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Abstract

Making tools for technology accessible to everyone is important for diverse and inclusive
innovation. Significant effort has already been made to make software innovation more
accessible, and this effort has created a movement of citizen developers. These citizen
developers have the drive to create, but not necessarily the technical skill to innovate with
technology.

Software, however, has limited impact in the real world compared to hardware and here,
physical computing is democratising access to technological innovation. Using microcon-
troller programming and networking, citizens can now build interactive devices and systems
that respond to the real world. But building a physical computing device is riddled with
complexity. Memory efficient but hard to use low-level programming languages are used to
program microcontrollers, implementation efficient but hard to use wired protocols are used
to compose microcontrollers and peripherals, and energy efficient but hard to configure wire-
less protocols are used to network devices to each other and to the Internet. This consistent
trade off between efficiency and ease of use means that physical computing is inaccessible to
some.

This thesis seeks to democratise microcontroller programming and networking in order
to make physical computing accessible to all. It provides a deep exploration of three areas
fundamental to physical computing: programming, hardware composition, and wireless

networking, drawing parallels with consumer technologies throughout. Based upon these
parallels, it presents requirements for each area that may lead to a more intuitive physical
computing experience. It uses these requirements to compare existing work in the space
and concludes that no existing technology correctly strikes the balance between efficient
operation for microcontrollers and intuitive experiences for citizen developers. It therefore
goes onto describe and evaluate three new technologies designed to make physical computing
accessible to everyone.
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Much of the work in this thesis was created whilst collaborating with other researchers and
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development.

JACDAC was created as a result of an internship at Microsoft Research where I was
tasked with creating a protocol for on-the-go multiplayer gaming. Initial development of
the protocol occurred in isolation with others acting as a sounding board for ideas. A later
internship with Microsoft research led to the deployment of JACDAC at a fashion show
in Brooklyn New york. This stage required close collaboration with researchers from UC
Calgary and Microsoft Research.

Finally, Droplet was created as part of the Energy in Schools project. In this project,
I collaborated with Samsung to create an educational IoT solution. My focus within the
project was to create a reliable yet intuitive networking protocol for teachers and students to
use and connect to the Internet. As part of this remit, I helped to define server infrastructure
and APIs suitable for consumption by the micro:bit. Development of Droplet itself occurred
in isolation.
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Chapter 1

Introduction

1.1 The rise of the citizen developer

Making technology more intuitive leads to greater opportunities for diverse and inclusive
innovation. The data science community has thrived upon simpler modern scripting lan-
guages, like Python [248], and mathematically verified software libraries, like SciPy [287].
This makes programming intuitive to mathematicians and complex mathematics intuitive
to non-mathematicians. PyTorch [234], Keras [131], and TensorFlow [91] bring clean ab-
stractions and simple Application Programming Interfaces (APIs), allowing anyone to learn
about, train or deploy machine learning models. Advances in cloud computing have enabled
anyone to deploy software across the globe without significant infrastructure investment,
creating opportunities for global innovation. Tools like Microsoft PowerApps [203] and
Ionic Studio [167] leverage cloud computing to deploy web applications with global reach,
created in environments that strive to build applications without writing a single line of code.

The tools above democratise access software development, allowing many citizens to
transform the digital world. To transform the physical world however, hardware is re-
quired. Here, a similar trend of democratisation is taking place. Widely available embedded

development boards—Printed Circuit Boards (PCBs) that feature a Microcontroller Unit
(MCU) with exposed General Purpose Input/Output (GPIO)—are allowing citizens to in-
teract with the physical world using microcontroller programming and networking. This
combination—known as physical computing—makes it easier than ever before for citizens to
build interactive devices that respond and interact with the real-world—and they are doing

just that.
Citizen makers and hobbyists are using physical computing for fun and experimentation.

Physical computing ecosystems, like Arduino [107], supply embedded development boards
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with exposed GPIO and an accompanying programming Integrated Development Environ-
ment (IDE) with simple C/C++ APIs. Combined, Arduino makes it easy to interact with
external circuits and modular peripherals to create physical computing devices. This more
intuitive route to microcontroller programming and electronics continues to play a critical
role in the maker movement [145], a movement that seeks to democratise access to physical
computing.

Teachers are also using physical computing for computer science education. Embedded
development boards, like the Raspberry Pi [279], primarily act as a personal computer
with a full operating system and built-in Internet connectivity. Through exposed GPIO
however, citizens can combine the physical world with the digital in order to build physical
computing devices. This process has proven itself to be a valuable pedagogical approach
for computer science education [232] and teachers with technical expertise are now using
physical computing to teach students fundamental computer science concepts.

Citizen scientists and innovators are also using physical computing for scientific ex-
perimentation and innovation. Embedded development boards and ubiquitous wireless
networking are enabling citizens to build physical computing devices for the Internet of
Things (IoT) [99]. The IoT stems from the idea that through inter-networking devices (things)
together we can create a smarter world. Applying physical computing to the IoT therefore
creates new opportunities for innovation and empowers more people to solve real-world
problems using technology.

This trend—democratising access to technological innovation and experimentation—is
creating a movement of citizen developers. This thesis characterises citizen developers by
the following properties:

Ubiquity Anyone, not just those with technical expertise, can have an idea that can trans-
form society. Citizen developers are typically not professional software or hardware develop-
ers, but all have the drive to innovate and create. Harnessing this hunger for innovation with
intuitive technology will allow problems to be solved on a grander scale, propelling society
forward.

Diversity Citizen developers do not follow a single profile. They come from many walks of
life, have diverse backgrounds and personal experiences, and specific domain expertise that
does not typically intersect with technology. Making technical communities more diverse
therefore brings new perspectives to existing problems, leading to more opportunities for
innovation.
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Creativity There are many domains yet to benefit from true technological democratisation.
Introducing citizens to intuitive tools for technological innovation will reveal new and creative
applications for technology. This is already happening across many domains and contexts,
and there will be many more to come as further technological democratisation takes place.

1.2 Physical computing

Physical computing combines software and hardware to build physical computing devices
and systems that can sense and respond to the real world [177]. Despite much effort to make
physical computing more intuitive, the process is steeped in technical complexity and even
now only the technically capable can partake. Complexity stems from a long history of
valuing efficiency over simplicity which has led to a wealth of highly efficient, but hard to
use technologies.

This section discusses the core technologies used to build and prototype physical com-
puting devices. For each technology, we identify the mismatch between the needs of the
citizen and the existing approaches in the space. We start with a discussion of embedded
development boards (Section 1.2.1), progress onto how they are programmed (Section 1.2.2),
and how citizens connect peripheral sensors to embedded development boards to extend the
functionality of embedded boards (Section 1.2.3). We then discuss the technologies used to
network physical computing devices to each other and to the Internet (Section 1.2.4).

1.2.1 Embedded development boards

Although designed as a means for embedded systems specialists to evaluate new micro-
controllers, embedded development boards are now used to enable the flexible, rapid, and
efficient prototyping of physical computing devices. An embedded development board is a
Printed Circuit Board (PCB) with a re-programmable microcontroller and easy to connect
General Purpose Input/Output (GPIO). An embedded development board becomes a physical
computing device when it is connected to sensors and loaded with an application that enables
interactivity.

There are many styles of embedded development board and one of the most recognisable
style of board are those designed for singular device prototyping. Prototyping boards have
no on-board peripherals and let users connect peripheral sensors via PCB mounted break out
connectors. Peripherals are usually mated directly with connectors or with an intermediary
breadboard via wires. The Arduino Uno and its modern equivalent, the Arduino Zero,
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are popular examples of prototyping boards and are a core technology used in the maker
movement [145].

As Moore’s law [251] continues to slow and demand for Internet connectivity continues to
rise, more embedded development boards are featuring 32-bit microcontrollers with built-in
wireless networking. This style of board—networked embedded development boards—either
feature a microcontroller with built-in wireless capability or make use of a dedicated co-
processor to perform wireless communications. Networked development boards let users
connect peripherals in much the same way as prototyping boards, but the end result of
prototyping is usually an Internet connected physical computing device. This style of
board lets users rapidly prototype devices for the Internet of Things (IoT) [99] and popular
examples of this type of board are the Raspberry Pi Zero Wifi [78], Particle Xenon [75], and
the ESP32 [59].

However, the style of embedded development board that provides the most accessible
base for citizens are those that come with both sensors and networking built in. The focus of
integrated development boards is therefore not necessarily to enable flexible and efficient
prototyping, but to give a simpler user experience. Integrated sensors and wireless peripherals
mean that a great many applications can be realised without the use of wires and breadboards.
The Circuit Playground Express (CPX) and BBC micro:bit are great examples of this
style of device, seeing large adoption as physical computing devices for computer science
education [232].

1.2.2 Programming

Programming languages, in the context of physical computing devices, are used to write
applications for microcontrollers mounted on embedded development boards. Languages
range in complexity from low-level and intricate programming languages like C/C++, to
high-level programming languages like Python [248] and JavaScript [152], and even simple
visual programming languages like microblocks [125] and OzoBlockly [154]. Resulting
applications define the purpose and functionality of a physical computing device.

Programming language complexity correlates with more efficient memory and processor
utilisation. Low-level programming languages, therefore, offer the greatest levels of efficiency
and it is for this reason that they reign supreme in the resource-constrained world of the
microcontroller. It is significantly harder to write programs in low-level programming
languages due to complex syntax and few language features (i.e. memory management). The
light feature set and efficient program compilation to binary instructions, however, leads to
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efficient processor utilisation and real time behaviour, critical when building an interactive

system.
Higher level languages offer greater usability at the expense of efficiency and in recent

years, popular higher-level programming languages like Python and JavaScript have been
re-written for resource-constrained microcontrollers. The flexibility and feature set of
these languages has been shown to make programming more intuitive, and their move to
microcontrollers is expected to have a similar effect. Programs written in these languages
are compiled to byte-code and are interpreted—converted from cross platform byte-code to
binary instructions—at run time by microcontrollers. Interpreting byte-code adds significant
memory and execution overhead. This has the side effect of increasing energy consumption
through greater processor utilisation and decreasing real time behaviour through increased
execution time.

Visual programming languages are a type of higher level programming language that
are more intuitive than text-based programming languages. They are now a proven tool for
computer science education and are used by educators to teach the fundamental concepts
of computer science. Scratch [245] is one of the most prominent and intuitive visual
programming environments in use today and it engages young minds through the creation
of on-screen 2D games. Scratch lets students combine pre-defined blocks of code to create
programs, allowing them to focus on the structure of code rather than the syntax. As of May
2020, the TIOBE index reports Scratch as the 19th most used programming language in the
world, with one million projects created every month [274].

Development environments for the above programming languages have begun to move to
the web, and web browsers are quickly becoming the modern development environment of
choice. The web browser lets users access programming from any Internet capable device,
making software innovation and experimentation more intuitive to all. Teachers and students
can now create on-screen games with Scratch 3.0 without installing any software, and em-
bedded systems professionals and makers can write C/C++ applications for microcontrollers
using ARM mbed [97] and Arduino Cloud [128] without a local compilation tool chain.

Despite these advances, microcontroller programming is currently beyond the reach of
many citizen developers.

Citizen developers require intuitive programming. With little technical knowledge, the
programming languages in use today are too complex for citizen developers to use. Regardless
of efficiency, text-based languages like C/C++, Python, and JavaScript have been shown to
have a high barrier to entry compared to visual programming languages like Scratch. The
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event-based and visual programming paradigms offered by Scratch is evidence that these
programming abstractions make programming intuitive to all.

Citizen developers require efficiency. Interactive devices may be powered from battery
and use any embedded development board as their foundation. Memory and energy efficiency
is therefore of great importance. The use of simpler programming abstractions and higher
level languages however, comes at the cost of memory efficiency, energy efficiency, and real
time behaviour. Resource constrained microcontrollers, and their use in interactive physical
computing devices, however, demand all three.

Citizen developers require installation-free programming. Lack of technical knowl-
edge means that software installation is a barrier for citizen developers. The recent trend
towards web-based development environments is evidence that installation-free programming
is key to making programming intuitive to all.

1.2.3 Hardware composition

Hardware composition is the process of connecting external sensors and peripherals to
embedded development boards. Buttons, accelerometers, and displays are all examples of
peripherals that can be connected to embedded development boards, and their use specialises
an embedded development board to a particular use case. Peripherals are either mounted
directly or connected externally to embedded development boards, and communicate with
microcontrollers using a combination of conductive copper traces and wiring. Widely avail-
able external hardware modules fitted with sensors and peripherals can be mated directly to
PCB mounted connectors for rugged device composition. Connected sensors and peripherals
can then be used by microcontroller applications to turn an embedded development board
into a physical computing device.

Complexity of communication correlates with peripheral capability. Buttons use simple
digital communications to indicate button presses and change the logical line level between
GND and VCC when pressed (depending on electrical orientation). Simple analogue sensors,
like thermometers, express a range of values by modifying line voltage with respect to sensed
value. For example, the maximum value of the thermometer would be expressed as VCC and
the minimum as GND, with other values falling between this range. More complex sensing
tasks, however, require a more expressive means of communication. Accelerometers, for
example, each report acceleration in the x, y, or z axis. Whilst each axis could be expressed
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as an individual analogue values over separate GPIO, it is far more efficient and extensible to
standardise electrical communications over a single medium.

Wired protocols standardise electrical signalling and software interfaces for communicat-
ing between advanced peripherals and microcontrollers. Each wired protocol is designed for a
particular purpose, ranging from dynamic protocols designed to make it easier to connect de-
vices to personal computers like USB [264], to highly static protocols, like I2C [255, 137] and
SPI [199], that are designed to efficiently connect advanced peripherals to microcontrollers.

The more dynamic the protocol, the more complex the implementation and for micro-
controller manufacturers, this translates to more silicon and an increase in cost. Dynamic
protocols like USB are therefore considered a premium feature unlike simpler protocols,
such as I2C and SPI, which are generally available on all microcontrollers.

Despite hardware composition being a dynamic process, disparity in protocol availability
means that protocols designed for efficient communication between PCB mounted periph-
erals (I2C and SPI) are being used for composing physical computing devices. Iterative
development practices however demand that protocols support connecting more than one of
the same peripheral at a time and that peripherals can be dynamically connected and removed
(hot plugged). Because of their assumptions of static environments, neither of these use cases
are supported by I2C and SPI, artificially constraining the hardware composition process.

Making hardware composition more intuitive and dynamic has long been a goal of the
ubiquitous computing research community. Using a mixture of the protocols above and
many more beyond that, modular toolkits have been proven to make hardware composition
more intuitive [166, 285, 176, 228, 123]. However, despite advances put forward by these
toolkits, many have not moved beyond research prototypes. Hardware composition, therefore,
continues to be challenging for citizen developers.

The static and efficient protocols of the past are now hindering the citizen developers of
the future.

Citizen developers require dynamic composition. Heavy use of I2C and SPI are making
hardware composition more difficult through their assumptions of static and unchanging
environments. A trend towards modular hardware in both industry and research means
that hardware composition is becoming inherently more iterative and dynamic. Citizen
developers therefore require protocols that better support dynamic, plug-and-play, hardware
composition.
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Citizen developers require simplicity. There are more restrictions and limitations to I2C
and SPI than static design assumptions. These protocols require at least four wires to provide
power and data to peripherals increasing the complexity of connecting peripherals together.
Moreover, no more than one of the same peripheral may be connected to a microcontroller
(without deep technical configuration), and only one microcontroller can be connected to a
peripheral at a time. Increased infrastructure cost (wiring) and protocol restrictions make
hardware composition difficult for citizens.

1.2.4 Wireless networking

The Internet of Things (IoT) is granting new opportunities for innovation and experimentation
by connecting everyday devices and objects to each other and to the Internet. Prototyped
physical computing devices are quickly becoming part of the IoT through more intuitive
hardware prototyping, microcontroller programming, and integrated wireless networking.
Wireless networking protocols provide the means to interconnect objects and standardise
wireless signals for universal communication between devices.

Bluetooth Low Energy (BLE) [113] has seen wide adoption as a point-to-point wireless
protocol for connecting small form factor electronics to more capable devices. Small
form factors are achieved through the minification of electronics, including batteries, and
great care must therefore be taken during operation to consume as little energy as possible.
Reducing energy consumption however is challenging when wireless protocols are involved,
as increased radio activity directly correlates with increased energy consumption. BLE,
therefore, is heavily optimised to minimise radio activity and its point-to-point operation and
short range (30 metres) mean BLE is best suited to personal networking.

WiFi is perhaps the most ubiquitous wireless protocol in use today and is designed for
high data throughput, low latency—and therefore real time—communication. It operates
over a short range (30 metres) and with its wide adoption, Internet connectivity is but a
password away. High throughput and low latency comes at the cost of energy efficiency
however, and WiFi is therefore not well suited to battery powered IoT devices.

Low power mesh and ad-hoc networking protocols like Zigbee [187] have seen wide
adoption in the IoT. Reduced energy consumptions comes from the use of different physical
standards, like 802.15.4, and higher level protocols that apply strategies to reduce radio
on time. Ad-hoc protocols allow for on demand network creation and extend the range of
single-hop communications by allowing devices to forward packets through a network to
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reach their destination. To enable such dynamism and flexibility without compromising
energy efficiency, packets must be optimally routed across a network.

Competing strategies for routing packets across ad-hoc networks has fuelled decades of
research [185, 278, 187, 146, 262]. Static routing approaches are highly energy efficient, but
require a large amount of configuration and reduce network flexibility. Dynamic routing
approaches trade some efficiency for increased flexibility by creating and maintaining routes
between devices. Regular route maintenance requires additional transmissions that reduce
overall energy efficiency. Flood-based approaches cause devices to repeat packets until a
single message has been propagated through an entire network. Little to no routing state
leads to highly flexible networking, but packet propagation incurs significant energy cost.

Recent research has highlighted a new approach, known as concurrent flooding. Concur-
rent flooding promises to vastly improve the energy efficiency of flood-based approaches and
reduces radio on time by parallelising transmissions through simultaneously transmitting the
same data. Since its introduction in Glossy [148], concurrent flooding has been shown to
enable flexible and energy efficient networking.

Decades of research focussed on energy efficiency means that ad-hoc networking proto-
cols are not well-aligned to the needs of the citizen developer.

Citizen developers require simplicity. Ad-hoc networking protocols are best suited to the
iterative development and deployment practices of the citizen developer, but most require
configuration and rely upon a fixed infrastructure to operate. This requires deep technical
expertise that is incompatible with the majority of citizen developers.

Citizen developers require interactivity Many existing protocols are designed to suit
highly specific scenarios. Most ad-hoc networking protocols are designed for low throughput,
energy efficient operation. However, there is no fixed set of IoT applications that citizen
developers create and many demand a level of interactivity that is not well catered to by
current ad-hoc networking protocols.

Citizen developers still require efficiency. Prototyped physical computing devices are
often deployed in environment on battery power and use low resource microcontrollers. It is
therefore important that wireless ad-hoc networking protocols support interactive applications
whilst maintaining energy and memory efficiency.
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1.3 Research questions

As noted in the previous sections, for a long time, many citizen developers have been excluded
from partaking in physical computing across the domains of making, the IoT, and education
(and many more). This exclusive practice has not only stifled innovation but has reduced
diversity in technical communities. Exclusivity is not a conscious practice, it is rooted in the
complex process of building a physical computing device.

Complexity stems from a drive to make the fundamental building blocks of creating a
physical computing device as efficient as possible. Memory and processor efficient low-level
programming languages are used to create applications for physical computing devices. Effi-
cient and statically designed wired protocols are used for interconnecting microcontrollers
and peripherals during hardware composition. Highly energy efficient ad-hoc wireless net-
working protocols are used to bring Internet connectivity and local networking to prototyped
physical computing devices. Ultimately, each technology trades ease of use for efficiency.

This thesis questions this trade-off and explores whether efficiency does need to come at
the expense of ease of use. More specifically, it explores the following research questions
(RQs) in the context of programming (RQ1), hardware composition (RQ2), and wireless
networking (RQ3):

RQ1 What are the capabilities, characteristics and limitations of event-based visual pro-
gramming languages when applied to microcontrollers? How do these languages’
capabilities and performance compare with the state-of-the-art in supporting citizen
developers?

RQ2 Do single wire approaches to modular hardware composition simplify hardware in-
tegration for citizen developers, and what are the performance implications of these
approaches?

RQ3 Do concurrent flooding approaches simplify ad-hoc wireless networking for citizen
developers and what are the performance implications of these approaches?

1.4 Contributions

This thesis contributes three technologies spanning the domains of programming, hardware
composition, and wireless networking—the fundamental building blocks for prototyping
physical computing devices. Each technology was designed to provide citizen developers
with a more intuitive experience without compromising efficiency.
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1.4.1 Programming (RQ1)

In Chapters 2 and 3 we derive three design requirements to make programming more intuitive
to citizen developers:

P1 Visual programming

P2 Event-based programming

P3 Installation-free

Informed by P1—P3, in Chapter 4 we contribute CODAL, a runtime environment
designed to enable higher-level programming languages to run efficiently on resource-
constrained microcontrollers. Microsoft MakeCode leverages CODAL to create an intuitive,
installation-free, visual and event-based programming environment for physical computing
devices. We show that MakeCode and CODAL are more efficient than other approaches to
running higher level languages on physical computing devices. Millions of citizen developers
now intuitively create applications using MakeCode and CODAL every month.

1.4.2 Hardware composition (RQ2)

In Chapters 2 and 3 we derive three design requirements to make hardware composition more
intuitive to citizen developers:

HC1 Dynamic connectivity

HC2 Dynamic device discovery

HC3 Hardware abstraction

Informed by HC1—HC3, Chapter 5 contributes JACDAC, a wired protocol designed to
support the iterative development practices of citizen developers through dynamic hardware
composition. We show that JACDAC is as efficient as existing protocols like I2C and that it
can be applied to many microcontrollers without any additional cost. Through a field trial at
a fashion show in New York, we show that JACDAC is intuitive for citizen developers.

1.4.3 Wireless networking (RQ3)

In Chapters 2 and 3 we derive three design requirements to make wireless networking more
intuitive to citizen developers:
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WN1 No configuration

WN2 No infrastructure

WN3 Supports interactivity

Informed by WN1—WN3, Chapter 6 contributes Droplet, a no configuration, no infras-
tructure ad-hoc networking protocol for physical computing devices. We show that Droplet is
more supportive of interactivity at the expense of a small amount of energy efficiency when
compared to BLE. Through a deployment in 30 schools across the UK, we show that Droplet
is intuitive for citizen developers.

1.4.4 Guiding principles

Each of the above technologies were created by methodologically applying the following
four Guiding Principles (GP):

GP1 Intuitive: Technologies must be easy to use for citizen developers with little experience
of hardware and software development.

GP2 General: Technologies must be suitable for different application domains and the
spectrum of embedded hardware.

GP3 Extensible: Technologies must support the easy addition of new functionality and
interoperate with existing tools and standards.

GP4 Efficient: Technologies must be highly efficient, but not at the great expense of GP1–
GP3.

1.5 Overview

Chapter 2 begins by providing background on the applications of physical computing and
the core technologies required to build a physical computing device. Chapter 3 explores
questions derived from our extensive discussion in Chapter 2 across the areas of programming,
hardware composition, and wireless networking. Our findings in Chapter 3 motivate the
contributions of this thesis, which we discuss in Chapters 4, 5, and 6. Finally, in Chapter 7
we summarise the contributions of this thesis and finish with some concluding remarks.



Chapter 2

Enabling technologies for citizen
developers

This chapter provides a foundational understanding of the enabling technologies for citizen
developers. Throughout each section we extract common trends and emergent requirements
and needs of the citizen developer. Content is written to be accessible to a broad audience
and experienced researchers may want to skip to the end of this chapter to learn the key
findings.

We start by discussing the existing application domains of physical computing in Sec-
tion 2.1, followed by an in-depth discussion of the embedded development boards used
for physical computing (Section 2.2). We then broadly discuss programming languages
(Section 2.3), hardware composition (Section 2.4), and wireless networking (Section 2.5),
concluding with a summary of this chapter in Section 2.6.

2.1 Application domains

Physical computing is being applied everywhere. Hobbiest makers are building physical
computing devices to learn, create, and innovate. Technologists are building interactive
devices for the Internet of Things (IoT) to automate and optimise their daily routines.
Educators are even using physical computing to create more engaging lessons for their
students. This section discusses the specifics of how physical computing is applied to the
maker movement (Section 2.1.1), the IoT (Section 2.1.2), and to Education (Section 2.1.3).
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Fig. 2.1 A prototype of the Pebble smart watch created using physical computing [76].

2.1.1 The maker movement

The drive to make and create is innate, whether it be through profession or through hobby.
The maker movement [145] is the embodiment of this idea, allowing people to create by
tinkering, learning and having fun in the process. Though people can make and create using
a variety of tools and materials, the maker movement has its roots in technology and seeks to
make physical computing a fundamental skill intuitive by all.

“Making” is synonymous with physical computing, and refers to the process of creating a
physical computing device. As illustrated previously, there are four technologies fundamental
to this process: (1) an embedded development board with a reprogrammable microcontroller
and exposed General Purpose Input/Output (GPIO); (2) the programming languages and

environments used to create microcontroller applications; (3) hardware composition via
wired protocols that enable interactivity between applications and sensors; and (4) wireless
protocols that may be optionally used to network devices together. The combination of these
technologies produces a physical computing device—an interactive device that responds to
real world stimuli.

Making as a process has permeated across many different domains and now forms
the basis of product innovation, the backbone of scientific research projects, and even the
foundation of interactive fashion garments.
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Making to innovate

The democratisation of electronics and microcontroller programming brought about by the
maker movement has lowered the barrier to entry to product innovation [206]. Startups and
incubators now borrow technology and processes from the maker movement to construct
physical computing devices that solve real-world problems. Convincing prototypes yield
investment from venture capitalists spawning new businesses that provide an income to
creators.

Crowdfunding platforms, like Kickstarter [23] and Indiegogo [12], enable innovation to
occur at a far greater scale and granularity than can be achieved through venture capitalist
funding. Crowdfunding takes place on websites where individuals can choose to ‘back’
projects which provide solutions for small-scale problems that would otherwise not be of
interest to venture capitalists. Most electronics-based projects use technologies from the
maker movement to create initial prototypes and every prototype undergoes iterative and
progressive revisions. The Pebble smart watch is one notable example [17, 34] (Figure 2.1).
But despite more intuitive technology, only those with technical expertise can spot an
opportunity for innovation and subsequently prototype a solution.

Making for science

Scientists and researchers often need to use hardware to advance their findings. Low cost
modular peripherals and intuitive microcontroller programming are allowing researchers and
scientists to re-produce hardware at a lower cost, democratising access to usually expensive
hardware [236]. Making can also be used to create new research devices, providing new
perspectives on existing problems [151, 183, 269, 124].

Not all researchers and scientists however have a background in technology and despite
more intuitive and lower cost prototyping tools, physical computing still requires input
from technologists. Input from technologists can either be a positive force for change, or a
negative force that constrains science to existing technologies. The naïvity and inexperience
of technical novices can often yield new approaches to problems that may not have even
been considered by technologists.

Making for artistic creativity

The Arduino Uno was created to enable artists to incorporate microcontroller programming
and electronics into their creations [108]. As a testament to their creativity, some artists are
creating interactive art installations through the application of physical computing. Figure 2.2
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Fig. 2.2 Examples of applying physical computing to Art. An animatronic scorpion (left);
and an interactive fashion garment (right).

(left) is one such example and shows an interactive animatronic scorpion composed of
artistically hand-crafted metal, microcontrollers, sensors, and electronics. Lights are used
to enhance the form of the scorpion in the dark and proximity to the scorpion triggers its
animatronic stinger.

Fashion is another area which is seeing the application of physical computing to enhance
creative processes. The avant-garde runway [9] allows fashion designers to express creativity,
individuality, and innovation. Now fashion designers are attempting to incorporate physical
computing into garments to bring interactivity to the runway. The end result are visually
impressive, interactive garments that incorporate lights, sensors and actuators (Figure 2.2,
right).

Fashion designers often have little knowledge of electronics or programming and they
alone cannot produce interactive garments. Teams of technologists are required to help build
garments and ground the ambitions of fashion designers. Special tools are also used to bridge
the terminology gap between designers and technologists [257]. Once again, the presence of
technologists in the creative process can either help or hinder.

Making to learn

Makers partake in making for the thrill of the creative process and the ongoing learning that
occurs throughout [145]. To a maker no domain is out of reach and it is for this very reason
that it is hard to predict the future applications of physical computing.

For example, Figure 2.3 (left) shows a school bus that has been converted into a fully
functional recreational vehicle (RV) [27]. The conversion process involved the use of many
skills including metalwork, woodwork, and mechanical engineering. Its creator did not stop
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Fig. 2.3 Examples of maker projects created for learning: A DIY RV, converted from an old
school bus (left); and a cardboard aeroplane (right).

there. Inside, a network of physical computing devices are used to dynamically control the
interior cabin lighting.

Figure 2.3 (right) shows another unpredictable application of physical computing. Here,
a delta wing cardboard-aeroplane has been constructed from household materials: lollipop
sticks, sellotape, and glue. A physical computing device is integrated into the body of the
craft to control motor speed and angle of the flaps. Another physical computing device—
wirelessly networked to the one embedded in the aeroplane—remotely controls the position
of the flaps and the speed of the motor.

These examples shows the true breadth of makers. Both applications of physical com-
puting demonstrates the level of versatility needed from physical computing devices and
supporting technologies. Both examples also show the lengths makers are willing to go
to learn new skills. The creator of the RV was by no means an expert in woodworking or
metalwork at the beginning of the project, but by the end they had honed the craft.

Analysis

The maker movement has made physical computing ‘another tool in the toolbox’ for citizens
across many domains. However, physical computing technologies continue to be a source of
complexity for some.

Citizen developers require intuitive technologies Designers, scientists, researchers, and
many more not captured by this section, require assistance from technologists in order
to engage with physical computing. Technologists are not always available to participate
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and their sometimes fixed mindsets can stifle the creative process causing opportunities for
innovation to be missed.

Citizen developers require flexibility The physical computing creations shown in this
section also evidences a degree of unpredictability when citizens apply physical computing,
and this unpredictability demands flexible operation. To support the creation of networked
light switches and remote control aeroplanes for example, wireless networking protocols
need to flexibly support both high and low data rate applications. And to better support the
creation of interactive garments and iteratively prototyped hardware, wired protocols need to
support flexible and dynamic physical composition.

Citizen developers require concurrent operation The physical computing creations
shown are often performing more than one operation at a time. In the cardboard aeroplane
example, a microcontroller controls servo angle and motor speed whilst receiving further
commands from another device and in the animatronic scorpion example, a microcontroller
controls lighting effects whilst performing proximity detection.

Citizen developers require energy efficiency The physical computing creations shown
across this section are mostly embedded into materials and powered by battery: interactive
garments, product prototypes, and cardboard aeroplanes. The use of batteries means that
great care must be taken to efficiently consume energy to improve device longevity, giving
users more ‘time for awesome’.

2.1.2 The Internet of Things (IoT)

For most people, there is no need to think about how devices connect to the Internet in
their daily lives. It is transparent—enter the correct credentials for a WiFi network and
immediately a device can become part of the Internet. Over the past few decades however,
the shape and utility of Internet connected devices has changed. No longer do devices take
the form of traditional Personal Computers (PC), laptops, and smart phones. Instead, Internet
connected devices are becoming things within our environment. In this phenomena—broadly
referred to as the Internet of Things (IoT)—Internet connected devices are usurping the roles
of traditional items (e.g. televisions, fridges, light bulbs), providing insightful behaviour-
changing sensor data, and automating aspects of our daily lives. The IoT therefore presents a
huge opportunity for innovation, and as a result, the number of Internet connected devices is
expected to grow from 16 million to 156 million by 2024 [229].
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Fig. 2.4 Generalised architecture of the IoT.

Physical computing devices are becoming part of the IoT in the form of end devices.
End devices are interactive devices that control, sense, or actuate environments and other
devices. Using wireless protocols, end devices communicate with each other and to the
Internet. Not every protocol can communicate with the Internet directly however, and an
optional intermediate device called a bridge may be used to proxy Internet requests. Internet

endpoints are the end destination of requests and can be hosted locally or remotely as part of
the Internet. This general architecture is captured in Figure 2.4 and more detail is provided
on each in the following subsections.

End devices

End devices are the physical interfaces between the real world and the virtual. They are
Internet connected interactive devices that are placed in environments and are used to sense,
control, or actuate environments and devices. In the IoT end devices usually take on one or
more of the following roles:

• Control: End devices that change the behaviour of other smart devices take on the role
of controllers. Smart phones and voice controlled Smart Assistants [4, 19, 38, 64] are
examples of control end devices. Some controllers are reliably powered from mains
sockets.

• Report: End devices that detect changes in an environment report the results to other
end devices and Internet endpoints. Examples include smart switches, thermometers,
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and presence detectors. Sensing data is usually processed by an external controller,
which in turn activates an actuator. Sensors are usually embedded in environments
and isolated from reliable power sources. As a result, sensors derive their power from
batteries, the replacement rate of which depends on device energy consumption.

• Actuate: End devices that change something in the environment take on the role of
actuators. Examples include Internet connected bulbs, power sockets, and thermostats.
Actuation is usually caused by a controller based upon information from a sensor. Actu-
ators are usually powered from a reliable mains source due to high energy consumption
when actuating.

Driven by the maker movement, technologists are now building and prototyping their own
Internet capable physical computing devices. Using such devices, technologists can build
custom end devices that are a composition of the above roles. The technologist, however,
has the complex job of creating the physical computing device, managing infrastructure,
connectivity, and the data flow between devices.

Wireless protocols

Wireless protocols standardise communication between disparate devices. Each protocol
is designed with specific constraints and application domains in mind, and it is the job the
developer to navigate the complex design space and select the right protocol for the job.

All protocols need to balance responsiveness with power efficiency, especially so with
battery powered end devices. Generally, the more responsive a protocol is, the greater the
energy consumption. Increased radio activity is the source of increased energy consumption,
and each protocol is designed with different trade offs between responsiveness and energy
efficiency. For physical computing devices, responsive, soft real time, energy efficient
networking is key to distributed interactivity.

Protocol range also impacts the applicability of a protocol. Protocols that work over
short ranges, like Bluetooth [113], are not suitable for applications that need to work across
distances greater than 30 metres. Long range protocols like LTE [256] or LoRA [117]
are suitable for long range applications that span many kilometers. Ad-hoc networking
protocols like Zigbee [187] or Z-Wave [159] offer some middle ground, supporting ranges
up to hundreds of metres through extensible networking. A further of discussion of these
protocols is provided later in this chapter.

Each protocol also has an associated monetary cost. Specialised hardware peripherals and
software stacks to control them are required to enable wireless networking. Software stacks
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demand more Random Access Memory (RAM) and flash memory and additional hardware
peripherals require more silicon. Both factors add monetary cost to the manufacture of end
devices, and consequently the price for the consumer.

Bridge devices

The IoT is a homogenous blur of wireless protocols due to the different requirements of end
devices and applications. Regardless of wireless protocol, the ultimate goal is to communicate
with the Internet and Internet connected devices communicate using the Internet Protocol
(IP), a higher-level protocol that sits atop different wireless and physical transports. However,
the design goals of IP are not well aligned to low power, low data rate wireless protocols and
memory constrained microcontrollers. Consequently, many wireless protocols define high
level, non-IP based protocols that are better suited to protocol and device constraints.

Bridge devices proxy packets received from non-IP to IP-based networks and receive
packets from one wireless protocol and transmit them using another. In some cases, wireless
protocols may be directly translated to wired protocols like Ethernet [218]. Even though
many bridge devices are standalone devices, it is possible to turn most devices that can
operate two or more wireless protocols into a bridge device. An example of this model in
action is the modern smart phone and smart watch ecosystem where a smart phone ‘bridges’
data requests from a smart watch to the Internet.

Internet endpoints

Internet endpoints act as a centralised point of communication for IoT end devices. They can
exist remotely as part of the Internet or Local Area Networks (LANs). Internet endpoints are
primarily used by end devices to store and retrieve data but they also provide a centralised
means for users to control and actuate end devices using smart phone and web applications.

A well thought out Internet endpoint presents REpresentational State Transfer (REST) [150]
APIs. REST-ful interfaces support five well-defined and stateless operations: POST, GET,
PUT, DELETE, PATCH. These five operations encapsulate every possible machine-to-
machine interaction and they form the basis of nearly every Internet request. Their usage is
especially prevalent in the IoT and developers use REST to neatly abstract data storage and
retrieval interfaces.

Well-defined Internet endpoints can be easily combined with data flow management
tools like If This Then That (IFTTT) [21] (Figure 2.5) and Microsoft Flow [45]. Data flow
management tools let users define automated control flows for Internet endpoints, and more
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Fig. 2.5 The If This Then That (IFTTT) recipe builder. Users can connect events from one
Internet endpoint to control another Internet endpoint [65].

recently, for IoT devices. Social media messages and arbitrary endpoint events can now be
used to control and actuate end devices, allowing users to control a light bulb from a tweet.

IoT for consumers

Consumer IoT seeks to automate the mundane aspects of every day life, like switching on a
light bulb, turning on the heating, or keeping track of items in refrigerators. There are now
companies that specialise in producing pre-packaged IoT solutions that work out of the box
with minimal configuration—an important factor for consumers that may have little technical
expertise.

Consumer IoT solutions generally follow the architecture described earlier. Most solu-
tions are distributed with a dedicated bridge device that wirelessly connects end devices to
Internet endpoints. The advent of smart assistants however, is increasing the utility of bridge
devices. Now many bridge devices double as a point for voice controlled interactivity.

The Amazon Alexa [4] ecosystem (Figure 2.6) is perhaps the most widely adopted
consumer IoT platform to date. The centre piece of the ecosystem is the Alexa smart
assistant, a physical interactive device that can respond to voice commands and interact
with Alexa enabled devices. A plethora of peripherals can be connected to Alexa, including
Philips Hue light bulbs [77], allowing users to control lighting using their voice. Alexa
hubs double as bridges for connecting end devices to the Internet, and their low cost makes
extending IoT infrastructure intuitive.
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Fig. 2.6 A selection of consumer oriented IoT devices including Amazon Alexa and Philips
Hue light bulbs [66].

Apple HomeKit [64] is an ecosystem of IoT end devices that are heavily integrated with
the iOS ecosystem (e.g. iPhone and iPad). A static central hub is not required if an iOS device
is connected to the same network as a HomeKit device—an iPhone or iPad dynamically
takes on the role of a bridge device. An iOS app installed by default on every iPhone and
iPad is used to control end devices. Communication with HomeKit devices happens locally
and is not processed by an external server and Apples’ voice assistant, Siri, can also be used
to control and actuate end devices without additional configuration. Remote control over
HomeKit devices requires an iOS device (e.g. an Apple TV, iPad, or HomePod) is connected
to the network and signed into the same Apple ID.

Many consumer IoT solutions also provide simple programming environments to auto-
mate interactions between devices. The Alexa ecosystem allows users to define routines
allowing users to associate actions with custom phrases and events. Routines are defined
using a condition-based paradigm to define IoT interactions, similar to that of IFTTT.

Apple HomeKit users can compose automations in the Shortcuts application (Figure 2.7).
The deep integration between iOS and HomeKit allows users to create deeper more personal
interactions between devices. For example, the Shortcut shown in Figure 2.7 sends a text
message and turns the heating on when its creator leaves work.
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Fig. 2.7 The Apple Shortcuts application that can be used to automate interactions between
iOS and HomeKit devices [48].

IoT for technologists

An emerging area of the IoT is Do It Yourself (DIY) IoT [261]. DIY IoT encourages
technologists to build their own IoT solutions, empowering the technically capably to use IoT
to solve real world problems. Here, technologists build and prototype physical computing
devices, connect them to bridge devices (if required), and onto the Internet.

Figure 2.8 (left) shows an Internet connected plant monitoring system [35]. An embedded
development board is wired to forks which are placed in soil to detect the moisture level.
A separate light sensor keeps track of how much light the plant is getting. Both statistics
are reported to an Internet endpoint using built in WiFi support giving horticulturists an
approximation of when a plant requires more water or more light. Though the form factor of
the device is large at present, the presence of a USB battery pack suggests that eventually the
device will decrease in size for easy deployment. Technologists can build more than one to
monitor the health of many plants.

Figure 2.8 (right) shows a Twitter controlled lighting system. Inside, an embedded
development board is connected to three neopixels and is wirelessly networked to an Internet
endpoint using open source CheerLights firmware [55]. The colour of the lights is automati-
cally changed through tweets following the form ‘#cheerlights <colour>’. As can be seen
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Fig. 2.8 DIY IoT end devices. A remote plant monitoring system [79] (left); and a Twitter
controlled lighting system [55] (right).

from the image, prototypes can near the quality of finished products and technologists may
place more than one around their home for decoration.

More technical tools for customising the operation and interactions between IoT devices
are available to technologists. Node-RED [230] enables the easy piping of data using a
graph-based programming model. Each node within a graph takes data input and has a
resulting output (Figure 2.9, left). Connecting nodes together forms a data flow whose output
can be injected into Internet endpoints or end devices. Node-RED requires NodeJS [273]
to operate and is primarily designed to run on the Raspberry Pi. Because of its JavaScript
underpinnings however, applications can also be deployed to commercial infrastructure
services like Amazon Web Services (AWS) and Microsoft Azure. Common nodes for
interacting with popular web services (like Twitter) and databases allow users to build usually
complex applications with ease.

Mozilla WebThings [223] provides bridge firmware for routers and Raspberry Pi devices.
Once configured, users can control connected end devices around the home via the bridge.
End devices appear in the WebThings portal (hosted by the bridge) and present themselves
as a specific type of device (e.g. a smart bulb). End devices also present properties that can
be tweaked from the portal interface (Figure 2.9, right). The WebThings platform is also
compatible with many consumer accessories and goes some way towards simplifying the
complex infrastructure and connectivity problems of the IoT.
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Fig. 2.9 The Node-RED flow creator [74] (left); and the Mozilla Web Things dashboard [85]
(right).

IoT for research

The IoT is also a proven vessel for science and research. Bates et al. used the IoT to monitor
the energy consumption of an entire university campus [110]. Obtaining fine-grained energy
data allowed facility staff to reduce the base energy consumption of buildings.

Fine-grained data and distributed sensing has also been used to measure soil quality.
Insights gleaned the use of IoT revealed how soil quality is changing over time, allowing
farmers to better optimise their crop placement [277].

The use of IoT as a tool for research currently involves technologists. But it is important
that more people are given the opportunity to independently create and innovate using the
IoT. Democratisation of its use will reveal new applications and uses that have not yet been
realised.

IoT for businesses

The IoT has proven itself to be a valuable tool for businesses and is used for enhanced
logistics and tracking, better work force utilisation, and improved analysis of consumer
behaviour. There are now a number of companies aiming to give businesses the tools and
infrastructure to build their own IoT solutions: IBM with IBM Watson IoT [178], Amazon
with AWS IoT [2], and Microsoft with Azure IoT [219]. But the focus of these platforms is
to ease the creation of Internet infrastructure, rather than end devices.

There are companies that seek to provide a complete IoT solution—including tools to help
with the creation of end devices. Particle [32] caters to the generic applications of the IoT,
but also provides tools to specialise and create custom end devices. Particle includes a suite
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Fig. 2.10 An Internet connected smart prosthetic supported by Particle [80].

of embedded development boards, a custom online programming environment, and a secure
infrastructure to support applications. Devices can be managed from a centralised portal
which even supports dynamic firmware updates from the only programming environment.
Because creating end devices is challenging, Particle also provides access to IoT experts that
can take an end device from prototype to market.

Using the Particle ecosystem, many companies have built custom end devices for the
IoT. Unlimited Tomorrow is one such start up that seeks to create smart prosthetics for users,
controlled by electrical waves emitted by the nervous system (Figure 2.10). Each prosthetic
is fitted with a microcontroller that actuates prosthetics when certain electrical wave patterns
are recognised. Tuning electrical waves to each user is a process that requires continual
customisation. Microcontrollers are therefore also networked to the Internet where electrical
waves are used as inputs to machine learning models to tune microcontroller operation. This
application expresses the true potential of the IoT and further democratisation of physical
computing will expose many more opportunities for its application.

Analysis

In the many examples above, there is no evidence that those with little technical expertise
can create end devices for the IoT. In fact, some businesses, like Particle, even profit off of
the fact that end device creation is steeped in technical complexity. Creating an end device
for the IoT should be as easy as consumer-oriented IoT makes home IoT, but the process of
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building and connecting a physical computing device to the Internet remains a challenging
task.

Citizen developers require simple ad-hoc networking When considering the examples
above, there is a clear need for dynamic networking. Technologists tend to build end devices
using intuitive protocols like WiFi, constraining projects to within range of the nearest access
point. Consumer IoT solutions already use ad-hoc networking protocols to make adding
new devices to ecosystems easy, dynamic, and scalable. For technologists, however, the
use of ad-hoc networking protocols comes with additional complexity and even particle—
who specialise in creating commercial IoT solutions—recently discontinued their ad-hoc
networking solution citing its complexity [33].

