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Abstract: Cyber-Physical Systems (CPSs) are increasingly important in everyday applications 

including the latest mobile devices, power grids and intelligent buildings. CPS functionality has 

intrinsic characteristics including considerable heterogeneity, variable dynamics, and complexity of 

operation. These systems also typically have insufficient resources to satisfy their full demand for 

specialized services such as data edge storage, data fusion, and reasoning. These novel CPS 

characteristics require new management strategies to support the resilient global operation of CPSs. 

To reach this goal, we propose a Software Defined Networking (SDN) based solution scaled out by 

Network Function Virtualization (NFV) modules implemented as distributed management agents. 

Considering the obvious need for orchestrating the distributed agents towards the satisfaction of a 

common set of global CPS functional goals, we analyze distinct incentive strategies to enact a 

cooperative behavior among the agents. The repeated operation of each agent’s local algorithm 

allows that agent to learn how to adjust its behavior following both its own experience and observed 

behavior in neighboring agents. Therefore, global CPS management can evolve iteratively to ensure 

a state of predictable and resilient operation. 

Keywords: cyber-physical systems; Internet of Things; software-defined networking; game theory; 

network function virtualization; threats and cyber-attacks; algorithms; resilience; resilient systems; 

cooperation; orchestration; robustness 

 

1. Introduction 

A Cyber-Physical System (CPS) is essentially a physical facility with embedded sensors and 

actuators that can be remotely monitored and controlled by computerized systems [1], which we 

assume here are distributed virtualized agents implemented by Virtual Network Functions (VNFs), 

most of them located at the network edge. The monitoring and control of CPS are made by logical 

control loops over physical communication channels. These channels are established between the 

sensors/actuators and the VNFs. The channels transfer data representing the facility status and 

control messages to change the operation mode. CPSs are increasingly found in diverse applications 

areas such as power grids [2][3], smart buildings [4][5], next-generation mobile communication 

systems [6][7], healthcare systems [8][9], and also in precision farming systems [10][11].   

Recent years have shown the increasing relevance of CPSs in every day of our lives. In this way, 

the reliable acquisition and processing of the data originated at the physical part of each CPS become 

very important. To support the efficient extraction of useful knowledge from the processed CPS data, 

we argue that, in the current work, several research areas and techniques need to be combined. These 

are Software Defined Networking (SDN) [12] and Network Function Virtualization (NFV) [13], edge 

computing [14], system modeling [15], and machine learning [16]. The extraction of useful knowledge 

can hopefully enable a CPS proactive management [17] by either a high-level layer [18] or even a 



 2 of 18 

 

cross-layer [19] system functionality responsible to enforce the fulfilment of orchestrated 

management policies in federated use cases [20], involving diverse administrative domains. Due to 

the non-centralized design of a CPS, there are several virtualized (i.e. VNF) agents managing that 

CPS. In this way, each VNF agent is responsible for the supervision and control of a specific part of 

the CPS. Consequently, a specific VNF agent should take individual decisions based on some local 

system contextual information. Nevertheless, each VNF agent has unique contextual information 

which, due to reasons including locality, may be different from what is available to others. 

Consequently, each VNF agent could make management decisions conflicting with the decisions of 

others. Thus, counter-balancing the flexibility of a distributed NFV approach, the CPS may have a 

sub-optimal performance when compared to centralized decision-making. This optimization 

inefficiency of the distributed management is like a system cost, representing a degradation of the 

CPS performance. To mitigate this performance degradation, we argue in favor of the utilization of a 

system mechanism to incentivize cooperation and to support orchestration amongst VNF agents [21]. 

This orchestrated management among the agents is a key feature to ensure the main functional 

objectives of the associated CPS. Following this, we study the agents’ evolving behavior in support 

of the optimized global operation of the CPS. We consider the learning capability in each VNF agent 

that adjusts its behavior following both its own experience and the observed behavior from others, 

by repeated operation of the agent’s local algorithm. Thus, the global CPS management can evolve 

in a consistent way (much like a centralized design), converging to the expected operation of that 

CPS.  

The paper has the following structure. Section 2 discusses related work. The design of a 

software-defined resilient CPS is described in Section 3. Section 4 outlines the implementation details 

of our proposal. An analysis of the proposed approach is presented in Section 5. Section 6 concludes 

the paper and outlines future research directions. The paper’s logical organization is illustrated in 

Figure 1. This paper builds on unpublished online material from the same authors, available at [22]. 

