
The effects of trade size and market depth on immediate price impact

in a limit order book market

Manh Cuong Pham1, Heather Margot Anderson*2, Huu Nhan Duong2, and Paul Lajbcygier2

1 Lancaster University Management School, Bailrigg, Lancaster, LA1 4YX, United Kingdom

2 Monash Business School, Monash University, Wellington Road, Clayton, VIC 3800, Australia

September 10, 2020

Abstract

We compare trade size to the prevailing market depth at the best level in the limit order book to

detect and account for zero impact trades in an immediate price impact model. Our model also

incorporates standard trade attributes (trade size, market capitalization and volatility) in a dy-

namic setting. The incorporation of market depth information reduces the mean absolute/squared

forecast error of an immediate price impact prediction by about 60%. After controlling for trade

attributes, market depth, price impact dynamics and intra-and inter- day periodicities (in order

of relative importance) all improve the prediction of a trade’s price impact. We demonstrate the

value of our model by showing that splitting a big order into a series of smaller trades results in a

reduction of between 60% and 82% of the immediate price impact cost of the big order. We also

find that our depth indicator helps with the prediction of order flow and permanent price impact.
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1 Introduction

The ability to design optimal trades that minimize trading costs is of great interest to financial market

participants. Explicit components of trading costs include bid-ask spreads and commission fees, but

an implicit and much larger component of trading cost is market or price impact, which is the change

in an asset price that results from a trade and is unknown ex-ante (Keim and Madhavan, 1996,

1998). Recent work on trading costs (e.g. Eisler et al., 2012, Zhou, 2012, Cont et al., 2014, Wilinski

et al., 2015, Pham et al., 2017) has focused on the impact caused by a single trade immediately

after its execution, and it demonstrates that trading volume, market capitalization and volatility

are all important determinants of market impact. However, little effort has been made to explicitly

incorporate market depth information into empirical models of immediate price impact. We study the

empirical relationship between market depth and immediate price impact in this paper.

Our investigation is motivated by theoretical predictions and existing empirical findings on price

impacts of trades. Theoretical models such as that by Kyle (1985) suggest that price impacts of orders

are increasing in order size, as explored further by Foucault et al. (2013b). Theoretical and empirical

work by Kraus and Stoll (1972) and Keim and Madhavan (1996) shows that price impacts are much

larger for transactions that exceed available market depth at the best level. Knez and Ready (1996)

find that the expected price improvement (measured as the difference between the transaction price

and the prevailing bid or ask quote) is mostly dependent on “excess depth” (measured as the difference

between quoted depth and order size). Expected price improvement is larger (in magnitude) the more

negative “excess depth” becomes, but it essentially drops to zero once “excess depth” turns positive.

Knez and Ready (1996) note that most of their observations fall into the latter category. Related later

work such as that by Dufour and Engle (2000) has documented a high incidence of zero-impact trades.

The above cited work leads us to use information on quoted depth to identify zero-impact trades.

We consider trades conducted in a limit order book market, and note that if a trade is smaller than

the prevailing quoted depth at the best level on the opposite side of the order book, then it can be

completely absorbed by the market depth at the best bid or ask price, and hence have zero immediate

market impact. Trades that are larger than the available quoted depth will move the best bid or ask

level after consuming all liquidity at the current depth, and will result in non-zero price impact. Thus,

the quoted market depth information can be used in conjunction with trade size to form a zero-impact

trade “detector”, that equals zero when market depth does not support price impact and equals one

2



otherwise. We relabel this zero-impact trade detector as a market depth indicator, and argue that its

inclusion in a price impact model that is applied to tick by tick data is intuitively justified. Further,

we show that the use of this “indicator” in an empirical model improves the out-of-sample forecast

accuracy of immediate price impact by reducing mean absolute/squared errors by about 60%. Such

(statistically significant) reductions translate into a total decrease of approximately $AUD 100 million

per annum in the forecast uncertainty of price impact costs, offering clear potential for more accurate

projections of the costs and profits of trading strategies.

We then use price impact models that incorporate our market depth indicator to investigate and

quantify the effects of order splitting strategies. Kyle (1985), Easley and O’Hara (1987), Barclay and

Warner (1993), Chakravarty (2001), Choi et al. (2019) and others have argued that traders often split a

large order into several smaller orders to hide their information and avoid adverse price impact against

their large orders. Also, as discussed in Hasbrouck and Saar (2013), Hendershott and Riordan (2013)

and O’Hara (2015), institutions now use algorithms to implement dynamic trading strategies that split

and sequence orders so as to minimize execution costs. Along with this, Chordia et al. (2011) have

documented that institutions now resort to splitting orders in response to decreased market depth

at the prevailing quotes. In our analysis, we assess the effectiveness of order splitting strategies by

comparing the price impact of a series of small trades to the immediate price impact of an artificial

trade that aggregates these consecutive small trades.

Our empirical modelling framework is built on a threshold principle, that sets expected immediate

price impact equal to zero whenever our market depth indicator is zero. When our indicator is equal

to one, our model follows a specification that incorporates standard regressors such as the trade char-

acteristics used by Lillo et al. (2003) and Zhou (2012). We include Corsi (2009) type heterogeneous

autoregressive (HAR) variables to account for underlying dynamics that drive orders, trade and price

impact, together with day of the week and diurnal variables as well. The “switch” between zero price

impact and (potentially) non-zero price impact is accomplished by treating the product of the indica-

tor and a linear specification of the other variables as “the model”, as we explain in further detail in

Section 2.

We examine an Australian dataset of stocks drawn from the S&P/ASX200 index.1 We find that

a model that incorporates the market depth indicator, other theoretically motivated variables (trade

1Australian data has characteristics that make it particularly appropriate for a study of this nature. See subsection
3.1 for more detailed discussion.
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size, market capitalization and volatility), price impact dynamics, and time of day/day of the week

patterns consistently outperforms all other models that we consider (including a naive model that

always predicts zero market impact), based on both out-of-sample mean squared error (MSE) and

mean absolute error (MAE). We further show that, in addition to traditional trade attributes, (1) the

information from market quoted depth, (2) the dynamics of immediate price impact, combined with

(3) intra- and inter-day periodicities (in order of relative importance) contribute to the performance

of our favored immediate market impact model.

We assess the effectiveness of order splitting strategies by using the most accurate of our set of

price impact models to estimate the immediate price impact of an artificial unobserved large trade

that aggregates a series of consecutive same-sign small trades on the same trading day - and find that

the observed price impact of these split small trades is much lower than that associated with a single big

trade. More specifically, splitting a big order into smaller trades can reduce the immediate price impact

of the former by between 60% and 82% on average. This result confirms the effectiveness of the order

splitting strategies that may be employed by informed traders in order to hide their information and

reduce their price impact costs, as suggested in the literature (e.g. Kyle, 1985, Easley and O’Hara, 1987,

Dufour and Engle, 2000), or by institutional investors who use order-splitting strategies to minimize

their trading costs while rebalancing their portfolios (e.g. Keim and Madhavan, 1995, Forsyth et al.,

2012, O’Hara, 2015, Choi et al., 2019, Korajczyk and Murphy, 2019, van Kervel and Menkveld, 2019).

We also study the relation between market depth information and future order flows, and highlight

the use of depth information to predict future order imbalance. This imbalance is an important aspect

of the dynamics of incoming orders that provides a link between the immediate price impact studied

here and the permanent price impact discussed in Bessembinder and Venkataraman (2010). Our

analysis shows that the use of depth information also helps with the prediction of permanent price

impact.

We contribute to the literature on immediate price impact (for example Lillo et al., 2003, Zhou,

2012, Wilinski et al., 2015) by demonstrating that the use of our proposed depth indicator in immediate

price impact models enhances their forecast accuracy by large and statistically significant margins. We

measure some of the economic implications of the use of our indicator in immediate price impact

models and find substantial benefits, both in terms of the reduction in the forecast error of price

impact models and in terms of potential savings made by splitting large orders. We also find that our
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depth indicator is informative about future order flows and the gap between immediate price impact

and permanent price impact. Given the importance of minimising trading costs, such findings have

considerable practical relevance.

The rest of the paper is organized as follows. Section 2 outlines our model of immediate price

impact and then discusses our depth indicator and other aspects of model specification that lead to

greater precision in immediate price impact estimates. Section 3 reviews our data, relevant institutional

detail and our research methodology. Comprehensive out-of-sample comparative results are discussed

in Section 4, followed by discussions of the economic implications of a more accurate immediate price

impact model in Section 5, and some analysis of how well our depth indicator signals future order flow

and permanent price impact in Section 6. We include additional discussion of results relating to a

nonparametric extension of our model in an appendix, and Section 7 concludes.

2 Immediate Price Impact Models

This section specifies our model of immediate price impact and discusses how it accounts for depth

in the order book as well other characteristics of orders and trades. We use ∆pi,t to denote the

immediate price impact caused by the t-th transaction of stock i, calculated as the logarithmic change

in the mid-prices of the bid and ask quotes immediately after (pi,t+) and before (pi,t−) that trade, i.e.

∆pi,t = ln pi,t+ − ln pi,t− , and write our model as

∆pi,t =
[
G(Xi,t, Ti,t)× Ivi,t≥depthi,t

]
+ ηi,t, (1)

where Xi,t consists of “traditional” trade attributes (trading volume, market capitalization and volatil-

ity), Ti,t consists of variables that capture the dynamics properties of price impact (such as flow on

effects from previous transactions and time of day/week effects) and Ivi,t≥depthi,t is our market depth

indicator that distinguishes our immediate price impact model from others in the literature. We define

and discuss the variable Ivi,t≥depthi,t in subsection 2.1, and provide further details about the sets of

variables that we include in Xi,t and Ti,t in subsections 2.2 and 2.3. We specify G(., .) as a linear

function of Xi,t and Ti,t and highlight the features of the resulting model in subsection 2.4. The error

term ηi,t captures independent disturbances that have a mean of zero.
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2.1 Market depth

We build on the intuition that a trade will not move the best ask (bid) price when the share volume of

an aggressive buy (sell) is less than the quoted depth at the best ask (bid), and hence such a trade will

have zero price impact. On the other hand, if a trade has volume greater than or equal to the available

(other side) market depth, it will erase the currently quoted depth at the best opposite-side level, widen

the bid-ask spread and generate a non-zero price impact. Thus, information about the quoted market

depth in the opposite order book right before a trade is useful for predicting the price impact caused

by that trade, and it can be used to detect zero and non-zero impact trades. We incorporate this idea

into our price impact model by using a threshold-type dummy variable denoted by Ivi,t≥depthi,t , which

equals 1 if the volume of the t-th trade in stock i is greater than or equal to the quoted depth at the

best level of the opposite side of the limit order book immediately before this trade, and 0 otherwise.

Our depth indicator enters Equation (1) multiplicatively, so that if Ivi,t≥depthi,t = 0 then G(Xi,t, Ti,t)

is not activated and we predict no immediate price impact. On the other hand, if Ivi,t≥depthi,t = 1,

then the trade consumes all depth at the best level on the opposite side of the order book, widens

the bid-ask spread and leads to an expected price change of G(Xi,t, Ti,t). As detailed below, all the

variables in Xi,t and Ti,t are measured before the trade takes place, so that when Ivi,t≥depthi,t = 1, then

G(Xi,t, Ti,t) is activated and delivers a forecast of the immediate price impact of the trade.

The inclusion of the depth dummy variable in a price impact model implicitly implies a negative

dependence of immediate price impact on the prevailing market depth, as documented in Chan (2000),

Engle and Lange (2001), Engle and Patton (2004), Hautsch and Huang (2012) and Brogaard et al.

(2015). Further, our model specification in Equation (1) is able to deliver predictions that are consistent

with previous analyses that have found that observed immediate price impact is often zero. Dufour and

Engle (2000) report large proportions of zero impacts (from 72 to 92%) for their US stock sample dating

from November 1, 1990 to January 31, 1991, and Zhou (2012) observes a 91% (89%) of filled buys

(sells) with no price impact in his Chinese stock sample in 2003. Summary statistics of the variables in

our study are presented in Table 1, and they suggest that about 60 to 80% of immediate price impact

costs in our data are zeros. Given this, we expect that a naive model that always predicts zero price

impact may have greater practical utility than classical immediate market impact models such as those

due to Lillo et al. (2003), Almgren et al. (2005) and Zhou (2012), and indeed we demonstrate this in

subsection 4.2.
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2.2 Trade attributes

Standard predictors in price impact models include volume, market capitalization and volatility, and

we use the collective term Xi,t when referring to all three of these variables. We measure volume using

vi,t/v̄i,t, where vi,t is the share volume of the t-th trade, and vi,t is the average volume of all trades in

the trading day that are prior to (and including) the t-th trade (and have the same direction as that

trade). Our market capitalization variable Mi,t is calculated as the product of the mid-quote price and

the number of shares outstanding for stock i just prior to the t-th trade, and our volatility measure σi,t

is calculated as the standard deviation of the mid-quote returns from the first trade of the day until

just before the t-th trade. An important feature of these variables is that they are measurable ex-ante

with respect to the t-th trade, and hence they are useful for forecasting immediate price impact.2

2.3 Time series characteristics

Pham et al. (2017) find that a model developed by Zhou (2012) forecasts price impact better than

models that simply include trade attributes, and they attribute this forecasting superiority to the

inclusion of an average price impact variable (∆pi,t) in Zhou (2012) that incorporates lags of ∆pi,t and

thereby captures some of the dynamic properties of price impact. Price impact dynamics can provide

insights into market resiliency or how the limit order book replenishes after trades. For example, an

observation of consecutive trades with high price impact might indicate that the liquidity supply in

the order book is not replenishing sufficiently quickly, so that future trades might also be expected to

incur high price impact.

Given these considerations, it is of interest to build some time series characteristics into our models

of immediate price impact. ARMA models are standard in the literature, and these include heteroge-

neous autoregressive (HAR) structures developed by Corsi (2009) for modeling daily volatility. Corsi

(2009) allows for heterogeneity in investors’ trading horizons by incorporating moving averages of daily

volatility over the past week and the past month into his volatility specifications. Here, we adapt this

structure to our transaction-data context and include moving averages of past price impacts in our

variable set Ti,t. Specifically, we define ∆pi,t,n ≡ 1
n

∑n
j=1 ∆pi,t−j for n ∈ {1, 5, 20, 50}, where each trade

2In contrast, similar variables v̄i,t and Mi,t used in Lillo et al. (2003) relate to the entire year in which the t-th trade
occurs, and such variables cannot be measured at the time of the trade since information about subsequent transactions
in the remainder of the year is not yet known. Similarly, the volatility measure σi,t used in Torre (1997) and Almgren
et al. (2005) relates to the entire year of the t-th trade, and is therefore less useful for forecasting.
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in the moving average occurs before the t-th transaction and has the same sign as the t-th transaction.