Citizen developers require minimal configuration Many of the examples above seek to
simplify the configuration of IoT applications. Consumer applications especially try to make
installing IoT devices in the home as easy as turning on the device itself. Even technologists
seek to minimise configuration, choosing to use ubiquitous, but more power consuming
protocols like WiFi, over more power efficient and suitable protocols like Zigbee.

Citizen developers require minimal infrastructure Across the examples above there is
also trend of simplifying or minimising infrastructure. Ecosystems aimed at consumers,
like Alexa and Apple HomeKit, make the addition of infrastructure simple, dynamic, and
compelling, as hubs double as both points for interaction and connectivity. Technologists
also choose to use a ubiquitous protocol, like WiFi, that are immediately compatible with
their home network over other protocols that require additional infrastructure, like Zigbee.

Citizen developers require simple abstractions In some cases—especially in consumer-
oriented solutions—users are able to create simple applications to personalise the function-
ality of their IoT devices. Consumers can use tools like Shortcuts and Alexa routines to
customise the operation of their end devices. Application creation is facilitated using simple
abstractions that require no programming experience. Technologists also use environments,
like Node-RED and WebThings, to customise and abstract away many of the complexities
of the IoT. These environments support greater customisability than consumer-oriented
abstractions through the incorporation of programming.
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Citizen developers require energy efficiency Many of the examples discussed in this sec-
tion operate on battery power and energy efficiency is therefore important when considering
physical computing technologies for building devices for the IoT.

2.1.3 Education

With the modern job market increasingly demanding digital skills [155, 140], imbuing
future generations with technical proficiency is more important than ever. Recognising
this, the UK government in 2014 made computer science a core subject in the national
education curriculum [164] and educators are now expected to teach the subject to students.
Educators, however, typically lack the technical expertise and confidence to teach computer
science [116, 115, 114]. They therefore require intuitive computer science education tools
that have a low barrier to entry.

Physical computing offers the most promising approach for an engaging and intuitive
educational experience. It was first applied to education by Papert [233, 232, 189] who
proposed the concept of constructionist learning—using computers as a building tool to
realise ideas, learning in the process. Papert exemplified the constructionist concept using
Logo to move real-world programmable robotic turtles [232, 216].

Physical computing technologies have evolved since the seminal work of Papert in 1980,
and they now allow students to build custom input devices for personal computers, construct
physical computing devices from pre-existing and easy-to-connect modules, and even build
entirely new physical computing devices from reusable materials. The upcoming sections
categorise the different usages of physical computing across education broadly following the
work of Hodges et al. [177].

Peripheral devices for personal computers

Some physical computing technologies blend the real-world with the digital by acting as
inputs to personal computers. Makey Makey [134] distributes an embedded board that
exposes a number of capacitive GPIO (Figure 2.11, left). The embedded board is pre-
programmed to act as a keyboard peripheral, and key presses are triggered based on the state
of the GPIO. Users can build custom physical user interfaces from materials like fruit and
plasticine to trigger key presses.

Scratch [244]—a visual programming environment for 2D game creation—has recently
been developed to extend beyond the screen, moving into the physical world using pro-
grammable physical computing devices (Figure 2.11, right). In a similar way to Makey
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Fig. 2.11 Physical computing solutions that act as peripherals for personal computers. Makey
Makey [71] (left); Scratch augmented with the micro:bit extension (right).

Makey, pre-compiled binaries for physical computing devices cause them to appear as USB or
BLE devices and act as inputs to Scratch programs. Scratch connects to physical computing
devices in tethered mode communicating using wired protocols like Firmata [267] or wireless
protocols like Bluetooth. As programs execute, scratch issues commands and listens for
events issued by the physical computing device. Device events can trigger in-game events,
unifying the real world with the virtual.

Kodu [208] gives users a 3D world to explore. Using a custom visual programming lan-
guage, users can program their hero to target enemies and move through the 3D environment.
Like Scratch, Kodu also lets users connect physical computing devices in a tethered capacity.
Interactive devices can act as inputs to the 3D world, translating real world interactions into
the virtual world.

Tangible programming kits

Tangible programming solutions enable users to build custom physical computing devices
using pre-fabricated, easy-to-compose hardware modules. For example, littleBits [111]
(Figure 2.12, left), allows hardware modules to be easily connected using polarised magnets.
Modules have specific functions, including: input modules, such as buttons, switches, sensors;
output modules, such as lights, displays, buzzers; branch modules, for extending signals; and
power modules for providing electricity to the circuit. Modules are combined by the user to
create simple circuits that interact with the environment.

Cubelets [28] also uses magnets to connect cube-shaped modules together. Cubelets can
be stacked on top of one another to build simple interactive systems. Like littleBits modules,
each cube has a specific function. Cube types include motors, light sensors, power cubes, and
potentiometers. Correct connection orientation is guaranteed by polarised magnets. Cubes
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Fig. 2.12 Examples of tangible programming technologies: littleBits [70] (left); Torino [221]
(right).

can be combined in an assortment of ways to create devices that respond to a variety of
sensor inputs.

Tangible programming is also ideal for widening participation. Torino [221] is designed
for the visually impaired (Figure 2.12, right). Torino hardware modules each have a specific
texture to convey meaning, and each texture maps to a programming concept, like loops,
logic, and conditionals. Hardware modules are combined using a simple 3.5mm audio jack,
but the end result is not an interactive system, it is a program that creates sound on a personal
computer. As Torino modules are connected, the sound produced by the program reflects the
physical composition of the modules, giving partially sighted users an engaging and inclusive
learning experience.

Programmable ‘turtles’

Since Papert introduced the concept, many have emulated the idea of programmatically
moving a real-world turtle. The Sphero Mini [265] (Figure 2.13, left) is one of the most well-
known modern robotic turtles. Users program its movements via a smart phone application
and can be drawn, or programmed in Scratch-style blocks, and JavaScript. When completed,
movements are transferred to the Sphero Mini via Bluetooth for execution. Smarter versions
of the device augment the turtle with additional sensors, giving the turtle—and its users—the
power to respond to real world stimuli.

Cubetto [13] (Figure 2.13, right) takes a slightly different approach. It provides a physical
programming palette in which users plug in different jigsaw pieces (instructions) to cause
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Fig. 2.13 Examples of programmable turtles: Sphero [84] (left); Cubetto [57] (right).

a small robot (Cubetto) to navigate the environment. Jigsaw pieces are plugged into the
programming palette and commands include forward, back, left, and right. Commands follow
a sequential execution model and are transferred to Cubetto for execution.

Cue [291] is a more advanced robotic turtle. It has a variety of in-built sensors and can pro-
duce and recognise speech. Applications for Cue are developed using a visual programming
language and are once again transferred to the device via Bluetooth for execution.

Programmable construction sets

Programmable construction sets combine programming, hardware modules, and reusable
construction materials to build physical computing devices. One of the most well-known
examples of this style of physical computing tool is Lego Mindstorms. Lego Mindstorms is
derived from Paperts’ famous Mindstorms paper and integrates the familiar plastic building
blocks with programming and electronics. The set consists of a reprogrammable main “brick”
that runs an application created in a visual programming environment. Completed programs
written in the visual program environment are transferred to the main brick via infrared
or USB cable. Brick-based modules, featuring sensors and actuators, can be connected to
the main brick and used by applications to create a physical computing device. The main
brick communicates with the sensors via electrical contacts that take the place of the usual
plastic connectors. The Lego Mindstorms programming environment was the first to offer a
visual programming paradigm and Scratch is heavily influenced by the fundamental concepts
introduced by Lego Mindstorms.



2.1 Application domains 33

Fig. 2.14 The Lego Mindstorms RCX “brick” [68] (left) and visual programming environ-
ment [67] (right).

Another programmable construction kit, the VEX V5 [247], takes a similar approach.
The V5 ecosystem features a main brain and a number of peripheral modules that can be
used to build devices. Instead of lego bricks, V5 uses grated metal and nuts and bolts to build
more rugged robots. The V5 ecosystem allows for text-based programming using C++ and
visual programming using Scratch. Programs are transferred via cable to the brain.

Analysis

The physical computing technologies discussed in this section provide an engaging way for
students to learn computer science concepts. Perhaps, more importantly, they give educators a
low-barrier, friction-free way to teach computer science concepts. Both teachers and students
typically lack technical expertise and the adoption of physical computing in education is
evidence that more intuitive design increases participation from those with little technical
expertise.

Citizen developers require intuitive technologies There is a distinct absence of uncon-
strained hardware prototyping in the physical computing technologies discussed above. Their
absence implies that in their current form, prototyping technologies for freely building
physical computing devices are outside the reach of students and teachers.

Citizen developers require simple abstractions Across the physical computing technolo-
gies discussed in this section, abstractions are a reoccurring theme. Tangible programming
kits abstract hardware as distinct building blocks, programmable turtles abstract movement
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commands as flow-based sequences, and programmable construction kits use reusable mate-
rials and visual programming languages to scaffold the construction of physical computing
devices. These abstractions are simple enough for use by technically inexperienced students
and educators.

Citizen developers require simple composition Whenever hardware composition is in-
volved, the physical computing solutions in this section seek to simplify composition. Per-
sonal computing peripherals use crocodile clips, tangible programming kits use polarised
magnets and 3.5 mm jacks, and programmable construction sets use easy to compose materi-
als like lego to make hardware composition simpler. These simpler composition mechanisms
allow technically inexperienced teachers and students to participate in physical computing.

2.2 Embedded development boards

Embedded development boards are central to enabling citizens to build physical computing
devices. They are typically consist of PCB, a single microcontroller, and electrical contacts
that expose microcontroller GPIO for prototyping.

There are many embedded development boards, but they broadly fit into three different
categories. Prototyping boards (Section 2.2.1) are designed to make it easy to connect to
external circuits and peripherals through dedicated GPIO connectors; networking boards
(Section 2.2.2) are prototyping boards with built-in wireless networking capabilities; and
integrated boards (Section 2.2.3) are prototyping boards that have on-board sensors and
optionally built-in wireless networking. Integrated boards are able to function as physical
computing devices without any further prototyping. The upcoming sections discuss each
type of board in the context of making, the IoT, and education.

2.2.1 Prototyping boards

Though all embedded development boards can be conceivably used to build physical com-
puting devices, prototyping boards offer an intuitive and reasonably low cost starting point.
Prototyping boards typically have no on-board sensors and instead provide great customis-
ability by using wires to interface with external sensors and electronics. This flexibility
allows users to more easily build custom physical computing devices.

The Arduino Uno (Figure 2.15) is one of the most iconic prototyping boards, seeing
heavy adoption by the maker community [107]. The Uno is relatively low cost (around £30
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Fig. 2.15 Prototyping a physical computing device using an Arduino Uno [50].

at release) and features an 8-bit Atmel ATMega328p reprogrammable microcontroller and
standardised PCB mounted GPIO headers. GPIO headers expose electrical microcontroller
contacts for flexible hardware composition, letting users interface with external circuits and
sensors programmatically. The microcontroller itself has just 2 kB of RAM and 32 kB of
flash, requiring applications to be written in low level programming languages like C/C++ for
efficiency. The accompanying Arduino IDE seeks to simplify C/C++ programming through
a common set of simple APIs (originally designed for artists [108]). The IDE also builds
programs and transfers binaries to Arduino devices using serial-over-USB.

Since its launch in 2003, there are now many Arduino boards in existence. Over time,
Arduino devices have moved from less capable 8-bit microcontrollers to more capable 32-
bit cortex M0 microcontrollers. This new class of microcontroller brings more memory,
integrated peripherals (such as wireless connectivity), and faster processor speeds making
the Uno obsolete. Throughout this revolution however, the Arduino has maintained its form
factor, standardised pin out, and low cost.

Feather boards, produced by Adafruit [18], offer a smaller form factor and lower price
point (around £20) than Arduino boards (Figure 2.16, left). Their smaller form factor gives
users greater versatility when building physical computing devices. Feather boards can be
programmed using the Arduino IDE and wired directly to peripheral sensors. A number of
compatible Wings can also be mounted on top of Feather boards to add additional sensing
capabilities and wireless connectivity. Feathers and Wings share a different standardised pin
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Fig. 2.16 Other embedded development boards for prototyping. A Feather form factor board
(left) and a Raspberry Pi (right)

out to Arduino. Through their open source and collaborative approach to learning materials,
software, and hardware, Adafruit has become a pillar of the maker community.

Another iconic device of the maker movement is the Raspberry Pi [279] (Figure 2.16,
right). Launched in 2012, the Raspberry Pi was intended as a device for education, but it
instead gained utility as a low cost standalone computing device. The Raspberry Pi is in a
different class from Arduino and Feather boards and runs a full linux-based operating system
with a Graphical User Interface (GUI). Wireless connectivity was added to later revisions of
the board making it easy to connect the Pi to the Internet.

The Pi is also an ideal board for prototyping physical computing devices. Via GPIO
headers incorporated into the PCB, users can prototype in a similar way to the Uno. Headers
allow communication with sensors and the direct manipulation of both digital and analogue
signals from intuitive programming languages like Python [281]. GPIO headers are also
standardised but observe a different standard to the Arduino and Feather ecosystems.

2.2.2 Networking boards

Thanks to Moore’s law [251], many development boards now come with wireless networking
built in. Wireless capability is either supported by the on-board microcontroller directly
or by a separate PCB-mounted co-processor. Because of their direct support for popular
wireless networking protocols, networking boards are used by technologists and businesses
to prototype and build devices for the Internet of Things (IoT).
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Fig. 2.17 Arduino Nano BLE Sense [49] (A); Adafruit Bluefruit [46] (B); Raspberry Pi Zero
WiFi [81] (C); ESP32 development board [59] (D).

For technologists

Many networking boards are simply prototyping boards with added support for wireless
networking. Before networking boards, wireless networking peripherals were connected
to prototyping boards in very much the same way as sensors. Integrated networking has
significantly reduced the complexity of building an IoT device.

The need for integrated networking emerged across many ecosystems simultaneously
and there are now many networking boards to choose from. The Arduino ecosystem now
offers smaller form factor Arduino Nano boards, like the Arduino BLE sense (Figure 2.17A).
Adafruit now produce Feather boards with integrated wireless networking like the BlueFruit
(Figure 2.17B). Standard Raspberry Pi models now also include built in support for BLE and
WiFi, and the Raspberry Pi foundation recently produced a smaller, low power version of the
Raspberry Pi, the Raspberry Pi Zero W (Figure 2.17C), for simpler IoT prototyping. These
boards cost between 20 and 30 pounds.

The need for integrated networking has also prompted the creation of new development
boards. The ESP32 development board (Figure 2.17D) is one of the most popular networking
boards used to build IoT devices. The ESP32 has built-in support for both BLE and WiFi, and
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Fig. 2.18 Particle Xenon [75] (left), Azure Sphere [54] (right).

a powerful processor that can support a variety of higher level programming languages with
ease. These features, in addition to its low cost of around £15, make the ESP32 a compelling
choice for many IoT projects.

For businesses

The IoT presents businesses with many opportunities for innovation. Building an IoT solution
however, is steeped in technical complexity, especially when part of the solution involves the
creation of a custom IoT device. Added business concerns around security make the process
even more challenging. There are now companies that specialise in providing IoT solutions
that scaffold businesses in building IoT devices and connecting them to the Internet.

Particle [32] provides infrastructure and four networking boards to create custom IoT
devices. All four boards observe the feather form factor and pin out specification [18] and
each board contains two microcontrollers, one for application execution and another for
wireless connectivity. The Photon board supports WiFi; the Electron board incorporates
cellular technology for longer range applications; the Argon board features WiFi and BLE for
connecting Bluetooth devices to the Internet; and the Boron board supports LTE for long range
IoT applications. Particle boards can be connected together to adhere to different application
requirements. Interestingly, Particle recently discontinued its embedded development board
designed for ad-hoc wireless networking, Xenon (Figure 2.18, left), citing configuration
complexity [33].

Microsoft recently announced Azure Sphere [268], a security centred solution for IoT
devices. The Azure Sphere development board (Figure 2.18, right) features three processors,
one with heavily secured processor with built in tamper detection, and two less secure
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Fig. 2.19 The Light Blue Bean [69] (left) and Circuit Playground Express [56] (right).

processors for non-critical co-processing. Sphere directly connects to Microsoft Azure
infrastructure, providing businesses with a completely secure IoT solution. Notably Starbucks
is now using Sphere to remotely monitor coffee machines [39].

2.2.3 Integrated boards

Integrated development boards come with both sensors and wireless networking built in.
Many integrated boards can therefore act as physical computing devices without any further
prototyping. This has proven to provide a more intuitive physical computing experience and
many integrated boards are now used as tools for education [116].

The Light Blue Bean (Figure 2.19, left) is an Arduino compatible integrated board that
costs around £30. It uses the same processor as the Arduino Uno (the ATMega328p) but
adds a Bluetooth co-processor, an accelerometer, temperature sensor and a single RGB LED.
A small prototyping area allows users to expand the capabilities of the bean by wiring it to
external circuits and peripherals. Like any other Arduino device, the Bean is programmed
using the Arduino IDE. It can also be connected to mobile applications running on iOS and
Android devices via Bluetooth for the tethered execution of user commands.

The Circuit Playground Express (CPX) is another Arduino compatible integrated develop-
ment board. It follows the circular form factor of the extremely popular LilyPad Arduino—a
prototyping board for creating interactive fashion garments—where the back of the board
contains no components and GPIO are brought right to the edge of the circular PCB. This
makes it easy to combine the board with garments using conductive thread or crocodile
clips. The CPX offers a huge amount functionality for the low price of £20 and features
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many on-board components including 10 RGB LEDs, a microphone, a speaker, an infrared
transmitter and receiver, an accelerometer, a temperature sensor, and 3 buttons (Figure 2.19,
left). Programs can be written in the Arduino IDE, in Microsoft MakeCode [142], or using a
custom code editor and CircuitPython [11]. Language diversity provides great flexibility for
educators and makers alike. Program binaries are transferred to the device using the Arduino
IDE or alternatively, using a simple USB mass storage abstraction. When connected to a
personal computer, the CPX appears as a flash drive and program binaries can be transferred
using a simple file copy operation.

The BBC micro:bit (Figure 2.20) is another example of an integrated development board.
The micro:bit is the product of the British Broadcasting Coorporation (BBC) Make It Digital
Initiative, a concerted effort by the BBC and 29 project partners [102] to encourage a new
era of creativity in the young using programming and digital technology as its medium.
Simultaneously, the initiative would also support the UK’s mandate to teach computer
science concepts at all grade levels [237]. The microbit was deployed to approximately
800,000 UK Year 7 (11/12 year old) school children in 2015-2016.

The BBC and its partners developed the micro:bit as an engaging, inexpensive (£14),
powerful, and easy-to-use learning tool. As such, the micro:bit can be programmed from
any web browser via Microsoft MakeCode and MicroPython [161]. The device is also
playful and engaging, the size of a credit card, can be powered from battery, and has built in
support for BLE, a 5x5 LED matrix display, an accelerometer, and a magnetometer. The edge
connector—a slot-based GPIO connection interface along the bottom of the board—extends
the micro:bits functionality, allowing users to connect to electrical circuits and sensors using
banana plugs and wires. Program binaries are transferred to this microcontroller using a
simple file copy operation to a USB flash drive (similar to the CPX). The micro:bit supports
all these features using a microcontroller with only 16 kB of RAM and 256 kB flash. Its easy
programability, embedability and feature set enables a plethora of lessons without requiring
the use of wires and breadboards, making physical computing more intuitive.

2.2.4 Analysis

This section has discussed the three types of embedded development board used across the
domains of making, the IoT, and education. From prior discussion we can extract some
emergent trends.

Microcontrollers are becoming more capable Over the past decade embedded devel-
opment boards have moved away from 8-bit microcontrollers to more powerful 32-bit
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Fig. 2.20 Front of the BBC micro:bit (left) and back (right).

microcontrollers. These microcontrollers are not only more powerful but they are more
capable too, with many of them coming with built in peripherals for digital signal processing
and even wireless networking. Increased capability has not led to an increase in the cost of
embedded development boards however, and now users are getting more versatility at less
monetary expense. But whilst microcontrollers are more capable and powerful, they still
have significantly less RAM and flash than traditional computers (between 2 and 512 kB).
These constraints limit potential applications.

Integrated development boards are more intuitive Integrated boards with built in sens-
ing capabilities can act as physical computing devices without any further prototyping. This
has resonated well with technically inexperienced educators and students, leading to the wide
adoption of integrated boards as tools for education. The relationship between integration
and accessibility is further evidenced through the emergence of dedicated networking boards
that directly incorporate wireless networking.

Ad-hoc networking protocols are not widely used Despite the trend towards integrated
wireless networking, there are few embedded development boards that support ad-hoc
networking protocols like Zigbee. One might expect the Arduino ecosystem to have a board
that supports ad-hoc networking, but to date, no board has such support. Particle—a company
that specialises in building bespoke IoT solutions—did offer an ad-hoc networking board,
but discontinued it recently citing the complexities of ad-hoc wireless networking.
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2.3 Programming languages and environments

Programming languages are used to create applications for computers—including the micro-

controllers on embedded development boards. Programming languages are therefore another
fundamental technology required to build a physical computing device.

Programming languages allow humans to express their intentions to machines as in-
structions, and through the process of interpretation or compilation, text-based instructions
are converted into machine executable code. Interpreted languages convert program text
or pre-generated byte code to machine code at runtime, whereas compilation performs that
process ahead of time. In either case, computers execute the resulting code.

The ease of programming varies between programming languages. Low-level, compiled
programming languages like C/C++ are known to be highly efficient but hard to program in.
They generally have no abstraction, require manual memory management, and have a complex
syntax. Higher level, interpreted languages, however, have the inverse relationship, delivering
an easier programming experience at the expense of efficiency. Higher level languages are
flexible, have an easy to understand syntax, and manage memory automatically.

This section provides a broad overview of programming languages and environments
beginning with a discussion on those used generally for education (Section 2.3.1). We then
move onto specific languages and environments used to create applications for microcon-
trollers when prototyping (Section 2.3.2) and when building products (Section 2.3.3).

2.3.1 Used for education

Programming is a hard skill to learn but teaches many of the concepts fundamental to
computer science. It is unsurprising then that many tools for computer science education
incorporate some form of programming as part of their experience. Traditional low level
programming languages however are hard for beginners to use, and many of these tools
seek to provide a simpler programming experience better suited to technically inexperienced
students and teachers.

There are now many different programming languages designed to make programming
simpler and more intuitive. This section covers these languages in the context of education,
beginning with text-based programming languages and progressing to visual programming
languages.
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1 T r a n s c r i p t show : ’ h e l l o
wor ld ’ .

Fig. 2.21 The Smalltalk IDE [162] (left); and Smalltalk code sample (right)

Text-based programming languages

Text-based programming languages are the most traditional starting point for learning to
program, but many low-level text-based programming languages (like C/C++) are hard for
beginners to use. Over the past few decades there has been much effort to make text-based
programming more intuitive. This has resulted in the creation of higher-level text-based
languages that abstract away programming complexity and seek to make it possible for
users to eventually transition to low-level programming languages. A specially designed
IDE accompanies many higher level languages which hides underlying language processes
(like compilation/interpretation) and in some cases provides a goal-based simulator to create
a compelling learning experience. Because of their ease of use, many of the upcoming
languages are used (or have been used) by educators in the classroom.

Logo [232] is one of the earliest higher level programming languages. It removes the
complex syntactical elements of C/C++ and focuses on a refined vocabulary of keywords to
create a friendly experience for beginners. Logo was specially designed for education and
came with a self-contained Integrated Development Environment (IDE) containing a simple
text editor and a turtle. Students could control the turtle using programs written in the text
editor, creating a compelling and engaging learning experience.
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1 d e f s a y _ h e l l o ( ) :
2 p r i n t ( " H e l l o World ! " )
3
4 s a y _ h e l l o ( )

1 s a y H e l l o = ( ) => {
2 a l e r t ( " H e l l o World ! " ) ;
3 }
4
5 document . onEvent ( ’ r e a d y ’ , ( ) =>{
6 s a y H e l l o ( ) ;
7 } )

Fig. 2.22 A Python code sample (left); and functionally equivalent JavaScript code sample
(right)

Smalltalk [162] (Figure 2.21) is considered one of the first higher-level languages to
observe an object-oriented programming paradigm. It came with an IDE that contained a
text editor and an environment for designing graphical user interfaces (GUI). Each GUI
component was modelled as a discrete programming object, empowering users to more
easily construct their own desktop applications programmatically. Though having a slightly
more complex syntax than Logo by using full stops to denote the end of program statements,
Smalltalk saw huge adoption.

Python [281, 248] (Figure 2.22, left) is a modern general purpose programming language.
It is object oriented, has a small number of reserved keywords, and uses whitespace to
structure code. Using whitespace to structure code is theorised to make the scope of code
more obvious. A self-contained Python IDE is available but it is not particularly designed to
facilitate education. Many educators however choose to use Python because of its real world
applicability. Professional developers use Python to manipulate file systems, interface with
the internet, create web servers, and even train machine-learning models with just a ‘few
lines of code’.

JavaScript [152] (Figure 2.22, right) is another popular general purpose text-based
programming language. It is not especially designed for beginners but its universal adoption
in the web allows beginners to learn and create from any device with a web browser. The
language includes more advanced syntax like brackets, semi-colons, and braces, and is
primarily used to bring additional functionality, animations, and client-side logic to HTML
web pages. The use of JavaScript has also grown beyond the browser to include the desktop
and mobile devices. Now professionals can write JavaScript applications to manipulate local
file systems, interact with physical IO devices, develop scalable servers for websites, and
create first-class applications for mobile devices. For educators, JavaScript provides an ideal
stepping stone between languages without syntax (e.g. Python) and low-level languages with
syntax (e.g. C/C++).
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1 i f c a t . D i s t a n c e T o ( F i s h ) < 1 . 0 :
2 do InOrde r (
3 c a t . Move ( Up , 0 . 5 ) ,
4 c a t . Move ( Down , 0 . 5 ) )

1 l i v e _ l o o p : f l i b b l e do
2 sample : bd_haus , r a t e : 1
3 s l e e p 0 . 5
4 end

Fig. 2.23 An Alice code sample (left); and Sonic Pi code sample (right)

There are also languages that are designed specifically for cross-curriculur learning.
Alice [136] combines 3D animation with learning to program. Using Alice, students and
teachers can manipulate and move objects in a 3D space to create animations. Though
more recent versions of Alice support visual programming, the original IDE launched with a
text-based programming language built on top of Python. The Alice programming language
provides APIs that hide complex 3D animation algorithms, and concepts like for and while
loops (Figure 2.23, left).

Sonic Pi [90] is a text-based programming environment that combines music and learning
to program. Sonic Pi makes use of the flexible syntax of Ruby [153] to create a programmatic
way of describing pitches, rhythms, and audio effects. Some effort goes towards hiding the
complexity of for and while loops by encompassing every audio sequence in a do loop. The
Sonic Pi IDE provides auto completion and real time error detection to ease the programming
experience for students and educators (Figure 2.23, right).

Visual programming languages

Visual programming languages abstract away the complexities of text-based programming,
providing users with a graphical means of building applications. Generally in these languages,
segments of pre-defined code are connected together to build standalone applications or
applications that work towards an objective. Visual programming languages are popular
with educators because they allow students to focus on the structure and functionality of
programs rather than syntax. But whilst visual programming languages allow students to
learn fundamental (and translatable) computer science concepts, applications are constrained
to what is permitted by each language.

RAPTOR [126] gives users a flow chart based visual programming language to build
applications. Given a start and end point, users add nodes to the flow chart to build programs.
The connections between nodes define the order of execution. RAPTOR provides many built
in nodes, including ones for user input, for creating GUIs, and for primitive graphics (as
seen in Figure 2.24). RAPTOR can also generate programs in many text-based languages,
including Java or C#, allowing students and educators to build applications that run on
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Fig. 2.24 The RAPTOR visual programming environment [126]. Students use a flow chart
abstraction to create programs.

millions of devices. The flow chart model has proven valuable for educators, simplifying the
explanation of loops and conditionals by making the flow of execution clear.

Scratch [245, 212] (Figure 2.25, left) is the most popular visual programming environment
used for education. Scratch programs are composed of pre-defined blocks that can be pieced
together (like Lego bricks). Blocks are coloured based up on their functionality and have
different connector types and shapes to prevent incompatible blocks from being connected
together. Scratch makes use of event-based programming to group code. For example, a piece
of code may be invoked when two particular sprites collide or when application execution
begins (“on start”). Using Scratch, users can create physics-based 2D games consisting
of customisable animated sprites and graphics. Scratch has been shown to be successful
in teaching novices translatable programming concepts in an engaging way [290] and is
attributed with defining modern block-based programming as we know it.

With advancements in web technologies, block-based visual programming languages
are moving to the web. Blockly [156] provides a framework for building custom web-based
visual programming languages. The framework contains the basic elements of a programming
editor and a set of visual blocks that can be customised to any application domain. A web-
based programming experience means that educators do not have to get IT technicians to
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Fig. 2.25 Visual programming languages that use a block-based abstraction to create pro-
grams: Scratch [83] (left) and MIT App Inventor [47] (right).

install applications on computers—a well recognised organisational barrier in schools [138].
Scratch, in version 3.0, recently moved to the web using Blockly.

MIT App Inventor [252] (Figure 2.25, right) applies Blockly to mobile application
development. A web-based interface builder lets users drag and drop GUI components onto
a mobile application canvas. Components can be associated with code segments written
using a custom Blockly dialect that makes heavy use of event-based programming. During
program composition, App Inventor constantly reloads and deploys code “live”. Completed
applications can be deployed to a store for use on mobile devices by other App Inventors.

2.3.2 Used for prototyping

There are many languages and environments aimed at making programming microcontrollers,
and by extension hardware prototyping, more intuitive. Hobbiest makers use the Arduino
IDE (Figure 2.26) to program Arduino devices. The IDE presents a simple text editor and
two default functions called ‘setup’ and ‘loop’. The setup function is used to configure
hardware before the loop function is repeatedly invoked—like the inside of a ‘while’ loop.
Simple C/C++ APIs that give great control over the hardware are placed into each respective
function to build applications. These APIs have their origins in Wiring [108], where APIs
were designed to help artists incorporate electronics into their art pieces. The Arduino IDE
compiles completed C/C++ applications and transfers them to Arduino devices using USB
serial. The tightly integrated experience of Arduino has significantly lowered the barrier to
hardware prototyping, but its language still poses barriers for novices.

Since the Raspberry has more memory and processing power than many Arduino boards
it can directly support higher level languages like Python, JavaScript and Scratch. Users
can interact with external circuitry using these higher level languages via the GPIO headers
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Fig. 2.26 The Arduino Integrated Development Environment (IDE)

mounted on the device. Whilst Scratch APIs offer limited control over the hardware, Python
and JavaScript offer a huge amount of control. The extensive package ecosystem of both
JavaScript and Python also provides many drivers for complex sensors. The small, portable
form factor of the Raspberry Pi combined with these higher level languages creates a
compelling prototyping platform. The device however cannot be powered by battery, limiting
its use.

Many embedded development boards now support solutions like MicroPython [161], and
variations like CircuitPython [11], that bring Python programming to resource constrained
microcontrollers. These solutions provide many of the higher level primitives seen in standard
Python and add additional modules to control the hardware it is running on. Python programs
are transferred over USB serial to the microcontroller where programs are interpreted.
Both MicroPython and CircuitPython vastly simplify the usually complex experience of
programming microcontrollers and eases the transition from writing programs for computers,
to writing programs for microcontrollers.

Espruino [289], DukTape [14], and JerryScript [160] are versions of JavaScript written
for resource constrained microcontrollers. Each solution varies in the number of JavaScript
language features that are supported. Like Python solutions for microcontrollers, program
text is transferred over USB using a serial terminal. Some solutions perform additional
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Fig. 2.27 The browser-based Arduino cloud environment Property creation (left) and inte-
grated development environment (right)

optimisations like preserving previously interpreted byte code for more optimal execution.
Once again, the use of higher level languages simplifies the hardware prototyping process.

Programming environments aimed at prototyping are also moving to the web. Mbed [97]
is an entirely online embedded development platform where hobbyists and technologists
alike can create C/C++ applications in a web-based IDE. Mbed provides a common Hardware
Abstraction Layer (HAL) for many ARM cores, and gives users the option between a highly
concurrent Real Time Operating System (RTOS) or a simple driver-oriented development
experience. By offering these options, mbed is suitable for both prototyping and product.

The domains of making and the IoT are not mutually exclusive and now many tech-
nologists are prototyping hardware for the IoT. The Arduino IoT cloud [7] is a platform
that integrates the familiar Arduino development experience with the web (Figure 2.27).
Integration creates a cohesive end-to-end experience that enables application development,
network configuration, and device management to happen all from within a platform agnostic
web application. Before creating an application, a developer defines a number of properties
(Figure 2.27, left). These properties are later injected into code for use by applications
(Figure 2.27, right). The Arduino loop convention is used to poll Internet endpoints to detect
changes to properties. Of course, for the application to work an Internet capable Arduino
development board is required.
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2.3.3 Used for product

During the creation of a product, companies seek to minimise cost to maximise profit. One
area that is ripe for optimisation is the electronic aspect of a product. Here, any cost reduc-
tion can have a significant and positive impact on profit margins. It is therefore the job of
professional electrical engineers to optimise for cost wherever possible. Since microcon-
troller memory and processing power translates to cost, embedded software developers have
the challenging job of writing highly functional applications with limited microcontroller
resources.

Real Time Operating Systems (RTOSs) strike an appropriate balance between function-
ality and efficiency for embedded software developers. RTOSs provide an environment
suitable for hard real time applications and are highly concurrent in order to manage the
competing attention of different hardware peripherals. They also provide the appropriate
primitives to manage competition over hardware and software resources. Though there are
many open source RTOSs available like Zephyr [89] and mbed OS [97], many development
teams choose to create their own [40]. This allows them to better match RTOS behaviour to
their application.

The advent of the IoT presents many new business opportunities, including those that
better enable other companies to build products for the IoT. Pelion [8], by ARM, gives busi-
nesses an entire IoT stack to connect, manage and program devices. The Pelion programming
environment is web-based and compatible with any ARM-based embedded device. It is
primarily intended for use with mbed OS [97] but has libraries to support Arduino and many
other real-time operating systems. Applications that make use of the Pelion communication
stack have a secure connection to the cloud and their firmware can be remotely updated.

Particle devices can also be connected, managed, and programmed from the web. Particle
customers create Arduino applications that use particle libraries to expose local variables to
the cloud and vice versa. Applications poll internet endpoint to detect changes to variables in
a similar way to Arduino Cloud. Arduino APIs are mapped to an underlying common device
runtime (i.e. an RTOS) that adds support for concurrent applications. This runtime also
abstracts hardware, transparently mapping networking calls to whatever wireless protocol is
supported by the development board. Particle can automatically patch security vulnerabilities
in the device runtime, and businesses can dynamically deploy firmware updates. The use of
Arduino hides the underlying complexity of the device runtime, lowering the barrier to entry
to IoT product creation.

Azure Sphere devices run a custom modified linux distribution called Azure Sphere OS.
Designed for security, user applications are split into high-level applications and real-time
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applications. High-level applications run inside a container and can only interact with the
operating system and selected libraries. Real-time applications however are allowed to
directly interact with the hardware and either run ‘bare metal’ on the main processor or
on any of the two co-processors. High-level applications can communicate with real-time
applications and the Internet, but real-time applications cannot. Applications for Sphere can
be written using any code editor but Sphere devices are factory secured and require special
modification for direct programming. For live products, firmware can only be updated using
the secure Azure device management portal.

2.3.4 Analysis

This section has explored different programming languages and environments and their use
for education, for prototyping, and for product creation. From the discussion above, we can
extract a few key observations.

Programming is moving to the web. The web browser is becoming the new development
environment. Educators and students can now access tools like Scratch from any device with
a web browser. Hobbiest makers can use Arduino Cloud to create applications for Arduino
devices without installing any software. Even professional embedded developers can use
write low-level C/C++ firmware without installing a single compilation toolchain.

Programming languages are becoming more intuitive. There is clear trend towards
making programming more intuitive to those with little technical expertise. Educators use
higher-level languages like Scratch and Python to teach students fundamental computer
science concepts. The same trend is even evident in the resource constrained world of
the microcontroller where Hobbiests now use MicroPython and Espruino as a convenient
stepping stone to hardware prototyping. Professionals however continue to use C/C++.

For microcontrollers, efficiency is paramount Though more intuitive languages are avail-
able, a large proportion of the aforementioned programming languages for microcontrollers
make use of C/C++. This is because microcontrollers have significantly less RAM and flash
than personal computers, requiring the careful use resources, currently only intuitive through
low-level programming languages. Professional embedded software developers and even
hobbyist microcontroller programming environments, like Arduino, choose to use highly
efficient languages like C/C++.
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Concurrency is king Prior discussion shows that programming languages that support
concurrency offer many benefits. In education, languages like Scratch and App Inventor make
programming more intuitive to technical novices through the heavy use of asynchronous
event-driven programming. For professional embedded developers, concurrency is key to
managing the many demands of real-time and interactive devices.

2.4 Hardware composition

Everyday citizens compose hardware. It happens when we plug our headphones into audio
systems, our keyboards and mice into computers, and our smart devices into mains chargers.
The purpose of connecting devices together is to allow them to communicate with one another
over an electrically conductive physical medium like a cable.

A physical computing device is incomplete without the sensors that enable its interactivity
and hardware composition is therefore also part of building a physical computing device.
Here, sensing peripherals are connected to microcontrollers using an electrically conductive
medium. Typically, however, conductive mediums are exposed electrical contacts on PCBs
rather than cables. Electrical signalling is used to communicate between microcontrollers and
peripherals, and wired protocols standardise electrical signalling for complex peripherals.

This section covers the different ways electrical contact is made between microcontrollers
and peripherals (Section 2.4.1), the fundamentals of electrical signalling (Section 2.4.2), and
the wired protocols that use electrical signalling to communicate (Section 2.4.3). The wired
protocols discussed in this section specifically relate to those used for prototyping. A more
detailed treatment is provided later on.

2.4.1 Making electrical contact

When prototyping there are broadly three ways of connecting microcontrollers and peripher-
als. The first, wiring, is the traditional way to compose a physical computing device. The
use of wires typically requires electrical expertise however, and the second and third ways
seek to simplify hardware composition. One allows peripherals to be stacked on top of
embedded development boards, and the other allows embedded development boards to slot
into peripherals.
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Fig. 2.28 Using prototyping wires to connect an Arduino to an external breadboard [51]
(left); and connecting a peripheral module to an Arduino [52] (right).

Wiring

Wires are the most common way to compose a physical computing device and give users
the freedom to connect peripherals and electronic circuits to microcontrollers using just two
malleable contacts. Wires can be made from a solid core or split core—the latter is easier
to manipulate. When composing a physical computing device, wires need to be trimmed to
length, stripped of their non-conductive outer shell to create two electrical contact points.
Each contact is affixed to components using solder to form an electrical connection. A hot
iron is used to melt conductive solder onto electrical contacts to form a solid joint.

Specially designed prototyping wires let users more easily compose physical computing
devices. Prototyping wires are pre-cut and have reusable connectors attached to either ends of
the wire. Connectors are either a conductive plug or a receptacle designed to receive a plug.
Breadboards allow users to mount through-hole components and connect prototyping wires
between components to create external circuits. Breadboards can also be connected directly
to an embedded development board using prototyping wires (Figure 2.28, left). Wires are
usually connected to receptacles mounted on the PCB itself, and PCB receptacles are in turn
connected to microcontroller GPIOs.

External peripheral modules can also be connected to embedded development boards.
Peripherals typically use wired protocols, like I2C or SPI, to communicate with the microcon-
troller on the embedded development board. A minimum of four lines must be routed from
the microcontroller to peripheral in order to communicate. Embedded development boards
generally support prototyping with both external modules and breadboards (Figure 2.28,
right).
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Fig. 2.29 Connecting Grove modules to a Grove expansion board [62] (left); and ‘stacking’
shields onto an Arduino [53] (right).

The prior connection mechanisms require a basic knowledge of electronics, incompatible
with technical novices. Electronics manufacturers have therefore sought to create new and
simpler ways to connect peripherals to microcontrollers using wires. The Seeed Grove ecosys-
tem of hardware [20] consists of main development boards and external peripheral modules
that use a custom cable and connectors to join peripherals to microcontrollers (Figure 2.29,
left). The cable consists of four internal wires, two are used for data communication and two
are used for power and ground. The grove cable therefore supports simple digital/analogue
IO, and a subset of wired protocols (I2C, and UART). The 4-pin plug connectors at either
end of the grove cable only allow users to mate peripherals with PCB mounted receptacles in
one orientation, guaranteeing electronic compatibility. Grove users must plug peripherals
into the PCB receptacle that match the communication protocol of the peripheral.

Unbeknownst to many, we compose hardware all the time in our day-to-day lives. When
we charge our phones or connect a keyboard or mouse to a personal computer, we are
composing hardware. USB connectors and cables supports the examples above, and many
more beyond that. The careful design of USB cables and connectors has led to their wide
adoption. Devices with USB connectors typically communicate via the USB protocol.

Stacking

Other communities seek to make composing physical computing devices easier by entirely
removing wiring from the process. Instead, inflexible, but compositional, peripheral PCB



2.4 Hardware composition 55

Fig. 2.30 Adding a wing to an Adafruit feather board [60] (left) and placing a SenseHAT on
a Raspberry Pi [82] (right).

boards can be ‘stacked’ on top of embedded development boards. Stackable PCBs originate
from the PC/104 consortium [30] and their use for hardware composition was made popular
by Arduino ecosystem. Here, stackable PCBs are called shields and shields expose plugs that
directly mate with the PCB receptacles of the Arduino (Figure 2.29, right). They also support
the stacking of additional shields by mapping unused GPIO through to the Arduino. Shields
are only compatible with boards that follow the original form factor and pin out specification
of the Arduino Uno.

The Adafruit ecosystem of peripherals adopt the Feather form factor, created due to the
size of Arduino Shields [18]. The Feather specification defines the size, spacing, GPIO
layout, and naming conventions for all Feather boards. Feather boards typically contain a
reprogrammable microcontroller and Wings can be added to Feathers to add new peripherals
and communication interfaces. Like Arduino Shields, feathers are stacked on top of one
another using plug connectors (Figure 2.30, left).

The Raspberry Pi ecosystem uses Hardware Attached on Top (HATs) [22] to augment
Raspberry Pi devices with sensors and co-processors. All HATs follow a common specifica-
tion that defines compatible pin layouts for each type of Raspberry Pi. HATs are mated to
the exposed GPIO of the Raspberry Pi and can be affixed to the Pi using screws for more
rigidity and security (Figure 2.30, right).

Slotting

Prior means of hardware composition are less than ideal. Wiring is a well recognised barrier
for technical novices [116], and the exposed pins of stackable shields can snap over time,
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requiring great expense to replace. The classroom is an area where both of these concerns are
prevalent. Educators and students need an easy means for composition with low monetary
expense [115].

The BBC micro:bit is an integrated development board designed for the classroom.
Though it has many built-in capabilities, its creators did not want to limit the potential of
its application. The bottom of the micro:bit, known as the edge connector [15], exposes a
number of electrical contacts that are routed to microcontroller GPIO. The edge connector
can be therefore be controlled by software and used to interface directly with external circuits.

There are multiple ways to connect the edge connector to external circuits. Solder can be
used to attach wires directly to electrical contacts, banana plugs can mate with the widely
bored holes at its top, or, more ruggedly, a specially designed receptacle can mate with
the entire edge connector. The receptacle provides an easy ‘slot-based’ way to connect the
micro:bit to peripherals, creating an experience that is similar to the way credit cards are
‘slotted’ into terminals.

Accessories make use of the edge connector in different ways. Some accessories simply
provide a ‘break out’ board for the micro:bit that converts the edge connector into prototyping
wire compatible pins (Figure 2.31, left). Other accessories, like the Macqueen remote control
car accessory (Figure 2.31, right), directly integrate the micro:bit into the chassis of the car
itself.

As only one accessory can be connected at a time, the edge connector is inherently non-
compositional. Its success with those with little technical expertise however means that many
other embedded boards manufacturers are following suit. The MxChip IoT Development
board [5], the Brainpad Arcade [10], and the Meowbit Arcade [24] all connect to peripherals
using the same edge connector specification as the micro:bit. This means that peripherals
designed for the micro:bit are also now compatible with other development boards.

2.4.2 Electrical signalling

Microcontrollers communicate using analogue or digital electrical signalling over physical
mediums (i.e. wires) that conduct electricity. Both types of electrical signalling express
data by modifying the line voltage between the minimum and maximum supported voltage.
Line voltage typically ranges between 0 and 3.3 volts but this is often changes depending on
application.

