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Abstract: 

The improved knowledge of wave height and period conditions has considerably 

influenced on ocean navigation, marine fishery and engineering, especially in 

the polar regions. The methods of predicting ocean wave height which involve 

field measurements, numerical simulation, physical models and analytical 

solutions have been gradually developed with intelligent functions. Despite 

numerical wave models being dominant for recent decades, wave forecasting is 

still facing many challenges such as small region forecasting and large amounts 

of data needed. This paper presents a novel deep learning algorithm, namely Long 

Short Term Memory (LSTM), incorporating with Principal Component Analysis (PCA) 

to predict the wave height by using data from four wave buoys as deployed in the 

polar westerlies for two and half months. The PCA method is used to extract 

principal components from a set of input signals while LSTM is adopted to avoid 

long term independences during the forecasting. The novelty of this paper is to 

investigate an artificial intelligence (AI) based model in the field of time 

sequence forecasting in order to determine the performance of wave conditions by 

using AI technology. The result from this integrated method demonstrates that 

the LSTM model has the potential to better predict wave height in the polar 

condition based on time-space domain information. The PCA is proved essential 

for selection of input signals and for correlation analysis. For comparison, 

different data-driven models are applied and the results also show the purposed 

model achieves the highest scores in terms of R-squared value. Besides, the paper 

also discusses the challenges for long term and high-value prediction which needs 

to be optimized in the future work. 
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1. Introduction 

In the ocean condition, wind wave results from the wind blowing over an area 

of the sea surface. After the wind ceases, the waves still exist and are then 

called swells. The improved knowledge of height and period of oscillatory short 

waves is essential for almost any engineering activity in the ocean, including 

planning, design, construction and operation related to the harbor and coastal 

structures [1]. In the field of nautical and fishery industry, the wave 
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forecasting plays a significant role in enduring harsh sea conditions and keeping 

secure the operations. Otherwise, the shipping industry requires guidance for 

operational planning and tactical seakeeping purposes. The main dimensions 

associated with waves are wave height, wave period and wave direction, of which 

wave height usually takes the first priority among wave parameters from maritime 

civilization. However, the complexity and uncertainty of the wave generation 

phenomenon are such that despite considerable advances made in computational 

techniques, the solutions obtained are neither exact nor uniformly applicable at 

all sites and at all times [2]. 

Ocean wave characteristics are mainly determined through field measurements, 

numerical simulation, physical models and analytical solutions. Each method has 

its own advantages and disadvantages. Early forecasts of the sea state were 

created manually based on empirical relationships between the present state of 

the sea, the expected wind conditions, the fetch/duration, and the direction of 

the wave propagation [2]. But nowadays, numerical models emerge as one of the 

most powerful tools for the study of surface water waves [4]. Wind wave models 

are used as forecasting or hindcasting tools with use of varying data assimilation 

and associated methods. For example, the operational wave forecasting systems at 

NOAA are based on the WAVEWATCH III model which has a global domain of 

approximately 50 km resolution and regional domains for the northern hemisphere 

oceanic basins at approximately 18 km and approximately 7 km resolution [5]. The 

Integrated Forecast System (IFS) which integrated European Centre for Medium-

Range Weather Forecasts (ECMWF) and the wave model WAM currently comprises 36 

frequency bins and 36 propagation directions at an average spatial resolution of 

25 km [6]. In the regional area, Texas A&M University used the SWAN model to 

forecast waves in the Gulf of Mexico [7]. As another example, CCHE2D-COAST is a 

processes-based integrated model which is capable of simulating coastal processes 

in different coasts with complex shorelines. The MIKE21 SW, as a new third-

generation numerical model, was developed to simulate scenarios for the North 

Sea, parts of the Norwegian Sea and the Baltic Sea. The results were validated 

from wave rider buoys and found that the model was better in prediction than 

those models that did not use fine mesh. Later, a third-generation spectral wave 

model, called Simulating Waves Nearshore (SWAN) developed for small-scale, 

coastal regions with shallow water, (barrier) islands, tidal flats, local wind, 

and ambient currents, was verified in stationary mode with measurements in five 

real field cases [8]. Despite numerical models being performed fabulously in 

both accuracy and timely delivery, there are still plenty of domains where they 

cannot cover. For instance, the prediction of waves near wave energy converters 

(WECs) needs a small-region predicting approach such as 0.1 km resolution. 

Coastal aquaculture depends on an accurate wave and current forecasting in order 

to organize feeding schedules and take risk assessment. Therefore small-region 

wave prediction has been proven to be an uncertain and random process and hence 

numerical models such as SWAN and WAVEWATCH III if considered would be time-

consuming and complicated to model by using deterministic equations. 

