G
d d

 implies 2 1
( ) ( )p p , while 

1 2
( , ) ( , )

m m

G G
d d

 implies 2 1
( ) ( )p p

. As a consequence ( )p  is unimodal, 

and the Spherical Network Family is a unimodal network distribution based on 

location. In addition, the Spherical Network Family is unimodal network 

distribution based on location and scale if 
 ar ( , ) 0

m
d   
  . 

The next step consists in verifying if the examples we have presented fulfill the 

condition stated in Proposition 3.3. 

Proposition 3.4. The CER and SNF equipped with the diffusion distance fulfill the 

condition 
 ar ( , ) 0

m
d   
   when ( · )  is the identity function. 

The following property of the sample Fréchet mean will provide insight regarding 

the behavior of the MLE for both models defined above and supports our intuition 

that the posterior mode will tend to the true value of the Fréchet mean as the 

sample size increases. 

Proposition 3.5. The sample Fréchet mean in 
 [ ]N  converges to the true 

Fréchet mean when the later exists and is unique, for N  . 

Definition 3.1 is expressed in terms of the mode of the distribution. The following 

result indicates how the Fréchet mean and mode relate for the Centred Erdös–

Rényi Model: 
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Proposition 3.6. The mode and Fréchet mean coincide for the Centred Erdös–

Rényi Model defined on 
 [ ]

,
N

N 
. 

For the Spherical Network Family, the Fréchet mean maximises the kernel of the 

Boltzmann distribution in Eqn (4). This is a direct consequence of Definitions 2.1 

and 3.4. 

Now, we have enough elements for presenting our model for multivariate network 

data. Let N   and dG a metric on 
 [ ]N . To describe the variability of a set 

observations 
 1 2

, , ,
n


 in 

 [ ]

n

N , we propose a model of the form: 

0 0

1 2

1

( , , , | , ) ( | , ) ( ) ( | , ) ,

n

m m m

n i

i

p p p p   



    (6) 

where (·| , )
m

p   is the likelihood, which is given by a unimodal network 

distribution based on location and scale; 
0 0

(·| , )p   is the prior on the mode of 

the distribution, such prior is also given by a distribution with the same functional 

form as the likelihood; finally, ( )p   is the prior on the entropy of the distribution. 

One implication of choosing this parametrization is that the inference will be in 

terms of the population centroid, which is a network by itself. This enables the 

statistician to perform an operation equivalent to smoothing in graph space. 

We propose this model with the aim to represent the variability of a set of 

observations  1 2
, ,

 
,

n


 in 
 [ ]

n

N  such that, for every pair 
 ,

i j  with 

1 ,
i

i j n  
 is a small perturbation of j  according to dG. The main 

assumptions encoded by the model presented in Equation 6 are: 

1. The distribution of the observations is assumed to be unimodal a priori; 
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2. The variability of the observations is characterised in terms of the 

dispersion around the mode. Such dispersion is defined in terms of dG a 

metric on 
 [ ]N ; 

3. The prior distribution for the mode is assumed to have the same functional 

form as the likelihood. This implies that it will be unimodal; its mode will be 

denoted by 
0

. We will not assume any structure on 
0

, unless we state 

otherwise. 

The first condition is set to guarantee identifiability of the model. The second 

condition enables the statistician to use the notion of similarity between networks, 

which can be subject to elicitation, to define variability in the space of graphs, 

which is, in contrast, very challenging to elicit. The third condition has parallel 

versions in the functional data analysis literature: we assume a parametric model 

for the error, with very simple structure, while allowing the trend to be as complex 

as it needs to be. An alternative approach would be to assume a trend with more 

defined structure and allow for a richer error structure. We elaborate more on this 

point in the discussion. 

Bayesian Modelling and Computation 

In this section, we introduce Bayesian hierarchical models based on the 

distributions presented in Section 3. For these models, we assume the same 

functional form for the sampling distribution and for the prior on the Fréchet 

mean. We also discuss strategies for sampling from the posterior, with emphasis 

on the case when the normalising constant depends on the Fréchet mean. 

Bayesian Inference for the Centred Erdös–Rényi Model 

We now discuss a model of the form given in (6) that is inspired by the Centred 

Erdös–Rényi Model (CER). The intuition behind this model is the following: given 

a set of observed networks 
 1 2

, , ,
n


 in 

 [ ]

n

N , their variability can be 
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characterised in terms of the network 
m

 that serves as the mode of the 

distribution and the dispersion around that network. The network 
m

 can also be 

interpreted as the Fréchet mean of 
 [ ]

n

N  implied by the metric and the 

probability model. 

Within this context, the contribution to the likelihood by each observation i  is 

therefore given by: 

( 1 )
( , )

( , ) 2( | , ) (1 ) ,

m
m H i

H i

N N
d

dm

i
p   




   (7) 

where 
(·,·)

H
d

 is the Hamming norm for matrices. Expressions 6 and 7 provide 

the elements we need to propose the following Bayesian model: 

Definition 4.1 (CER/ CER Model). Let N and n be elements of , and take 

0
0 1 / 2 

. The CER/ CER Model is a multivariate network model on 
 [ ]

n

N  of 

the form 

0
0

( 1 )
( , )

( , ) 2

1 2 0 0

( 1 )
( , )

( , ) 2

1

( , , , | , ) (1 ) ( )

(1 ) ,

m
m H

H

m
m H i

H i

N N
d

dm

n

N Nn
d

d

i

p p   

 









  

 

 (8) 

where, the prior (·)p  for α is a scaled Beta on 

1
(0 , )

2 . Here, 
 0 [ ]N


 and 

0
(0 ,1) 

 are the hyperparameters of the model. 

We make no assumptions regarding N and n. Expression (8) is a consequence of 

the independence of the error, which should be noted. We assume a Beta 

distribution for α is reasonable, since it can be specified in such a way that it is 

unimodal and favours values close to zero. 
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Equation 7 proves helpful for understanding the properties of an Erdös–Rényi 

random graph as an measurement error model. This implies the following 

properties for the CER/ CER Model: 

1. The log-likelihood can be computed using 
2

( )O N n  operations; this should 

be kept in mind when performing Bayesian computations, such as MCMC. 

2. For α specified, the MLE is the graph 
m

 that minimises the average 

number of mismatches with respect to the observed networks. 

The prior for 
m

 has 0  as its mode and its entropy is determined by the 

Hamming norm and α0. For the CER/ CER model, the normalizing constant does 

not depend on either 
m

 or α, therefore, samples of the posterior for ( , )
m
  can 

be obtained via a Metropolis/ Hastings algorithm with a mixture of kernels. To 

update 
mA
, the adjacency matrix associated to 

m

, we use the following 

proposals: 

1. Each 
( , )mA i j

 changes its value independently to 
1 ( , )mA i j

 with 

probability 0 1  , or stays fixed with probability 1  . 

2. Each 
( , )mA i j

 is sampled independently from a 1

1
B e r ( , )

k

n

k

A i j
n



 
 
 


. 

To update α we use a mixture of random walks that reflect at 0 and 0.5. For each 

of these random walks (indexed by k), the proposed value 
*

  for 
( 1 )i




 is given 

by: 

1. 
( ) ( 1 )i i

y  


  , with 
~ U n if ( , )

k k
  

, if 0 0 .5y  ; 

2. – y, if y < 0; 

3. 1 y , if y > 0.5. 

The mixture is over  1 2
, , ,

K
  

. 
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Bayesian Inference for Models in the Spherical Network 
Family 

The Spherical Network Family was defined following the intuition that the 

likelihood should decrease as a function of the distance 
(·,·)

G
d

 with respect to a 

graph 
m

 that serves as the Fréchet mean. When proposing the functional form, 

we adopted concepts from the Rotationally Symmetric Family, proposed by 

Mardia and Dryden (1998). In contrast to the CER/CER model discussed in 

Section 4.1, more structure is left unspecified and the model presented in this 

section allows us to specify 
(·,·)

G
d

. To perform Bayesian inference for ( , )
m
  as 

described in Definition 3.4, we propose to use a hierarchical model, following the 

form proposed in Equation 6: 

Definition 4.2 (SN/ SN Model). Let N and n be elements of  and 
(·,·)

G
d

 a 

metric on 
 [ ]N . The SN/ SN Model is a multivariate network model on 

 [ ]

n

N  of 

the form 

 1 2 0 0

1

( , , , | , ) e x p ( ( , ) ) ( )

e x p ( ( , ) ) ,

m m

n G

n

m

G i

i

p d p

d

   

 



  

 
  

 


 (9) 

where, (·)p  is the prior on γ, which has support on 


. Here, 
 0 [ ]N


 and 

0





 are the hyperparameters of the model. 

Some features of this model are: 

1. The model allows for different specifications of the metric 
(·,·)

G
d

, which 

can be chosen with flexibility, for concreteness, e.g. distance based on the 

graph Laplacian, or a metric based on subgraph counts. 

2. It is straightforward to set up a Metropolis/ Hastings algorithm to sample 

from the prior. The Metropolis ratio for updating 
( · )

 is of the form: 
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0 ( 1 ) 0 ( ) ( 1 )

( , 1 )

( 1 ) ( )0 ( ) 0

ex p ( ( , )) ( | )
,

( | )ex p ( ( , ))

t t t

Gt t

t tt

G

d q
H

qd

 

 

 






 


 (10) 

where q is the proposal distribution; here, we are conditioning on the value 

of 
0

 . 