In digital signalling, line voltage represents a set of discrete values. Typically for
microcontrollers there are two discrete values: zero (0 volts), and one (3.3 volts) (Figure 2.32,
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Fig. 2.31 Edge connector accessories for the BBC micro:bit. A break out board [58] (left);
and a remote controlled car called macqueen [73] (right).

Fig. 2.32 Line voltage (left), binary value (middle), and corresponding 10-bit ADC value
(right).
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middle). Digital signalling is universal to all microcontrollers and applications can easily
detect changes in voltage by polling the state of microcontroller GPIO. Many microcontrollers
now also come with dedicated peripherals for asynchronously detecting immediate changes
in voltage. Simple digital sensing is used by sensors like buttons, where button state is
encoded into binary digital values.

In analogue signalling, line voltage is used to represent a continuous range of values.
An Analog-to-Digital Converter (ADC) is required to approximate line voltage to a number
where 0 volts represents the minimum value, and 3.3 volts represents the maximum. The
range of possible values is confined to voltage range and ADC resolution—an ADC with
a 10-bit resolution only allows for 1024 different values (Figure 2.32, right). Analogue
signalling is especially useful for simple sensors that change line voltage proportionally to
what they are sensing (i.e. a thermister or light dependent resistor).

2.4.3 Wired protocols

Simple electrical signal quickly become limiting when more complex sensors are required.
Take an accelerometer for example. Accelerometers can report highly accurate acceleration
in the x, y, and z axis. But representing each axis as an analogue range or digital binary
values does not yield enough accuracy to be useful. Moreover, implementing sensing with
individual lines would quickly consume microcontroller GPIO. Long ago however, the
embedded development community settled on a number of wired protocols that standardise
electrical signalling for more expressive, multi-peripheral, abstract communication between
microcontrollers and peripherals. These protocols build on basic analogue and digital
signalling.

RS232 [254], otherwise known as UART is the simplest of these more expressive proto-
cols. It is a bi-directional point-to-point protocol that supports the transmission of arbitrary
data. UART is therefore generally used for peripherals that have a variable stream of data
like GPS sensors. Reducing communication to a byte stream gives software developers great
flexibility, allowing them to define their own packet structures for communication.

RS232 is known as an asynchronous protocol and minimally requires four wires to
operate: two data lines for bi-directional communication, and two lines for power and ground.
Asynchronous protocols require both receiver and transmitter devices to have an accurate
clock in order to decode data signals. Signals are decoded according to a pre-defined clock
rate that must be known ahead of time by receiver and transmitter. Clock pulses define the
rate at which the data line voltage is sampled, ultimately defining how data is received.
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Fig. 2.33 The UART data signal.

Figure 2.33 shows the electrical signalling of a single UART byte. As seen in the figure,
UART operates digital electrical signalling and represents binary data by switching line
voltage between 0 and 3.3 volts. Default UART implementations leave the line at 3.3 volts
when not communicating, and a transmission is signalled by a single start and stop bit.
Transmission polarity and bit packing are configurable and it is possible to support additional
bits for basic error correction. For detail on the electrical signalling of other protocols
discussed in this section, please visit their individual specifications.

I2C is a bus-based wired protocol is designed to efficiently connect microcontrollers to
peripherals on a PCB. A single central device (the microcontroller) controls operation of
the bus, interrogating peripherals to retrieve data. Each I2C peripheral has an address and a
corresponding register map defined in a data sheet and it is the job of an embedded developer
to turn a data sheet into a software driver for use by applications. Software drivers map
low-level I2C address and register combinations to easy to use APIs. For instance, there may
be a single API to access the x, y, and z acceleration data of an accelerometer.

I2C is known as a synchronous protocol and requires four lines to operate: a data line, a
clock line, power, and ground. The clock line is used to define the sample rate for the data
line. This means that only the central device—which drives all communication—needs to
have an accurate crystal. Because I2C was designed for interconnecting components on a
PCB, it does not permit the connection of multiple central devices, the multiple connection
of the same peripheral, nor the dynamic connection of peripherals.

The Serial Peripheral Interface (SPI) [199] is another bus-based protocol that intercon-
nects a single central device with one or more peripherals. Instead of using addresses, SPI
routes individual GPIO lines to each peripheral. The individual GPIO lines are used to signal
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that a peripheral should respond to a query issued by the central device and peripherals still
observe a register/command map to access device specific functionality. SPI is a synchronous
protocol and requires minimally four lines to operate: data, clock, power, and ground. Of
course, additional lines may be required if more than one peripheral is connected to the bus.

USB [264] is a bus-based protocol that is used to interconnect peripherals, like keyboards
and mice, to personal computers. USB supports significantly faster data rates than the
protocols discussed above and it is also suitable for high throughput devices like cameras.
One USB host directs communication with one or more peripheral devices. Peripherals
present interfaces to the host and these interfaces are used to load software drivers for
peripherals dynamically. A subset of commonly supported drivers can also be leveraged
by USB peripherals, allowing devices to universally support common devices without any
additional installation. Whilst many microcontrollers support protocols like I2C, SPI, and
UART, few low cost microcontrollers support USB. This is because more complex protocols
require more silicon, leading to an increased microcontroller cost. The level of dynamism
and ease of use however, has made USB the most widely used wired protocol in the world.

2.4.4 Analysis

Connecting devices to peripherals is central to building a physical computing device. This
section has looked at the various ways microcontrollers and peripherals are physically
connected, and the protocols that enable communication. From these discussions we can
draw the following conclusions.

Citizen developers need dynamic composition The ability to dynamically connect pe-
ripherals to personal computers using USB has made high-level hardware composition
intuitive to the masses. Many protocols for low-level hardware composition however have no
such capability and assume that microcontrollers and peripherals are placed statically on a
PCB.

Citizen developers need hardware abstraction Similarly, USB also evidences the impor-
tance of hardware abstraction. Instead of requiring specialised drivers for each peripheral
(like with I2C or SPI), USB abstracts common functionality into general purpose drivers.
This means that users can connect any keyboard to a personal computer, and it will work
without any additional installation.
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Dynamic protocols are not widely available Prior sections also illustrate that protocol
dynamism translates to an increase in protocol complexity. Protocol complexity translates
to an increase in cost, and now microcontrollers widely support simple protocols like SPI
and UART, but do not support highly dynamic—but more complex—protocols like USB. As
evidenced in Section 2.1 however, many technologists are now dynamically and iteratively
prototyping with hardware. Instead of dynamic protocols, they use highly static and efficient
protocols that were not designed with dynamic connectivity in mind.

Citizen developers need intuitive connectors Simpler and more robust connectors are
required for those with little expertise. This is clearly evident in prior discussion where
technologists use freely connectable wires, and technically inexperienced educators and
students use rugged, but easy-to-use, slot-based connectors. In the world of mainstream
hardware composition, USB provides easy to connect cables and connectors.

2.5 Wireless networking

Everyday citizens use wireless protocols to connect to the Internet—connecting to the Internet
is often just a case of entering a single WiFi password. Wireless networking is so pervasive
now that we do not even have to think about how our devices are connected together and it is
easy to forget how complex the world of wireless networking has become.

Take for example a modern home Local Area Network (LAN) where there are a per-
plexing number of wireless protocols in use (Figure 2.34). Here, laptops stream audio
downloaded from the Internet using WiFi to Bluetooth headphones. Smart phones simulta-
neously communicate with other cell phones using LTE and with LAN devices using WiFi.
And smart assistants receive commands from the Internet using WiFi to control smart motion
sensors via Zigbee (top right).

There is good reason for this homogenous collection of wireless networking protocols.
Different application requirements demand the use of different protocols. Some devices, like
smart motion sensors, require low throughput low data rate protocols for increased battery
lifetime. Other devices, like laptops and smartphones, require high throughput high data rate
protocols to quickly deliver media rich content. Regardless of the protocol however, wireless
signals ultimately need to be translated into electrical signals and sent on to the Internet via a
physical cable.

Communication between Internet connected devices is standardised by the Internet
Protocol (IP). The protocol standardises maximum packet sizes, addressing schemes, and
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Fig. 2.34 Networks and subnetworks within a modern home LAN.

transmission frequency for communication via the Internet. It is designed to work transpar-
ently across any communication medium, including wireless protocols. IP was created long
before the emergence of the Internet of Things (IoT), and is incompatible with the resource
constrained world of IoT devices. As a result, many wireless protocols do not support IP.

Disparity in support for IP makes wirelessly networking devices especially challenging.
Highly energy efficient protocols, like Zigbee, require a significant amount of protocol
translation to convert Zigbee packets into an IP compatible format. The process is so complex
that protocol translation requires the use of a dedicated bridge device. The use of Zigbee
is similarly complex and requires infrastructure to make its energy efficiency gains. These
factors make the use of any protocol other than WiFi a challenging proposition when citizen
developers are involved.

The remainder of this section discusses wireless signalling (Section 2.5.1), and the
protocols that standardise wireless signals to enable universal communication between
devices (Section 2.5.2).
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Fig. 2.35 The resulting weaker waveform (bottom) from summing the top and middle
waveforms.

2.5.1 Wireless signalling

Wireless protocols use radio waves to communicate. Radio waves have well observed
properties and are dimensioned by phase, frequency, and amplitude. Phase is the orientation
of the wave as it moves through time and frequency is the rate at which the phase changes.
Amplitude can be considered the energy of the wave and is the difference between the highest
point of the wave and zero. When identical waveforms are produced, the resulting amplitude
is the sum of all waveforms (Figure 2.35). Summation can either strengthen or weaken
waveforms.

In wireless communications there are two types of signal, the data signal and the carrier

signal. The data signal represents binary data by modifying the amplitude, phase and
frequency of waves. Waveforms are defined to represent binary symbols, and the data rate
is how many symbols can be represented per second. A 1 megabit data rate means that
1,000,000 symbols can be represented every second at a 1 microsecond granularity. The data
signal is modulated by a carrier signal to improve transmission reliability. The carrier signal
modulates by a fixed frequency (like 2.4 GHz) affecting signal permeation, and ultimately
reception distance.
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The success of wireless communications is dependent on the environment and the location
of transmitters. We summarise the properties that affect signal propagation below:

Multipath Different environments affect the propagation of radio waves. Surfaces like
glass can reflect waves and cause multiple paths of propagation. Different propagation paths
cause the same signal to be received at different times. This can strengthen, or more likely,
weaken signals (as can be seen in Figure 2.35).

Environmental interference Different materials also affect the propagation of radio waves.
Thin materials allow radio waves to pass through mostly unaffected, whereas thick materials
like cement, concrete, and metal, almost entirely prevent the propagation of signals.

Signal interference Both data and carrier signals are subject to interference. Interference
comes from other devices transmitting data out of phase with the desired signal. Even if
devices transmit the same data, offsets in the time domain can lead to signal cancellation
(Figure 2.35).

Capture effect [200] Radio receivers track signals that are stronger and ignore competing
weaker signals. Signal strength is affected by transmission power and the factors above.
Therefore, as devices move through an environment and signal strength changes, receivers
are subject to lock onto different radio waves.

2.5.2 Protocols

Wireless protocols standardise the meaning of symbols and provide additional layers of
abstraction to make it easier to communicate between devices. These layers of abstraction
are categorised by a conceptual model known as the OSI model [120].

The OSI model normally has 7-layers, but we use five for conciseness. The physical

layer handles the transmission and reception of raw wireless symbols over a shared medium
(See Section 2.5.1). The link layer manages physical addresses, mediates access to the
physical layer, and decodes symbols into bits (and vice versa). The network layer defines
packet structures, conceptual network addresses, and data routes between devices. The
transport layer enables multi-packet transmission between devices, where streams of data
are decomposed and recomposed into multiple packets. And the application layer defines
communication APIs for use by software developers.
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Fig. 2.36 Layers of the Open Systems Interconnect (OSI) model defined by protocols in this
section. Protocols are ordered by first hop transmission distance.

Every wireless protocol defines part of the Open Systems Interconnect (OSI) model and
Figure 2.36 summarises the layers defined by popular wireless protocols ordered by first
hop transmission distance. Some protocols skip layers of the stack for efficiency and this is
shown in the figure by the use of faded colours. We include higher level protocols for context
(i.e. IP, TCP, MQTT) that build on popular physical standards like WiFi.

Upcoming discussion of wireless protocols is also ordered by first hop transmission
distance. We discuss each protocol in relation to their: data rate, throughput, energy con-
sumption, and application.

Close range

Close range protocols operate over really small distances (< 5 metres) and are used for the
purposes of personal identification and tracking. Their small transmission distance leads to
greater power efficiency.

Near Field Communication (NFC)/Radio Frequency Identification (RFID) [99, 288] both
enable communication between a passive tag and a reader. The passive tag harvests energy
from the reader, powers on, and transmits a small amount of data to the reader (usually less
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than 2 kB). However, whilst the structure and format of RFID transfers are fixed, NFC allows
the secure exchange of arbitrary data streams. NFC has therefore seen significant adoption
in proximity-based transaction systems, whilst RFID is typically used to secure products in
shops. Due to their short range and low data rate, both NFC/RFID are very power efficient.

Adaptive Network Topology (ANT) [184] is used to connect low-power fitness tracking
devices, like heart monitors, to Internet enabled exercise machines for more accurate calorie
tracking. Application specific profiles are loaded onto ANT devices, and a dedicated driver
is required for every different profile. ANT+ adds profiles that abstract common functionality
so that any application can freely communicate with an ANT device. Once again, due to low
throughput and short transmission distances, ANT is very power efficient.

Short range

Short range protocols typical operate over distances smaller than 40 metres and are used
for the purpose of personal networking. Bluetooth Low Energy (BLE) [163] is a power
efficient wireless networking standard that emerged alongside the IoT. Efficient power
consumption is achieved through two device roles: central and peripheral. Central devices
control the operation of one or more peripheral devices, accessing data when required by
user applications. Host driven communication means that for the majority of the time,
BLE peripherals can leave receivers disabled. Improved energy efficiency leads to greater
longevity using smaller batteries, and BLE is used in high data rate, low throughput devices
like heart rate monitors, personal device trackers, and smart beacons for indoor localisation.

Bluetooth [113] offers faster data rates than BLE at the cost of increased energy consump-
tion. The paradigm offered by Bluetooth is also central-peripheral and common applications
include wirelessly interconnecting human interface devices to personal computing devices.
Connecting Bluetooth headphones, where a higher data rate is required, is one example
where Bluetooth is used over BLE. Both Bluetooth and BLE allow one central device to
communicate with up to 7 peripheral devices. For each connection, devices must be paired
together using error-prone pairing methods [193].

Whether convening in a public space, at work, or in transit to another location, WiFi

provides a universal and familiar way of wirelessly networking devices. WiFi networks
require just a password and network name to connect and are scalable to tens of devices.
For good connectivity and fast data speeds, close proximity and minimal obstructions are
required. Due to high data rates, power consumption for end devices is generally quite high
in comparison to other networking protocols. It is therefore intended for use by devices with
easily replenishible or constant power supplies.
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Medium range

Medium range protocols are generally more dynamic and collaborative than short or close
range protocols. Medium range protocols partially gain greater distance through different
wireless signalling, but mostly make further gains through ad-hoc networking. With ad-hoc
networking, devices can network with one another to extend communication range beyond a
single hop. Ad-hoc networks are best suited to low power, low throughput devices.

Z-Wave [159] is an ad-hoc networking protocol designed for use in home automation and
industrial control applications. Z-Wave devices can form a network on-the-fly using a pairing
mechanism similar to Bluetooth or BLE. Packets from devices are propagated through the
network in waves and can travel up to four network hops; a single network hop can represent
a distance of 75 metres. For improved energy efficiency, Z-Wave can only communicate data
at 100 kbps.

Zigbee [187] is designed for low power ad-hoc networking. It builds upon the 802.15.4
wireless standard which is designed to better permeate materials that prevent signal propaga-
tion, like thick walls and metallic objects. Zigbee has two types of device. Reliably powered
devices act as the backbone of the network and are actively used to maintain routes across
the network. Less reliably powered devices only wake to communicate data. This division
of labour results in great energy efficiency. Its low energy consumption for low data rate
peripherals has made Zigbee the wireless communication protocol of choice for many IoT
solutions.

Thread [278] also builds upon the 802.15.4 physical standard but is designed to simplify
the translation of packets to IP compatible packets. To do this, Thread builds upon 6LowPAN,
a compressed form of IPv6 designed for low power wireless protocols. Devices must maintain
individual routing tables to efficiently route packets across the network. As Thread is built
on 802.15.4, there is a division of labour between devices similar to Zigbee.

Long range

Long range protocols are used to network devices across huge distances, often greater than
a kilometer. This makes them ideal for large scale IoT deployments. Greater transmission
distance typically demands more power consumption however.

LoraWAN [92] is designed to operate over huge distances whilst efficiently consuming
power. Instead of increasing the transmission power to reach longer distances, LoRA devices
transmit for longer, scaling the data rate with transmission range—the shorter the distance,
the faster the transmission. LoRA has two device roles. Gateway devices provide routing
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information to standard devices so that data correctly reaches its destination. Standard devices
are simply participants in the network and are divided into three classes. Class A devices
receive only after transmitting data; Class B devices schedule receive windows using beacons
from LoRA gateways; and Class C devices always receive unless transmitting. LoRA leaves
device class selection to the developer, and device power consumption changes depending on
the chosen class. Its low power and huge range make LoRA an ideal protocol for large scale
sensor deployments.

Long-term Evolution (LTE) [294]—also known as cellular—enables long-range commu-
nication between mobile devices, commonly mobile phones. In an LTE network, mobile
devices periodically communicate with nearby cell towers. Cell towers track which devices
have recently checked-in and data communications from IP-based networks (and vice versa).
LTE transmissions happen concurrently using techniques like Code Division Multiple Access
(CDMA) [241] and transmitter power scales inversely with proximity to a cell tower—the
closer a transmitter is to a cell tower, the less power it has to use to transmit a message.
Energy consumption increases if a device is moving quickly between cell towers as requests
may need to be retried. To provide additional signal resilience in this case, devices often
maintain multiple connections to towers on different generations of cellular (2G, 3G, 4G).
Though LTE is scalable to hundreds of nodes, its power consumption reduces its practicality
for sensor deployments.

2.5.3 Analysis

This section has discussed popular wireless networking protocols, how they are used, and how
they fundamentally work. From prior discussion we can make the following observations:

Battery powered devices require energy efficient protocols. Prior discussion presents a
clear relationship between battery power application and protocol selection. Devices that
are embedded and distributed across environments on battery, use low data rate energy
efficient protocols like Zigbee. Mobile devices like smart phones also require careful energy
consumption, but they typically cannot afford low data rates due to media rich content.

Citizen developers require intuitive experiences. The simple user experience of WiFi
means that it is used by technical novices to connect devices to the Internet. Only a wireless
router is required to connect devices to the Internet, and it directly supports higher level
protocols like IP.
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Ad-hoc networking protocols give great flexibility. As well as offering greater energy
efficiency, ad-hoc networking protocols offer more flexibility than other types of protocol.
Networks can be dynamically extended, and devices dynamically added. This is good for
environments with high levels of interference like the home.

2.6 Summary

This section summarise observations made across this chapter to motivate areas for further
study. We break discussion into three areas: programming (Section 2.6.1), hardware compo-
sition (Section 2.6.2), and wireless networking (Section 2.6.3). We conclude the section by
extracting the needs of the citizen developer and deriving the four Guiding Principles (GP)
applied throughout this thesis (Section 2.6.4).

2.6.1 Programming

Due to their complex syntax and manual memory management, low-level text-based pro-
gramming languages like C/C++ are hard to use. Ease of use is traded for unparalleled
memory and processor efficiency and it is therefore no surprise that these languages reign
supreme in the resource constrained world of the microcontroller. Abstraction layers like
Arduino seek to make C/C++-based microcontroller programming more accessible, but they
still prove inaccessible to those with little technical expertise.

Technical novices have demonstrated a preference towards higher level languages. Higher
level languages aim to make programming easier through adding abstractions, automatically
managing memory, and simplifying syntax. Event-based visual programming languages,
like Scratch, have been shown to be particularly more intuitive for those with little technical
expertise. The simple connection of pre-defined blocks allows users to focus on the structure
of programs rather than the syntax. Installation free programming environments for these
languages has shown to make programming even more accessible.

Though the abstractions introduced by higher-level languages greatly simplify program-
ming, they come at the cost of processor and memory efficiency. It is for this reason that
they are not widely supported by resource constrained microcontrollers. Without these
abstractions however, physical computing remains inaccessible to many citizen developers.

Are there any programming languages/environments for microcontrollers that support

installation-free (P3), event-based (P2), visual programming (P1)? Do any such
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environments support these features without compromising memory and processor

efficiency?

2.6.2 Hardware composition

USB makes hardware composition intuitive for all. It is designed for dynamic connectivity
and detects devices as they are connected. It also abstracts hardware as a set of standard
software interfaces allowing USB devices of the same type (i.e. a keyboard) to take the
place of one another without any installation. These properties, combined with its low
infrastructure (single cable) approach to wiring, makes hardware composition intuitive to
those with little technical expertise.

The same cannot be said of prototyping physical computing devices however. Here,
protocols like I2C and SPI are used to connect microcontrollers to peripherals. Unlike
USB, these protocols do not allow for dynamic connectivity and connections are made using
multiple wires, requiring a basic knowledge of electronics. Hardware abstraction is also not
supported, and specialised drivers are required for each peripheral even if peripherals have
the same high level functionality (i.e. an accelerometer).

As shown in the world of consumer devices, these properties are important for technically
inexperienced citizens. They are even more important for physical computing, where hard-
ware is increasingly being composed iteratively and dynamically. Intuitive composition does
come at a monetary cost, and more dynamic protocols like USB are not widely supported on
low cost microcontrollers. Without these features however, hardware composition remains
inaccessible to many citizen developers.

Are there any low-infrastructure wired protocols for hardware composition that support

dynamic connectivity (HC1), device discovery (HC2), and hardware abstraction (HC3)? Are

any such protocols as widely supported by microcontrollers as I2C or SPI?

2.6.3 Wireless networking

WiFi makes wireless networking intuitive to all. It is designed to support high throughput
connections between interactive consumer devices and all that is required to create and con-
nect to a WiFi network is a router, a network name, and a password. This low configuration,
low infrastructure approach makes wireless networking intuitive to those with little technical
expertise.
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Because of its ease of use, WiFi is similarly used to network physical computing devices.
Physical computing devices however are typically powered by battery and widely deployed
across environments. Here, energy efficiency and scalability quickly become a more impor-
tant concern than throughput. The use of WiFi therefore places unnecessary constraints on
applications through its proximal operation and its preference for throughput over energy
efficiency.

Ad-hoc networking protocols offer a scalable and energy efficient alternative to WiFi.
However, these protocols are not widely used for networking physical computing devices
because they require configuration and infrastructure to operate. This complexity caused
Particle—a company that specialises in the IoT—to discontinue their ad-hoc networking
offering. Without intuitive and energy efficient ad-hoc networking however, many citizen
developers cannot flexibly network physical computing devices.

Are there any wireless ad-hoc networking protocols that require no configuration (WN1) and

no infrastructure (WN2) to operate? Are any such protocols able to support interactive

applications (WN3) without sacrificing energy efficiency?

2.6.4 Needs of the citizen developer

From the analysis sections throughout this chapter we derive the following Guiding Principles
(GP) that should be observed during the creation of any new technologies:

GP1 Intuitive: Visual programming languages that vastly simplify programming, wired
protocols that make hardware composition dynamic, and wireless protocols that make
networking devices simpler are all used in preference of technologies that may offer
greater efficiency. New technologies must be easy to use for citizen developers with
little experience of hardware and software development.

GP2 General: Fashion designers use physical computing to build interactive garments for
the runway, teachers use physical computing to educate future generations, and makers
use physical computing to build new and unusual inventions. Citizen developers
also use a variety of different embedded development boards, each with different
microcontrollers and varying capabilities. New technologies must be suitable for
different application domains and the spectrum of embedded hardware.

GP3 Extensible: Visual programming languages scaffolds those with little expertise, but
this quickly becomes a constraint when citizen developers reach a certain level of
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competency. Equally though, technologies that allow for too much extensibility (i.e.
wired protocols) present too much of a barrier to those with little expertise. New
technologies must support the easy addition of new functionality and interoperate with
existing tools and standards.

GP4 Efficient: Microcontrollers demand programming languages efficiently use memory
and processor cycles, and battery powered devices demand that wireless protocols ap-
propriately manage their energy efficiency. New technologies must be highly efficient,
but not at the great expense of GP1–GP3.



Chapter 3

Related Work

In Chapter 2, we identified three areas that currently prevent the democratisation of physical
computing: programming, hardware composition, and wireless networking. As a result of
extensive discussion, we identified attributes of existing technologies in each area that may
result in more intuitive technologies if applied to physical computing. Based upon these
attributes, we also posed three further investigatory questions (IQs):

IQ1 Are there any programming languages/environments for microcontrollers that support
installation-free (P3), event-based (P2), visual programming (P1)? Do any such
environments support these features without compromising memory and processor
efficiency?

IQ2 Are there any low-infrastructure wired protocols for hardware composition that support
dynamic connectivity (HC1), device discovery (HC2), and hardware abstraction (HC3)?
Are any such protocols as widely supported by microcontrollers as I2C or SPI?

IQ3 Are there any wireless ad-hoc networking protocols that require no configuration
(WN1) and no infrastructure (WN2) to operate? Are any such protocols able to support
interactive applications (WN3) without sacrificing energy efficiency?

This chapter seeks to provide answers to IQ1–IQ3 and begins by discussing programming
(Section 3.1, IQ1), then progresses onto hardware composition (Section 3.2, IQ2), and
finishes by discussing wireless networking (Section 3.3, IQ3). We summarise our findings
for each investigatory question in Section 3.4
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3.1 Programming

This section explores programming languages and environments specifically designed for
microcontrollers. We cover compiled programming languages (Section 3.1.1), interpreted
programming languages (Section 3.1.2), and visual programming languages (Section 3.1.3).
In Section 3.1.4, we provide an analysis of the space, and categorise languages and environ-
ments according to their efficiency, and by the number of design requirements (P1—P3) from
IQ1 they enable.

3.1.1 Compiled programming languages

For many decades, compiled programming languages like C and C++ have reigned supreme
in the resource constrained world of physical computing devices. Due to their memory
and power efficiency, they remain the staple of embedded systems development to this day.
Compiled programming languages are efficient for two reasons. The first is the compilation of
programs to processor specific binary instructions. The use of binary instructions lead to more
efficient use of program memory (flash) and processor cycles. The latter has implications
for energy use and real-time behaviour: increased processor cycles lead to greater energy
consumption and application latency. The second efficiency gain comes during application
development. Manual Random Access Memory (RAM) management causes developers to
optimise applications to use a little memory as possible. Complex, but unambiguous, syntax
allows compilers to reduce the number of binary instructions. Efficiency therefore comes at
the cost of simple application development.

There are many existing languages and environments that seek to make it easier to
develop applications in compiled programming languages. We group work into the following
categories: C/C++ runtime environments, C/C++ Hardware Abstraction Layers (HALs),
compiled high-level languages, and interoperable binary standards.

C/C++ Real Time Operating Systems (RTOSs)

Applications for embedded devices require real-time behaviour and the careful management
of competing concurrent tasks. Tasks usually fit into two categories. System-level tasks that
manage networking protocols like WiFi and USB, and application-level tasks that respond to
data received from system level tasks. System-level tasks are usually high priority tasks and
preempt application-level tasks.
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Table 3.1 Comparison of different operating systems for low resource physical computing
devices. Operating systems referenced in order of appearance [204, 147, 97, 88, 109, 104,
89, 130]

Real Time Operating Systems (RTOSs) offer real-time behaviour and provide a framework
for efficient task management. RTOSs are written in compiled programming languages and
are designed for memory efficiency. Existing RTOSs for low resource physical computing
devices are encapsulated in Table 3.1. Common properties of each are listed for comparison.
These properties must be carefully considered by application developers.

One of the primary considerations is the RAM and flash consumption of an RTOS. As
RAM is often more scarce than flash memory, all of the operating systems in the table
consume more flash than they do RAM.

The table also shows that each RTOS is designed for a specific purpose. End purpose
informs the design of RTOSs. Tiny OS [204] and Contiki [147], are designed for resource
constrained wireless sensors and as a result consume a small amount of RAM. mbed OS [97]
and Zephyr [89] are designed for resource-rich and highly capable cortex-m processors where
RAM consumption is not as much of a concern. The figures in the table are extracted from
highly tuned builds, it is likely that the default configurations for each RTOS will consume
more flash and RAM.

Developers also consider the scheduling model of an RTOS. The scheduling model has
implications on the ease of writing applications, handling concurrent access to hardware
resources, and the amount of memory consumed by individual threads. As can be seen
in Table 3.1, for constrained sensing devices, operating systems opt for non-preemptive
scheduling to keep memory consumption to a minimum. Non-preemption, in the case of
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1 # i n c l u d e " mbed . h "
2 # i n c l u d e " p l a t f o r m / mbed_thread . h "
3
4 i n t main ( )
5 {
6 D i g i t a l O u t l e d (LED1) ;
7 whi le ( t rue ) {
8 l e d = ! l e d ;
9 t h r e a d _ s l e e p _ f o r ( BLINKING_

10 RATE_MS) ;
11 }
12 }

1 void s e t u p ( ) {
2 pinMode ( LED_BUILTIN , OUTPUT) ;
3 }
4
5 void l oop ( ) {
6 d i g i t a l W r i t e ( LED_BUILTIN , HIGH) ;
7 d e l a y ( 5 0 0 ) ;
8 d i g i t a l W r i t e ( LED_BUILTIN , LOW) ;
9 d e l a y ( 5 0 0 ) ;

10 }

Fig. 3.1 Code to blink an led in mbed os “bare metal” (left) and the Arduino abstraction layer
(right)

Contiki, reduces memory consumption by ensuring tasks are executed to completion before
the next task is scheduled. This simplifies scheduling by maintaining just a single, shallow
stack.

For operating systems designed for the IoT, a preemptive scheduling model is more
common. This is due to the need to perform critical system/networking operations as well as
concurrently execute user applications. The use of preemptive scheduling not only comes
with greater memory overhead, but also comes with more development complexity. Mutexes,
semaphores, and locks are required to handle shared access to software and hardware
resources.

The realtime-ness of an RTOS is also an important consideration for developers. Lack
of real-time capability renders an RTOS useless for many applications. Similarly, the
modularity of an operating system is important for flash-constrained devices. Modularity
allows unneeded software features to be omitted from the final binary. The language an
RTOS is built on also bears some consideration. RTOSs built on familiar languages are likely
to be used in preference of others.

C/C++ Hardware Abstraction Layers (HALs)

The multi-tasking and scheduling primitives of RTOSs create barriers for citizen developers.
Simpler Hardware Abstraction Layers (HALs) lower the barrier to entry to compiled lan-
guages like C/C++. mbedos [97] currently contains one such simpler abstraction layer. Using
the ‘bare metal’ profile, RTOS features are removed. Instead users are given a single thread
to operate in and access to simpler standalone drivers like I2C and DigitalOut. Figure 3.1,
left, shows a simple program that uses the DigitalOut class to toggle an LED.
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Embracing a similar approach, the Arduino [107] abstraction layer gives users a subset
of simple C functions to create programs for physical computing devices . An equivalent
code sample for Arduino is shown in Figure 3.1, right. As can be seen, rather than use
object-oriented classes, Arduino uses function calls and constants to control embedded
devices. Code is also split into setup and loop calls, separating configuration code that
is called once at the beginning of a program, from looping code, that is repeatedly called
throughout the lifetime of an application. These design decision are born from a desire for
simplicity whilst retaining efficiency. Citizen developers do not need to understand object
orientation or looping constructs to build applications with Arduino.

With hardware abstraction layers, embedded devices are presented with uniformity. For
the majority of applications, such uniformity is beneficial. However, not all embedded devices
are created equal. Generalised abstractions do not support unique hardware peripherals and
register configurations, preventing certain applications from being built by citizen developers.

Compiled higher-level languages

As an alternative to compiling low-level programming languages like C/C++, researchers have
looked at compiling higher-level languages like Java to native machine code instructions [282,
127, 100, 112, 253, 105, 194]. These approaches generally map higher-level languages
onto runtime environments written in C/C++. Runtime environments are either custom
built, or built atop an RTOS. Applications written in higher level languages are compiled
by traditional embedded toolchains to produce a binary. Compared to fully interpreted
languages, compilation of higher level languages leads to quicker execution and lower RAM
consumption. However, using fairly static low-level languages to support highly dynamic
higher-level languages, means that not all language features can be implemented.

New higher-level languages, like Rust [215], are designed to provide higher level language
features at the speed and efficiency of more traditional compiled languages. Rust gives
embedded developers guarantees of memory safety, safe resource scheduling, extensibility,
and object-oriented reflection, easing the process of embedded development. To support
these features, Rust makes use of a modern compiler technology called Lower-level Virtual
Machine (LLVM) [196]. LLVM virtualises the compilation process by turning language
constructs into an Intermediate Representation (IR). By connecting a processor backend, IR
is then transformed into efficient binary instructions. Rust has been shown to produce highly
efficient machine code that nears the efficiency of native C/C++ in benchmarking tests [37].
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Binary standards

Many of the runtime environments and programming languages above support dynamic
code loading. Dynamic code loading allows developers to add, modify and change program
execution without reprogramming the entire application. Code is transferred via various
wired and wireless protocols. Once again, for reasons of efficiency, code is represented as
binary instructions.

Application Binary Interfaces (ABIs) standardise the binary representation of code to
improve interoperability between different runtime environments and languages. ABIs embed
Application Programming Interface (API) metadata and binary offsets for code execution into
each binary file. Languages/runtimes can then process received binary files, infer function
calls, and subsequently execute them using simplex C function pointers. Many ABI standards
exist, the most popular are the Component Object Model (COM) [165, 42], OpenCOM [132],
and FRACTAL [121].

3.1.2 Interpreted programming languages

Higher-level interpreted languages aim to make software development more intuitive, familiar,
and less error prone. Programs written in an interpreted programming language either
interpreted from program text, or compiled to more efficient byte code. Dedicated programs,
known as interpreters, interpret byte code. Interpreters are written in compiled languages
like C/C++ and convert byte code into binary instructions for processor execution. Programs
written in higher level languages can therefore run on any computing device with the
appropriate interpreter installed.

An object model usually underpins higher-level languages. Object models allow develop-
ers to model key application components as well-defined classes. Classes define methods or
functions, typically called APIs, that govern interactions with objects. Interaction typically
only affect the object itself and objects are typed so that languages know the API calls that
can be made. Object inheritance allows a class to extend and override the interfaces of
another.

Enforcement of object typing varies from language to language. Strongly typed languages
check API usage before invocation, whereas weakly typed languages invoke APIs without
checking compatibility. Statically typed languages use compiler technologies to guarantee
API calls are compatible before execution. Dynamically typed languages perform no such
step, leaving users to encounter runtime errors.
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Most higher level languages support reflection and polymorphism. These features allow
applications to perform runtime introspection to dynamically infer object types. Applications
written in higher level languages are therefore more supportive of dynamic applications.

With the more dynamic offerings of higher-level languages, languages originally designed
for personal computers are now being ported to embedded devices. The remainder of this
section summarises higher level languages for embedded devices. Languages are grouped by
whether they support dynamic or static typing.

Dynamically typed

Lua [179] is a lightweight multi-paradigm higher level language primarily designed for use
with embedded systems. The language itself has very few built in features, supporting just
traditional control flows, functions, and tables. As a result Lua is portable and fast.

Object orientation is supported through prototypes. Prototypes are functions that accept a
context variable with parameters that change or modify context. Context is a table, usually
referred to as self. Prototype functions are prefixed with a name but there are no language
constructs to group prototypes into classes.

Lua is highly extensible, and as a testament to its extensibility, true object oriented pro-
gramming can be added to lua via an extension. The extension makes use of fallbacks which
are deep system calls that are invoked when a runtime error condition occurs. Extensions can
override fallbacks to provide alternative behaviours. In this case, object orientation.

Lua programs are converted into byte code for more efficient execution. Lua makes
further efficiency gains from its interpreter implementation. Lua’s interpreter is register-based
(as opposed to stack-based) and aligns with the architecture of many embedded systems.
Interpreting byte code is therefore a simple translation operation.

Python [281, 248] is a highly popular general purpose programming language designed
to make programming more intuitive. Instead of complex semicolons, braces, and brackets,
Python uses whitespace to structure code. Highly specialised packages provide simple APIs
to hide complex algorithms beyond the capability of novices. Python also supports object
orientation, allowing more advanced applications to be created. This combination of features
makes Python an ideal way to learn computer science concepts.

Though it was written for use on personal computers, because of its popularity and ease of
use, Python has been co-opted as a language for embedded systems development. MicroPy-
thon [161] and CircuitPython [11] (Figure 3.2, left) are widely used Python implementations
designed for use with low-resource embedded devices. Because of device constraints, these
implementations only support a subset of the full Python language.
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1 i m p o r t t ime
2 i m p o r t boa rd
3 from d i g i t a l i o i m p o r t

D i g i t a l I n O u t , D i r e c t i o n , P u l l
4
5 l e d = D i g i t a l I n O u t ( boa rd . D13 )
6 l e d . d i r e c t i o n = D i r e c t i o n . OUTPUT
7
8 whi le True :
9 l e d . v a l u e = ! l e d . v a l u e

10 t ime . s l e e p ( 0 . 5 )

1 v a r on = f a l s e ;
2 f u n c t i o n t o g g l e ( ) {
3 on = ! on ;
4 d i g i t a l W r i t e ( LED1 , on ) ;
5 }
6 s e t I n t e r v a l ( t o g g l e , 500) ;

Fig. 3.2 Code to blink an LED in CircuitPython (left) and Espruino (right)

MicroPython and CircuitPython only interpret program text. Program text is interpreted
in two ways. The first is through an interactive Read Eval Print Loop (REPL), an interactive
interpreter that reads program text, evaluates and executes corresponding commands, prints
the result, and loops to read more program text. Developers connect to interactive REPLs
via a serial terminal and transfer program text via the terminal for the embedded device to
execute. This method of interpretation is great for API experimentation.

The second way program text is interpreted is through operating the REPL without

interactivity. Program text can be transferred once again through a serial terminal, through
dedicated applications, or more universally through a simple file write operation over USB.
CircuitPython uses USB (via the embedded device) to present a flash drive to developers.
Developers can then update program text stored on the embedded device by editing and
saving ‘code.py’ to the flash drive. The REPL subsequently interprets program text from
flash memory.

Solely using a REPL for program execution is extremely costly in terms of RAM con-
sumption and processor efficiency. As a result some real-time applications cannot be created
in MicroPython or CircuitPython. For example, MicroPython’s flash and RAM consumption
on the BBC micro:bit prevents the creation of Bluetooth applications.

JavaScript [152] is a popular language primarily used for web development. Recently
the use of JavaScript has moved beyond the browser, and it is now used for desktop and
mobile application development as well. Developers can now write JavaScript applications
to manipulate local file systems, interact with USB devices, develop scalable servers for
websites, and create first-class applications for mobile devices. JavaScript uses brackets,
semi-colons, and braces to structure code. Despite its more advanced syntax, JavaScript is a
popular beginner programming language.
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Again, due to its popularity and ease of use, JavaScript has been co-opted as a language
for programming embedded devices. A number of interpreters now support the execution of
JavaScript programs on embedded devices. Espruino [289] (Figure 3.2, right) is one such
interpreter. Espruino interprets program text and supports a subset of the full JavaScript
language. Once again, program text is interpreted from an interactive REPL or from text
stored in program memory. The Espruino web Integrated Development Environment (IDE)
can transfer text to devices via serial or BLE. The use of BLE allows Espruino devices
to be programmed from a variety of devices, including smartphones and tablets. Because
interpreting program text is slow, the web IDE can compile JavaScript functions into binary
code. Functions to be compiled are marked with the compile keyword and these functions
are sent to an external compile service for compilation to binary. Due to incompatibilities
between the JavaScript interpreter and raw binary code, not all JavaScript functions can be
compiled.

Duktape [14] is a slightly different interpreter that uses a foreign function interface to
efficiently bind JavaScript functions to C/C++ functions. Mapping JavaScript functions to
C/C++ functions leads to far more efficient, real-time applications. Duktape is designed to
ease the process of porting JavaScript to embedded devices than for use by novices. Using
the Duktape C/C++ APIs, Developers can write C/C++ applications that take JavaScript
program text and interprets it via the Duktape virtual machine. Despite its claims of efficiency,
Duktape consumes 160 kB of flash and 64 kB of RAM with its default configuration.

JerryScript [160] is another JavaScript interpreter. Instead of interpreting program text
directly, JerryScript converts JavaScript to byte code for more efficient execution. Program
text is converted into byte code once and stored in RAM for later execution if required. Like
Duktape, JerryScript gives developers a C/C++ API to execute JavaScript programs. Using
these APIs developers can build standalone applications or interactive REPLs. JerryScript
applications support the inclusion of JavaScript modules. Modularity lets developers better
organise their code. JerryScript reports that it can execute on embedded devices with 200 kB
of flash and 64 kB of RAM.

Statically typed

Java [98, 205] is a statically-typed general purpose programming language intended to run
anywhere. Java programs are compiled into byte code before execution. The byte code
compiler guarantees variable and interface compatibility reducing the likelihood of runtime
errors. Byte code can be executed universally by any Java Virtual Machine (JVM) that
follows the language specification. Though Java was originally designed to run on embedded
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devices, its expanding feature set has imposed memory demands that have outgrown many
embedded devices. As a result, interpreters for embedded Java execution implement a subset
of the JVM specification.

Squawk [260] applies a number of optimisations to Java byte code to make them suitable
for embedded devices. The first reduces the size of class files. Java class files contain the byte
code to be executed by the JVM. Squawk translates class files into a condensed representation
suitable for resource constrained devices. The second reduces complexity of code for easier
garbage collection. Garbage collectors automatically free memory after it is deemed no
longer in use. Determining when memory is no longer in use is a challenging problem and
requires large algorithms for complex code. Squawk pre-processes byte code and produces
semantically equivalent, less complex to collect byte code. The third optimisation resolves
class references before execution. Class references resolution takes a negligible amount of
time on personal computers, but on slower microcontrollers, this process takes far longer.
Squawk resolves class references before the programs are transferred to the embedded device
speeding up execution time. Despite these RAM, flash, and processor optimisations, powerful
embedded devices are required to execute Squawk. It is reported that Squawk consumes 270
kB of flash and 80 kB of RAM [259].

The .NET Framework is a collection of APIs for the Windows operating system. The
framework supports many different programming languages, including statically types lan-
guages such as C# [172] and visual basic. Applications built using these languages are
compiled to an intermediate assembly language for execution by the Common Language
Runtime (CLR). The CLR takes intermediate assembly and converts it into native machine
code using a Just In Time (JIT) compiler. Converted code is saved for faster future execution.
The .NET Framework therefore allows code to be written in many different languages and
environments, but run universally on any Windows device. Because the framework provides
access to the entire Windows operating system, it is not well suited to resource constrained
embedded devices.

The .NET Micro Framework (.NET MF) [217, 271, 272] reduces the size of the .NET
Framework to make it compatible with resource constrained embedded devices. The .NET
MF contains device drivers, GUI components, and network stacks as well as the CLR from
the full framework. Underpinning the CLR is a hardware abstraction layer. The HAL
implements a small number of functions and is called by the CLR when required. The CLR
then interprets intermediate assembler and calls into the HAL to execute applications—that
is to say programs are always interpreted rather than JIT compiled. According to Thompson,
the .NET MF requires 512 kB of flash and 300 kB of RAM, excluding application code [272].
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powerful processors are required to run the .NET MF. In .NET Gadgeteer [175], the .NET
MF was used to help citizen developers build physical computing devices.

OCaml [202] is an object oriented statically typed language, influenced by Caml. OCaml
was originally designed for automated theorem proving and primarily supports interpreting
byte code (though OCaml programs can be compiled to native binaries). OCaml programs
are verified before execution. The verification process prevents common runtime errors like
dereferencing null pointers. Its size means it has not seen wide adoption as a programming
language for embedded devices.

Projects like OCaPIC [283] bring OCaml to resource constrained microcontrollers.
OCaPIC converts OCaml byte code to a condensed representation, reducing file size by
up to 75%. OCaPIC also parses files and removes and redundant or complex mathematical
operations. OCaPIC enables the execution of OCaml on a PIC18f microcontroller with 128
kB flash and 4 kB RAM.

3.1.3 Visual programming languages

Visual programming languages allow users to focus on the structure and functionality of code,
rather than the syntax. Compared to text-based programming languages, visual programming
languages lower the barrier to entry to programming.