As the AI bloomed, the neural network (NN) has been proven suitable for 

modelling since NN is primarily aimed at recognition of a random pattern in a 

given set of input values and use the same to predict the desired property. 

Generally, NNs are useful to map random inputs with the corresponding random 

output and their application does not require good knowledge of the underlying 
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physical process as a precondition. For example, Scott C. James used Multilayer 

Perceptron (MLP) and artificial NN to perform two different tasks: regression 

analysis for wave height and classification analysis for characteristic wave 

period. A case performed at Monterey Bay demonstrated a RMSE of 9 cm and correctly 

identified over 90% of the characteristic periods for the test-data sets [9]. C. 

Feng employed a two-layer machine learning (ML) structure model to perform with 

up to 130% accuracy in 1-hour-ahead wind speed forecasting [10]. Over 15-years 

buoys data at Italian Sea were analyzed by D.J.Peres with ANNs to extend an 

observed time series of significant wave heights. Results were compared to 

WAVEWATCH III/CFSRandERA-Interim, and shown better than latter ones, thus 

potentially appealing to engineering practice [11]. Researches on normal NN also 

showed that with the number of inputs increasing and becoming complicated, the 

accuracy of NN may reduce sharply because the model cannot extract enough features. 

Furthermore the NN will become very time consuming when dealing with complicated 

problems [12][13]. 

Deep learning allows computational models of multiple processing layers to 

learn representations of data with multiple levels of abstraction. LSTM method, 

as derived from the family of recurrent neural network (RNN), was considered one 

of the most appropriate methods to address predicting issues because it has shown 

potential to solve a range of problems involving sequential learning in recent 

years. It features sharing parameters across time series between hidden units 

and becomes one of the most prevalent forecasting algorithms to settle regression 

and prediction problems [14][15]. More and more attention has been received on 

the predicting ocean wave parameters using deep learning network by now. The RNN 

and sequence-to-sequence neural networks have been introduced to predict short 

and long-term significant wave height and output power of the ocean waves, and 

the case studies proved that the Adam and AMSGrad optimization algorithms are 

the most robust ones to optimize the sequence-to-sequence network based on real 

data obtained from NOAA buoy measurements [16]. A two-step wind-wave prediction 

model was explored to predict wind speed and wave height based on deep RNNs with 

a lower prediction error being produced when compared with shallower MLP [17]. 

The deep neural network has also been employed for the application of actual 

radar detection and inversion technology and an accuracy of 99.01% was achieved 

from the study as detailed in [18]. The LSTM has been investigated in the 

situation of short term wind power forecasting and weather forecasting in recent 

years. M. Zayta used LSTM to forecast 24 and 72 hours’ worth of temperature, 

humidity and wind speed for 9 cities in Morocco and produced a better alternative 

to forecast general weather conditions [19]. A LSTM method was prposed in 

combination with proper orthogonal decomposition to provide the corresponding 

induced wave conditions along the coastline. The result showed that the CPU cost 

decreased by three orders of magniture and the use of this approach can provide 

the flood prediction in seconds [20]. An approach combining the discrete wavelet 

transform and LSTM networks was also proposed to perform wind power short-term 

forecasting, aiming to improve prediction accuracy using real data from three 

wind farms as the benchmarks located in Inner Mongolia, The Netherlands and 

Southern China, respectively [21]. 

This paper aims to predict time-varying wave heights by utilizing deep 

learning algorithms incorporating LSMT with PCA whilst considering harsh 

environments in polar regions. The remainder of the paper is organized as follows. 
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Section 2 depicts the integrated methodology of LSTM algorithm and PCA analysis 

method. Section 3 explains the data acquired from buoy measurements and describes 

the architecture for prediction of the purposed model. Section 4 presents the 

results and analyzes performance of the PCA method and LSTM network, where 

findings and discussion from experimental data  are also given. Finally, Section 

5 summarizes the conclusions presented in the study. 

2. Methodology 

2.1 LSTM network 

RNN networks can theoretically use their feedback connections to store 

representations of recent input events in forms of activations, mostly by 

changing weights for short-term memory and long-term memory. This feature makes 

it potentially useful for many time series applications such as speech 

recognition and music composition. But it still fronts oscillating weights in 

some cases, resulting in an unacceptable amount of time or even not working at 

all [22]. For these reasons, Sepp Hochreiter and Jürgen Schmidhuber introduced 

a novel recurrent network architecture called LSTM to tackle these error back-

flow problems in 1997. It can learn to make the connections between time indexes 

beyond 1000 steps and keep the specific architecture constant against exploding 

and vanishing gradients [23]. In 1999, Felix A. Gers, et al. pointed out the 
LSTM cannot solve previous learning algorithms for RNNs and therefore the authors 

adapted “forget gate” as a remedy that enabled an LSTM cell to learn to reset 

itself at appropriate times and thus releasing internal resources. All AI 

algorithms (including LSTM) were not able to solve continual versions of these 

problems, but LSTM joint with forget gates could well solve them simply and 

conveniently [24].  