3. The argument 
m

 that maximises the log of the function: 

1 1

lo g ( , ) ( | , ) ( ( , )) ,

nn

m m m

i G i

i i

Z p d   

 

 
   

 
   (11) 

where γ is specified, coincides with the Fréchet mean of the observed 

networks when 
2

( )x x  . This follows from applying the definition of a 

centroid directly. 

From a computational perspective, the fact that the normalizing constant for the 

observations (i.e., the reciprocal of (·)Z  in Equation 5) depends on 
m

 implies 

that the Metropolis/ Hastings algorithm cannot be implemented directly for 

sampling from the posterior of ( , )
m
 . For 

m

 unspecified, this model falls into 

the double-intractable constant distributions. Fortunately, sampling from the 

posterior for the SN/ SN model falls into the setup discussed by Møller 

et al. (2006). Therefore, the techniques proposed by Møller et al. (2006) and 

Andrieu and Roberts (2009) can be implemented to sample from the posterior. 

The MCMC scheme proposed by Møller et al. (2006) is based on the idea of 

simulating auxiliary variables , i , which are defined on the same sample space 

as the data 
, 1

i
i n 

. These variables are sampled so the factors ( , )
m n

Z 


 

cancel from the Metropolis ratio. We now introduce some additional notation: 

   1 ,1 ,
, ,  an d  , , .

n n  
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When applied to the SN/ SN Model, the Metropolis ratio for the scheme proposed 

by Møller et al. (2006) takes the form: 

,( 1 ) ( 1 ) ,( ) ( )

( 1 )
, ( 1 ), ( 1 ) , ( 1 ) ( 1 )

0 0

( ) , ( ) , ( ) ( )( , | , ) , ( )
0 0

( )
, ( ) ( )

( 1 )
, ( 1 ) (

( | , )( | , ) ( | , )

( | , ) ( | , )( | , )

( | , )

( | ,

m t t m t t

t
m tm t m t t

t m t m t tm t

t
m t t

t
m t t

pf p
H

p pf

p

p

 

 

 





 


  












  



, ( ) ( ) , ( 1 ) ( 1 )

, ( 1 ) ( 1 ) , ( ) ( )
1 )

( , | , )
,

( , | , ))

m t t m t t

m t t m t t

q

q

 

 

 

 




 (12) 

where the terms of the form: 

1. 
, (·) (·)

( | , )
m

p   correspond to the product of kernel of the Boltzmann 

distribution evaluated at the data , i.e., 

, (·) (·) (·) , (·)

1

( | , ) e x p ( , ) .

n

m m

i

i

p d  



 
    

 
  

The notation 
, (·) (·)

( , )
m

  means that are specified by the state of the chain. 

2. 

(·)
, (·) (·)

( | , )
m

p 
  correspond to the kernel of the Boltzmann distribution 

evaluated at the auxiliary variables  . These auxiliary variables are 

obtained via a Metropolis-Hastings scheme. This scheme is the same as 

the one used for sampling from the prior (Equation 10). 

3. 
, (·) (·)

0 0
( , | , )

m
p  

 correspond to the prior for ( , )
m
  evaluated at the state 

of the chain. 

4. 
, (·) (·) , (·) (·)

( , | , )
m m

q    correspond to the proposal distribution for ( , )
m
 . To 

update 
mA
, we use the same hybrid kernel as the one described in 

Section 4.1. To update γ, the parameter that controls the entropy of the 

distribution, we use a hybrid kernel formed by a collection of random walks 

that reflect at 0. 

5. 

(·)
, (·)

( | , )
m

f 
  correspond to the conditional density of the auxiliary 

variables. We adopted the probability mass function of the Centred Erdös–
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Rényi Model as the conditional density for the auxiliary variables, which 

are denoted by 
1

( , , )
n

 


, i.e., 

1 1

( 1 )
( , ) ( , )

21
( , , | , ) (1 ) ,

n n

m m

H i H i

i i

N N
d d

n m
f    




 

 
    

as in Section 2 of Møller et al. (2006). Here,   is the posterior mean of the 

dispersion parameter of a CER/ CER model, which can be estimated as 

described in Section 4.1. This is the strategy suggested in Equation 7 of 

Møller et al. (2006). 

Some of these terms involve tuning parameters; for instance, 
, (·) (·) , (·) (·)

( , | , )
m m

q    requires us to define a mixture of random walks (indexed by 

k), to propose a value 
*

  for 
( 1 )i




. One way to define such random walks is given 

by: 

1. 
( ) ( 1)i i

y  


  , with 
~ U n if ( , )

k k
  

, if 0 y ; 

2. – y, if y < 0; 

The mixture is over  1 2
, , ,

K
  

. Here   is a tuning parameter. Specifying a 

prior for γ also presents a challenge, since its behaviour will depend drastically 

on the metric. 

In Figure 2 we display the results of a simulation aimed to show the relationship 

between γ and 
 ( , )

m
d  
   for the SN model. These figures serve multiple 

purposes: (i) to provide information regarding which scales are reasonable for  , 

since they provide intuition of how a local change in γ would impact a value that 

is easier to interpret; (ii) to inform where in 


 the practitioner should allocate 

most of the mass of the prior for γ; (iii) to make informed decisions of how to 

specify 
0

 ; (iv) to determine if it is more sensible to keep the prior support for γ 

as 


, or to constrain it to an interval (0 , ) . The same applies to the random 

walks to update γ. 
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Simulation Studies 

In this section, we explore the behaviour of the CER/ CER model and the SN/ SN 

model via simulation studies. We consider that it should be of interest to 

practitioners to know: i) How precise the inferences become as a function of the 

number of networks analysed (we will refer to this number as the sample size); ii) 

To what extent samples from the posterior predictive resemble the data used to 

obtain the posterior; iii) How sensitive are the inferences with respect to model 

misspecification. With this in mind, we designed the simulation studies to 

investigate how the posterior concentrates around the true Fréchet mean as a 

function of sample size, how regions of high mass of the predictive resemble a 

neighborhood of the data and robustness. 

Concentration of the Posterior as a Function of Sample Size 

In this section, we propose simulation experiments to obtain better understanding 

of how the posterior for 
m

 concentrates around its true value as a function of 

sample size. Ideally, we would like to investigate if the limit 

 1 2
P r ( , ) | , , , 0 ,

m

G n
d     (13) 

holds almost surely as n   , given 0 , as N is assumed fixed. This is 

equivalent to asking about the concentration of the posterior, as explained in 

Section 13.4.1 of Ghosal and van der Vaart (2017). The intuition behind Equation 

13 is that, as the sample size n increases, the probability mass of the posterior 

tends to concentrate on a neighborhood of the true value of the parameter. This 

statement should be valid for every size of the neighbourhood 0 . In Equation 

13, 
m

 is the true value of the mode and  is a sampled value from the posterior 

distribution implied by 
 1 2

, , ,
n


. Equation 13 provides the principle behind 

the following simulation experiments: 
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1. Explore how the distance between the point estimate 
m

 given by the 

posterior mode and 
m

 behaves as a function of sample size. 

2. Investigate how the probability 

 1 2
P r ( , ) | , , , ,

m

G n
d     (14) 

behaves as a function of n


 , here 0 , 0   are in turn fixed. 

The first simulation provides insight about the speed of convergence of a point 

estimate (see Fig. 3), while the second simulation investigates how the posterior 

mass becomes contained in a neighborhood of size ϵ of 
m

 as the sample size 

increases (see Table 2). Here, the size of the neighborhood is controlled by ϵ, 

and δ serves as a threshold for the amount of posterior mass to be allowed 

outside the neighborhood. 

The simulation regimes are given by: 

1. The type of hierarchical model under study (CER/ CER, SN/ SN); 

2. The structure imposed on 
m

, the centroid of the distribution. These were 

generated from the Erdös–Rényi model (ER), the Stochastic Block model 

(SBM), the Small World model (SW), or as a Random Geometric Graph 

(RGG). The specification of the parameters for these models is displayed 

in Table 1. 

For both the CER/ CER model and the SN/ SN model, we used 250 samples 

after a burn-in of 100, 000, and a lag of 50. The size of the networks we 

considered was N = 50. The value for γ0 was specified as 0.01 (for the CER/ 

CER model, we set 0
0 .0 1 

). A different value of 0  was obtained for each 
m

; 

it was sampled from 0
(· | , )

m
p 

. This way, we were able to make 
m

 exhibit the 

different types of structure we needed while keeping it as a perturbation of 0 , 

with concentration given by γ0 (α0). 
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Results from the first and second simulation for the CER/ CER model are 

summarised in Fig. 3 and Table 2, respectively. These results suggest that, the 

more homogeneous the adjacency matrix is in terms of inclusion probabilities, 

the faster the posterior concentrates around the true value. (The Small World and 

the Stochastic Block models take longer to converge then the Erdös–Rényi and 

the Random Geometric Graph do.) The Small World model turned out to be 

especially challenging for our approach, as a consequence of the choice for 
0

, 

which favors a lattice structure. Since the Small World graph is obtained from a 

re-wiring on a lattice, it takes a larger sample size to disambiguate between the 

outcomes of the re-wiring process and the perturbation induced by the SN Model. 