The use of these variables is consistent with an assumption that there are various groups of traders who

might close or reverse their trading position after 1, 5, 20 and 50 transactions. These transaction times

correspond to about 0.4 (2), 2 (10), 8 (40), 20 (100) minutes for the biggest (smallest) stock group

listed on the S&P/ASX200 index in 2007 as shown in the descriptive statistics for trade durations

reported in Table 1.

Further, many researchers have shown that the frequency and aggressiveness of trades differ through-

out the day (Admati and Pfleiderer, 1988, Bloomfield et al., 2005) and that they also vary over the week

(French, 1980, Foster and Viswanathan, 1990). These intra- and inter-day periodicities reflect more

distant price impact dynamics than the ∆pi,t,n variables discussed above. We capture their effects by

adding a day of the week categorical variable (dayi,t) and a time of day categorical variable (blocki,t)
3

into our variable set Ti,t.

2.4 Our immediate price impact model

Our version of Equation (1) combines the details discussed in earlier subsections and is given by

HARXdepth: ∆pi,t =
[
a+ α

(
vi,t
vi,t

)
+ βMi,t + γσi,t + δ1dayi,t + δ2blocki,t + φ1(∆pi,t−1)

+ φ5(∆pi,t,5) + φ20(∆pi,t,20) + φ50(∆pi,t,50)
]
× Ivi,t≥depthi,t + ηi,t, (2)

where the “HAR” portion indicates that the model includes all time series variables in Ti,t, the “X”

indicates that the model includes all trade attributes in Xi,t and the depth subscript indicates that the

model incorporates the market depth indicator and hence allows for non-zero price impact when the

volume traded is larger than the quoted depth at the best level on the opposite side of the order book.

Relative to other immediate price impact models that typically just include trade attributes as ex-

planators, our HARXdepth model embodies two novel features. The first of these is our depth indicator,

that allows for zero price impact when market depth is sufficiently high. Although depth has previously

been used as a standard explanatory variable, it has not been used as an indicator, nor has it been used

in multiplicative form to ensure that no price impact is predicted when observed market conditions

3Each trading day is partitioned into six blocks (10:10-11:00, 11:00-12:00, 12:00-13:00, 13:00-14:00, 14:00-15:00 and
15:00-16:00), and the variable blocki,t is the time block during the day in which the t-th trade in stock i occurs. All
trades in the first 10 minutes of each trading day are excluded from the analysis to avoid the effects of the ASX opening
procedure.
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do not support a change in price. A second novel feature is our context specific adaptation of HAR

lag structures to ensure that our modeling of price changes takes account of underlying dynamics in

prices that reflect order flows, and how these flows change over time. HAR variables are common in

the financial volatility literature, but to our knowledge they have not yet been used in the price impact

literature.

3 Data and Research Methodology

3.1 Data

Most previous empirical work on price impact uses US data. In contrast, we work with Australian data

provided by the Securities Industry Research Centre of Asia-Pacific (SIRCA). We choose the Australian

market for several reasons. First, unlike the US stock market which has a high degree of market

fragmentation with eleven equity exchanges and many alternative trading systems (O’Hara, 2015), the

Australian stock market was unfragmented until October 2011 and is still relatively unfragmented.4

The use of Australian data mitigates issues associated with aggregating order flows across different

trading venues, and enables a (near-) complete analysis of the trades of interest. The low level of

market fragmentation in Australia also alleviates the potential issue of vulnerability of liquidity supply

in a severely fragmented market during periods with large liquidity demand, as highlighted in Menkveld

and Yueshen (2019).

Second, the Australian stock market is an electronic limit order book market, rather than a quote

driven market. Trades in the Australian stock market cannot be executed within the bid-ask spread

unless they are executed against hidden orders queued inside the bid-ask spreads,5 and the proportion

of within bid-ask spread trades over our period of analysis is very small (less than 1%). This level

of transparency provides an ideal setting for using quoted market depth to detect zero-impact trades,

and since most major financial markets around the globe are also limit order book markets (Goettler

4All Australian listed stocks were traded on one exchange (the Australian Securities Exchange (ASX)) until 31
October 2011, when a second trading platform called Chi-X Australia was launched. The on-exchange trade share of
Chi-X remained below 2.0% for the first six months, but it had reached 5% by late 2012 and 10% by late 2013. This
change in market structure was not accompanied by a “no trade-through” policy such as that in force in the USA, and
traders have had the freedom to place orders on either (or both) trading platform(s), (see Aitken et al. (2017)).

5We only examine trades on the lit Australian Securities Exchange and do not consider either block trades manually
negotiated in an upstairs market or dark trades executed in Australian dark pools. For investigations of block and dark
trading, which are beyond the scope of our study, see Bessembinder and Venkataraman (2004), Zhu (2014), Boulatov
and George (2013), Comerton-Forde and Putniņš (2015), Kwan et al. (2015), amongst others.
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et al., 2009, Malinova and Park, 2013), our findings are likely to have widespread applicability.

Third, the Australian data contains explicit information on whether each trade is buyer or seller

initiated, which allows precise determination of the sign of each price impact and avoids the need to use

an indirect method such as the widely used Lee and Ready (1991) algorithm which has an accuracy

rate of only about eighty-five percent (Odders-White, 2000). It follows that findings based on the

Australian data are likely to be more reliable.

Finally, some equity exchanges operate a make/take fee structure that, on top of charging the

usual bid-ask spreads, charges liquidity takers additional fees while giving rebates to liquidity makers

(Foucault et al., 2013a, Malinova and Park, 2015). This allows the passive party of a trade (who

submitted a limit order and provided liquidity) to enjoy a very small or even negative price impact

if associated rebates are sufficient to offset the adverse price change. In such markets, the observed

ex-post price impact might not fully represent the cost an investor has to pay for immediate execution

(net of other explicit trading cost components such as bid-ask spreads or commission fees), and one

has to adjust for the make/take fees to determine net price impact. The Australian stock market does

not feature make/take fees, which simplifies our analysis by making such adjustment unnecessary.6

Similar to most other electronic limit order book markets, orders submitted to the ASX follow a

price-time priority. In particular, limit orders are queued and ranked in the limit order book first by

price priority and then in the time sequence that they arrive at the market. Meanwhile, market orders,

which are orders with the highest price priority, are executed at the best available prices immediately

upon their submission. The limit order book is updated instantaneously whenever an order submission,

revision, cancellation or execution occurs, and the submitted price of an order must be in multiples of

the minimum tick size, which is pre-specified by the exchange and is dependent on the price level of

the security.7

A typical trading day consists of two sessions: a pre-market session from 7:00am to 10:00am

Australian Eastern Standard Time (AEST), and a normal trading session from 10:00am to 4:00pm

AEST. The first 10 minutes of the normal trading session are opening auctions. There is also a closing

single price auction between 4:10pm and 4:12pm during which the daily closing price for each stock is

6We note that make/take fees are typically fixed and known to traders, so that adjustment for these fees is quite
straightforward. Thus, our work could be adapted to study a limit order book that imposes make/take fees.

7The tick size is $AUD 0.001, 0.005, and 0.01 for stock prices that are below $AUD 0.1, from $AUD 0.1 but below
$AUD 2, and from $AUD 2, respectively. The relevant tick size for most trades in our sample (93%) was 0.01, with the
relevant tick size for the remainder being 0.005.
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determined (see https://www.asx.com.au/about/trading-hours.htm).

We study stocks in the S&P/ASX200 index, which provides a broad representation of the Australian

equity market and covers more than 80% of Australian equity market capitalization. The set of stocks

in this index changes when the index is rebalanced, and we focus on those stocks that remain in the

index (with an unchanged ticker) over the entire time-span of our data (2007 - 2013).8 Our resulting

sample consists of 92 stocks, and we divide them into five groups according to their average market

capitalization over the sample period. Group 1 consists of the 12 stocks with the largest market

capitalization in our sample, and Groups 2 - 5 contain 20 stocks each and consist of successively lower

capitalized stocks.

We collect two datasets from the SIRCA database. The first dataset records details on every order

submitted to the central limit order book, including stock code, order type (submission, revision,

cancellation and execution), date and time, order price, order volume (number of shares), order value

(dollar value), and order direction (buy or sell order). Each new order is assigned a unique identification

number (ID) so that the order can be tracked from its initial submission through to any revision,

cancellation or execution. Since one large buy (sell) order can be matched against several orders on

the sell (buy) side and therefore result in multiple simultaneous transactions, trades executed at the

same time and initiated by the same order are aggregated into one trade, as is standard in the literature

(see, e.g. Jondeau et al., 2015). We classify trades into buyer-initiated and seller-initiated transactions

based on the directions of the (marketable) orders that initiate each trade.

Our second dataset contains detailed intra-day information on stock code, date, time, and the best

bid and ask quotes in the limit order book. We remove all observations with a negative bid quote

or ask quote, any observations with zero volume and any observations with a higher bid quote than

ask quote. We merge the transaction dataset with the bid and ask quotes data to determine the bid-

ask midpoint before and after each transaction. Finally, we collect daily data from the DatAnalysis

Premium database (https://datanalysis.morningstar.com.au/) on the numbers of shares outstanding

for each stock.

8We do this because we require long and complete time series of data for each stock to undertake appropriate forecast
analysis. Our sampling mechanism raises the possibility of “survival bias” in our analysis, but our results can be validly
viewed as being conditional on stock survival. We discuss this further in Section 4.2.5.
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3.2 Research methodology

We assess the value of our HARXdepth model in Equation (2) by comparing its ability to forecast

immediate price impact with a set of other models that are nested within the HARXdepth specification.

Our comparator models differ from each other in that some incorporate the depth indicator Ivi,t≥depthi,t

while others do not and some include the HAR variables while others do not. This allows us to

assess the separate contributions of the depth indicator and price impact dynamics towards forecasts

of immediate price impact. The full specifications of all models that we use for this purpose (and

the acronyms that we use for them) are given in Appendix A. We include the models by Zhou (2012)

and Lillo et al. (2003) in our comparison as well, since these traditional models specify a nonlinear

power-law dependence of immediate price impact on trading volume, and hence they provide additional

well known nonlinear comparators for our linear models. In addition, we include a “naive” model that

always predicts zero immediate price impact for each trade. This last model acts as a benchmark for

other models that include predictors.

Hendershott et al. (2011) note significant reductions in trading frictions, higher trading frequencies

and improvements in stock liquidity over recent years. As a result, we expect that price impact

models calibrated using data for one period may not produce accurate predictions for price impact

of trades for another, especially if both periods are long and there have been significant changes in

market microstructure within each period. Therefore, we use rolling window estimation and forecasts

to address this issue. Specifically, we use the first 9 months (January-September 2007) to estimate

different price impact models and then use the estimated models to make out-of-sample predictions for

all transactions in October 2007. We then roll our data sample one month forward, using 9 months of

data starting from February 2007 to re-estimate the models and produce predictions of price impacts

in November 2007. The one-month-ahead rolling window procedure is repeated 75 times until we

have forecasted price impacts for December 2013. Note that all continuous variables in the study

are winsorized at the 1st and 99th percentiles to avoid the effects of outliers on in-sample fitting and

out-of-sample prediction. The winsorization is done on a stock-by-stock basis, separately for buys and

sells, and separately for each rolling window.9

9We obtain qualitatively similar results when the winsorization is applied to the larger panel dataset for each stock
group in each rolling window.
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(a) In-sample fitting

We estimate separate price impact models for buys and sells (for each stock group in each rolling

window) to allow for potential asymmetries between buys and sells. In particular, all transactions for

all stocks in each group over each nine month period are combined into a pooled dataset that is used

to estimate the parametric models via least squares.

(b) Out-of-sample comparisons

Each of the estimated models based on each nine-month rolling window is used to make out-of-

sample predictions of price impact (∆̂pt) for the following month, with separate models being used

for buys and sells of each stock group. We assess the out-of-sample predictive accuracy of one model

relative to another using their forecast errors - i.e. the difference between their predicted out-of-sample

and realized price impacts. We employ the approach developed by Giacomini and White (2006)

(GW) to test the relative conditional predictive accuracy between any two models. More specifically,

we examine whether the relative performance of these two models changes with some conditioning

variable that is set to be the lagged relative performance as in Giacomini and White (2006). The GW

conditional test is implemented in a pairwise fashion for all price impact models and for each rolling

window. In addition, pairwise tests are carried out for the whole out-of-sample period which combines

all out-of-sample one-month periods together.10,11

It is well known that statistical inference based on a comparison of p-values obtained from multiple

pairwise tests may not be valid, and that the overall size of combining multiple pairwise tests may not

coincide with the size of each individual test. We address this issue by using “Model Confidence Set”

(MCS) tests due to Hansen et al. (2011) that allow a given set of competing models to be compared

simultaneously against one another in a way that circumvents size distortion. The test identifies a

non-null subset of models (known as the MCS) that contains the unknown best model with a pre-

specified level of confidence by iteratively filtering out weaker competitors, so that the implicit null

hypothesis is that the models in the MCS outperform the other competitors. The number of models

included in an MCS depends on the informativeness of the data. An MCS might contain just a single

dominating model if the data is informative, but it might also contain several or even all models. We

10It is the whole out-of-sample GW test that motivates us to set the out-of-sample length to be one month. If a two
(or more) month period was chosen for the out-of-sample period instead, we would have to roll the window ahead by
the same number of months which would reduce the number of rolling windows significantly.