As a family member of RNN, LSTM network architecture also includes an input 

layer, hidden layers, and an output layer. Each hidden layer of a traditional 

RNN contains one short-term memory vector h. As shown in Figure 1, the left side 

illustrates the cell architecture of RNN which means At not only receive messages 

from At-1 but also send messages to At+1 [25][26]. As shown on the right side of 

the figure, the key to LSTM is the cell state c, which can remember long-term 

information by obtaining cell state and inputs from last time series or sequence. 

There are three inputs of LSTM in time t, namely the output ht-1 in last time 

series, the cell stats ct-1 in last time series and the present input xt. Obviously, 

the output of this layer includes output value ht and cell state ct which are 

used as inputs of the next hidden layer. The LSTM does have the ability to remove 

or add information to the cell state, carefully regulated by structures called 

gates. As shown in Figure 2, the gates include a forget gate (f) meaning how 

many memories will be reserved from ct-1 to ct, an output gate (o) deciding how 

many memories will be outputted to hi and an input gate (i) meaning  how many 

memories will be reserved from c’t. The interaction (element-wise multiplication) 

of input and update gate performs write functions into memory. The input gate, 

using hard sigmoid, decides which values to write while the update gate, using 

hyperbolic tangent (tanh) activation, creates a vector of new cell values 

[27][28].  
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Figure 1 The improvement architecture from RNN to LSTM 

The mathematical representation of LSTM can be obtained as follows [29][30]. 

Input gate (it) decides the information which will be added to the cell. 

)( 1 ititit bHUxWi   ………………………………（1） 

Forget gate (ft) decides the information which will be abandoned from the 

cell. 

)**( 1 ftftft bHUxWf   ……………………………（2） 

Output gate (ot) decides the information which will be exported from the cell. 

)**( 1 ototot bHUxWo   ………………………………（3） 

The states in the cell are expressed. 

tttt icfc  

'
1t c ……………………………………………………（4） 

)**( tanh' 1 ctctct bHUxWc   …………………………………………（5） 

For the output vector, 

)( tanh ttt coH  ………………………………………………………（6） 

From the equations above, xt represents the present input vector, W, U, V 

and b denote the hyper-parameters for weights and biases. Ht is the value of the 

memory cell at time t. σ is the sigmoid function, and tanh represents the 

hyperbolic tangent function [31][32]. 

If an input z is given, the output of the hyperbolic tangent function is 

calculated as follows. 
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Figure 2 also illustrates how these equations work. Every rectangle 

represents a single LSTM cell and three σ denote three functional gates 

respectively. As shown in the middle rectangle, the long-term memory is 

calculated with ct-1 multiplying by ft, which means forget gate. The short-term 

memory is calculated with c’t multiplying by it which means the input gate. As a 

result, the ct representing the new cell state is able to combine with both long-

term and short-term information [33][34][35]. In terms of output ht, it is decided 

by cell state ct and output gate ot. With the equations (1)-(7), the LSTM 

architecture can follow the steps to pass the information to the next one based 

on the three functional gates. 

Figure 2 The repeating cell in an LSTM contains four interacting gates 

 

2.2 PCA method 

It is worth noting that prediction of wave height requires large amounts of 

data to be processed during the training and prediction phases. There is also 

some redundancy in these data, with many of the signals being highly correlated. 

This would lead to over-fitting of the LSTM model and subsequently poor model 

fit, and it is therefore necessary to employ some feature selection algorithm, 

such as PCA, employed in this paper. 

PCA is a statistical method that uses an orthogonal transformation to convert 

a set of possibly correlated variables into a set of values of linearly 

uncorrelated variables called principal components (PCs). It was invented as an 

analogue of the principal axis theorem in mechanics by Karl Pearson in 1901. It 

has been improved many times until now [36][37]. Nowadays, PCA plays an important 

role in data analysis and constructing predictive networks in many domains such 

as population statistics, molecular dynamics, mathematical analysis and 

mathematical modelling. If a multivariate dataset with a high-dimension is given, 

the PCA is able to generate a low-dimension dataset based on the specific method 

to reduce the transformed data by the first few PCs. More specifically, an m-

dimension dataset can be orthogonally transformed to an n-dimension dataset (n<m). 

