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We consider Ewens random permutations of length n conditioned to have no cycle longer than

nβ with 0 < β < 1 and study the asymptotic behaviour as n → ∞. We obtain very precise

information on the joint distribution of the lengths of the longest cycles; in particular we

prove a functional limit theorem where the cumulative number of long cycles converges to a

Poisson process in the suitable scaling. Furthermore, we prove convergence of the total variation

distance between joint cycle counts and suitable independent Poisson random variables up to a

signi�cantly larger maximal cycle length than previously known. Finally, we remove a super�uous

assumption from a central limit theorem for the total number of cycles proved in an earlier paper.
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1. Introduction

In uniform random permutations, long cycles occupy almost all the available space.
Indeed, it is a standard textbook exercise to show that in a permutation of length n, the
probability to �nd an index i in a cycle of length k is equal to 1/n, which in turn means
that cycles of a length below volume order play no role asymptotically as n → ∞. Of
course, much more is known about uniform (and Ewens) random permutations, including
the precise distribution of long and short cycles. We refer to [1] and the references therein.

It is interesting to see how the behaviour of random permutations changes when the
uniform measure is changed in a way that favours short cycles. Various such models
have been studied in recent years. Many of them are motivated by the model of spatial
random permutations [5], which by its close connections to Bose-Einstein condensation
[25] has a signi�cant physical relevance. In this model, a spatial structure is superimposed
on the permutations, and the importance of that spatial structure is measured by an
order parameter which physically is the temperature. It is conjectured that this order
parameter mediates a phase transition between a regime of only short cycles and a
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regime of coexistence of long and short cycles. Despite some successes in the explicitly
solvable annealed case without interaction between di�erent cycles [7], and signi�cant
recent progress (using the method of re�ection positivity) in a closely related model
with such interaction [18, 24], many of the most relevant questions in spatial random
permutations remain to be answered.

A somewhat more direct and in general easier to analyse way to suppress long cycles
is to introduce cycle weights or hard constraints on cycle numbers. Cycle weights appear
in an (uncontrolled) approximation of the interacting Bose gas by a variant of the free
one [6], but have also been studied intensively in their own right, both in cases where
the cycle weights do not depend on the system size n [8, 13], and in cases where they do
[10, 12]. In the latter case, it has been shown in the cited papers that one recovers the
model treated in [7] by a suitable choice of cycle weights, and the methods of analytic
combinatorics used in [10, 12] yield very precise information about the asymptotic cycle
distribution in various regimes.

The present paper deals with the other option of constraining permutations, namely
to completely disallow certain cycle lengths. Again, a distinction has to be made between
cases where the set of disallowed cycle lengths is independent of the permutation length
n, and those where it depends on n. In the �rst case, a signi�cant amount of information
has been obtained in the works of Yakymiv (see e.g. [26, 27]); our interest lies in the
second case. Using precise asymptotic results by Manstavi£ius and Petuchovas [20], in
[3, 4] we investigated the case where a permutation of length n is prevented from having
any cycles above a threshold α(n) that grows strictly slower than volume order. While
the results in these papers were reasonably detailed, some interesting questions and �ne
details have been left out.

It is the purpose of the present paper to settle a signi�cant portion of them. We will
describe our results in detail in the next section. Here, we only brie�y sketch what is
new.

One di�erence to [3] is that we generalise the base model we constrain, from uniform
random permutations to the model of Ewens permutations. The latter originally appeared
in population genetics, see [14], but has now become a rather standard model of random
permutations. It shares many features and techniques with uniform permutations, and
classical results about uniform and Ewens random permutations include convergence
of joint cycle counts towards independent Poisson random variables in total variation
distance [2], the convergence of the renormalized cycle structure towards a Poisson-
Dirichlet distribution [17, 23], and a central limit theorem for cumulative cycle counts
[11].

In the context of the methods we use, the di�erence between the Ewens measure
and uniform random permutations is not large, see [22] for details. What should be
considered the main contribution of the present paper compared to [3, 4] are the following
three items: �rstly, we obtain much more precise asymptotics for the distribution of the
longest cycles in various regimes (Propositions 2.2 and 2.3, and Theorem 2.5). For this,
we consider the number of cycles of length α(n) and distinguish the cases where this
number is diverging, is converging to a positive number and is vanishing. Secondly, we
extend the validity of the joint Poisson approximation (in variation distance) to the
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whole regime of cycles of length (o(α(n)) (Theorem 2.8). We achieve this by replacing
the Poisson random variables with �xed expectation by Poisson random variables with
an expectation depending on n. Finally, we remove a spurious additional assumption for
the central limit theorem for cycle numbers that was present in [4], see Theorem 2.9. We
achieve this by a more preciser saddle point solution.

The paper is organised as follows: in Section 2, we introduce the model, give our results
and compare them to previously existing ones. In Section 3, we prove those results.

2. Model and Results

2.1. The symmetric group and the Ewens measure

For n ∈ N, let Sn be the group of all permutations of the set {1, . . . , n}. For σ ∈ Sn and
m ∈ N, we denote by Cm(σ) the number of cycles of length m in the cycle decomposition
of σ into disjoint cycles. Note that we typically write Cm instead of Cm(σ). Let n 7→ α(n)
satisfy the condition

na1 ≤ α(n) ≤ na2 (2.1)

with a1, a2 ∈ (0, 1). We denote by Sn,α the subset of Sn of all permutations σ for which
all cycles in the cycle decomposition of σ have length at most α(n). In other words,
σ ∈ Sn,α if and only if Cm(σ) = 0 for m > α(n). For ϑ > 0, the Ewens measure on Sn
with parameter ϑ is de�ned as

Pn [σ] :=

∏n
m=1 ϑ

Cm(σ)

ϑ(ϑ+ 1) · · · (ϑ+ n− 1)
. (2.2)

Note that the case ϑ = 1 corresponds to the uniform measure. Further, let Pn,α denote
the measure on Sn,α obtained by conditioning Pn on Sn,α, i.e.

Pn,α [A] := Pn [A|Sn,α] for all A ⊂ Sn,α. (2.3)

Inserting the de�nition Pn, we obtain for σ ∈ Sn,α that

Pn,α [σ] =

∏n
m=1 ϑ

Cm(σ)

Zn,α n!
with Zn,α =

1

n!

∑
σ∈Sn,α

n∏
m=1

ϑCm(σ). (2.4)

Also, we write En for the expectation with respect to Pn and En,α for the expectation
with respect to Pn,α.

2.2. Notation

If two sequences (an) and (bn) are asymptotically equivalent, i.e. if limn→∞ an/bn = 1,
we write an ∼ bn. Further, we write an ≈ bn when there exist constants c1, c2 > 0 such
that

c1bn ≤ an ≤ c2bn (2.5)
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for large n. We also use the usual O and o notation, i.e. f(n) = O(g(n)) means that there
exists some constant c > 0 so that |f(n)| ≤ c|g(n)| for large n, while f(n) = o(g(n)) means
that for all c > 0 there exists nc ∈ N so that the inequality |f(n)| ≤ c|g(n)| holds for all
n > nc. We further say that

fn(t) = O (gn(t)) uniformly in t ∈ Tn as n→∞

if there are constants c,N > 0 such that supt∈Tn |fn(t)| ≤ c|gn(t)| for all n ≥ N .

2.3. Expected cycle counts

Here we recall some of the results from [4] and [22] that are crucial for the following.
Let xn,α be the unique positive solution of the equation

n = ϑ

α(n)∑
j=1

xjn,α, (2.6)

and

µm (n) := ϑ
xmn,α
m

. (2.7)

For the case where m is replaced by an integer-valued sequence (m(n))n∈N, we simplify
notation and write µm(n) instead of µm(n)(n). For any such sequence that satis�esm (n) ≤
α (n), we have

En,α
[
Cm(n)

]
∼ µm(n) as n→∞. (2.8)

This was proven for ϑ = 1 in [4, Proposition 2.1], and for ϑ 6= 1 in [22] along the
same lines. In view of (2.8) it is clear that we are interested in information about the
asymptotics of solutions to equations like (2.6). The following result provides it:

Lemma 2.1. Let 0 < c1 < c2 <∞ be �xed, but arbitrary real numbers. For c ∈ [c1, c2],
let xn,α(c) be the solution of

cn = ϑ

α(n)∑
j=1

(
xn,α(c)

)j
. (2.9)

We then have uniformly in c ∈ [c1, c2] as n→∞

α (n) log (xn,α(c)) = log

(
cn

ϑα (n)
log

(
cn

ϑα (n)

))
+O

(
log (log (n))

log (n)

)
. (2.10)

In particular,

xn,α(c) ≥ 1, lim
n→∞

xn,α(c) = 1 and
(
xn,α(c)

)α(n) ∼ cn

ϑα (n)
log

(
cn

ϑα (n)

)
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for large n. Furthermore,
α(n)∑
j=1

j
(
xn,α(c)

)j ∼ cn

ϑ
α(n). (2.11)

Lemma 2.1 is a special case of [20, Lemma 9] and follows immediately by inserting
our assumptions in [20, Lemma 9]. We thus omit the proof.