11We also analyze, but do not report, the relative unconditional predictive accuracy between any two models using
the unconditional version of the Giacomini and White (2006) test and the Diebold and Mariano (1995) test. Results for
these tests are qualitatively similar to the conditional tests and are available upon request.
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implement the MCS test to assess the predictive accuracy of the set of all price impact models in each

out-of-sample month.12

4 Results and Discussion

4.1 Descriptive statistics

Table 1 provides summary statistics for individual trades for the 92 stocks that we study. In total,

we examine 232,419,333 individual trades, consisting of 119,749,509 buyer-initiated and 112,669,824

seller-initiated transactions. There are more than 79 million trades in the group with the largest

market capitalization (Group 1) and almost 21 million trades in the smallest market capitalization

group (Group 5). Although Group 1 has only 12 stocks while other groups have 20 stocks each, the

former still has many more observations than do any of the latter. Price impact is largest for the last

(and least frequently traded) of these groups, and smaller for more highly capitalized stocks, which is

consistent with the findings documented in Lillo et al. (2003), Lim and Coggins (2005) and Bouchaud

et al. (2009). For all five stock groups, price impact is highest during 2008-2009 as a consequence of the

Global Financial Crisis. Furthermore, the price impact of a sale (tabulated in Panel B) is on average

larger in absolute value than for a purchase (tabulated in Panel A), as found by Karpoff (1987), who

suggested that this might be due to short sale constraints. We also note that for both buys and sells,

the absolute value of price impact is smaller when the average (opposite side) prevailing quoted depth

at the best level is larger.

<<INSERT TABLE 1 ABOUT HERE>>

Trading volume per trade, either in dollar value or in the number of shares, generally decreases over

time, and a similar pattern is observed for trade durations. These observations are consistent with

the increasing presence of algorithmic and high frequency traders who tend to trade more frequently

with a smaller trading volume per trade (e.g. ASX, 2010, Chordia et al., 2011, Brogaard et al., 2014).

Moreover, the average scaled volume is less than one, showing that trading volumes are positively

12The huge number of observations over 75 out-of-sample months makes the calculation of the Hansen et al. (2011)
MCS test challenging, because this test relies on simulation. Thus, we do not run the MCS tests for the whole out-of-
sample period. Instead, we conduct the MCS test for each out-of-sample month by employing the Politis and Romano
(1994) stationary bootstrap method with 1500 bootstrap replications, and an average block-size of 10 to allow for serial
correlation in the loss series produced by each model. We set the significance level at 5%, and hence work with a
confidence level of 95%.
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skewed, as noted elsewhere (e.g. Andersen, 1996, Manganelli, 2005, Menkhoff et al., 2010). Similar

to price impact, volatility is smaller for the more highly capitalized stock groups. Volatility increased

substantially during 2008-2009, but has become relatively stable since 2010. Prevailing quoted depth

at the best price tended to increase over 2007 - 2010, but has reduced substantially since 2010.

The majority of trades (between 55% and 85%) do not incur any immediate price impact for buys

or for sells, with the proportions of zero-impact trades being larger for the less capitalized stocks.

Meanwhile the market depth indicator shows that a larger proportion of trades (between 59% and

85%) are smaller than the available quoted depth at the best level in the opposite book and should,

in theory, incur zero market impact. Across all stock groups, the difference between the percentage

of trades for which the depth dummy equals zero and the percentage of trades for which there is no

price impact is negligible between 2007 and 2011, but then it increases sharply to about 3% in 2012

and 7.3% in 2013 on average.

We call transactions that move the midquote and have a non-zero immediate price impact despite

having less volume than the prevailing opposite-side depth “anomalous trades”, and we have examined

them in detail. We find that about 80% of such trades in 2012 and 2013 are a consequence of multiple

(groups of) trades that occur at the same millisecond time instance in our sample but are not initiated

by the same order.13 These trades, which are not aggregated into a big single trade in our algorithm,

have lower individual volumes than the prevailing opposite-side depth, and thus their depth indicators

are all zero. However, the total volume of these trades is larger than or equal to the prevailing depth,

suggesting that there is a new best price after the execution of these trades. Even though only the last

(few) trade(s) move(s) the price, all of these trades are recorded as non-zero impact trades, since the

midquote right after their execution millisecond is different from the previous midquote.

Simultaneous entries at the same millisecond time stamp also lead to another 15% of our “anomalous

trades” in 2012 and 2013. This is because there are other delete (enter) orders occurring at the same

millisecond which remove (add) liquidity from (to) the market and hence introduce noise when we

identify the mid-points before and after the trades. Hidden orders (such as iceberg orders) that are

queued inside the bid-ask spread when the bid-ask spread is larger than one tick can also lead to

13It is likely that these trades were executed at different time instances that were finer than a millisecond, but due
to the millisecond resolution of our data, they were recorded at the same millisecond time stamp. The observation that
there are more such “simultaneous” trades in 2012 and 2013 is consistent with the rise in algorithmic and high-frequency
traders in recent years, with trading latency that is much smaller than a millisecond (O’Hara, 2015). We thank a referee
for pointing out that Menkveld (2018) observed groups of “simultaneous” trades (on the NASDAQ), and suggested that
they stem from high frequency races on common signals.
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anomalous trades. However, such instances occur much less frequently and account for less than 1.5%

of the anomalous trades in 2012 and 2013.

Meanwhile, a comparison of the last two columns of Table 1 shows that trade sizes are bigger than

the available depth with no price impact for less than 1% of all observations. This is due to trades

arising from hidden orders queued at the best bid and ask prices, with such orders being omitted

from the calculation of the depth indicator. Although these trades have a larger volume than the

visible prevailing depth, they are smaller than the total visible and hidden depth at the best price.

Consequently, they do not move the best price and have a zero immediate price impact.

4.2 Empirical results

Comparisons of different market impact models tend to focus on measures of in-sample goodness of

fit. However, such comparisons can be misleading because a good in-sample fit can sometimes result

from over-fitting, and inference based on overfitted models need not necessarily be valid (Hurvich

and Tsai, 1990). Therefore, we compare the out-of-sample performance of our various price impact

specifications with natural benchmarks (such as the naive model) to provide reassurance that they

are not simply artifacts of our estimation sample. See Appendix A for full specifications of all models

that we study, and the acronyms that we use for them. We provide a thorough out-of-sample forecast

evaluation, complete with statistical tests, of our immediate price impact models over the whole out-

of-sample period (subsection 4.2.1), as well as across different out-of-sample months (subsections 4.2.2

and 4.2.3). Subsection 4.2.4 then provides a detailed analysis that disentangles the contribution of

the various features of the HARXdepth model that lead to its superior forecast performance,14 and

subsection 4.2.5 discusses the outcomes of our robustness checks.

4.2.1 Summary out-of-sample predictive accuracy comparisons of all models.

Table 2 reports the out-of-sample MSEs and MAEs of various immediate price impact models for all five

S&P/ASX200 stock groups over the full out-of-sample period, which spans October 2007 - December

2013. Since Group 1 is the most highly capitalized and heavily traded stock group while Group 5 is the

least capitalized and traded group, price impact and its prediction uncertainty (quantified by MSEs

and MAEs) are typically smallest for trades in Group 1 and largest for trades in Group 5.

14Measures of in-sample fit are qualitatively similar to the out-of-sample outcomes. They are omitted for brevity but
are available upon request.
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Table 2 shows that the HARXdepth model that incorporates market depth and other theoretical and

time series information, produces more accurate predictions for immediate price impact than any other

model, regardless of stock grouping and direction of trade. LXdepth, the baseline (static) analogue of

HARXdepth, is the second most accurate price impact model. It is noteworthy that each of these depth

augmented models outperform their respective HARX and LX counterparts by very large margins. In

addition, a naive model that always predicts zero price impact throughout the entire out-of-sample

period significantly outperforms all other models that do not use the market depth information with

respect to MAE.15 We conclude that our market depth indicator provides a very effective modelling

tool. It reflects economic intuition that underlies the incidence of observed zero price impact trades in

an appropriate way, and it not only improves the forecasting performance of immediate price impact

models by statistically significant margins (shown later, in Table 3), but it also leads to an economically

significant reduction of about 60% in a model’s MSE and MAE (see Section 5.1).

<<INSERT TABLE 2 ABOUT HERE>>

Table 2 shows that after the HARXdepth and LXdepth and (for MAE) naive models, those models that

incorporate time series aspects of immediate price impact into their specifications such as HARX or

ZHOU, have considerably higher predictive accuracy than the remaining models. Further, consideration

of the three linear models without the depth indicator (i.e. HARX, LXb and LX) shows that HARX

has the highest predictive accuracy for immediate price impact while LX is the least accurate model.

These results, together with the observation that HARXdepth outperforms LXdepth, suggest that one or

both types of time-series variables (i.e. HAR type dynamics and/or intra- and inter-day periodicities)

are important predictors for price impact modeling. This agrees with previous studies such as Admati

and Pfleiderer (1988), Foster and Viswanathan (1990), Bloomfield et al. (2005) and Pham et al. (2017).

Comparison between the LX and LFM2 models shows that the latter predicts out-of-sample im-

mediate price impact considerably more accurately than does the former for all (most) stock groups

according to MAE (MSE). Given that the LFM2 model allows for nonlinear relationships between price

impact and the traditional trade attributes while the LX model does not, we speculate that further

15 The observation that the naive model has higher MSE relative to models that do not incorporate the depth indicator
is attributable to the 30% of trades that have non-zero impact (see Table 1). The naive model often makes substantially
large forecast errors in cases that have non-zero impact, whereas the errors produced by other models are usually less
extreme. The observation that MSE ranks the naive model quite differently from MAE is then easily explained by the
fact that MSE penalizes large forecast errors very heavily whereas MAE does not.
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allowance for nonlinearities in the data might also lead to improved forecasts of immediate price im-

pact. We develop and estimate some nonparametric extensions of our models to study this question in

Appendix B, and find that these models lead to improved forecasts of immediate price impact (relative

to parametric models).

We also note that the out-of-sample MAEs and MSEs are markedly lower for buys than for sells

for all models and stock groups, and t-tests indicate that these differences are statistically significant.

This result is quite interesting, but it may reflect the observation that the immediate price impact of

a purchase is on average of a smaller magnitude than that of a sale, as shown earlier in Table 1.

Of the models that we study here, we find that the HARXdepth model provides the most accurate

out-of-sample predictions of immediate price impact. After controlling for trade attributes that are

typical in the extant literature, we demonstrate that the new features that we include in our HARXdepth

specification, namely market depth, price impact dynamics and intra-and interday periodicities, all

improve the prediction of a trade’s price impact. We establish the statistical significance of these

improvements in the following subsections.

4.2.2 Out-of-sample MSE/MAE over time

We have shown that the HARXdepth model has the highest predictive accuracy among candidate mod-

els over the whole out-of-sample period, and it is now of interest to determine whether this strong

performance is observed over shorter sub-samples of time. To answer this question, we plot the MSE

and MAE series of different price impact models for Groups 1, 3 and 5 in Figures 1 and 2, respectively

(and obtain qualitatively similar figures for Groups 2 and 4).

<<INSERT FIGURES 1 AND 2 ABOUT HERE>>

The left and right panels of Figure 1 (Figure 2) show the MSE (MAE) performances for buys and

sells respectively. We see that the MSEs and MAEs produced by alternative price impact models

are greater than those generated by the HARXdepth model (solid line) for most of the 75 forecast

windows, showing that the latter model is nearly always a superior forecasting model. The series

for LINdepth (dashed line) is closest to that for HARXdepth, showing that LINdepth is the second best

model16 and that the results discussed in the previous subsection hold over different periods of time.

16Although it is hard to visually differentiate the series for HARXdepth and LXdepth in the graphs, (unreported) tests
indicate that HARXdepth produces significantly smaller forecast MSEs and MAEs than does LXdepth in more than 90%
of the out-of-sample months.
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While the naive model (dash-dotted line with circle markers) produces the largest MSEs (compared to

all other models) throughout the entire out-of-sample period, it is the third best model according to

MAE, outperforming all models that do not incorporate the market depth indicator. Meanwhile, the

performance of the three models, namely HARX, LX and ZHOU track each another quite closely. It

is hard to determine which of these three models is best according to MSE, although it is clear that

LX ranks behind these other two models according to MAE.

The MSEs and MAEs of all price impact models were largest during the Global Financial Crisis

(GFC) but they have mostly decreased since then, except briefly in August 2011, when many stock

markets (including Australia’s) reacted to heightened fear that the European sovereign debt crisis

might spread.17 Interestingly, the predictive accuracy of all models improved slightly during the first few

months after the second equities trading platform in Australia (Chi-X) was launched on 31 October 2011

(which is indicated by a vertical dashed blue line in each graph).18 However, the forecast performance

of all price impact models tended to decline after April 2012, and although this performance has

fluctuated somewhat since then, the decline might be attributable to increased market fragmentation

as Chi-X gained market share in Australia.19 Another possible contributor to forecast deterioration of

depth-augmented price impact models towards the end of our sample might have been increased trading

frequency, which we associated with “anomalous trades” and less precision in our depth indicator in

Section 4.1.

Overall, it is quite clear that the incorporation of the market depth information into different price

impact models such as HARX and LX leads to a strong improvement in out-of-sample predictive

accuracy, both in terms of MSE and MAE. Further, models that employ the market depth indicator

outperform the naive model in terms of MSE and MAE. Section 4.2.3 shows that the improvements in

both MAE and MSE contributed by the market depth information are statistically significant across

all 75 out-of-sample months, despite the slight deterioration in the performance of our depth indicator

towards the end of our sample.

17See: https://www.theguardian.com/business/2011/aug/04/stock-markets-exchange-plunge-business.
18Improved predictability in market depth due to increases in algorithmic trading post 2011 (see Jovanovic and

Menkveld (2019)) might be a contributing factor here.
19The inserts in Figures 1 and 2 focus on the performance of the HARX and HARXdepth model over the four year

window that is centered around the Chi-X launch. Tests based on the MSE (or MAE) of forecasts from HARX and
HARXdepth models using windows of ± 1 month, ± 3 months and ± 6 months around the launch date for each of our
five stock groups, all found statistically significant improvements in forecasting accuracy after the launch, whereas the
same tests based on windows of ± 1 year and ± 2 years found statistically significant deteriorations.

19
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4.2.3 Percentage of outperformance across all rolling windows

We check the statistical robustness of the superior performance of the model utilizing market depth

information and price impact dynamics (HARXdepth) across 75 rolling out-of-sample periods of one-

month, by performing Giacomini and White (2006) conditional predictive ability tests and Hansen

et al. (2011) MCS tests at a 5% significance level. The GW conditional tests compare the relative

accuracy of price impact predictions produced by different models in a pairwise fashion. Thus, we use

n(n−1)/2 pairwise GW tests to compare n models. In each out-of-sample month, we record the model

that strictly outperforms all remaining models with respect to MSE or MAE, and by construction,

there is at most one winning model in any out-of-sample month. We summarize the performance of all

models over 75 out-of-sample months by tabulating the percentages of each price impact model that

strictly outperforms all other models. As noted earlier, the multiple use of GW tests is subject to size

distortion, so we also use the MCS test developed by Hansen et al. (2011) to simultaneously compare

all n out-of-sample price impact series predicted by n potential models, and present our results in a

different way. Only one (iterative) test is needed in each out-of-sample month and this returns a set

of the best model(s) with a 95% confidence level and its complement of statistically under-performing

models. Since there is at least one model contained in an MCS for each month, we aggregate the

results over 75 out-of-sample months by reporting the percentages of months for which each model

belongs in the set of the best models.