 
Figure 1. Structure of the paper 

2. Review of Literature 

A considerable amount of work has recently been done in each of the major areas addressed by 

our current paper. The contribution in [18] presents a fundamental and updated background in 

resilience and related concepts. It also offers a comprehensive discussion on diverse relevant 

scenarios for CPSs and on foundational technologies to enforce resilience in CPSs. Specifically, the 

authors of [23] discuss the state of the art in resilient networked systems.  



 3 of 18 

 

Modern CPSs can be treated as large-scale heterogeneous distributed systems. In this context, 

when adequate supervision and control are also required for network-wide resilience, it is crucial to 

study the efficient orchestration [24] of a set of software-based services that must cooperate among 

themselves to fulfil the global resilience requirements [25]. Some software-based services that are 

pertinent to enforce wide-area resilient networked systems are pointed out in [25], such as traffic 

classification, anomaly detection, or traffic shaping. In addition, the mobile network edge access 

should be investigated in novel ways, e.g. ubiquitous access, supported in previous related work [26]. 

Further, legacy networking techniques for achieving end-user QoS are still relevant, such as the 

notion of filters as originally proposed in [27].  

The analysis of a resilient CPS can be made using a theoretical model. A very popular tool to 

perform system analysis is Game theory (GT) [15]. It is very useful for analyzing the diverse situations 

that could impair the system’s normal operation. GT also enables the building of automatic models 

with either bounded rationality or decision uncertainty to safeguard the system’s key functionalities 

in spite of the occurrence of serious threats [28]. In addition, the diverse model players should not 

only optimize their individual outcomes, but they should also coordinate among themselves towards 

the fulfilment of common global system goals. In our research experience, the efficient coordination 

among players can be globally guaranteed by correct incentives endorsed by the system model 

towards the system players cooperate among themselves. Aligned with these ideas, we have 

reviewed the literature for theoretical models in CPSs that incentivize cooperation among the players. 

This cooperation is fundamental to resilient CPSs, and it is discussed below. 

The authors of [29] provide an in-depth literature review in viable incentives for mobile 

crowdsensing, discussing lotteries, auctions, trust and reputation proposals. In contrast, [30] 

introduces a novel approach for mobile crowdsensing, viz. a social incentive mechanism that enforces 

the coordinated positive contributions of mobile users sensing their context via their smartphones 

towards some global system goals. In [29] the authors discuss the relevance of contract theory to 

design incentive mechanisms for use cases in wireless networks such as traffic offloading, spectrum 

trading, or mobile crowdsourcing. 

We have found a considerable number of contributions addressing incentive models for 

cooperation among players in Vehicular Ad Hoc Networks (VANETs) to study the evolution of 

players’ behavior (selfish vs. cooperative) under different network conditions [31][32], to motivate 

nodes to act as communication relays [33][34], and to influence nodes to support QoS-based 

communications [35]. A related survey is available in [36], which discusses several mechanisms to 

enforce cooperation. These mechanisms are based on punishment, detection of incorrect behavior, 

and mobile social networking. 

Further models to enforce cooperation within a system are as follows: i) hierarchical model 

[37][38][39]; ii) evolutionary model [40]; iii) cluster-based model [41]; and iv) potential game model 

[42][43]. In addition to these games, there is a mechanism design (or reverse GT) solution normally 

designated as auction model [44][45], which finds the optimum system status with a convergence 

time lower than that of a theoretical game [46]. Alternatively to the previous mechanisms that are 

based on (reverse) GT, [47] proposes an incentive mechanism based on both the anchoring effect and 

loss aversion of Behavioral Economics to stimulate data offloading in IoT use cases. The anchoring 

effect can be particularly useful, in the start of model game, when the players have not yet learned 

more suitable choices. In this way, the players are initially attracted to select a choice that optimizes 

the system operation (e.g. enforce nodes to perform data offloading across the existing edge 

computational resources, considering also the energy consumption / availability in each node). 