2.4. Asymptotics of longest cycles

The �rst set of results that we present deals with the asymptotic (joint) distribution of
the longest cycles under the measure Pn,α. Let `k = `k (σ) denote the length of the k-th
longest cycle of the permutation σ. We already know that for �xed K ∈ N, under the
probability measures Pn,α, we have as n→∞

1

α (n)
(`1, `2, . . . , `K)

d−→ (1, 1, . . . , 1) , (2.12)

where
d−→ denotes convergence in distribution (see equation (2.14) in [4] or [22]). We will

signi�cantly improve on this information.
It turns out that the behaviour of the longest cycles depends on the expected length

given in (2.8). In other words, we have to look at the behaviour of µα(n) in the three
regimes

µα(n) →∞, µα(n) → µ with µ > 0 , and µα(n) → 0.

A discussion about which regime happens when in case of α(n) = nβ can be found in
Section 2.2 of [4].

We start with the simplest case µα(n) →∞. This case only occurs if α (n) = o((n log n)
1
2 ),

see Proposition 2.4 below. In this case, the distribution of the random vector (`1, . . . , `K)
becomes degenerate:

Proposition 2.2. Suppose that µα(n) →∞. Then, for each K ∈ N, we have

lim
n→∞

Pn,α
[
(`1, `2, . . . , `K) 6=

(
α (n) , α(n), . . . , α(n)

)]
= 0.

A similar proposition was proven in [4, Theorem 2.8] and [22] under the additional
assumption that α(n) ≥ n

1
7 +δ for δ > 0. The reason why we can omit this assumption

here is our improved central limit theorem, Theorem 2.9. We give the proof of Proposition
2.2 in Section 3.2.

Next, we now look at the case µm(n) → µ with µ > 0. We �nd
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Proposition 2.3. Suppose that µα(n) → µ with µ > 0 as n→∞. We then have for all
d ∈ N0 and all k ∈ N that

Pn,α [`k = α (n)− d]
n→∞−−−−→ 1

Γ (k)

∫ (d+1)µ

dµ

vk−1e−vdv. (2.13)

In other words, α (n) − `k converges in distribution to
⌊
µ−1X

⌋
, where X is a gamma-

distributed random variable with parameters k and 1 and bxc = max{n ∈ Z; n ≤ x}.

The proof of this proposition is given in Section 3.3. Moreover, the proof allows for
deriving the joint distribution of the longest cycles, but the notation of results in this
case is cumbersome.

Finally, we have the case where the expected number of cycles vanishes. Here we obtain
the most interesting results, namely a functional convergence of the cumulative numbers
of long cycles to a Poisson process, on the correct scale. By considering the jump times
of this Poisson process, we establish limit theorems for `k. Let us start with a small
observation.

Proposition 2.4. We have, as n→∞,

µα(n) ≈
n log n

(α (n))2
. (2.14)

Proof. Inserting the de�nition of µα(n), see (2.7), and using Lemma 2.1, we obtain

µα(n) = ϑ
x
α(n)
n,α

α(n)
∼ n

(α (n))2
log

(
n

ϑα (n)

)
≈ n log n

(α (n))2
. (2.15)

This completes proof of this proposition.

This proposition immediately implies that µα(n) → 0 if and only if n logn
(α(n))2 → 0 as

n→∞. We now de�ne

dt (n) := max

{
α (n)−

⌊
t

µα(n)

⌋
, 0

}
. (2.16)

Note that dt(n) = α(n)(1+o(1)) and
⌊

t
µα(n)

⌋
→∞ if µα(n) → 0 for �xed t. We now have

Theorem 2.5. Suppose that µα(n) → 0 and de�ne for t ≥ 0

Pt :=

α(n)∑
j=dt(n)+1

Cj .

Then the stochastic process {Pt, t ≥ 0} converges under Pn,α as n → ∞ weakly in
D [0,∞) to a Poisson process with parameter 1, where D [0,∞) denotes the space of
càdlàg-functions.
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This theorem is proved in Section 3.4. It immediately implies the following corollary.

Corollary 2.6. Let K ∈ N be given, α(n) be as in (2.1) and suppose that µα(n) → 0.
We have convergence in distribution of

µα(n) · (α (n)− `1, `2 − `1, . . . , `K − `K−1)

under Pn,α to independent exponentially distributed random variables with parameters 1.
In particular, µα(n) (α (n)− `k) converges in distribution to a gamma-distributed random
variable with parameters k and 1.

Proof. The claim is a consequence of the convergence established in the proof of Theorem
2.5 since the limit distribution is the distribution of the jump times of the Poisson process
(see, e.g. [19, p.5]).

2.5. Total variation distance

Here we study the joint behaviour of the cycle counts Cm in the region m = o(α(n)).
Recall that the total variation distance of two probability measures P and P̃ on a discrete
probability space Ω is given by ‖P− P̃‖TV =

∑
ω∈Ω(P(ω)− P̃(ω))+.

Theorem 2.7 ([4, Theorem 2.2]). Let b = (b(n))n be a sequence of integers with b(n) =
o
(
α(n)(log n)−1

)
. Let Pn,b(n),α be the distribution of (C1, . . . , Cb(n)) under the uniform

measure on Sn,α, and let P̃b(n) be the distribution of independent Poisson-distributed

random variables (Z1, . . . Zb(n)) with Ẽb(n)(Zj) = 1
j for all j ≤ b(n). Then there exists

c <∞ so that for all n ∈ N, we have

‖Pn,b(n),α − P̃b(n)‖TV ≤ c
(
α(n)

n
+ b(n)

log n

α(n)

)
.

In the special case α(n) ≥
√
n log(n), Judkovich [16] has computed the above total

variation distance using Steins method and obtained a slightly better upper bound.
On the full symmetric group Sn, a similar result as Theorem 2.7 holds with b(n) = o(n),

see [2]. A natural question at this point is thus if one can replace b(n) in Theorem 2.7
by b(n) = o

(
α(n)

)
. Recall, we have seen in equation (2.8) that

En,α
[
Cm(n)

]
∼ ϑ

xmn,α
m

as n→∞.

Using Lemma 2.1, we immediately see that En,α
[
Cm(n)

]
∼ E [Zm] if and only if m =

o
(
α(n)(log n)−1

)
. Thus b(n) = o

(
α(n)(log n)−1

)
is the most one can expect in Theorem 2.7.

To overcome the problem with the expectations, we replace the random variables Zj with

�xed expectation by random variables Y (n)
j with an expectation depending on n so that

En,α
[
Cm(n)

]
∼ E

[
Y (n)
m

]
for all m = o

(
α(n)

)
. (2.17)
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However, to simplify the notation, we write Yj instead of Y (n)
j . We now have

Theorem 2.8. Let b = (b(n))n be a sequence of integers with b(n) = o
(
α(n)

)
. Let

Pn,ϑ,b(n),α be the distribution of (C1, . . . , Cb(n)) under Pn,α on Sn,α. Further, let P̂b(n) be
the distribution of independent Poisson-distributed random variables (Y1, . . . , Yb(n)) with
E [Yj ] = µj(n) for all j ≤ b(n) and µj(n) as in (2.7). Then

‖Pn,ϑ,b(n),α − P̂b(n)‖TV = O

(
nε
(
α(n)

n

) 5
12

)
, (2.18)

where ε > 0 is arbitrary. Further, if b(n) = o
(
α(n)(log n)−1

)
then

‖Pn,ϑ,b(n),α − P̂b(n)‖TV = O
(
α(n)

n
+
b(n) log n

n
5
12α

7
12

)
. (2.19)

The proof of this theorem is given in Section 3.5.