The results of this analysis are reported in Table 3, which provides further forecast analysis relating

to the models studied in Table 2. The analysis relates to all n=9 models specified in Appendix A, but

we only report the results for two models because the results for the remaining models were all zero.

Panel A reports the results based on GW conditional tests, while MCS results are shown in Panel B.

Since in each out-of-sample month there is at most (at least) one best model according to the GW

(MCS) testing procedure, the percentage of outperformance for each model based on the GW tests

is no greater than that implied by the MCS tests. Moreover, for each category (e.g. buys of Group

1 or sells of Group 3) the sum of the outperformance percentages for all competing models under

consideration (i.e. the row sum of the numbers in each Panel) according to the GW tests is no greater

than 100%, while that based on the MCS tests is at least 100%.

<<INSERT TABLE 3 ABOUT HERE>>
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Recalling that Table 3 only reports forecast results for those models that provide evidence of

outperformance, we see from Panel A that the model incorporating depth information and price impact

dynamics (HARXdepth) generates the most accurate price impact forecasts in more than 93% (86%) of

the 75 out-of-sample windows when assessing forecasts using MSE (MAE). LXdepth is the second best

model, although the numbers of times it produces the lowest MAEs or MSEs are far less than those for

HARXdepth. Panel B shows that the HARXdepth model belongs in the MCS for more than 97% (90%) of

the forecast windows when MSE (MAE) is used, and although the LXdepth model is sometimes present

in these MCS’s as well, the proportion of times that it does so is much lower. These statistical results

underlie the patterns that we noted when discussing Figures 1 and 2, and they show strong support for

the model with depth and time series information (HARXdepth) relative to all other immediate price

impact models that we consider.

4.2.4 Contributors of the superiority of the HARXdepth model

There are several reasons why the HARXdepth model might outperform standard models that only

use trade attributes as predictors of price impact, since in addition to these predictors, the HARXdepth

model also incorporates market depth information, price impact dynamics and intra-/inter-day seasonal

effects. We consider which of these factors makes the greatest contribution to HARXdepth’s overall

strong performance below.

(a) Importance of the market depth indicator

We compare the performance of those models that incorporate the market depth indicator (HARXdepth

and LXdepth) with that of their non-depth analogues (HARX and LX) over the 75 out-of-sample months

to see how the market depth indicator contributes to the superiority of HARXdepth, and more generally,

to immediate price impact modeling. Our results are summarized in Panel A of Table 4.20

<<INSERT TABLE 4 ABOUT HERE>>

We see that the addition of the market depth indicator to the HARX and LX models leads to a

statistically significantly improvement in out-of-sample MSEs and MAEs in all out-of-sample months

considered, reducing out-of-sample MSEs and MAEs by about 60% on average.21 Thus, the use of

20Table 4 reports the results of GW tests only, since each comparison relates to just two price impact models at a
time.

21We obtain qualitatively similar results when we add the market depth indicator into our other models that do not
account for depth.
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market depth data to detect zero-impact trades is of high relevance for modeling and forecasting the

immediate price impact of individual trades. This, together with results from Table 3 and Figures 1

and 2, shows that it is the use of market depth information that makes the largest contribution to the

overall superiority of the HARXdepth model.

(b) Importance of price impact dynamics

A comparison of the predictive accuracy of HARX and LXb based on results in Table 2 shows that the

modeling of price impact dynamics makes a strong contribution to the prediction of immediate price

impact costs over the entire out-of-sample period, while Panel B of Table 4 shows that this contribution

is statistically significant in all of the 75 rolling window periods, for both buys and sells. This holds

for each stock group. Overall, the addition of price impact lags into LXb to obtain HARX leads to

reductions of about 5-6% in MSEs and MAEs. While these reductions are smaller than those brought

about by including the market depth information, they are statistically and economically significant.

Therefore, as in Pham et al. (2017), we conclude that the autocorrelation in immediate price impact

is an important factor when modeling price impact.

(c) Importance of intra- and inter-day periodicities

Previous studies have shown that the time of trades possesses informational content that contributes

to the evolution of prices (Diamond and Verrecchia, 1987, Easley and O’Hara, 1992, Dufour and

Engle, 2000). In particular, there are diurnal and inter-day patterns in stock returns (Admati and

Pfleiderer, 1988, Foster and Viswanathan, 1990). Panel C of Table 4 lends support to these theories

and demonstrates that taking the intra- and inter-day patterns into account enhances the performance

of an immediate price impact model. In particular, the inclusion of the time of the day and day of the

week effects statistically improves the predictive accuracy of LX in the vast majority (more than 94%

(89%)) of the 75 out-of-sample months according to MSE (MAE), even though the reductions in these

measures are on average relatively small.

Overall, although the incorporation of the market depth information brings the biggest contribution

to the forecast accuracy of an immediate price impact model, the allowance for time series indicators

(i.e. price impact dynamics and intra- and inter-day seasonalities) provides non-trivial enhancements

to the forecast performance of an immediate price impact model.
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4.2.5 Robustness

In this section, we briefly comment on the robustness of our study. Details of our sensitivity analyses

are not reported here for brevity, but they are available upon request.

(a) Different in-sample rolling window length

The above forecast analysis is based on nine-month in-sample rolling windows, but we have also

used different in-sample rolling window lengths (of 6 months and 12 months) to produce series of one

month ahead out-of-sample forecasts, and have found that our results are qualitatively the same, with

the model with the depth indicator (HARXdepth) dominating the other models that we consider. We

also find that in addition to economic variables (i.e. trading volume, market capitalization and stock

volatility), the time series variables improve the prediction of price impact.

(b) Augmentation of depth information to other non-depth models

The above analysis examines only two depth-augmented models, namely HARXdepth and LXdepth.

Nevertheless, we have extended our analysis to include four additional depth augmented models, based

on specifications in Appendix A. All our key empirical findings in Section 4.2.1 remain qualitatively

unchanged. In particular, the HARXdepth is the most accurate immediate price impact model, followed

by the LXbdepth and LXdepth.
22 All depth-augmented models significantly outperform their non-depth

analogues and the naive model. Further, the LXdepth outperforms all remaining depth-augmented

models and it also dominates the HARX model. This latter observation suggests that the depth

indicator provides a proxy for the effects of past orders and trades on current immediate price impact.

(c) Analysis of big trades

We have also re-conducted our comparative analysis on a subsample of “big trades” - that we define

to be trades that are larger than or equal to the prevailing quoted depth, and have found qualitatively

similar results. Most noticeably, HARX, the most comprehensive model which is identical to HARXdepth

when we focus on big trades whose depth indicator is equal to 1, produces more accurate predictions

of the immediate price impact of big trades than any of the other models. Also, the forecast accuracy

of an immediate price impact model is improved once one brings the time series variables into its

specification.

22We also compare our nonparametric versions of the HARXdepth and HARX models in Appendix B and find that
the former are more accurate.
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(d) Exclusion of trades executed against hidden orders

We have analyzed immediate price impact for trades that were not executed against hidden orders,

to assess the extent to which such orders might have affected our conclusions relating to all trades.

A priori, we expect that hidden orders at the best level or within the bid-ask spread will lower the

accuracy of our depth indicator and weaken the forecasting ability of those models that employ this

indicator. This is what we find. In particular, models with market depth information (i.e. HARXdepth

and LXdepth models) produce smaller forecast MSEs and MAEs (on average) when trades transacted

against hidden orders are excluded. However, trades executed against hidden orders account for less

than 1% of our total sample, and the hidden orders reduce the predictive MSE (MAE) measures for the

depth indicator models in the total sample only slightly. Overall, we find qualitatively similar results,

in terms of relative model rankings, to those based on all trades.

(e) Sample composition

Our sample of stocks consists of those that remained in the S&P/ASX200 index from 2007 to

2013, and although this selection removed several higher-cap stocks because of ticker changes, it still

favoured the retention of relatively higher-cap stocks.23 Therefore our numerical results are subject

to this caveat. However, our presentation of (conditionally valid) results for each of five market-cap

classifications, allows the reader to see how immediate price impact and the characteristics of its

predictions change with different levels of market capitalization, and have confidence that the depth

indicator and the HARXdepth model will be useful for a wide range of market capitalizations.

5 Economic implications of more accurate price impact

models

Prior literature highlights that although it is unobserved ex-ante, price impact makes up the biggest

component of total trading costs, especially for large trades (e.g. Keim and Madhavan, 1996, 1998,

Almgren et al., 2005). Therefore, a more accurate price impact model will bring great benefits to

market traders and fund managers, since it provides more accurate prediction of price impact costs of

trades, which in turn will facilitate the design, implementation and evaluation of optimal investment

23We note that the average (median) level of market capitalization for excluded stocks was $AUD1,850m ($AUD868m),
while the average market capitalization for our Group 5 stocks ranged from $AUD542m to $AUD1,441m, with a median
of $AUD1,015m.
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strategies in order to minimize trading costs.

In this section, we study in deeper detail two economic implications brought about by the incorpo-

ration of the market depth information into an immediate price impact model. These are (i) by how

much can one reduce the forecast error of price impact costs after accounting for market depth, which

is discussed in subsection 5.1; and (ii) how much price impact one can save by splitting a large order

into smaller trades, which is discussed in subsection 5.2.

5.1 Reduction in the forecast error of price impact costs

After the market depth dummy is incorporated into the specifications of the HARX and LX models,

their forecast MSEs and MAEs fall by about 60% (see Panel A of Table 4). There were more than 232

million trades over the seven years in our sample, and if each trade had an average size of $AUD 13,320

(which approximates the observed mean dollar value), the total turnover for the five stock groups from

2007 to 2013 was roughly $AUD 3,090 billion. If a model with market depth information such as

HARXdepth or LXdepth had been employed, the average reduction in the MAE of predicting immediate

price impact would have been about 2.2 (1.3) basis points compared to the non-depth analogue (naive

model) (see Panel B of Table 2). This translates into a total $AUD 679.8 (401.7) million decrease in

the forecast error or forecast uncertainty of price impact costs over seven years, or a reduction of about

$AUD 97.1 (57.4) million per annum. This reduction can be reflected in more accurate projections

of the costs and profits of investment strategies. Thus, the cumulative effect of using market depth

information in a price impact specification could save investors millions of dollars per annum - showing

that this information is potentially very useful for measuring and predicting immediate price impact.

5.2 Price impact savings from splitting large orders

It is a stylized fact that larger trades have a higher impact on prices than smaller trades (e.g. Hasbrouck,

1991, Lillo et al., 2003, Gabaix et al., 2006, Hautsch and Huang, 2012), and thus traders, especially

informed traders, may have incentives to split their large orders into smaller trades in order to hide their

information from market makers and reduce their price impact (e.g. Kyle, 1985, Easley and O’Hara,

1987, Dufour and Engle, 2000, Forsyth et al., 2012, O’Hara, 2015, Toth et al., 2015, Choi et al., 2019,

Korajczyk and Murphy, 2019, van Kervel and Menkveld, 2019). Clearly, the impact of a series of

trades on prices will not be the same as, and is often smaller than, the immediate price impact of a
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large trade of the same aggregated size, since the quoted depth may be replenished during the course

of the smaller trades. It is interesting to quantify how much price impact order splitting strategies

might save an investor.

We investigate this question in a novel way by comparing the observed price impact of a series of

consecutive trades in the same direction and on the same trading day to the immediate price impact

of an artificial trade that aggregates these consecutive trades. We focus on consecutive same-sign

trades on the same day since (i) smaller transactions split from a large order should follow the same

direction as the direction of the parent order; and (ii) the avoidance of cross-day and/or non-consecutive

trades originating from an informed big order reduces the computational complexity of constructing

our artificial trades. We further restrict our attention to consecutive same-sign same-day trades that

(i) are each smaller than their prevailing depths; and (ii) whose total volume (which equals the volume

of an artificially aggregated transaction) is bigger than or equal to the prevailing depth of the first

trade. This identifies examples of series of trades that could be components of a split order. None

of the individual trades that comprise this “split order” should have immediate price impact on its

own (because each individual trade has less volume than available depth), whereas the (artificially)

aggregated order should.

We compute the observed price impact of a series of consecutive same-sign same-day trades as

the logarithmic change in the mid-prices of the best bid and ask quotes immediately after the last

trade and right before the first trade of the series.24 Since the artificial trade that aggregates these

consecutive trades is unobserved, we estimate its immediate price impact using the HARXdepth model,

which is the most accurate price impact model in our study. The HARXdepth model is (re-)estimated

in each month for buys and sells of each stock group, and it is used to predict the price impact of all

artificial trades in that month.25

Table 5 summarizes the price impact savings results from order splits. We report four different

values for the number of consecutive same-sign trades: K = 2, 5, 10, and all, where the latter refers

to all observed series of consecutive same-sign trades that satisfy the two aforementioned restrictions

(i.e. we have series of consecutive trades of different lengths as observed in the sample). ∆pKt and ∆pat

24Note that the overall price impact of a sequence of consecutive same-sign (individually zero-impact) trades can be
non-zero in limit order book settings because these trades consume liquidity and reduce quoted depth, and new orders
can be placed on the order book while the sequence of trades is taking place, shifting the bid-ask spread and hence the
mid-quote price that is observed immediately after the last of these zero-impact trades.

25We obtain qualitatively similar results using the HARXdepth model to predict the price impact of the artificial
trades, but with the model estimated over the nine month rolling windows described in Subsection 3.2.
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respectively denote the price impact of K consecutive same-sign same-day trades and the immediate

price impact of their artificially aggregated trade predicted by the HARXdepth model. %∆pSt = (∆pat −

∆pKt )/∆pat × 100% computes the proportion of the immediate price impact that can be saved by

splitting an order. Similar to that observed for single trades, the price impact of a series of consecutive

trades is inversely related to stock market capitalization and is generally larger in magnitude for sells

than for buys. As expected, the number of series of consecutive same-sign trades decreases with the

series length. Interestingly, the average observed price impact of a series of consecutive trades (∆pKt )

does not necessarily increase with the series length, although the average predicted immediate price

impact of the associated artificial trade generally does. This is because new orders can either increase

or decrease market depth (while a series of small trades is taking place), so that the resulting price

impact does not simply depend on the series length, whereas the volume (and hence price impact) of

an aggregate trade will generally increase with the number of underlying trades.