Existing visual programming languages can be grouped into two broad categories, flow-
based programming languages, and block-based programming languages [214]. Flow-

based [222] programming languages inform let users compose programs by connecting
pre-defined segments of code in a sequential order. The output of the previous segment
feeds into the next. Block-based programming languages on the other hand let users plug
pre-defined blocks of code together like Lego bricks. Blocks are abstracted as a sequence of
disjointed operations. The following sections group existing work by these two categories.

Flow-based

FLOWOL (Figure 3.3, left) is a popular flow-based programming language used in schools.
It uses interactive scenes, called mimics, to motivate students to solve problems by program-
ming. Mimics usually represent scenarios that require programmatic control, like traffic
lights or draw bridges. By creating applications, students can cause mimics to change i.e.
by changing the colour sequence of traffic lights. Programs are structured using pre-defined
flow chart segments. Each segment feeds into the next, and if statements are modelled
as yes / no queries. More importantly, FLOWOL can also be used to program embedded
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Fig. 3.3 The FLOWOL 4 programming environment (left) and the Arduino abstraction layer
(right)

devices like the Arduino Uno, VEX IQ, VEX Cortex, and PICAXE microcontrollers. This
gives citizen developers an easy introduction to microcontroller programming. FLOWOL
appears to be resource efficient as it is capable of executing on resource constrained PICAXE
microcontrollers.

Flowcode (Figure 3.3, right) is another flow-based programming language. It can be used
to program ARM, AVR, and PIC microcontrollers; all Arduino devices are also supported. As
in FLOWOL, Flowcode lets users combine pre-defined segments to execute code. Segments
map onto C/C++ and using a dedicated IDE, users can peer behind the flow chart abstraction
to view the underlying C/C++ code. For Arduino targets, Flowcode segments map directly to
the Arduino HAL. Here, peering behind the abstraction allows developers to learn Arduino
APIs. A compiler converts Flowcode applications to binary files for execution on embedded
devices. Flowcode also supports pseudocode and block-based programming to align with
other novice programming environments.

NodeRED [230] is a flow-based programming environment but not in the traditional
sense—NodeRED acts as a user application for the Raspberry Pi operating system. Like
prior languages, NodeRED lets users combine pre-defined segments of code together to
create applications. However, instead of low-level instructions, users connect high-level
data sources and sinks to automate IoT data flows. Data sources can be any web-based or
local resource and can be combined with an arbitrary number of processing nodes. Sink
nodes absorb data flows, usually as databases or as presentation layers like HTML web pages.
Using the flow-based programming model, NodeRED removes the complexity of connecting
and piping data between disparate web resources and interfaces. However, not all complexity
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Fig. 3.4 Code samples from Lego Mindstorms (left) and Scratch (right)

can be abstracted away—users still have to write text-based code for data processing and
presentation nodes. Despite this, NodeRED vastly simplifies processing and automating IoT
data flows.

Block-based

Lego Mindstorms [189] (Figure 3.4, left) defined block-based programming as we know
it today. Lego Mindstorms was a kit that featured the first block-based software program-
ming environment, a re-programmable command “brick”, and a number of easy-to-connect
sensors. By combining the command brick with sensors and block-based programming,
citizen developers could easily build devices that react and respond to the real world (see
Section 2.1.3). The block-based programming environment let users compose programs
by plugging together segments of code like physical lego bricks. By adopting Lego as its
construction material, Mindstorms enabled the animation of custom lego creations. Lego
Mindstorms EV3 [25] is a modernised versions of the original Lego Mindstorms kit with
updated hardware. Whilst Mindstorms is aimed at key stage 3 students, alternative products
like Spike Prime [16] and WeDo [43] are aimed at key stage 2 and 1 students respectively.

Scratch [212, 245] is an evolution of the Lego Mindstorms visual programming language.
Scratch programs are composed of blocks that are pieced together like Lego bricks. Blocks
are coloured based up on their functionality and have different connector types and shapes to
prevent incompatible blocks from being connected together. Using the Scratch programming
environment, users can create physics-based games consisting of customisable animated
sprites and graphics. Events are a key concept in Scratch and are used to trigger blocks of code
asynchronously. An example of event-based Scratch programming is shown in Figure 3.4,
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Fig. 3.5 Code samples from Modkit (left) and EduBlocks (right)

right, where code is executed when the green flag is clicked. Scratch, however, cannot be
used to directly program physical computing devices. Instead, physical computing devices
act as inputs to Scratch applications. Interactive devices tether to Scratch via USB or BLE
and emit events when devices detect interactions. Scratch extensions add the custom blocks
required to communicate with physical computing devices. Scratch—and especially event-
based programming—has been shown to be successful in teaching novices core, translatable
programming concepts in an engaging way [290, 276].

Kodu [208] is an educational 3D games world where users can write block-based pro-
grams to cause a hero to move about the world. Kodu, like Scratch, can also tether to physical
computing devices. Interactive devices can then act as inputs to the 3D game world, allowing
the real world to interact with the virtual.

Modkit [220] (Figure 3.5, left), Splish [181], and ArduBlock [87] are visual programming
environments for Arduino devices. These environments wrap Arduino HAL APIs with
colourful blocks. The primary benefit to this approach is that users do not have to learn low-
level programming languages to create applications with the same efficiency as C/C++. A
secondary benefit is that by sharing a common device vocabulary (led, pin) and programming
language vocabulary (while, if), it is possible for users to eventually transition to C/C++.
Simply wrapping C/C++ APIs is not enough for citizen developers. Citizen developers
require simpler event-driven and asynchronous programming [275, 213].

EduBlocks [207] (Figure 3.5, right) uses blocks to present MicroPython APIs in a more
friendly way. Though Python was designed as a novice friendly language, programming
constructs and use of whitespace to dictate program structure can be daunting to users.
EduBlocks removes both whitespace and program constructs from programs creating a
simpler experience for users. Wrapping Python code in blocks also makes future transitions
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from block-based to text-based programming easier. Built-in editor transitions from blocks
to program text makes this transition even easier. Programs written in EduBlocks generate
program text for interpretation by a MicroPython interpreter running on a physical computing
device. EduBlocks currently supports all CircuitPython devices, the Raspberry Pi, and the
BBC micro:bit.

Microblocks [125] uses an interpreter to bring asynchronous block-based programming
to physical computing devices. Devices are connected over USB to the Microblocks desktop
programming environment. Code running on the device is updated as users compose pro-
grams, leading to an extremely responsive development experience. Microblocks applications
can also run independently of the IDE, allowing devices to be embedded in custom creations.
As learned from prior sections, interpreted languages consume significantly more energy on
battery than other modes of program execution. To execute on microcontrollers, microblocks
requires 50 kB of flash and 12 kB of RAM.

With advances in web technologies, code editors are moving to the web. Block-based
code editors are moving to the web too. Blockly [157, 156] brings block-based programming
to web. Blockly provides a reusable framework that lets developers build domain specific
block-based languages. A number of programming environments for physical computing
devices have been created using Blockly. Scratch 3.0, EduBlocks, Ozoblockly [231, 154],
Open Roberta [246, 180], and CodeBug [133] and many more. Combined, block-based
programming and web technologies significantly lower the barrier to entry for programming
physical computing devices. They require no installation and programs can be created from
any device with a web browser.

3.1.4 Analysis

Programming languages are central to building a physical computing device. Citizen de-
velopers use programming languages create applications that define possible interactions
between users and devices. Applications are converted into executable instructions and are
subsequently executed by microcontrollers.

Compiled languages directly compile text-based applications to processor and spatially
efficient machine code. Dedicated compiler tool chains are required to handle the complexity
of producing machine code and because machine code is processor specific, applications
need to be re-compiled for each different processor architecture.

Compiled languages are often referred to as low-level languages as they generally offer
few built-in features. This makes compiled programming languages highly memory and
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processor efficient but substantially harder to use. Though there are new compiled languages
that offer the features higher-level languages at the expense of some efficiency, much of
the existing work seeks to abstract existing low-level programming languages by creating
specialised environments. These environments vary from complex real-time operating
systems, to simple Hardware Abstraction Layers (HALs).

Interpreted languages use raw program text or byte code to represent programs. A
program executing on the microcontroller, known as an interpreter, converts raw program

text or pre-compiled byte code to machine code. Representing code in this way brings
great portability to applications by driving implementation complexity to the interpreter.
Converting byte code or program text to machine code, however, results in more processing

overhead per line of code. Greater processing overhead leads to more energy consumption
and less real-time performance. Both are important in embedded and interactive applications.

Interpreted languages are generally feature-rich. Automatic memory management lets
developers create and dispose of objects without care. Powerful built-in data types and class
systems let developers program with ease. Reflection and polymorphism let developers
inspect objects at run time for super dynamic applications. Any language feature increases
interpreter complexity, consuming more flash and RAM.

Interpreters are not the only source of increased flash and RAM consumption for inter-
preted languages. Type systems, used to give developers guarantees of API compatibility,
also increase consumption. Statically typed languages perform type checking during a
pre-compilation step and store API metadata in byte code. Flash consumption is therefore
generally higher for statically typed languages. Dynamically typed languages, on the other
hand, support a small number of types and will try to coerce variables to the expected type
where possible. Type checking is performed at runtime whenever an object or API is used
and a run time error is generated when this is not possible. A smaller number of types means
that dynamically typed languages are more flash efficient.

Citizen developers are not typically professional software developers and visual pro-

gramming languages have been shown to be easier to use than text-based programming
languages [275, 213]. By using graphics, rather than text, visual programming languages let
citizen developers focus on code structure rather than syntax. Visual programming languages
that also support event-based programming have also been shown to be more intuitive for
novices. Event-based programming models require less usage of complex looping struc-
tures simplifying program creation. Web-based visual programming environments further
democratise access to programming. Visual programming languages for microcontrollers
typically use high or low level languages as their foundation and therefore represent programs
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Table 3.2 A sample of the programming languages and environments discussed in this section.
Languages and environments are ordered by the design requirements (P1—P3) they enable.
MakeCode and CODAL, one of the contributions of this thesis, is provided for comparison.
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as program text, byte code, or machine code. One of the most popular visual programming
environments, Scratch, has all the features citizen developers require, except the ability to

program physical computing devices.
Table 3.2 summarises the programming environments and languages discussed in this

section. We order languages and programming environments according to the design require-
ments (P1—P3) posed in IQ1. We consider low flash consumption as below 128 kB and high
as above 256 kB. Low RAM consumption is less than 8 kB, and high is greater than 32 kB.

3.2 Hardware composition

This section explores wired protocols used for hardware composition. We start by covering
existing and emerging wired protocols (Section 3.2.1) and we then analyse their use in tool
kits designed for easier hardware composition (Section 3.2.2). Section 3.2.3 provides a
deeper analysis, and categorises protocols according to the design requirements (H1—HC3)
posed in IQ2.

3.2.1 Wired Protocols

Connecting peripherals to microcontrollers is a key component to building a physical com-
puting device. Without peripheral sensors and actuators citizen developers would not be able
to write interactive applications. Wired protocols are used to standardise communication
interfaces between microcontrollers and peripherals. Each wired protocol is designed to
support a different scenario and protocol implementation complexity correlates with its
purpose.

Electrical conductors facilitate the communication between microcontrollers and periph-
erals. Conductors can be wires, copper PCB traces, or custom connectors and are used to
form a communication line between microcontrollers and peripherals. Microcontrollers and
peripherals modify the voltage level of the line to transmit data. A binary one is usually
represented by a positive voltage, and a binary zero represented by absent or negative voltage.
For digital communications, devices require a common ground reference to determine the
logical line level.

Different protocols support different topologies. Point-to-point (1:1) protocols allow the
efficient communication between two devices. One-to-many protocols allow one central
(master) device to address and control many peripheral (slave) devices (1:N). And multi-
point protocols allow multiple central devices to communicate with many peripherals (M:N).
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For efficiency, protocols generally either support point-to-point or one-to-many topologies.
Multi-point protocols enable the most dynamism, but are barely supported due to increased
complexity.

Communication rate varies between wired protocols. Communicate rate is measured in
baud, a scientific unit for the number of symbols that can be transmitted per second. The
more symbols that can be communicated, the higher the throughput of the line. To determine
the baud rate of the line, some protocols provide an additional clock line. Data can be
decoded by correlating logical line level with pulses on the clock line. Protocols that require
a separate clock signal are referred to as synchronous. Other protocols do not require a
separate clock line. Instead, the baud rate of the line must be pre-determined and symbols
are decoded by comparing the logical line level against an accurate clock source. Start and
stop signals are used to delimit the start and end of a symbol. Protocols that do not require a
separate clock signal are referred to as asynchronous.

For the remainder of this section, we categorise wired protocols by whether they oper-
ate asynchronously and synchronously. We also provide an further category dedicated to
emerging wired protocols.

Asynchronous

RS232 [254] enables point-to-point (1:1), full-duplex, asynchronous communications be-
tween two microcontrollers. RS232 is synonymous with Universal Asynchronous Receiver
Transmitter (UART) and is the simplest of all protocols to implement. Rather than packets,
UART devices send a stream of bytes. Byte streams allow developers to define their own
application-level protocols and are ideal for variadic data streams like debug output. Byte
format on the wire can be configured depending on the application. The default format,
8-N-1, uses one start bit, 8 data bits, and 1 stop bit. Parity bits can be added at the cost of
greater line utilisation. Transmission rate is configurable and standard ranges start at 9600
baud (symbols per second) and finish at 1 megabaud. As no clock line is used to dictate
the transmission rate, devices must decode bytes asynchronously by sampling them as they
are transmitted. This means that both byte format and communication rate must be known
by devices in advance. UART can also operate in two modes. Full-duplex mode uses a
dedicated line for transmission and reception, whereas half-duplex uses a single wire for both
transmission and reception. Half-duplex mode reduces data throughput as only one device
can transmit at a time.

RS422 [263] is fundamentally the same as RS232 but allows one way communication
between a central device and up to 10 peripheral devices (1:N). RS422 extends communi-
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cation range to 1,500 metres by using differential signalling, known as differential drive.
Differential drive uses two physical wires to represent one communication line. Each physical
wire is usually driven simultaneously to different logical levels to represent a one, and the
opposite level combination to represent a zero. Differentially driven protocols do not require
a common ground as relative changes in voltage are easily detected. As well as improving
range, RS422 increases the maximum supported baud rate to 10 megabaud.

RS485 [86] expands RS422 to support bi-directional communications from peripherals
(M:N). A maximum of 32 central devices and 32 peripherals can be supported. As it supports
multi-central operation, RS485 has seen wide adoption for industrial control applications.
However, there is no means by which devices can contend for control over the wire (bus

arbitration). Instead error detection is punted to the application, forcing developers to include
a Cyclic Redundancy Check (CRC) in byte streams.

The OneWire [103] protocol uses a single wire for communication. Devices are connected
to the same physical medium to form a shared bus. A dedicated central device powers and
initiates all activity with peripherals on the bus (1:N). When the bus is idle, the voltage of the
bus is positive and reads as a logical one. Each device carries a capacitor that draws current
when the bus is idle and peripherals are powered from stored electrical charge during bus
communications.

On the wire, the central device drives bus low for 15 microseconds to represent a binary
one and for 60 microseconds to represent a binary zero. For peripherals, the central device
clocks each bit, signalling the start of a bit by driving the line low for 15 microseconds. To
send a binary one, the peripheral does nothing and the line returns high. To send a binary
zero, the peripheral continues to hold the line low until 60 microseconds have passed. The
slow symbol rate gives more flexible protocol timings so devices can use cheap clocks to
decode and transmit signals asynchronously. Slow symbol rate combined with the need to
provide power means that OneWire can only achieve a data rate of 16.3 Kbps.

A central OneWire device can dynamically discover connected peripherals by initiating
the enumeration protocol. The enumeration protocol causes all connected peripherals to send
a 64-bit identifier which contains a 48-bit number that uniquely identifies the peripheral,
an 8-bit device type, and an 8-bit crc. After finding a corresponding device type, central
applications can then use the 48-bit identifier to communicate with peripherals. Because
of its dynamic device discovery and low microcontroller requirements, OneWire has seen
great use as a means for plug-and-play employee/user identification [103]. OneWire has also
been used to communicate between laptops and charger to display battery charge level in the
Apple ecosystem [1].
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The Control Area Network (CAN) [266, 249] protocol is designed to provide reliability
in harsh environments. Wired transmissions are made reliable through the use of differential
drive and fault tolerance guarantees at the physical layer. Faults arising from the hot plugging
(dynamic connection) of devices and one of the differentially driven wires breaking does not
affect reception. CAN operates as a broadcast bus and allows multi-central communication
(M:N). CAN networks can also communicate up to 1 Mbps in high speed mode, or 125 Kbps
in low speed (but reliable) mode. Because of its reliability and flexible topology CAN is the
de facto communication protocol for critical control systems.

Differentially driven lines are used to represent binary ones and zeros. Lines are assigned
two identifiers: CANH and CANL. When the voltage of CANH is greater than that of CANL,
the line state is said to be dominant. A device has to drive the bus to create the dominant
state, hence its name. When the inverse is true the line is state is said to be recessive. The
recessive state requires no microcontroller intervention as two passive resistors bring the
bus to its default state. A dominant line state represents a binary zero, and a recessive state
represents a binary one.

Messages, not packets or byte streams, are sent on the CAN bus. Messages are split into
requests (remote frames) and responses (data frames). Every message contains an 11-bit
frame identifier that uniquely identifies a message, along with a size field, a maximum
payload of 8 bytes, and a 15-bit cyclic redundancy check. A single bit is left for devices
to acknowledge messages and another to describe whether the message is a data or remote
frame. Frames a delimited by a 1 bit long start of frame marker (dominant) and a 7-bit long
end of frame marker (recessive).

Deterministic bus arbitration enables multi-central operation. Bus arbitration is achieved
through carrier sense multiple-access with deterministic error correction. During transmission
of frame identifiers, each transmitter senses the state of the line. When transmitting a recessive
bit, each device samples the line to see if another device is holding the line in a dominant
state. If there is, the device transmitting the recessive frame identifier backs off and prepares
to receive the message. Bus arbitration is therefore deterministic and non-destructive as
messages with the lowest frame identifier always win arbitration.

The Universal Serial Bus (USB) [264] is designed for the plug-and-play connection
of peripherals and computers. USB devices are connected in a star topology (1:1) to a
central host. Communications are asynchronous and supported by a differentially driven
physical layer. Since its introduction in 1996, the USB standard has exploded in popularity
and has since undergone many revisions. Revisions have broadly introduced increased
speed—now USB devices can communicate from 1.5 Mbps in low speed mode, to up to 40
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Gbps in SuperSpeed+ mode. Connectors and wires have also decreased in size in keeping
with the miniaturisation of electronics over the past few decades. Speed improvements
and miniaturisation have broadly increase the complexity of USB. Speedy asynchronous
transmissions require highly accurate clocks to correctly send and receive data. As a result,
few microcontrollers support the USB standard in hardware, and those that do operate in
low/full-speed modes, the simplest of all modes to implement.

USB devices are classified into host and peripheral devices. A host device directs traffic
on the bus and polls peripheral devices for data in a round-robin fashion. When a peripheral
USB device is first connected to a USB host, the host triggers the enumeration process.
A reset signal triggers enumeration. During reset, the peripheral defines the data rate of
upcoming transmissions. Once reset, the peripheral device sends a description of its device
functions and is assigned 7-bit address by the host. The host then loads the corresponding
software drivers for the device if available. When drivers are loaded, the peripheral is
considered configured and can then be used by applications running on the host.

USB peripherals can adopt many device functions. It is common for devices to do
so and those that do are known as composite USB devices. The host requires a software
driver to interact with each device function. Standard software drivers are standardised and
provided for common device functions, allowing hosts to support many peripherals by default.
Class identifiers, sent during the enumeration process, allow hosts to load the corresponding
software driver for each device function. USB also allows developers to define custom device
functions. However, custom device functions require users install additional drivers.

Each device function is presented as a USB interface to the host during enumeration.
Interfaces are composed of one or more endpoints that are divided into in and out endpoints.
Counterintuitively, in endpoints are used by peripherals to communicate with a host, and out
endpoints are used by a host to communicate with peripherals. A USB device can have up to
32 endpoints in total, 16 in and 16 out, and 1 in and 1 out endpoint are used for enumeration
and other control operations. Each endpoint has a defined transfer type which can be one of:
Control, Interrupt, Isochronous, or Bulk. Control transfers are used during an enumeration,
and for configuring interfaces at run time. Interrupt transfers can only be used by peripherals
and are used to gain the attention of the host. Isochronous transfers are generally used for
continuous streams of data. No delivery guarantees are provided, but each transfer includes
a cyclic redundancy check. Bulk transfers are used for large bursts of data and are given
delivery and reliability guarantees. An understanding of all these deeply technical concepts
is required to implement a USB driver.
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Synchronous

Inter-Integrated Circuit (I2C) [255, 137] is a wired protocol for short-distance, low-throughput
communications. I2C is traditionally used to connect a microcontroller to 1 or more peripher-
als on a PCB (1:N). All peripherals share a data and clock line to form a bus (Figure 3.6, left).
The bus is connected to a central microcontroller that initiates every transaction. Multi-central
operation is not well supported and usually only one central device can operate. Though
I2C supports data rates ranging from 100 Kbps to 1 Mbps, communication speed is always
constrained by the slowest peripheral connected to the bus.

Every I2C peripheral has a custom interface that defines a number of registers that can
be written to or read from. Registers are accessed through two high-level operations: read
from a register and write to a register. Each high-level operation is composed of two back-to-
back low-level transactions. A read operation is made up a write transaction followed by a
read transaction. The first write transaction sets the register address and the following read
transaction contains the peripherals response. A write operation is made up of two write
transactions, the first sets the register address and the second sets the value.

An I2C transaction is composed of bytes and can only be initiated by a central device.
All bytes are transmitted most significant bit first and an additional 9th bit (not represented in
memory) is set by the receiver on the wire to acknowledge that a byte has been successfully
received. The first byte of an I2C transaction always contains the peripheral address in
the upper 7-bits and the operation (read/write) in the least significant bit. No acknowledge
bit after the address byte usually indicates the peripheral is not connected to the bus. An
operation specific byte always follows the address byte. Due to the 7-bit address space it is
often the case that different peripherals have the same address.

Serial Peripheral Interface (SPI) [199] is a one-to-many full duplex protocol for short-
distance, high-throughput communications (1:N). SPI is traditionally used to connect micro-
controllers and peripherals on the same PCB. All peripherals share data out, data in, and clock
lines from the central microcontroller to form a shared bus (Figure 3.6, right). Peripheral
chip select lines are connected from microcontroller to each peripheral and is used in lieu
of an address to signal the active peripheral. It is also possible to daisy chain SPI devices
together to act like a shift-register. In this configuration, peripherals consume a chunk of data
and pass the remaining data onto the next peripheral in the chain.

Each SPI peripheral has a specialised interface that expects a command followed by
a byte stream. The freedom for electronics manufacturers to define custom byte stream
interfaces make SPI ideal for high-throughput input/outputs like displays. Possible command
and byte stream formats are listed in a data sheet and it is the job of a developer to extract
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Fig. 3.6 Connecting an I2C peripheral (left) and an SPI peripheral (right) to an Arduino Uno.

information from data sheets to create a software driver. Software drivers simplify application
development by providing more descriptive, abstract APIs. Interfaces are rarely shared
between peripherals and so a software driver is required for each. The job of creating
software drivers is difficult and requires deep technical experience.

Emerging wired protocols

Over the past few decades, the way we use technology has undergone massive change.
However, the wired protocols used by many technologies has remained constant. New
requirements, environments, and advances in technology mean that these more traditional
wired protocols are stemming technological innovation.

Recognising the need for new wired protocols, a consortium of electronics manufacturers,
including Intel and STMicroElectronics, formed the Mobile Industry Processor Interface
(MIPI) alliance [226]. Together, the MIPI alliance are designing replacement protocols for
the ever-changing technological landscape. However, whereas the embedded community
has flourished on open software and open hardware, the MIPI alliance insists on defining
standards behind closed doors, filing patents to secure their intellectual property, and hiding
standards documentation behind paywalls. This behaviour prevents adoption and deeper
inspection of the standards they contribute. Nevertheless, from the limited documentation
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available, it is clear that the MIPI alliance are making strong contributions to the future of
wired protocols.

Improved Inter-Integrated Circuit (I3C) [26, 226, 209] (also known as SenseWire) is
pitched by MIPI as an inter-operable replacement for I2C that brings multi-central capability
and faster data rates. I3C is synchronous, and in single data rate mode it can support
communication rates up to 12.5 MHz. I3C also attempts to standardise a set of base registers
across every device. Every I3C device must support register access to a 48-bit provisional
identifier, an 8-bit bus characteristics field, and an 8-bit device characteristics field. The bus
characteristics field defines the device role and whether it is high speed capable. The device
characteristics bit field defines the class of device (i.e. accelerometer, button, temperature
sensor). Though interoperability is claimed, standard I2C devices cannot be connected to an
I3C bus without firmware modification. Even with modified firmware, when an I2C device is
connected to the bus the majority of I3Cs features cannot be used.

I3C devices can have one of three roles. Devices with the main-central role are responsible
for controlling all communication on the bus. Secondary centrals are central devices that
are not in control of the bus. A secondary central can request to take control of the bus at
any time. The final role, an I3C peripheral, is essentially a smarter I2C peripheral that can
initiate communication and request in-band interrupts. An I3C peripheral still requires data
transmission is clocked by the main-central device (synchronous) and it is not clear what
happens when the main-central device is unexpectedly removed.

The physical layer is broadly the same as I2C but has additional capabilities. One such
capability allows for asynchronous in-band interrupts to request the attention of the central
device. This means that peripherals do not need a separate interrupt line to signal that data is
ready. I3C peripherals can also generate hot-join events allowing central devices to detect
dynamically connected peripherals. Both of these capabilities are signalled by the peripheral
sending its own address on the bus.

As any device can now communicate, at power-on each device is dynamically assigned a
7-bit address by the main-central device. Once assigned, the dynamic address must be used
for any subsequent transactions on the bus. Address assignment happens in sequence using
a concatenation a 48-bit device identifier and bus characteristics field. As with CAN bus
arbitration, the device with the lowest concatenated value has its address assigned first. Using
the short 7-bit address over the 48-bit provisional maintains compatibility with I2C. Outside
of address assignment, bus arbitration is performed using the dynamic address, where the
lowest address always wins arbitration.
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M-PHY [94] is a physical standard for high speed bi-directional inter-processor com-
munications defined by MIPI. M-PHY is designed for high throughput data streams, is
point-to-point, and full duplex. M-PHY has been used to connect microcontrollers to high
data rate graphical interfaces and file systems—use cases where data throughput requires
high, low latency connectivity. M-PHY supports a variety of speeds from 10 Kbps to over
10 Gbps. According to wikipedia, M-PHY uses low-voltage differential signalling result-
ing in low electromagnetic interference. M-PHY cannot be inspected more deeply as the
specification is restricted to paying customers.

UniPro [63, 158, 197, 141] (or Unified Protocol) is a transport protocol for different
physical layers, one of which is M-PHY. UniPro devices connect to each other through
point-to-point connections, and UniPro devices can form larger networks through daisy-
chaining. UniPro supports dynamic addressing of up to 128 devices and offers data integrity
and reliability guarantees. Practically, UniPro cannot be used to connect devices together
dynamically. Hot plugging is not yet supported. Due to, once again, a closed specification,
we cannot provide further detail on UniPro.

3.2.2 Toolkits for hardware composition

Composing a physical computing device requires deep technical experience. Citizen de-
velopers are required to know the principles of wired protocols and competently connect
low-level electronic components together. Recognising such complexity, the ubiquitous
computing community have focussed efforts on simplifying the process of composing an
embedded device via toolkits. Toolkits are designed to abstract the complexity of electrical
components by using pre-built hardware modules. Modules are usually easy-to-connect
removing compositional complexity and aligning with the iterative development practices of
citizen developers.

This section covers toolkits that are closely aligned with the contributions within this
thesis. We start by discussing toolkits for prototyping physical computing devices, followed
by toolkits for creating modular circuits, finishing with toolkits designed to make it easier to
integrate electronics into garments (wearable technology).

Composing physical computing devices

Phidgets [166] (Figure 3.7, left) aims to give users a set of re-usable hardware modules to
build interactive hardware interfaces for PCs. The toolkit contains a number of peripherals
and a main board. Peripherals are interface elements like switches and buttons and are
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connected to a main board via USB. In turn, the main board presents a USB interface to the
PC that reflects each currently connected peripheral.

A software programming environment allows developers to create Phidget-controlled
applications. The programming environment dynamically updates the list of available
components and APIs as peripherals are connected and disconnected from the main board.
When peripherals detect interactions, events are propagated to Phidgets applications. Phidgets
lowers the barrier to entry for building hardware interfaces by making use of the dynamic
properties of USB.

The Calder toolkit [198] points out that building a prototype physical computing device
requires individuals with highly specialised skills and tools. Calder seeks to make the process
of building a physical computing device easier and is aimed at interaction designers to help
guide the design of hardware interfaces.

The toolkit provides simple analogue and digital IO modules to users. Each type (ana-
logue/digital) of module has a specialised non-reversible connector that connects to dedicated
sockets on a hub board. The hub board is the central connection point for all modules and is
connected to a PC via USB for communication and power. Applications can be written for
the Calder toolkit using a custom programming environment that bears some similarity to
the Phidgets programming environment. The hub board propagates connection events and
interactions detected by peripherals to Calder applications running on a PC. Using the Calder
toolkit, functional foam prototypes can be quickly created, simplifying the prototyping of
physical computing devices.

Sankaran et al. [250] point out that many of the prior toolkits constrain developers
to interface modules defined by toolkit creators. They therefore seek to give interaction
designers the freedom to design their own interactive interfaces through Blades and Tiles.

Blades and Tiles are a model for re-usable modular hardware. Tiles are the base of any
project and are typically a large surface PCB with connectors for Blades. Blades are equipped
with a microcontroller and one or more peripherals for distributed sensing. All Blades follow
the same form factor and pin layout and are mated with Tiles via a stacking-based connection
mechanism, similar to Arduino Shields. By combining a variety or Blades and Tiles, users
can prototype new interfaces and input modalities.

As prototyping is an iterative process, Blades may be mated with tiles at any point. To
support dynamic connectivity, the authors use two wired protocols. OneWire is used for
device discovery and I2C address assignment and a time slotted version of I2C is used for
communication. A separate control blade is responsible for address assignment and time slot
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Fig. 3.7 Prototyping with Phidgets (left); and .NET Gadgeteer (right).

allocation. During their time slot, each blade has complete control over the I2C bus and it
can act in a central capacity.

.NET Gadgeteer [286, 175] (Figure 3.7, right) is designed to make it easier to build
physical computing devices for the Internet of Things (IoT). Gadgeteer consists of modular
peripherals, a main development board, and an integrated programming environment for
flexible prototyping. Peripheral boards include simple digital and analogue IO to more
complex sensors and displays that rely on protocols like I2C, SPI, and UART. Peripheral
boards are connected to the main board by a cable with a non-reversible 10 pin connector.
The 10-pin connector supports a multitude of protocols including USB, I2C, SPI, and UART.
The cable is specified in such a way that incorrect connectivity does not destroy modules.

The main board acts as the central connection point for all modules. It mostly consists of
10-pin sockets, each labelled with a connector number, and letter to indicate which protocols
the socket supports. The main board also features a re-programmable microcontroller,
connected to each socket via PCB traces. A dedicated USB programming port is absent from
the main board. Instead, a USB client module can be connected to the board to power and
program the microcontroller.

Programs are written in C# using an integrated development environment built atop
Visual Studio. The environment use the .NET MF for microcontroller execution and hence,
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Fig. 3.8 Pin&Play pin connectors (left); and Surface-based interface composition using
VoodooIO (right).

Gadgeteer applications are built on a common core that is not specific to any main board.
Event-based programming is well supported making it an ideal environment for technologists.
After a program has been written in the editor, users are shown a composition editor that
describes how modules should be connected to the main board.

Even though populated with many sockets, users quickly hit the six I2C device limit
of the main board. Gadgeteer therefore augments I2C with a daisy chaining protocol
called DaisyLink. DaisyLink allows I2C devices to chain to one another, bringing more
compositional flexibility and freeing up ports on the main board. DaisyLink discovers and
assigns addresses to connected I2C devices in sequence, from the most upstream I2C device
to the least. The most upstream device powers up with a default I2C of 127 and prevents
power from passing to downstream devices. The main board probes address 127, discovers
the peripheral type, and assigns it a different address. After an address has been assigned,
the upstream peripheral allows power to pass down to the next peripheral in the chain. This
process continues until no device responds to address 127.

Pin&Play [280] seeks to make every surface (e.g. walls) a networking medium for inter-
face composition. Pin&Play makes use of a futuristic surface with two internal conductive
planes. One plane is dedicated to power and data, the other plane is used for ground.

Pin&Play objects each have a pin that is designed to pierce the bi-planar surface. The pin
internally exposes two electrical contacts for each surface and is designed in such a way that
each makes appropriate contact (Figure 3.8, left). Communication between Pin&Play objects
is enabled through OneWire. The surface is connected to a PC which acts as the controller of
the OneWire bus. The PC regularly triggers OneWire’s enumeration protocol to detect the
connection of new Pin&Play Objects.
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The Pin&Play approach was originally applied to a notice board where pins stored
information about the documents they affixed. VoodooIO [284] (Figure 3.8, right) is another
usage of Pin&Play where the technology was used to turn common household surfaces into
dynamic interfaces.

Project ARA [171] (since discontinued) set out to give users the power to compose
their own modular smart phone. An ecosystem of hardware modules for common device
functionality like wireless communications, memory storage, processors, and battery storage
were available. The more critical contribution was that users could customise their smart
phone based on their needs—they could buy two battery modules if longevity was a priority.
Users composed modules inside a generic smart phone frame designed to contain Project
ARA modules. UniPro was used to interconnect each module.

Composing electronic circuits

littleBits [111] is designed to make prototyping circuits simple and intuitive for children.
The littleBits ecosystem is made up of a number of easy-to-connect colour-coded hardware
modules called littleBits (Figure 3.9, left). There are four types of bit: input, output, wire,
and power. Input bits (pink) contain peripherals like sensors, buttons, and switches, and
output bits (green) contain peripherals like lights, fans, and speakers. Wire bits (orange) are
used to interconnect inputs and outputs but do not act only as wires. Wires can be simple
logical components like AND, NOT and OR gates, entirely virtual using technologies like
BLE, or even feature reprogrammable microcontrollers. Power bits (blue) feature adapters
for many common energy sources like USB and household battery.

Magnets are used to physically connect littleBits to one another. The magnet-based
connectors consist of two outer magnets and three inner electrical contacts. The former
prevents users from connecting modules incorrectly, and the latter supplies power, data, and
ground. Magnetic connectors enable simple and intuitive prototyping.

littleBits do not communicate via any sort of protocol. Instead, they use simple digital
and analogue outputs. Output voltages of one littleBit are fed into the input of the next
and integrated electronic circuitry or a small microcontroller is used to change the resultant
behaviour. No computer is used in any part of the default littleBits kit. Intuitive connectivity
and a relatively simple circuit abstraction makes it simple to build interactive circuits.

Circuit Stickers [176] (Figure 3.9, right) intends to make circuit design as simple as
printing a document. The Circuit Stickers ecosystem features a number of predefined PCB
modules. Each module has exposed electrical contacts and a special conductive substrate on
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Fig. 3.9 littleBits modules (left); and Circuit Stickers (right).

its underside. The special substrate acts like sticky back plastic, allowing users to stick PCBs
to conductive surfaces.

To use Circuit Stickers, users print a circuit onto paper using conductive ink and a
commercially available inkjet printer. Circuit designs are created in graphics editors like
Microsoft Visio and footprints for Circuit Stickers and common electrical components are
made available via a Visio plugin. The combination of intuitive design tools and stickable
electronics simplifies circuit design and hits a prototyping “sweet spot” between PCBs,
breadboards, and higher level modular systems.

Composing wearable technology

Over the past decade wearable technology has seen huge growth with Apple reporting 10
billion dollars in revenue from its wearables offerings alone in Q1 of 2020 [95]. Wearable
technology as we know it today devices that we wear on our bodies. However, the future
of wearable technology lies in embedding electronics into the clothes we wear. With this
vision in mind, the ubiquitous computing community have created a number of toolkits for
embedding technology into garments.

Toolkits are designed with the unique requirements of electronic garments. Integrating
technology into garments needs to be intuitive and simple for the technologically inexpe-
rienced. Toolkits also need to be designed in such a way that they become just another
tool in the fashion toolbox. Wearing garments also creates wear and tear to which any
integrated electronics are also exposed. Finally, supplying electronics with power and data
is challenging when embedding electronics into garments. Wireless technologies require
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Fig. 3.10 Prototyping with Lilypad Arduino (left) and i*CATch (right).

devices be equipped with individual power supplies, whereas wired protocols require power
and data to be routed across garments to each device.

The LilyPad Arduino [123] (Figure 3.10, left) is one of the first toolkits for wearable
technology. The toolkit features a reprogrammable Lilypad Arduino board and a number
of compatible input and output modules, called Petals. Petals are components like sensors,
speakers, and RGB LEDs.

Great care was taken throughout the design of the LilyPad hardware. Every module—
including the LilyPad itself—is circular in shape and backed by conductive fabric. The
conductive fabric overlaps with exposed GPIO electrical contacts on the underside of each
piece of hardware to create an electrically connected fabric pad. Conductive thread is then
used to connect the LilyPad to Petals, creating a familiar experience for fashion designers
through the use of thread and sewing needles. Fabric pads have a large surface area, and
Petals use digital and analogue interfaces to make routing wires across a garment as simple
as possible—each Petal usually just requires power, data, and ground.

Though designed for easier e-textiles work, the LilyPad has seen wider adoption in
education. Evidence suggests that the combined force of electronics and fashion leads to
wider participation in computer science. However, its usage is somewhat stunted due to
adoption of the low-level Arduino programming language to program the LilyPad.

Eduwear [182] builds on the work of the LilyPad Arduino but it refocuses the LilyPad
ecosystem to target education. The Eduwear toolkit provides addition petals, vastly increasing
the possible combinations of hardware. Petals, for the first time, include I2C and SPI based
peripherals. To make it easier to wire bus-based protocols on garments, Eduwear also
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provides pre-fabricated data buses. Data bases are pieces of fabric with conductive thread
already sown in. Identifying complex programming as a barrier to adoption, Eduwear also
supplies a custom visual programming environment to support novices.

The i*CATch [228] (Figure 3.10, right) toolkit is designed to better enable cross-curricular
learning through ‘wearable computing’. i*CATch garments are divided into patches—a
similar approach to Quilt Snaps [122]. Internal wires made from conductive fabric run along
the inside of each patch and snaps receptacles are pierced through each wire. Conductive
snaps are used to connect patches to create a consistent I2C bus that is routed through the
garment. Additional snaps on each patch allow for the connection of popper-plug equipped
I2C peripheral boards.

A main controller board featuring a reprogrammable microcontrollers acts on inputs
from peripheral sensors. The main controller board is programmed from a visual program-
ming environment that wraps the C/C++ Arduino HAL APIs. The i*CATch programming
environment adopts a flow-based programming model. Combined the programming environ-
ment and patch-based approach have been proven to widen participation and offer an easier
introduction to creating wearable technology.

The Yet Another Wearable Toolkit (YAWN) [270] toolkit is designed to simplify bus-
based communications between modules. The toolkit supplies a number of different hardware
peripherals that are clipped onto fabric circuits using a custom 3D-printed connector. The
protocol used to communicate between peripherals is the key contribution of YAWN. The
authors point out prior toolkits are using static protocols I2C and SPI in dynamic contexts
and therefore propose an alternative bus-based communications protocol built on UART that
is designed to support hot plugging (dynamic connection/removal). A LilyPad, programmed
using the Arduino IDE, directs all module communication on the bus.

Project Jacquard [240] (Figure 3.11, left) proposes new fabrics for gesture sensing
that can be easily integrated into garments during mass manufacture. Gesture fabrics are
conductive surfaces that can detect touches with high fidelity using a similar technique to
smart phones. A gesture recogniser is attached to each piece of fabric and connected to a
main microcontroller via I2C. The main microcontroller supplies power to each recogniser
and transmits gestures to connected Bluetooth devices. For Bluetooth devices, like smart
phones, Jacquard can be used as a touch input to change songs.

SensorSnaps [139] (Figure 3.11, right) take the place of conventional buttons in garments.
SensorSnaps are designed to be compatible with off the shelf garments and quickly attachable
and detachable. Each SensorSnap contains a Bluetooth capable microcontroller connected
to an Intertial Measurement Unit (IMU) and a small lithium polymer battery. Due to its



3.2 Hardware composition 106

Fig. 3.11 Augmenting clothing with Jacquard (left) and SensorSnaps (right).

small battery (the size of a large button), SensorSnaps are designed for careful energy
consumption—Snaps only send events (e.g. tap/rotate) and do not stream real-time IMU
data. SensorSnaps are connected to a Bluetooth central device, which can be a consumer
device like a smart phone or laptop, or a microcontroller with Bluetooth capabilities. Events
received from Snaps over Bluetooth act as inputs to applications.

3.2.3 Analysis

Wired protocols underpin the composition of physical computing devices. They define the
interfaces and protocols for communicating between microcontrollers and peripherals over
conductive materials like wires.

Every wired protocol is designed with specific goals in mind. Protocols like I2C and
SPI are designed for efficient connectivity in static environments. Protocols like CAN are
designed for resilience and reliability in extreme environments. And protocols like USB and
OneWire are designed for plug-and-play connectivity in dynamic environments.

Wired protocols each support a different topology. Point-to-point (1:1) topologies are
the simplest to implement. Devices are directly connected to each other and communication
is bi-directional and simultaneous. A one-to-many topology (1:N) allows a single central
device to control many peripherals. The central device directs all communication on the bus
and some one-to-many protocols allow devices to swap from a central role to a peripheral
role (and vice versa). A many-to-many topology (M:N) allows any device to interact with
another at any time, bringing the most flexibility and dynamism to wired composition. As
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devices all share the same communications medium (i.e. a wire), devices must contend for
control of the bus (bus arbitration).

Many toolkits have been created by the ubiquitous computing community to simplify
hardware composition. There are toolkits for creating physical computing devices, pro-
totyping circuits, and for creating interactive fashion garments. Broadly, each toolkit is
composed of a number of hardware modules that each have a dedicated function (i.e. a
button, switch, or sensor). Modules are connected using wires or custom physical connectors,
and communicate using wired protocols. Some toolkits also recognise the complexity of
programming hardware and also contribute custom programming environments.

Many toolkits seek to reduce compositional complexity and support more flexible develop-
ment by reducing the number of individual wires. .NET Gadgeteer supports many protocols
using a larger 10 wire cable and connector. The Eduwear toolkit supplies pre-fabricated data
buses to reduce the complexity of routing bus-based protocols across garments. And Voodoo
IO uses a single wire to connect devices together on a noticeboard.

Toolkits also saw great value in making hardware composition more dynamic. The dy-
namic connectivity (hot plugging) and device discovery offered by OneWire made it an ideal
protocol for composing dynamic hardware interfaces in Pin&Play and VoodooIO. Dynamic
addressing and device discovery added through DaisyLink made modular composition sim-
pler and more flexible in .NET Gadgeteer. The dynamic properties of OneWire augmented
I2C with dynamic address allocation and multi-central capability in Blades and Tiles. The
prevalence of dynamism across all toolkits suggests there is an established link between
adding dynamism and reducing the complexity of hardware composition.

A similar evolution towards protocol dynamism is taking place in industry. UniPro offers
dynamic and high-speed interconnects and I3C brings dynamic device discovery, dynamic
connectivity, and multi-central operation to I2C. These new and emergent protocols are also
providing hardware abstraction through standardised software interfaces. Existing protocols
that already provide hardware abstraction, like USB, have seen great success for hardware
composition by technically inexperienced citizens.

There is little support for more dynamic protocols on low cost microcontrollers. More
dynamism generally leads to an increase in complexity, ultimately requiring more silicon to
implement. This increases microcontroller cost. The market demands low costs however,
and the drive for cost efficiency means that more dynamic and easy-to-use protocols are not
widely supported.

Table 3.3 summarises the wired protocols discussed in this section. Protocols are ordered
by implementation complexity and are profiled by the design requirements (HC1—HC3)
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Table 3.3 Properties of different protocols for composing embedded devices. Protocols are
ordered by implementation complexity and profiled by the number of design requirements
(HC1—HC3) they enable.

from IQ2. For context, we place JACDAC, one of the contributions of this thesis, at the
bottom of the table.