The PCA method will reconstruct the n-dimension dataset (new dataset) rather 

than simply remove the (m-n) dimension dataset from the m-dimension dataset. 

Consequently, adopting the PCA method contributes to reduction of the complexity 

of inputs and hence the processing time notably [38]. 

If Fi represents the i
th
 PC, then variance-covariance matrix is expressed as 

follows. The bigger the 𝑣𝑎𝑟(𝐹𝑖) is, the more information Fi contains from the 

original dataset. 
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𝑣𝑎𝑟(𝐹𝑖) = ∑ = (

𝜎1
2 ⋯ 𝜎1𝑝

⋮ ⋱ ⋮
𝜎𝑝1 ⋯ 𝜎𝑝

2
)…………………………………………（8） 

Consider the linear combinations,  

𝑌1 = 𝑎11𝑋1 + 𝑎12𝑋2 +∙∙∙ +𝑎1𝑝𝑋𝑝…………………………………………（9） 

𝑌2 = 𝑎21𝑋1 + 𝑎22𝑋2 +∙∙∙ +𝑎2𝑝𝑋𝑝………………………………………（10） 

∙∙∙ 

𝑌𝑖 = 𝑎1𝑖𝑋1 + 𝑎2𝑖𝑋2 +∙∙∙ +𝑎𝑝𝑖𝑋𝑝…………………………………………（11） 

where a1i, a2i, …, api (i=1, …., m) denote the feature vectors of variance-

covariance matrix, and X1, X2, …, Xp represent the normalized input variables 

[39][40]. 

The eigenvalues of the PCs are sorted as λ1 ≥ λ2 ≥ ⋯ ≥ λ𝑚, and the number of 

the PCs selected mostly depend on the value of the cumulative variance 

contribution rate. Generally speaking, it is considered that enough information 

is obtained if the cumulative variance contribution rate is above 75%. The 

variance contribution rate is described as follows. 

𝜂𝑖 =
λ𝑖

∑ λ𝑖
𝑖=𝑚
𝑖=1

× 100%…………………………………………………（12） 

2.3 Performance evaluation index 

Here we choose three mainstream performance evaluation indexes to measure 

the accuracy of prediction, which are the coefficient of determination (R
2
), RMSE 

and the mean absolute error (MAE). R
2 
value provides a measure of how well observed 

outcomes are replicated by the model, based on the proportion of total variation 

of outcomes explained by the model [41][42]. RMSE is more sensitive to a large 

deviation between the predicted values and the actual outcomes while the MAE 

measures the absolute difference between the forecasts and the actual values. 

These measures are calculated by the following equations.  

𝑅𝑇
2 = 1 −

𝜎𝑒
2

𝜎𝑦
2…………………………………………………………（13） 

RMSE = √
1

𝑁
∑ (𝑒𝑡+𝑘/𝑡)

2𝑁
𝑡=1 ………………………………………………（14） 

MAE =
1

𝑁
∑ |𝑒𝑡+𝑘/𝑡|𝑁

𝑡=1 ………………………………………………（15） 

where 𝜎𝑒
2 is the sample variance of the residual, 𝜎𝑦

2 is the variance of the actual 

output, N is the number of samples, and e is the residual between actual and 

predicted values.  

3. The LSTM integrated prediction architecture 

3.1 Data acquisition and preparation 

The Antarctica continent is considered as abundant natural resource such as 

coal, gold, copper and hydrocarbons which remain untapped [43]. However, it is 

not easy to voyage to Antarctica by sea because of the barrage of the Westerlies 
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which dominate with cool air, low pressure, strong westerly wind and cyclones 

[44]. The data used in this article were collected by buoys deployed in the 

westerlies in the northern hemisphere, as shown in Figure 3.  

The four buoys from B1 to B4 were classified into two categories based on 

the deployed methods: mooring and floating. B1 to B3 use floating technology by 

drifting along with the force of current and wind. B4 uses mooring technology 

which means the buoy is anchored at the seabed. Table I. The type, date and 

observing information of deployed buoys. Observing parameters were logged within 

the data collection system inside the buoys and sent to the laboratory hourly by 

satellites.  

 

Figure 3 The deployed positions of westerlies buoys 

 

More than 7,000 group data were collected and recorded in the database. A 

data preprocessing was inevitably used to process abnormal and constant data 

which may exist due to malfunction condition and harsh environment. The gap 

between data may exist due to communication faults or sensor malfunction (always 

logged as 999.99) that should be replaced using Mean/Mode Completer [46], hot 

deck imputation [45] or K-means clustering [47]. It is found some signals are 

correlated and hence the PCA method is adopted to extract the PCs and get rid of 

the redundant data. It is worth mentioning that the date, time and location of 

buoys are strongly related to the wave prediction results because the 

meteorological condition and time-domain information change from each other. 