2.6. Central Limit Theorem for Cycle Numbers

For the proof of Proposition 2.2, we require a central limit theorem for the cycle counts
in the case E [Cm] → ∞. The main result of this section is to establish this theorem.
Explicitly, we prove the following.

Theorem 2.9. Let mk : N→ N for 1 ≤ k ≤ K such that mk (n) ≤ α (n) and mk1 (n) 6=
mk2 (n) if k1 6= k2 for large n. Suppose that

µmk(n) (n)→∞

for all k. We then have as n→∞(
Cm1(n) − µm1(n) (n)√

µm1(n) (n)
, . . . ,

CmK(n) − µmK(n) (n)√
µmK(n) (n)

)
d−→ (N1, . . . , NK) ,

with N1, . . . , NK independent standard normal distributed random variables.

This theorem was proven in [4] under the additional assumption

n−
5
12α (n)

− 7
12

x
mk(n)
n,ϑ√

µmk(n) (n)
→ 0. (2.20)

In Section 3.6 we present a proof that does not require the addidional assumption.
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3. Proofs

3.1. Generating functions and the saddle point method

Generating functions and their connection with analytic combinatorics form the backbone
of the proofs in this paper. More precisely, we will determine formal generating functions
for all relevant moment-generating functions and then use the saddle-point method to
determine the asymptotic behaviour of these moment-generating functions as n→∞.

Let (an)n∈N be a sequence of complex numbers. Then its ordinary generating function
is de�ned as the formal power series

f (z) :=

∞∑
n=0

anz
n.

The sequence may be recovered by formally extracting the coe�cients

[zn] f (z) := an

for any n. The �rst step is now to consider a special case of Pólya's Enumeration Theorem,
see [21, �16, p. 17], which connects permutations with a speci�c generating function.

Lemma 3.1. Let (qj)j∈N be a sequence of complex numbers. We then have the following
identity between formal power series in z,

exp

 ∞∑
j=1

qjz
j

j

 =

∞∑
k=0

zk

k!

∑
σ∈Sk

k∏
j=1

q
Cj
j , (3.1)

where Cj = Cj(σ) are the cycle counts. If either of the series in (3.1) is absolutely
convergent, then so is the other one.

Extracting the nth coe�cient yields

[zn] exp

 ∞∑
j=1

qjz
j

j

 =
1

n!

∑
σ∈Sn

n∏
j=1

q
Cj
j . (3.2)

With this formulation, the parameters (qj) can depend on the system size n. For instance,
setting qj = ϑ1{j≤α(n)}, we obtain

Zn,α = [zn] exp

ϑ α(n)∑
j=1

zj

j

 (3.3)
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with Zn,α as in (2.4). Similarly, we can get an expression for the moment generating
function of Cm(n), where (m(n))n∈N is an integer sequence with m(n) ≤ α(n). Indeed,
setting qm(n) = ϑes and qj = ϑ1{j≤α(n)} for j 6= m(n), we get

En,α
[
esCm(n)

]
=

1

Zn,α
[zn] exp

(
ϑ(es − 1)

zm(n)

m(n)

)
exp

ϑ α(n)∑
j=1

zj

j

 . (3.4)

In view of (3.3) and (3.53), we can compute the asymptotic behaviour of Zn,α (and similar
expressions) by extracting the coe�cients of power series as in (3.3) and (3.53). One way
to extract these coe�cients is the saddle point method, a standard tool in asymptotic
analysis. The basic idea is to rewrite the expression (3.2) as a complex contour integral
and choose the path of integration in a convenient way. The details of this procedure
depend on the situation at hand and need to be done on a case by case basis. A general
overview over the saddle-point method can be found in [15, page 551]. An important part
of this computations is typically to �nd a solution of the so-called saddle-point equation.

We now treat the most general case of the saddle point method that is relevant for
the present situation. Let q = (qj,n)1≤j≤α(n),n∈N be a triangular array. We assume that
all qj,n are nonnegative, real numbers and that for each n ∈ N there exists a j such that
qj,n > 0. We then de�ne xn,q as the unique positive solution of

n =

α(n)∑
j=1

qj,nx
j
n,q. (3.5)

Let further

λp,n := λp,n,α,q :=

α(n)∑
j=1

qj,nj
p−1xjn,q, (3.6)

where p ≥ 0 is a natural number. Due to Equation (3.5),

λp,n ≤ n (α (n))
p−1 (3.7)

holds for all p ≥ 1. Note that (3.7) may not hold for p = 0. We now de�ne

De�nition 3.2. A triangular array q is called admissible if the following three conditions
are satis�ed:

1. It satis�es

α (n) log (xn,q) ≈ log

(
n

α (n)

)
.

2. We have
λ2,n ≈ nα (n) .
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3. There exist a non-negative sequence (b(n))n∈N and constants δ, c > 0 such that
b (n) /α (n) < 1− δ and qj,n ≥ c > 0 for all j ≥ b (n) hold for n large enough.

Note that condition (1) implies in particular that xn,q > 1 and that xn,q → 1 as
n→∞. Let Br(0) denote the ball with center 0 and radius r in the complex plane.

De�nition 3.3. Let q be an admissible triangular array. Then a sequence (fn)n∈N of
functions is called admissible (w.r.t. q) if it satis�es the following three conditions:

1. There is δ > 0 such that fn is holomorphic on the disc Bxn,q+δ (0) if n ∈ N is large
enough.

2. There exist constants K,N > 0 such that

sup
z∈∂Bxn,q (0)

|fn (z)| ≤ nK |fn (xn,q)| (3.8)

for all n ≥ N .
3. With the de�nition

|||fn|||n := n−
5
12 (α (n))

− 7
12 sup
|ϕ|≤n− 5

12 (α(n))−
7
12

∣∣f ′n (xn,qeiϕ
)∣∣

|fn (xn,q)|
, (3.9)

we have |||fn|||n → 0 as n→∞.

We are now in the position to formulate our general saddle point result.

Proposition 3.4 ([4, Proposition 3.2]). Let q be an admissible triangular array and
(fn)n∈N an admissible sequence of functions. Then we have as n→∞

[zn] fn (z) exp

α(n)∑
j=1

qj,n
j
zj

 =
fn (xn,q) eλ0,n

xnn,q
√

2πλ2,n

(
1 +O

(
α (n)

n
+ |||fn|||n

))
. (3.10)

Note that the implicit constants in the O(.) terms in (3.10) can depend on K, N and
δ from the above de�nition of admissibility. However, we require for our computations
only the leading term in (3.10). Also we will not vary the values of K, N and δ. Thus
we need only the existence of K, N and δ, but not their values. We therefore can safely
omit the dependence on K, N and δ.

In view of Proposition 3.4, we see it is important to understand the asymptotic
behaviour of xn,q and λj,n as n→∞. Lemma 2.1 will be very useful for this purpose.

3.2. Proof or Proposition 2.2

We have by assumption µα(n) →∞. Thus we can apply Theorem 2.9. We conclude that

Cα(n) − µα(n)√
µα(n) (n)

d−→ N, (3.11)
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12 V.Betz et al.

where N is a standard normal distributed random variable. Since α(n) is the maximal
cycle length, we have

Pn,α
[
(`1, `2, . . . , `K) 6=

(
α (n) , α (n) , . . . , α (n)

)]
= Pn,α

[
Cα(n) < K

]
.

Using (3.11), we get

Pn,α
[
Cα(n) < K

]
= Pn,α

[
Cα(n) − µα(n)
√
µα(n)

<
K − µα(n) (n)√

µα(n) (n)

]
n→∞−−−−→ 0,

and the claim follows.

3.3. Proof of Proposition 2.3

As a �rst step, we state

Proposition 3.5. Let (mk(n))n∈N, k = 1, . . . , d, be integer sequences satisfying 1 ≤
mk(n) ≤ α(n) and mk(n) 6= m`(n) for k 6= `. Suppose that

µmk(n) → µk ∈ [0,∞[

for all k. Then (
Cm1(n), . . . , Cmd(n)

) d−→ (Y1, . . . , Yd) (3.12)

where (Yk)dk=1 a sequence of independent Poisson distributed random variables with parameters
E [Yk] = µk for all k = 1, . . . , d.