<<INSERT TABLE 5 ABOUT HERE>>

Consistent with our expectations, the observed price impact of a series of consecutive same-sign

same-day trades is much lower than the predicted immediate price impact of their artificially aggregated

trades. On average, splitting a big order that is larger than the prevailing depth into a series of smaller

trades reduces the immediate price impact of the former considerably by between 60% and 82%, and an

order split into K = 10 small trades appears to bring about the largest price impact reductions. Such

reductions are attainable because (i) the smaller trades typically have zero or much smaller immediate

price impact, and (ii) market depth may be replenished as the smaller trades occur, as a result of order

submissions from other traders. This finding supports the effectiveness of order splitting strategies

suggested in the literature (see, eg, Kyle, 1985, Easley and O’Hara, 1987, Dufour and Engle, 2000)

and provides institutions with a rationale to use algorithms to split and sequence orders to minimize

execution costs (Hendershott et al., 2011, Forsyth et al., 2012, Hasbrouck and Saar, 2013, O’Hara,

2015, van Kervel and Menkveld, 2019).26

Figure 3 illustrates the implied savings due to order splitting strategies over time, by plotting

time series of monthly price impact savings %∆pSt , for our stock groups 1, 3 and 5, for our four

different values of K over 2007-2013.27 Complementing the results in Table 5, order splitting strategies

26Institutions can also split their orders and randomize their order size to avoid “back running” from sophisticated
traders (see, for example, van Kervel and Menkveld (2019), Yang and Zhu (2019)).

27We obtain qualitatively similar plots for Groups 2 and 4.
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consistently reduce the immediate price impact of big orders by large proportions. The proportions of

the price impact that can be saved by order splitting are more than 80% (and even close to 100% in

the few months before 2011), but they then fall and range between 20% and 75% by the end of 2013.

This result is consistent with a strong declining pattern in trading volumes over the same period as

shown in Table 1. It suggests that traders have employed order splitting strategies more extensively in

recent years (e.g. Chordia et al., 2011, Friederich and Payne, 2014) to get a better execution price for

their orders and reduce their price impact costs. Deeper and more liquid markets in recent years have

also contributed to the decreasing pattern of price impact savings, since they help reduce the price

impact costs of trades.

<<INSERT FIGURE 3 ABOUT HERE>>

6 Market depth, order dynamics and price impact gaps28

Prior literature (e.g. Hasbrouck, 1991, Dufour and Engle, 2000, Bessembinder and Venkataraman, 2010,

Obizhaeva and Wang, 2013) has used permanent price impact to measure the information content of

trades. This measure is defined as the change in the price of an asset over some fixed time interval

after a trade. If neither new orders nor updates such as revisions or cancellations enter the order book

during a specified time period after a trade, then the immediate price impact of that trade is equal to its

permanent price impact over that period. However, if the trade induces subsequent trading activities,

then immediate and permanent price impacts may differ, and the gap between these two measures will

reflect the dynamics of the information and order flows after the initial trade. Given that market depth

information is particularly useful for predicting immediate price impact, as we demonstrate in Section

4, we conjecture that market depth also conveys important information about subsequent incoming

order flows and the consequential price impact gap.

This section provides some analysis of how informative our depth indicator Ivi,t≥depthi,t is about

future order imbalance (a proxy for future order dynamics) and the difference between permanent and

immediate price impact following a trade. We use the data relating to 2007 for three different stock

groups (Groups 1, 3 and 5 of the ASX200 index), which allows us to observe cross sectional variation

28We thank an anonymous referee for suggesting that we investigate this important issue.
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of the information content of the depth indicators for stocks with different market capitilization,29 and

we estimate the following regression:

yi,t,δ = c+ α1Ivi,t≥depthi,t + α2LnV olumei,t + α3LnDepthi,t + α4dayi,t + α5blocki,t + ηi,t,δ, (3)

where yi,t,δ is either (i) the order imbalance (OIBi,t,δ), defined as the ratio of the total buy minus sell

traded volume to the total traded volume during a δ-minute interval after a trade in stock i at time t;30

or (ii) the price impact gap (PIG) defined over a δ-minute interval, as the signed difference between

the permanent price impact (∆pi,t,δ in basis points (bps)) and the immediate price impact (∆pi,t in

bps) of a trade in stock i at time t, i.e. PIG = εi,t × (∆pi,t,δ − ∆pi,t), where εi,t is the sign (+1 for

buy and -1 for sell) of a trade. While the immediate price impact ∆pi,t is already defined in Section 2,

the permanent price impact is similarly defined as ∆pi,t,δ ≡ pi,t+δ,− − pi,t,−, where pi,t,− (pi,t+δ,−) is the

prevailing log midpoint of stock i right before time t (t+ δ).

Our depth indicator Ivi,t≥depthi,t signals a large transaction whose volume is larger than or equal to

the prevailing opposite-side depth right before the trade. The LnV olumei,t and LnDepthi,t variables

are respectively the natural logarithms of the share volume of the trade and the prevailing opposite-side

depth right before trade. The dayi,t and blocki,t variables capture day of the week and time of day

effects, as discussed earlier in subsection 2.3, and ηi,t,δ is an independent error term with a zero mean.

Tables 6 reports the estimation results. Our dependent variables are either the order imbalance

(OIB) or the price impact gap (PIG) over a δ-minute interval, where δ is either 5 or 30 minutes.

<<INSERT TABLE 6 ABOUT HERE>>

We begin by focusing on the order imbalance, OIB. The sign of the depth indicator, Ivi,t≥depthi,t ,

coefficient (i.e., α1) alternates between being negative for buy and positive for sell trades (with just

a single exception that is not statistically significant). This finding suggests that the order imbalance

after a large buy (sell) is on average smaller (larger) than that after a similar small buy (sell). In other

words, large trades (with volume that is greater than or equal to the prevailing opposite-side depth)

tend to induce more opposite-direction transactions than same-direction trades in the future.

The above result suggests that in the next δ-minute interval after a large initial trade (whether

it is a buy or sell), the subsequent aggregate trades are in the opposite direction to the initial trade.

29We focus on a sub-sample of our dataset to reduce computation time, but point out that this sample contains more
than 10 million observations.

30We set OIBi,t,δ equal to zero if there are no transactions during a δ-minute interval after a trade.
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Consequently, the stock price after a δ-minute interval is likely to be lower (higher) than the price

immediately after a large buy (sell), implying a negative permanent versus immediate price impact

gap after a large trade, as well as a negative relation between the price impact gap and the depth

indicator. This is confirmed by the regression results reported for the price impact gap (PIG) in Table

6, in which the depth indicator, Ivi,t≥depthi,t , coefficient (i.e., α1) is statistically significantly negative

for all groups, trades and intervals. This is consistent with replenishment of the order book after a

large trade.

Table 6 also reveals a noticeable cross-sectional difference among the three stock groups. In partic-

ular, a large trade in a smaller-capitalized stock (e.g. in Group 5) leads to markedly larger (average)

changes in both the order imbalance and the price impact gap than does a large trade in a bigger-

capitalized stock (i.e. in Groups 3 and 1). This is because smaller-capitalized stocks are less frequently

monitored and traded than bigger-capitalized stocks, so a large liquidity shock to the smaller-capitalized

stocks after a large trade appears to affect future orders and prices more strongly, leading to a bigger

price overshoot followed by stronger price reversals than a similar shock to the larger-capitalized stocks.

Overall, the above results highlight the ability of the depth indicator to predict order imbalance as

well as the price impact gap. Thus, it is potentially beneficial to incorporate the depth indicator into

a model to predict order flow dynamics, price impact gap and permanent price impact after trades.

We leave further work on this issue for future research, but point out that our empirical observation

that the depth indicator provides a useful link between temporary and permanent price impact makes

a novel contribution.

7 Conclusion

Measuring immediate price impact is important for accurately estimating the costs associated with

immediate trade as well as measuring impediments to the formation of capital in financial markets

(Duffie, 2010). This research extends the prior literature on price impact modeling by highlighting

the significance of market depth information and price impact dynamics for estimating and predicting

immediate market impact. It also provides a comprehensive analysis of out-of-sample performance for

different price impact models.

We find that the inclusion of market depth information as a threshold-type indicator variable to
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detect zero-impact trades in an immediate price impact model can lead to reductions in the MAE and

MSE measures of out-of-sample predictions by about 60% on average. Furthermore, the inclusion of

an autoregressive component in an immediate price impact model can lead to reductions in the MAE

and MSE of out-of-sample predictions that amount to about 5-6%. Given that immediate price impact

is the biggest component of total trading costs, it is important to quantify this impact accurately, and

we show that the cumulative effects of such improvements in accuracy could save investors millions

of dollars per annum in projecting the costs and profits of investment strategies. We also show that

splitting a big order into a series of smaller trades can reduce the immediate price impact cost of

the former considerably by between 60% and 82%, and thus order splitting strategies can provide

significant economic benefits to traders.

Our work focuses on the immediate component of price impact. Other studies (e.g. Dufour and

Engle, 2000, Bouchaud et al., 2009, Obizhaeva and Wang, 2013, Jondeau et al., 2015) have shown that

price impact exhibits permanent characteristics. That is, the execution of a trade affects the dynamics

of incoming order flow, the prices of subsequent trades, and the permanent price impact (i.e. how prices

move to a new equilibrium following a trade). An exploratory analysis in our paper shows that the

depth indicator is informative about the order imbalance and the difference between permanent price

impact and immediate price impact following a trade. Building a model that incorporates market depth

information and price impact dynamics into the forecasting of order flow dynamics and permanent price

impact is an important and interesting question for future research.
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Table 1: Descriptive statistics

This table presents summary statistics of trades for five stock groups on the S&P/ASX 200 index from 2007 to 2013.
“Obs.” measures the number of transactions. “Price impact” is the change in the log of mid-quote right after and
right before a single trade. “Volume” is the number of shares executed in each trade. “Scaled volume” is the ratio
of the trading volume of a trade to the average volume of all trades with the same trade direction as the trade from
the beginning of the trading day to that trade. “Dollar volume” equals trading volume multiplied by the mid-quote
right before the trade. “Market Cap.” is defined as the product of the mid-quote price and the number of shares
outstanding right before the trade. “Volatility” of a trade is calculated as the standard deviation of the mid-quote
returns from the first trade of the day until that trade. “Duration” is the time interval (in seconds) between two
consecutive trades with the same direction. “Depth” is the prevailing quoted depth at the best (Level 1) price on the
opposite side of the limit order book right before a trade. The last three columns respectively report the percentage
of transactions for which (i) trading volume is less than the prevailing market depth; (ii) price impact is zero; and (iii)
the depth indicator correctly predicts no price impact. All figures (except observations, and the last three columns)
are the average values.

Stock Price Market Dollar Vola- Dur- % trades % trades % trades

Group/ Obs. Impact Volume Scaled Cap. volume tility ation Depth for which for which for which

Year (bps) volume ($m) ($) (bps) (secs) Ivi,t≥depthi,t
∆pi,t = 0 Ivi,t≥depthi,t

= 0 = ∆pi,t = 0

Panel A: Buys

A.1: Group 1 (12 stocks with the largest market capitalization)

2007 2,720,943 1.19 2,288.7 0.961 60,211 62,918 3.02 23.11 26,525 65.71 65.69 65.64
2008 5,572,390 1.66 1,574.7 0.950 50,368 33,011 4.48 11.31 21,991 63.42 63.35 63.32

2009 6,064,702 1.21 1,411.7 0.915 50,143 25,471 3.31 10.47 62,093 66.96 66.78 66.74

2010 6,097,604 0.71 1,242.5 0.920 57,145 27,114 2.24 10.41 123,046 72.32 72.18 72.14
2011 6,862,734 0.85 1,074.8 0.949 54,894 23,894 2.26 9.18 131,995 66.19 65.73 65.50

2012 6,286,642 0.85 955.1 0.969 51,746 20,252 2.15 10.04 76,287 66.90 63.09 62.81

2013 7,331,076 0.84 616.6 0.944 63,192 15,305 2.06 8.06 22,722 64.81 58.16 57.42

A.2: Group 2 (20 stocks)

2007 1,997,220 2.58 2,838.6 0.975 10,947 29,505 6.68 52.22 33,012 68.99 68.99 68.94
2008 3,934,151 3.74 2,001.6 0.980 9,524 16,372 10.21 26.68 11,217 66.01 65.95 65.92

2009 4,391,502 2.47 2,099.9 0.920 8,714 11,243 7.50 24.03 60,356 71.30 71.18 71.16

2010 4,696,783 1.18 1,498.6 0.916 10,485 11,672 4.41 22.39 67,398 78.30 78.21 78.17
2011 4,899,627 1.65 1,453.3 0.956 11,805 11,752 5.00 21.31 29,530 71.23 70.93 70.74

2012 4,353,656 1.75 1,390.7 0.982 10,531 10,383 5.17 24.07 22,649 72.40 69.15 68.90

2013 5,572,328 1.99 1,179.4 0.953 10,275 9,004 5.11 18.86 16,112 73.15 66.04 65.64

A.3: Group 3 (20 stocks)

2007 1,588,052 3.04 2,219.7 0.988 5,825 20,509 7.84 66.01 11,782 68.40 68.39 68.36

2008 2,872,544 4.29 1,577.5 0.985 4,409 11,284 12.50 36.40 8,899 68.29 68.25 68.23
2009 3,227,901 3.01 2,293.6 0.919 3,622 8,084 9.51 32.63 36,210 76.33 76.25 76.22

2010 3,499,470 1.44 2,113.4 0.897 4,095 7,875 6.01 30.10 68,435 83.04 82.97 82.95

2011 3,584,799 2.10 2,048.5 0.924 4,121 7,563 7.02 29.15 65,794 74.51 74.28 74.10
2012 3,003,560 2.26 2,044.3 0.951 3,878 6,688 7.36 34.75 61,830 75.21 72.20 71.98
2013 3,773,959 2.55 1,306.3 0.942 4,327 5,901 6.96 27.62 29,146 73.36 66.26 65.83

A.4: Group 4 (20 stocks)

2007 1,180,120 3.55 2,425.3 0.975 3,186 14,219 9.77 88.13 22,194 72.99 72.99 72.95