We compared the performance of our method to the point estimate 
m

 we would 

obtain by computing the majority vote of the data 
 1 2

, , ,
n


. We used the 

posterior mode implied by the CER/ CER model to illustrate our method. Results 

are summarised in Table 3. 

Network Prediction 

In this section, we investigate the behaviour of our methodology in terms of 

prediction. We do this according to the following intuition: Given a sample 

 1 2
, , ,

n


, the posterior predictive distribution should satisfy the criterion that 

regions with highest posterior density tend to be contained in an open covering of 

the original sample. To protect ourselves against artifacts due to overfitting, we 

let the sample used to compute the posterior predictive be distinct from the 

sample used to compute the open covering. Both from conceptual and 

computational perspectives, the use of an open covering is valid in this context, 

since we are working on a metric space of graphs. 

We now use this intuition to propose a simulation study. We first generate a 

sample 

Acc
ep

te
d 

M
an

us
cr

ipt



 1 2 1
, , , , , ,

t
n n n

   

for ( , )
m
  specified, and then we partition this sample into a training set 

 i i n  

and a test set 
 

t
i n i n  . Here, t

n n
 may be considered a tuning parameter for 

the simulation, specified by the statistician. Here, the training set will be used to 

obtain the posterior predictive distribution, while the test set will be used to 

compute the envelope. In the context of the models we have presented, the 

assumptions regarding similarity are encoded by the metric 
(·,·)

G
d

. To make 

these notions precise, we introduce the tuning parameters (0 ,1)   and 
0


 

. 

Here, 


 is the infimum of  : 0  
 for which 

1 2

1

P r ( ; ) | , , , 1 ,

t
n

k n

k n

 

 

 
    

 

 (15) 

holds. In Equation 15, 
( ; )

k


 denotes the ball with centre k  and radius ψ 

corresponding to 
(·,·)

G
d

, and  is a sampled value from the predictive 

distribution implied by the model and 
 1 2

, , ,
n


. The larger 


 is, the less 

concentrated the posterior predictive distribution will be around the test set. One 

way to interpret the size of 


 more effectively is by comparing it to quantities for 

which our intuitions are better informed. We propose comparing it to 


, the 

infimum of  : 0  
 for which 

 P r ( ; ) | , 1 ,
m m

      

holds, i.e., 


 is the size of the contour set that contains 1   of the probability 

mass under the specified model. 

Implementing this simulation in practice is straightforward: we first compute the 

distances between each sample from the posterior predictive distribution and the 

element of 
 1 2

, , ,
t

n n n 


 closest to it. The estimate of 


 is given by the 1   
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quantile of those distances. Results are summarised in Table 2 for the CER/ 

CER model and the SN/ SN model. 

We used the random graph models and parameter specifications listed in Table 

1. We used the same settings for the MCMC (number of samples from the 

posterior, burn-in, lag) and choices for the hyperparameters ( 0 ,γ0 and α0) as in 

Section 5.1. The size of the networks was set to N = 50. 

Results are summarised in Table 4. Here, larger values of 


 indicate that a 

larger open covering of a sample is needed to mimic regions of the posterior 

predictive distribution with high probability mass. To be able to compare across 

regimes, we use the quotient of 


 over 


, where 


 serves as a quantile. The 

results in Table 4 suggest that the size of the neighborhood needed to contain 

the mass of the predictive decays very slowly with respect to the sample size. 

We also observed that the results were not very sensitive with respect to the 

generative model for 
m

. Recall that 


 is model dependent. 

Robustness 

In this section, we evaluate the proposed methodology in terms of robustness 

regarding model misspecification. This is important, since we are making heavily 

parametric assumptions about the distribution of the deviations with respect to 

the Frechét mean. We approach this task in two different ways: (i) by using visual 

diagnostics based on posterior predictive checks (Gelman et al. (1996)), and (ii) 

by investigating the behaviour of the Bayesian 
2

  (Johnson (2004)) under 

different scenarios. These methods are further discussed in Appendix B. 

The types of misspecification we consider in this simulation study are: 

1. Fitting the model when the data was generated by a model based on a 

different metric on the space of labelled graphs. 
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2. Fitting the model when the data was generated by a dynamic network 

model. 

For the first type of misspecification, we will fit the SN/ SN model assuming the 

diffusion distance (Hammond et al., 2013) while the generative model is a CER/ 

CER model, or vice versa. For the second type of misspecification, we generate 

data from the dynamic network model implied by making 1
( , ) | ( , )

k k
i j i j

  the 

conditional of a bivariate Bernoulli and then, made all entries of 1k   conditionally 

independent given k , which induces a Markov structure on 
 1

, ,
n


. 

To fit the models, we used the same settings for the MCMC (number of samples 

from the posterior, burn-in, lag) and choices for the hyperparameters ( 0 ,γ0 and α

0) as in Sections 5.1 and 5.2. The size of the networks was set to N = 50. 

Results are summarised in Table 5. In this table, we display the proportion of 

times where each diagnostic provided evidence for lack of fit over 100 simulated 

data sets. Both types of diagnostic require us to specify a univariate summary of 

the of the data. We decided to focus on different quantiles of the degree 

distribution. The results we obtained suggest that is difficult to assess model 

misspecification in terms of the center of the degree distribution. It was easier to 

find evidence of model misspecification, via posterior predictive checks or the 

Bayesian 
2

 , when the focus was on the upper tail of the degree distribution. 

Data Analysis 

Gene Interaction Data 

It has become common practice in systems biology to estimate networks that 

have either genes or proteins as nodes and where the edges represent, either a 

potential flow of information (protein signalling) or other evidence of association. 

Estimating the network is often an intermediate step within a series of inferences 

and/ or decisions; this is for example the case for the research aimed for the 
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development of new treatments and vaccines. In this context, having an 

appropriate characterisation of the variability across different estimated networks 

can prove key when trying to assess the uncertainty to be associated to the final 

inferences/ decisions. The variability of the inference of such networks can be 

due to: i) use of different data bases, ii) use of different technologies to pre-

process the data, iii) use of different criteria to decide what constitutes and edge. 

An example of a set of networks where the variability is can be attributed to the 

use of different data bases and/ or technologies is displayed in Figure 4. Here, 

the nodes stand for the 19 most frequently mutated human cancer genes (the 

key is provided in Table 6). These genes have a higher-than-expected degree of 

interconnectivity, this is with respect to sets of genes of similar size selected at 

random. We consider four types of inferred edges: N 1  Inferred from expert 

opinion using curated databases, N 2  Experimentally determined, N 3  Obtained 

via textmining, and N 4  Obtained via co-expression. 

These genes have been widely studied in both the systems biology and cancer 

research literature. Figure 4 suggests that the set composed by  N 1, N 2 , N 3
 

reasonably fulfils the assumptions of our methodology. The edges of N 4  have a 

different interpretation, since that graph was obtained via a graphical model. Still, 

N 4  can be interpreted as a rough approximation of each element of  N 1, N 2 , N 3

. This data is publicly available from 

://string-db.org/cgi/network.pl?taskId=PjAoqaYLxdta.  

Note that nodes 15-19 are isolated. This presents no additional challenge to our 

methodology since we make no assumptions regarding the connectivity of the 

observed networks. 

We fit the CER/ CER model to the networks  N 1, N 2 , N 3
 and centered the prior 

for the centroid at N 4 . Results are summarized in Table 7 and Fig. 5. The edge 

sets corresponding to four networks with highest posterior probability are 
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displayed in Table 7. The posterior mode is displayed in Fig. 5 (Upper Left), 

along with summaries for α. We observed that these four networks concentrate 

more than half of the posterior mass and that the posterior mode concentrates 

almost 0.25 of the posterior mass. We also observed that nearly 35% of the 

posterior probability was spread between models (centroids) that were visited by 

the MCMC only once or twice. 

We also fit the SN/ SN model to the data set formed by  N 1, N 2 , N 3
 and 

centered the prior for the centroid at the minimum spanning tree obtained from 

assigning random weights to the edges of the graph displayed in Fig. 5 (Upper 

Left). We centered the prior at this graph instead of using N 4  because that graph 

is too far with respect to the data in terms of the graph diffusion distance 

(Hammond et al. (2013)), for which the creation/ merging of connected 

components is expensive. In Table 8, we display the three networks with highest 

posterior probability. We display the posterior mode in Fig. 5 (Upper Right), along 

with summaries for γ. We observed that these three networks concentrate almost 

all of the posterior mass and that the posterior mode concentrates more than half 

of the posterior mass. 

The presence of singletons (nodes 15-19) manifests differently in the results, 

depending on the metric: for the Hamming distance, we observed that the 

singletons merged to the connected component formed by nodes 1-14 for some 

of the posterior samples, producing a set of graphs that were visited once or 

twice by the MCMC, in contrast, when we specified the model in terms the 

diffusion distance, connected components do not tend to merge or split, which 

made the set of singletons (nodes 15-19) to remain constant across the MCMC 

samples. 

By fitting both models, we learned that the posterior for the Fréchet mean is 

sensitive with respect to the metric the model assumes for 
 [ ]N ; this becomes 

evident from comparing Tables 7 and 8 and the two panels at the top of Fig. 5. 
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The choice of the metric penalises discrepancies between the posterior mode 

and the Fréchet mean. One way of looking at this, is that, by choosing the metric, 

the statistician is making decisions regarding which features of the Fréchet mean 

should be retrieved when computing the posterior. This is a consequence of 

Proposition 3.5. For this data, we observed an instance of a situation where there 

are clear differences between choosing 
(·,·)

G
d

 with input from the practitioner 

and/ or considerations from the application (SN/ SN model), and choosing the 

metric based on computational or mathemathical convenience (SER / SER 

model). 