This proposition was proven in [4], but we give the proof of this proposition for the
case d = 1 for the convenience of the reader.

Proof. Let d = 1. We argue here with the moment generating function. We saw in (3.53)
that we have for s ≥ 0

En,α
[
esCm1(n)

]
=

1

Zn,α
[zn] exp

(
ϑ(es − 1)

zm1(n)

m1(n)

)
exp

ϑ α(n)∑
j=1

zj

j

 . (3.13)

We now apply Proposition 3.4 to compute the asymptotic behaviour of this expression
in the case s ≥ 0. According to [28], this is su�cient to prove the proposition. We use

q = (qj,n) with qj = ϑ1{j≤α(n)} and fn(z) = exp
(
ϑ(es − 1) z

m1(n)

m1(n)

)
. We thus have

to show that q and the sequence (fn)n∈N are admissible, see De�nitions 3.2 and 3.3.
Inserting the de�nition of q, we immediately get that the corresponding saddle point
equation is given by (2.6), hence the solution is xn,α. The admissibility of q then follows
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immediately from Lemma 2.1. It remains to show that (fn)n∈N is admissible. All fn are
entire functions and hence we can choose any δ > 0. Since s ≥ 0, we have for all r > 0
and ϕ ∈ [−π, π] ∣∣fn(reiϕ)

∣∣ ≤ |fn(r)|.

Thus the second condition is ful�lled with K = 0. For the third condition, we use

f ′n(z) = ϑ(es − 1)zm1(n)−1fn(z)

and that µm1(n) = ϑ
xm1(n)
n,α

m1(n) . Inserting this and that µm1(n) → µ1 immediately shows that

the third condition is ful�lled. So we can apply Proposition 3.4. Using that En,α
[
esCm1(n)

]
=

1 for s = 0, we obtain

En,α
[
esCm1(n)

]
−→ exp

(
ϑ(es − 1)µ1

)
. (3.14)

This completes the proof.

Now we turn to the proof of Proposition 2.3. In this proof, we write µα(n)(n) instead of
µα(n). Let j ∈ N0 be arbitrary. Using the de�nition of µm(n) in (2.7) with m = α(n)− j,
we get

µα(n) (n)

µα(n)−j (n)
=
α (n)− j
α (n)

xjn,α
n→∞−−−−→ 1.

Since µα(n)(n)→ µ by assumption, we get that

µα(n)−j (n)
n→∞−−−−→ µ

for all j ∈ N0. Proposition 3.5 therefore implies that the cycle counts
(
Cα(n)−j

)
0≤j≤d

converge in distribution to a sequence (Zj)
d
j=0, where (Zj)

d
j=0 is i.i.d. Poisson distributed

with parameter µ. We now have, as n→∞,

Pn,α [`k ≤ α (n)− d] = Pn,α

[
d−1∑
i=0

Cα(n)−i ≤ k − 1

]
→ P

[
d−1∑
i=0

Zi ≤ k − 1

]
.

By the independence of (Zj)0≤i≤d, the random variable
∑d−1
i=0 Zi is Poisson-distributed

with parameter dµ. Thus,

P

d−1∑
j=0

Zj ≤ k − 1

 =

k−1∑
j=0

e−dµ
(dµ)

j

j!
=

1

Γ (k)

∫ ∞
dµ

vk−1e−vdv,

where Γ(s) denotes the gamma function. The last equality follows by partial integration
and induction. We now have

Pn,α [`k = α (n)− d] = Pn,α [`k ≤ α (n)− d]− Pn,α [`k ≤ α (n)− (d+ 1)] .
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14 V.Betz et al.

This implies

Pn,α [`k = α (n)− d]
n→∞−−−−→ 1

Γ (k)

∫ (d+1)µ

dµ

vk−1e−vdv.

The claim is proved.

Remark 3.6. The proof of Proposition 2.3 can also be used to compute the limit of

Pn,α
[
(`k)

d
k=1 = (α (n)− dk)

d
k=1

]
as n tends to in�nity since the event in question only depends on a �nite number of cycle
counts Cα(n)−j . It is, however, cumbersome to provide a closed form for such probabilities:

The reason for this is that the stochastic process (`k)
d
k=1 is not Markovian, i.e. the

distribution of `d depends non-trivially on the distribution of the random vector (`k)
d−1
k=1.

This is why we only provide the readily interpretable results for one individual `k at a
time in the proposition.

3.4. Proof of Theorem 2.5

We will �rst prove certain auxiliary results, assuming that µα(n) → 0. Inserting the
de�nition of µα(n), see (2.7), we get

µdt(n) (n) = ϑ
x
dt(n)
n,α

dt (n)
= ϑ

(xn,α)α(n)−bt/µα(n)c

α (n)−
⌊
t/µα(n)

⌋ = µα(n)
α (n)

α (n)−
⌊
t/µα(n)

⌋x−bt/µα(n)c
n,α .

We now have
α (n)

α (n)−
⌊
t/µα(n)

⌋ n→∞−−−−→ 1,

locally uniformly in t since 1/µα(n) = o (α (n)) by Equation (2.14). By Lemma 2.1 and
Equation (2.14), we have as n→∞

x
−bt/µα(n)c
n,α = exp

(
−
⌊

t

µα(n)

⌋
1

α(n)
log

(
n

ϑα (n)
log

(
n

ϑα(n)

))(
1 + o(1)

))
= exp

(
O
(
t
α (n)

n

))
−→ 1, (3.15)

locally uniformly in t ≥ 0. Altogether, we have locally uniformly in t that

µdt(n) (n) ∼ µα(n).

Furthermore, the function m → µm (n) is increasing for m ≥ α(n)
logn . This follows by

computing the derivative with respect to m of µm (n) in (2.7) and using Lemma 2.1. We
thus have locally uniformly in t

α(n)∑
m=dt(n)+1

µm (n)
n→∞−−−−→ t

µα(n)
µα(n) = t. (3.16)
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In order to establish convergence as a stochastic process, we begin by proving convergence
of the �nite-dimensional distributions. More precisely, for 0 = t0 ≤ t1 < ... < tK and
K ∈ N, consider the increments

(
Ptk − Ptk−1

)K
k=1

. We now have

Ptk − Ptk−1
=

dtk−1
(n)∑

j=dtk (n)+1

Cj . (3.17)

We begin by determining the moment generating function. We have

En,α

[
K∏
k=1

exp
(
sk
(
Ptk − Ptk−1

) )]
= En,α

exp

 K∑
k=1

esk
dtk−1∑

j=dtk+1

Cj


=

1

Zn,α,ϑ
[zn] exp

 K∑
k=1

(esk − 1)

dtk−1∑
j=dtk+1

ϑ

j
zj

 exp

α(n)∑
j=1

ϑ

j
zj

 , (3.18)

where sk ≥ 0 for all 1 ≤ k ≤ K. Equation (3.18) follows immediately with Lemma 3.1
and a small computation using qj = ϑesk for dtk < j ≤ dtk−1

.
We will apply Proposition 3.4 with q = (qj,n) with qj = ϑ1{j≤α(n)} and the perturbations

fn (z) = exp

 K∑
k=1

(esk − 1)

dtk−1∑
j=dtk+1

ϑ

j
zj

 .

To do this, we have to check that the array q and the sequence (fn)n∈N are admissible,
see De�nitions 3.2 and 3.3. The array q is admissible by Lemma 2.1. Let us now look at
(fn)n∈N. The functions fn are entire. Thus we can use any δ > 0. Further, all coe�cients
of the Taylor expansion of fn(z) at z = 0 are non-negative since all sk ≥ 0. This implies

|fn (z)| ≤ fn (xn,ϑ) for all z ∈ C with |z| = xn,ϑ.

It remains to check condition (3.9). We have

f ′n (z) =

K∑
k=1

(esk − 1)

dtk−1∑
j=dtk+1

ϑzj−1fn (z) .

We thus have for all z ∈ C with |z| = xn,ϑ that∣∣∣∣ f ′n (z)

fn (xn,ϑ)

∣∣∣∣ ≤ K∑
k=1

(esk − 1)

dtk−1∑
j=dtk+1

ϑxj−1
n,ϑ

≤ ϑxα(n)
n,ϑ

K∑
k=1

(esk − 1)

α(n)−btk−1/µα(n)c∑
j=α(n)−btk/µα(n)c+1

1. (3.19)
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Using the de�nition of µα(n) in (2.7), we see that we have locally uniformly in sk∣∣∣∣ f ′n (z)

fn (xn,ϑ)

∣∣∣∣ = O
(
ϑx

α(n)
n,ϑ

tK
µα(n)

)
= O (α(n)) .