The authors of [48] propose a virtualized architecture (based on NFV/VNF) and dynamic control 

(based on SDN). They deploy, at the SDN controller, a centralized non-cooperative incomplete 

information game. This enables the SDN controller to decide how the virtual (VNF) sensors are 

organized in clusters and to identify the more suitable sleep mode for each sensor. The final aim is to 

extend the lifetime of a software-defined CPS. Our current work is similar to [48] except the latter is 

concerned with energy efficiency and the former is towards the more efficient coordination among 

virtualized agents for supporting the CPS resilience in a more generic way. In addition, [49] is about 
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a software-defined solution but without NFV. The authors of [50] revise the literature on software-

based (i.e. SDN/NFV) proposals to manage and control IoT use cases. In addition, [51] proposes a 

taxonomy of the evolution of the NFV/SDN relationship. Further, [52] reviews the literature on 

emerging NFV and SDN mechanisms for IoT-based scenarios but mainly focused on security and not 

addressing the resilience feature. 

The next section debates the design for a software-defined resilient CPS. It also discusses two 

design options to orchestrate agents running over the SDN controller. The first option offers a short-

term reactive agent orchestration, and the second one a long-term proactive agent orchestration. 

3. Design of a Programmable Hierarchical Architecture for Resilient Cyber-Physical Systems 

This section presents and discusses the design of a Cyber-Physical System (CPS) to enhance this 

with extra capabilities to detect, absorb and recover, and adapt against threats against the normal 

operation of each CPS [53]. We also debate event-triggered (i.e. reactive) (sub-section 3.1) and data-

triggered (i.e. proactive) (sub-section 3.2) management mechanisms among the several CPS entities 

towards the resilient operation of that CPS. 

3.1. Event-Triggered Management Mechanism  

The current sub-section presents some design aspects that are important to consider in an event-

triggered Software-Defined resilient CPS. Table I presents a four-layered hierarchical architecture 

[18], which can detect, absorb and recover, and adapt to threats made against CPSs [53]. The current 

system architecture is formed by management entities that immediately reacts to a relevant system 

event by executing a management action on the system. In this way, we can classify this as a short-

term reactive management solution. Further details on this architecture are available in [18]. 

 

Table I. Hierarchical Architecture of a Software-Defined Resilient Cyber-Physical System [18] 

Layer Plane Domain CPS 

Activity [53] 

Goals Tools 

4 Intelligent 

management 

Inter/Intra Adapt Reasoning, 

orchestration, 

full abstraction, 

adjust 

management 

policies or 

intents 

NFV, SDN, GT, Intent 

Engine, ML/AI 

3 Control Intra Adapt, 

recover 

Partial 

abstraction, 

topology, traffic 

Software-Defined 

Controller with link 

layer discovery,  

forwarding, and 

feedback loop 

2 Switching Edge Detect, 

absorb, 

recover 

Decision about 

next link 

decision, traffic 

mirroring, 

discard packet  

OpenFlow rules in 

local device tables, 

queues 

1 Physical 

communications 

IoT Detect, 

absorb 

Accept or 

discard received 

message 

Interface Chip 

programming 

The next sub-section presents the basic design of a proactive software-defined resilient CPS 

management mechanism. 
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3.2.  Data-Triggered Management Mechanism 

This sub-section briefly debates how data analysis can also proactively influence the CPS 

operation in a longer time perspective than the other design discussed in sub-section 3.1. This occurs 

because the current system architecture is formed by management entities that need to observe the 

system operating during some time interval to learn about the more convenient behavior they need 

to adopt. In this way, we can classify this as a long-term management solution Figure 2 visualizes the 

CPS flowchart, showing the major functional phases of gathering data about the CPS operation 

(status), analyzing data, selecting a management decision, and applying the management decision 

on the CPS. After this iteration, more CPS data is gathered again, and the previous functional phases 

are repeated. We assume that data analysis can be performed using a machine learning algorithm to 

boost the system management [54]. In addition, the management decision of this data model should 

be conveniently matched with the event-triggered management decision of the agent discussed in 

sub-section 3.1. The orchestration among the two management methodologies (reactive vs proactive) 

can be made using a Blockchain solution [55] [56] [57], using a suitable consensus algorithm. 

Consensus algorithms, such as Kalman-based distributed algorithms [58], can provide interesting 

distributed functionalities of both filtering the menaces and manage CPSs to mitigate them (or even 

avoid them in the future). In this way, important network functions, e.g. firewall or Intrusion 

Detection/Prevention or honeypots, can be deployed pervasively within large networking edge 

domains, embedding a considerable number of sensors, actuators, or data aggregators. The authors 

of [58] discuss key recent results in the field of industrial CPSs modeled by differential dynamic 

equations, and they further discuss what issues should be addressed. These issues are analyzed from 

three distinct aspects: distributed filtering, distributed control and, distributed security control and 

filtering.  