2008 2,152,585 5.29 1,784.4 0.977 2,161 7,114 16.20 48.75 12,816 72.19 72.16 72.14
2009 2,210,923 4.05 1,864.4 0.931 1,970 5,382 12.41 47.57 35,765 75.61 75.54 75.51

2010 2,692,888 1.65 1,398.2 0.916 2,252 5,020 6.70 39.09 66,467 81.78 81.70 81.67
2011 2,702,456 2.39 1,617.5 0.936 2,051 4,716 8.30 38.50 85,706 76.64 76.44 76.31
2012 2,269,530 2.56 1,547.0 0.948 2,130 4,472 8.49 45.61 42,637 77.44 74.85 74.66

2013 3,177,937 2.87 1,168.6 0.934 3,142 4,341 8.28 32.62 33,223 72.68 64.82 64.41

A.5: Group 5 (20 stocks with the smallest market capitalization)
2007 875,051 4.57 2,747.2 0.951 1,574 9,585 13.30 118.24 25,990 75.35 75.32 75.28

2008 1,585,290 5.94 1,509.2 0.968 1,227 4,672 20.11 65.61 12,670 75.20 75.14 75.12
2009 1,631,544 4.70 1,951.9 0.916 1,179 4,283 15.27 62.63 34,562 76.97 76.86 76.84

2010 1,816,662 2.25 1,720.3 0.891 1,277 4,002 9.23 57.05 46,284 84.49 84.41 84.39

2011 1,788,842 3.03 1,524.4 0.921 1,169 3,242 10.81 58.07 52,985 80.16 79.97 79.83
2012 1,493,005 3.31 1,679.0 0.929 1,100 3,163 11.28 69.05 30,122 83.18 80.87 80.74

2013 1,841,033 4.18 1,502.3 0.894 1,323 3,039 12.09 56.22 33,698 79.39 73.10 72.80

Continued on next page
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Table 1 – continued from previous page

Stock Price Market Dollar Vola- Dur- % trades % trades % trades
Group/ Obs. Impact Volume Scaled Cap. volume tility ation Depth for which for which for which

Year (bps) volume ($m) ($) (bps) (secs) Ivi,t≥depthi,t
∆pi,t = 0 Ivi,t≥depthi,t

= 0 = ∆pi,t = 0

Panel B: Sells

B.1: Group 1 (12 stocks with the largest market capitalization)

2007 2,460,728 -1.34 2,470.6 0.966 58,825 65,885 3.10 25.56 44,760 61.08 61.09 61.01

2008 4,829,706 -1.89 1,720.5 0.957 50,686 36,953 4.48 13.05 22,174 59.05 58.95 58.92
2009 5,607,341 -1.32 1,481.4 0.923 50,456 26,994 3.30 11.32 51,042 63.95 63.76 63.72

2010 5,569,425 -0.79 1,375.1 0.935 57,238 29,062 2.23 11.40 103,173 69.74 69.59 69.54

2011 6,492,187 -0.92 1,112.9 0.961 54,572 25,142 2.25 9.70 95,914 63.30 62.80 62.57
2012 6,191,443 -0.86 905.3 0.978 51,932 20,222 2.13 10.20 54,152 66.47 62.58 62.25

2013 7,024,460 -0.88 636.9 0.955 63,387 15,876 2.05 8.42 19,365 62.60 55.76 54.79

B.2: Group 2 (20 stocks)

2007 1,939,120 -2.69 2,981.0 0.980 10,812 30,550 6.74 53.79 39,697 67.39 67.39 67.36

2008 3,456,762 -4.29 2,184.7 0.989 9,586 17,919 10.16 30.36 10,523 61.24 61.17 61.15
2009 4,096,092 -2.69 2,196.7 0.934 8,719 11,811 7.52 25.76 45,448 68.69 68.57 68.54

2010 4,442,312 -1.26 1,617.3 0.938 10,507 12,413 4.45 23.68 62,110 76.94 76.84 76.81

2011 4,929,286 -1.67 1,474.0 0.951 11,823 11,846 5.02 21.18 30,489 70.65 70.37 70.16
2012 4,332,647 -1.77 1,393.6 0.974 10,583 10,431 5.13 24.18 21,428 72.02 68.83 68.54

2013 5,328,297 -2.11 1,236.2 0.953 10,288 9,339 5.12 19.73 16,310 71.36 63.84 63.28

B.3: Group 3 (20 stocks)
2007 1,553,436 -3.16 2,286.3 0.989 5,775 21,096 7.89 67.48 11,171 66.87 66.87 66.84

2008 2,485,921 -5.05 1,776.7 0.993 4,516 12,729 12.33 42.05 7,953 63.04 62.99 62.97

2009 3,030,564 -3.24 2,390.3 0.930 3,592 8,393 9.49 34.74 33,092 74.46 74.37 74.34
2010 3,255,386 -1.57 2,314.7 0.911 4,087 8,539 6.10 32.35 68,475 81.47 81.40 81.36

2011 3,592,252 -2.12 2,114.8 0.917 4,096 7,722 7.09 29.09 67,963 74.08 73.86 73.67
2012 2,997,577 -2.29 2,034.0 0.938 3,843 6,685 7.39 34.84 78,612 74.70 71.75 71.49

2013 3,649,856 -2.67 1,365.7 0.942 4,320 6,061 6.93 28.56 28,849 72.15 64.60 64.06

B.4: Group 4 (20 stocks)
2007 1,153,566 -3.71 2,561.4 0.971 3,147 14,849 9.77 90.19 21,754 71.28 71.18 71.14

2008 1,805,427 -6.45 2,067.2 0.983 2,177 8,265 16.12 58.10 11,558 66.24 66.21 66.18

2009 2,118,532 -4.22 1,920.6 0.940 1,949 5,545 12.46 49.62 26,979 74.55 74.48 74.45
2010 2,538,132 -1.79 1,541.9 0.920 2,256 5,425 6.77 41.44 57,319 80.27 80.19 80.15

2011 2,648,773 -2.48 1,688.3 0.931 2,025 4,901 8.38 39.27 78,615 75.53 75.34 75.19

2012 2,205,166 -2.66 1,603.3 0.931 2,091 4,603 8.67 46.97 45,269 76.43 73.76 73.55
2013 2,979,703 -3.19 1,268.2 0.946 3,174 4,693 8.28 34.79 35,032 69.06 60.48 59.90

B.5: Group 5 (20 stocks with the smallest market capitalization)
2007 826,846 -4.96 2,926.2 0.950 1,564 10,238 13.47 125.10 24,103 72.78 72.70 72.67

2008 1,242,546 -7.90 1,933.2 0.970 1,266 5,810 19.85 83.62 12,480 67.64 67.58 67.55

2009 1,511,958 -5.11 2,085.7 0.929 1,188 4,590 15.18 67.57 34,342 74.85 74.78 74.74
2010 1,668,492 -2.48 1,959.3 0.892 1,274 4,444 9.41 62.09 48,808 82.86 82.78 82.75

2011 1,696,728 -3.23 1,659.4 0.911 1,175 3,439 10.77 61.17 43,826 78.86 78.65 78.53

2012 1,340,304 -3.75 1,893.4 0.901 1,087 3,538 11.55 76.80 33,616 80.85 78.40 78.21
2013 1,668,853 -4.81 1,706.8 0.892 1,313 3,411 12.22 61.95 41,083 76.05 68.92 68.49
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Table 2: Comparison of models with respect to out-of-sample predictive accuracy

Panel A: MSE HARXdepth HARX LXdepth LXb LX ZHOU LFM1 LFM2 naive
Eqn # (A.1) (A.2) (A.3) (A.4) (A.5) (A.6) (A.7) (A.8) (A.9)

Group 1 Buys 1.568 3.415 1.615 3.584 3.592 3.545 3.686 3.613 4.948
Sells 1.744 3.628 1.794 3.809 3.817 3.772 3.940 3.834 5.401

Group 2 Buys 8.45 20.92 8.64 21.92 21.98 21.55 22.95 21.75 28.96
Sells 9.08 21.84 9.30 22.94 23.01 22.58 24.16 22.88 30.85

Group 3 Buys 14.36 35.34 14.69 37.25 37.38 36.64 38.73 36.97 48.13
Sells 15.46 37.02 15.87 39.16 39.31 38.58 41.04 39.09 51.46

Group 4 Buys 23.76 55.99 24.34 59.16 59.32 58.17 61.73 59.15 75.95
Sells 26.12 59.73 26.81 63.40 63.60 62.42 66.62 64.30 82.59

Group 5
Buys 43.23 103.30 43.93 109.57 109.87 107.53 113.98 109.17 136.79
Sells 50.12 115.57 51.05 123.20 123.60 121.25 129.41 124.34 157.47

Panel B: MAE HARXdepth HARX LXdepth LXb LX ZHOU LFM1 LFM2 naive

Group 1 Buys 0.497 1.199 0.503 1.264 1.268 1.204 1.255 1.216 1.007
Sells 0.538 1.243 0.545 1.310 1.314 1.254 1.311 1.268 1.084

Group 2 Buys 1.064 2.652 1.077 2.817 2.837 2.610 2.764 2.673 2.090
Sells 1.134 2.734 1.149 2.911 2.934 2.713 2.876 2.773 2.214

Group 3
Buys 1.333 3.353 1.350 3.573 3.598 3.303 3.532 3.396 2.558
Sells 1.426 3.480 1.448 3.728 3.759 3.471 3.715 3.561 2.721

Group 4
Buys 1.627 4.028 1.651 4.302 4.324 3.976 4.262 4.070 3.036
Sells 1.769 4.239 1.801 4.555 4.585 4.246 4.550 4.344 3.288

Group 5
Buys 1.984 5.277 2.004 5.646 5.679 5.159 5.568 5.307 3.871
Sells 2.267 5.787 2.298 6.240 6.285 5.769 6.237 5.916 4.411

This table reports Mean Squared Error (MSE) and Mean Absolute Error (MAE) for nine models for five stock groups listed on
the S&P/ASX200 index over the whole out-of-sample period from October 2007 to December 2013 (i.e. 75 months). Results
for MSE (in bps2) and MAE (in bps) are reported in Panels A and B, respectively. See Appendix A for full specifications of the
models (A.1) to (A.9). Although not reported, differences in MSEs and in MAEs between any two models for either buys or sells
of any stock group are statistically significantly different from 0 (with p-values less than 10−10) based on the Giacomini and
White (2006) conditional predictive accuracy test. Bold format denotes the smallest MSE/MAE within each group. Results
are based on the analysis of nine-month in-sample and one-month out-of-sample windows rolled one month ahead.
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Table 3: Percentages of out-of-sample outperformance for all models
across all rolling windows

Panel A: Giacomini & White test Panel B: Model Confidence Set Test

(a) MSE HARXdepth LXdepth HARXdepth LXdepth

Group 1 Buys 98.67 1.33 98.67 2.67
Sells 94.67 2.67 98.67 8.00

Group 2 Buys 97.33 2.67 98.67 2.67
Sells 96.00 2.67 98.67 6.67

Group 3 Buys 100.00 0.00 100.00 0.00
Sells 97.33 2.67 98.67 5.33

Group 4 Buys 100.00 0.00 100.00 1.33
Sells 98.67 1.33 100.00 4.00

Group 5 Buys 98.67 1.33 100.00 14.67
Sells 93.33 6.67 97.33 20.00

(b) MAE HARXdepth LXdepth HARXdepth LXdepth

Group 1 Buys 88.00 12.00 93.33 13.33
Sells 88.00 12.00 90.67 13.33

Group 2
Buys 93.33 6.67 96.00 12.00
Sells 92.00 8.00 94.67 9.33

Group 3
Buys 92.00 8.00 94.67 9.33
Sells 93.33 6.67 94.67 14.67

Group 4
Buys 98.67 1.33 98.67 4.00
Sells 98.67 1.33 100.00 5.33

Group 5 Buys 86.67 13.33 97.33 18.67
Sells 92.00 8.00 94.67 16.00

This table compares the out-of-sample performance for all nine models studied in Table 2, over all rolling
windows (from October 2007 to December 2013), for five stock groups on the S&P/ASX200 index. Panel
A reports the percentages of times that each model statistically significantly outperforms all other eight
models in each out-of-sample one-month window out of 75 out-of-sample months, based on pair-wise
Giacomini and White (2006) conditional predictive accuracy tests. Panel B reports the percentages of
times that each model belongs in the set of the best models in each out-of-sample one-month window out
of 75 months according to the Hansen et al. (2011) model confidence set test. A 5% significance level
is chosen for both tests. Only results for the HARXdepth (specified in Equation (A.1)) and LXdepth (in
(A.3)) models are shown. Results for the remaining models are all zero and are not reported. Results,
reported in %, are based on the analysis of nine-month in-sample and one-month out-of-sample windows
rolled one month ahead.
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Table 4: Contributors of the superiority of the HARXdepth model

Panel A Panel B Panel C

Market depth information Price impact Intra- & inter-day
dynamics periodicities

(a) MSE
HARXdepth LXdepth HARX LXb
vs. HARX vs. LX vs. LXb vs. LX

Group 1
Buys 100.00 [54.07] 100.00 [55.05] 100.00 [4.73] 90.67 [0.22]
Sells 100.00 [51.92] 100.00 [52.99] 100.00 [4.77] 89.33 [0.21]

Group 2 Buys 100.00 [59.60] 100.00 [60.68] 100.00 [4.56] 96.00 [0.29]
Sells 100.00 [58.43] 100.00 [59.58] 100.00 [4.81] 97.33 [0.31]

Group 3 Buys 100.00 [59.37] 100.00 [60.71] 100.00 [5.13] 94.67 [0.34]
Sells 100.00 [58.24] 100.00 [59.63] 100.00 [5.46] 94.67 [0.38]

Group 4 Buys 100.00 [57.55] 100.00 [58.97] 100.00 [5.35] 92.00 [0.28]
Sells 100.00 [56.26] 100.00 [57.85] 100.00 [5.79] 100.00 [0.32]

Group 5 Buys 100.00 [58.15] 100.00 [60.02] 100.00 [5.72] 97.33 [0.28]
Sells 100.00 [56.64] 100.00 [58.70] 100.00 [6.19] 94.67 [0.32]

Average 100.00 [57.02] 100.00 [58.42] 100.00 [5.25] 94.67 [0.30]

(b) MAE
HARXdepth LXdepth HARX LXb
vs. HARX vs. LX vs. LXb vs. LX

Group 1 Buys 100.00 [58.56] 100.00 [60.33] 100.00 [5.17] 86.67 [0.34]
Sells 100.00 [56.72] 100.00 [58.53] 100.00 [5.11] 85.33 [0.34]

Group 2 Buys 100.00 [59.88] 100.00 [62.05] 100.00 [5.84] 93.33 [0.72]
Sells 100.00 [58.54] 100.00 [60.84] 100.00 [6.08] 96.00 [0.78]

Group 3 Buys 100.00 [60.26] 100.00 [62.47] 100.00 [6.17] 84.00 [0.69]
Sells 100.00 [59.03] 100.00 [61.46] 100.00 [6.65] 88.00 [0.81]

Group 4
Buys 100.00 [59.61] 100.00 [61.82] 100.00 [6.38] 88.00 [0.52]
Sells 100.00 [58.25] 100.00 [60.73] 100.00 [6.94] 89.33 [0.66]

Group 5 Buys 100.00 [62.39] 100.00 [64.70] 100.00 [6.53] 86.67 [0.58]
Sells 100.00 [60.83] 100.00 [63.44] 100.00 [7.26] 94.67 [0.72]

Average 100.00 [59.41] 100.00 [61.64] 100.00 [6.21] 89.20 [0.62]

This table investigates the contributors of the superiority of the HARXdepth model over 75 out-of-sample months (from
October 2007 to December 2013) for five stock groups on the S&P/ASX200 index.