Connectome Data 

Connectome data is an instance of measurements of brain activity that are 

collected, among other purposes: to describe brain structure, to find associations 

between brain structure and function and to correlate brain structure to covariate 

information. Among the questions that can be posed given the availability of this 

type of data, we focus on the following: which is an appropriate representative for 

either the population or a subpopulation of individuals? One key aspect of this 

problem consists on making decisions regarding what does it mean for 

connectomes to be similar. As discussed in Donnat and Holmes (2018), for 

different metrics in graph space, different representatives and different groupings 

of the data points may seem appropriate. 

We analyzed the dataset discussed in Arroyo et al. (2019) and Zuo et al. (2014). 

The data consists on 300 instances of connectome data. The connectomes are 

graphs constructed via diffusion magnetic resonance imaging (dMRI). These 

measurements were obtained from 30 healthy individuals; 10 measurements 

were obtained during the curse of a month for each individual. Each of these 

networks has 200 nodes over the same regions of the brain. The vertices are 

registered according to the CC200 atlas Craddock et al. (2012). The goal of the 

analysis performed by Arroyo et al. (2019) was to cluster the graphs according to 

their community structure (at node level) to see if they could find differences 
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between individuals. We approach this dataset from a different perspective: we 

assume the metric based on diffusion and based on that, estimate a 

representative of the population. We also explore to what extend there is 

evidence for clusters in the data. We also perform these inferences assuming a 

Hamming distance. 

One of the key assumptions of our methodology is that the data was generated 

from a unimodal distribution over the space of labelled graphs defined over the 

same vertex set. The validity of such an assumption depends on the metric. In 

practice, this assumption can be verified by using a reasoning similar to the one 

deployed by Donnat and Holmes (2018) when studying the different metrics. We 

applied multidimensional scaling (MDS) on the data to assess if there is more 

than one cluster, where each cluster suggests the existence of a different mode. 

The two-dimensional map for the 300 networks implied by the diffusion distance 

is displayed in Figure 6. It suggests that modelling the data as unimodal is a 

reasonable first approximation. 

Fitting the CER/ CER model is not a major challenge when analyzing this 

dataset; the same MCMC scheme as the one used in Section 4.1 can be 

implemented. For this data set, we used 2,000,000 iterations for burn-in and 

obtained 5,000 samples with a lag of 1,000. In contrast, fitting the SN/ SN model 

for a data set is not straightforward. We followed the divide-and-conquer strategy 

proposed by Wu and Robert (2017). We divided the data into ten subsets of the 

same size, where each subset preserves the pattern suggested in Figure 6 as 

much as possible. Each subset is constituted by 30 of the observed networks. 

We parametrized the model so the posteriors for γ implied by each subset of the 

data can be transformed into a distribution with roughly same dispersion as the 

posterior we would obtain by using the whole data set. To compute summaries 

from the posterior, we proceed as follows: 

 For 
m

: We let 
, ( )m i

 be the centroid of 
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, ( ) , ( ) , ( )

1 2 1 0
( , , , )

m i m i m i
  

with respect to (· ,· )d . The point estimator for 
m

 was obtained by 

computing the centroid of the posterior modes associated to each subset 

(as in Section 6.2). 

 For γ: since the model is parametrized so γ is on the same scale across 

the ten subsets. We only need to: i) re-center the all samples with respect 

to the sample mean of the corresponding subset; ii) re-scale so each 

posterior has roughly the same dispersion as the full posterior; iii) re-

center again using the global sample mean. 

For each subset, we ran the MCMC described in Section. We used 500,000 

iterations for burn-in and obtained 1,000 samples with a lag of 500. 

Results for the Hamming distance are summarized in Figure 7 (Left). Results for 

the diffusion distance are summarized in Figure 7 (Right). A traceplot of posterior 

samples for γ corresponding to one of the subsets of the data is displayed in 

Figure 7. Summaries for γ obtained from combining the samples from the 

different data sets are also displayed in Figure 7. As a complementary summary, 

we also show the point estimate for 
, ( )m i

 for one of the subsets of the data in 

terms of its discrepancies to the point estimate for the whole data set (Figure 8). 

Discussion 

Network data has caught the imagination of statistical researchers and data 

analysis practitioners. Despite this interest a number of very fundamental 

questions lie unresolved in pursuing multiple network data analysis. To be able to 

understand not one network but multiple networks collected simultaneously one 

has to ask questions like: a) what is the “mean” network (rather than how do we 

estimate the success-probabilities of an inhomogeneous random graph), and do 

we want the “mean” itself to be a network? b) what is the degree of variation in 
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realizations away from that “mean”, and how can we make statistical inference in 

such scenarios? This requires a number of modeling choices, that need to be 

made for us to make inferences. We in this paper have designed a modular 

framework that allows us to specify each component, and thus to model. 

This modular framework can be compared to the modelling framework of others, 

such as (Newman, 2018; Le et al., 2018; Chang et al., 2018; Durante 

et al., 2017; Peixoto, 2018a). In comparison to Durante et al. (2017), for example, 

we adopt a less flexibly nonparametric approach but allow for our notion of an 

average or typical network to have complex structure; relative to the approach of 

(Newman, 2018; Le et al., 2018; Chang et al., 2018; Peixoto, 2018a), by contrast, 

our parametrisations are more complex while we adopt a similarly simple 

characterisation of perturbations from the typical network. 

The use of the Fréchet mean as a parameter that encodes what the centre of the 

distribution is supposed to be, as well as the use of the entropy to encode the 

notion of dispersion, are insights that we borrow exactly from shape 

theory (Dryden and Mardia, 1998). Even more, the problem of finding a 

representative for a population of shapes and the problem of modelling the 

variability of a homogeneous population of shapes are listed as two of the main 

challenges in that area in Srivastava and Klassen (2016) (Section 1.3). We pose 

these challenges in the context of network data and offer solutions for the implied 

inference problems via Bayesian modelling. Some of our theoretical results 

(Propositions 3 and 4) borrow heavily from shape analysis ideas. From functional 

data analysis, we adopt the rationale of using a complicated object (a network 

without a pre-specified structure) to model the trend, while using a simple model 

to account for the error. The trade-off between the complexity of the trend and 

the complexity of the error distribution has been widely studied in the functional 

data analysis literature; a similar tension will arise in our context. In this setting 

the mean function is often left mainly unspecified (or even just restricted to a form 

of regularity such as Besov regularity), but the noise is not permitted much 
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structure. The noise or perturbation from that network we chose to be very 

simple, normally just uncorrelated white noise. This could be construed as the 

Goldilocks principle at work, where things are made complex, but not too 

complex, rather just right in their complexity to capture realistic features. This 

remains a topic for exploration and/ or future developments. One interesting 

challenge that arises in the context of network data is that there is a lot to be 

learned regarding which metric in graph space should be adopted for a given 

problem. This is an interesting contrast to functional data analysis, since in that 

context, practitioners are more familiar with the idea of pairing a specific metric to 

a given application (such as the l2 norm for signal processing). 

There are also inevitably limits of resolvability to this problem, linked to being 

able to resolve the blocks of the stochastic block model (Hajek et al., 2017). Here 

we see identifiability starts to depend on the number of nodes, and the observed 

number of networks, as well as the level of variability of each individual network. 

Our study of small world networks, show that if the number of observed networks 

are sufficiently few, then the regularizing effect of the prior can indeed be too 

strong. 

In Section 1 we mentioned that it would be challenging to extend the proposed 

methods to a setting where the vertex set is allowed to vary in an unconstrained 

manner. However, if the vertex set varies so it is always a subset of a maximal 

finite collection of vertices, then the methods proposed in this paper are still valid 

(provided an appropriate metric is provided) and the the theory results will hold. 

In terms of computation, an MCMC based on a saturated model approach (as the 

one proposed in Section 5 of Brooks et al. (2003)) can be used to obtain samples 

from the posterior. The key aspect here is that, for this setting, we still have a 

finite discrete space endowed with a metric, which is the core assumption for our 

method. 
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In contrast to the methodology proposed by Durante et al. (2017), which focuses 

on clustering, our methodology in turn is designed for providing summaries that 

are easy to interpret in the context of replication and on prior elicitation, in 

addition, our methodology makes explicit what the estimand for a central network 

is, instead of just providing an estimator with no obvious estimand associated to 

it. The main advantage of our method with respect to approaches that use the 

idea of a Fréchet mean as a centre, but derive the uncertainty around that centre 

via asymptotics (Ginestet et al. (2017)) are: i) that our method enables the 

statistician to propagate uncertainty to subsequent inferences, since we are able 

to sample from a posterior, and ii) our method is not constrained to use of a 

single metric, in contrast to Ginestet et al. (2017), which relies on a specific 

metric to derive the asymptotic results they need. In a broad sense, this last point 

also applies to the approach proposed by Durante et al. (2017), since their 

MCMC scheme relies heavily on the metric induced by a random dot product 

model to take advantage of conjugacy. 