Data-driven proactive management will be essentially supported by ML/AI techniques. These 

techniques, once deployed in future networked systems, should offer a new range of networking-

based services such as smart routing in networks with a cross-layer design [59], task offloading and 

resource allocation [60], optimized operation of next-generation mobile networks [61], distributed 

storage and computation at the network edge [62], and accurate localization estimation of mobile 

robots [63]. In parallel with this expected network evolution, novel challenges such as privacy, e.g. in 

smart contracts [64], or IoT data trustfulness [65] should be successfully guaranteed. 

 
Figure 2. Data-triggered Management Model of a Cyber-Physical System 

The next section debates the modeling of a proposal to manage a software-defined resilient CPS 

in a reactive way by each agent. 
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4. Implementation of a Programmable Solution for Managing Resilient Cyber-Physical Systems 

We discuss here the deployment of a programmable proposal to manage a resilient CPS in a 

reactive way. This solution has a four-layered design (see Table I). In addition, Figure 3 presents the 

key functional blocks of the system under investigation. Analyzing this, one can conclude that the 

CPS status is being supervised in a periodic way by the SDN controller via a Southbound API 

protocol such as OpenFlow (see Figure 3, message 1). Then, the SDN controller, acting as an 

intermediary, exchanges REST messages via Northbound API with the topmost level system VNF 

agents (see Figure 3, message 2). Using these messages, the SDN controller reports status events 

associated with the CPS operation. These events are analyzed, classified and processed by top-level 

VNF agents running distinct algorithms (e.g. GT-based, ML-based). At this layer, we expect there to 

be some coordination mechanisms (e.g. consensus-based) among the distributed agents to guarantee 

that the CPS is managed in a coherent and efficient way. Subsequently, the final management 

decision is transferred to the SDN controller (see message 3, Figure 3). Finally, the SDN controller 

converts the received management decision into flow rules that control the CPS’s physical 

infrastructure, also commonly referred to as the CPS data plane (see message 4, Figure 3).  

 

 
Figure 3. Reactive System Functional Blocks with Monitor, Classify, Manage, and Control 

Phases  

An example of agent processing represented in Figure 3 at the top-layer, and shown in Table II, 

it is now briefly explained. This agent estimates the system status from received event messages. The 

system status is evaluated as the ratio between the Quantity_good_events and the 

Quantity_total_events, both collected in a periodic way. There is also the estimator Sn, which is the 

system status at instant “n”. This agent system status estimator with memory (i.e. configurable 

parameter 𝛼 ∈ [0, 1]) enables that agent to identify in the best way possible an eventual system 

anomaly and, after that, to react in a cooperative way to that issue. This means that the recover or 

adapt algorithm is executed by a specific agent if that agent decides to cooperate and if that choice 

has been randomly sorted out by the same agent – like tossing a coin. In addition, all the previous 

goals should be achieved by minimizing the usage of (heterogeneous) system resources (e.g. energy, 

bandwidth). Alternatively, the agent can selfishly select the ‘defect’ strategy. As the players select 

their strategies to optimize the system status, they then verify how the system behaves by evaluating 

the subsequent value for the local estimator of the system status, and the local processing in each 

agent is repeated as already explained. In parallel, the global system management is hopefully 

enhanced, increasing its robustness against any outcoming menace. 
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Table II. Agent Event-Triggered Management Algorithm  

𝑆0 = 1; 𝛼 = 0.8; n = 1 

While True do 

    Collect, analyze, and classify CPS events occurred within last time slot 

    𝑆 =
𝑄𝑢𝑎𝑛𝑡𝑖𝑡𝑦_𝑔𝑜𝑜𝑑_𝑒𝑣𝑒𝑛𝑡𝑠_𝑤𝑖𝑡ℎ𝑖𝑛_𝑙𝑎𝑠𝑡_𝑡𝑖𝑚𝑒_𝑠𝑙𝑜𝑡

𝑄𝑢𝑎𝑛𝑡𝑖𝑡𝑦_𝑡𝑜𝑡𝑎𝑙_𝑒𝑣𝑒𝑛𝑡𝑠_𝑤𝑖𝑡ℎ𝑖𝑛_𝑙𝑎𝑠𝑡_𝑡𝑖𝑚𝑒_𝑠𝑙𝑜𝑡
 

    𝑆𝑛 = 𝑆𝑛−1 ∗  𝛼 + 𝑆 ∗ (1 −  𝛼) 