Panel A shows the contribution of market depth information by reporting (i) the percentages of times that each price impact
model that incorporates market depth information statistically significantly outperforms its respective analogue that does not
use such information in each out-of-sample one-month window out of 75 months; and (ii) the percentage reduction in the whole
out-of-sample MSEs/MAEs by including the market depth information (in brackets);

Panel B shows the contribution of including the dynamics of price impact by reporting (i) the percentages of times that
the HARX model statistically outperforms the LXb model; and (ii) the percentage reduction in the whole out-of-sample
MSEs/MAEs by including the price impact dynamics (in brackets);

Panel C shows the contribution of the time of day and day of week effects by reporting (i) the percentages of times that LXb
statistically outperforms LX; and (ii) the percentage reduction in the whole out-of-sample MSEs/MAEs by incorporating intra-
and inter-day periodicities into LX (in brackets);

“Average” rows report the simple averages for both buys and sells for all five stock groups. For each one-month out-of-sample
window, the statistical outperformance (at a 5% level) of one model over another model is judged by the Giacomini and White
(2006) conditional predictive accuracy test using (a) MSE and (b) MAE. Results, reported in %, are based on the analysis of
nine-month in-sample and one-month out-of-sample windows rolled one month ahead.
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Table 5: Price impact savings from splitting large orders

K = 2 K = 5

Obs. ∆pKt ∆pat %∆pSt Obs. ∆pKt ∆pat %∆pSt

Group 1
Buys 1,052,895 0.883 2.724 67.59 588,804 0.869 2.952 70.56
Sells 968,208 -0.937 -2.666 64.87 455,629 -0.931 -2.866 67.53

Group 2
Buys 739,059 2.299 7.483 69.28 505,949 2.015 8.769 77.02
Sells 701,738 -2.381 -7.438 67.98 427,886 -2.051 -8.798 76.68

Group 3 Buys 511,984 3.057 10.502 70.89 378,428 2.717 12.498 78.26
Sells 495,329 -3.106 -10.366 70.04 326,843 -2.653 -12.281 78.39

Group 4 Buys 407,431 3.511 12.530 71.98 301,012 3.315 14.910 77.77
Sells 398,438 -3.537 -12.316 71.28 255,167 -3.217 -14.819 78.29

Group 5 Buys 238,565 5.298 19.401 72.69 205,063 4.873 21.590 77.43
Sells 231,198 -5.318 -19.242 72.36 164,967 -4.641 -21.292 78.20

All Buys 2,949,934 2.335 7.969 70.70 1,979,256 2.302 10.014 77.01
Groups Sells 2,794,911 -2.417 -7.975 69.69 1,630,492 -2.303 -10.045 77.07

K = 10 K = all

Obs. ∆pKt ∆pat %∆pSt Obs. ∆pKt ∆pat %∆pSt

Group 1 Buys 159,194 0.862 3.238 73.39 391,253 1.172 2.989 60.78
Sells 110,254 -0.926 -3.145 70.56 361,437 -1.206 -2.933 58.89

Group 2 Buys 211,286 1.888 10.094 81.30 279,900 3.321 8.687 61.77
Sells 168,604 -1.905 -10.291 81.49 265,748 -3.336 -8.609 61.25

Group 3 Buys 181,756 2.534 14.442 82.45 191,494 4.466 12.459 64.15
Sells 146,339 -2.588 -14.476 82.12 183,352 -4.416 -12.196 63.79

Group 4
Buys 150,196 3.218 17.271 81.36 146,712 5.388 15.281 64.74
Sells 117,997 -3.238 -17.258 81.24 140,315 -5.362 -14.877 63.96

Group 5
Buys 119,486 4.754 24.146 80.31 94,183 7.935 22.454 64.66
Sells 86,078 -4.654 -23.969 80.58 89,858 -7.712 -21.745 64.53

All Buys 821,918 2.492 13.082 80.95 1,103,542 3.427 9.373 63.44
Groups Sells 629,272 -2.518 -13.190 80.91 1,040,710 -3.438 -9.249 62.83

This table investigates how much price impact one can save by splitting a large order into a series of
smaller consecutive trades for five stock groups on the S&P/ASX200 index in 2007-2013. ∆pKt denotes
the observed price impact, measured in bps, of a series of K consecutive trades in the same direction and
on the same trading day, computed as the logarithmic change in the mid-quotes immediately after and
before the K trades. ∆pat denotes the immediate price impact, measured in bps, of an artificial transaction
that aggregates the K consecutive trades. ∆pat is fitted by the HARXdepth model that is (re-)estimated
monthly for buys and sells of each stock group. The K consecutive trades satisfy two conditions: (i) each
has a volume smaller than its prevailing market depth, and (ii) their total volume (i.e. the volume of the
artificially aggregated trade) is larger than or equal to the prevailing depth of the first trade. “Obs.” denotes
the number of series of K satisfying consecutive trades. %∆pSt = (∆pat −∆pKt )/∆pat × 100% computes the
proportion of the immediate price impact that can be saved by the order split. This table reports four
different values for K: K = 2, 5, 10, and all, where the latter refers to all observed series of consecutive
same-sign same-day trades that meet the above two conditions. Figures for ∆pKt and ∆pat are the average
values.
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Table 6: Order imbalance and price impact gap regressions

5-minute window 30-minute window

(a) Group 1
Buys Sells Buys Sells

OIB PIG OIB PIG OIB PIG OIB PIG

Ivi,t≥depthi,t -0.034*** -1.633*** 0.009*** -1.626*** -0.018*** -1.811*** -0.001 -1.713***
(-36.91) (-53.43) (8.68) (-52.07) (-25.89) (-25.69) (-0.62) (-24.73)

LnVolume 0.005*** 0.459*** 0.002*** 0.421*** 0.002*** 0.486*** 0.002*** 0.256***
(16.89) (54.27) (6.76) (46.60) (10.66) (24.28) (7.31) (11.94)

LnDepth -0.000 -0.464*** -0.017*** -0.427*** -0.001 -0.452*** -0.011*** -0.301***
(-1.03) (-38.30) (-33.12) (-35.06) (-1.35) (-13.31) (-20.34) (-8.72)

Intercept 0.062*** 2.517*** 0.119*** 2.502*** 0.058*** 3.889*** 0.096*** 1.365
(14.34) (9.99) (26.13) (9.41) (14.41) (3.45) (22.48) (1.21)

Day of week Yes Yes Yes Yes Yes Yes Yes Yes
Time of day Yes Yes Yes Yes Yes Yes Yes Yes
Adj. R2 0.003 0.002 0.010 0.002 0.006 0.003 0.011 0.002
Obs 2,720,943 2,720,943 2,460,728 2,460,728 2,720,943 2,720,943 2,460,728 2,460,728

(b) Group 3
Buys Sells Buys Sells

OIB PIG OIB PIG OIB PIG OIB PIG

Ivi,t≥depthi,t -0.115*** -5.959*** 0.123*** -6.249*** -0.029*** -5.843*** 0.032*** -6.522***
(-74.87) (-100.44) (78.90) (-104.25) (-30.06) (-47.41) (32.97) (-52.07)

LnVolume 0.005*** 1.149*** -0.001* 1.127*** 0.000 1.216*** 0.003*** 1.057***
(10.96) (74.14) (-1.73) (67.50) (-0.01) (35.68) (10.08) (29.48)

LnDepth 0.003*** -1.405*** -0.003*** -1.519*** 0.006*** -1.363*** -0.008*** -1.588***
(5.27) (-65.57) (-4.33) (-68.92) (13.44) (-26.27) (-16.59) (-29.99)

Intercept 0.066*** 8.686*** -0.106*** 9.979*** -0.001 7.019*** -0.012** 11.175***
(11.92) (30.13) (-18.95) (33.94) (-0.16) (7.06) (-2.14) (11.12)

Day of week Yes Yes Yes Yes Yes Yes Yes Yes
Time of day Yes Yes Yes Yes Yes Yes Yes Yes
Adj. R2 0.011 0.011 0.012 0.012 0.006 0.003 0.008 0.004
Obs 1,588,052 1,588,052 1,553,436 1,553,436 1,588,052 1,588,052 1,553,436 1,553,436

(c) Group 5
Buys Sells Buys Sells

OIB PIG OIB PIG OIB PIG OIB PIG

Ivi,t≥depthi,t -0.193*** -10.736*** 0.201*** -11.323*** -0.058*** -11.997*** 0.061*** -12.137***
(-76.87) (-81.56) (78.87) (-87.86) (-32.15) (-49.71) (33.80) (-50.62)

LnVolume -0.007*** 1.946*** 0.015*** 2.164*** -0.006*** 2.004*** 0.015*** 2.461***
(-10.09) (60.25) (20.79) (58.98) (-11.73) (30.82) (25.71) (34.13)

LnDepth 0.011*** -2.064*** -0.010*** -2.511*** 0.012*** -2.015*** -0.015*** -2.486***
(12.45) (-56.28) (-10.82) (-66.44) (15.98) (-24.44) (-18.57) (-30.08)

Intercept 0.171*** 11.782*** -0.230*** 14.282*** 0.018** 10.093*** -0.068*** 13.004***
(22.00) (24.80) (-28.94) (29.71) (2.34) (7.81) (-8.81) (9.93)

Day of week Yes Yes Yes Yes Yes Yes Yes Yes
Time of day Yes Yes Yes Yes Yes Yes Yes Yes
Adj. R2 0.022 0.015 0.025 0.017 0.011 0.006 0.016 0.007
Obs 875,051 875,051 826,846 826,846 875,051 875,051 826,846 826,846

This table reports the results for pooled-OLS estimates of

yi,t,δ = c+ α1Ivi,t≥depthi,t
+ α2LnV olumei,t + α3LnDepthi,t + α4dayi,t + α5blocki,t + ηi,t,δ,

where yi,t,δ is either (i) the order imbalance (OIBi,t,δ), defined as the ratio of the total buy volume minus sell traded volume
to the total traded volume during a δ-minute interval after a trade at time t in stock i, or (ii) the price impact gap (PIG),
defined as the signed difference between the permanent price impact (∆pi,t,δ, in basis points (bps)) of a trade at time t in
stock i over a δ-minute interval and the immediate price impact (∆pi,t, in bps) of the trade, i.e. PIG = εi,t× (∆pi,t,δ −∆pi,t),
where εi,t is the sign (+1 for buy and -1 for sell) of a trade. Ivi,t≥depthi,t

is a dummy variable for a large transaction whose
volume is larger than or equal to the prevailing opposite-side depth right before the trade. LnV olumei,t and LnDepthi,t are
respectively the natural logarithm of the share volume of a trade and the prevailing opposite-side depth right before the trade.
dayi,t and blocki,t are respectively the set of dummies at time t for day of week and time of day effects. The regressions
relate to three stock groups (Groups 1, 3 and 5) listed on the S&P/ASX200 index in 2007. The table reports the coefficient
estimates and Newey-West heteroskedasticity and autocorrelation consistent t-statistics (in parentheses) for δ = 5 minutes and
30 minutes. Adj R2 is the adjusted R-squared, Obs is the number of observations and ***, **, and * respectively denote
statistical significance at the 1%, 5% and 10% levels.
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Figure 1: Out-of-sample one-month MSE of different price impact models
from October 2007 to December 2013 for Groups 1, 3 and 5
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This figure depicts out-of-sample one-month MSEs (measured in bps2) of different price impact models from October
2007 to December 2013 for Groups 1, 3 and 5. For the ease of graph inspection, only the MSE series for six models
including HARX, HARXdepth, LX, LXdepth, naive, and ZHOU (the best model amongst LFM1, LFM2, and ZHOU -
see Table 2) are plotted. Those for the remaining models which typically have higher MSEs are of less interest. The
insert in the top-right of each graph zooms in on the MSE series of the HARX and HARXdepth models over a four year
period around the introduction of Chi-X on 31 October 2011 (which is marked by a vertical dashed blue line in each
graph and its insert).
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Figure 2: Out-of-sample one-month MAE of different price impact models
from October 2007 to December 2013 for Groups 1, 3 and 5
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This figure depicts out-of-sample one-month MAEs (measured in bps) of different price impact models from October
2007 to December 2013 for Groups 1, 3 and 5. For the ease of graph inspection, only the MAE series for six models
including HARX, HARXdepth, LX, LXdepth, naive, and ZHOU (the best model amongst LFM1, LFM2, and ZHOU -
see Table 2) are plotted. Those for the remaining models which typically have higher MAEs are of less interest. The
insert in the top-right of each graph zooms in on the MAE series of the HARX and HARXdepth models over a four year
period around the introduction of Chi-X on 31 October 2011 (which is marked by a vertical dashed blue line in each
graph and its insert).
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Figure 3: Monthly price impact savings in 2007-2013 for Groups 1, 3 and 5
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●K = 10 K = 2 K = 5 K = all

Notes: Price impact savings are the proportion of the price impact of a big order that can be reduced by splitting it into
a series of smaller trades. They are computed as (∆pat −∆pKt )/∆pat × 100%, where ∆pKt is the observed price impact of
a series of K consecutive trades in the same direction and on the same day, and ∆pat is the predicted immediate price
impact of an artificial transaction that aggregates these trades. The K consecutive trades satisfy two conditions: (i)
each has a volume smaller than its prevailing market depth, and (ii) their total volume (i.e. the volume of the artificially
aggregated trade) is larger than or equal to the prevailing depth of the first trade. The immediate price impact of the
artificial trade is estimated by the HARXdepth model. Each graph plots the time series of the monthly price impact
savings for K = 2, 5, 10, and all, where the latter refers to all observed series of consecutive same-sign same-day trades
that meet the above two conditions.
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Appendix A List of Immediate Price Impact Models

This Appendix provides detailed specifications for each of the models that we consider in this paper.