The proposed methodology can help in the development of informative priors for 

graphical models. The example discussed in Section 6.1 suggests how to 

proceed: i) obtain the posterior mode from previous/ similar studies; ii) apply the 

proposed methodology with a metric that can be related to a measure of 

similarity in distribution space (such as the Kullback-Leibler divergence); and iii) 

use the posterior produced this way as the prior for the data associated to the 

graphical model we want to infer. 

Future work includes: i) to develop methodology that enables the use of mixture 

distributions at the level of the centroid network. There are two possibilities for 

achieving this: to specify the number of elements in the mixture (hierarchical 

model approach) or to leave the number of elements unspecified (the Bayesian 

nonparametric approach); ii) to extend the current methodology to allow for 

missing data and/or partial observation of the network due to sampling. This 

would raise interesting challenges, since in our approach the network is treated 
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as the observational unit; iii) to constrain the structure of the centroid by using a 

parametric model (such as Peixoto (2018b); Newman (2018)), or to impose 

specific constrains on graph features of the centroid. Such an extension 

demands a formulation in terms of hierarchical models. By constraining the 

possible values for the centroid, we should be able to propose richer models for 

the error distribution. 

From our perspective, to get a better understanding of the trade-offs between 

imposing structure on the centroid versus imposing structure for the error 

distribution is a promising area for future research. It is not straightforward to 

anticipate which combinations of assumptions for the centroid and the error 

distribution will lead to useful models, since, both, the use of metrics on a graph 

space and the use of random graphs as error models have not been explored 

from a statistician’s perspective. 
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Proof of Proposition 3.1 

Let 1  and 2  in 
 [ ]N . Here 
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m

N


 is fixed and 
(·,·)
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 denotes the 

Hamming distance. Let 
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 be the total number of edges possible in the 

graph. It follows: 
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Since 
(·,·)

H
d

 is a metric, this reasoning implies that the distribution (· | , )
m

p  is 

unimodal. The proof for the case 1 2
( , ) ( , )

m m

H H
d d

 follows mutatis mutandis. 

Our second task is to show that the Centred Erdös–Rényi graph defined on 

 [ ]N  fulfills Definition 3.2. For this, we need to investigate how the entropy 

C E R ( , )
mH

  of the distribution relates to α. Remember that, if X and Y are 

independent random variables, then the entropy of their joint distribution ,X Y
H

 

and the entropy of the individual variables (HX and HY ) relate as follows: 

,
.

X Y X Y
H H H   
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as explained in Following Mézard and Montanari (2009), Section 1.2. The CER 

model with parameters ( , )
m
  can be represented as a random vector of size 

( 1)

2
e

N N
N




, where entries iid B e r ( ) . Therefore, the entropy of the CER with 

parameters ( , )
m
  is given by: 

 
C E R ( , )

(1 ) lo g (1 ) lo g ( ) .m e
H N


          

Since 

C E R ( , )
lo g ,

1
m e

H N




 

   
        

 

we conclude that the entropy of the distribution is a strictly increasing function of 

α in [0 , 0 .5 ] , with C E R ( , )
0mH




 and such that the maximum entropy is reached at 

0 .5  , for which all elements in 
 [ ]N  are assigned equal mass (See Example 

1.6 from Mézard and Montanari (2009) (2009)). This computation implies that 

part (2) of Definition 3.2 is fulfilled. Part (1) of Definition 3.2 is fulfilled since the 

proof that CER model satisfies Definition 3.1 was carried out for α specified and 

no property of 
m

 was invoked or constrain on it was imposed. 

Proof of Proposition 3.2 

Proof. Let us start from the PMF of the graph. Let N be the number of nodes in 

the graph, and Ne the total number of possible edges. Let nj be the number of 

switches of j  away from 
m

. We can then write 

   

 

 

| , 1

e x p lo g ( ) ( ) lo g (1 )

e x p { lo g 1 } e x p lo g .
1

e jj
N nnm

j

j e j

e j

p

n N n

N n

  

 








 

   

  
    

  

 (17) 
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We note directly that 

( , ).m
j

m

j H H j
n A A d  ( (  

We note that 

   | , ex p { lo g 1 } ex p ( , ) lo g .
1

m m

j e H j
p N d


 



  
    

  

 

We therefore see that we have 

( ) ,x x   

with 

1
lo g ( )









, or 

1
e
 






, or 1 / 1e


   . Thus 

1
1 lo g (1 ) lo g (1 ).

1 1

e
e

e e





 
           

 
 

and so 

   | , e x p { lo g 1 } e x p ( ( ( , ) ) )

e x p { lo g (1 ) } e x p ( ( ( , ) ) )

e x p { }
e x p ( ( ( , ) ) )

(1 ) e

m m

j e H j

m

e H j

me

H jN

p N d

N e d

N
d

e





  

 




  

    
 

 


 (18) 

Thus the CER is a member of the spherical network family (Definition 3.4). We 

find with the abbreviations Centered Erdős–Renyi (CER), Spherical Network 

Family (SNF), Unimodal network Distribution based on location (UDL), as well as 

unimodal network distribution based on location and scale (UDLS), that there is a 

natural nestedness 

C E R S N F U D L S U D L .    (19) 

From these, the only inclusion that requires some qualification is S N F U D L S . 

This point is addressed in Proposition 3.3. □ 
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Proof of Proposition 3.3 

Proof. First, we will prove that Spherical Network Family defined on 
 [ ]N  fulfills 

Definition 3.1. We start with property (2). Let ( , )
m
  be pre-specified. Let 1  and 

2  be such that: 

1 2
( , ) ( , ) ,

m m

G G
d d  (20) 

or 1  is further from 
m

 than 2 . 

The Spherical Network Family is a Boltzmann distribution on the space of 

graphs. Boltzmann (or Gibbs) distributions take the form of 

 
1

( | , ) ( , ) e x p ( ( , )) ,
m m m

G
p Z d  


   (21) 

where 
1
( , )

m
Z 



 is a normalizing constant ( ( , )
m

Z   is the partition function) and 

0  . We note that maximum entropy is approached as 0   (when the 

distribution becomes uniform) and the distribution degenerates to a point mass at 
m

 as    . This means that, in the limit cases, the model has the desired 

behaviour. 

The relationship of (20) occurs if and only if 

   

1 2

1 2

1 2

1 2

( ( , ) ) ( ( , )

( ( , ) ) ( ( , ) )

e x p ( ( , ) ) e x p ( ( , ) )

( | , ) ( | , ) ,

m m

G G

m m

G G

m m

G G

m m

d d

d d

d d

p p

 

 

 

 



   

   

 

 

as  e x p ·
 is a strictly increasing function and the constants of proportionality 

cancel. The argument for the equality case follows mutatis mutandis. 
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We now proceed to prove Definition 3.1(1) holds: Let 1

m


, then 1
( , ) 0

m

G
d 

 

since 
(·,·)

G
d

 is a metric. It follows that 1
( , ) ( , )

m m m

G G
d d

, since 

( , ) 0
m m

G
d 

. We conclude that: 

1
( | , ) ( | , ) ,

m m m
p p   

which shows that 
m

 is a mode and that the mode is unique. 

Second, we will prove that Spherical Network Family defined on 
 [ ]N  fulfills 

Definition 3.2, that is, that the parameter γ controls the entropy of the distribution. 

This is to achieve the analogy of a Gaussian distribution. The parameter γ is 

indexing the family of distributions that we study. Any member of the family is 

characterised by its entropy. We want the indexing to be such that if γ increases, 

the entropy decreases, and the distribution becomes better concentrated. 

To be able to understand the spherical network family, we shall study the so-

called Boltzmann or Gibbs distributions. Boltzmann distributions are common in 

statistical mechanics, and further discussed in (Mézard and Montanari, 2009), 

Section 2.2. The SNF falls in this class, as is directly apparent from 

Definition 3.4. 

Our next objective is to investigate the entropy of the spherical network family. 

We first introduce some notation. Let: 

 ( , , ) ex p ( , ) ;
m m

K d    
 

 

this function is decreasing in γ. Let: 

 

 
[ ]

( , ) ex p ( , ) .

N

m m
Z d 
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denote the partition function. It follows that both ( , )
m

Z   and 
 lo g ( , )

m
Z 

 are 

decreasing in γ, as ( , )
m

Z   is the sum of decreasing functions. 

The entropy of a member of the spherical network family is given by: 

 

 

 

 

 

   

 
 

   

[ ]

[ ]

[ ]

[ ]

S N F
( | , ) lo g ( | , )

1
( | , ) lo g e x p ( , )

( , )

( | , ) lo g ( , , ) lo g ( , )

lo g ( , ) ( , ) ( | , )

lo g ( , ) ( , ) .

N

N

N

N

m m

m m

m

m m m

m m m

m m

H p p

p d
Z

p K Z

Z d p

Z d

 

 


  

   

  









 

 
     

 

   
 

  
 

   
 









 (22) 

The next task is to determine under which conditions, the entropy of the spherical 

network family is decreasing in γ. We introduce some additional notation. Let 

( )F   denote the free energy: 

 
1

( ) lo g ( , ) .
m

F Z 


   

The following identity is a standard result for the Boltzmann distribution Mézard 

and Montanari (2009), p. 25-29. 