    𝒊𝒇 𝑆𝑛 > 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 𝒕𝒉𝒆𝒏 

        CPS system is ok; do nothing different from last action 

    else 

        CPS system is not ok; play the cooperate / defect game 

    end if 

    n = n + 1 

end for 

5. Analytic Study of a Cyber-Physical System Aimed at Resilience Enhancement 

This section studies a CPS that is managed by a set of distributed agents. Among these agents, 

some of them could assume incorrect behavior, which needs to be detected and retaliated against; 

otherwise, the efficient and resilient operation of the CPS could be jeopardized. For ensuring the CPS’ 

global performance and resilience, we initially analyze a non-cooperative model among distributed 

agents with an External Retaliation Mechanism, which is controlled by a Model Discounted Factor. 

Then, we carry on an evolution study among the independent agents, which can select, among 

several options, a retaliation strategy against undesired actions observed from others, aiming to fulfil 

a global system objective (e.g. resilience). 

In this first part, we present and debate some analytic results of a non-cooperative model 

enhanced by an external mechanism that reactively enforces cooperation among players through 

infinitely iterated repetitions of the model algorithm which is running in each player. We have 

selected a non-cooperative model to the detriment of others, namely Stackelberg or cooperative, 

because each one of these alternatives has important limitations. In fact, the first alternative, i.e. the 

Stackelberg game, has a centralized operation based on the master player. This master node takes, at 

the beginning of each iteration, the first management decision, followed by individual decisions 

made in each follower node that has previously observed the initial master decision. The Stackelberg 

model presents the classical problems of a centralized design: low scalability, no system operation if 

the master node fails, or a high probability of the master node being subjected to cyber-attacks. 

The second possible alternative based on a cooperative model has the drawback of inducing a 

very high network overhead. This network overhead is due to the high amount of signaling traffic 

used in the formation and maintenance of clusters, essentially in a large and high-complexity scenario 

such as the emerging scenario of vehicular networks in operation within a very busy city. 

Considering a non-cooperative model, we avoid the limitations explained in the previous 

paragraphs, but we should be aware that some players could assume decisions, which in turn could 

penalize the system’s global performance. Assuming this, and to assure a global system optimization, 

we should guarantee that most of the distributed players become coordinated together, towards the 

fulfilment of a common system goal. In this way, the cooperation among players is very important 

for achieving reliable system operation with a limited set of resources.  

To support the next debate, we consider the well-known infinitely repeated Prisoner’s Dilemma 

(PD) game between N non-cooperative agents. These N players are functional entities of a CPS and 

IoT system, e.g. containers, or specialized VNF agents located at the topmost layer of the software-

defined resilient CPS. By specialized agents we mean that, as the system overlaps a specific threshold, 
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each system agent detects it and cooperatively reacts, selecting either ‘absorb’ or ‘adapt to’ the 

problem. Alternatively, the agent can be selfish by doing nothing to mitigate the problem. 

Next, we analyze a model involving two (N=2) topmost layer management agents that can either 

cooperate or defect. In the current game, the discounted factor combined with a mechanism that is 

triggered by a player´s defection can enforce cooperation throughout players. The discounted factor 

(<= 1) multiplies the payoffs of the current stage, meaning that in future game stages the payoffs of 

previous rounds have less relevance. In this way, each player gets an accumulated reward during  

all the game iterations in which that player was involved. 

Figure 4 shows the payoff matrix of an infinitely repeated PD game as well as the total (per 

player accumulated) payoff along the initial four runs of the game, considering distinct values for the 

discounted factor (i.e. delta= {0,.2,.6,.95}). A Grim Trigger methodology is applied to a player that 

defects. Two distinct strategies are analyzed. In the first situation, both players cooperate, being 

rewarded with the social optimum payoff of 3 in every stage of the game, as shown in (1). In the 

second situation, one player defects in the first stage to increase its initial payoff from 3 to 5. 

Nevertheless, the other player at the second stage retaliates against the former defecting player, also 

defecting. Consequently, both players get a payoff of 1, as shown in (2), after the initial stage.  