Here, the day of year and the time of day are represented as time domain 

information and the distance between the historical location and predicted 

destination is calculated respectively based on the equations (17)-(18) below. 

The direction parameters are also represented using a pair of sine and cosine 

values in an effort to capture their periodic nature. 

ℎ → (sin
ℎ

24
, cos

ℎ

24
)……………………………………………………（16） 

The distance between two geological locations A and B is calculated by 

following equations. 

𝐶 = sin 𝐴𝑙𝑎𝑡 sin 𝐵𝑙𝑎𝑡 cos(𝐴𝑙𝑜𝑛 − 𝐵𝑙𝑜𝑛) + cos 𝐴𝑙𝑎𝑡 cos 𝐵𝑙𝑎𝑡………………（17） 

𝑑 = 𝑅 ∗ cos−1(𝐶 ∗ 𝑃𝑖/180)………………………………………………（18） 

where Alat, Alon, Blat and Blon represent the latitude and longitude of location A and 

B. The east longitude represents positive while west longitude represents 
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negative. In terms of latitude, the north latitude takes 90-latitude and south 

latitude takes 90+latitude. The parameter R is a constant representing the radius 

of earth and the value is 6371.004 km. The parameter d is the distance between 

A and B. 

Table I. The type, date and observing information of deployed buoys 

Buoy No. Type Date Observing Parameters 

B1-B3 Floating 
From 9 Jan 2019 to 

24 Mar 2019 

Date, location, wave height, wave 

period, wave direction 

B4 Mooring 
From 9 Jan 2019 to 

24 Mar 2019 

Date， location, wind speed, wind 

direction, air temp, humidity, air 

pressure, water temp, salinity, wave 

height, wave period, wave direction 

3.2 Prediction architecture 

The purposed LSTM prediction model can be briefly classified into two steps, 

as shown in Figure 4, comprising the PCA process and the LSTM model. The PCA 

process takes the responsibility to obtain useful signals and get rid of abundant 

information from the original signals while the LSTM model predicts wave 

parameters through the LSTM block and fully connected layers. The proposed LSTM 

network sets out with a multi-variant time-series input layer followed by an 

LSTM layer. The LSTM layer learns long-term dependencies between time steps in 

time-series and sequence data. Then, the fully connected layer connects every 

neuron in LSTM layer to every neuron in the next layer, and finally ends with a 

regression output layer. This diagram illustrates the stream of time-series S 

with D dimensions of length S as input signals from the wave buoys. The PCA 

method then extracts the useful P signals from the input of D dimensions, which 

means P features are finally treated as the flow of inputs to the LSTM layer. 

“O” represents the output (also known as the hidden state) of the network. In 

the LSTM layer, the first block takes the initial state of the network and the 

first time-series component from the feature extraction section. Also, it 

calculates the result h1 and cell state c1 (as defined in Figure 2). At time step 

t, the t block receives the current state of ct-1 and ht-1, as well as the input 

signals at time t. After processing, the state ct and result ht will be updated 

and the computing is completed. At each step, the output state (h) and the cell 

state (c) are included in the state of layer. The output state h contains the 

output information while the cell state c contains information learned from the 

previous time steps. The gates which represent the specific feature of LSTM 

network control the information to add to or remove from the cell state. 



10 

 

 

Figure 4. The LSTM forecasting model integrated with the PCA process 

The activation function for both input layers and hidden layers are set to 

ReLU function because it is very practical in regression. It is not limited to 

outputs between 0 and 1 and thus improves the disparity of the solution in the 

hidden neurons. Besides, it is able to tackle the vanishing gradient problem 

which prevailing in RNN. The expression for the activation function for the l-

th layer of a neural network with N layers is shown below. 

𝜎𝑙(𝑥) = {
max(0, 𝑥) ,   𝑖𝑓 𝑙 ≠ 𝑁
𝑥,          𝑖𝑓 𝑙 = 𝑁

……………………………………（19） 

where x indicates the input of the ReLU function.  