   ( , ) ( ) ,
m

d F  



  
 


 

which implies 

   ( , ) lo g ( , ) .
m m

d Z 



   
 


 (23) 

We now compute the derivative of the entropy of the spherical network family 

with respect to γ. From Equation 22, we have: 
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   S N F
lo g ( , ) ( , )

m m
H Z d  

  

  
    

    
 

     ( , ) ( , ) ( , )
m m m

d d d   



         
     


 (24) 

 ( , ) ,
m

d 



  
 


 (25) 

where the equality in Expression 24 follows from applying Equation 23. By 

definition, 

 
 

 
[ ]

1
( , ) ( , ) e x p ( , ) .

( , )
N

m m m

m
d d d

Z
  




      
       (26) 

From Equation 26, we obtain that 

 ( , )
m

d



 
 

  is equal to 

   [ ] [ ]

2

2

( , )

1
( , ) ( , , ) ( 1) ( , ) ( , , ) .

( , ) ( , )
N N

m

m m m m

m m

Z

d K d K
Z Z




   

 
 





    
    

 

Therefore 

 

 

   

[ ]

( , )

( , ) 1
( , ) ( , ) ( , , )

( , ) ( , )

( , ) ( , ) ( , )

N

m

m

m m m

m m

m m m

Z

d

d d K
Z Z

d d d



 
  

  

  



 

      
        

  
 
 

       
     



 (27) 

 ar ( , ) 0 .
m

d    
 

 (28) 
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Here, Equation 27 follows from Equation 23. By applying Equation 28 to Equation 

25, we obtain 

 S N F
a r ( , ) 0 .

m
H d 




    
 


 (29) 

It follows that the spherical network family is parametrized in terms of 
m

, which 

is the mode of the distribution, and γ, which is a monotone function of the entropy 

as long as (·| , )
m

p   is not a point mass. We also have that each of these 

parameters can be specified without constrains imposed by the other, therefore 

Definition 3.2 is satisfied. □ 

For further understanding of the behaviour of the entropy as a function of α we 

refer to the Proof of Proposition 3.1, earlier in this appendix. 

Proof of Proposition 3.4 

Proof. Let 2N  . This means that 
mA
 has at least one entry in its upper-

triangular section, outside of the diagonal; this also means that there is at least 

one graph 1


, such that 1

m


. For both, the Hamming distance and the 

diffusion distance, we have: 

1
( , ) 0 an d 0 ( , ) ,

m m m
d d     

and 

1
( | , ) ( | , ) 0 ,

m m m
p p    

for both models. Remember that, for the CER, γ is a function of (0 ,1)  . It 

follows, that 
 ( , ) 0

m
d 

 and therefore 
 a r ( , ) 0

m
d 

. □ 

Proof of Proposition 3.5 
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Proof. For n observations 
 1

,
n

y y
 from 

 [ ]N  The sample Frechét mean is 

given by: 

2

1

1
ˆ a rg m in ( , ) ;

n

n i

i

d y
n


 





   (30) 

see Eqn 1. By sampling elements of 
 [ ]N  via a distribution with full support, 

each individual expectation in Eqn 1 is the limit of the corresponding sample 

mean. These sample means are part of the computation in Equation 30. 

Let ψ be an element of 
 [ ]N  such that 

2
( ( , ))d Y   is finite. We only need to 

considers those 
 [ ]N

 
 for which the expectation is finite, since, both, the 

Frechét mean and the sample Frechét mean are obtained by computing the 

minimum. Note that, if 
2

( ( , ))d Y     for all 
 [ ]N

 
, the assumption of a 

unique Frechét mean would not be fullfilled. Let n be the number of observed 

networks, note that, as n   : 

 
2 2 2

[ N ]

1

1
( , ) ( ( , ) ) , a .s.fo ra ll s u c h  th a t (d ( Y , )) ,

n

i

i

d y d Y
n

   



     

by the Strong Law of Large Numbers, as 
2

( , )d Y   is a scalar. Here, ψ is fixed 

and the yi’s are random. This argument tells us that each individual expectation is 

the limit of the corresponding sample mean, the next part of the argument is to 

prove that all the expectations in Equation Eqn 1 can be estimated 

simultaneously with enough accuracy (encoded by ϵ), so the minimization 

entailed by 30 can be carried out without errors with high probability. 

For every 
 [ ]N

 
 and all 0  and ( 0 ,1)  , there exists ( , )N    such that: 

2 2

1

1
P r ( , ) ( ( , ) ) 1 ,

n

i

i

d y d Y
n
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for all ( , )n N  . Since 
 [ ]N  is finite, this is true for 

   1 2 [ ] [ ]

2 2

1 2( , )

1
m in ( ( , )) ( ( , )) ,

2 N N

d Y d Y
 

 
 

   

and 0 1   pre-specified, for all 
 [ ]N

 
. This is, we can make the noise of 

the sampled means smaller than any pairwise difference of the expectations, for 

1 2
, 

 in 
 [ ]N . Since 

 [ ]N  is finite, we can make ( , )N   constant with respect 

to 
 [ ]N

 
 by taking the maximum. This means, that for all ( , )n N  , 

 ˆP r 1 ,
m

n
      

where ψm is the Fréchet mean, which we assumed to be unique. This is because, 

for ( , )n N  , each expectation can be approximated with enough precision that 

the optimization can be carried out without error with high probability. □ 

Proof of Proposition 3.6 

Proof. The objective is to prove that, for the CER with parameters ( , )
m
 , the 

mode 
m

 coincides with the Fréchet mean. We divide the proof into two parts: for 

the first part, we provide a condition for when the inner product between a s 

dimensional vector a with non-negative entries and a pmf w is minimized, where 

the optimization is taken over all permutations of indices for the entries of a, i.e., 

 1, 2 , , s
; for the second part, we prove that taking the expectation of the 

distances with respect to a graph k  for the CER ( , )
m
  is an example of the 

setup described in the first part, even more, the permutations of the vector of 

distances involved in computing the expectation, correspond to different choices 

for k . We conclude by proving that the minimum of the expectation is attained at 
m

. 

Part 1 
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Let a and w be vectors with s entries, in addition, let w be such that 
0

i
w 

 and 

1
i

w   and a be such that 
0

i
a 

. Let σ be a permutation of  1, 2 , , s
 such 

that [ ] [ ]i j
w w

 


 for every pair  ,i j
 with i < j. Let τ be a permutation of  1, 2 , , s

 

such that [ ] [ ]i j
a a
 


 for every pair  ,i j

 with i < j. Therefore, τ fullfils: 

S ym ( ) [ ] [ ]
arg m in

s i i
a w

  



   

where S ym ( )s  denotes the set of permutations over s indices. 

We proof the last statement by induction: 

for s = 2 

: Let us start with the case [1 ] [ 2 ]
a a
 


 and [1 ] [ 2 ]

w w
 


. Since the entries of 

w are nonegative and add to 1, it follows that 
[1 ] [ 2 ]

1

2
w w

 
 

. Therefore 

[1 ] [1 ] [ 2 ] [ 2 ]
a w a w
   

    (31) 

is closer to [1 ]
a
  than it is to [ 2 ]

a
 . If one permutes the indices of 

a
  to 

obtain a new vector 
a
  , then, it follows that 

[1 ] [1 ] [ 2 ] [ 2 ]
a w a w
    

    (32) 

is closer to [ 2 ]
a
  than it is to [1 ]

a
 ; one way to visualize this argument is to 

note that Expressions 31 and 32 correspond to convex linear 

combinations of two non-negative numbers, namely [1 ] [ 2 ]
( , )a a

   and the 

statements about closeness correspond to the size of the weights 

[1 ] [ 2 ]
( , )w w

  . Since [1 ] [ 2 ]
a a
 


, the condition is fulfilled. For the cases where 

either [1 ] [ 2 ]
a a
 


 or [1 ] [ 2 ]

w w
 


, it is trivial to show that the condition is 

fulfilled. 

for s = k 

: Let us assume that the result holds for s = k. 
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for  

1s k  : We consider two cases, which are defined in terms of the 

existence of fixed points of τ. 

Case 1. At least one entry in 
a
  remains fixed. 

WLOG we can assume that the entry of 
a
  that remained invariant is the 

( 1)k   th. We can re-normalize the first k entries of 
w

  by making 

[ ]

[ ]

[ 1 ]

.
1

i

i

k

w
w

w





 

 


 

Since [ ] [ ]i j
w w

 
  

 for all 1 i j k   , we can apply the hypothesis of 

induction to the first k entries of 
,a a

    and 
w

  to obtain 

[ ] [ ] [ ] [ ]

1 1

.

k k

i i i i

i i

a w a w
   

 

       (33) 

Equation 33 is valid for any permutation    that leaves the k + 1 entry 

unchanged when compared to τ. Therefore 

[ ] [ ] [ ] [ ]

1 1

k k

i i i i

i i

a w a w
   

 

     

since we only need to multiply 
w




 by a positive constant, namely 

[ 1 ]
1

k
w

 


. We assumed [ 1 ] [ 1 ]k k
a a
   


, it follows that 

1 1

[ ] [ ] [ ] [ ]

1 1

.

k k

i i i i

i i

a w a w
   

 



 

     

We conclude that τ minimises [ ] [ ]i i
a w
 

  for all the permutations that 

leave at least one entry unchanged with respect to τ. 
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Case 2. We now consider the case where no entry of 
a
  was left invariant 

by a new indexing   . Let 
a
  be the vector that results from permuting 

two entries of 
a
   so the ( 1)k   th entry of 

a
  coincides with the ( 1)k  

th entry of 
a
 . By applying an argument analogous to the one made for k = 

2, we obtain: 

1 1

[ ] [ ] [ ][ ]

1 1

.

k k

i i ii

i i

a w a w
  

 



 

     

Now, since at least the ( 1)k   th entry of 
a
  coincides with the ( 1)k   th 

entry of 
a
 , we have 

1 1

[ ] [ ] [ ] [ ]

1 1

,

k k

i i i i

i i

a w a w
   

 

 

     

therefore the conclusion is valid for this case also. 