            

𝐶𝑜𝑜𝑝 = 3 + 𝛿. 3 + 𝛿2. 3 + ⋯ =
3

1−𝛿
   

   (1) 

 

𝐷𝑒𝑓 = 5 + 𝛿. 1 + 𝛿2. 1 + ⋯ = 5 +
𝛿

1 − 𝛿
 

(2) 

3

1 − 𝛿
≥ 5 +

𝛿

1 − 𝛿
⇔ 𝛿 ≥ 0.5 

 

 
(3) 

The expression (3) evaluates the minimum value (i.e. 0.5) for the discounted factor (delta) to 

reflect in future a strong enough threat (in terms of payoff decrease) to a deviating player. Comparing 

the payoff trends of the two cases we have discussed in the previous paragraph, one can conclude 

for delta values of 0 (i.e. the game has only a single stage) and 0.2, which are both lower than 0.5, then 

the more convenient strategy for both players is always to defect (see Figure 4). The mutual defection 

occurs because the model gives the players solid evidence that they are playing the ultimate round 

of the game. So, the players are normally tempted to defect as they cannot be punished in the future. 

Alternatively, analyzing from Figure 4 the trends associated with the delta values of 0.6 and 0.95, 

which are both higher than 0.5, one can conclude that in the initial stages both players are tempted to 

defect; but after a threshold stage of the game is passed, both players should always cooperate in 

their best interest. This threshold stage depends on the delta value (see Figure 4). In fact, as the delta 

value increases towards one that means the player (with that perspective of the game) learns it is 

better to cooperate instead defecting faster, i.e. after fewer stages counted from the game’s start.  

The opposite happens if for the same game the strategy is changed from Tit for Tat (Figure 4) to 

Slow Tit for Two Tats (Figure 5). From Figure 5 it is evident that the need to cooperate occurs in later 

stages of the game when compared with the trend of Figure 4. The last difference in behavior occurs 

because Tit for Two Tats is a forgiving strategy by which a player only defects after the opponent has 

defected twice in a row. This behavior is fairer than Tit for Tat in scenarios where the player, due to 

a network communication error or any limitation imposed by other system operational constrain, 

erroneously perceived the previous opponent’s choice.  

For validating the key conclusions extracted from the previous analytical comparison made 

between the two cooperative strategies, we have also performed some additional simulations to 

study how the distribution of the two studied types of cooperative behavior evolve along the time, 

considering a total player population of constant size. In this way, Figure 6 shows the evolution of a 

population composed by the two types of players of our study, during one thousand rounds. The 

Moran process was used to keep the population size always at a constant value of one hundred 
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players. For simulating that situation, we have used the Axelrod Python library 1 . The winning 

management strategy was Slow Tit for Two Tats, suggesting Tit for Tat has a lower fitness function 

than the former one, confirming our analytical conclusions.  

There are still a considerable open research challenges in discounted repeated games, such as: i) 

coping with incomplete available information; ii) controlling defectors; iii) considering an individual 

delta for each player; iv) triggering punishment only during a limited set of stages after an incorrect 

behavior; and finally v) studying scenarios where a serious system threat stops the system’s operation 

and the game. Also, the authors of [66] investigate the more suitable values for the parameters of a 

repeated game to guarantee cooperation among the majority of the players is still guaranteed in spite 

of some uncertainty about the strategy selection. Another recent contribution [67] suggests the usage 

of statistical physics to understand human cooperation better. We think that this research direction 

is very interesting, by transposing it to an investigation on how to design and deploy systems used 

by diverse players, which need to be more cooperative and fairer in the mutual interaction within 

each system. Further, the cooperation and fairness should be obtained not by centralized policies that 

can often be either unoptimized or be easily deceived by (some) players, but simply by the 

coordinated effort of most players that can create a high level of collective intelligence. 

In this section we have used static rewards for the strategies each player is able to select. It is 

also possible to analyze a more dynamic game, where the reward of each player is a function of the 

estimator Sn used by the algorithm of Table II.  