The model names correspond to names that we have used in the text, as do the model numbers.31,32

HARXdepth: ∆pi,t =
[
a+ φ1∆pi,t−1 + φ5∆pi,t,5 + φ20∆pi,t,20 + φ50∆pi,t,50 + δ1dayi,t

+ δ2blocki,t + α

(
vi,t
vi,t

)
+ βMi,t + γσi,t

]
× Ivi,t≥depthi,t + ηi,t, (A.1)

HARX: ∆pi,t = a+ φ1∆pi,t−1 + φ5∆pi,t,5 + φ20∆pi,t,20 + φ50∆pi,t,50 + δ1dayi,t

+ δ2blocki,t + α

(
vi,t
vi,t

)
+ βMi,t + γσi,t + ηi,t, (A.2)

LXdepth: ∆pi,t =
[
a+ α

(
vi,t
vi,t

)
+ βMi,t + γσi,t

]
× Ivi,t≥depthi,t + ηi,t, (A.3)

LXb: ∆pi,t = a+ α

(
vi,t
vi,t

)
+ βMi,t + γσi,t + δ1dayi,t + δ2blocki,t + ηi,t. (A.4)

LX: ∆pi,t = a+ α

(
vi,t
vi,t

)
+ βMi,t + γσi,t + ηi,t. (A.5)

ZHOU: ∆pi,t = εi,t ×
(
vi,t
vi,t

)α
×
∣∣∆pi,t∣∣+ ηi,t, (A.6)

LFM1: ∆pi,t = εi,t ×
(
vi,t
vi,t

)α
× 1

Mβ
i,t

+ ηi,t, (A.7)

LFM2: ∆pi,t = εi,t ×
(
vi,t
vi,t

)α
× 1

Mβ
i,t

× σi,t + ηi,t, (A.8)

naive: ∆pi,t = 0. (A.9)

Amongst the above models, HARX is a non-depth analogue of HARXdepth that does not discriminate

between zero and non-zero price impact trades, LXb is the linear model nested in HARX that excludes

the effects of price impact dynamics, and LX further excludes the intra- and inter-day seasonalities

from LXb. Meanwhile, the LXdepth model is the depth-augmented version of LX and it can also be

obtained from HARXdepth by excluding time series variables (including price impact dynamics and time

of day/week effects) from the latter model.

ZHOU (which is based on Zhou (2012)), LFM1 and LFM2 (which are based on Lillo et al. (2003))

31The variable εi,t in the ZHOU, LFM1 and LFM2 models indicates the direction of the t-th trade in stock i and
equals 1 (-1) for buys (sells).

32The variable ∆pi,t in the ZHOU model (in Equation (A.6)) is defined as the average price impact of all trades in
the trading day that are prior to (but not including) the t-th trade and have the same direction. This variable can be
measured ex-ante and is in contrast to the ex-post ∆pi,t variable used in Zhou (2012) that measures the average price
impact in the entire year in which the t-th trade occurs. Note an important difference in the definitions of ex-ante vi,t
and ∆pi,t measures. The volume of the t-th trade which is known to the initiator before the execution of the trade is

included when calculating vi,t; whereas the price impact of the trade is excluded in the calculation of ∆pi,t since it can
only be realized ex-post.
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are three traditional immediate price impact models that were developed in the literature, and they

specify a power-law dependence of immediate price impact on trading volume. Finally, the naive model

is the model that always predicts a zero immediate price impact for a trade.

Some additional models (LXbdepth, ZHOUdepth, LFM1depth and LFM2depth are briefly considered in

subsection 4.2.5. These models are depth augmented versions of specifications (A.4) and (A.6) - (A.8),

respectively.

Appendix B Nonparametric Models

We extend our analysis in the main text to study some nonparametric models of immediate price

impact that can allow for the power law structures proposed by Lillo et al. (2003) and used by Zhou

(2012). Such models can also incorporate nonlinear diurnal and day of the week effects that are often

seen in high frequency asset pricing settings. We are interested in whether a more flexible modeling

strategy can capture relationships implied by theory, and whether a generalization of our initial model

in Equation (1) can lead to forecasting gains.

We work with a class of nonparametric models introduced by Hastie and Tibshirani (1986, 1990)

that are collectively called Generalized Additive Models (GAMs). A GAM is a generalized linear model

that expresses a dependent variable of interest or some function of the dependent variable as the sum

of smooth functions of possible predictors. Specifically, the parameters in linear specifications of the

relation between the response variable (y) and one or more explanatory variables (z1, z2, ..., zn) are

replaced by variable-specific smoothing functions gj(zj) that create smooth patterns between y and zj

via “local averaging”. Applications of GAMs are widespread in medical and epidemiology literatures

(Hastie and Tibshirani, 1995, Schwartz, 1999, Dominici et al., 2002) and they have also been used to

study asset pricing (e.g. Foresi and Peracchi, 1995, Hou, 2013). Knez and Ready (1996) used another

type of nonparametric model in their study of price improvement. A GAM specification that is useful

in our context is given by

yi,t = G
(
z1,i,t, z2,i,t, ..., z(|X|+|T |),i,t

)
+ ηi,t =

|X|∑
j=1

gj(Xj,i,t) +

|T |∑
k=1

gk(Tk,i,t) + ηi,t, (B.10)

where yi,t = ∆pi,t is immediate price impact, Xi,t and Ti,t consist of the same trade attributes and time

series variables as before, and |X| and |T | denote the cardinalities of the variable sets Xi,t and Ti,t. We

consider generalizations of our HARXdepth and HARX models given by the following:
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GHARXdepth: ∆pi,t =
[
a+ g1

(
vi,t
vi,t

)
+ g2(Mi,t) + g3(σi,t) + g4(dayi,t) + g5(blocki,t) + g6(∆pi,t−1)

+ g7(∆pi,t,5) + g8(∆pi,t,20) + g9(∆pi,t,50)
]
× Ivi,t≥depthi,t + ηi,t, (B.11)

GHARX: ∆pi,t = a+ g1

(
vi,t
vi,t

)
+ g2(Mi,t) + g3(σi,t) + g4(dayi,t) + g5(blocki,t) + g6(∆pi,t−1)

+ g7(∆pi,t,5) + g8(∆pi,t,20) + g9(∆pi,t,50) + ηi,t, (B.12)

and we fit these nonparametric models via cubic regression spline smoothing.33

We demonstrate some of the estimated relationships in Figure B.1, which provides GHARX and

GHARXdepth estimates of the buy/sell relationships between immediate price impact and volume,

volatility, and time of day for Stock Group 5 in 2007.34 While the GHARX plots are based on

all in-sample observations (including the zero price impact trades) and can be directly compared to

figures produced by previous studies, the GHARXdepth plots are based on just those trades for which

Ivi,t≥depthi,t = 1.35

<<INSERT FIGURE B.1 ABOUT HERE>>

Focusing on the GHARX graphs for buyer-initiated transactions in Panel (a) of Figure B.1, we see

a positive concave relation between immediate price impact and trading volume that fits a power-law

function well, reaffirming the power-law theory that has been well documented in the literature (e.g.

Gabaix et al., 2003, 2006). Similarly, we find strong support for the direct dependence of price impact

on volatility as parameterized in prior studies (Torre, 1997, Almgren et al., 2005). The diurnal plot

suggests that immediate price impact generally decreases as the trading day progresses, as discussed

in Wilinski et al. (2015). Price impact is higher earlier in the day due to institutional investors who

are potentially well-informed about news that has accumulated overnight, whereas trading towards the

end of the day is lower because it is mainly due to uninformed market participants (Anand et al., 2005,

Bloomfield et al., 2005, Duong et al., 2009).

33We use the gam function in the mgcv R package (Wood, 2017) to estimate the nonparametric models. We use cubic
regression splines because they are simple and lead to “directly interpretable” parameter estimates (Wood, 2006), and
use Generalized Cross-Validation (GCV) to select significant variables and estimate each model.

34We obtain qualitatively similar plots for other stock groups in other years.
35Each plot uses observations that fall within the 5% and 95% quantiles of the relevant predictor. This truncation is

used to ensure that plots relate to typical (rather than outlying) values of the predictor, and it is applied to all transactions
for the GHARX plots, and only to those trades that have impact (i.e. Ivi,t≥depthi,t = 1) for the GHARXdepth plots. The
truncation is undertaken on a stock-by-stock basis, separately for buys and sells.
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The GHARX plots for seller-initiated transactions of Group 5 are depicted in Panel (b) of Figure

B.1. As for buys, the size of immediate price impact for sells exhibit a positive and persistent dynamic

structure. Since price impact is positive for purchases and negative for sales, the plots in Panel (b)

mirror those in Panel (a). Nevertheless, there are subtle asymmetries in price impact between purchases

and sales, consistent with work by Jondeau et al. (2015), who find that asymmetries in price impact

are related to stocks’ liquidity. These asymmetries are very evident from the nonparametric models,

but may not be captured easily by tightly specified parametric models.

Comparison of the GHARX and GHARXdepth plots (i.e. panels (a) and (b) vs panels (c) and (d)

shows how the incorporation of a market depth dummy into the models affects the relation between

immediate price impact and its determinants. Not surprisingly, the measured impact of each deter-

minant is now significantly higher. With respect to buyer (seller)-initiated transactions, the overall

positive (negative) dependence of market impact on trading volume and volatility is preserved but the

concavity between price impact and scaled volume in Panels (a) and (b) become essentially linear in

Panels (c) and (d). Meanwhile, the essentially linear relationships between immediate price impact

and volatility in panels (a) and (b) are less obvious for data that is far from the mean of the data.

Further, the diurnal characteristics implied by the GHARXdepth model are more strongly U (inverted

U)-shaped in Panels (c) and (d).

The nonparametric specification of some of our models finds strong nonlinear dependencies of

immediate price impact on various predictors. Such nonlinearities are generally consistent with those

previously documented in the literature when all transactions are examined, but they become quite

different when only large trades that are of larger size than the available depth (i.e. those trades that

have price impact) are considered.

We compare the forecast performance of the GHARXdepth and GHARX models with their paramet-

ric HARXdepth and HARX analogues in Table B.1. The results show that on average the GHARXdepth

and GHARX models offer statistically significant improvements over their HARX counterparts in more

than 96% (73%) of the forecast windows when assessed using MSE (MAE), and lead to more than

an 8% reduction in MSE for the GHARXdepth vs HARXdepth MSE comparison. The other percentage

reductions are smaller in magnitude but are still statistically significant, suggesting that the gener-

alized specifications do not simply overfit the data, but rather capture genuine features of the data

that lead to forecasting gains. We note (without reporting details) that the MSE (MAE) measures for
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the GHARXdepth model are all significantly statistically smaller than those for the GHARX model by

about 60%, for all stock groups and for both buys and sells, showing yet again the value of the depth

indicator for forecasting immediate price impact.

Table B.1: Performance of nonparametric versus parametric models

Panel A: MSE Panel B: MAE

GHARXdepth GHARX GHARXdepth GHARX
vs. HARXdepth vs. HARX vs. HARXdepth vs. HARX

Group 1 Buys 98.67 [6.80] 100.00 [0.50] 89.33 [2.66] 92.00 [0.92]
Sells 100.00 [7.11] 98.67 [0.42] 86.67 [2.67] 92.00 [0.79]

Group 2 Buys 97.33 [8.07] 98.67 [0.51] 88.00 [3.45] 97.33 [0.73]
Sells 98.67 [8.18] 98.67 [0.40] 89.33 [3.45] 96.00 [0.72]

Group 3
Buys 96.00 [10.12] 97.33 [0.51] 85.33 [4.27] 58.67 [0.25]
Sells 97.33 [10.32] 98.67 [0.41] 90.67 [4.45] 74.67 [0.36]

Group 4 Buys 98.67 [8.98] 93.33 [0.32] 89.33 [4.60] 54.67 [0.02]
Sells 98.67 [7.90] 92.00 [0.31] 90.67 [4.61] 72.00 [0.24]

Group 5
Buys 96.00 [7.73] 94.67 [0.50] 73.33 [1.97] 44.00 [-0.21]
Sells 96.00 [7.87] 93.33 [0.33] 65.33 [2.02] 53.33 [0.01]

Average 97.73 [8.31] 96.53 [0.42] 84.80 [3.41] 73.47 [0.38]

This table compares the performance of nonparametric immediate price impact models with their parametric analogues over 75
out-of-sample months (from October 2007 to December 2013) for five stock groups on the S&P/ASX200 index. It reports (i) the
percentages of times that each nonparametric price impact model statistically significantly outperforms its respective parametric
analogue; and (ii) the percentage reduction in the whole out-of-sample MSEs/MAEs brought about by nonparametric modeling (in
brackets). The “Average” row reports the simple averages for both buys and sells for all five stock groups. For each one-month
out-of-sample window, the statistical outperformance (at a 5% level) of one model over another model is judged by the Giacomini
and White (2006) conditional predictive accuracy test using MSE (in Panel A) and MAE (in Panel B). Results, reported in %, are
based on the analysis of nine-month in-sample and one-month out-of-sample windows rolled one month ahead.
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Figure B.1: Price impact implied by predictors in the GHARX and GHARXdepth models
for Group 5 in Jan-Sep 2007

Notes: In each panel, graphs from left to right in order reveal the dependence of immediate price impact on scaled volume (vi,t/vi,t), volatility
(σi,t, in %), and time of day (blocki,t). Graphs for other predictors are omitted for brevity. Each graph zooms in the central 90% distribution
of the relevant predictor, with the solid curve representing the estimated relation and the dashed curves representing the 95% confidence
interval. The vertical dashed and solid lines respectively position the median and mean of each predictor, except for time of day. The y-axes
are measured in bps. In the scaled volume graph of the GHARX model, the dotted dashed curve with circle markers represents the best fitted
power law function whose exponent, α, is reported at the bottom right (for buys) or at the top right (for sells) of the graph.
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