3.3 Wireless networking

This section explores wireless ad-hoc networking protocols that build upon the energy
efficient 802.15.4 and Bluetooth Low Energy (BLE) wireless standards. We begin by
outlining the common design considerations observed during the design of many wireless
protocols (Section 3.3.1) followed by an in depth review of the BLE and 802.15.4 wireless
standards (Section 3.3.2). We then discuss wireless protocols that build on these standards,
grouped by they observe a routing-based (Section 3.3.3) or flooding-based (Section 3.3.4)
approach to packet propagation. In Section 3.3.5, we analyse and profile these protocols by
the design requirements (WN1—WN3) extracted from IQ3.

3.3.1 Design considerations

Protocols are always designed with specific use cases in mind. Different use cases bring
different design consideration that ultimately affect the properties and behaviours of wireless
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protocols. In this section we outline design considerations that are taken into account when
creating a wireless protocol.

Hardware considerations

Devices, or nodes, in wireless networks are physical pieces of hardware, often PCBs with
integrated antennas. Hardware is the actuator, the sensor, or the control mechanism through
which distributed applications act. Node capability varies from node to node.

Energy consumption Some nodes may have unlimited power through connection to mains
circuits, whilst others may be powered through low-power energy harvesting. Power hungry
wireless protocols impact application lifetime for non-mains powered devices. We categorise
related work into low, medium, and high power consumption protocols. Low power con-
sumption protocols have the longest lifetime, whereas high power consumption protocols
have the shortest.

Memory consumption Nodes have differing amounts of RAM and flash memory, and
code to operate protocols consumes both types of memory. The memory consumption
of protocols can therefore exclude devices as consumption grows. Not only do memory
demands reduce device selection, but greater memory consumption increases the cost of
each node. We categorise related work by low, medium, and high memory consumption with
respect to both flash and RAM.

Quality of Service

Required service quality depends on the use case and also interplays with energy consumption.
A high quality of service generally leads to greater energy consumption.

Latency is the duration from when a packet is sent to when it is received by the intended
device. High latency protocols conserve energy by transmitting less often at the expense of
real-time behaviour. They align well with long-term sensor deployments, offering latencies
in the range of minutes. Medium latency protocols sacrifice some real-time behaviour for
greater energy efficiency. They offer comparatively low latencies to high latency protocols,
in the range of seconds rather than minutes. Low latency protocols offer real-time behaviour
at the expense of energy efficiency. Low latency protocols have sub-second latencies.



3.3 Wireless networking 110

Reliability is the measure by which packets are delivered successfully in a network. Proto-
cols do not have to guarantee reliability, and those that do not, make it the responsibility of
the sender to ensure packets are delivered successfully. Protocols that do have high reliability
generally consume more energy and more memory. We provide two categories for related
work, reliable, for protocols that guarantee reception, and unreliable, for protocols that do
not.

Data throughput is how much data can be propagated through a network, usually mea-
sured in megabits per second. The data throughput of an ad-hoc or mesh network is limited
by how devices are joined together and how packets are propagated through a network. Those
with high throughput allow more data at the expense of energy efficiency, and those with low

throughput, the inverse.

Scalability

Limits to scalability impact the kind of applications protocols can be used for. Mismatching
protocol scalability with application demands can add unnecessary metadata to packets, and
overheads like network maintenance.

Maximum network diameter Network diameter is a metric that equates to distance or
ability to propagate. Networks that support large diameters generally span hundreds of
metres, where small network diameters tend to cover less than a hundred metres. Protocols
have limits where they become unusable. Using a protocol with a large network diameter for
a small network adds unnecessary overhead. Applying a protocol to an application that far
exceeds the supported network diameter likely leads to a network with poor reliability.

Maximum number of devices All wireless protocols have a limit to the number of devices
they can support. Like network diameter considerations, using a protocol that supports a
large number of devices for small networks adds unnecessary overhead. Exceeding the
maximum number of supported devices with a large network is likely to lead to negatively
impact protocol performance.

Ease of use

Designing a wireless protocol for use by citizen developers brings new and additional
considerations to the design of wireless mesh networking protocols.
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Latency The emerging domain of DIY IoT shifts projects towards more reactive and
interactive deployments. High latency protocols are unintuitive for projects such as these, as
users cannot discern between packets that have not yet been transmitted and errors that may
have occurred during propagation. Low latency protocols suit reactive scenarios far better
providing almost immediate response to transmission requests.

Reliability Again, the reactive and interactive nature of DIY IoT deployments brings
requirements for reliability. Protocols prone to errors degrade user experiences, especially
considering the lack of feedback capability on physical computing devices.

Energy consumption The applications of DIY IoT are numerous, and certainly some
applications will require devices to be deployed with battery or energy harvesting technolo-
gies. Here, energy consumption becomes a concern and protocols that have high energy
consumption are not suitable.

Configuration Some protocols require pre-configuration or deploy-time configuration of
network parameters by users. Runtime parameters that determine protocol energy efficiency
may also require configuration. Protocols that need to be configured require a technical
understanding of protocol operation. When considering new types of re-programmable
physical computing devices and iterative development practices, deploy-time configuration
becomes a frustrating experience for users. The best protocols for citizen developers require
little or no configuration.

Infrastructure topology Some protocols assume a constant infrastructure to provide a
backbone for device-to-device communications. Networking communities differentiate
between those with infrastructure as mesh networks, and those without as ad-hoc networks.
However, in many cases ad-hoc networks with internet connected uplinks can be considered
mesh networks. Instead we define the following terminology: fixed infrastructure for
protocols that require backbone devices; and dynamic infrastructure for protocols that do not
require backbone devices, but can be augmented to provide Internet connectivity or more
reliable performance. For citizen developers, protocols that assume a fixed infrastructure
require technical understanding to deploy; dynamic and emergent infrastructures are more
intuitive.
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Network partitioning A wireless network can be disrupted by removing a single node.
This may result in a network being divided into multiple sub-networks, or partitions. Some
wireless protocols are tolerant to partitioning and will gracefully recover when the critical
node is connected or device positions are rearranged. Other protocols are intolerant to
network partitioning and may require nodes to be reconfigured to replace missing nodes.

Commercial Availability Wireless protocols are only enabled by the hardware that sup-
ports them. Wireless protocols therefore have little utility if hardware is not commercially
available for purchase.

3.3.2 Wireless standards

Here we discuss the two most popular wireless standards for short-range communications:
Bluetooth Low Energy (BLE) and 802.15.4. Related work builds upon either of these wireless
standards, so we provide a detailed account of each.

Bluetooth Low Energy (BLE)

Bluetooth Low Energy (BLE) is a physical standard for short-range, low-power communica-
tions. BLE defines all layers of the OSI model except applications, which can be defined by
users. BLE is still developing as a protocol and it was first defined in specification 4.0 which
outlined the wireless symbol format and the abstractions that form the basis of the BLE stack.
This first iteration also defined two device roles: central and peripheral. A central device
controls 0 or more peripheral devices, and a peripheral device can only communicate with one
central device. A network of central and peripheral devices forms a piconet. A later evolution
of the specification, version 4.1, allowed for devices to swap their roles dynamically, enabling
intercommunication between piconets to form a scatternet. All supported topologies are
shown in Figure 3.13.

Though initially multiple data rates were supported, the standard evolved to support
just one, one megabit. To reduce interference with other prominent wireless protocols
in the 2.4 GHz spectrum, such as WiFi, BLE divides the frequency spectrum into 100
different frequency bands, also known as channels. When operating, groups of BLE devices
hop between channels to avoid interference and increase node density. Error detection is
performed by calculating the received Cyclic Redundancy Check (CRC) and comparing it
with the 24-bit CRC contained in the packet. Gaussian Frequency-Shift Keying (GFSK) is
used to represent binary data on the air. Before transmission, data signals are passed through
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Fig. 3.12 BLE symbols at 2.4 GHz: a logical one (left); and a logical zero (right).

Fig. 3.13 Supported BLE topologies as of specification version 4.1.

a gaussian filter that smooths the beginning of each symbol. Corresponding waveforms are
visualised in Figure 3.12.

BLE devices send advertisements in dedicated advertisement until a connection is estab-
lished. Advertisements can be configured to periodically transmit at different rates, defined
by the firmware developer. Contained in BLE advertisements are a list of identifiers that
reference specific services. A service is a resource made available to other devices once
a connection is established. It is the role of the central device to poll updates from the
peripheral device, though peripherals can indicate to the connected central device that data is
available.
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802.15.4

802.15.4 is another physical standard for short-range, low-power communications. Whereas
BLE defines all layers of the OSI model, 802.15.4 defines the physical and MAC layers
leaving the remaining layers to be defined by protocol creators. The physical layer can
operate at three different data rates across three unlicensed frequencies: 250kbps at 2.4GHz,
40kbps at 915MHz, and 20kbps at 868MHz. The lower the base frequency, the greater
the permeation of the data signal. As a result, 802.15.4 based networks can travel greater
distances on a single hop than technologies like BLE. Modulation of the data signal differs at
each frequency. At lower frequencies, Binary Phase-Shift Keying (BPSK) is used, whereas at
2.4 GHz, Offset Quadrature Phase-Shift Keying (O-QPSK) is used for greater symbol clarity.
Devices can divide transmissions between 16 channels in the 2450 MHz band, 30 channels
in the 915 MHz band, and 3 channels in the 868 MHz band. All 802.15.4 transmitters are
required to implement Carrier-sense Multiple Access with Collision Avoidance (CSMA-CA)
to prevent simultaneous, disparate transmissions that cause interference.

Various topologies are presented in Figure 3.14, each with different connection properties.
Topologies are composed of Full Functionality Device (FFD) and Reduced Functionality
Device (RFD). A FFD is a normal node that can form many connections, whereas a RFD
is a device that can only form one connection to an FFD due to limited memory or energy
capacity. Each topology also requires at least one coordinator, which is a FFD responsible for
managing the network in beacon mode. In beacon mode, each coordinator defines an active
and inactive period dependent on the energy demands of the application. Nodes communicate
with the coordinator during the active period and sleep during the inactive period. The active
period is further divided into a Contention Free Period (CFP) and a Contention Access Period
(CAP). In the CFP, devices use pre-allocated slots to transmit to the coordinator. In the
CAP, devices contend for access to the channel by dividing the period into back off slots,
using CSMA-CA to detect collisions. In non-beacon mode, devices exclusively use CAP
to communicate, leading to reduced energy efficiency as transceivers need to be constantly
active. Higher layers of the stack can be used to directly manage transceiver state.

Data communication takes the form of three types of transaction: coordinator to device;
device to coordinator; and in the case of a mesh topology, device to device. Device to
coordinator transmission require beacon synchronisation if applicable, followed by a CSMA-
CA transaction. Coordinator to device transmissions take place after a device to coordinator
transmission. In this case, the coordinator simply sends packets directly to the device. Device
to device transactions can take place at synchronised times in beacon modem or at any time
in non-beacon mode as long as devices are in transmission range of one another.
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Fig. 3.14 Supported topologies in 802.15.4

3.3.3 Routing-based

Routing-based wireless protocols send packets through a network using routes that are
set statically or computed dynamically. The former is better for use cases with a fixed-
infrastructure, and the latter for those that have an emergent and dynamic infrastructure.

Static routing

BLE traditionally employs a star-based topology where one central node connects to one
or more peripherals. Instead, Maharjan et al. [210] propose the use of a tree topology. At
the root of the tree is a central BLE device with connections to N peripheral devices. Each
peripheral device can act as a plain peripheral or as an intermediary node that acts as a central
device to M peripherals. This continues layer on layer until the required number of nodes
are connected. A pictorial representation is available in Figure 3.15, left. The addressing
scheme allows for trees that are five levels deep, and transmission happens hierarchically
from bottom of the tree to the top. As long as nodes remain connected the network exhibits
high reliability and good energy consumption. Latency of packet transmission scales with
the number of nodes in the network and on average remains low if communicating only
with the root node. This solution does however require a fixed infrastructure and incurs a
high configuration cost. Each leaf requires addressing information of its hierarchical central
device, and intermediate nodes require peripheral and central device addresses. The nature
of a tree topology means that if an intermediary node decouples from the network, an entire
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Fig. 3.15 Static tree-based routing for BLE (left); Static routing approach used in RT-BLE,
where S=Slave and M=Master (right).

portion of the network can fail. The protocol also does not define a recovery mechanism for
this case and is partition intolerant. No details are provided on memory consumption.

Realtime BLE (RT-BLE) [235] is another static routing-based solution for BLE. Each
device can act as a central or peripheral device simultaneously, and a mesh network is formed
through the interconnection of devices in central-peripheral relationships. The kinds of
relationships that can be formed are pictured in Figure 3.15, right, and the central idea is
that sub-networks are created and bridged via peripherals belonging to two separate sub-
networks. To avoid sub-network collisions on bridged nodes, each sub-network defines its
own connection interval, taking into account the connection intervals of nearby sub-networks.
Each device also maintains a bit determining its network state which is checked before a
central device initiates a connection. The overall reliability of the network is high and the
energy consumption low, communicating using low frequency connection intervals of 20
milliseconds. The infrastructure of the network is however, fixed, requiring sub-networks
contain one central node and one or more peripherals. The configuration overhead of RT-BLE
is also high as connections must be defined before communication can begin. If a central
device fails, there is no election process for a new central device and routes between networks
fail, so RT-BLE is intolerant to partitioning.
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Dynamic routing

To bring more flexibility to routing-based solutions, some works adopt dynamic routing.
Dynamic routing is more supportive of evolving networks and network partitioning, qualities
better suited for the kinds of applications citizen developers may create.

Introduced in the BLE 4.1 specification was support for the interconnection of multiple
piconets—central-peripheral device clusters—to form scatternets. Guo et al. [169] define an
approach for dynamic scatternet formation and multi-hop routing for scatternets. Scatternet
topology is similar to that of RT-BLE, where a single device in a piconet acts as a bridge.
Scatternets are self-forming and use a discovery process based on regular advertisements
to find nearby devices in the vicinity. Packets are routed through a breadth-first search of
the scatternet for the destination node. The algorithm almost works recursively, making its
way through each piconet until a possible route from source to destination is found. Routes
are cached in a lookup table to prevent overloading the network with routing requests. The
authors’ solution does require a fixed infrastructure through the user of central devices within
each piconet, but low configuration and dynamic routing brings great flexibility to users.
However, the routing approach and overheads introduced through bridging piconets together
results in high latency. Route discovery also leads to higher energy consumption

BLE Mesh Network (BMN) [242, 262] also uses BLE advertisements to send data and
form networks dynamically. BMN uses a Directed Acyclic Graph (DAG) to route packets.
Each BMN node maintains two parents, one acting as a fallback if the primary parent
fails. Nodes all contain a rank that represents its energy level and its distance to the root
of DAG. This allows nodes to form into a directed graph that spares nodes with lower
energy levels. Each node is required to store a routing table generated from its children and
parents. Transmissions are sent based upon node priority which is defined statically, and not
computed based on node demand. Although the approach leads to greater energy efficiency
and enables flexible deployment use cases, it suffers from high latency and low throughput.
It also requires manual configuration to define device identifiers and does not compute the
transmission priority of nodes dynamically.

Leon et al. [201] build upon the foundation of BLEMesh, but seek to tackle the limitations
of manual configuration of device identifiers and static transmission priority. Device identifier
allocation is performed through an auto configuration protocol. Nodes send out a request
to find a network and any nearby networks respond with a message. The node then joins
and finds a free 7-bit address to use within the mesh. To maintain ownership over the
address, nodes must send a keep alive message. Routing is performed via Proactive Source
Routing (PSR). In PSR, each node maintains a map of the network relative to their position.
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Individual maps are propagated through the network until each node has a full map. If a
node disconnects, nearby nodes propagate a message to make all nodes in the mesh aware.
24 nodes can be represented in a single packet, problematic for large networks with higher
node density. No evaluation was performed on physical hardware, but one can imagine that
in dynamic scenarios with regular disconnection, the overhead of PSR may result in reduced
throughput or dropped packets.

Zigbee [187] brings mesh, not bounded by transmission distance, to the 802.15.4 physical
layer. To do so, Zigbee makes use of a well-studied routing protocol called Ad-hoc On
Demand Vector (AODV) [129]. Zigbee networks still have a coordinator, but FFD nodes
are known as routing nodes, and RFD nodes are known as end nodes. These distinctions
stem from the need to enable low power long-term IoT deployments. For example in the
Zigbee model, end nodes, like doorbells and light switches, only have to transmit when users
interact with them. Network coordinators and routing nodes are expected to have a constant
power supply. The AODV routing protocol requires on-demand construction of routes that
are then preserved for lifetime of the network. The overhead of route construction requires
the propagation of routing requests until the destination node is reached. Once reached, the
destination node sends a reply via unicast transmission and through the lowest cost path.
Zigbee assumes some semblance of fixed infrastructure to operate and if used dynamically,
route construction can incur a significant cost and consume valuable bandwidth.

Thread is an emerging mesh networking standard for use in the home. It is compatible
with IPv6 through the use of 6LoWPAN [224], allowing for the fragmentation and reassembly
of IPv6 packets over 802.15.4. This reduces complexity of bridging Thread devices with
the wider Internet. Thread also runs the Constrained Application Protocol (CoAP) [118]
over User Datagram Protocol (UDP) [239] to transport frames across the network. Routing
within Thread is performed using Routing Information Protocol (RIP). RIP requires nodes
periodically broadcast routing costs to all other nodes, and costs are maintained in a table
linked to device identifier. Key nodes broadcast information about nearby networks and
other servers available to the Thread network. As key nodes must maintain large routing
tables they require a reliable source of power to maintain network reliability. In addition, the
individual cost of each device maintaining costs to all other nodes within the network adds
memory overhead.
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3.3.4 Flooding-based

Flooding-based wireless protocols do not maintain routes to send packets across a network.
Instead, packets are propagated through networks through retransmitting or repeating trans-
missions. There are different approaches to flooding. Bounded approaches analyse packets
before retransmitting them, using packet metadata to determine if packets do need to be
repeated. Probabilistic flooding approaches forward packets only if there is a chance prox-
imal nodes have not yet received the packet. Directional flooding propagates messages
informed by the position of nodes within a network, usually incorporating some form of
routing protocol. Finally, concurrent flooding uses the fundamental physical properties of
radio waves to improve the reliability and reception rate of packets. Without the need for
fixed nodes to provide routing infrastructure, flooding-based protocols allow nodes to more
freely and deployed more easily.

Bounded Flooding

CSRMesh [293] is custom flooding-based mesh protocol for BLE. Like routing-based
networking approaches for BLE, CSRMesh floods networks using advertisements. Advertise-
ments are repeated across the three general purpose broadcast channels. Each time a packet
is repeated, a Time to Live (TTL) embedded inside the packet is decremented to bound
the number of repetitions. Because there is no medium access control layer, devices can
communicate over one another reducing reliability. To receive advertisements, devices need
to constantly scan 3 channels consuming energy, and increasing the likelihood of successful
packet reception.

BLEMesh developed by Kim et al. [185] also applies bounded flooding to BLE adver-
tisements. Rather than send individual packets, BLEMesh batches packet transmissions
for greater energy efficiency. Batches are transmitted in the payload of BLE, but since
advertisement payload can only fit 31 bytes, the approach yields a low data density per packet.
The flood mechanism used in BLEMesh is smarter than that of CSRMesh. To minimise the
energy impact of each flood, the network maintains a list of forwarding nodes considered
likely to give a chance of packet delivery. Only the nodes in the forwarding list forward
the packet. Upon reception, nodes that have forwarded the packet put their identifier into a
secondary list. The number of nodes in the forwarding list scales with the size of the network.
Using this approach BLEMesh optimises the number of repetitions for the majority of nodes
to receive a packet. However, the throughput of the network is low and latency is high.
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To more directly address the limitations of BLE as a ad-hoc networking protocol, the
Bluetooth SIG introduced Bluetooth Mesh [106]. Although presented as a separate standard,
Bluetooth Mesh builds upon the physical layer of Bluetooth Low Energy. Bluetooth Mesh
uses bounded flooding and is implemented by means of a Time to Live (TTL) decremented
upon each repetition. The use of flooding rather than routing leads to dynamic network
creation and lowers memory overheads for individual nodes. To receive packets, nodes need
to leave transceivers in receive mode which leads to greater power consumption. For nodes
that require ultra low power consumption, Bluetooth Mesh specifies “friends” that act as
caches for messages to low-power nodes. This is ideal for deployments that include reliably
powered nodes, but less applicable for applications that do not. Moreover, networks are
formed from pre-configured settings stored on individual nodes.

Probabilistic Flooding

As an alternative to bounded flooding, probabilistic flooding seeks to optimise the number of
repetitions based on the probability a node has already seen a packet. MISTRAL [238] was
the first to simulate a probabilistic approach to flooding. Each node evaluates the probability
that proximal nodes have already received a copy of the packet and determine whether to
repeat or not. The authors recognised that even traditional probabilistic approaches result
in incorrectly dropped packets, especially so when applied to a flooding-based network. To
guard against such over optimisation, nodes broadcast “compensation packets” that encodes
a list of packets that the node has determined do not need forwarding. Missed packets
can be requested from nodes who have a copy of the original packet. The authors show
through simulation that this compensation mechanism significantly increases coverage when
compared to purely probabilistic approaches. The need to retain copies of packets for
forwarding has practically constrains networks as data throughput and network size grow.

Alternatively, RAPID [146] inverts the paradigm. Using Gossip [170], RAPID dissemi-
nates packets that it has received. Interested parties can then request packets be forwarded on
them if required. No direct comparison is available between RAPID and MISTRAL, though
it can be concluded both are more energy efficient than traditional probabilistic flooding.

Directional flooding

Rather than probabilistic or bounded means, other solutions have explored directing floods
across portions of a network. Kum et al. [195] introduce AODV-DF that can be considered
an flood augmented version of AODV. Devices periodically broadcast hello packets towards
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a gateway node, allowing the gateway node to obtain the logical layout of the network
(i.e. number of hops between nodes). Informed by this logical layout, packets can then be
efficiently routed across the network. In AODV-DF nodes send less packets and combined
with gains from directed routing, leads to greater energy efficiency. But of course this brings
topology and layout constraints to the network, not suited to all types of applications.

Recognising fixed infrastructure as a weakness, Kim et al. [186] create a Semi-directional
Flooding (SDF) routing protocol to remove fixed infrastructure from AODV-DF. The authors
apply a bounded depth tree-based search to discover routes to local nodes. The approach
significantly reduces the number of repetitions required to construct a route, and constrains
the search domain to local nodes. Of course, when routes are involved with dynamic networks,
approaches are required to prune stale routes and detect new routes to disconnected nodes.
The authors apply SDF reducing the number of packets for route recovery.

Concurrent Flooding

Not addressed by the prior work discussed above is the issue of radio on time. Radio on time
is the measure by which the radio is in an active receive or transmit mode. The higher the
radio on time, the higher the energy consumption. Flooding-based approaches avoid such
a metric because for good reliability, nodes are left in receive mode when not transmitting.
However, consider a network where receivers power down their transceiver after a packet has
been received. Nodes at the centre will power off first, and the nodes at the extreme of the
network last. The time taken for outer nodes is variable and depends on when nodes choose
to transmit. Therefore it has been the goal of some to reduce radio on time, by minimising
the time taken for a message to propagate through a network. As packets are repeated some
time after a node has received a packet, there is a chance that two nodes will repeat the same
packet at different times. As pointed out in Section 2.5.1, this may result in degradation or
complete cancellation of the radio signal, reducing network reliability.

One way to reduce radio on time and improve reliability is through the use of concurrent

transmissions. Concurrent transmissions aim to transmit the same data at the same time,
amplifying the signal (as alluded to in Section 2.5.1). Glossy [148, 149] and Low-power
Wireless Bus were the first works to combine concurrent transmissions and flooding. Fig-
ure 3.16 demonstrates the basic flooding principle without radio on time optimisations. To
prevent multiple devices from initiating a flood simultaneously, Glossy requires a master
device to maintain a network clock and dictate the device transmission schedule through
regular beacons. Each node synchronises with the network clock and schedule and transmits
during their slot. Each packet contains a TTL, identical to bounded flooding protocols, which
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Fig. 3.16 Visualisation of a Glossy round.

is decremented upon retransmission. The authors reported high reliability after applying
glossy to 802.15.4 radios operating at 250 kilobits a second.

Splash [144] improves on the original work of Glossy. It improves reliability by varying
the number of re-transmitters per flood, as more re-transmitters can degrade transmissions.
Splash also distributes retransmissions across multiple channels, and conducts a channel
assignment phase to ensure even distribution of nodes and that each node receives each
packet. An approach called ’opportunistic overhearing’ causes nodes to swap channels upon
detecting an error, where a future transmission of the missed packet is guaranteed. Each
packet is encoded using an XOR encoding scheme giving devices a higher likelihood packet
recovery in the case of sequential reception errors.

Ripple [292] points out that repeated transmission of the same data is often redundent.
Instead, Ripple uses multiple channels to transmit different packets, improving network
throughput. All packets are repeated on other channels to ensure nodes receive all packets.
Whereas Splash requires a channel assignment phase, Ripple does not and instead distributes
nodes across channels automatically. Even though Ripple focuses on throughput over
reliability, it still achieves over 99% by adopting forward error correction.

Whisper [119] points out that swapping between receiving and transmitting during a
flood is inefficient. In Whisper, devices retransmit packets concurrently once received until
a maximum count is reached. A maximum count is used instead of a TTL due to software
limitations; software cannot modify packets and reliably retransmit packets at the required
timing tolerance.
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Blueflood [93] applies concurrent transmissions to Bluetooth Mesh as an alternative to the
bounded flooding approach currently used by the protocol. Blueflood is the first protocol that
applied concurrent transmissions to commodity Bluetooth hardware. The authors provide
positive results, and an expanded version of the paper [225] profiles radio wave propagation,
aligning with the properties of radio waves described in Section 2.5.1.

3.3.5 Analysis

Wireless ad-hoc networking protocols can be used to create distributed applications that
operate across vast spaces. Each ad-hoc networking protocol is designed for a specific
purpose, but the way a protocol propagates its packets informs its memory and energy
consumption, its support for interactivity, and its infrastructure and configuration complexity.

Routing-based protocols propagate packets via directed paths across a network. These
paths are either computed statically or dynamically. Statically routed protocols define fixed
routes between devices and require infrastructure to support their operation. Route definition
requires manual configuration, leading to a high configuration complexity. Dynamically
routed protocols on the other hand compute routes dynamically, allowing devices added or
removed from a network with ease. This flexibility is enabled by fixed infrastructure devices
that have more memory and a constant power to maintain routes between nodes. Routes also
require regular maintenance, reducing the throughput of the network. Dynamically routed
protocols therefore consume more memory and require infrastructure and configuration to
support their operation.

Flooding-based protocols require each device retransmit a packet until it has been prop-
agated across a network. With no routes to maintain, flooding-based protocols generally
require less memory and less configuration to operate. They do however come with increased
energy consumption through sometimes redundant packet retransmission. Seeing the value
of flexible ad-hoc networking however, much existing work has looked at ways to optimise
the energy consumption of flooding-based approaches.

Bounded flooding protocols, for example, limit the number of retransmissions to optimise
energy consumption. Communication between nodes is therefore proximal, reducing network
flexibility. Many of the bounded flooding protocols discussed in this section also retransmit
packets from different devices, sometimes simultaneously. Simultaneous retransmission of
different data creates more interference, reducing the reliability of flooding-based approaches
and wasting energy.
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Table 3.4 A summary of the wireless protocols discussed in this section. Protocols are
profiled by the design requirements (WN1—WN3) contained in IQ3.

Probabilistic flooding protocols optimise energy consumption by using probability to
limit the number of retransmissions. Upon reception of a packet, if it is likely nearby
devices have already received a packet, that packet is not retransmitted. This approach does
however result in missed packets, and these protocols compensate for decreased reliability
by including more metadata in packets. Metadata allows devices to request packets that
were not forwarded, which also means devices must retain copies of packets. Probabilistic
approaches therefore increase memory consumption for individual nodes and reduce overall
energy consumption but not uniformly across the network.

Directional flooding protocols optimise energy consumption by directing floods across
a network. Direction is obtained from mapping the network topology, and these protocols
therefore make use of dynamic routing protocols. As noted before however, dynamic routing
protocols increase memory and energy consumption through regular route maintenance.

Concurrent flooding protocols increase network throughput and reliability by repeating
packets simultaneously. The use of concurrent transmissions reduces overall radio on time
leading to more optimal energy consumption. Concurrent flooding protocols also typically
incorporate a scheduler that allows only one device to initiate a flood at a time, thereby
improving reliability. The scheduler divides time into discrete slots and a fixed infrastructure
device is required to allocate and synchronise devices to a common network clock. Concurrent
flooding protocols therefore require infrastructure to operate.



3.4 Summary 125

Table 3.4 summarises this discussion and profiles ad-hoc wireless networking protocols
based on the design requirements (WN1—WN3) contained within IQ3. We place Droplet,
one of the contributions of this thesis, in context.

3.4 Summary

This chapter has explored specific questions (IQ1–IQ3) derived from extensive discussion in
Chapter 2. The upcoming sections map each question onto its corresponding area of physical
computing (programming, hardware composition, wireless networking) where we answer
each question.

3.4.1 Programming

IQ1 Are there any programming languages/environments for microcontrollers that support

installation-free (P3), event-based (P2), visual programming (P1)? Do any such

environments support these features without compromising memory and processor

efficiency?

In search of an answer to IQ1, Section 3.1 explored programming languages and environ-
ments for microcontrollers. We found that efficiency is particularly important for processor
and memory constrained microcontrollers and that compiled programming languages, which
generate machine code, offer the greatest efficiency. Compiled languages however are often
harder to use.

Higher-level languages offer a more intuitive development experience, but they sacrifice
processor and memory efficiency. This is because they interpret pre-generated byte code or
program text at runtime on the microcontroller. Lower processor efficiency leads to higher
energy consumption and less real-time applications.

There are highly intuitive visual programming languages that exist for microcontrollers.
However, these languages typically build on higher-level programming languages and observe
their associated costs. Some do build on C/C++ HALs, but they do not offer the event-based
paradigm recognised as beneficial to citizen developers.

We therefore conclude that, to the best of our knowledge, there are no visual programming
environments for microcontrollers that support installation-free, event-based programming
whilst not compromising on memory and processor efficiency.
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3.4.2 Hardware composition

IQ2 Are there any low-infrastructure wired protocols for hardware composition that sup-

port dynamic connectivity (HC1), device discovery (HC2), and hardware abstraction

(HC3)? Are any such protocols as widely supported by microcontrollers as I2C or

SPI?

Seeking an answer to IQ2, in Section 3.2 we explored wired protocols and their use across
toolkits for easier hardware composition. Across these toolkits we found that many tried to
make existing protocols like I2C and SPI more dynamic. We also recognised a trend towards
reducing the amount of infrastructure (individual cables) for these protocols to operate.

There are a number of existing and emerging wireless protocols that provide hardware
abstraction and support dynamic connectivity and detection. These features however appear
to come with an increase in implementation complexity, requiring additional silicon to
operate. They are therefore not widely supported by microcontrollers.

We therefore conclude that, to the best of our knowledge, there are no widely supported
low-infrastructure wired protocols with dynamic connectivity, device discovery, and hardware
abstraction.

3.4.3 Wireless networking

IQ3 Are there any wireless ad-hoc networking protocols that require no configuration

(WN1) and no infrastructure (WN2) to operate? Are any such protocols able to support

interactive applications (WN3) without sacrificing energy efficiency?

To answer IQ3, Section 3.3 explored existing wireless ad-hoc networking protocols,
profiling them by their packet propagation technique. We found that routing-based protocols
generally require more memory, more configuration, and infrastructure to operate. These
overheads make networking less intuitive for citizen developers

Flooding-based protocols, on the other hand, require minimal memory and no configura-
tion to operate. Because protocols generally repeat packets in sequence, packet propagation
is less supportive of interactive applications and requires more energy than routing-based pro-
tocols. Concurrent flooding protocols support interactivity and offer greater energy efficiency
by propagating packets simultaneously. Existing concurrent flooding protocols however
require infrastructure to operate.



3.4 Summary 127

We therefore conclude that, to the best of our knowledge, there are no ad-hoc networking
protocols that are memory and energy efficient, whilst being configuration and infrastructure
free.



Chapter 4

CODAL: intuitive microcontroller
programming

Across Chapters 2 and 3 we identified properties of existing technologies that make program-
ming more intuitive:

P1 Visual programming: Higher level programming languages, and in particular visual
programming languages, prove more intuitive to citizen developers when compared to
low-level text-based programming languages like C/C++ [114].

P2 Event-based programming: Event-based programming is used across the programming
language spectrum. Its use, especially in visual programming languages, has been
shown to be more intuitive to citizen developers [211, 212, 276].

P3 Installation-free: Environments that require software installation make programming
inaccessible to some. Installation-free programming environments allow all citizen
developers to access programming.

Resource constrained microcontrollers, and their use in battery-powered and embedded
physical computing devices, demand efficiency not commonly seen in programming lan-
guages with the properties above. Limited flash and RAM requires programming languages
to be memory efficient, and battery powered operation requires programming languages
processor efficient so not to unnecessarily expend energy.

As we concluded in Chapter 3, this combination of features is not common amongst the
literature and we found that there was no programming language or environment that offered
visual, event-based, installation-free programming, whilst being processor and memory
efficient.
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Fig. 4.1 Screenshot of the MakeCode web app for the Circuit Playground Express (CPX).

This chapter describes the design, implementation, and evaluation of CODAL, a light-
weight C++ runtime environment for microcontrollers. CODAL supports the Microsoft
MakeCode programming environment, which combined, creates an installation-free, event-
based, visual programming environment for microcontrollers. CODAL supports applications
written in MakeCode to deliver memory and processor efficiency, and as a result, applications
are up to 50 times more performant than other solutions in the space. MakeCode and CODAL
and see over one million active users every month.

We begin in Section 4.1 by describing Microsoft MakeCode, which is vital to under-
standing the role of CODAL, but is not a direct contribution of this thesis. We then go onto
describe the core components and features of the CODAL runtime (Section 4.2), and the
build system used to build CODAL applications (Section 4.3). In Section 4.4, we discuss
how CODAL APIs are propagated to MakeCode, followed by a systems evaluation of both
MakeCode and CODAL in Section 4.5. We then provide examples of how MakeCode and
CODAL has already been used by citizen developers in Section 4.6 before providing a
summary of the chapter in Section 4.7.

4.1 Microsoft MakeCode

Microsoft MakeCode (Figure 4.1) is a web-based programming environment for resource
constrained microcontrollers. From the visual programming language, to the no-installation



4.1 Microsoft MakeCode 130

web-based programming environment, to the in-browser compiler, every facet of MakeCode
is designed to democratise access to programming physical computing devices. MakeCode
gives users the familiar event-based semantics of Scratch with the means to progress to
text-based programming and the power to explore every feature of a device without the
use of low-level programming languages. To allow for quicker development of code and
democratise access to less-privileged demographics, an in-browser device simulator executes
user programs as they are composed within the editor. The editor can also be used offline
through browser caching mechanisms and a separate desktop application. Though just one
instance of the MakeCode editor for the Circuit Playground Express (CPX) is shown in
Figure 4.1, MakeCode instances exist for a variety of physical computing devices including
the BBC micro:bit.

Stepping through Figure 4.1 in more detail, the web app has five sections: (A) the
menu bar allows switching between visual and text-based programming editors; (B) a
physical computing device simulator for the CPX that provides feedback on user code as
it is composed; (C) the toolbox provides access to device-specific APIs and programming
elements; (D) the visual programming canvas where code is composed; and (E) the download
button that invokes an in-browser compiler, producing a binary executable that is downloaded
to the users’ filesystem.

Transferring binary executables to the physical device is also simple and requires no
installation. When plugged into a PC, MakeCode devices appear as a USB flash drive. After
downloading the file locally, users simply use a file-copy operation to program the target
device.

4.1.1 In-browser program compilation

The architecture of the MakeCode web application is encapsulated in Figure 4.2. Program-
ming editors for Blockly [156], a visual programming language, and static TypeScript,
a text-based superset of JavaScript, allow users to easily build applications for physical
computing devices. As programs are composed, editors generate Static TypeScript (STS).
STS is converted to an Intermediate Representation (IR) for simulation by the in-browser
device simulator and for compilation by the in-browser compiler. The in-browser compiler
produces a user binary which is later combined with a pre-compiled runtime binary when
the download button is clicked. The pre-compiled runtime binary contains wrappers/foreign
function interfaces for binding typescript applications to CODAL, an efficient C++ runtime
for resource constrained microcontrollers.
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Fig. 4.2 MakeCode and CODAL program compilation.

4.2 The CODAL runtime

CODAL is a lightweight, object-oriented, componentised C++ runtime for microcontrollers
designed to provide an efficient abstraction layer for higher level languages, such as JavaScript
and Blocks. CODAL has six key elements:

1. a unified eventing subsystem (common to all components) that provides a mechanism
to map asynchronous hardware and software events to event handlers;

2. a non-preemptive fiber scheduler that enables concurrency while minimizing the need
for resource locking primitives;

3. a simple memory management system based on reference counting to provide a basis
for managed types;

4. a stream processing framework based on a composable, receiver-driven component
model;

5. a set of drivers, that abstract microcontroller hardware components into higher level
software components, each represented by a C++ class;

6. a parameterised object model composed from these components that represents a
physical device.

There are discussed in detail below.
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1 # i n c l u d e " C i r c u i t P l a y g r o u n d . h "
2 C i r c u i t P l a y g r o u n d c p l a y ;
3
4 void o n B r i g h t ( ) { / / u s e r d e f i n e d code }
5 void onDark ( ) { / / u s e r d e f i n e d code }
6
7 i n t main ( ) {
8 c p l a y . messageBus . l i s t e n ( ID_LIGHT_SENSOR ,

LIGHT_THRESHOLD_HIGH , o n B r i g h t ) ;
9 c p l a y . messageBus . l i s t e n ( ID_LIGHT_SENSOR ,

LIGHT_THRESHOLD_LOW, onDark ) ;
10 }

Fig. 4.3 An example MakeCode application for the CPX to detect the brightness level of
a room (left); and a representative C++ application that demonstrates the message bus, the
enabler of event-based programming in MakeCode (right).

4.2.1 Message bus and events

CODAL offers a simple yet powerful model for handling hardware or user defined events.
Events are modeled as a tuple of two integer values - specifying an id (namespace) and
a value. Typically, an id correlates to a specific software component, which may be as
simple as a button or something more complex as a wireless network interface. The value
relates to a specific event that is unique within the id namespace. All events pass through
the CODAL message bus. Application developers can then listen to events on this bus, by
defining a C/C++ function to be invoked when an event is raised. Events can be raised at any
time simply by creating an Event C++ object, which then invokes the event handlers of any
registered listeners. Figure 4.3 shows a MakeCode Blocks application for the CPX, and a
representative C++ snippet to demonstrate how MakeCode uses the CODAL message bus to
enable event-based programming.

Unlike simple function pointers, CODAL event handlers can be parameterised by the
event listener to provide decoupling from the context of the code raising the event. The
receiver of an event can choose to either receive an event in the context of the fiber that
created it, or can be decoupled and executed via an Asynchronous Procedure Call (APC).
The former provides performance, while the latter provides decoupling of low level code
(that may be executing, say, in an interrupt context) from user code. Each event handler may
also define a threading model, so they can be reentrant or run-to-completion depending upon
the semantics required.
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4.2.2 Fiber scheduler

CODAL provides a non-preemptive fiber scheduler with asynchronous semantics and a
power efficient implementation. CODAL fibers can be created at any time but will only
be descheduled as a result of an explicit call to yield(), sleep() or wait_for_event() on
the message bus. The latter enables condition synchronization between fibers through a
wait/notify mechanism. A round-robin approach is used to schedule runnable fibers. If at
any time all fibers are descheduled, microcontroller hardware is placed into a power efficient
sleep state.

The CODAL scheduler makes use of two novel mechanisms to optimize for microcon-
trollers. Firstly, CODAL adopts a stack paging approach to fiber management. Microcon-
trollers do not support virtual memory and are heavily RAM constrained, but relatively cycle
rich. Therefore, instead of overprovisioning stack memory for each fiber (which would waste
valuable RAM), we instead dynamically allocate stack memory from heap space as necessary
and copy the physical stack into this space at the point at which a fiber is descheduled
(and similarly restored when a fiber is scheduled). This copy operation clearly incurs a
small CPU overhead, but brings greater benefits of RAM efficiency - especially given that
microcontroller stack sizes are typically quite small (~200 bytes is typical).

Secondly, the CODAL scheduler supports transparent Asynchronous Procedure Calls
(Asynchronous Procedure Call (APC)s). Any function can be invoked as an APC. Conceptu-
ally, this is equivalent to calling the given function in its own fiber. However, the CODAL
runtime provides a common-case transparent optimization for APCs we call fork-on-block

- whereby a fiber will only be created at the point at which the given function attempts
a blocking operation such as sleep() or wait_for_event(). Functions which do not block
therefore do not incur all of the context switch overhead.

When invoking an APC, the scheduler snapshots the current processor context and stack
pointer (but not the whole stack). If the scheduler is re-entered before the APC completes, a
new fiber context is created at the point of descheduling, and placed on the appropriate wait
queue. The previously stored context is then restored, and execution continues from the point
at which the APC was first invoked. This mechanism provides potentially high RAM savings
for the processing of message bus event handlers in particular.

CODAL’s scheduling and eventing models are shared by both high and low level lan-
guages, and therefore handled uniformly. As a result, when a foreign function call is mapped
to C++, that C++ function is capable of blocking the calling fiber without infringing on the
concurrency model of the higher level language. This enables, for example, a C++ device
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driver to block a JavaScript program when awaiting data without changing the behavior of
other JavaScript code acting asynchronously (as in Figure 4.1).

4.2.3 Memory management

CODAL implements its own lightweight heap allocator, introducing reentrant versions of
the libc malloc family of functions, permitting universal access to heap memory in user or
interrupt code. The heap allocator is flexible and reconfigurable, allowing the specification
of multiple heaps across memory and it is optimised for repeat allocations of memory blocks
that are commonplace in embedded systems.

CODAL also makes use of simple managed types, built using C++ reference counting
mechanisms. C++ classes are provided for common types such as strings, images, and data
buffers. A generic base class is also provided for the creation of other managed types. This
simple approach brings the benefits of greater memory safety for application code, but with
the expense of suffering from the issues related to circular references. We take the view that
such scenarios are rare in microcontroller applications, justifying this approach over a more
complex garbage collection scheme and its overhead.

4.2.4 Streams

Whilst some embedded systems applications only process discrete data, many operate on
data flows. Examples include digital signal processing (DSP), audio recording/playback,
and gesture and voice recognition. CODAL defines a standardised mechanism to efficiently
handle data streams that can be then exported to higher level languages as a data flow model.
Following on from the Object Oriented approach adopted by CODAL, data streams are
modelled using two well defined C++ abstract base classes - DataSource and DataSink, as
defined in Figure 4.4. These two simple interfaces contain the minimal set of functionality
to enable simple, efficient, safe and extensible stream processing. As can be seen, all data
is conveyed using a managed type (ManagedBuffer). This ensures that any device drivers
that source streamed data or DSP software or application code that process it need not be
burdened with the detail of memory management.

Any component capable of generating stream data (an upstream component) implements
the DataSource interface, and likewise a consumer (downstream component) implements
DataSink. A receiver driven approach to data streaming is adopted. DataSinks register with
their upstream DataSource through an explict call to the connect method. When data is
subsequently generated by a DataSource, it then executes the pullRequest() method on its
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1 c l a s s DataS ink
2 {
3 p u b l i c :
4 v i r t u a l i n t p u l l R e q u e s t ( ) ;
5 } ;
6
7 c l a s s DataSource
8 {
9 p u b l i c :

10 v i r t u a l ManagedBuffer p u l l ( ) ;
11 v i r t u a l vo id c o n n e c t ( Da taS ink &s i n k ) ;
12 } ;

Fig. 4.4 CODAL Stream Interfaces.

downstream component to indicate that data is available for processing, which can then be
drained from the DataSource through its pull() method. This receiver driven approach allows
for simple flow control to be implemented - placing the control of precisely when and how
processing takes place in the hands of the application.

Components may be both a DataSource and a DataSink, allowing the creation of a data
flow graph of components. The CODAL runtime contains reusable components that can
be composed to undertake common operations. For example, analog to digital converter
modules act as DataSources and digital to analag converter modules as DataSinks. A Mixer

component allows multiple DataSources to be aggregated into one DataSink (with clear
applications for audio processing). A LevelDetector provides configurable smoothing and
thresholding functionality with asynchronous outputs reported through the CODAL message
bus. A DataStream provides user configurable first-in-first-out buffering functionality, and
a Synthesizer frequency and phase shifted datastreams based on a user defined waveform
template. For example, Figure 4.5 illustrates an event-based, direct-memory-access enabled,
asynchronous sound level detector of a live data source from an attached microphone.