4. Results and discussions 

4.1 PCA result 

   The PCA process is normally classified into several steps such as data 

normalization, covariance calculation, eigenvalue deduction and calculation of 

contribution rates. For this case, the time-series observed data mentioned in 

Table I from B1 and B4 buoys were processed as inputs of the PCA, including wave 

height, wave period, wind speed and direction, day of year and time of day. The 

total dataset includes 1800 group of data and each group has 18 inputs. After 

the processing, the result of the PCA process based on B1 and B4 data is listed 

in Table II. The PC1 to PC10 represent the PCs associated with inputs 1 to 10 

whereas the eigenvalue and the contribution rate indicate how important the PC 

dominates the overall inputs. Obviously, the cumulated rate reaches 88.3% 

(between 85% and 95% by empiricism) by the PC8 column, meaning PC1 to PC8 contain 

most of the information and the PCs after PC9 considered as redundant data. 

Furthermore, the PC can be expressed by the following equation, 

𝐹𝑖 = 𝑎1𝑖𝑋1 + 𝑎2𝑖𝑋2 + ⋯ + 𝑎𝑝𝑖𝑋𝑝, 𝑖 = 1, ⋯ , 𝑝………………………………（20） 

where 𝐹𝑖 represents the i
th
 PC, 𝑋𝑝 means p-th input signal. In terms of PC1 in 

Table II, the expression will be as follows. 
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 𝐹1 = 0.4677𝑋1 − 0.4662𝑋2 + 0.0141𝑋3 − 0.0134𝑋4 + 0.0886𝑋5 − 0.052𝑋6 + 0.0724𝑋7 −

0.0146𝑋8 + 0.4677𝑋9 − 0.4662𝑋10 + 0.0141𝑋11 − 0.0134𝑋12 − 0.2111𝑋13 − 0.1563𝑋14 −

0.0819𝑋15 + 0.0732𝑋16 − 0.1661𝑋17 +

0.0496𝑋18……………………………………………………… （21） 

The values highlighted with yellow indicate they are much larger than others, 

meaning the corresponding input variables dominate this PC. In other words, we 

choose the most representative inputs based on those values and remove other 

redundant inputs. After checked the values from PC1 to PC8 (as PC1 to PC8 contain 

most information of the original dataset as stated above), the wave period and 

wave direction from B1 and wave period from B4 seem as redundant inputs and 

therefore removed, and other 15 inputs are remained. 

Table II. The result of the PCA process based on B1 and B4 observing signals 

Inputs PC1 PC2 PC3 PC4 PC5 PC6 PC7 PC8 PC9 PC10 

B1 Day of 

year(sin) 
0.4677  0.0157  0.0506  -0.0002  0.1038  0.0324  0.0112  0.0002  -0.0536  -0.0785  

B1 Day of 

year(cos) 
-0.4662  -0.0150  -0.0714  -0.0085  -0.0309  -0.0628  -0.0044  -0.0141  0.0427  0.1373  

B1 Time of 

day(sin) 
0.0141  -0.4992  -0.0015  0.0083  0.0330  0.0024  -0.0118  -0.0267  0.0026  0.0125  

B1 Time of 

day(cos) 
-0.0134  0.4996  -0.0024  0.0116  0.0017  0.0019  0.0020  -0.0224  0.0048  0.0246  

B1 Distance 0.0886  0.0000  0.2522  -0.3138  -0.1628  0.5994  -0.3171  0.0675  -0.0925  0.4843  

B1 Wave height -0.0520  0.0113  0.5418  0.0895  0.0246  0.0093  0.0447  0.1773  0.1956  -0.4308  

B1 Wave period 0.0724  -0.0120  0.3950  0.3124  -0.1579  -0.0910  -0.0411  -0.1333  0.6882  0.3361  

B1 Wave direction -0.0146  -0.0157  0.0074  -0.1848  -0.0843  0.3425  0.9060  -0.0616  0.1090  0.0611  

B4 Day of 

year(sin) 
0.4677  0.0157  0.0506  -0.0002  0.1038  0.0324  0.0112  0.0002  -0.0536  -0.0785  

B4 Day of 

year(cos) 
-0.4662  -0.0150  -0.0714  -0.0085  -0.0309  -0.0628  -0.0044  -0.0141  0.0427  0.1373  

B4 Time of 

day(sin) 
0.0141  -0.4992  -0.0015  0.0083  0.0330  0.0024  -0.0118  -0.0267  0.0026  0.0125  

B4 Time of 

day(cos) 
-0.0134  0.4996  -0.0024  0.0116  0.0017  0.0019  0.0020  -0.0224  0.0048  0.0246  

B4 Distance -0.2111  -0.0073  0.1502  0.2129  -0.2364  0.4853  -0.1546  -0.4656  -0.1696  -0.4691  

B4 Wind speed -0.1563  0.0158  0.2224  -0.2088  0.6672  0.1162  -0.0434  -0.0972  -0.0605  0.1599  