Part 2 

We start by proving that, given N  , the number of graphs in 
 [ ]N  such that 

( , )
m

H
d h

, where 
 1, 2 , ,

e
h N 

, is constant with respect to 
m

. Having 

( , )
m

H
d h

 implies that h entries of the adjacency matrix of 
m

 were modified. 

This is equivalent from choosing h entries from the upper triangular of the 

adjacency matrix of 
m

. Since the graphs are labelled, the number of graphs 

such that 
( , )

m

H
d h

 is 

e
N

h

 

 
 

, which is constant with respect to 
m

. The same 

argument can be made for every value of 
 1, 2 , ,

e
h N 

. 

The expectation 
 

2
( , )

H k
d

 for a CER with parameters ( , )
m
  can be 

computed as follows: 
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2 2

( , ) ( , ) ( | , ) ,
m

H k H i k i

i I

d d p 



   

where I is an indexing for 
 [ ]N  such that 

( | , ) ( | , )
m m

i j
p p 

 for i < j. 

Given the fact that the number of graphs in 
 [ ]N  that fulfill 

( , )
m

H
d h

 is 

constant with respect to 
m

 for every 
 1, 2 , ,

e
h N 

, the vector 

  
[ ]

2 2 2

1 2 | |
( , ) , ( , ) , , ( , )

N
H k H k H k

d d d  

is obtained from permuting the entries from 

  
[ ]

2 2 2

1 2 | |
( , ) , ( , ) , , ( , ) ,

N

m m m

H H H
d d d  

Now: 

 
2 2

( , ) ( , ) ( | , ) .
m m m

H H i i

i I

d d p 



   (34) 

The vectors on the right side of Equation 34 and the indexing I fulfill the 

assumptions of Part 1 (see proof of Proposition 3.1). This implies that 
m

 is the 

Fréchet mean for the CER with parameters ( , )
m
 . □ 

Diagnostics for Bayesian Models 

Posterior predictive checks (Gelman et al. (1996)) are based on following the 

intuition: if the model assumptions are reasonable, the observed value of a 

statistic should, with low probability, be extreme with respect to the predictive 

distribution for that statistic. One way to translate this intuition to our context is 

the following: Let 
( 0 )

  be a one-dimensional summary of the observed networks 

 1 2
, , ,

n


 (e.g., the average diameter, the average number of communities). 

Obtain K Monte Carlo data sets 
 

( ) ( ) ( )

1 2
, , , , 1

i i i

n
i K  

, from the posterior 

predictive distribution. For each of these data sets, we compute 
( )i

 , a realisation 
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of the predictive distribution of the one-dimensional summary, 1 i K  . If 
( 0 )

  is 

extreme with respect to the Monte Carlo predictive distribution implied by 

 
( )

1

i

i K


  , then we can regard this as evidence for lack of fit. 

The Bayesian 
2

  was proposed by Johnson (2004) and it is based on the 

following rationale: Each sample from the posterior 
, ( ) ( )

( , )
m i i

  entails the 

distribution of a univariate summary Y, i.e., 

, ( ) ( ) , ( ) ( )
( , ) (· | , ) .

m i i m i i

Y
F   

In the context of multivariate modelling for networks, such summary is a 

descriptive statistic that can be computed efficiently, e.g., the mean of the degree 

distribution. Let 1 2
( , , , )

n
y y y

 be the observed values for this summary, with 

s s
y

. Given a partition 

0 1 1
0 1,

D D
a a a a


        

of the interval [0 ,1) , we can compute the counts 

1

( ) , ( ) ( )

[ , )

1

( ( | , ) ) ,
k k

n

i m i i

k a a Y j

j

C F y 




   

for  1, 2 , ,k D 
. Let 1k k k

p a a


 
, then 

2
( )

, ( ) ( )

1

( , )

iD

B m i i k k

k k

C n p
R

n p




 
  

 
  

measures the discrepancy between the observed and expected counts for the 

bins  1
[ , ) , 1, 2 , ,

k k
a a k D


 

. Goodness-of-fit is assessed via q/ q plots of (·)
B

R  

with respect to a 
2

  with D – 1 degrees of freedom. 
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Fig. 1 Example of multiple network data in the context of neuroscience, with 

each node representing a region of the brain (see Zuo et al. (2014) and Arroyo 

et al. (2019)). The networks are defined over the same set of 200 nodes. First 

three figures (from Left to Right): Discrepancies of three observed brain networks 

with respect to the point estimate of the Frechét mean. Edges only present in the 

observed network are colored in blue, while edges present in the point estimate 

but not in the data point are colored in pink. Right: Posterior mode estimate 
F M

 

of the Frechét mean of 300 brain networks using a metric on graph space based 

on diffusion. 
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Fig. 2 Distribution of the distance (summarised as a boxplot) to 
m

 for the SN 

model as a function of γ. Here N = 19, t = 1 and 
m

 was specified as the network 

displayed in Figure 4. The figure shows that, for 1   increments on that 

parameter do not have a perceptible effect on the distribution. This plot serves to 

inform the scales that are relevant for defining random walk proposals for γ. 
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Fig. 3 Average distance of posterior mode to 
m

 as a function of sample size. 
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Fig. 4 Example of multiple network data in the context of cancer genomics, 

with each node one of the 19 most frequently mutated human cancer genes (see 

Section 6). Top Left: Network N 1  inferred from curated databases; Top Right: 

Network N 2  determined by a series of individual experiments; Bottom Left: 

Network N 3  inferred via text mining; Bottom Right: Network N 4 ]  inferred via co-

expression. The set of nodes of this network is formed by the 19 most frequently 

mutated human cancer genes. 
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Fig. 5 Upper Left: Posterior mode from the SER/ SER model applied to the 

data set  N 1, N 2 , N 3
 and prior for the centroid centered at N 4 . Centre Left: 

Traceplot for 500 posterior samples for α after a burn-in of 150,000 and a lag of 

50. Lower Left: Histogram for α. The posterior mean (highlighted by the red solid 

line) is equal to 0.0192. The 95% credible interval for α (delimeted by the dotted 

lines) is (0.0089,0.0342). Upper Right: Posterior mode obtained from fitting the 

SN/ SN model to the data set  N 1, N 2 , N 3
. This graph concentrates 0.544 of the 

posterior mass. Centre Right: Traceplot for 250 posterior samples for γ after a 

burn-in of 100,000 and a lag of 50. Lower Right: Histogram for lo g ( ) . The 

posterior mean is equal to -4.6177. The 95% credible interval for lo g ( )  is (-

8.4130,-2.9866). 
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Fig. 6 The two-dimensional map obtained from applying multidimensional 

scaling on the 300 connectomes. The similarity is given by the diffusion distance. 
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Fig. 7 Upper Left: Posterior mode from the SER/ SER model applied to the 

whole connectome data set and prior for 
m

 centered at the centroid of one of 

the subsets of the data. The posterior mode is presented in terms of its 

discrepancies with respect to the point estimate from the SN/ SN model. Edges 

only present in the posterior mode from SER/ SER are colored in blue, while 

edges present in the point estimate from the SN/ SN model but not the posterior 

mode are colored in pink. Centre Left: Traceplot for 5000 posterior samples for α 

after a burn-in of 150,000 and a lag of 50. Lower Left: Histogram for α. The 

posterior mean (highlighted by the red solid line) is equal to 0.0483. The 95% 

credible interval for α (delimeted by the dotted lines) is (0.0481,0.0485). Upper 

Right: Point estimate obtained from fitting the SN/ SN model to the full data set. 

Centre Right: Traceplot for 250 posterior samples for γ after a burn-in of 100,000 

and a lag of 50. Lower Right: Histogram for lo g ( ) . The posterior mean is equal 

to -4.6177. The 95% credible interval for lo g ( )  is (-8.4130,-2.9866). 
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Fig. 8 Right: Point estimate for 
m

 obtained from computing the centroid of the 

posterior modes associated to each of the 10 subsets of the data. Each of these 

posterior modes was obtained from fitting the SN/ SN model. Left: Discrepancies 

of the posterior mode corresponding to one of the subsets of the data. Edges 

only present in the centroid are colored in blue, while edges present in the mode 

but not the centroid are colored in pink. 
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Table 1 Random graph models and the corresponding parameter 

specification used to define the simulation regimes. The parameters were chose 

so realisations would have approximately the same density across different 

models.  

Random Graph Model Specification  

ER  Probability of inclusion was set to 0.1.  

RGG  This is a proximity graph defined on the unit square.  

 The radius of the ball was set to r = 0.175.  

SBM  We set the number of blocks K = 3, with all membership 

 probabilities equal to 0.333 the inclusion probabilities  

 were set as 0.16 and 0.075 for diagonal and  

 non-diagonal blocks, respectively.  