4.2.5 Device driver components

CODAL drivers abstract away the complexities of the underlying hardware into reusable,
extensible, easy-to-use components. For every hardware component there is a corresponding
software component that encapsulates its behavior in a C++ object. CODAL has three types
of drivers:

1. A hardware agnostic abstract specification of a driver model (e.g. a Button, or an
Accelerometer). This is provided as a C++ base class.
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1 C i r c u i t P l a y g r o u n d c p l a y ;
2 SAMD21DMAC dmac ;
3 SAMD21PDM microphone ( c p l a y . i o . microphoneData ,

c p l a y . i o . microphoneClock , dmac , 10000) ;
4 L e v e l D e t e c t o r l e v e l ( microphone . o u t p u t , 70 , 30) ;
5
6 void onLoud ( Dev iceEven t )
7 {
8 c p l a y . s e r i a l . p r i n t f ( "LOUD\ n " ) ;
9 }

10
11 i n t main ( )
12 {
13 microphone . e n a b l e ( ) ;
14 c p l a y . messageBus . l i s t e n (DEVICE_ID_SYSTEM_LEVEL_DETECTOR ,
15 LEVEL_THRESHOLD_HIGH, onLoud ) ;
16 }

Fig. 4.5 CODAL Stream processing example - a sound level detector.

2. The concrete implementation of the abstract driver model, which is typically hardware
specific. This is implemented as a subclass of a driver model, such as a LIS3DH
accelerometer, as manufactured by ST Microelectronics.

3. A high level driver that relies only on the interfaces specified in a driver model (e.g. a
gesture recognizer based on an Accelerometer model).

This approach brings the benefits of abstraction and reusability to CODAL, without losing
the hardware specific benefits seen in flat abstraction models where every microcontroller is
made to look the same, even though their capabilities are different (as in the Arduino and
mbed APIs, for example).

Finally, we group together the components of a physical device to form a device model.
This is a singleton C++ class that, through composition of device driver components, provides
a configured representation of the capabilities of a device. Such a model allows: an elegant
OO API for programming a device, and a static representation that forms an ideal target for
the MakeCode linker to bind high level STS interfaces to low level optimised code.

An example device model for the CPX is shown in Figure 4.6 for reference.
MakeCode is further supported by an annotated C++ library (MakeCode wrappers) defin-

ing the mapping from CODAL to TypeScript and Blockly. The use of MakeCode wrappers
ensures that different MakeCode targets that use CODAL share a common TypeScript and
block API vocabulary1.

1See https://github.com/microsoft/pxt-common-packages

https://github.com/microsoft/pxt-common-packages
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1 c l a s s C i r c u i t P l a y g r o u n d : p u b l i c CodalDevice {
2 p u b l i c :
3 message bus messageBus ;
4 CPlayTimer t i m e r ;
5 SAMD21Serial s e r i a l ;
6 C i r c u i t P l a y g r o u n d I O i o ;
7 B u t t on but tonA ;
8 SAMD21I2C i 2 c ;
9 LIS3DH a c c e l e r o m e t e r ;

10 NonLinea rAna logSensor the rmomete r ;
11 Ana logSensor l i g h t S e n s o r ;
12 . . .

Fig. 4.6 Device Model for the Adafruit CPX

4.3 Building CODAL applications

As shown in the previous section, CODAL provides users with powerful yet simple C++
abstractions for writing applications for microcontrollers. However, a compilation process
must take place to turn C/C++ applications into binary instructions for microcontrollers. For
this, we designed a custom build system.

The CODAL build system is designed for modularity in a similar way to the many
package systems seen in higher level languages like JavaScript (i.e. node modules). The key
difference being of course that the CODAL build system allows the modular composition
C/C++ libraries to create C/C++ applications. Modularity enables the efficient reuse of
libraries across different applications.

Because libraries can change and develop over time, the CODAL build system incorpo-
rates versioning. Versioning allows applications to target specific versions of libraries for
reproducible builds. This is especially important when supporting a user facing application
like MakeCode where known working, reproducible builds are a must.

The CODAL build system is also designed to make C/C++ programming more accessible
to less experienced embedded developers. Only three tools, that work across the main
operating systems (Windows, Mac OS, Linux), are required to build a CODAL application:

1. CMake [188]—for configuration of compilers and linkers and gathering files for
compilation.

2. A compilation toolchain—to compile and link detected files for the desired microcon-
troller (applications for most ARM-based microcontrollers can be compiled by the
arm-none-eabi-gcc [96] suite).
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1 {
2 " d e v i c e " : "CIRCUIT_PLAYGROUND" ,
3 " p r o c e s s o r " : "SAMD21G18A" ,
4 " a r c h i t e c t u r e " : "CORTEX_M0_PLUS" ,
5 " t o o l c h a i n " : "ARM_GCC" ,
6 " p o s t _ p r o c e s s " : " py thon . . . " ,
7 " g e n e r a t e _ b i n " : true ,
8 " g e n e r a t e _ h e x " : true ,
9 " c o n f i g " : {

10 "CODAL_TIMESTAMP" : " u i n t 6 4 _ t " ,
11 "USB_MAX_PKT_SIZE" : 64 ,
12 . . .
13 } ,
14 " d e f i n i t i o n s " : "−DSAMDX1 −D__SAMD21G18A__" ,
15 " c p u _ o p t s " : "−mcpu= c o r t e x−m0plus −mthumb " ,
16 " a s m _ f l a g s " : "−fno−e x c e p t i o n s −fno−unwind− t a b l e s

−−s p e c s = nosys . s p e c s " ,
17 " c _ f l a g s " : "−s t d =c99 −−s p e c s = nosys . s p e c s " ,
18 " c p p _ f l a g s " : "−s t d =c ++11 . . . " ,
19 " l i n k e r _ f l a g s " : "−Wl,−−no−wchar−s i z e −warn ing . . . " ,
20 " l i b r a r i e s " : [
21 {
22 " name " : " coda l−c o r e " ,
23 " u r l " : " h t t p s : / / g i t h u b . com / l a n c a s t e r −u n i v e r s i t y / coda l−c o r e " ,
24 . . . .
25 ]
26 }

Fig. 4.7 The CODAL target JSON file for the CPX.

3. Git [135]—to provide version control across all files.

The entire CODAL build system is defined in a single Git repository hosted on Github [61]
(https://github.com/lancaster-university/codal). This repository is where users write applica-
tions for CODAL and invoke the build system to produce binaries for embedded development
boards. The repository contains a CMake file in its root which defines the build process for
an application and contains functions for parsing JSON files and cloning Git repositories.

As APIs are closely bound to specific development boards such as the CPX or BBC
micro:bit, users must select their development boards before applications can be compiled.
In the CODAL build system, specific development boards are called targets and targets
are selected by way of adding a JSON file to the build system repository. This JSON file
references a downloadable target library.

Target libraries are also git repositories and they contain a single JSON file that defines
parameters for linking and compilation, CODAL runtime configuration, and version locked
references to any supporting libraries. Specifying such parameters in JSON makes customis-

https://github.com/lancaster-university/codal
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Fig. 4.8 The CODAL build architecture where each box represents a git repository. A solid
box represents the root build repository where user applications and the main build system
reside, a dashed box represents a target library, and a dotted box represents a standard library.

ing the compiler toolchain more accessible. Targets also contain the device driver model and
additional APIs that are derived from supporting software libraries. These software libraries
are also git repositories, and they typically contain supporting drivers and abstractions used
by target libraries; the CODAL runtime, for example, is a software library.

Targets can be specified and the build system invoked from an optional python helper
script. During the build process, CMake downloads the target libraries and all of its software
dependencies. Once all libraries have been downloaded, each is added to the CMake build
tree to resolve dependencies and determine the compilation and linking order. As all libraries
are just Git repositories, no infrastructure investment is required and developers can use
existing services like Github to host CODAL libraries.

Figure 4.8 shows the dependency relationship of some of the many targets available in the
CODAL ecosystem. As can be seen in the figure, all targets depend on codal-core, in addition
to platform dependent libraries. For instance, the codal-circuit-playground-express target
depends on codal-core and codal-samd, a library that contains specific hardware drivers for
SAMD21/SAMD51 processors.
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4.4 From MakeCode to CODAL

MakeCode supports a simple foreign function interface from STS to C++ based on names-
paces, enumerations, functions, and basic type mappings. Functions and typings typically
come from CODAL, and the resulting C++ files take the place of conventional user applica-
tions in the CODAL build system.

MakeCode uses top-level namespaces to organize sets of related functions and these
top-level namespaces are mapped to toolbox categories in the MakeCode editor (as seen in
Figure 4.1C). Preceding a C++ namespace, enumeration, or function with a comment starting
with //% indicates that MakeCode should map the C++ construct to STS. Within the //%

comment, attributes specify the visual appearance for that language construct, such as for the
input namespace in C++ for the CPX:

1 / /% c o l o r ="#B4009E " w e i g h t =98 i c o n ="\ u f192 "
2 namespace i n p u t { . . .

Mapping of functions and enumerations between C++ and STS is straightforward and
performed automatically by MakeCode. For example, the following C++ function onLight-

ConditionChanged in the namespace input wraps the more complex C++ needed to update
the sensor and register the (Action) handler with the underlying CODAL runtime:

1 / /% b l o c k ="on l i g h t %c o n d i t i o n "
2 void o n L i g h t C o n d i t i o n C h a n g e d ( L i g h t C o n d i t i o n c o n d i t i o n , Ac t i o n h a n d l e r ) {
3 auto s e n s o r = &getWLight ( )−>s e n s o r ;
4 s e n s o r −>upda teSample ( ) ;
5 r e g i s t e r W i t h D a l ( s e n s o r −>id , ( i n t ) c o n d i t i o n , h a n d l e r ) ;
6 }

MakeCode generates a TypeScript declaration file (here called a shim file) to describe
the TypeScript elements corresponding to C++ namespaces, enumerations and functions.
Since the C++ function above is preceded by a //% comment, MakeCode adds the following
TypeScript declaration to the shim file and copies over the attribute definitions in the comment.
MakeCode also adds an attribute definition mapping the TypeScript shim to its C++ function:

1 / /% b l o c k ="on l i g h t %c o n d i t i o n "
2 / /% shim=i n p u t : : o n L i g h t C o n d i t i o n C h a n g e d
3 f u n c t i o n o n L i g h t C o n d i t i o n C h a n g e d ( c o n d i t i o n : L i g h t C o n d i t i o n , h a n d l e r : ( )

=> void ) : void ;

Since the //% comment also contains a block attribute, MakeCode creates a block (named
“on light”), which can be seen in Figure 4.9. This process can be directly observed in any
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Fig. 4.9 The resulting “on light” block defined using //%.

Fig. 4.10 The MakeCode C++ wrapping of the on light condition, compiled by the cloud
compiler.

MakeCode editor. The Adafruit CircuitPlayground Express editor is given as an example
(Figure 4.10).

To support the foreign function interface, MakeCode defines a mapping between C++
and STS types. Boolean and void have straightforward mappings from C++ to STS (bool
→ boolean, void → void). As JavaScript only supports number, which is a C++ double,
MakeCode uses TypeScript’s support for type aliases to name the various C++ integer types
commonly used for microcontroller programming (int32, uint32, int16, uint16, int8, uint8).
This is particularly useful for saving space on 8-bit architectures such as the AVR. MakeCode
also makes use of Managed Types from the CODAL runtime C++ types for strings, and uses
the CODAL message bus to map STS lambdas and functions to C/C++.
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4.5 Systems evaluation

Our platform has been actively deployed for over three years, bringing the benefits of a safe
and intuitive programming environment for microcontrollers to millions of users. In this
section we provide a broad, quantitative evaluation of the cost at which these benefits are
realised. We do this with several micro-benchmarks that give insight into the performance of
MakeCode and CODAL across the Uno, micro:bit, and CPX devices. We break down results
by layer (CODAL and MakeCode) to give an insight into how each performs.

4.5.1 Benchmarks, devices, and methodology

To analyse the performance of our solution, we have written a suite of programs to evaluate
different aspects of MakeCode and CODAL on a representative selection of real hardware
devices. Throughout, we use the C++ CODAL benchmarks as a baseline; the STS bench-
marks show the overhead added by MakeCode. These programs were written in both C++
and STS, and evaluated on three devices: The micro:bit (Nordic nRF51 microcontroller), the
CPX (Atmel ATSAMD21 microcontroller), and the Uno (Atmel ATmega microcontroller).

The Uno is the simplest of these devices, consisting of an 8-bit processor running at 16
MHz, with only 2kB of RAM and 32kB of flash. The micro:bit has a 32-bit Cortex-M0
clocked at 16MHz, with 16kB RAM and 256kB of flash. The CPX is a 32-bit Cortex-M0+,
which offers greater energy efficiency and performance; it clocks at 48 MHz, has 32kB of
RAM and 256kB of flash. The benchmarks are classified into two types, each with their own
methodology:

1. Performance Analysis: Tests that capture time taken to perform a given operation. For
these benchmarks, we toggle physical pins on the device at key points in the test code.
We then measure the time to execute the operation, by using a calibrated oscilloscope
observing these pins. This allows us to derive highly accurate real time measurements
without biasing the experiment.

2. Memory Analysis: Tests that capture the RAM or FLASH footprint of a certain
operation. A map of memory is logged before and after the execution of an operation,
allowing us to compute the cost. A serial terminal captures the output of these tests.

Note that memory and performance analysis are done in separate runs to ensure logging
does not affect time-related measurements.
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Table 4.1 A comparison of execution speed between: native C++ with CODAL; MakeCode
compiled to native machine code; MicroPython; and Espruino. The first line lists the C++
time, while subsequent lines are slowdowns with respect to the C++ time.

UNO micro:bit CPX
CODAL 171ms 102ms 31ms

MakeCode 2.4x 2.1x 7.3x
MicroPython - 101x 183x

Espruino - 1139x -

4.5.2 Tight loop performance

To place the performance of MakeCode in context, we perform a comparative evaluation of
MakeCode against two state-of-the-art solutions adopted by citizen engineers, using native
C++ as our baseline. The two points of comparison are MicroPython [161], an implementa-
tion of Python for microcontrollers, and Espruino [289], an implementation of JavaScript for
microcontrollers. For the CPX, a fork of MicroPython known as “CircuitPython” was used.
Both MicroPython and Espruino use virtual machine (VM) approaches.

To give an indicative general case execution time cost of each solution, we created a
simple program that counts from 0 to 100,000 in a tight loop in each solutions’ respective
language; the results are shown in Table 4.1. On AVR we count to 25,000 (to fit within a 16
bit int) and scale up the results.

For MicroPython and Espruino on the micro:bit, the run is two or more orders of mag-

nitude slower than a native CODAL program. MakeCode performs only 2x slower. The
slowdown reflects the simple code generator of the STS compiler. It should be noted that
MakeCode for the CPX uses the tagged approach, which allows for seamless runtime switch-
ing to floating point numbers, resulting in a further 3x slowdown. For both devices, we
can observe that MakeCode outperforms both the VM-based solutions of MicroPython and
Espruino by at least an order of magnitude. MicroPython and similar environments cannot
run on the Uno due to flash and RAM size limitations.

4.5.3 Context switch performance

To evaluate the performance of CODAL’s scheduler we conducted a test that created two
fibers, continuously swapped context, and measured the time taken to complete a context
switch. We performed this test in both STS and C++ and the resulting profiles can be seen
in Figure 4.11, which breaks the context switch down into three phases: (1) CODAL, the
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Fig. 4.11 Base context switch profiles per device (left); Time taken to perform a context
switch against stack size (right).

time it takes to perform a context switch in CODAL; (2) Stack, the time taken to page out the
MakeCode stack; and (3) MakeCode, the overhead added by MakeCode.

From these results, we observe that context switches generally take tens of microseconds.
The cost of CODAL’s stack paging approach can also be a significant, but not dominant cost.
The cost of stack paging would of course grow with stack depth. Figure 4.11 profiles the time
a context switch takes with an increasing stack size across all three devices in CODAL. This
is similar to the previous test, except we placed bytes (in powers of 2) on the stack of each
fiber, starting from 64 and finishing at 1024. The difference in gradients, and ranges of values
can be put down to device capability. For instance, the Uno has an 8-bit word size, which
means more instructions are required to copy the stack, this results in a steeper gradient than
the other two devices. The vertical band indicates typical stack sizes for MakeCode programs
based on a representative set of examples.

4.5.4 Performance of asynchronous operations

To gauge the cost of asynchronous operations in CODAL, we tested three commonly used
code paths, designed to determine the efficiency of CODAL’s fork-on-block Asynchronous
Procedure Call (APC) mechanism that underpins all event handlers in MakeCode and
CODAL. We measured the RAM and processor cost of: (1) creating a fiber; (2) handling a
non-blocking APC call; and (3) handling a blocking APC call. We used the CPX for this
experiment.
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Table 4.2 Flash consumption of a MakeCode binary (kB)
CPX micro:bit Uno

MakeCode 20.46 12.14 7.79
CODAL 29.85 34.35 13.7

Supporting Libraries 14.99 24.28 -
C++ Standard Library 43.14 24 1.03

Non-blocking APC calls, the best case, have a small overhead of 32 bytes of RAM and
4.01 microseconds of processing time. Blocking APC calls, the worst case, incur a large
overhead of 204 bytes of RAM and 32.4 microseconds of processor time. Creating a fiber
costs 136 bytes of RAM and 35.4 microseconds of processing time. These results highlight
the performance gains of the opportunistic fork-on-block mechanism over a naive approach
that would execute every event handler in a separate fiber.

4.5.5 Flash memory usage

Microcontrollerss make use of internal non-volatile flash memory to store program code.
Table 4.2 shows the per device flash consumption of each software library used in the
final MakeCode binary. To obtain these numbers, we analyzed the final map file produced
after compilation. The ordering of the table aligns with the composition of the software
layer: MakeCode builds on CODAL which builds on the C++ standard library and supporting
libraries. MakeCode and CODAL consume 108 kB of flash, whereas CircuitPython consumes
201 kB, MicroPython consumes 228 kB, and Espruino consumes 142 kB of flash. This
means that users can write sizeable applications in MakeCode, without the worry of running
out of flash memory.

From the bottom up, the profile of the standard library changes dramatically for each
device: The Uno has a very lightweight standard library; the micro:bit uses 64-bit integer
operations (for timers) which requires extra standard library functions; and the CPX requires
software floating point operations pulling in more standard library functions.

The size of CODAL and MakeCode scales linearly with the amount of functionality a
device has, due to the component oriented nature of CODAL and transitively MakeCode. For
instance, the Uno has few onboard components when compared to the CPX and micro:bit.
The modular composition of CODAL allows us to support multiple devices with a variety of
feature sets, while maintaining the same API at the MakeCode layer.
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Table 4.3 Static RAM consumption of a MakeCode binary (kB)
CPX micro:bit Uno

MakeCode 0.612 1.069 0.074
CODAL 0.369 0.214 0.156

Supporting Libraries 0.312 0.923 -
C++ Standard Library 0.161 0.149 0.074

4.5.6 RAM memory usage

Table 4.3 shows the per device RAM consumption of each software library used in the final
MakeCode binary. To obtain these numbers, we analyzed the final map file produced after
compilation. At runtime, MakeCode dynamically allocates additional memory: 1.56 kB for
the CPX, 560 bytes for the micro:bit, and 644 bytes for the Uno. We also can see that in all
cases, the RAM consumption of MakeCode and CODAL is well within the RAM available
of each device.

MakeCode and CODAL consume a small amount of resources in comparison: Circuit-
Python (a derivative of MicroPython) consumes 12.8 kB, MicroPython consumes 9.5 kB,
and Espruino consumes 5.3 kB of RAM. On the micro:bit, the Bluetooth stack requires 8 kB
of RAM to operate. Due to MicroPython’s RAM consumption this means that Bluetooth is
inoperable. Comparatively, Espruino does enable the Bluetooth stack, but users have just
~300 bytes available for their programs due to the overhead incurred.

4.5.7 Extensibility

Adding a new device in CODAL is trivial once a microcontroller has been ported. The
porting of a microcontroller is where we observe the largest development overhead, as
low-level implementations of drivers for I2C, Serial, and SPI may have to be re-written. Due
to CODAL’s abstraction model, once low-level drivers have been implemented, drivers for
higher level components like Accelerometers (which depend on high-level interfaces for
low-level drivers) can be immediately adopted if hardware is present. A similar technique is
used in MakeCode for simulators.
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Fig. 4.12 A micro:bit watch form-factor wearable for playing the rock/paper/scissors game
(left); and a decorative necklace created using the CPX.

4.6 Applications of MakeCode & CODAL

MakeCode and CODAL now support over 40 physical computing devices and are used by
millions of users every month [102]. This section shows how citizen developers are using the
intuitive programming experience offered by MakeCode and CODAL to create diverse and
advanced applications. We provide example applications for the BBC micro:bit the Circuit
Playground Express (CPX), take note of the battery powered and embedded nature of each.

Wearables

Many physical computing devices are used to create interactive wearables. Figure 4.12
(left) shows a simple but highly popular micro:bit project: a micro:bit ‘watch’ that plays the
rock/paper/scissors game by randomly displaying a rock (3x3 square), paper (5x5 square
with center empty) or scissor icon on the 5x5 LED display when the device is shaken.

Figure 4.12 (right) shows the CPX used as the decorative component of a necklace. The
CPX is powered by battery, connected to RGB LEDs (in addition to its on-board ones), and
is programmed to change light patterns based upon the state of the on-board switch.

Digital crafting

Other popular applications augment physical computing devices with widely available crafts
supplies. This allows citizens to quickly integrate devices into low cost, playful, and practical
housings. Actuation adds a further dimension to applications. For example, Figure 4.13
(left) shows how cardboard, paper clips, and crocodile clips can be used to build an animated
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Fig. 4.13 Example projects: a cardboard inch worm (left); and light-reactive cardboard robots
(right).

inch worm. The CPX is attached to folded cardboard and connected to a servo via crocodile
clips from its GPIO. A paper clip is connected between the the front of the folded cardboard
and the servo, and a program on the CPX actuates the servo causing the contraption to
progressively ‘inch’ along surfaces.

The micro:bit can also control servos and motors via its edge connector. This has resulted
in the creation of inexpensive, cardboard based creations that can react to their environment,
such as those shown in Figure 4.13 (right). The simple robots pictured here open and close
their mouths in response to light stimulus. Other similar projects for these devices include
musical instruments such as a ‘guitar’ that changes pitch based on its physical orientation,
and goal line technology for tabletop football games.

Science and measurement

MakeCode and CODAL are also being used to create applications for scientific exploration.
The micro:bit and the CPX make ideal devices for this purpose due to their small and
embeddable form factor. A great example of this is provided by the Bloodhound project
(http://www.bloodhoundssc.com), a UK initiative to set a new world land speed record. As
part of their remit to inspire students about STEM subjects, the ‘Race to the Line’ project
was launched across the UK. In this project, students design, build and race model rocket
cars in competition, learning about physics, aerodynamics, engineering and measurement.
A micro:bit is integrated into the car’s design, as shown in Figure 4.14, left. The micro:bit
captures 3-axis accelerometer data of the rocket car during its race. After the race, students
upload the data from the micro:bit and analyse the performance of their cars.

http://www.bloodhoundssc.com
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Fig. 4.14 Example projects: a Bloodhound model rocket car instrumented with a micro:bit
(left); and measuring soil moisture using the GPIO of the CPX (right).

Similarly, Figure 4.14 (right) illustrates an environmental project that uses the CPX to
measure soil moisture. The combination of water and nutrients in soil affect its conductivity—
the more water, the greater the conductivity. This can be directly measured using metallic
probes (note the use of inexpensive nails as probes in this example) and the CPX’s integrated
analogue voltage sensor. Then, the CPX is programmed to periodically take a moisture
reading and record the results into the device’s internal flash file system for later analysis.

Interconnected devices

Our final class of projects are those that make use of multiple, wirelessly networked devices.
Whilst the micro:bit is capable as acting as a BLE device, we observed that the greatest level
of innovation emerged from a simpler, custom built packet radio protocol. With the micro:bit
radio API, micro:bits can form low level peer-to-peer multicast groups. Any data sent from
one micro:bit is seen by all members of their group thus enabling a simple yet powerful basis
for projects involving group collaboration in a way not feasible with BLE. Examples here
include remote control vehicles, such as that illustrated in Figure 4.15 (left). This example
uses two micro:bits sharing data over radio: one integrated into the vehicle to control steering
and speed, and a second integrated into a handheld steering wheel that is used as a remote
control. A second example is also illustrated in Figure 4.15 (right). This application makes
use of the CPX’s on-board infrared receiver and transmitter to create laser tag. Cardboard
targets, each with a CPX, are placed on walls or integrated into object and players must run
around and score as many points as possible.
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Fig. 4.15 Example projects: a micro:bit-based vehicle controlled wirelessly by a second
micro:bit (left); and laser tag using multiple CPXs (right).

4.7 Summary

This chapter has presented MakeCode and CODAL, a visual programming environment (P1)
for microcontrollers. Applications can be created for microcontrollers using event-based
APIs (P2) and without installation from any device with a web browser (P3). By mapping
visual blocks onto C++ CODAL APIs, resulting applications near the efficiency of C++
(GP4).

Through our evaluation we show that our approach is up to 50 times more processor
efficient than other solutions in the space. For physical computing devices, this translates to
lower energy consumption and therefore a longer lifetime on battery (GP4). MakeCode and
CODAL are also more RAM efficient than other solutions, and can even support extremely
resource constrained devices with just 2 kB of RAM (GP4, GP2). We have applied MakeCode
and CODAL to over 40 devices (GP2) demonstrating the extensibility of our approach (GP3).

Finally, we have illustrate how intuitive MakeCode and CODAL make microcontroller
programming by reporting on how they are used to enable many advanced citizen projects
(GP1). We also report on statistics which show that over one million citizen developers now
use MakeCode and CODAL every month (GP1).



Chapter 5

JACDAC: intuitive hardware
composition

Across Chapters 2 and 3 we identified properties of existing technologies that make hardware
composition more intuitive:

HC1 Dynamic connectivity: Hardware composition is iterative and dynamic, and protocols
that support dynamic device connection and removal (i.e. hot plugging) prove more
intuitive to citizens.

HC2 Dynamic device discovery: Protocols that support dynamic connection also typically
discover the capabilities and services offered by devices. Capabilities and services
can then be automatically mapped to applications without intervention from citizens,
making composition more intuitive.

HC3 Hardware abstraction: Standardised software abstractions and interfaces for common
devices (i.e. mice and keyboards) allow citizens to compose hardware without having
to perform any additional software installation. This makes hardware composition
more intuitive to those with little technical expertise.

Another emergent trend across the literature was simplifying composition by reducing
the number of wires (low infrastructure). However, existing wired protocols that support the
properties above are more complex and require more memory and silicon to implement. This
means that low cost microcontrollers typically do not support such protocols. We therefore
concluded in Chapter 3, that there are no low-infrastructure wired protocols with dynamic
connectivity, device discovery, and hardware abstraction, that are supported by low cost
microcontrollers.
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This chapter introduces Joint Asynchronous Communications; Device Agnostic Control
(JACDAC), a single-wire protocol designed for the dynamic and iterative composition of
microcontrollers and peripherals. It was designed to offer a high level of dynamism and
abstraction, yet maintain the universal applicability enjoyed by existing low-level protocols
through the reuse of peripherals common to nearly all microcontrollers. JACDAC abstracts
peripherals and resources as a set of reusable high-level services that are shared among
devices. The high-level nature of JACDAC services allows the run-time introspection of
packets for an improved debugging experience. We also provide tooling to unify the world
of the microcontroller and the Web, allowing users to develop new services, debug existing
ones, and diagnose issues with a JACDAC network directly from a web browser.

We begin by providing an overview of the protocol in Section 5.1, which outlines the
protocol stack discussed in Sections 5.2, 5.3, and 5.4. We then perform a comparative
systems evaluation of JACDAC in Section 5.5 and show how JACDAC makes hardware
composition more intuitive to citizen developers in Section 5.6. This final section describes
the use of JACDAC by fashion designers as part of a fashion show in Brooklyn, New York.

5.1 Protocol overview

Microcontrollers that run the JACDAC protocol are known as JACDAC devices (Figure 5.1).
They communicate JACDAC packets to each other across a shared bus. Each JACDAC
device has a simple stack featuring: (1) a physical layer that handles hot plugging and the
transmission and reception of JACDAC packets; (2) a control layer that performs device
discovery, address allocation, and the routing of JACDAC packets; to (3) services which
exchange JACDAC packets (Figure 5.2).

JACDAC devices optionally host services (Section 5.2) which abstract hardware pe-
ripherals and software resources. Services are akin to the REST-ful interfaces of the web
and each service has an accompanying specification that standardises its software interface.
At run time, application developers invoke APIs to send packets to services which follow
the form defined in the service specification. As the format of messages is standardised,
devices running compatible service implementations can replace one another without the
modification of application code. Since the underlying communication medium is a broadcast
bus, services can also operate in one of two communication paradigms: host-client (1:N), as
in the world of web services, or broadcast (M:N), where packets are shared in a peer-to-peer
topology.
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Fig. 5.1 The hardware organisation of a JACDAC device.

The control layer (Section 5.3) is responsible for device discovery, address allocation
and the routing of packets to services. To enable dynamic device discovery, the control layer
periodically transmits control packets that provide detail about a device and the services it
makes available to the bus. Control packets can also contain optional advertisement data for
each service. The presence or absence of control packets indicate the connection or removal
of a device from the bus.

Also provided in control packets is a short 8-bit address that reduces the amount of
address meta data required for routing standard JACDAC packets. To obtain a short address,
a device must enumerate itself using control packets and propose an address to use on the
bus. Devices need only enumerate themselves if operating a host or broadcast service;
un-enumerated devices acting only as clients are free to use enumerated services without
enumerating (transmitting control packets) themselves. A subset of the control layer can be
implemented to support low capability microcontrollers.

The physical layer (Section 5.4) is designed to support hot plugging and communicates
data using the UART module common to nearly all microcontrollers. Instead of separate
wires for transmission and reception, JACDAC operates UART in half-duplex mode, using
just one wire for both. This reduces the number of wires required to connect devices together.

Any JACDAC device can initiate a transmission on the bus, and devices must arbitrate
for control of the bus before transmitting. Bus arbitration is performed using a short pulse
whose duration dictates the upcoming baud rate of the transmission. The pulse can be one
of four durations that map to corresponding baud rate: 1Mbaud, 500Kbaud, 250Kbaud,
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Fig. 5.2 The JACDAC stack required by each device

125Kbaud, allowing cheaper microcontrollers to be used. After the pulse, the physical layer
communicates a JACDAC packet which have a four-byte header for addressing and error
checking, and a maximum payload of 255 bytes.

To provide citizen developers with an easy and universal debugging and development
experience, JACDAC leverages WebUSB [44] to bring the worlds of microcontrollers and
the web closer together. JACDAC over WebUSB allows the web browser to act as its own

JACDAC device, where JavaScript can be used to communicate and share services with
devices on a physical JACDAC bus.

5.2 Services

REpresentational State Transfer (REST) defined a mode of interaction, that when applied to
HTTP, changed the architecture of the Web [150]. Web-based REST services model resources
and communicate using standardised messages written in an object interchange language
such as JSON or XML. Standardised message formats allow the transfer of information
between client and server. JACDAC services similarly specify messages, except they allow
devices to share hardware resources in addition to software resources.

Message specifications for services are written in markdown [168] using a custom packet
definition language. This language allows message formats to be translated into structures
for many other programming languages, including typescript and C++.

Each specification is reviewed and approved by a consortium of JACDAC users and is
subsequently assigned a 32-bit service_class to identify it on the bus at run time. This number
guarantees a service implementation meeting the corresponding specification is present on
the bus. By standardising packet formats in this way, hardware running compatible services
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1 # B a s i c G e s t u r e S e r v i c e
2 A s e r v i c e t h a t t r a n s m i t s

g e s t u r e e v e n t s p roduced by
a ha rdware a c c e l e r o m e t e r .

3 ‘ ‘ ‘
4 m e t a d a t a B a s i c G e s t u r e S e r v i c e {
5 i d e n t i f i e r : 0 x00000008 ;
6 mode : Host ;
7 }
8 ‘ ‘ ‘
9

10 ## E n u m e r a t i o n s
11 ‘ ‘ ‘
12 enum G e s t u r e : u i n t 1 6 {
13 T i l t U p = 1 , Ti l tDown = 2 ,
14 T i l t L e f t = 3 , T i l t R i g h t = 4 ,
15 FaceUp = 5 , FaceDown = 6 ,
16 F r e e F a l l = 7 , ThreeG = 8 ,
17 SixG = 9 , EightG = 10 ,
18 Shake = 11 , TwoG = 12 , S t ep

= 13
19 }
20 ‘ ‘ ‘

1 ## A d v e r t i s e m e n t Data
2
3 ‘ ‘ ‘
4 c o n t r o l G e s t u r e C o n t r o l {
5 l a s t G e s t u r e : G e s t u r e ;
6 }
7 ‘ ‘ ‘
8
9 ## P a c k e t s

10 ### Event
11 ‘ ‘ ‘
12 r e p o r t G e s t u r e E v e n t {
13 e v e n t : G e s t u r e ;
14 }
15 ‘ ‘ ‘
16 ### Event c o n f i g u r a t i o n
17 ‘ ‘ ‘
18 command E v e n t C o n f i g u r a t i o n {
19 e n a b l e d : u i n t 8
20 even tType : G e s t u r e
21 }
22 ‘ ‘ ‘

Fig. 5.3 An example service specification for a basic gesture service.

can act as drop-in replacements for one another, regardless of the underlying hardware. For
example, two JACDAC devices may operate accelerometer services each using a different
accelerometer peripheral, but clients of each service need not be aware of this detail.

While REST services adopt a single communication paradigm (client-server), JACDAC
services allow the selection of two communication paradigms. In the first paradigm, host-

client, host services provide access to a resource and allow other devices to augment their
functionality by acting as clients to the service. The second communication paradigm,
broadcast, allows devices to make host-to-host (peer-to-peer) communication. The selection
of communication paradigm gives service developers the freedom to pick the correct paradigm
for their service, rather than having the paradigm imposed on them by the protocol. Any
future usages of host refers to services operating in either paradigm.

5.2.1 Specifying services

Rather than use difficult-to-parse interchange formats like XML and JSON, JACDAC services
standardise messages as byte-level packet structures. Byte-level packet structures mean that
even the lowest capability devices can parse JACDAC packets with ease.
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A service creator specifies packet layouts for services using text and code snippets in
markdown. We chose to use markdown due to its wide use, simple formatting, and easy dis-
semination through conversion to HTML. Contained in each code snippet is a custom packet
definition language that is programming language agnostic. It can be used to automatically
generate structures for languages like C/C++ and serialisation and deserialisation classes for
higher-level languages like TypeScript or Python.

Figure 5.3 shows a markdown service specification for a gesture service that depends on
an accelerometer. Specification files start with a short service description and metadata that
defines any dependencies. In this case, the gesture service depends on a physical hardware
accelerometer. The metadata field also allows for the inheritance of common JACDAC
service interfaces like the sensor interface, which clients use to configure the streaming state
of a sensor. An additional section, omitted here for conciseness, describes the full operation
of a service in plain-text.

In the figure, code snippets in the “Enumerations” section are prefixed with the enum

type. The enum type defines any constants that will be used in upcoming packet format
specifications. In this case, the service defines all possible Gesture types.

The advertisement data section specifies any optional contextual information that the
service may place in control packets sent by the control layer. Code snippets in this section
are denoted by the special control type and in the figure, the gesture service advertises the
last gesture that was detected.

The final section of the specification defines the packet formats expected to be sent to or
from a host. The code snippets in this section are prefixed with either report or command:
commands are sent to a host device and reports are sent by a host device.

Once a service is specified, its creator submits the specification via a pull request to
the JACDAC Github repository (https://github.com/jacdac/jacdac) where it is reviewed by a
consortium of JACDAC users. Once approved, service structures/classes are automatically
generated and the specification is made available on the JACDAC website.

5.2.2 Developing services

To lower the barrier to entry and to aid citizen developers in iterative development, JACDAC
is implemented in both C++ and TypeScript. Protocol layers from each stack can be combined
and reused across different environments as shown in Figure 5.4. We discuss each of the
environments in turn below.

https://github.com/jacdac/jacdac
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Fig. 5.4 Three alternate JACDAC implementations: in pure C++ via CODAL (left); using a
mixture of TypeScript and C++ via MakeCode and CODAL (middle); and TypeScript only
using the Web browser or NodeJS [273].

Web browser / Node JS

With powerful desktop JavaScript runtime environments and ubiquitous web browsers, the
JavaScript ecosystem is one of the largest in existence. The JACDAC TypeScript stack (as
shown in Figure 5.4; right) allows citizen developers to interact with JACDAC devices from
any JavaScript environment, including NodeJS [273] and the web browser.

Emerging web technologies like WebUSB [44] even let web browsers to interact with
USB devices. A JACDAC device that can also act as a USB device can therefore connect the
web browser to the JACDAC bus. This allows for the universal development and debugging
of JACDAC applications and services from any computer with a web browser and a USB
port.

MakeCode

As MakeCode adheres to most of the TypeScript specification, MakeCode can compile
the JACDAC TypeScript stack into binary instructions for physical computing devices. By
extension, this means that any service written for the JACDAC TypeScript stack can be
compiled and subsequently executed on any MakeCode device. Moreover, services written
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in TypeScript can be easily presented in Blocks making programming networks of physical
computing devices more intuitive This workflow is shown in Figure 5.5.

As shown in Figure 5.4 (middle), not all aspects of the MakeCode JACDAC stack are
written in TypeScript. Since the code density of MakeCode compilation is less efficient
than C++ compilation, a foreign function interface to the CODAL-based physical layer from
TypeScript provides efficient real-time access to the hardware.

CODAL

Not all devices have the required processing power or memory resources to operate the
JACDAC typescipt stack from MakeCode. For this class of device, CODAL provides an
equivalent JACDAC stack written in C++ (Figure 5.4; left) which has a very close relationship
with the TypeScript JACDAC stack. Of course, the use of C++ comes at the cost of complexity
and the inability to exploit the wealth of TypeScript-based services already in existence.
Regardless of the stack adopted by a developer, compatibility is guaranteed as long as service
specifications are followed.

5.2.3 Using services

Figure 5.5 presents a basic gesture service implemented using the specification from Fig-
ure 5.3. The figure shows a host gesture service intended to run on a microcontroller that
has a physical accelerometer, and a client that requires notification of gesture events. Both
services inherit from a base class, JDService, which provides common interfaces and a base
implementation for sending and receiving packets.

The host service interfaces with the accelerometer peripheral and performing gesture
detection. When a gesture is detected, the host broadcasts the gesture on the JACDAC bus.
The host service also implements addAdvertisementData to advertise the last detected gesture
as per the specification. Upon reception of a gesture, clients use the GestureEvent class—
automatically generated from the specification—to deserialize the byte buffer contained in a
JDPacket, and subsequently raise an event for use by applications.

Bottom-left of Figure 5.5 is an example application written using the basic gesture service.
When the application detects a Step gesture from the “LEFT_LEG” device, the lights change
to red, and green when it detects a step from the “RIGHT_LEG” device. The ability to name
devices allows citizen developers to refer to devices by application role rather than low-level
address. Finally, service developers can add annotations to TypeScript classes so that services
appear in the MakeCode editor as visual Blocks.
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1 c o n s t GESTURE_SERVICE_ID = 0 x00000008
2
3 c l a s s B a s i c G e s t u r e S e r v i c e H o s t e x t e n d s J D S e r v i c e {
4 a c c e l e r o m e t e r : A c c e l e r o m e t e r
5 l a s t G e s t u r e : G e s t u r e
6
7 c o n s t r u c t o r ( a c c e l e r o m e t e r : A c c e l e r o m e t e r ) {
8 s u p e r ( GESTURE_SERVICE_ID , JDServiceMode . Host ) ;
9 t h i s . a c c e l e r o m e t e r = a c c e l e r o m e t e r

10 / / g e s t u r e f o r w a r d i n g
11 t h i s . a c c e l e r o m e t e r . o n G e s t u r e ( G e s t u r e . Any , f u n c t i o n ( t y p e :

G e s t u r e ) {
12 l e t g e s t = new G e s t u r e E v e n t ( ) ;
13 g e s t . e v e n t = t y p e ;
14 t h i s . send ( g e s t ) ;
15 t h i s . l a s t G e s t u r e = t y p e ;
16 } )
17 }
18 a d d A d v e r t i s e m e n t D a t a ( ) : B u f f e r {
19 re turn new B u f f e r ( t h i s . l a s t G e s t u r e , 2 ) ;
20 }
21 }

1 c l a s s B a s i c G e s t u r e C l i e n t e x t e n d s J D S e r v i c e {
2 c o n s t r u c t o r ( ) {
3 s u p e r ( GESTURE_SERVICE_ID , JDServiceMode . C l i e n t ) ;
4 }
5 h a n d l e P a c k e t ( p k t : JDPacke t ) {
6 l e t r e c = new G e s t u r e E v e n t ( p k t . d a t a ) ;
7 t h i s . r a i s e H o s t E v e n t ( r e c . e v e n t )
8 }
9 }

1 l e t l e f t L e g = new B a s i c G e s t u r e C l i e n t ( ) ;
2 l e f t L e g . r e q u i r e d D e v i c e . name =

"LEFT_LEG" ;
3 l e t r i g h t L e g = new

B a s i c G e s t u r e C l i e n t ( ) ;
4 r i g h t L e g . r e q u i r e d D e v i c e . name =

"RIGHT_LEG" ;
5
6 l e f t L e g . o n G e s t u r e ( G e s t u r e . Step , ( ) =>{
7 / / s e t l i g h t s t o red
8 } )
9 r i g h t L e g . o n G e s t u r e ( G e s t u r e . Step , ( ) =>{

10 / / s e t l i g h t s t o green
11 } )

Fig. 5.5 A JACDAC basic gesture service host (top), client (middle), and an example
application (bottom-left) all written in TypeScript. Finally, the propagation of TypeScript to
MakeCode Blocks is shown bottom-right of the figure.
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Fig. 5.6 The web-based JACDAC debugger, visualising packets received from a device
running the basic gesture service.

5.2.4 Debugging services

As well as providing a familiar environment to develop JACDAC services, the Web browser
also provides a universal, no-installation, debugging environment. Reusing WebUSB and
the TypeScript JACDAC stack, the Web browser can be used to visualise packets sent on
the bus. This allows citizen developers to more easily diagnose and debug error conditions.
Furthermore, because services transmit standardised, well-defined packets, at run-time,
packets can be decoded into a human comprehensible form. Figure 5.6 shows the debugger
being used to decode the basic gesture service from Figure 5.5.

5.3 The control layer

This section details the control layer, which enables many of the dynamic aspects of JACDAC,
including: dynamic device discovery, device address allocation, and routing JACDAC packets
to services and clients.
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5.3.1 Control packets

Control packets enable many of the dynamic features of the control layer and are simply
JACDAC packets containing a standardised sequence of bytes, just like a normal JACDAC
service. Control packets therefore contain the following: a 64-bit unique device identifier
(UDID), an optional human-readable name, device_flags to indicate the status of a device, a
list of hosted services, and an 8-bit condensed device_address.

The UDIDs contained within a control packet provide an absolute means to identify a
device. They are used to detect and resolve address collisions, and also as a mechanism
for devices to remember one another. JACDAC has two forms of UDID: (1) bus unique
device identifiers, which may be generated based upon a serial number, a constant seeded
random number generator, or stored into flash by the factory which produces the device; or
(2) globally unique device identifiers which are assigned by an organisation. Devices use
the seventh most significant bit of the UDID to indicate if their address is globally or bus
assigned. This is similar to the IETF EUI-64 specification [173].

Each control packet also contains a list of hosted services and each service in this list is
described by the following fields: a 32-bit service identifier, 8-bit service-specific flags, and
optional advertisement data of up to 16 bytes. Clients to services are not enumerated on the
bus, and are therefore no included in service lists. This allows the number of clients on the
bus to scale infinitely.

The condensed 8-bit device_address inside a control packet can be thought of as a
compressed form of the 64-bit UDID. These short addresses are dynamically allocated when
a device is connected to the bus (described later). A 4-bit service_number is combined with
a device_address to identify a host service running on a device. The service_number is
computed from the order of services in the list of hosted services. By compressing addressing
information, only 12-bits are required to route JACDAC packets between devices, ultimately
increasing bus efficiency.

Control packets are typically sent by the control layer every 500 milliseconds and are
ultimately used to detect the connection or removal of a device from the bus. Whilst a device
is sending control packets it is considered connected, and when it stops, it is considered
removed from the bus. The control layer provides connection or disconnection events to
services with established links to devices. The use of regular control packets however
introduces an overhead that becomes especially prevalent when many packets are being
transmitted on the bus. The 500 millisecond timing is therefore flexible, and JACDAC
devices can scale the number of control packets they send according to bus activity.
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Fig. 5.7 A diagram of the devices from the example application. A blue box represents the
control packet of an enumerated device, whereas a white box represents an unenumerated
device. A green arrow indicates the device has received the packet. A red arrow indicates the
device has ignored the packet.