Inserting this into (3.9), we obtain

|||fn|||n = n−
5
12 (α (n))

− 7
12 sup
|ϕ|≤n− 5

12 (α(n))−
7
12

∣∣f ′n (xn,qeiϕ
)∣∣

|fn (xn,q)|

≤ n− 5
12 (α (n))

− 7
12 O (α(n)) = O

((
α(n)

n

)5/12
)
→ 0.

This implies that the sequence (fn)n∈N is admissible, so we can apply Proposition 3.4 to
(3.18). Observe that Equation (3.16) entails

dtk−1∑
j=dtk+1

µj(n) =

α(n)−btk−1/µnc∑
j=α(n)−btk/µnc+1

µj (n)
n→∞−−−−→ tk − tk−1

for all k. Since we use for all sk the same array q, including the case s1 = . . . = sK = 0,
we get with Proposition 3.4 that

En,α

[
K∏
k=1

exp
(
sk
(
Ptk − Ptk−1

) )]
∼ fn (xn,ϑ) = exp

 K∑
k=1

(esk − 1)

dtk−1∑
j=dtk+1

µj(n)


−→

K∑
k=1

exp [(esk − 1) (tk − tk−1)] .

This implies that the increments (Ptk−Ptk−1
)Kk=1 converge in distribution to independent

random variables (Z1, Z2, . . . , ZK), where Zk is Poisson-distributed with parameter tk −
tk−1. Thus the �nite-dimensional distributions of Pt converge weakly to the �nite-dimensional
distributions of the Poisson process with parameter 1.

To prove that the process {Pt, t ≥ 0} converges to the Poisson process with parameter
1, it remains to establish the tightness of the process {Pt, t ≥ 0}. By [9, Theorem 13.5
and (13.14)], it is su�cient to show for each T > 0 that

En,α
[
(Pt − Pt1)

2
(Pt2 − Pt)

2
]

= O
(

(t2 − t1)
2
)

(3.20)

uniformly in t, t1, t2 with 0 ≤ t1 ≤ t ≤ t2 ≤ T . Note that we can assume that
t2

µα(n)
− t1

µα(n)
≥ 1. Otherwise (Pt − Pt1)

2
(Pt2 − Pt)

2
= 0 and the above equation is

trivially ful�lled. Let n be large enough such that dT (n) > 0. By Equation (3.18), we
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have

En,α
[
(Pt − Pt1)

2
(Pt2 − Pt)

2
]

=
∂2

∂s2
2

∂2

∂s2
1

En,α
[
es1(Pt−Pt1)+s2(Pt2−Pt)

]∣∣∣∣
s1=s2=0

=
1

Zn,α,ϑ

∂2

∂s2
2

∂2

∂s2
1

[zn] exp ((es1 − 1)Gn,t1,t (z) + (es2 − 1)Gn,t,t2 (z)) exp

α(n)∑
j=1

ϑ

j
zj

∣∣∣∣∣∣
s1=s2=0

with Gn,u,w (z) :=
∑du(n)
j=dw(n)+1

ϑ
j z
j for 0 ≤ u ≤ w ≤ T . Calculating the derivatives and

entering s1 = s2 = 0 gives

En,α
[
(Pt − Pt1)

2
(Pt2 − Pt)

2
]

=
1

Zn,α,ϑ
[zn] gn (z) exp

α(n)∑
j=1

ϑ

j
zj


with

gn (z) := Gn,t1,t (z) (1 +Gn,t1,t (z))Gn,t,t2 (z) (1 +Gn,t,t2 (z)) .

We now apply again Proposition 3.4. We use here the perturbations (gn)n∈N and as before
q = (qj,n) with qj = ϑ1{j≤α(n)}. Thus we only have to show that (gn)n∈N is admissible.
All gn are entire and we thus can use any δ > 0. Further the coe�cients of the Taylor
expansion of gn(z) at z = 0 are all non-negative. Thus |gn (z)| ≤ gn (|z|) for all z. It
remains to check condition (3.9). We use here an estimate which is similar to the one in
(3.19). We have for z ∈ C with |z| = xn,ϑ that

|G′n,u,w (z) | =

∣∣∣∣∣∣
du(n)∑

j=dw(n)+1

ϑzj−1

∣∣∣∣∣∣ ≤ ϑ
du(n)∑

j=dw(n)+1

xj−1
n,ϑ ≤ ϑx

α(n)
n,ϑ

α(n)−bu/µα(n)c∑
j=α(n)−bw/µα(n)c+1

1

= ϑx
α(n)
n,ϑ

(⌊
w/µα(n)

⌋
−
⌊
u/µα(n)

⌋)
.

Similarly, we have

|Gn,u,w(xn,ϑ)| = ϑ

du(n)∑
j=dw(n)+1

xjn,ϑ
j
≥ ϑ

du(n)
x
dw(n)+1
n,ϑ

du(n)∑
j=dw(n)+1

1

≥ ϑ

du(n)
x
dw(n)+1
n,ϑ

(⌊
w/µα(n)

⌋
−
⌊
u/µα(n)

⌋)
. (3.21)

Using (3.15) and the de�nition of dw(n) in (2.16), we get∣∣∣∣ G′n,u,w (z)

Gn,u,w(xn,ϑ)

∣∣∣∣ ≤ du(n)x
bw/µα(n)c+1

n,ϑ ≤ α(n) exp

(
O
(
T
α (n)

n

))
= O (α(n)) .
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18 V.Betz et al.

This estimate is uniform in u,w with 0 ≤ u ≤ w ≤ T . Inserting this inequality into (3.9)
then gives

|||Gn,u,w|||n ≤ n−
5
12 (α (n))

− 7
12 O (α(n)) = O

((
α(n)

n

)5/12
)
→ 0.

We thus have

|||gn|||n ≤ 2|||Gn,t1,t|||n + 2|||Gn,t,t2 |||n = O

((
α(n)

n

)5/12
)
. (3.22)

This estimate is uniform in t, t1, t2 with 0 ≤ t1 ≤ t ≤ t2 ≤ T . This implies that the
sequence (gn)n∈N is admissible. Proposition 3.4 then implies that

En,α
[
(Pt − Pt1)

2
(Pt2 − Pt)

2
]

= gn (xn,ϑ)

(
1 +O

(
α (n)

n
+ |||gn|||n

))
≤ 2gn (xn,ϑ) .

Using the de�nition of gn and an estimate similar to (3.21), we get

gn (xn,ϑ) ≤

 dt1 (n)∑
j=dt2(n)+1

ϑ

j
xjn,ϑ

21 +

dt1 (n)∑
j=dt2(n)+1

ϑ

j
xjn,ϑ

2

≤2 (dt1 (n)− dt2 (n))
2
µ2
α(n)

(
1 + 2 (dt1 (n)− dt2 (n))µα(n)

)2
.

Using the de�nition of dt(n) in (2.16) and that 0 ≤ t1 ≤ t2 ≤ T , we obtain

gn (xn,ϑ) ≤ 2(1 + 2T )2
(
dt1 (n)− dt2 (n)

)2
µ2
α(n)

= 2(1 + 2T )2

(⌊
t2

µα(n)

⌋
−
⌊

t1
µα(n)

⌋)2

µ2
α(n)

≤ 2(1 + 2T )2

(
t2

µα(n)
− t1
µα(n)

+ 1

)2

µ2
α(n)

≤ 8(1 + 2T )2 (t2 − t1)
2
.

Note that we used for the last equation the assumption t2
µα(n)

− t1
µα(n)

≥ 1. This shows

that (3.20) holds. This completes the proof.

3.5. Proof of Theorem 2.8

The proof follows mainly the ideas in [2], where the case of uniform permutations is
treated, and is also similar to the proof of Theorem 2.7 in [4].