The main results of our work 

The main contributions of this work, including its major analytic evaluation results, are 

summarized as follows: i) it presents the perspective that upcoming services for resilient CPSs require 

the implementation flexibility of SDN and NFV, theoretical modeling, and machine learning; ii) it 

discusses both short and long term CPS orchestration mechanisms among the agents, towards the 

fulfilment of global system goals; iii) it describes a distributed algorithm to implement the proposal 

for resilient CPSs; iv) it analyzes results of a non-cooperative model, enhanced by an external 

mechanism, that reactively enforces cooperation among players through iterations of the model 

algorithm running in each agent; v) it compares cooperation strategies in an evolution scenario with 

two distinct agent types belonging to a population with a global constant number of agents across 

the diverse generations. We conclude that a higher-level strategy by which an initial cooperative 

agent defects only after the opponent has defected twice in a row seems a more promising policy 

than other concurrent strategies where the initial cooperative agent reacts more promptly to defective 

behavior observed in others.  

Some assumptions and limitations of our work 

We finalize this section with some assumptions and limitations of our current work, projecting 

several possible future work directions. Our theoretical model assumes the distributed agents act as 

rational players, and they should be coordinated to support cooperation among themselves towards 

the resilient operation of CPSs. Nevertheless, in more realistic scenarios, the previous assumptions 

could be difficult to attain. In fact, the agents could be non-rational players or even the extra control 

and signaling traffic could incur non-negligible overheads (e.g. the cost of incentivized cooperation) 

on the network infrastructure. Consequently, when we are interested to enable cooperation among 

the agents, it is fundamental to infer what are the system gains from that cooperation – and balancing 

these gains against the associated cost. On one hand, to accommodate the non-rationality of players 

we pointed out the use of probabilistic tools, such as Bayesian prediction in theoretical games [68]. 

On the other hand, to infer correctly the usefulness of establishing (or not) the cooperation among 

agents, some machine learning techniques [16] can be used to deploy a smart adaptation of the level 

of cooperation necessary to manage the CPS’s available resources as efficiently as possible. Other 

interesting aspects for future study include addressing the problem of maintaining a resilient CPS in 

the presence of system agents infected such that that they assume non-cooperative decisions to 

 
1 https://github.com/Axelrod-Python/Axelrod (Verified in 2019/04/21) 

https://github.com/Axelrod-Python/Axelrod
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undermine the CPS operation. To avoid this, new management solutions should be investigated to 

detect and remove those malicious agents as quickly as possible from the CPS’s operational domain. 

Communication networks form a crucial part of a CPS. Consequently, it is very important to 

guarantee their resilient and stable operation in the presence of cascading failures / attacks through 

the entire CPS [69]. Aligned with this goal, previous work [70] has investigated a network formation 

game that incorporates an adversarial attack, as well as immunization or protection against that 

attack at some additional cost. Nevertheless, they assume the attack spreads deterministically. 

However, in real-world scenarios, e.g. the diffusion of contagious disease over the network of people, 

this is not deterministic. So, novel complementary research is needed, for cases when the network 

threat is propagated over the network topology not only in a probabilistic static way [71], but in a 

variably probabilistic way or even assuming imperfect (i.e. parts of) system immunization against 

that threat. 

 

 

 

 

Figure 4. Total Payoff Trend for a specific player involved in an Infinitely Repeated PD Game 

with a Grim Punishment Mechanism (Tit for Tat) and Diverse Discounted Factors 
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Figure 5. Total Payoff Trend for a specific player involved in an Infinitely Repeated PD Game 

with a Grim Punishment Mechanism (Slow Tit for Two Tats) and Diverse Discounted Factors 

 

 
Figure 6. Distribution of the Two Studied Types of Cooperative Behavior in a Constant 
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6. Conclusion and Future Work 

Cyber-Physical Systems (CPSs) are increasingly deployed in critical areas of our society, but they 

are subject to new challenges to their optimum and reliable operation, which strongly suggests the 

need for innovative management strategies to achieve resilience in these systems. To this end, we 

have outlined in this paper a programmable (SDN- and NFV-based) solution using distributed 

Virtual Network Function (VNF) modules. These VNF modules take orchestrated management 

decisions among themselves to guarantee a resilient operation of the CPSs. In the paper, we design, 

model and analyze two different strategies to impose cooperation among the VNFs.  

Future work will involve studying data-triggered management models for building 

programmable and flexible resilient CPSs [72]. In addition, the dynamic movement of processes and 

data in (edge) cloud-based systems may compromise their resilience, unless steps are taken to 

recognize the problem and modify anomaly detection components appropriately [73]. Further 

investigation in complex networking environments is needed by using distributed consensus 

mechanisms among management agents that incentivize honest behavior towards a well-identified 

system operation goal, with low complexity and high fault-tolerance [74]. 
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