5.3.2 Routing packets to services

The device_address and service_number fields in a packet identify a service operating on
a device. Host services emit packets using their device_address and service_number, and
clients address hosts by sending packets using the device_address and service_number of the
host. No direction information (i.e. from client to host and vice versa) is provided in packets.

Figure 5.7 is a diagram of the underlying communications supporting the application
from Section 5.2.3. The application device (Device B, middle) listens for gestures from a
device positioned on the left leg (Device A, left) and another positioned on the right (Device
C, right). Each device is assigned a name according to its application purpose. Device A has
the address 40, Device C has the address 20, and both gesture services on each device have
the service_number 0. Device C is emitting a packet from the gesture service containing the
step gesture.

The client services on Device B are already connected to each of the host gesture services.
To reach this stage, the control layer on Device B matched local connection information
specified by the application. This information can be as broad as a service class (‘any gesture
service’), generic as device name (‘any gesture service with this name’), or as specific
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as unique device identifier (‘this device’). The example application running on Device B
specified devices by name: LEFT_LEG and RIGHT_LEG.

Once a client is connected to a relevant host service, information about host device,
including connection state, is maintained by the control layer. Since device information
is only stored when clients are connected to a host, maintenance overhead scales with the
complexity of the application, not the network. Upon reception of packets from the bus, it is
then the case of a simple lookup, matching the device_address and service_number from
the packet to the locally running client service. If the host is removed from the bus then the
control layer begins to look for a suitable replacement. As devices are specified by name in
the example application, no replacement would be found.

5.3.3 Dynamic address allocation

Before a device can send a packet, the control layer must first obtain an address to use. The
process to obtain an address is known as enumeration and a device is said to be enumerated

when it has been assigned an address.
The algorithm to obtain an address is designed for simplicity and engineered for a broad-

cast environment. The algorithm itself is similar to the IPv4 address allocation process [173]
but is augmented by exploiting the broadcast nature of the bus topology.

Before proposing an address to use, a device first listens to control packets emitted from
already enumerated devices to determine a free address. A device then lays claim to an
address by transmitting a control packet with the PROPOSAL flag bit set in the device_flags

field. If an enumerated device on the bus already is using the proposed address, the existing
device returns the same control packet with the REJECT flag set. The rejecting device
optionally can recommend a free address in the rejection control packet. After receiving a
rejection, the proposing device must pick a new address and begin the proposal phase again.

If at any point a proposing device receives a control packet containing its proposed
address, it also must pick a new address and begin the proposal phase again. Two devices
that propose the same address must observe the rules for address collision resolution (below).
After two control packets without rejection, a proposing device removes the PROPOSAL flag
from their control packets to indicate ownership of an address.
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Address allocators

JACDAC devices can allocate address on the bus in many different ways. The C++ and Type-
Script currently define three allocators, which can be used depending on device capability:
random, linked, and stateful. Each allocator maintains an increasing amount of state.

The random allocator is the simplest. It maintains no state and upon each allocation it
simply generates a random number between 1 and 254. Due to its lack of state, this allocator
does not recommend addresses to other devices during an address collision.

The linked allocator maintains a small amount of bus address state. Initial addresses
are allocated just like the random allocator (i.e. randomly), but once an address has been
found, this allocator acts as a linked list, maintaining the next logical device address on
from its own. When an address collision occurs through allocation or otherwise, the linked
allocator generates a new address between its own address and the next. This helps to resolve
allocations more quickly than purely random allocation.

With large networks, the prior two allocators will take longer to allocate addresses. There
will be less free addresses and many unnecessary proposals will take place. The stateful

allocator therefore maintains a bitmap of the entire address space, marking addresses as used
or unused. At the expense of 32-bytes of memory (253 bits for all allocatable JACDAC
address), this allocator is able to analyse free addresses to minimise address collisions. Only
one device needs to operate a stateful allocator to reduce address allocation time. This single
allocator can step in during any allocation and accurately recommend an unused address.
This collaboration allows less capable microcontrollers (using stateless allocators) to offload
computational complexity to more capable microcontrollers (using stateful allocators).

5.3.4 Resolving address collisions

It is possible for two different JACDAC devices to share the same device address, for
example, if two separate JACDAC networks are joined together. Address collision detection
is performed whenever a control packet is received and is a simple case of comparing
the device_address and UDID in the packet to its own. If a control packet has the same
device_address but a UDID, an address collision has occurred. To resolve this collision, the
control layer observes a simple rule: the device that detected the colliding control packet
must begin the enumeration process again to establish a new address. In other words, the
first device to communicate a control packet retains ownership of that address.

In between control packets though services are communicating with one another. It is
therefore possible for an address collision to occur for sometime without detection. During
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Field Size (bits) Field Name
12 CRC
4 service_number
8 device_address
8 size
8 * size data

Table 5.1 The JACDAC packet format

this window, the control layer may route incompatible packets to services. Spurious behaviour
would likely result if services were to attempt to decode these packets and so JACDAC guards
against this eventuality by including the UDID in every CRC calculation.

5.3.5 Supporting low-cost microcontrollers

The address compression, allocation, and collision detection techniques used by the control
layer add complexity. Devices must maintain state to route packets to services and must have
the capability to receive all control packets which is problematic for resource constrained
devices.

JACDAC enables resource constrained devices to operate in a transmit-only capacity,
adhering to a reduced subset of control layer requirements. Transmit-only devices must send
control packets regularly with all the same information as a full JACDAC device. However,
transmit only devices do not observe short addressing conventions.

All transmit-only devices share a short device_address of 255. This signifies to the
control layer that the device is using UDIDs as a means of addressing. In every standard
packet emitted from a device with address 255, the UDID consumes the first 8 bytes and
the control layer then routes packets to services based on UDID and service_number, rather
than device_address and service_number. Control packets for transmit only devices remain
exactly the same, except that the short address inside is fixed to 255.

5.4 The physical layer

I2C and SPI are pervasive protocols in the world of microcontrollers and most microcon-
trollers have dedicated peripherals to support their operation. RS232 [86], otherwise known
as Universal Asynchronous Receiver Transmitter (UART), is another similarly pervasive
protocol common to most microcontrollers. Unlike I2C and SPI, UART transmissions are
streams of free-form bytes, with structure and length defined by application developers.
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Fig. 5.8 A JACDAC frame

UART also usually operates in full duplex mode for point-to-point communications. This
requires separate wires for reception and transmission.

The JACDAC physical layer builds on the foundations of UART. Instead of full-duplex,
it operates UART in half-duplex mode to create a shared bus. JACDAC defines a fixed packet
structure and adds bus arbitration for multi-central operation. A JACDAC packet (Table 5.1)
is formed of a 4-byte header and a maximum 255-byte data payload. The packet header
consists of: a 12-bit CRC to ensure packet integrity, a 4-bit service_number and an 8-bit
device_address for addressing services, and an 8-bit size field that determines the length of
the data payload.

The process of bus arbitration is simple to implement and is achieved by a device bringing
the bus from the default logical one (3.3 volts) to a logical zero (0 volts) for a short period.
Known as the low pulse, the duration of this pulse dictates the baud rate of the UART
transmission. A low pulse always comes before a JACDAC packet and the combination
of a JACDAC packet and the low pulse forms a JACDAC frame, illustrated in Figure 5.8.
JACDAC supports four baud rates so that even the lowest capability microcontrollers can
implement it.

5.4.1 Hardware requirements

To allow as many microcontrollers as possible to adopt the JACDAC protocol, the hard-
ware requirements of the JACDAC physical layer are minimal, requiring: (1) the ability
to receive / transmit UART-style bytes using a single wire (10 bits: 1 byte, 1 stop bit, 1
start bit); (2) the transmission of bytes at one of four baud rates for transmit only devices:
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Fig. 5.9 Hardware schematic for an electromagnetically compatible JACDAC data line

1Mbaud, 500Kbaud, 250Kbaud, 125Kbaud; (3) a general purpose input/output, optionally
with interrupt capabilities; (4) the ability to approximate time, whether through instruction
counting or a hardware timer; and (5) the ability to generate random numbers (or at least
seed a software random number generator). In Figure 5.9, we provide a schematic of the
minimal electronic components required to ensure Electromagnetic Compatibility (EMC).
These are components optional and are only required if JACDAC is going to be used in a
consumer product.

5.4.2 Transmitting a packet

As mentioned previously, devices must arbitrate for possession of the bus before transmission.
This arbitration phase is known as the low pulse and the duration of the low pulse also dictates
the baud rate of the upcoming UART transmission.

To begin the low pulse, a transmitter must drive the bus low (0 volts; logical zero) for 10
bits (1 byte) at the desired baud rate. This can be implemented using a single GPIO write
operation. At 1Mbaud the low pulse duration would be 10 microseconds, and for 125Kbaud
80 microseconds. To prevent simultaneous transmission, devices must check the bus state
before commencing the low pulse. This can be implemented using a simple GPIO read
operation. Combining bus arbitration and communication of the upcoming baud rate into
a single operation simplifies software implementation, reduces hardware complexity, and
allows microcontrollers to automatically filter packets they are not capable of receiving.

After the low pulse, the initiator configures UART hardware for transmission. Due to
the lack of direct hardware support, the transmitter must wait 40 microseconds (4 bytes
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at 1Mbaud) to allow receivers to complete low pulse detection and configure registers for
reception. After transmission is complete, all devices connected to the bus resume listening
for a low pulse.

5.4.3 Receiving a packet

The process of receiving a JACDAC packet is similarly simple. Devices use a single GPIO
to listen for a low pulse. This can be either implemented by way of a GPIO interrupt, or
synchronously waiting for the logical line level to change. The former however allows
processors to enter a power efficient sleep in between bus activity.Once a low pulse has been
detected, receivers have 40 microseconds (4 bytes at 1Mbaud) to configure UART hardware
for reception.

UART reception can be implemented (and usually is) in two stages. The first stage
receives only a JACDAC packet header (4 bytes) which contains the size of the variable
length payload. Appropriately sized software buffers are then allocated based upon the size
contained in the header and used to receive the remainder of the packet (stage two). Split re-
ception therefore reduces the static memory overhead of JACDAC, allowing microcontrollers
to dynamically allocate and size buffers to packets. Resource constrained devices can also
implement packet filtering based upon size, or other metadata, like address. After completing
packet reception, devices resume listening for packets.

5.4.4 Supporting hot plugging

To support the connection and removal devices at any point, even during transmission, the
physical layer defines the following protocol timings:

Bus Idle Period is the minimum time before the bus is considered idle. An idle bus is
defined as no activity (logical one) for two bytes at 125 Kbaud.

InterLoData Spacing is the minimum time before data can be sent after a low pulse. This
spacing is a minimum of 6 bytes at 1Mbaud, and the maximum gap before data begins is two
bytes at 125 Kbaud. Times are relative from the end of the low pulse.

Interbyte Spacing is the maximum permitted time between bytes and is defined as two
bytes at 125 Kbaud.
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Fig. 5.10 State diagram for bus error detection during reception.

Interframe Spacing is the minimum space between frames and is defined as two bytes at
125 Kbaud.

During operation, JACDAC devices must check for any violation of the protocol timings
above. If a violation is detected, an error condition is generated. Error conditions can only
really occur during reception and when they do occur, receivers must enter an error state and
resume listening for frames once the idle period has been detected. An idle bus is detected by
maintaining the time from when the bus last transitioned from low to high, resetting this time
if the bus transitions again. Figure 5.10 shows the state diagram for error detection during
reception.

5.4.5 Preventing simultaneous transmission

It is possible for two JACDAC devices to arbitrate for the bus simultaneously—even with a
low-latency physical medium. To guard against simultaneous transmission, devices check
the bus state before initiating a transmission. If the bus state is low when performing this
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check, devices enter the error state (as in Figure 5.10) and wait for the bus to return to idle.
In some cases, on-board UART hardware is capable of detecting two devices driving the
transmission line and this can be used instead. Regardless of hardware capability however
the Cyclic Redundancy Check (CRC) contained within a packet will always guarantee packet
correctness at the software layer.

5.4.6 Supporting low-cost microcontrollers

The JACDAC physical layer is designed to be implementable on super low-cost microcon-
trollers. At the physical layer, it does this by supporting multiple baud rates, allowing less
capable microcontrollers to participate in communications.

Devices that are only capable of receiving at lower baud rates cannot receive packets
from higher baud rate devices. This is problematic especially when address collisions need
to be resolved. The JACDAC physical layer therefore specifies that microcontrollers that
implement baud rates faster than 125Kbaud must also implement all slower baud rates to
ensure that address collisions can be resolved correctly. Beneficially, this means that as less
capable microcontrollers cannot receive packets from more capable microcontrollers, less
capable devices will always win address contention.

5.5 Evaluation

This section evaluates many of the design decisions taken throughout the creation of JACDAC.
We profile the performance of JACDAC, evaluate the efficiency of JACDAC compared to
I2C, and analyse the value and efficiency of address compression and allocation.

5.5.1 Performance

This section focuses on the base performance metrics of the protocol, including: latency,
packet loss, and memory consumption. Figures from the upcoming sections were obtained
from binaries compiled using C++ JACDAC implementation from CODAL. We used com-
mand line utilities to inspect resulting binaries for the size of individual JACDAC layers.

To profile timing and latency we used two different devices that support JACDAC: the
Adafruit Circuit Playground Express (CPX) and the Brainpad Arcade [10]. The CPX has
been discussed extensively in this thesis, but as a reminder the device has a SAMD21
microcontroller with 32 kB of ram and 256 kB of flash. The Brainpad Arcade is a hand-held



5.5 Evaluation 171

reprogrammable gaming device with an STM32F4 microcontroller. The microcontroller has
256 kB flash and 96 kB of RAM, and runs at 84 MHz.

Protocol timings were obtained from devices using a specially modified JACDAC stack.
The stack toggled various GPIO at different points of the reception and transmission process.
Device GPIO were attached to a logic analyser for measurement.

Latency

To determine the latency of packet reception and transmission time, we used two CPXs. One
device was designated as the transmitter and the other as the receiver. The transmitter was
configured to send a JACDAC packet with a payload of 10 bytes and both devices were
connected to each other using crocodile clips. Each device was programmed to set a GPIO
high for the duration of receiving or transmitting a packet to obtain a visible signal for timing.

The total time taken to transmit a frame (as seen by the transmitter) was 215 microseconds.
The total time taken to receive a frame (as seen by the receiver) was 222.7 microseconds.
And the total line time for frame transmission was 214 microseconds which means that
packet latency is 8 microseconds for the SAMD21. We expect this figure will vary between
processors.

Packet loss

To calculate packet loss, we connected two CPXs and a Brainpad Arcade to form a single
JACDAC bus. The two CPXs were programmed to each transmit 5,000 packets as fast as
possible upon receiving a digital signal over a GPIO routed from the Brainpad Arcade. The
Arcade was programmed to act as a bystander, only receiving transmissions and displaying
diagnostic information from the physical layer on its screen. After repeating this test three
times, we calculated the average packet loss to be 1.7%. Packet loss could certainly be
reduced with direct hardware support.

Memory consumption

To give an indication of the total code size for a complete JACDAC stack, we compiled
the JACDAC C++ layer for the SAMD21 and read the size of the each layer in bytes from
compiled object files.

In total, including optional services, a full JACDAC host implementation consumes
12.1kB of flash and requires 496 bytes of RAM for driver operation. With optional services
omitted, flash consumption decreases to 11.2kB. The predominant factors in the total flash
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size of the JACDAC C++ layer are the control (3.1kB) and physical (4.7kB) layers. We
expect that for a client-only implementation this figure would be significantly reduced. A
transmit only implementation of JACDAC for the PIC12F consumes just 185 bytes of flash
and 32 bytes of RAM.

5.5.2 Implementation complexity

We have written JACDAC implementations for microcontrollers with varying capability.
At the highly capable end of the microcontroller spectrum, we found it easy to implement
JACDAC on the following microcontrollers: STM32F4, STM32F1, SAMD51, SAMD21,
NRF52. These microcontrollers typically have dedicated UART peripherals with Direct
Memory Access (DMA) and an abundance of flash (256 kB) and RAM (from 32 kB to 96
kB). As a result, they cost the most (~$0.99+).

We have also written JACDAC implementations for medium capability microcontrollers
like the STM32F0, STM32G0, and NRF51. These microcontrollers have dedicated UART
peripherals but typically DMA is not supported. RAM offerings range between 4 and 16
kilobytes, and as a result, these microcontrollers cost less the highly capable microcontrollers
(~$0.40+).

We have also implemented JACDAC on the PIC12F, a microcontroller that is repre-
sentative of the lowest capability microcontrollers. Unlike prior processors, the PIC12F is
8-bit, has 128 bytes of RAM and just 1 kB of flash. As mentioned previously, a JACDAC
transmit only implementation for this processor consumes just 185 bytes of flash and 32
bytes of RAM. Whilst slightly more challenging than other processors, implementing the
protocol was not challenging and we plan to create an implementation for the 4-bit PADAUK
PMS150C (~$0.03).

5.5.3 Electromagnetic Compatibility (EMC)

JACDAC is currently used to compose consumer devices together, and as such it is subject
to European Electromagnetic Compatibility (EMC) regulations. We tested the circuit from
Figure 5.9 for EMC compatibility in a electromagnetically shielded chamber. Figure 5.11
shows our findings.

The figure shows that JACDAC is well within the required tolerances. The top-most
black line indicates the European threshold for industrial applications, and the red–line is the
threshold for consumer applications. To be EMC compliant, electromagnetic emissions must
be below these thresholds so to not interfere with other appliances and devices. As can be
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Fig. 5.11 Electromagnetic Compatibility (EMC) test results. The top-most black line indicates
the European threshold for industrial applications, and the red–line for consumer applications.

seen from the figure, JACDAC, the blue and bottom-most black lines, are well below these
thresholds.

5.5.4 Comparison with I2C

As part of our evaluation, we compare JACDAC to I2C. Table 5.2 compares packets transmit-
ted at 250 Kbaud in both I2C and JACDAC, showing the time taken taken to transmit a packet
of incremental payload sizes. An additional column provides the percentage difference in
timings between the two protocols.

From the table, it is clear to see that JACDAC incurs a slight performance penalty. This
can be mainly attributed to the bus arbitration technique adopted by JACDAC which takes
a total of 80 microseconds at 250KBaud. The remaining performance degradation can be
attributed to the 4 byte header, compared with I2C’s three transaction overhead, and 10-bit
byte format, versus I2C’s 9-bit byte format.

One key difference between JACDAC and I2C is that, unlike with I2C, JACDAC devices
do not have specialised hardware to perform bus arbitration. Instead, JACDAC devices
require application intervention to detect the start and end of the low pulse and configure
buffers for reception. As a result, the time between the low pulse and the transmission of
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Table 5.2 Time taken to transmit a packet at 250KBaud at various payload sizes in both I2C
and JACDAC.

data is intentionally large to account for different processor speeds. This could be reduced
with direct hardware support.

Another key difference is that JACDAC is designed for dynamic hardware composition
where transmission errors are to be expected. As a result, every JACDAC packet includes a
Cyclic Redundancy Check (CRC) which increases the total packet size. I2C, which was not
designed for dynamic hardware composition, does not incorporate such redundancy checks
which is potentially detrimental to applications.

JACDAC does however make efficiency gains elsewhere. For instance, whereas I2C only
allows point-to-point communications, JACDAC allows many devices to be addressed with a
single packet. For many applications therefore, the use of JACDAC results in an efficiency
gain as only one packet is required to address many peripherals.

Another efficiency gain is made with JACDAC’s support for multi-baud operation. I2C
can only communicate at the fastest rate supported by all devices on the bus. This therefore
means that if an especially slow peripheral is connected to the bus, communication between

all peripherals takes a performance penalty. This is in contrast to JACDAC where multi-baud
operation is actively supported, allowing devices to pick the communication rate appropriate
to their hardware without impacting the bus.

5.5.5 Address compression

To find out how beneficial address compression is to the throughput of JACDAC, we cal-
culated packet overhead with and without address compression at various packet sizes.
Figure 5.12 shows the results.
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Fig. 5.12 Frames per second, with and without address compres-
sion.

The figure shows that for small packet sizes, address compression has a significant benefit,
allowing 500 more frames per second for packets with 10 byte payloads. As the payload size
increases however, the benefits of address compression decrease. As we expect applications
to mostly send small packets, we conclude that overall address compression is beneficial.

5.5.6 Address allocation

To evaluate the performance of our distributed address allocation approach, we measure the
allocation time of the three different address allocators discussed in Section 5.3: random,
linked, and stateful. Due to the scale of these tests we used the JACDAC TypeScript layer
and NodeJS [273] to simulate a JACDAC network. Each virtual device ran a full JACDAC
stack and used a physical layer with the same properties as a real physical layer: packets sent
by one device are received by all nodes with little latency. Because of the computational
complexity of simulation, address allocation times scaled proportionally with the number of
devices present on the bus. We therefore instead use the total number of packets sent by each
allocator as a metric of success.

We evaluate each allocator in networks of varying size, and under three different test
scenarios: (1) powering on all devices at once; (2) adding a device to an already established
network; and (3) joining two established networks. Table 5.3 shows the results of our tests.
We provide the most optimum number of packets (‘Best (packets)’) and the percentage
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Table 5.3 The percentage of packets produced over the optimum, for the three different
address allocations, with networks of incremental sizes under three different scenarios. The
number of devices for the scenario where two established networks are joined should be
doubled.

difference between the optimum and the actual. For the third scenario, where two established
networks are joined, network size represents the number of devices in each network. The
optimal number of packets for this scenario is based on the average number of address
collisions we detected in our experiment. For two networks of size 10, we observed an
average of 1 address collision, requiring 3 control packets to allocate a new address.

From the table, we can conclude that for the first two scenarios the random and linked
allocators perform well up to network sizes of 150 devices but suffer significantly in congested
networks. The stateful allocator performs optimally as expected for both scenarios 1 and 2.
The difference between allocators is not so stark for the third scenario however. Here, the
random and linked allocators perform almost as well as the stateful allocator. This can be
attributed to the stateful allocator having out-of-date state due to the rapid addition of new
devices.

Even though performance of the simpler allocators suffers with networks of larger sizes,
the random allocator is the default allocator used by most JACDAC implementations. We
consider larger networks to be a rare scenario, and expect that device networks rarely exceed
50 devices. We expect that in the wild, JACDAC networks will contain devices with many
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Fig. 5.13 Interactive devices used by fashion designers in Project Brookdale. Beads (outer)
and Brain (inner).

different types of allocator and these different allocator combinations will reduce the total
number of packets required for allocation.

5.6 Applications of JACDAC

In this section we highlight current applications of JACDAC to show its real-world applica-
bility. The dynamic properties of JACDAC has lead to its adoption for wearable technology

and gaming.

5.6.1 Wearable technology

There is a huge demand for wearable technology—Apple recently surpassed 10 billion
dollars in revenue for for their wearable offerings alone (i.e. Apple Watch and Earpods) [95].
Evidence suggests that this trend of more integrated wearable technology is only going to
continue and the next step is potentially for clothing manufacturers to embed electronics
into garments. This is already happening in the research community via projects like
Jacquard [240].
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Fig. 5.14 A fashion designer prototyping and embedding JACDAC devices into a garments
(left) and the final garment (right).

As shown in Chapter 2, members of the avant-garde fashion community are already
integrating sensors, actuators, and lighting into garments [9]. This process is riddled with
complexity however, and often dedicated technical teams are required to program microcon-
trollers and compose hardware for garments

In collaboration with Microsoft Research and the Brooklyn Fashion Academy, we created
Project Brookdale [243]. Project Brookdale set out to simplify the process of building an
interactive garment with the ultimate aim of empowering fashion designers to build interactive
garments without the intervention of technologists. The project culminated in a high profile
fashion show in Brooklyn, New York where fashion designers showed off their interactive
garments.

Project Brookdale gave fashion designers a toolkit of easy-to-connect, re-programmable
physical computing devices to create interactive garments (Figure 5.13). There were two
types of device: user programmable devices called Brains, and input and output devices
called Beads. Input Beads could sense changes in light, colour, motion, and environment,
and output beads could control motors, servos, and RGB LEDs. Beads were colour coded
depending on functionality.

Beads and Brains were connected to one another using 3.5 mm stereo audio jack cables.
Jack cables were chosen because of their rugged, yet easy, connectivity and the already
existing ecosystem of cables and splitters. Wired connectivity also allowed for easier power
distribution between devices and the three rings of the jack connector provided power (tip),
data (middle), and ground (base).

JACDAC was used to enable intuitive hardware composition by fashion designers (Fig-
ure 5.14) and was the means of communication between Brain and Beads. JACDAC’s single

wire, low infrastructure operation permitted it to be used as the communication mechanism
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between devices over the middle ring of the jack connector. Its support for dynamic connec-

tivity was ideal for the hectic runway environment where devices were regularly removed
and added to garments. Lack of topology constraint brought great flexibility to hardware
composition. The small form factor of the Beads made them prone to being lost in garment
transit and here, hardware abstraction offered by JACDAC also proved beneficial. Beads
with the same function could simply take the place of the lost Beads without any change to
software.

Applications for Brains were written in MakeCode and special blocks were added to
the editor to process data from input Beads and send commands to output Beads. Here,
the dynamic device detection offered by JACDAC played a critical role. Electronics for
garments could be prototyped and composed dynamically during prototyping, and easily
dismantled and reassembled without any concern for topology. Combined, MakeCode and
JACDAC made dynamic hardware composition more intuitive to technically experienced
fashion designers.

5.6.2 Gaming

There has been a recent resurgence in retro-style gaming. Retro-gaming returns not as a tool
for entertainment but as a tool for creativity. A number of programming environments for
hand-held games consoles have appeared allowing technologists to create their own 8-bit
retro games [72, 36, 3, 6, 31, 41].

MakeCode Arcade [258] applies our extensive work in education (via the micro:bit) to
retro games programming. Citizen developers can use modern APIs and simple programming
languages (Blocks or JavaScript) to build retro games. As building a game involves math-
ematics, physics, computer science, and art, Arcade also doubles as an education tool. As
part of the experience, citizen developers can test their games out on physical hardware and
there are now thousands of physical devices compatible with MakeCode Arcade. CODAL
(Chapter 4) underpins every one of these applications.

Arcade devices can be easily networked together using an audio jack cable for on-the-go
multiplayer communication (Figure 5.15). JACDAC underpins all communication between
arcade devices and due to its tight integration with MakeCode, multiplayer operation can
be added to games through the addition of a single visual programming block. On-the-go
multiplayer would not be possible without JACDAC’s multi-central operation and support
for dynamic connectivity. The dynamic device discovery offered by JACDAC even allows
users to attach external sensors and actuators to Arcade devices. These sensors and actuators
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Fig. 5.15 JACDAC networking two different MakeCode Arcade devices together over 3.5mm
audio jack

can be used as inputs and outputs to games, blending the physical world with the digital.
Here, the dynamism offered by JACDAC and the ease of programming offered by MakeCode
create an intuitive and simple experience for dynamic hardware composition by citizens.

5.7 Summary

This chapter has presented JACDAC, a single-wire protocol for intuitive hardware compo-
sition. From the ground up, each JACDAC protocol layer is designed to make hardware
composition and application development more intuitive: services bring hardware abstrac-

tion so that applications can be written without reference to specific hardware (HC3); the
control layer brings dynamic device detection so that packets can be automatically routed
to services without application intervention (HC2); and the physical layer brings dynamic

connectivity so that composition can happen at any time in any environment (HC1).
Applications for JACDAC devices can be written using MakeCode via the JACDAC

TypeScript stack and CODAL. This means that citizens can develop applications for JACDAC
networks intuitively from any device with a web browser and a USB port (GP1). Through
reusing the JACDAC TypeScript stack and combining it with WebUSB, the web browser can
even participate as its own JACDAC device (GP1, GP2), providing a universal environment



5.7 Summary 181

for extending, developing, and debugging JACDAC services (GP3). Moreover, the standardi-
sation of services services leads to a more introspective and easy-to-understand debugging
experience for citizens (GP1).

Through our evaluation we show that JACDAC supports these features at the small
expense of efficiency when compared to I2C (GP4). We also demonstrate that JACDAC can
be applied to a variety of high and low capability microcontrollers for a cost efficient, yet
intuitive, hardware composition experience (GP2, GP3, GP4).

Finally, we provide detail on two existing applications of JACDAC by citizen developers.
The first describes how JACDAC made hardware composition simple enough for fashion
designers to use at a high profile fashion show in Brooklyn, New York (GP1, GP2). The
second demonstrates how JACDAC is used to enable on-the-go multiplayer for citizens with
MakeCode Arcade devices (GP1, GP2).



Chapter 6

Droplet: intuitive wireless networking

Across Chapter 2 and 3, we identified properties of existing technologies that make wireless
networking more intuitive:

WN1 No configuration: Protocols like WiFi require just a name and password to network
devices and protocols with minimal or no configuration are therefore more intuitive to
citizens.

WN2 No infrastructure: The ubiquitous adoption of WiFi means that citizens do not have
to install their own infrastructure in order to network devices. Protocols that do not
require the installation of any additional infrastructure are therefore more intuitive to
citizens.

WN3 Supports interactivity: Physical computing devices are increasingly used for interac-
tive applications that require low latency connectivity. Protocols therefore have to
supportive of interactive applications.

Our in depth exploration of wireless protocols illustrated that energy efficiency, memory
efficiency, and distributed operation are paramount in the world of wireless networking.
This is especially true for memory constrained physical computing devices that are typically
distributed across environments and powered by battery. We identified a number of ad-hoc
wireless networking protocols that meet many of these requirements but found none that are
memory and energy efficient, whilst being configuration and infrastructure free.

This chapter introduces Droplet, a configuration and infrastructure free ad-hoc protocol
for wireless networking. Droplet uses concurrent flooding to guarantee a high degree of
reliability without compromising on flexibility and latency. Low latency operation is also
supported by a distributed scheduler and network clock that carefully manages access to
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the shared wireless channel. The scheduler and network clock are also used to efficiently
manage the radio hardware allowing Droplet to support these features at the expense of a
small amount of energy efficiency when compared to BLE.

We begin by providing an overview of the protocol in Section 6.1. We then discuss the
distributed scheduler (Section 6.2) and network clock (Section 6.3), followed by a description
of how Droplet networks are formed (Section 6.4) and how errors are detected (Section 6.5).
We then describe the implementation of Droplet on NRF51822 microcontrollers (Section 6.6)
and evaluate the performance of this implementation in Section 6.7. Finally, we describe
how droplet was used by citizen developers in 30 schools across the UK in Section 6.8 and
summarise our findings in Section 6.9.

6.1 Protocol overview

Droplet is designed for commodity Bluetooth Low Energy (BLE) radio transceivers. These
BLE transceivers typically cannot transmit and receive at the same time, and careful software
management is required to place transceivers into receiver or transmitter mode at the correct
time. BLE radios also typically do not have the ability to check if another device is already
transmitting (i.e. transmission collision detection). Collisions generally cause interference
and to reduce the likelihood of collisions, and therefore interference, BLE transceivers usually
frequency hop (as discussed in Section 3.3.2).

Droplet is based upon concurrent flooding and this requires that transceivers operate on a
single frequency band to create a flood-able broadcast network. But without transmission
collision detection nor the opportunity to frequency hop, it is likely that multiple devices will
transmit over one another creating interference. Droplet therefore divides time into a discrete
number of slots, an approach generally known as Time-Division Multiple Access (TDMA).
Devices can contend for ownership over each slot and only the slot owner is allowed to
transmit within each. A distributed scheduler manages slot ownership and by listening to
transmissions in each slot, devices can synthesise the current network schedule.

Since the scheduler is closely bound to the time domain, each device needs to also
synchronise to a common time base known as the network clock. Other concurrently flooded
protocols usually require a dedicated device to provide the network clock, but Droplet’s
network clock is also distributed. Each device can synchronise to the network easily by
listening to the first packet sent within each slot.

Both the network clock and the scheduler are designed for energy efficiency and they
are used to optimally manage the radio hardware to reduce radio on time. The distributed
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Table 6.1 Droplet packet format

Field size (bits) Field name
8 length
8 slot_identifier
4 frame_identifier
4 flags
4 ttl
4 initial_ttl
64 device_identifier
8 * size payload

design of the scheduler and network clock allows citizens to create networks without prior
configuration or infrastructure deployment.

Droplet requires device communicate using a standard packet structure designed to
support flooding. This packet structure is presented in Table 6.1. Bytes above the payload
field are considered the packet “header” and the length field represents the total size of the
packet, including the header. The Time to Live (TTL) field dictates the number of times
a packet will repeated throughout the network as in Glossy. The maximum size of the
‘payload’ field is 243 bytes and the remaining fields will be explained in detail as this chapter
progresses.

As Droplet relies so heavily on the foundational work of Glossy [148], it is recom-
mended readers familiarise themselves with the work before continuing. We provide a short
description of Glossy in Section 3.3.4.

6.2 Distributed scheduler

Each Droplet network has a distributed scheduler used to manage channel contention and
reduce radio on time. The schedule, as depicted in Figure 6.1, is made up of a number of
discrete time slots and each slot has an owner that, for the duration of the slot, has exclusive
control over the channel. For every slot that has an owner, all devices in the droplet network
must wake and prepare to receive and forward packets sent by the slot owner. For slots with
no owner, devices can leave their transceivers disabled, leading to increased energy efficiency.
A complete cycle of all time slots in the schedule is known as a window and the droplet
schedule defaults to a window size of 50 and a slot duration of 20 milliseconds. This amounts
to a 1 second long window, which can be adjusted by users (only if required).
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Fig. 6.1 A Droplet schedule consisting of N slots. Advertisement slots are depicted by
‘ADV’ and standard slots are depicted by a box containing the corresponding slot identifier.
Boxes coloured orange have an owner, whereas boxes with no colour do not. Slot ownership
corresponds with transceiver activity and unowned slots allow devices to leave transceivers
disabled.

There are two types of slot in Droplet: advertisement slots, and standard slots. Advertise-
ment slots allow devices to express ownership over a slot and are therefore used to propagate
schedule changes to all devices in a Droplet network. Standard slots, on the other hand, refer
to a slot that already has an owner. Whilst anyone can initiate a flood in an advertisement
slot, only a slot owner can initiate a flood in a standard slot. Activity within each type of slot
also differs and will be discussed in the upcoming sections.

6.2.1 Advertisement slots

At the beginning of each window, devices can contend for slot ownership in a dedicated
advertisement slot. Schedules can contain more than one advertisement slot per window, and
during an advertisement slot any device can advertise ownership over any currently unowned
slot. All droplet devices consider the advertisement slot an ‘owned‘ slot despite the slot not
having any designated owner. This therefore means that all devices in a network must wake
and prepare to receive and forward packets.

Packets sent during an advertisement slot are marked with the ‘ADVERT’ flag and contain
a list of one or more slot identifiers—a zero based index into the schedule—to be owned.
Upon receiving an advertisement packet, devices update their local copy of the schedule,
associating each slot in the advert with the 64-bit device_identifier contained in the packet.
The schedule will then cause devices to wake when the newly owned slots come around. To
ensure schedule changes are widely propagated, the TTL of an advertisement packet is set to
five regardless of network diameter (i.e. number of hops). This number should more than
accommodate most applications but is automatically adjusted if the actual network diameter
exceeds five hops.

As no device controls the advertisement slot, there is opportunity for more than one
device to initiate a flood at the same time. Without attention, this would likely result in
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Fig. 6.2 Transceiver activity for a Droplet advertisement slot at different distances (hops)
away from the Advertiser. For context, the current schedule is shown across the bottom.

collision during packet propagation, especially if devices are powered on simultaneously.
Droplet mitigates advertising collisions in two ways. The first mitigation strategy makes
use of a random back off between advertisement slots, where devices use a random number
generator to select one of the next five upcoming advertisement slots. The second mitigation
strategy makes use of a random transmission back off within an advertisement slot. By
distributing advertisements across time both between and within advertisement slots, the
opportunity for advertisement collisions is substantially reduced.

Figure 6.2 shows an expanded view of transceiver activity during an advertisement slot at
different hops in a droplet network. In the figure, there are four possible roles for a device
that correspond to transceiver state. Transmitting (‘T’) means that a device has its transceiver
in transmit mode and is initiating a flood. Receiving / idle (‘R’) means that a device has its
transceiver configured to receive and it is either waiting to receive or is actively receiving.
Forwarding (‘F’) means that a device has its transceiver configured to transmit and it is
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repeating (or forwarding) a received packet. Disabled (‘D’) means that the transceiver is
disabled and no packets are sent or received. This terminology is also used in later figures.

The figure shows an advertiser initiating a flood to express ownership over a slot. After
the initial transmission, the advertisement packet is concurrently forwarded five times until
the TTL reaches zero. The figure also shows the transceiver state of devices at various
distances (hops) in the network. The transceiver of the advertiser remains disabled until the
random back off time as been met. All other devices leave their transceivers in receive mode
when not forwarding a packet.

6.2.2 Standard slots

In a standard slot, a single device (the owner) is given absolute control over the wireless
channel. Singular ownership removes issues of channel contention and allows owners to
perform multiple back-to-back floods without interruption (as long as schedule slot duration
is not exceeded). Each transmission packet that initiates a flood is assigned a frame_id that is
unique within the scope of the current slot. Receivers keep track of each packet and record
frame_ids as they arrive to prevent duplicate reception.

Owners lose ownership of a slot if no packet is sent for five consecutive windows. Each
device maintains a counter for each slot that is reset to zero upon successful packet reception.
Upon the counter reaching five, devices locally mark the slot as unused, allowing another
device to express ownership of the slot in any future advertising window. If an owner has
no data to send but wants to retain ownership of a slot, it may flood the network with a zero
length packet with the ‘KEEP_ALIVE’ flag set.

There is a well established link between transceiver activity and energy consumption,
and the only time energy is not consumed by the transceiver is when it is disabled. Droplet
therefore pays more attention to transceiver state during a standard slot in order to achieve
energy efficiency gains over other flooding-based protocols.

Energy efficiency gains are the result of two observations made during the design of
Droplet. The first observation is that setting the TTL to a value beyond the current network
diameter leads to unnecessary excess repetitions. Excess repetitions reduces network through-
put and also leads to greater energy consumption due to increased transceiver activity. Many
prior flooding protocols have recognised this problem and addressed it through techniques
like probabilistic flooding. Droplet, however, addresses wasteful energy consumption by
simply honing the TTL to the current diameter of the Droplet network.
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Fig. 6.3 Transceiver activity for a standard Droplet slot at different distances (hops) away
from the slot owner. For context, the current schedule is shown across the bottom.

The current network diameter is calculated and set at the beginning of each window
using metadata received in packets from the previous window. The necessary metadata is
contained inside a droplet header and is a simple case of subtracting the received ttl from
the initial_ttl. Subtracting one from the other gives an indication of the number of hops
a packet has travelled and this information is stored in the schedule for each slot for later
processing. A max function executed over the schedule yields the current network diameter.
It is important to note that his technique is also applied to advertisement slots so that Droplet
networks can adapt to nodes added at the extremes of the current network diameter.

The second observation is that transceivers only need to be active for as long as the slot
owner has something to send. By marking the final flood in a slot with the ‘DONE’ flag,
an owner can put an entire Droplet network to sleep. This leads to more optimal energy
usage as the network adapts to the throughput demand of individual devices. Combined, both
optimisations mean that energy consumption intuitively scales with respect to application

throughput and scale.
Figure 6.3 shows transceiver activity for a standard slot at different distances in a Droplet

network. The terminology used in this diagram was described previously in Section 6.2.1.
The droplet network in this example has a network diameter of one hop, and the schedule
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Fig. 6.4 The network clock in context with the Droplet schedule. Grey lines show the regular
network clock and red lines indicate points where clock synchronisation occurs. Clock
synchronisation only occurs in slots with an owner.

correctly identifies that a TTL of two will ensure reasonable propagation for a network of
this size. Floods are initiated back-to-back allowing for maximal throughput with respect
to network diameter. The owner has no more data to send after ‘Packet 1’, and this final
transmission is marked with the ‘DONE’ flag. All nodes in the network respect this flag and
disable their transceivers for the remainder of the slot upon flood completion.

6.3 Distributed network clock

The Droplet schedule is closely bound to the time domain and requires each device wake at
the appropriate time to receive and forward packets. A network clock is therefore required to
synchronise nodes to a common time base. Unlike other flooding-based protocols, Droplet
does not require a dedicated device to maintain the network clock. The clock is instead
maintained among devices in the Droplet network. This means that Droplet networks do not
require any supporting infrastructure to operate.

Devices must maintain a local time that is synchronised to the network clock to drive
the scheduler and place the radio transceiver into transmit or receive mode appropriately.
Each device therefore requires a dedicated hardware timer. Hardware timers must firstly be
synchronised to the network clock at power on, so the local time is in step with the network
clock, and once synchronised, continuous correction must be made to account for local drift
from the network clock. Synchronisation and correction can only take place in a standard
slot that has an owner and Figure 6.4 displays a network clock alongside a schedule to show
synchronisation points.
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6.3.1 Synchronisation

In Droplet, network clock synchronisation is achieved without adding any maintenance

overhead. All the information a device needs to perform network clock synchronisation can
be extracted from the very first packet sent by an owner in a standard slot. Careful observation
of Figure 6.3 reveals that in a standard slot, owners must always begin transmission at
the commencement of a slot (i.e where time = 0 within the slot). By computing packet
transmission time (including any network hops) and subtracting that number from reception
time, receivers can calculate the precise time a packet was sent. This calculation is presented
in Equation 6.1 and using this equation, all nodes can compute the start time of the slot
regardless of proximity. As all slots have a fixed duration in a Droplet network, it is a simple
case of addition to calculate when the next slot begins.

hops = ttlinitial − ttlactual

ttx = (packetlength + preamblelength + crclength +addresslength)× tsymbol

tarrive = ttx +(hops× (ttx + tradio turnaround)

tstart = tend − tarrive

(6.1)

6.3.2 Correction

Even though microcontrollers that support BLE have highly-precise 32-bit timers, these
timers are still subject to drift. This drift can cause timers to lose up to a millisecond of time
every second, and without accounting for this drift, Droplet networks would quickly fall
apart. Rapidly correcting for clock drift however would make the problem even worse as
devices may incorrectly align to devices that are out of step with the network clock.

Droplet devices therefore compensate clock drift by averaging relative drift over time.
This causes clocks to converge slowly, leading to a highly accurate, yet distributed, network
clock. To account for the worst case clock drift (in the case of an empty schedule), devices
wake 500 microseconds before an owned slot. Anecdotally, however, we have observed that
this 500 microsecond period is often unnecessary and local clocks drift by only an average of

15 microseconds.

6.4 Dynamic network creation and discovery

Like in any ad-hoc network protocol, network creation is dynamic and occurs without user
intervention. The network creation and discovery approach adopted by Droplet is designed
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for flexibility. When powered on, all Droplet devices first enter initialisation mode which
configures transceivers as receivers to detect packets from any existing network. Upon the
reception of a packet from an established network, the device synchronises to the network
clock and enters discovery mode.

Discovery mode lets devices discover the existing schedule of the network and leaves
transceivers in receive mode for the duration of each slot. In this mode, a device can only
forward packets and does not contend for the ownership of any slots. As each packet contains
the slot identifier (slot_identifier) for the current slot, it is easy for a device to synthesise
the entire network schedule locally. After listening for a complete window the schedule is
considered synchronised and a device can then contend for one or more slots.

If after two seconds a device remains in initialisation mode, a device establishes a new
network by transmitting an advertisement packet with a slot identifier of 0. Devices must
implement a random back off to guard against multiple simultaneous network creation.

6.5 Error detection

Without any feedback on network connectivity it is hard to create a reliable and robust
network—especially for novices. Droplet therefore detects packet propagation issues through-
out its operation giving users real time feedback on link connectivity without adding any
overhead to the protocol. This makes device deployment simple, responsive, and efficient.

Every network flood provides a means to analyse connection quality to other nodes, but
more importantly a means for a device to gauge the success of its own packet propagation.
After initiating a flood, an owner can roughly approximate transmission success by the
number of flooding rounds it participates in (obviously with respect to TTL). If an owner sees
its packet repeated/forwarded multiple times, then it can assume with a degree of certainty
that the packet was propagated successfully.

Measuring packet propagation is not suitable for detecting all errors however. Packet loss
can lead to incomplete schedules and occasions where more than one device owns the same
slot. Droplet therefore has other mechanisms to detect these conditions.

6.5.1 Incomplete schedules

Occasionally packets may be missed due to environmental interference or other factors and
this may cause a device to miss an advertisement if this happens during an advertisement
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slot. This can lead to an incomplete schedule which can be detrimental to an application—
especially if the device in question bridges a partition in the network.