SW  We set the degree of the lattice to 2 and the  

 probability of re-wiring to 0.2.  
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Table 2 Proportion of replications where 1   of the posterior mass for 
m

 is 

within a ball of radius ϵ of the true value. We used 100 replications.  

n  G e n e ra t iv e  M o d e l fo r  
m

 
ϵ = 1 ϵ = 2 ϵ = 3 

   0 .0 5    
 

3  RGG  0.92  1  1  

5  RGG  1  1  1 

3  ER  0.66  0.97  1  

5  ER  0.93  1  1 

7  ER  1  1  1  

3  SBM  0.63  0.87  0.96  

5  SBM  0.83  0.98  1  

7  SBM  0.91  1  1  

10 SBM  1  1  1  

3  SW  0.43  0.61  0.73  

5  SW  0.62  0.77  0.89  

7  SW  0.74  0.86  0.98  

10 SW  0.81  0.96  1  
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Table 3 Proportion of replications where 1   of the posterior mass for 
m

 is 

within a ball of radius ϵ of the true value. We used 100 replications.  

n G e n e ra t iv e  M o d e l fo r  
m

 
ϵ = 1 ϵ = 2 ϵ = 3 ϵ = 1 ϵ = 2 ϵ = 3 

   M ajo rity  V o te   
  C E R   

 

3 RGG  0.91  1  1  0.94  0.99  1  

5 RGG  1  1  1  1  1  1 

3 ER  0.99  1  1  0.96  0.99  1  

5 ER  1  1  1  1  1  1  

3 SBM  0.95  0.99  1  0.95  0.99  1  

5 SBM  1  1  1  1  1  1  

3 SW  0.97  1  1  0.91  0.99  1  

5 SW  1  1  1  0.99  1  1  
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Table 4 Average value 


 for size of neighborhood needed so m samples 

from the predictive implied by n data points encloses 1   of the predictive 

distribution associated with the true value of 
m

 and α. Here we assume a CER/ 

CER model (third column, left to right) and a SN/ SN model (fourth column, left to 

right). For the CER/ CER model 
1 7


 

, while for the SN/ SN model, 
3 6 4 2 .1


 

. The size of the network is 50 and 0 .0 1  . We set 0 .1   and m = 20 for all 

regimes. The average is computed over 100 replications.  

n  Generative Model  CER/ CER  SN/ SN  

 fo r  
m

 
/

 
 

 
/

 
 

 

3  ER  1.4447  1.0551  

5  ER  1.3847  1.0253 

7  ER  1.3676  1.0072  

10 ER  1.3612  0.9590 

3  RGG  1.4006  1.0516  

5  RGG  1.3988  1.0247 

7  RGG  1.3953  0.9958  

10 RGG  1.3635  0.9366  

3  SBM  1.4141  1.0573  

5  SBM  1.3824  1.0410  

7  SBM  1.3800  0.9898  

10 SBM  1.3741  0.9516  

3  SW  1.4788  1.0697  

5  SW  1.4494  1.0419  

7  SW  1.3953  0.9937  

10 SW  1.3682  0.9545  
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Table 5 Proportion of times where each diagnostic provided evidence for lack 

of fit over 100 simulated data sets. The regimes are given by the generative 

model, the type of misspecification and the univariate summary used for the 

diagnostics.  

n  

Model used to fit the 

data  

type of 

misspecification 

univariate 

summary  

PP

C 

2
B ayes  

 

3  

Spherical Network 

Model  Dependence  

10 quantile of 

degree 0  0  

3  

Spherical Network 

Model  Dependence  

50 quantile 

degree  0  0  

3  

Spherical Network 

Model  Dependence  

90 quantile 

degree  

0.0

8 0  

1

0 

Spherical Network 

Model  Dependence  

10 quantile of 

degree 

0.0

2 0.02  

1

0 

Spherical Network 

Model  Dependence  

50 quantile 

degree  0  0.01  

1

0 

Spherical Network 

Model  Dependence  

90 quantile 

degree  

0.0

9 0.11  

5

0 

Spherical Network 

Model  Dependence  

10 quantile of 

degree 

0.0

7 0.05  

5

0 

Spherical Network 

Model  Dependence  

50 quantile 

degree  

0.0

2 0.03  

5

0 

Spherical Network 

Model  Dependence  

90 quantile 

degree  

0.7

6 0.93  

3  

Spherical Network 

Model  Metric  

10 quantile of 

degree 

0.0

9 0  

3  Spherical Network Metric  50 quantile 0  0  
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n  

Model used to fit the 

data  

type of 

misspecification 

univariate 

summary  

PP

C 

2
B ayes  

 

Model  degree  

3  

Spherical Network 

Model  Metric  

90 quantile 

degree  

0.1

1 0  

1

0 

Spherical Network 

Model  Metric  

10 quantile of 

degree 

0.0

3 0.07  

1

0 

Spherical Network 

Model  Metric  

50 quantile 

degree  

0.0

2 0.03  

1

0 

Spherical Network 

Model  Metric  

90 quantile 

degree  

0.0

5 0.07  

5

0 

Spherical Network 

Model  Metric  

10 quantile of 

degree 

0.0

7 0.22  

5

0 

Spherical Network 

Model  Metric  

50 quantile 

degree  0  0.14  

5

0 

Spherical Network 

Model  Metric  

90 quantile 

degree  

0.0

9 0.97  

3  

Centred Erdös–Rényi 

Model Dependence  

10 quantile of 

degree 0  0  

3  

Centred Erdös–Rényi 

Model Dependence  

50 quantile 

degree  0  0  

3  

Centred Erdös–Rényi 

Model Dependence  

90 quantile 

degree  

0.0

3 0.04  

1

0 

Centred Erdös–Rényi 

Model Dependence  

10 quantile of 

degree 

0.0

2 0.01  

1

0 

Centred Erdös–Rényi 

Model Dependence  

50 quantile 

degree  0  0.00  

1 Centred Erdös–Rényi Dependence  90 quantile 0.0 0.14  
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n  

Model used to fit the 

data  

type of 

misspecification 

univariate 

summary  

PP

C 

2
B ayes  

 

0 Model degree  7 

5

0 

Centred Erdös–Rényi 

Model Dependence  

10 quantile of 

degree 

0.0

7 0.05  

5

0 

Centred Erdös–Rényi 

Model Dependence  

50 quantile 

degree  

0.0

3 0.02  

5

0 

Centred Erdös–Rényi 

Model Dependence  

90 quantile 

degree  

0.7

4 0.89  

3  

Centred Erdös–Rényi 

Model Metric  

10 quantile of 

degree 

0.0

3 0  

3  

Centred Erdös–Rényi 

Model Metric  

50 quantile 

degree  0  0  

3  

Centred Erdös–Rényi 

Model Metric  

90 quantile 

degree  

0.1

2 0  

1

0 

Centred Erdös–Rényi 

Model Metric  

10 quantile of 

degree 

0.0

6 0.05  

1

0 

Centred Erdös–Rényi 

Model Metric  

50 quantile 

degree  

0.0

3 0.01  

1

0 

Centred Erdös–Rényi 

Model Metric  

90 quantile 

degree  

0.0

7 0.11  

5

0 

Centred Erdös–Rényi 

Model Metric  

10 quantile of 

degree 

0.0

7 0.16  

5

0 

Centred Erdös–Rényi 

Model Metric  

50 quantile 

degree  0  0.12  

5

0 

Centred Erdös–Rényi 

Model Metric  

90 quantile 

degree  

0.1

1 0.93  
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Table 6 Key for indices assigned to the 19 genes related to cancer.  

Index Gene  Index Gene  Index Gene  

1  BRAF  8  PTEN  15  CIC 

2  NRAS  9  CDKN2A 16  DNMT3A 

3  ERBB3  10  CTNNB1  17  BFXW7 

4  NF1  11  TP53  18  SF3B1  

5  PIK3CA 12  SMAD4  19  LPHN2  

6  PIK3R1  13  APC    

7  FLT3  14  NCOR1    
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Table 7 The four networks with highest posterior mass obtained by fitting the 

CER/ CER model to the data set  N 1, N 2 , N 3
. Here m o d e  denotes the edge set 

for the posterior mode.  

Posterior Probability Edge Set  

0.246  1-2, 2-3, 2-4, 2-5, 2-6, 5-6, 5-7,  

 5-8, 5-9, 5-10, 6-10, 8-11, 9-11,  

 10-12, 10-13, 12-14  

0.168  
m o d e

(3 -5 )
 

0.140  
m o d e

(1 1 -1 3)
 

0.114  
m o d e

(6 -9 )
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Table 8 The three networks with highest posterior mass obtained by fitting the 

SN/ SN model to the data set  N 1, N 2 , N 3
. Here m o d e  denotes the edge set for 

the posterior mode.  

Posterior Probability Edge Set  

0.544  1-2, 2-3, 2-4, 2-5, 2-6, 3-5, 5-6, 5-7,  

 5-8, 5-9, 5-10, 6-10, 8-11, 9-11, 9-12,  

 10-12, 10-13, 12-14  

0.216  
m o d e

(3 ,1 2 ) (4 ,6 ) (6 ,9 ) (9 ,1 2 )   
 

 (5 ,1 0 )  

0.188  
m o d e

(3 ,1 2 ) (4 ,6 ) (5 ,1 0 )  
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