In order to establish Theorem 2.8, we have to introduce some notation. We set

db(n) := ‖Pn,ϑ,b(n),α − P̂b(n)‖TV. (3.23)
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Let (Yj) be as in Theorem 2.8 and set for b1, b2 ∈ N

T
(n)
b1b2

:=

b2∑
j=b1+1

jYj . (3.24)

Further, let Cb =
(
C1, C2, . . . , Cb(n)

)
the vector of the cycle counts up to length b(n),

Y b =
(
Y1, Y2, . . . , Yb(n)

)
, and c =

(
c1, c2, . . . , cb(n)

)
∈ Nb(n) a vector. We then have for

all c

Pn,α [Cb = c] = P
[
Y b = c|T (n)

0α(n) = n
]
. (3.25)

The proof of this equality is the same as for the uniform measure on Sn in [2] and we
thus omit it. As in [4, Section 4.2], one can use (3.25) to show that

db(n) =

∞∑
r=0

P
[
T

(n)
0b(n) = r

]1−
P
[
T

(n)
b(n)α(n) = n− r

]
P
[
T

(n)
0α(n) = n

]


+

, (3.26)

where (y)+ = max(y, 0). We will split this sum into pieces. We have

db(n) ≤ P
[
T

(n)
0b(n) ≥ ρE

[
T

(n)
0b(n)

]]
+ max

1≤r≤ρE
[
T

(n)

0b(n)

]
1−

P
[
T

(n)
b(n)α(n) = n− r

]
P
[
T

(n)
0α(n) = n

]


+

,

where ρ = ρ(n) > 1 is arbitrary. We now have

Lemma 3.7. Let ρ > 1. Then,

P
[
T

(n)
0b(n) ≥ ρE

[
T

(n)
0b(n)

]]
≤ exp

(
E
[
T

(n)
0b(n)

] ρ− ρ log(ρ)

b(n)

)
.

Proof. We set m := E
[
T

(n)
0b(n)

]
. We then have for all s ≥ 0

P
[
T

(n)
0b(n) ≥ ρm

]
= P

[
e
sT

(n)

0b(n) ≥ esρm
]
≤

E
[
e
sT

(n)

0b(n)

]
esρm

. (3.27)

The independence of the Yj and m =
∑b(n)
j=1 jµj(n) = ϑ

∑b(n)
j=1 x

j
n,ϑ imply that

log
(
E
[
e
sT

(n)

0b(n)

])
=

b(n)∑
j=1

µj(n)(ejs − 1) = ϑ

b(n)∑
j=1

xjn,ϑ

∫ s

0

ejxdx ≤ ϑ
b(n)∑
j=1

xjn,ϑ

∫ s

0

eb(n)xdx

≤ m
∫ s

0

eb(n)xdx = m
eb(n)s − 1

b(n)
≤ meb(n)s

b(n)
. (3.28)
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We thus have P
[
T

(n)
0b(n) ≥ ρm

]
≤ exp

(
meb(n)s

b(n) − sρm
)
. We now use s = 1

b(n) log (ρ),

which is by assumption non-negative. Inserting this into the above inequality completes
the proof.

In order to choose a suitable ρ, we have to determine the asymptotic behavior of

E
[
T

(n)
0b(n)

]
. Using the de�nition of µj(n) in (2.7), we get

E
[
T

(n)
0b(n)

]
=

b(n)∑
j=1

jµj(n) = ϑ

b(n)∑
j=1

(xn,α)j = ϑxn,α
(xn,α)b(n) − 1

xn,α − 1
. (3.29)

We know from Lemma 2.1 that xn,α → 1 and

(xn,α)b(n) ∼
(

n

ϑα(n)
log

(
n

ϑα(n)

))b(n)/α(n)

. (3.30)

If b(n) = o (α(n)/ log(n)) then (xn,α)b(n) → 1 and thus E
[
T

(n)
0b(n)

]
∼ b(n). However,

we can also have b(n) ≥ c α(n)
log(n) for some c > 0. Using that xn,α − 1 ∼ log(xn,α), we

immediately obtain

E
[
T

(n)
0b(n)

]
≈ α(n)

log(n)

(
n

ϑα(n)
log

(
n

ϑα(n)

))b(n)/α(n)

. (3.31)

This implies that we have for n large

α(n)

log(n)
≤ E

[
T

(n)
0b(n)

]
≤ α(n)nε

log(n)
, (3.32)

where ε > 0 can be chosen arbitrarily. In view of (3.32) and b(n) = o(α(n)), we use ρ =

log2(n) in Lemma 3.7. With this choice of ρ, we immediately get that P
[
T

(n)
0b ≥ ρE

[
T

(n)
0b(n)

]]
=

O(n−A) where A > 0 is arbitrary. Inserting this into (3.26), with A = 2, we get

db(n) ≤ max
r≤ρE

[
T

(n)

0b(n)

]
1−

P
[
T

(n)
b(n)α(n) = n− r

]
P
[
T

(n)
0α(n) = n

]


+

+O(n−2). (3.33)

We look next at T (n)
b(n)α(n). Using that that all Yj are independent, we get that the

probability generating function of T (n)
b(n)α(n) is

E
[
z
T

(n)

b(n)α(n)

]
= exp

 α(n)∑
j=b(n)+1

µj(n)(zj − 1)

 . (3.34)
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Using that µj(n) = ϑ
(xn,α)j

j , we get

P
[
T

(n)
b(n)α(n) = n− r

]
= exp

− α(n)∑
j=b(n)+1

µj(n)

xn−rn,α [zn] zr exp

ϑ α(n)∑
j=b(n)+1

1

j
zj

 .

Similarly, we obtain

P
[
T

(n)
0α(n) = n

]
= exp

− α(n)∑
j=1

µj(n)

xnn,α [zn] exp

ϑ b(n)∑
j=1

1

j
zj

 exp

ϑ α(n)∑
j=b(n)+1

1

j
zj

 .

Thus we have to determine for r ≤ ρE
[
T

(n)
0b(n)

]
the asymptotic behaviour of

[zn] zr exp

ϑ α(n)∑
j=b(n)+1

1

j
zj

 and [zn] exp

ϑ b(n)∑
j=1

1

j
zj

 exp

ϑ α(n)∑
j=b(n)+1

1

j
zj

 .

We do this with Proposition 3.4. We use for both the triangular array

q = (qj,n)1≤j≤α(n),n∈N with qj,n = ϑ1{b(n)+1≤j≤α(n)}. (3.35)

Furthermore, we use the perturbations f1,n(z) = zr for the �rst and f2,n(z) = exp
(
ϑ
∑b(n)
j=1

1
j z
j
)

for the second expression. We thus have to show that q and f1,n(z) and f2,n(z) are
admissible, see De�nitions 3.2 and 3.3. We now have

Lemma 3.8. Let b = o(α(n)) and de�ne xn to be the solution of the equation

n = ϑ

α∑
j=b(n)+1

xjn. (3.36)

We then have xn,α ≤ xn ≤ xn,α−b(n) and |xn − xn,α| = O
(

1
α(n)

)
. Furthermore the

triangular array q in (3.35) is admissible.

Proof. We have by de�nition that xn,α ≤ xn. Further, xn,α−b is the solution of

n =

α(n)−b(n)∑
j=1

(xn,α−b)
j .

Since α(n) < n, we have xn ≥ 1 and xn,α−b ≥ 1. This implies that xn ≤ xn,α−b.
Lemma 2.1 now implies

|xn − xn,α| = xn − xn,α ≤ xn,α−b − xn,α = O
(

1

α(n)

)
.
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Further, xn,α and xn,α−b are admissible by Lemma 2.1. Thus xn,α ≤ xn ≤ xn,α−b together
with Equation (2.10) immediately shows that xn ful�lls Condition (1) in De�nition 3.2.
Furthermore, we also get

log(xn) ≈ log(n)

α(n)
and xn − 1 ≈ log(n)

α(n)
. (3.37)

To see that xn ful�lls Condition (2), one uses (3.37) and the identity

d∑
j=0

jqj =
dqd+1

q − 1
− q(qd − 1)

(q − 1)2
for all d ∈ N, q 6= 0. (3.38)

Condition (3) is obvious. Thus q is admissible.

We now can show

Lemma 3.9. The sequences (f1,n)n∈N with f1,n = zr is admissible for all r = o
(
n

5
12α

7
12

)
.

Further, (f2,n)n∈N with f2,n = exp
(
ϑ
∑b(n)
j=1

1
j z
j
)
is admissible.