B4 Wind direction -0.0819  -0.0074  -0.0933  0.5730  0.0823  0.3530  0.0414  0.6874  -0.1042  0.0570  

B4 Air 

temperature 
0.0732  0.0177  -0.2114  0.5032  0.4464  0.1567  0.0527  -0.4538  0.0296  0.1799  

B4 Wave height -0.1661  0.0015  0.4774  -0.0432  0.3484  -0.1378  0.1006  0.1057  -0.2071  -0.0780  

B4 Wave period 0.0496  -0.0119  0.3437  0.2980  -0.2945  -0.2964  0.1842  -0.1538  -0.6092  0.3525  

Eigenvalue 4.4042  3.9076  2.2149  1.3308  1.2697  1.0476  0.9830  0.7398  0.7142  0.5922  

Contribution 

Rate(%) 
24.4678  21.7088  12.3053  7.3935  7.0538  5.8197  5.4609  4.1101  3.9677  3.2902  

Cumulative 

Rate(%) 
24.4678  46.1766  58.4819  65.8754  72.9292  78.7489  84.2098  88.3199  92.2876  95.5778  

The bars in Figure 5 also illustrate the same trend, where six PCs from PC1 

to PC6 are considered and the height of each bar represents the contribution 

from each input. Normally, the input is of great importance and treated as a 
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dominant input if its absolute value is higher than 0.4. After the total number 

of dominant inputs is identified, the results of the PCA can be decided. Let us 

take the first three PCs as an example, the date, time and wave height contribute 

to more than half of the total inputs and therefore the results can be primarily 

concerned with these inputs. 

 
Figure 5. The contribution of all inputs from PC1 to PC6 

4.2 LSTM model result 

In order to obtain better performance and prediction results, the outcome of 

the PCA method is used in combination with LSTM model. The PCs can be set as the 

updated input signals for the time-series LSTM network not only to keep accuracy 

of the model output but also to reduce computing-time consumption. As mentioned 

in Table II, the yellow cells to represent the PCs in this case are rearranged 

as new inputs for the LSTM model. The 27 time-series signals include date, time, 

distance, and mean wave height values of B1 to B2 and date, time, distance, air 

temperature, wind speed, wind direction, and mean wave height values of B4 are 

selected as the inputs of the model. In terms of output, the mean wave height of 

each buoy is selected respectively. Each time-series sequence data has 1800 

records with each record being one-hour long interval. Thus approximately two 

and half months’ time long records are used with 80% data being used for training 

and other 20% data used for testing.  

The LSTM model runs for the time-series forecasting based on multiple signal 

sequences to forecast the values of future time series sequence that mimics an 

existing one. The model trains features at each time step along with the input 

signals and learns to predict the values of the next time step. When the value 

of each time step is predicted, it is necessary to update network state with the 

observed values instead of the predicted values. The procedures are given below. 

a) Initialize the network state.  

b) Reset the network state to prevent previous predictions from affecting 

the predictions on the new data. 

c) Reset the network state and then initialize the network state by 

predicting on the training data. 

d) Predict at each time step. At each prediction, the next time step value 

is predicted using the observed value of the previous time step. 
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Figure 6. The predicted result of wave height form four buoys (B1-B4) 

The result of the LSTM model is shown in Figure 6 to show the wave height 

predicted at all the buoy stations. Each subplot shows the comparison of wave 

height value resulting from prediction model and values actually acquired from 

buoy stations from B1 to B4. Generally, the predictions can be considered 

acceptable in terms of trend while the wave height oscillates around low values. 

The predicted curves for each station seem accordant with the observed curves in 

most time stamps. The red curves (predicted values) keep a smooth change, while, 

on the other hand, the actual values experience jagged spikes during whole time 

period. When compared among the four curves, the difference between the predicted 

and observed values show there are relatively larger errors when the wave height 

is higher. It is speculated that the worst performance in B2 station is because 

of not only the largest wave height recorded but also the station being the most 

high-density wave energy among the four stations. The values in Table III 

demonstrate the similar situation in terms of these performance measures. The B4 

station performs a best predicted result among the four buoys while the other 

three show the comparable indexes in terms of R
2 
and RMSE values. This can be 

attributed to the factors that the average wave height for B4 is less when 
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compared to other stations and the additional input like air temperature 

available at B4 is used for prediction. 