To prevent an incomplete schedule, devices occasionally enter listen mode. Listen mode
is similar to discovery mode and places the transceiver into receive mode for the beginning
of every slot in a window. The frequency a device enters listen mode can be tailored to the
application, but defaults to 1 window in 10.

6.5.2 Slot collisions

It is possible for devices to contend for the same slot simultaneously and therefore end up
owning the same slot (i.e. slot collision). If more than one device owns the same slot, packet
propagation will be hampered for all owners of that slot.

Other devices in the network provide the means to detect slot collision. If for a particular
slot devices consistently see a high density of CRC errors, in the next available advertisement
window, devices will send a packet containing the identifier of the slot and the ‘ERROR’ flag
set in the flags field. Upon reception an error packet, all devices must remove the given slot
from their schedules and the owners of that slot must re-contend for a new one.

6.6 Implementation

This section describes an implementation of Droplet for the Nordic NRF51822. It is is built
using CODAL and is later used for evaluating Droplet in Section 6.7. The implementation
has two main components: the scheduler that maintains and oversees the schedule; and the
protocol driver that manages the hardware.

6.6.1 Hardware

As a demonstration of the real-world applicability of Droplet, we implement the protocol
on the BBC micro:bit. The main processor of the micro:bit is a 16 MHz Nordic NRF51822
microcontroller with 16 kB of RAM and 256 kB of flash. Though the microcontroller has
little memory resource, it is based on the extremely capable ARM cortex-m0 processor
architecture. The microcontroller can operate as a BLE peripheral through the inclusion of a
software stack called Nordic SoftDevice. Without SoftDevice however, applications are free
to use the low-level radio hardware interface to transmit packets at 2.4 GHz and we use this
radio interface for our implementation.
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Table 6.2 Droplet slot representation in memory.

Field Size
(bits)

Field Name

64 device_identifier
8 slot_identifier
8 expiration
4 distance
4 flags
8 errors

Each peripheral (i.e. UART, I2C, SPI) on the NRF51822 has a set of tasks and events.
Tasks represent an operation (i.e. power on, ready the receiver) and events are emitted as
a result of peripheral activity. Software developers make use of events during interrupts
to determine what specific activity has occurred. Events can be connected to tasks to
trigger peripheral operation without processor intervention. Module ‘short cuts’ enable
this functionality within the same peripheral. For instance, upon receiving a UART byte
(RX_END event), a short cut can be used to trigger the UART module’s TX_START task for
automatic local echo. The Programmable Peripheral Interconnect (PPI) module extends this
idea to allow any peripheral event to be connected any peripheral task. This means that a
timer event can be used to trigger a UART transmission without processor intervention. We
make use of short cuts and PPI throughout our implementation of Droplet.

6.6.2 Scheduling

All Droplet devices maintain an individual schedule that is synthesised during discovery. In
memory, the schedule is represented as an array of slots and contains the fields shown in
Table 6.2. The schedule is continuously updated during operation and every packet is passed
to the scheduler for meta data extraction.

Each time a packet is passed to the scheduler, the following process is observed. First,
if the packet has an incorrect CRC, the ‘errors’ field is incremented and no further action
is taken. Otherwise, the ‘slot_index’ in the Droplet packet is used to retrieve the relevant
slot stored in the schedule. The scheduler then performs a basic validity check against the
device identifier received in the packet and the one stored in the schedule. If the stored slot is
initialised and the device identifiers do not match the ‘errors’ field is incremented and no
further action is taken.



6.6 Implementation 194

Fig. 6.5 The scheduling quantum of the timer and the network over a 20 millisecond slot.

Next, the ‘expiration’ field for the slot is reset to its initial value. The expiration field
is a counter that is used to determine if a device has left the network. Once a second an
asynchronous callback decrements slot expiration counters and when they reach zero, the
FREE flag is set in the ‘flags’ field. The FREE flag indicates to the scheduler that this slot
can be used for any future allocation. This process is lightweight and simple to implement
even on a resource constrained microcontroller like the NRF51822.

Finally, device ‘distance’ is also updated. The protocol driver always computes the
number of hops a packet has travelled upon successful reception. When a packet is passed
to the scheduler, the number of hops is also passed as a parameter and this is stored in the
schedule.

The scheduler provides many APIs to inspect and query the schedule. For instance, the
scheduler separately maintains the current slot index and ensures it is synchronised with the
network using packet meta data. The scheduler also maintains the individual distance to each
node and this distance is used to optimise flooding. The protocol driver regularly queries
the scheduler to determine whether it is an owner or participant in an upcoming slot and
the optimal distance for flooding. This division between the schedule and protocol driver
decouples individual concerns.

6.6.3 Keeping time

The scheduler is tightly coupled to the time domain using a dedicated hardware timer. This
timer drives the scheduler after it synchronises with the scheduling quantum of the network
clock (i.e. 20 milliseconds).

Timer interrupts are not in phase with the network clock however and are configured
to occur 1000 microseconds before the next slot begins. This 1000 microsecond period is
known as the preparation window and its relationship with the network clock is depicted in
Figure 6.5. The preparation window is used to move the scheduler forward onto the next
slot and to determine the hardware configuration for this slot. A preparation window of
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1000 microseconds means that the effective usable portion of a 20 millisecond slot is 19
milliseconds. This bigger portion of a slot is known as the active window.

In the timer interrupt, slot metadata stored in the schedule is used to determine the role of a
device for the upcoming slot. The device role dictates the configuration of the radio hardware.
If the slot is free or uninitialised, then the radio hardware is disabled (if not already) and the
timer schedules itself to wake in one scheduling quantum. If the slot metadata indicates a
device is the owner of the upcoming slot, the radio hardware is configured begin transmission
in exactly 1000 microseconds (at 0 milliseconds in the next slot). Finally, if a device is just
a participant for the upcoming slot, the radio hardware is configured for reception in 500
milliseconds. The extra 500 milliseconds is used to account for network timing variations.

PPI is used to connect timer events to radio transceiver tasks, allowing timer to place the
transceiver into receive or transmit mode after a fixed time offset. Radio module short cuts
are also used to trigger transmission and reception after the transceiver has been enabled in
either mode. This means that transmission and reception can occur at a fixed point in time
without processor intervention, especially important when spare clock cycles are limited and
timing is critical.

6.6.4 Managing radio state

There are two kinds of radio state to manage in Droplet: high level state and low level state.
High level state represents the higher level operation of the hardware, and low level state
represents the physical state of the radio hardware. A high level state is therefore composed
of many low level states.

High level states

Droplet effectively has three high level states for the radio hardware:

1. Transmitting: A device is considered the slot ‘owner’ and is beginning a flood.

2. Receiving: A device is not the slot owner and is preparing to receive a packet.

3. Forwarding: A device has received a packet and is preparing to forward it.

These three higher level states are combined to produce a flood. There are only two
valid start states: receiving and transmitting. The preparation window is used to determine
which high level state is required. A slot owner will start in the ‘transmitting’ state, swap to
‘receiving’ after transmission, and switch repeatedly between ‘forwarding’ and ‘receiving’



6.6 Implementation 196

Fig. 6.6 Possible transitions between the higher level states of the radio module. Only the
‘transmitting’ and ‘receiving’ states can be used as starting points.

until the TTL reaches 0. Any other device will start in the ‘receiving’ state and swap between
‘forwarding’ and ‘receiving’ until the TTL reaches zero. Figure 6.6 summarises the permitted
transitions between these states.

Low level states

The radio hardware transitions through many states for each high level state. Figure 6.7
shows the low level state machine of the radio hardware and the different paths taken when
in different high level states. Solid arrows indicate that state transition is manual, whereas a
dashed arrow indicates that state transition occurs without processor intervention (i.e. using
short cuts).

One path through the state machine (Figure 6.7) is of particular note. The ‘forwarding’
path consists of many manual states compared with the entirely automatic ‘receiving’ and
‘transmitting’ paths. This is because state transmission is sometimes temporally variable
which is challenging for concurrent transmissions that require timing accurate to within
100 nanoseconds. We achieve highly accurate (to within 50 nanoseconds) by using a fixed
duration spin loop to manually swap between states for the ‘forwarding’ path. This spin loop
is consistent between devices and happens in interrupt context at the highest priority and so
cannot be pre-empted by any other task.

As can be seen in Figure 6.7, both reception and transmission are bound to an interrupt
routine. This routine is invoked after receiving, transmitting, or forwarding a packet and is
used to transition the hardware into the next permissible state (as per Figure 6.6). By the time
the interrupt routine is invoked, the hardware has already reached disable mode, resetting the
state machine for the next high level state.
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Fig. 6.7 The state machine diagram for Droplet on the NRF51822. Black connections outline
standard radio paths, whereas other colours outline paths for the different high level states.
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6.6.5 Reception and transmission

The protocol driver uses a fixed length pool of buffers for both transmission and reception.
Buffers are moved from the pool to transmission and reception queues as required. Pre-
allocated buffers are a necessity as we found that allocating buffers on demand was a costly
process, especially given the time critical nature of the Droplet protocol.

When receiving a packet, the hardware stores data into a fixed allocation reception buffer,
and when reception is complete, it generates a software interrupt. This software interrupt
copies data from the fixed reception buffer to another buffer taken from the pool. This buffer
is subsequently moved to the reception queue, which is drained through an asynchronous
callback via the CODAL event bus.

At any time applications can call an API to transmit a packet. This API copies data from
a provided buffer into a buffer from the pool. The pool buffer is subsequently added to the
transmission queue and at the next owned slot, the timer copies the buffer from this queue
into the fixed buffer for transmission. The packet is removed from the transmission queue by
a software interrupt that is generated when transmission is complete.

The frequency at which packets are added to the transmission queue governs how many
slots a device contends for. Transmission frequency analysis occurs every window, and a
device will contend for a new slot if required and the schedule permits. Of course, it takes
time for transmission frequency to reach equilibrium after a new slot has been obtained and
Droplet accounts for this by preventing new allocations for 5 consecutive windows after an
allocation.

Currently Droplet does not define the payload of packets, allowing higher level protocols
to be easily layered on top. The current Droplet implementation places a 16-bit identifier in
the first 2 bytes of the payload and maps this number straight through to higher level drivers.
In the future, we plan to integrate the service model of JACDAC from Chapter 5.

6.6.6 Error detection

In Droplet, the network can be used to gauge the success of a flood. After a slot owner
initiates a flood, any future reception during the flood is likely to be a repetition of the original
transmission. Repetitions are therefore also passed to the scheduler for meta data analysis.
If the scheduler notices a difference in device identifiers or a CRC error is detected, the
corresponding error counter for the slot is incremented.

Periodically, an asynchronous call back analyses the schedule and takes note of any slots
with a high number of errors. The callback averages error counters across the entire schedule
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to guard against the case where a device is placed in an area of high interference. Any slots
that exceed the average are reported during the next advertisement window and if a device
owns any of the reported slots it contends for a new slot.

6.7 Evaluation

In this section we evaluate various aspects of Droplet. We begin by outlining our methodol-
ogy (Section 6.7.1) for all experiments and then profile the performance of Droplet at close
range (Section 6.7.2). We then increase the range of our experiment and deploy Droplet
devices across a large space (Section 6.7.3). Finally, we provide other performance statis-
tics of Droplet and compare it to other state of the art concurrent transmission protocols
(Section 6.7.7).

6.7.1 Methodology

We use the Droplet implementation (described in Section 6.6) and the BBC micro:bit to
perform all our evaluation. For each experiment, we created a network of micro:bits to
test the reliability of Droplet in different conditions. Each micro:bit was powered from
battery (except where otherwise stated) and was assigned one of four roles, forming part of a
distributed application:

Collector One micro:bit was programmed with the collector role in each experiment. The
collector operated a different radio protocol on a different frequency band to Droplet. The
collector was connected to a personal computer and used USB serial to report results received
over the radio to a serial terminal. The serial terminal output was stored for later analysis.

Transmitter Only one micro:bit was programmed to be a transmitter. The transmitter
could fully participate in a Droplet network, and could both transmit and forward packets.
The transmitter, upon a press of button ‘A’, sent sequence numbers from 0 to 1000 and
recorded the number of repetitions seen for each sequence number. Upon a button ‘B’ press,
the transmitter swapped to the same frequency as the collector and broadcast its results.

Repeater Repeaters could only forward packets, and there were multiple micro:bits with
the repeater role in each experiment. Each repeater recorded the number of packets it saw for
each sequence number, and, like the transmitter, broadcast these results to the collector upon
a button ‘B’ press.
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Fig. 6.8 Desk configuration used to test required timing accuracy for successful concurrent
transmissions.

Observer Observers were passive, and could only receive packets. There were multiple
micro:bits with the observer role in each experiment. Each observer recorded the number of
packets it saw for each sequence number, and like the transmitter, broadcast these results to
the collector upon a button ‘B’ press.

Each data point in the upcoming experiments is the average of three runs and between
each run, each micro:bit was power cycled. Data points are generated using results reported
from each device via the collector and a python script was used to process results and generate
graphs.

6.7.2 Behaviour at close range

The first set of experiments we carried out were designed to profile the effect of concurrent
transmissions at close range. For this, we removed the scheduler from the Droplet implemen-
tation, leaving only software to manage concurrent transmissions. In each experiment, the
transmitter was configured to send sequence number every 20 milliseconds, with a TTL of
one.
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Fig. 6.9 Sequence numbers seen by the observer for repeated packets. As the introduced
delay of the right repeater increases, the percentage of sequence numbers seen by the observer
decreases

Tolerance to timing variance

This experiment was designed to observe how critical timing is to the success of concurrent
transmissions. To find out, we placed four micro:bits equidistant from one another on a desk
to form a diamond shape, as shown in Figure 6.8. The top most micro:bit was the transmitter,
the two middle micro:bits were repeaters, and the bottom micro:bit was an observer.

We customised the firmware for the right repeater to introduce a small delay to the
‘forwarding’ path through the radio state machine. Each test added a ‘nop’ instruction to the
path, increasing the time difference by one processor cycle (62.5 nanoseconds) each time. A
‘nop’ instruction equates to one processor cycle and we added 10 ‘nop’ instructions in total.
Each measurement was performed three times and each device was powered cycled before
each run. The averaged results from the observer are displayed in Figure 6.9.

The figure shows a clear trend: as the introduced delay of the right repeater increases,
the percentage of repetitions seen by the observer decreases. This result shows that for the
micro:bit, implementations can only drift by exactly one processor cycle (62.5 nanoseconds)
before having a detrimental affect on concurrent transmissions. On a faster processor, where
instruction duration is shorter, implementations can tolerate more processor cycle drift (as
long as they stay within the 62.5 nanosecond limit).
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Fig. 6.10 The frame configuration used to profile the effect of proximity on concurrent
transmissions.

Tolerance to proximity

This experiment was designed to test the effect of proximity on concurrent transmissions.
We constructed a free standing frame made of pine wood visualised in Figure 6.10, right.
The frame was composed of 3 horizontal beams and four vertical supports.

To the top and bottom beams we affixed three observers to the left, middle, and right.
These micro:bits were mounted to the frame using nuts and bolts. On the middle beam
we placed four micro:bits: a transmitter and observer were placed in the centre, and two
repeaters were placed on either side. The repeaters could be freely positioned along the beam.
All micro:bits were powered from a bench power supply set to consistently provide 3.3 volts.

Each test changed the relative distance between the repeaters and transmitter starting
from .1 metres finishing at .9 metres. Each repeater was moved separately and incrementally.
We repeated each test three times, and devices were power cycled before each run. The
results of the tests are displayed in Figure 6.11.

Each point along the x-axis in Figure 6.11 is a tuple containing the relative distance of
each repeater from the transmitter. The left repeater is on the left side of the tuple, and the
right repeater on the right. Starting equidistant, each repeater was moved in step, becoming
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Fig. 6.11 Sequence numbers seen from all observers from the original transmission (left) and
the repetition (right), as distance increases.

equidistant at various points during the test. The y-axis displays the percentage of sequence
numbers seen, with the left graph displaying the sequence numbers seen from the initial
transmission, and the right graph displaying the sequence numbers seen from the repetition.

From the results shown in Figure 6.11, we can only conclude that there is no clear
correlation between proximity and the success of concurrent transmissions. In fact, the
results were so sporadic that we re-ran the experiment with only one repeater to verify that
concurrent transmissions were indeed the cause.

We suspect that there are many factors affecting the success of our experiment. Through
further isolation of our test set up however we could not identify any single cause. The
authors of Blueflood [225] attribute reception variability to the phase of carrier signals, which
is beyond the control of software. An important observation to make however, is that even
with variable reception of repetitions, all devices saw each sequence number at least once.

6.7.3 Behaviour at longer ranges

This set of experiments were designed to profile Droplet at longer ranges. We first provide a
metric of base reliability, then demonstrate the impact of increasing device density and the
number of repetitions. For all of these experiments we used a full Droplet implementation
with a schedule slot duration of 20 milliseconds.
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Fig. 6.12 The deployment floor plan, containing placement of all devices used in the upcoming
experiments, and spanning over 40 metres in distance. Coloured boxes beside each device
label correspond to colours used in graphs.

Base reliability

This experiment was designed to test the reliability of Droplet at longer ranges. We therefore
deployed 5 micro:bits across 40 metres in a technologically and constructionally dense
environment. We measured the standard communication range of the micro:bit in this
environment as between 5 and 10 metres.

A floor plan showing the placement of micro:bits is displayed in Figure 6.12. There
was no particular care taken to deployment of devices, each having different heights and
orientation, placed whenever and wherever possible. The environment itself has different
properties, from the technologically dense academic offices on the left, through to a cavernous
glass-encased cafe in the middle, finishing in the equally technologically dense business
offices on the right.

Like prior experiments, there was only one micro:bit with the transmitter role (labelled
Transmitter in the figure), the four other devices in the experiment were repeaters (labelled
Device 1–4 in the figure). All devices were running the full Droplet protocol, and for
repeatability of results, we modified the schedule on each device to have 12 slots statically
allocated to the transmitter, and one slot allocated to each repeater. The schedule had a slot
duration of 20 milliseconds and there were 50 slots in a window (1 second window). Devices
were added to the Droplet network incrementally and at each stage we recorded the number
of sequence numbers seen by each device. Each increment was repeated three times and
averaged.
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Fig. 6.13 Sequence numbers seen by devices. The reliability of the network increases as
nodes are added.

Figure 6.13 shows the percentage of sequence numbers seen by the transmitter and
devices 1 to 4. As the number of devices participating in the network increases, the reliability
of the network improves. The transmitter is the only device which sees reception degradation
as more devices are added. This is because the transmitter effectively sees only repetitions
from other devices. The close proximity of devices 1 and 2 may also cause the capture effect,
adversely impacting repetition reception rate.

Increasing device density

This experiment was designed to see how increasing node density affected reliability. We
therefore added three more devices to the network, labelled devices 5, 6, and 7. These devices
also ran the full Droplet implementation. Devices were added to the final phase of the prior
experiment, and we repeated this experiment three times.

Figure 6.14, left, shows the effect of adding more devices. As can be seen, increasing
node density only has a negative impact on device 4. We believe that this degradation due to
the capture effect caused by the equidistant positioning of devices 6 and 7. The addition of
device 5 significantly improved the reception rate of the transmitter (to over 90%), lending
more weight to the capture effect theory.
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Fig. 6.14 The effect of adding nodes to the network (left) and the effect of increasing the
default TTL to 4 (right) has on the percentage of packet numbers seen.

Increasing repetitions

Adding more devices to a network comes at financial cost, and so we designed an experiment
to see if we could increase reception success without adding any devices. We therefore
removed devices 5, 6, and 7, and increased the TTL of each packet sent by the transmitter to
four. Figure 6.14, right, shows the effect of this modification. By increasing the TTL, the
reception rate for all devices improves.

6.7.4 Transmission time and latency

We used two micro:bits to profile the transmission time and latency of Droplet. One micro:bit
was programmed as a transmitter and the other as a repeater. The firmware for both micro:bits
was also programmed to toggle a GPIO on the micro:bit’s edge connector when a packet was
sent or received. We then attached a logic analyser to the edge connector of each micro:bit to
visualise the produced waveforms.

The total transmission time for a 20 byte packet was 238 microseconds. A keen reader
might observe that a 20 byte transmission should take just 160 microseconds. We found
that BLE hardware adds additional metadata to each packet including a: 1 byte pre-amble, 5
byte address, 1 byte prefix, 1 byte length, and a two byte CRC. We also determined that it
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takes four microseconds between the end of a transmission before reception is propagated to
software.

6.7.5 Scalability

The scalability of Droplet depends on its configuration. For prior experiments, each schedule
was configured to have fifty 20 millisecond long slots, leading to a total window duration of
1 second. In this default configuration there can only ever be a maximum of 50 devices, and
a maximum of 15 packets per slot for a network diameter of 3 hops.

The scheduler can be of course be adapted to applications if required. For instance,
an application that requires frequent transmissions across a large number of devices could
reduce slot duration to 10 milliseconds and increase the number of slots to a hundred. The
scheduler can be similarly adapted to small data rate applications too. We believe however
that the default configuration of Droplet should be suitable for most applications.

6.7.6 Memory and peripheral usage

In embedded development hardware peripherals, flash, and RAM are finite. Droplet consumes
one timer and one radio peripheral on the NRF51822. In terms of memory, Droplet consumes
5 kB of flash memory and a total of 3.14 kB of RAM. Of this 3.14 kB, the schedule statically
consumes 900 bytes (for 50 slots) and 2.24 kB is assigned to the packet buffer pool. As a
reference point, Bluetooth Low Energy (BLE) on the same processor consumes the same
two hardware peripherals, 128 kB of flash, and 10 kB of RAM.

6.7.7 Energy consumption

Whilst performing long-range testing we also profiled the energy consumption of the trans-
mitter as nodes were added to the network. Measurements were taken through attaching an
ammeter in series at the transmitter. We categorise our measurements by two states: idle and
active. We define the idle state as devices maintaining the network, sending only keep alive
packets and an active state as the transmitter actively sending sequence numbers from 0 to
1000.

Figure 6.15 (left) shows a linear increase in energy consumption as the number of hops
increases. This is expected as the radio is on for longer. This concept is intuitive and easy
to explain to novices in two statements: (1) The larger the network, the more energy is
consumed; and (2) the more packets transmitted, the more energy is consumed.
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Fig. 6.15 Energy consumption of Droplet in the idle and active states (left); and expected
lifetime on a 2000 mAh battery using Droplet compared to BLE (right).

Comparison with BLE

We also compare the energy consumption of Droplet to BLE. We programmed a single
micro:bit to appear as a BLE enabled accelerometer. We then connected to the micro:bit
from a smart phone application using BLE and the application then polled accelerometer
values every 100 milliseconds (10 packets per second). We measured energy consumption
using an ammeter placed in series at the micro:bit, and computed the energy consumption for
each packet. For a fair comparison, we multiplied per packet energy consumption in BLE
by the number of transmissions per second in the Droplet active state. We did not include
repetitions as part of this computation and measurements for Droplet were taken from the
previous experiment of a network with 3 hops in the active state. Figure 6.15 (right) shows
the results.

The figure shows that Droplet is less efficient than a point-to-point BLE connection, but
the difference is less than one might have thought. Droplet offers many other benefits such
as no configuration, no infrastructure, ad-hoc networking, and we therefore believe these
benefits far outweigh the loss of some energy efficiency.

Comparison with other concurrent flooding protocols

Finally, we compare JACDAC with other state of the art concurrent flooding protocols. A
direct comparison can not be made due to hardware incompatibility—prior work uses the
802.15.4 physical layer. These protocols do however provide a device agnostic means of
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Fig. 6.16 Radio on time of Droplet compared to other protocols.

measuring energy efficiency: radio on time. We computed radio on time using the values
measured whilst implementing Droplet on the NRF51822. We sum the total active time for a
20 byte packet for a network diameter of 3 hops.

Figure 6.16 (right) displays the radio on time of Droplet compared to Glossy [148]
and Whisper [119]. Glossy has the longest radio on time of 3.7 milliseconds, followed by
Whisper at 1.9 milliseconds, and Droplet with the shortest radio on time of 1.2 milliseconds.
Droplet’s shorter radio on time can be attributed to its faster, 1 megabit data rate.

6.8 Applications of Droplet

Reducing carbon emissions for the benefit of ourselves and future generations is a well-
recognised global challenge. Schools are estimated to be the second largest consumer of
non-domestic energy, making them a lucrative candidate for energy savings [29]. However,
in organisations such as schools consisting of many stakeholders with differing agency, it can
be hard to enact change. It is easy to see why—to reduce energy consumption, behavioural
change is required, which means all stakeholders (senior leadership, teachers, pupils) in a
school must be made aware of energy consumption and prompted to actively reduce it.

We took part in the Energy in Schools (EiS) project which aimed to reduce the energy
consumption of 30 schools by prompting behaviour change. The project took a two pronged
approach to engage all stakeholders within the school. The first aimed to provide real time
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Fig. 6.17 Students creating an IoT application in the classroom

energy consumption statistics to all stakeholders. Senior management were able to intuitively
access real time energy consumption statistics for their schools from a HTTP web portal
and energy consumption and temperature data was reported to this portal from sensors
installed in each school building. This allowed senior management to immediately and easily
identify wasteful usages of energy. To make students and educators more aware of energy
consumption, displays showing real time energy consumption were placed in prominent
locations in each school. Displayed energy consumption was also gamified to encourage
healthy competition between schools.

The other key part of the EiS project was its educational offering. Lesson plans, consumer
IoT devices (e.g. smart bulbs and switches), and micro:bits were provided as part of the
project. These resources were used to create engaging lessons where students could wirelessly
control IoT devices using the micro:bit and MakeCode. IoT devices were connected to the
EiS web portal and controlled using commands sent from the micro:bit to the EiS web
portal. The micro:bit however is an extremely capable device itself, it has a variety of built in
sensors and can even be embedded into custom creations. We therefore made it possible for
micro:bits to retrieve and supply data to the web portal for senior management to see. This
allowed teachers and students to conduct their own scientific IoT experiments and create
their own visualisations for energy consumption data.

We used Droplet to make wireless communication with the web portal intuitive to
technically inexperienced teachers and students. micro:bits could be programmed using
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Fig. 6.18 A MakeCode application (top) to measure the induced current of a kettle (bottom
left) using the micro:bits magnetometer every two seconds. Results are reported to the EiS
web server and visualised (bottom right).

Blocks from MakeCode to send messages to the EiS web portal via Droplet. One micro:bit
(usually the teachers’) acted as the Internet uplink for the Droplet network, forwarding
packets onto the EiS web portal when required. The uplink micro:bit was connected over
USB serial to a no installation web application running on the teachers computer. This web
application made a secure connection to the portal, performed web requests, and returned
responses to the Droplet network. The use of Droplet meant that no configuration and no
infrastructure was required to network micro:bits in the classroom.

Intuitive classroom IoT

The combination of MakeCode and Droplet allowed students and teachers to flexibly and
intuitively create their own IoT deployments. To evidence how intuitive MakeCode and
Droplet made wireless networking and the IoT, we provide a sample of the advanced
applications students and teachers created.

Citizen science

As the micro:bit could be used as a sensing device for the EiS portal, many applications
incorporated elements of citizen science. One example application makes use of the mi-
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Fig. 6.19 A MakeCode application that turns on a smart bulb when the micro:bit detects the
ambient light-level has gotten too dark.

cro:bit’s magnetometer. The magnetometer can be used to estimate the energy consumption
of applications by measuring the induced current down a wire. Combining this capability
with Droplet allowed students and teachers could visualise energy consumption of appliances
over time in the EiS web portal. Figure 6.18 (top) shows a MakeCode application that
measures the energy consumption of a kettle (bottom left) and reports it to the EiS web portal
(bottom right). On the web portal, students and teachers could visualise energy consumption
of the kettle over time.

Other example applications make use of the micro:bits accelerometer keep track of
door state in order to minimise energy wasted through heat loss. As well as providing a
deep educational experience, these applications allow technically inexperienced students to
become citizen scientists.

Smart actuation

Other projects turned the micro:bit into an actuator for consumer IoT devices. An example
actuation project uses the micro:bit’s light sensing capability to control the state of a smart
light bulb. Figure 6.19 shows a MakeCode application that turns on a smart bulb when
the micro:bit senses that the ambient light level in the classroom has gotten too dark. One
again, as well as giving students valuable educational experience, the micro:bit, Droplet, and
MakeCode allows technically inexperienced students to become citizen developers.

Cross-curricular visualisations

The final set of example applications obtained data from the portal via the micro:bit and
used that data to create more engaging visualisations. Here, the micro:bits small form factor
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Fig. 6.20 A MakeCode application that retrieves the current energy consumption of a school.

allowed it to be embedded into custom creations using classroom materials. Figure 6.20 shows
a MakeCode application that allows students to retrieve the real-time energy consumption of
their school from the EiS web server. Resulting creations could be deployed in the classroom,
better engaging students in the goal of reducing energy consumption.

6.9 Summary

This chapter has presented Droplet, a configuration and infrastructure free ad-hoc protocol
for wireless networking. Infrastructure and configuration free operation is enabled through
the use of concurrent flooding and a distributed scheduler and network clock (WN1, WN2).
Interactivity is supported by default because of Droplet’s low latency propagation and high
slot frequency that adapts to the needs of applications (WN3).

Droplet applications can be written from MakeCode using a Droplet implementation
written in CODAL. This means that applications can be developed intuitively and without
installation (GP1). Droplet also makes no assumption of the throughput demands of ap-
plications and automatically balances demand against energy efficiency (GP2). Droplet’s
responsive error detection also allows for the easy extension of Droplet networks (GP1, GP3).

Through an extensive evaluation we show that Droplet enables the features above whilst
maintaining a high degree of energy efficiency (GP4). Finally, we show how citizen devel-
opers are already using the intuitive experience offered by Droplet to create custom IoT
applications in schools across the UK (GP1, GP2).



Chapter 7

Conclusions

Across the globe citizens want to partake in technological innovation. These citizen devel-

opers have the drive to solve problems with technology, but not necessarily the technical
expertise to do so. To benefit society, and promote inclusivity and diversity, it is therefore
important that tools for technological innovation are made accessible to all.

There have been many efforts to democratise access to technological innovation with
software. Intuitive higher level programming languages allow anyone to learn about machine
learning and data science without any formal training. No configuration cloud technologies
allow anyone to deploy applications across the globe without significant infrastructure
investment. And no code development environments allow anyone to build and deploy web
applications across the globe without writing a single line of code. These advances make it
easier than ever before for citizen developers to partake in software innovation.

A similar trend of democratisation can be observed for hardware. Using physical comput-

ing technologies citizens can now build interactive devices and systems that can sense and
respond to the real-world—and they are doing just that. Citizen makers and hobbyists are
using physical computing for artistic creativity and problem solving. Citizen scientists and
innovators are using physical computing to advance scientific understanding and automate
day-to-day life. And citizen teachers are using physical computing to provide students with
a fun and engaging way to learn computer science. Despite these uses however, hardware
innovation via physical computing remains inaccessible to some.

The process of building a physical computing device is riddled with technical complexity.
Embedded development boards equipped with low cost, resource constrained microcon-
trollers form the basis of prototyped physical computing devices. Through microcontroller
programming, users can create applications that define the functionality of a physical com-
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puting device. Resource constrained microcontrollers however require applications to be
written in highly efficient but hard to use programming languages.

Embedded development boards also expose microcontroller General Purpose Input/Out-
put (GPIO) for hardware composition. Hardware composition involves wiring external
sensors to GPIO and this process is what enables physical computing devices to sense and
respond to the real-world. Communication between microcontroller applications and external
sensors is enabled by highly efficient but hard to use wired protocols.

Some physical computing application require devices network locally and to the Internet
and wireless networking protocols are commonly used for this purpose. Wireless proto-
cols offer great flexibility but consume energy in their operation and energy consumption
therefore becomes an important concern for battery powered physical computing devices.
Counterintuitively however, wireless protocols that are easy to use but less efficient are
preferred to those that are hard to use but are energy efficient. The use of these less efficient
protocols limits physical computing applications.

7.1 Research questions

Motivated by three research questions (RQ1—RQ3) this thesis has explored the trade off
between efficiency and ease of use for existing technologies for physical computing. Each
question corresponds to one of three areas (programming, hardware composition, and wireless
networking) and we answer each question in turn in the upcoming sections.

7.1.1 Programming (RQ1)

RQ1 What are the capabilities, characteristics and limitations of event-based visual pro-
gramming languages when applied to microcontrollers? How do these languages’
capabilities and performance compare with the state-of-the-art in supporting citizen
developers?

Chapters 2 and 3 provide an extensive exploration of programming languages. These
chapters showed that citizen developers find higher level languages, particularly those that
offer event-based (P2) visual programming (P1), more intuitive. These chapters also revealed
an emergent trend towards web-based, installation-free (P3) programming. Lack of software
installation makes programming accessible to citizen developers from any device with a web
browser.
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Visual programming languages for microcontrollers already exist, but none of these
languages offer the event-based programming paradigms evidence to make programming
more intuitive to citizen developers. Moreover, extensive examination of state of the art pro-
gramming languages used by professional software developers revealed that microcontrollers
require careful management of memory and processor utilisation. This need for processor and
memory efficiency becomes even more prevalent for resource constrained, battery powered
physical computing devices. Visual programming languages for microcontrollers however
typically enable more intuitive programming at the cost of memory and processor efficiency.

This thesis therefore contributes CODAL, a runtime environment that enables installation-
free event-based visual programming from Microsoft MakeCode. CODAL provides a number
of primitives that allow higher level languages to efficiently map to the hardware. Through
an extensive evaluation we show that MakeCode and CODAL are up to 50 times more
processor efficient than other popular languages, and that the approach can be applied to
resource constrained microcontrollers with as little as 2 kB of RAM. We also illustrate how
intuitive MakeCode and CODAL make programming by reporting on the many advanced
projects citizen developers create, and sharing statistics that show that over one million
citizen developers now use MakeCode and CODAL every month.

7.1.2 Hardware composition (RQ2)

RQ2 Do single wire approaches to modular hardware composition simplify hardware in-
tegration for citizen developers, and what are the performance implications of these
approaches?

Chapters 2 and 3 provide an extensive exploration of wired protocols. This exploration
revealed that citizen developers find wired protocols that offer dynamic connectivity (HC1),
dynamic device discovery (HC2), and hardware abstraction (HC1) make hardware composi-
tion more intuitive. Furthermore, protocols that enabled this feature set using a single cable
also proved more intuitive.

Wired protocols that enable low infrastructure hardware composition already exist but
are not widely adopted by low cost and resource constrained microcontrollers. Extensive
examination of these protocols also revealed that those that had intuitive features did so at the
expense of implementation complexity. As implementation complexity leads to an increase
in cost, we found that protocols shown to be more intuitive to citizen developers are also not
widely supported by low cost microcontrollers.



7.1 Research questions 217

This thesis therefore contributes JACDAC, a single-wire protocol for intuitive hardware
composition. JACDAC reuses the UART peripheral common to most microcontrollers and
its software stack can be applied to implemented on high and low capability microcontrollers.
JACDAC supports all of the intuitive features required by citizen developers at the expense
of a small amount of efficiency when compared to I2C. JACDAC devices can be intuitively
programmed from MakeCode and services developed and debugged from any device with a
web browser and USB port. We show that JACDAC enables intuitive hardware composition
by describing its use as part of a modular toolkit for building interactive garments. Using
JACDAC citizen developers were able to intuitively compose hardware to construct interactive
garments that were later shown at a high profile fashion show in Brooklyn, New York.

7.1.3 Wireless networking (RQ3)

RQ3 Do concurrent flooding approaches simplify ad-hoc wireless networking for citizen
developers and what are the performance implications of these approaches?

Chapters 2 and 3 provide an exploration of wireless networking protocols relevant to
the needs of the citizen developer. This exploration revealed that citizen developers require
protocols that support interactive physical computing applications (WN3) without requiring
configuration (WN1) or supporting infrastructure to operate (WN2). These chapters also
revealed that citizen developers typically deploy networked physical computing devices on
battery across environments. But instead of using protocols designed for distributed and
energy efficient operation, they choose to use proximal and energy intensive protocols that
offer the intuitive features above.

Ad-hoc networking protocols offer distributed and energy efficient operation, but we
found that many of these protocols require configuration and supporting infrastructure
to operate. Other ad-hoc networking protocols were also designed to sacrifice real time
interactivity for energy efficient operation. Through examination of different types of ad-hoc
networking protocols, we found that concurrent flooding approaches seemed to offer many
intuitive features that citizen developers require. Existing approaches however required
infrastructure to support their operation.

This thesis therefore contributes Droplet, a configuration and infrastructure free ad-hoc
protocol for wireless networking. Droplet uses concurrent flooding to flexibly support
distributed interactive applications that adapt to the throughput demands of applications
automatically and without intervention. Using the BBC micro:bit, we show that Droplet
is implementable on commercially available BLE radios. Using this implementation we
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evaluate Droplet’s performance and show that Droplet enables all of the intuitive features
required by citizen developers at the expense of a small amount of energy efficiency. We
show that Droplet makes wireless networking more intuitive by describing its use by citizen
developers to create advanced IoT applications in 30 schools across the UK.

7.2 Concluding remarks

Working on the micro:bit project motivated many of the contributions and learnings of this
thesis. Close work with teachers and students revealed an appetite for learning and creating
with physical computing technologies, but similarly revealed the challenges and issues faced
by many citizen developers.

It has been extremely humbling to learn that over 20 million children have now pro-
grammed a micro:bit using MakeCode and CODAL—that is 1% of all children in the world!
It is important however to recognise that close research collaboration were critical to this
success. Collaborators offered considerable help in defining, refining, and motivating ideas
and concepts. Without these very different perspectives, it would have been difficult to sort
interesting ideas from the inane. The results of this thesis are evidence that close research
collaborations can change the world for good.

The technologies in this thesis were not only built, they were deployed and used by the
people they were designed for. This process proved extremely valuable in directing future
research. A need for more intuitive wireless networking emerged through working with
educators, and their use of edge connector peripherals for the micro:bit evidenced a need for
more intuitive hardware composition. End users therefore also play a critical role in defining
and shaping research direction.

Each time researchers open Google Scholar they are greeted with the phrase “stand on
the shoulders of giants”. Sometimes, however, it is necessary to reach the shoulders by
scaling up the body of the giant. This thesis has shown that by investigating the fundamental
technologies of physical computing, rather than their application, physical computing can be
made more intuitive.

7.3 Limitations

Though the technologies contributed in this thesis have made physical computing more
intuitive, it is important to acknowledge their limitations. This section briefly discusses the
limitations of each technology in turn.
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CODAL

CODAL is designed to allow higher level languages run efficiently on microcontrollers.
Many higher level primitives like events and managed types are supported in CODAL. This
not only makes it easier for higher level languages to map efficiently to C++, it makes easier
for developers to write applications in C++.

These features are designed to give users a safe platform on which to build applica-
tions, but each feature increases processor and memory utilisation compared to a plain C
application. This means that CODAL cannot be used for real-time applications that require
sub-microsecond accuracy or for super resource constrained microcontrollers.

JACDAC

There are many different types of peripherals available for microcontrollers to use. Many
of these peripherals are sensors that have the capability to occasionally emit events (e.g. an
accelerometer shake event) or report data when requested. Other types of peripherals like
microphones, speakers, and displays regularly stream large quantities of data to or from
microcontrollers. JACDAC is ideal for low data rate sensors, but not for supporting high data
rate streaming-based interfaces like displays.

Droplet

Droplet was designed for teachers and educators to use. It is dynamic, flexible, and ad-hoc
and uses a time-division multiple access approach to give each device a dedicated time to
transmit. The number of slots available is fixed which means that if more devices are added
than can be supported, those devices will get no air time.

Like JACDAC, Droplet is best suited to applications that do not require high data rate
streams. For example, streaming live video is likely not possible with Droplet. There are
ways around this limitation in both cases however. If the end goal is image recognition, that
recognition could happen on the camera module itself rather than processed elsewhere on the
network. Moreover, the data could be pre-processed so to reduce the amount of data sent
across a network.
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7.4 Future work

JACDAC has the potential to transform many applications areas beyond those discussed in
this thesis. It brings a paradigm shift not seen before in the low-cost microcontroller market
and removes the constraints of traditional communication protocols.

Flexible hardware production

It is often the case that electrical components selected for consumer devices may not be
available throughout the expected manufacturing lifetime of a product. For example, the
micro:bits produced today are different from those manufactured in 2015. The original
micro:bit accelerometer, the MMA8653, was declared end of life in 2017. This meant that
after a specific date, no new MMA8653 accelerometers would be produced and supplies of
the part would dwindle.

Hearing this news, the micro:bit foundation were forced to choose a different model of
accelerometer to fit to the micro:bit. They also decided to future proof themselves further by
selecting a second accelerometer to act as a back up to the first. With two accelerometers
to choose from, factories could make the decision of which accelerometer to fit based upon
supply chain availability bringing agility and flexibility to manufacture.

Supply chain flexibility and agility is important for all parties involved in hardware
production. If the new accelerometers required a significant change in PCB layout, the
micro:bit foundation would have incurred costs for Federal Communications Commission
(FCC) recertification. Similarly, factories configured to produce micro:bits, but lack the
required components, do not make any money.

If JACDAC was natively supported on every sensor, component selection would become
arbitrary. In the case of the micro:bit, it would not have mattered what accelerometer was
available in the supply chain, any accelerometer could have been selected as a replacement.

Sustainable hardware production

Sustainability should be high on the agenda for anyone involved in producing electronic
products. Vital planetary resources are consumed each time a component is produced, and
factory emissions from production processes contribute significantly to rising CO2 levels.

One way we could reduce the impact of hardware production on the environment is by
modularising the design of PCBs. Modularisation at the PCB level would allow disposed and
disused electronic products to be broken down into individual discrete modules that could be
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re-purposed and reused in new electronics products. JACDAC’s hardware abstraction and
support for modularity would be a key enabler to this approach.

Democratising hardware production

It is often the goal of the prototyping process to produce a small number of artifacts. But
if those artifacts are successful, the next step may be commercialisation. Prototyping as
a production process may scale to tens of products, but it cannot scale much beyond that.
When selling to the mass market, there are certain quality expectations that must be met. And
to meet these expectation more refined production processes are required which typically
require huge investment from the creator.

This is true of many areas of manufacturing and especially so for electronic products—
building a single low quality prototype is relatively easy, but producing high quality products
at high volumes (e.g. 100,000+) can only be achieved with strong financial backing. High
quality products produced in smaller quantities (100–100,000) often come with a hefty price
tag. A quick glance at Kickstarter [23] however will evidence demand for niche products
aimed at these smaller quantities, but their quality is typically less than that of a mass
manufactured electronic product.

This niche area is known as the long tail of hardware [174] and making it easier for
people to produce hardware in smaller quantities has now be declared an open research
challenge. There are many research areas encapsulated in this challenge, but one area which
JACDAC could have a pivotal role is in democratising the manufacture of electronics.

There is a significant amount of skill required to produce a custom PCB. Complexity lies
in circuit design—drawing the schematic, designing the PCB layout, and routing electrical
signals between components. Using completely modularised JACDAC components would
vastly simplify the PCB design process. Only three wires would be required to connect
modules together, and designs could even be automatically generated due to topological
simplicity. Reusing modular JACDAC components would also address questions of scalability
and sustainability—the prolific use of JACDAC modules in the wild would reduce the cost
of creating hardware for everyone. I envisage a world where someone can create a piece of
hardware for their application, without prior electronics or programming experience.

A new connector

Though the audio connector proved intuitive for fashion designers to use, the use of the
connector itself introduced some complexity. The first are of complexity concerned power
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delivery. It became clear that shorts occurred as the 3.5mm jack was inserted into the barrel
and it was also common for users to partially insert the jack. As power occupied one of the 3
pins of the audio jack, 5 Volts would occasionally be shorted to ground and sometimes for an
extended period of time. Hardware components were added to account for this short circuit
condition, but these components quickly became hot.

The second area of concern was the huge wealth of 3.5mm compatible audio accessories
already in existence. It was highly likely that children, or even adults, would connect their
MakeCode Arcade devices to expensive audio systems anticipating 8-bit game sounds. As
audio systems are not design to accommodate the 5 Volt and 3.3 Volt data signals of JACDAC,
what would most likely happen is that those expensive audio devices would break.

Because of these concerns, the use of the 3.5mm jack become untenable. JACDAC will
be using a new connector in the future and it is ongoing work to define its look and feel. The
reversibility and the low cost of the 3.5mm jack will be used as design aspirations for a new
connector.

Intuitive power delivery

Understanding electronic power delivery and distribution requires a basic understanding of
electronics. Many citizen developers do not have such understanding and it is difficult for
them to calculate power consumption and identify issues that may arise from insufficient
power. Making power more intuitive and easy to understand is an open research challenge
that is vital to the success of JACDAC and any other tool or protocol that could be used for
hardware prototyping.
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