Proof. We start with (f1,n)n∈N. Since all f1,n = zr, the �rst two conditions of De�nition 3.3
are ful�lled with δ = N = 1 and K = 0 for all r. We now have

|||f1,n|||n ≤ n−
5
12 (α (n))

− 7
12 rx−1

n .

Since xn → 1, we have |||f1,n|||n → 0 if and only if r = o(n
5
12 (α (n))

7
12 ). This completes

the proof of the �rst half of the statement. For (f2,n)n∈N, we also have only to check the
third condition. Lemma 2.1 implies that xn − 1 ≥ c log(n)/α(n) for some c > 0. Since
xn,α ≤ xn ≤ xn,α−b and b = o(α(n)), we get with Lemma 2.1

|f ′2,n(z)|
|f2,n(xn)|

≤
b(n)−1∑
j=0

xjn =
x
b(n)
n,α−b − 1

xn,α − 1
= O(nεα(n)) for all z with |z| = xn,

where ε > 0 can be chossen arbitarily small. We thus have |||f2,n|||n ≤ n−
5
12 +ε(α(n))

5
12 .

Since α(n) ≤ na2 with a2 < 1, we see that |||f2,n|||n → 0 for ε > 0 small enough.

We know from (3.32) that E
[
T

(n)
0b(n)

]
≤ α(n)nε

log(n) for each ε > 0 and n large enough. This

shows that we can use Proposition 3.4 to compute P
[
T

(n)
b(n)α(n) = n− r

]
and P

[
T

(n)
0α(n) = n

]
for r ≤ ρE

[
T

(n)
0b(n)

]
. We thus have

P
[
T

(n)
b(n)α(n) = n− r

]
P
[
T

(n)
0α(n) = n

] = x−rn,αx
r
n exp

−ϑ b(n)∑
j=1

1

j

(
xjn − xjn,α

) (1 +Rn) , (3.39)
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where

Rn = O
(
α (n)

n
+ |||f1,n|||n + |||f2,n|||n

)
.

Note that the implicit constant in the error term in Proposition 3.4 only depends on the

used K, N and δ. Since we use for each r ≤ ρE
[
T

(n)
0b(n)

]
the same K, N and δ, we get

that Rn is uniform in r. We now have to distinguish the two cases b(n) = o(α(n)) and

b(n) = o
(
α(n)

log(n)

)
for the error terms in (2.18) and (2.19). In the case b(n) = o(α(n)), we

get with (3.32) and the proof of Lemma 3.9 that

|||f1,n|||n ≤
r

n
5
12 (α(n))

7
12

≤
ρE
[
T

(n)
0b(n)

]
n

5
12 (α(n))

7
12

= O

(
nε
(
α(n)

n

) 5
12

)

for each ε > 0. We thus have that Rn is as in (2.18). In the case b(n) = o
(
α(n)

log(n)

)
, we

have E
[
T

(n)
0b(n)

]
∼ b(n). Using this, we immediately get that Rn is as in (2.19).

It thus remains to compute the asymptotic behaviour of the main term in (3.39). We
thus need an estimate for xb(n)

n − x
b(n)
n,α . Unfortunately, the bounds obtained from the

Lemmas 3.8 and 2.1 are not strong enough. To overcome this issue, let us consider for
y ∈ R the equation

ϑeα(n)y = ny. (3.40)

It is straightforward to see that this equation has for n
ϑα(n) > e two solutions. We denote

these by yn,α,0 and yn,α with 0 < yn,α,0 < yn,α. It is straightforward to see that yn,α,0 ∼ ϑ
n

and yn,α ∼ log(n/α(n))
α(n) as n→∞. We have

Lemma 3.10. We have

α(n) yn,α = log

(
n

ϑα(n)
log

(
n

ϑα (n)

))
+O

(
log log(n)

log(n)

)
. (3.41)

Furthermore, we have for b = o(α(n)) that

log(xn,α) = yn,α +O
(

1

n log(n)

)
and log(xn) = yn,α +O

(
eb(n)yn,α

n log(n)

)
. (3.42)

We �rst complete our computations of the main term in (3.39) with Lemma 3.10 and
then give the proof of Lemma 3.10. We have

ϑ

b(n)∑
j=1

1

j

(
xjn − xjn,α

)
= ϑ

b(n)−1∑
j=0

∫ xn

xn,α

vjdv = ϑ

∫ xn

xn,α

vb(n) − 1

v − 1
dv ≤ ϑ

xn,α − 1

∫ xn

xn,α

vb(n)dv

=
ϑ

xn,α − 1

(
(xn)b(n)+1

b(n) + 1
− (xn,α)b(n)+1

b(n) + 1

)
. (3.43)
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We use (3.42) and get for some ε > 0

(xn)b(n)+1 − (xn,α)b(n)+1 = (xn,α)b(n)+1
(

exp
(

(b(n) + 1)(log xn − log xn,α)
)
− 1
)

= (xn,α)b(n)+1

(
exp

(
(b(n) + 1)O

(
eb(n)yn,α

n log(n)

))
− 1

)
= (xn,α)b(n)+1(b(n) + 1)O

(
eb(n)yn,α

n log n

)
.

Equation 3.41 and Lemma 2.1 imply that eb(n)yn,α = O (nε) and (xn,α)b(n)+1 = O (nε),
where ε > 0 can be chosen arbitrarily small. Using this and (3.37), we get

ϑ

b(n)∑
j=1

1

j

(
xjn − xjn,α

)
= O

(
(b(n) + 1)eb(n)yn,α(xn,α)b(n)+1

n log2(n)

)
= O

(
b(n) + 1

n1−2ε log2(n)

)
.

Inserting this into (3.43) gives

P
[
T

(n)
b(n)α(n) = n− r

]
P
[
T

(n)
0α(n) = n

] ≥ exp

(
O
(

b(n) + 1

n1−2ε log2(n)

))
(1 +Rn)

= 1 +O

(
nε
(
α(n)

n

) 5
12

)
.

This equation together with (3.33) completes the proof of Theorem 2.8.

Proof of Lemma 3.10. We start with (3.41). We insert the approach

y =
1

α(n)
log

(
n

ϑα(n)
log

(
n

ϑα (n)

))
+ v

with v ∈ R into (3.40). This leads to the equation

log

(
n

ϑα(n)

)
eα(n)v = log

(
n

ϑα(n)
log

(
n

ϑα (n)

))
+ α(n)v. (3.44)

Note that we have

log(y) ≤ log(y log(y)) ≤ (1 + ε) log(y) (3.45)

for all ε > 0 and y large enough. Using this, it is straightforward to see that equation
(3.44) has exactly one solution in the region v ≥ 0 and that this solution has to be

o
(

1
α(n)

)
as n→∞. To obtain a lower bound for v, we use the inequality ex ≤ 1 + 2x for

0 ≤ x ≤ log 2. Thus v is larger than the solution v′ of the equation

log

(
n

ϑα(n)

)
(1 + 2α(n)v′) = log

(
n

ϑα(n)
log

(
n

ϑα (n)

))
+ α(n)v′. (3.46)
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A simple computation gives

v′ =
log log

(
n

ϑα(n)

)
2α(n) log

(
n

ϑα(n)

)
+ α(n)

(3.47)

This establishes a lower bound for v. For an upper bound, we argue similarly with
1 + x ≤ ex for x ≥ 0. This completes the proof of (3.41).

We prove (3.42) only for xn. The asymptotics for xn,α then follows immediately by
inserting b = 0 into the asymptotics for xn. The de�ning equation (3.36) of xn has exactly
one solution can be rewritten as

ϑ(xn)α(n) − ϑ(xn)b(n) = n
(
1− (xn)−1

)
. (3.48)

We now insert xn = ey. This gives

ϑeα(n)y − ϑeb(n)y = n
(
1− e−y

)
. (3.49)

The equation (3.49) has exactly one solution in the region y > 0. Further, both sides of
(3.49) are monotone increasing functions of y. Inserting y = yn,α ± c

α(n) with c > 0 into
(3.49) and using (3.41) shows that the RHS of (3.49) behaves like

n
(

1− e−yn,α±
c

α(n)

)
∼ n

α(n)
log

(
n

ϑα(n)
log

(
n

ϑα (n)

))
. (3.50)

On the other hand, the LHS of (3.49) behaves like

ϑeα(n)(yn,α± c
α(n) ) − ϑeb(n)(yn,α± c

α(n) ) ∼ e±c n

α(n)
log

(
n

ϑα(n)

)
. (3.51)

Using (3.45), we immediately see that the solution of (3.49) has to be in the interval
[yn,α − c

α(n) , yn,α + c
α(n) ]. We now use the approach y = yn,α + v. Clearly, we must have

v = o
(

1
α(n)

)
. We now argue as for (3.41). To get a lower bound for v, we use 1 + x ≤ ex

and 1− e−x ≤ x. This leads to the equation

ϑeα(n)yn,α(1 + α(n)v′)− 3

2
ϑeb(n)yn,α = n(yn,α + v′).