Table III. Model performance measures of the buoys 

Buoy No. RMSE R
2
 MAE 

B1 0.8630 0.7269 0.6778 

B2 1.2516 0.5953 1.1606 

B3 1.1352 0.7423 0.9050 

B4 0.4689 0.8755 0.3038 

4.3 Discussions 

In terms of validations and accuracy using data-driven methods, different 

models are applied to measure the result of B4 station as an example, including 

linear regression (LR), regression tree (RT), support vector machine (SVM) and 

Gaussian Process Regression (GPR). The results are given in Table IV. The 

calculations were implemented in Matlab R2018b in an Inter® Core™ i7-8550U CPU 

at 1.80 GHz workstation with 16 GB RAM and a Radeon Pro WX3100 GPU. The R
2
 values 

seem little higher by applying LSTM model than other popular approaches. The GPR 

model can predict the closest values when compared to LSTM model. For the time 

consuming, the LSTM seems much quicker than SVM and GPR because the average time 

consuming for running an LSTM model takes approximately 20 seconds. The SVM and 

GPR would take much longer time if more data are required. It worth mention that 

the process of PCA only costs 0.029 s. However the training time of LSTM model 

may reduce approximately 124 seconds if using PCs resulted from PCA method. In 

other words, the PCA analysis can reduce the training time about 104 s in this 

case. 

Table IV. The model results from different supervised modelling approaches 

Methods RMSE R
2
 MAE Time(s) 

LR 0.6182 0.62 0.4720 3.72 

RT 0.5292 0.72 0.3492 0.63 

SVM 0.4530 0.79 0.3323 40.99 

GPR 0.3723 0.86 0.2796 119.22 

LSTM 0.4083 0.89 0.3014 18.53 

It is found from Figure 6 that the proposed LSTM model is more sensitive in 

high values than in low values. At the time steps from 0 to 50 and from 250 to 

300 at B1 to B3 stations, the predicted curves deviate far from these observed 

curves, meaning a poor prediction. At the higher wave heights, the smooth fitting 

curve may not be able to oscillate frequently and strongly. This phenomenon can 

also be partially explained by the nature of RNN. The RNN, from which the LSTM 

is derived, has the ability of keeping the old value in its memory cells. When 

the old value becomes larger, they may affect the prediction results. If the old 

value appears nonsense to the new prediction, it is necessary to remove them and 

keep the useful value in the model. However, although the PCA method is able to 

decide which information could be retained, it is still needed to process the 

selection further before being applied to the LSTM model. This implies different 

inputs to the model could evidently affect the result.  

Besides, the wave height has plenty of physical attributes in both time-
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series and space domain. In order to predict the wave height more precisely, it 

is necessary to consider information such as distance and location from the 

destination. For example, at a time step, the wave condition can behave similarly 

to what happens in a kilometer-scale space. The wave caused by wind may consider 

the direction of the wind whilst the wave direction should be as same as wind. 

That is why the wind-wave models could provide a more accurate forecasting. It 

can also be found from the results that the performance of each buoy station 

varies from each other in the R
2
 value ranging from 0.60 to 0.88. This phenomenon 

might partially be because of the distribution and weather condition of the buoys. 

The buoy distribution will affect the prediction result and experience from 

numerical wave model shows that a grid distribution of the buoys may present 

better results. 

 

5. Conclusions 

There are a number of ways to forecast wave height in next hours or even 

days. With the third generation numerical wave models, the results could reach 

the accuracy standards for ocean engineering as well as maritime activities in 

recent decades. However, in the polar region, the shortage of data caused partly 

by scarce human activities and harsh ocean conditions leads to rough prediction 

performance even by those numerical models. The novel LSTM method presented in 

this paper not only provides a good and accurate prediction but also requires 

fewer data inputs and time consuming. The results in this case study show the 

LSTM network has the potential to perform prediction at a small-scale polar 

region by using a few amounts of data. This demonstrates that the proposed 

approach can be used in the maritime forecasting, aquaculture and wave energy 

utilization. 

The model results provide acceptable values in term of performance measure 

indexes of R
2
 and RMSE values of 0.89 and 0.4083 respectively. After comparison, 

the results perform much better in terms of both performance metrics and time 

consuming when compared with LR, RT, SVM and GPR. The PCA method is used to 

extract PCs from input signals, by which the LSTM adopts to avoid long term 

independences during the forecasting. The different performance from each buoy 

might be partly because of the distribution and weather condition of the data 

station from the buoys. 

Finally, discussions on the shortages of high-value wave prediction and the 

curve-fitting accuracy are made. The study shows that the number of the features 

extracted from inputs directly dominate the prediction results and therefore 

future work will focus on wave height feature extraction. Furthermore, the long-

terms (7 days to 15 days) prediction method has been widely needed in specific 

fields which will also be studied in the future work. 
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