Using the de�nition of yn,α in (3.40), we immediately get

v′ =
3ϑeb(n)yn,α

2ϑeα(n)yn,αα(n)− 2n
=

3ϑeb(n)yn,α

2nyn,αα(n)− 2n
∼ 3ϑeb(n)yn,α

2n log(n)
.

The upper bound is obtained similarly. This completes the proof.
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3.6. Proof of Theorem 2.9

We give here the proof for the case K = 1. The reason is that the arguments for the
cases K > 1 and K = 1 are almost identical, but unfortunately the notation for the
case K > 1 is more cumbersome. We thus write m(n) and µm(n) instead of m1(n) and
µm1(n)(n). This mainly simpli�es the notation, but does not change the argument used.
As in [4], the proof will be based upon point-wise convergence of moment-generating
functions. Replacing s by s√

µm(n)
in (3.53), we get

Mn(s) := En,α

[
exp

(
s

√
µm(n)

Cm(n)

)]
(3.52)

=
1

Zn,α
[zn] exp

ϑe
s√

µm(n)
zm(n)

m(n)
+ ϑ

∑
1≤j≤α(n),
j 6=m(n)

zj

j

 . (3.53)

In order to determine the asymptotic behaviour of Mn(s), we apply Proposition 3.4 with
the triangular array q = (qj,n)1≤j≤α(n),n∈N with

qj,n =


0 if j > α (n)

ϑ exp
(
s/
√
µm(n)

)
if j = m (n)

ϑ otherwise,

(3.54)

together with fn(z) = 1 for all n. We thus have to show that q and the sequence (fn)n∈N
are both admissible, see De�nition 3.2 and 3.3. The sequence (fn)n∈N is admissible for
all triangular arrays. Thus we have only to show that q is admissible. Hence, we have to
study the solution xn,q of the equation (3.5). Since this solution depends on the parameter
s, we write xn,q(s) instead of xn,q. Also, we will write λ2,n(s) for λ2,n,α,q with λ2,n,α,q

as in (3.6). We now show

Lemma 3.11. Let q be as in (3.54) and xn,q(s) be de�ned as in (3.5). Suppose that
µm(n) →∞ with µm(n) as in (2.7). Then we have, locally uniformly in s ∈ R, that

α (n) log (xn,q (s)) ∼ log

(
n

ϑα (n)
log

(
n

ϑα (n)

))
. (3.55)

In particular, if n is large enough,

xn,q(s) ≥ 1 and lim
n→∞

xn,q(s) = 1.

Furthermore, we have
λ2,n(s) ∼ nα (n) (3.56)

locally uniformly in s with λ2,n(s) = λ2,n,q,α as in (3.6).
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Proof. We use Lemma 2.1 to prove Lemma 3.11. Recall that xn,α(c) is de�ned in (2.9)
for c > 0 as the solution of

cn = ϑ

α(n)∑
j=1

(
xn,α(c)

)j
.

Furthermore xn,q(s) is the solution of the equation

n = ϑ
(

e
s√

µm(n) − 1
) (
xn,q(s)

)m(n)
+ ϑ

α(n)∑
j=1

(
xn,q(s)

)j
. (3.57)

We now assume that 0 ≤ s ≤ U with U > 0 an arbitrary, but �xed real number. Since

e
s√

µm(n) ≥ 1, we get

xn,q(s) ≤ xn,α(1) = xn,α, (3.58)

where xn,α is as in (2.6). Using the de�nition of µm(n) together with s ≤ U and µm(n) →
∞, we obtain for n large(

e
s√

µm(n) − 1
) (
xn,q(s)

)m(n) ≤ 2U
√
µm(n)

(
xn,α

)m(n)
=

2U√
ϑ

√
m(n)

(
xn,α

)m(n)
2

≤ 2U√
ϑ

√
α(n)

(
xn,α

)α(n)
.

Applying Lemma 2.1 for xn,α = xn,α(1), we get for n large(
e

s√
µm(n) − 1

) (
xn,q(s)

)m(n) ≤4U

ϑ

√
n log

(
n

ϑα (n)

)
≤ n1/2+ε,

for ε > 0 small. Inserting this into (3.57), we get

ϑ

α(n)∑
j=1

(
xn,q(s)

)j
= n− ϑ

(
e

s√
µm(n) − 1

) (
xn,q(s)

)m(n) ≥ n(1− n−1/2+ε). (3.59)

Using the de�nition if xn,α(c), we see that

xn,α

(
1− n−1/2+ε

)
≤ xn,q(s) ≤ xn,α(1). (3.60)

Applying Lemma 2.1 to xn,α
(
1− n−1/2+ε

)
and xn,α(1) immediately completes the proof

for 0 ≤ s ≤ U . The argumentation for −U ≤ s ≤ 0 is similar and we thus omit it.

Lemma 3.11 implies that xn,q(s) with q in (3.54) is admissible. Thus we can apply
Proposition 3.4. We obtain for each s ≥ 0 that

Mn (s) =
1

Zn,α

exp (hn (s))√
2πλ2,n(s)

(1 + o (1)) , (3.61)
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where

hn(s) = ϑ
(

e
s√

µm(n) − 1
) (xn,q(s))

m(n)

m(n)

+

α(n)∑
j=1

(xn,q(s))

j

j

− n log (xn,q (s)) . (3.62)

Since Mn (0) = 1, we have

1

Zn,α

exp (hn (0))√
2πλ2,n(0)

n→∞−−−−→ 1.

Our aim is to use this result to complete the proof of Theorem 2.9. We observe from
(3.56) that the leading coe�cient of λ2,n(s) is independent of s. Therefore, we have
proven Theorem 2.9 if we can show that for each s ≥ 0

hn(s) = hn(0) + s
√
µm(n) +

s2

2
+ o (1) as n→∞. (3.63)

We begin with the derivatives of xn,q(s)

Lemma 3.12. The function s 7→ xn,q(s) is for each n in�nitely often di�erentiable.
Further, we have

x′n,q(s)

xn,q(s)
= −

exp
(

s√
µm(n)

)
(xn,q (s))

m(n)

√
µm(n)λ2,n(s)

. (3.64)

Proof. Let n be �xed. Since all coe�cients of q in (3.54) are non-negative and not all
0, it follows that the equation (3.5) has for each s ≥ 0 exactly one solution. Thus the
function s→ xn,q(s) is a well de�ned function on [0,∞). Applying the implicit function
theorem to the function

g(s, x) = ϑ
(

e
s√

µm(n) − 1
)
xm(n) + ϑ

α(n)∑
j=1

xj

and using that ∂
∂xg(s, x) > 0 for x > 0 completes the proof.

Applying Lemma 3.12 to hn(s), we obtain

Lemma 3.13. We have

h′n(s) = ϑ
e

s√
µm(n)

√
µm(n)

(xn,q(s))

m (n)

m(n)

, (3.65)

h′′n(s) =
1

√
µm(n)

h′n(s)− (m(n))2

λ2,n(s)
(h′n(s))

2
, (3.66)

h′′′n (s) =
1

√
µm(n)

h′′n(s)− 2(m(n))2

λ2,n(s)
h′n(s)h′′n(s) +

λ3,n(s)x′n,q(s)(
λ2,n(s)

)2 (h′n(s))
2
. (3.67)
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Proof. Equation (3.65) follows immediately from (3.62) and the de�nition of xn,q(s).
Equation (3.66) and (3.67) follow from Lemma 3.12, equation (3.65) and the de�nition
of λ2,n(s), see De�nition 3.2.

Equation (3.63) now follows by using xn,q(0) = xn,α, µm = ϑ
xmn,α
m and Lemma 3.11.

This completes the proof of Theorem 2.9.
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